WorldWideScience

Sample records for intermittent oscillations generated

  1. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    Science.gov (United States)

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  2. Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.

    Science.gov (United States)

    Hoseini, Mahmood S; Wessel, Ralf

    2016-01-01

    Local field potential (LFP) recordings from spatially distant cortical circuits reveal episodes of coherent gamma oscillations that are intermittent, and of variable peak frequency and duration. Concurrently, single neuron spiking remains largely irregular and of low rate. The underlying potential mechanisms of this emergent network activity have long been debated. Here we reproduce such intermittent ensemble oscillations in a model network, consisting of excitatory and inhibitory model neurons with the characteristics of regular-spiking (RS) pyramidal neurons, and fast-spiking (FS) and low-threshold spiking (LTS) interneurons. We find that fluctuations in the external inputs trigger reciprocally connected and irregularly spiking RS and FS neurons in episodes of ensemble oscillations, which are terminated by the recruitment of the LTS population with concurrent accumulation of inhibitory conductance in both RS and FS neurons. The model qualitatively reproduces experimentally observed phase drift, oscillation episode duration distributions, variation in the peak frequency, and the concurrent irregular single-neuron spiking at low rate. Furthermore, consistent with previous experimental studies using optogenetic manipulation, periodic activation of FS, but not RS, model neurons causes enhancement of gamma oscillations. In addition, increasing the coupling between two model networks from low to high reveals a transition from independent intermittent oscillations to coherent intermittent oscillations. In conclusion, the model network suggests biologically plausible mechanisms for the generation of episodes of coherent intermittent ensemble oscillations with irregular spiking neurons in cortical circuits. Copyright © 2016 the American Physiological Society.

  3. Intermittent Chaos in the Bray-Liebhafsky Oscillator. Dependence of Dynamic States on the Iodate Concentration

    Science.gov (United States)

    Bubanja, I. N.; Ivanović-Šašić, A.; Čupić, Ž.; Anić, S.; Kolar-Anić, Lj.

    2017-12-01

    Chaotic dynamic states with intermittent oscillations were generated in a Bray-Liebhafsky (BL) oscillatory reaction in an isothermal open reactor i.e., in the continuously-fed well-stirred tank reactor (CSTR) when the inflow concentration of potassium iodate was the control parameter. They are found between periodic oscillations obtained when [KIO3]0 4.10 × 10-2 M. It was shown that the most chaotic states obtained experimentally somewhere in the middle of this region are in high correlation with results obtained by means of largest Lyapunov exponents and phenomenological analysis based on the quantitative characteristics of intermittent oscillations.

  4. Intermittent turbulence and oscillations in the stable boundary layer over land

    NARCIS (Netherlands)

    Wiel, van de B.

    2002-01-01

    As the title of this thesis indicates, our main subject of interest is: "Intermittent turbulence and oscillation in the stable boundary layer over land". As such, this theme connects the different chapters. Here, intermittent turbulence is defined as a sequence of events were 'burst' of

  5. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  6. Discovery of burst oscillations in the intermittent accretion-powered millisecond pulsar HETE J1900.1-2455

    NARCIS (Netherlands)

    Watts, A.L.; Altamirano, D.; Linares, M.; Patruno, A.; Casella, P.; Cavecchi, Y.; Degenaar, N.; Rea, N.; Soleri, P.; van der Klis, M.; Wijnands, R.

    2009-01-01

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ~1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP

  7. Intermittency in delay-coupled FitzHugh–Nagumo oscillators and ...

    Indian Academy of Sciences (India)

    We study the dynamical properties of in-out intermittency in a system of two ... interest has also been exhibited in the field of multi- .... Color code: small amplitude oscillations in green, .... Zoomed-in view of a typical time series showing.

  8. Observation of a Pomeau-Manneville intermittent route to chaos in a nonlinear oscillator

    International Nuclear Information System (INIS)

    Jeffries, C.; Perez, J.

    1982-01-01

    For a driven nonlinear semiconductor oscillator which shows a period-doubling pitchfork bifurcation route to chaos, we report an additional route to chaos: the Pomeau-Manneville intermittency route, characterized by a periodic (laminar) phase interrupted by bursts of aperiodic behavior. This occurs near a tangent bifurcation as the system driving parameter is reduced by epsilon from the threshold value for a periodic window. Data are presented for the dependence of the average laminar length on epsilon, and also on additive random noise voltage. The results are in reasonable agreement with the intermittency theory of Hirsch, Huberman, and Scalapino. The distribution P(l) is also reported

  9. Generation of intermittent gravitocapillary waves via parametric forcing

    Science.gov (United States)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  10. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  11. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    International Nuclear Information System (INIS)

    He, Zhiwei; Sun, Yong; Zhan, Meng

    2013-01-01

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weak coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators

  12. Impacts of intermittent renewable generation on electricity system costs

    International Nuclear Information System (INIS)

    Batalla-Bejerano, Joan; Trujillo-Baute, Elisa

    2016-01-01

    A successful deployment of power generation coming from variable renewable sources, such as wind and solar photovoltaic, strongly depends on the economic cost of system integration. This paper, in seeking to look beyond the impact of renewable generation on the evolution of the total economic costs associated with the operation of the electricity system, aims to estimate the sensitivity of balancing market requirements and costs to the variable and non-fully predictable nature of intermittent renewable generation. The estimations reported in this paper for the Spanish electricity system stress the importance of both attributes as well as power system flexibility when accounting for the cost of balancing services. - Highlights: •A successful deployment of VRES-E strongly depends on the economic cost of its integration. •We estimate the sensitivity of balancing market requirements and costs to VRES-E. •Integration costs depend on variability, predictability and system flexibility.

  13. Generating transverse response explicitly from harmonic oscillators

    Science.gov (United States)

    Yao, Yuan; Tang, Ying; Ao, Ping

    2017-10-01

    We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.

  14. Managing congestion and intermittent renewable generation in liberalized electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Friedrich

    2013-02-27

    This dissertation focuses on selected aspects of network congestion arising in liberalized electricity markets and their management methods with a special weight placed on the integration of increased renewable generation in Europe and Germany. In a first step, the theoretical concepts of congestion management are introduced complemented by a review of current management regimes in selected countries. In the second step, the European approach of managing congestion on international as well as national transmission links is analyzed and the benefits of an integrated congestion management regime are quantified. It is concluded that benefits can be achieved by a closer cooperation of national transmission system operators (TSOs). Thirdly, the German congestion management regime is investigated and the impact of higher renewable generation up to 2020 on congestion management cost is determined. It is shown that a homogeneous and jointly development of generation and transmission infrastructure is a prerequisite for the application of congestion alleviation methods and once they diverge congestion management cost tend to increase substantially. Lastly, the impact of intermittent and uncertain wind generation on electricity markets is analyzed. A stochastic electricity market model is described, which replicates the daily subsequent clearing of reserve, day ahead, and intraday market typical for European countries, and numerical results are presented.

  15. Sustainable integration of high levels of intermittent generation

    International Nuclear Information System (INIS)

    Pereira, R.; Cabral, P.

    2005-01-01

    The sustainable development of electric power systems rely on three main drivers: the security of supply, the competitiveness and the protection of the environment. For this purpose the promotion of endogenous energy sources, mainly the renewable ones, should be underlined. Still, most of renewable energy sources raise very sensitive issues concerning the security of supply, due to its randomness and unpredictability. The wind power, currently in its fast growing development, plays a relevant role on this matter. From the demand-side perspective, there is also a lot to do regarding the promotion of more efficient use of energy as well as mechanisms that contribute to security of supply. This paper aims to present guidelines for the selection of the most adequate solutions regarding: sustainable evolution of renewable generation technologies, based on the most meritorious resources under economic and security of supply assessments; complementary energy storage systems that allow the integration of intermittent generation ensuring adequate security of supply levels; and sustainable evolution of demand, based on DSM measures selected from different available alternatives. (author)

  16. Surplus from and storage of electricity generated by intermittent sources

    Science.gov (United States)

    Wagner, Friedrich

    2016-12-01

    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  17. Removing Barriers for Effective Deployment of Intermittent Renewable Generation

    Science.gov (United States)

    Arabali, Amirsaman

    The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation

  18. Intermittently chaotic oscillations for a differential-delay equation with Gaussian nonlinearity

    Science.gov (United States)

    Hamilton, Ian

    1992-01-01

    For a differential-delay equation the time dependence of the variable is a function of the variable at a previous time. We consider a differential-delay equation with Gaussian nonlinearity that displays intermittent chaos. Although not the first example of a differential-delay equation that displays such behavior, for this example the intermittency is classified as type III, and the origin of the intermittent chaos may be qualitatively understood from the limiting forms of the equation for large and small variable magnitudes.

  19. Biological conditions for oscillations and chaos generated by multispecies competition

    NARCIS (Netherlands)

    Huisman, J; Weissing, FJ

    2001-01-01

    We investigate biological mechanisms that generate oscillations and chaos in multispecies competition models. For this purpose, we use a competition model concerned with competition for abiotic essential resources. Because phytoplankton and plants consume quite a number of abiotic essential

  20. Charge generation in an oscillating background

    International Nuclear Information System (INIS)

    Funakubo, Koichi; Kakuto, Akira; Otsuki, Shoichiro; Toyoda, Fumihiko

    2001-01-01

    Preheating after inflation, which can be interpreted as particle creation in an oscillating inflation background, represents a state far from thermal equilibrium. We extend the field theoretical treatment of the preheating by Linde et al. to the case of multicomponent complex scalars to show that charges are created in this process if C and CP are violated. A new possibility for baryogenesis based on this mechanism is also discussed. (author)

  1. Charge generation in an oscillating background

    Energy Technology Data Exchange (ETDEWEB)

    Funakubo, Koichi [Department of Physics, Saga Univ., Saga (Japan); Kakuto, Akira; Otsuki, Shoichiro; Toyoda, Fumihiko [Kyushu School of Engineering, Kinki Univ., Iizuka, Fukuoka (Japan)

    2001-05-01

    Preheating after inflation, which can be interpreted as particle creation in an oscillating inflation background, represents a state far from thermal equilibrium. We extend the field theoretical treatment of the preheating by Linde et al. to the case of multicomponent complex scalars to show that charges are created in this process if C and CP are violated. A new possibility for baryogenesis based on this mechanism is also discussed. (author)

  2. Parameters of oscillation generation regions in open star cluster models

    Science.gov (United States)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  3. Translational velocity oscillations of piston generated vortex rings

    Science.gov (United States)

    Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.

    1995-11-01

    Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.

  4. Rabi spin oscillations generated by ultrasound in solids.

    Science.gov (United States)

    Calero, C; Chudnovsky, E M

    2007-07-27

    It is shown that ultrasound in the gigahertz range can generate space-time Rabi oscillations between spin states of molecular magnets. We compute dynamics of the magnetization generated by surface acoustic waves and discuss conditions under which this novel quantum effect can be observed.

  5. Electron diode oscillators for high-power RF generation

    International Nuclear Information System (INIS)

    Humphries, S.

    1989-01-01

    Feedback oscillators have been used since the invention of the vacuum tube. This paper describes the extension of these familiar circuits to the regime of relativistic electron beam diodes. Such devices have potential application for the generation of high power RF radiation in the range 50-250 MHz, 1-10 GW with 20-60% conversion efficiency. This paper reviews the theory of the oscillator and the results of a design study. Calculations for the four-electrode diode with EGUN and EBQ show that good modulations of 30 kA electron beam at 600 kV can be achieved with moderate field stress on the electrodes. Conditions for oscillation have been studied with an in-house transmission line code. A design for a 7.5 GW oscillator at 200 MHz with 25% conversion efficiency is presented

  6. Intermittent Fluorescence Oscillations in Lipid Droplets in a Live Normal and Lung Cancer Cell: Time-Resolved Confocal Microscopy.

    Science.gov (United States)

    Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan

    2015-08-27

    Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.

  7. Electric Generator in the System for Damping Oscillations of Vehicles

    OpenAIRE

    Serebryakov A.; Kamolins E.; Levin N.

    2017-01-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better ef...

  8. Self-Synchronized Phenomena Generated in Rotor-Type Oscillators: On the Influence of Coupling Condition between Oscillators

    Science.gov (United States)

    Bonkobara, Yasuhiro; Mori, Hiroki; Kondou, Takahiro; Ayabe, Takashi

    Self-synchronized phenomena generated in rotor-type oscillators mounted on a straight-line spring-mass system are investigated experimentally and analytically. In the present study, we examine the occurrence region and pattern of self-synchronization in two types of coupled oscillators: rigidly coupled oscillators and elastically coupled oscillators. It is clarified that the existence regions of stable solutions are governed mainly by the linear natural frequency of each spring-mass system. The results of numerical analysis confirm that the self-synchronized solutions of the elastically coupled oscillators correspond to those of the rigidly coupled oscillators. In addition, the results obtained in the present study are compared with the previously reported results for a metronome system and a moving apparatus and the different properties of the phenomena generated in the rotor-type oscillators and the pendulum-type oscillators are shown in terms of the construction of branches of self-synchronized solution and the stability.

  9. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-09-15

    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  10. Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch

    Science.gov (United States)

    Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.

  11. Self-organisation and intermittent coherent oscillations in the EXTRAP T2 reversed field pinch

    International Nuclear Information System (INIS)

    Cecconello, M.; Malmberg, J.A.; Sallander, E.; Drake, J.R.

    2002-01-01

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented

  12. A novel inclusion of intermittent generation resources in long term energy auctions

    International Nuclear Information System (INIS)

    Marambio, Rodrigo; Rudnick, Hugh

    2017-01-01

    Long term energy auctions are positioning as a valuable tool in order to attract new investments into power systems, especially in Latin American countries where emergent economies characteristics and their correspondent risks are usually present. Even though the focus of these auctions is the long term, there are short term issues involved which actual auction designs fail to include, resulting in an energy allocation that is not necessarily optimal for the system, a condition which becomes more evident in the presence of intermittent renewable technologies. A novel mechanism is formulated to obtain the optimal allocation in long term energy auctions, considering short term generation profiles from both intermittent and conventional base load technologies, and also their risk aversions. The proposed mechanism is developed and simulations are made for some scenarios in the Chilean power market, with different levels of renewable penetration. Significant cost savings are achieved for the final consumers in relation to energy purchases, in comparison with a mechanism that follows the demand profile. As more renewable intermittent capacity enters the power system it is evident the need for changes in the energy auctions allocation mechanisms, including elements to exploit the synergies among participants in the short term. - Highlights: • Risk management consideration in technology neutral auctions allocation. • Allocation mechanism in technology neutral auctions with intermittent technologies. • Renewable and conventional technologies energy auction offer curves. • Increase bid prices in auctions as a consequence of solar technology support.

  13. Adiabatic resonant oscillations of solar neutrinos in three generations

    International Nuclear Information System (INIS)

    Kim, C.W.; Sze, W.K.

    1987-01-01

    The Mikheyev-Smirnov-Wolfenstein model of resonant solar-neutrino oscillations is discussed for three generations of leptons. Assuming adiabatic transitions, bounds for the μ- and e-neutrinos mass-squared difference Δ/sub 21,0/ are obtained as a function of the e-μ mixing angle theta 1 . The allowed region in the Δ/sub 21,0/-theta 1 plot that would solve the solar-neutrino problem is shown to be substantially larger than that of the two-generation case. In particular, the difference between the two- and three-generation cases becomes significant for theta 1 larger than --20 0

  14. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  15. The future value of electrical energy storage in the UK with generator intermittency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The intermittent nature of renewable energy sources increases the need for storage of electric power - the need is greatest in the case of wind power. This study looked at the potential value of power storage as a means of coping with variable power demand which, in the case of wind power, is itself intermittent. The benefits of using storage for part of the reserve needs compared with the reserve in the form of part-loaded conventional forms of generation was a feature of the study. The benefits were assessed in terms of (a) savings in fuel costs associated with balancing the systems; (b) carbon dioxide emissions, and (c) the additional amount of wind energy that can be absorbed. The work was conducted as part of the a UK DTI programme on New and Renewable Energy Sources.

  16. The future value of electrical energy storage in the UK with generator intermittency

    International Nuclear Information System (INIS)

    2004-01-01

    The intermittent nature of renewable energy sources increases the need for storage of electric power - the need is greatest in the case of wind power. This study looked at the potential value of power storage as a means of coping with variable power demand which, in the case of wind power, is itself intermittent. The benefits of using storage for part of the reserve needs compared with the reserve in the form of part-loaded conventional forms of generation was a feature of the study. The benefits were assessed in terms of (a) savings in fuel costs associated with balancing the systems; (b) carbon dioxide emissions, and (c) the additional amount of wind energy that can be absorbed. The work was conducted as part of the a UK DTI programme on New and Renewable Energy Sources

  17. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  18. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  19. An innovative intermittent hypoxia model for cell cultures allowing fast Po2 oscillations with minimal gas consumption.

    Science.gov (United States)

    Minoves, Mélanie; Morand, Jessica; Perriot, Frédéric; Chatard, Morgane; Gonthier, Brigitte; Lemarié, Emeline; Menut, Jean-Baptiste; Polak, Jan; Pépin, Jean-Louis; Godin-Ribuot, Diane; Briançon-Marjollet, Anne

    2017-10-01

    Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypoxia (IH) cycles relevant to OSA with limited gas consumption. With gas flows as low as 200 ml/min, our combination of plate holders with gas-permeable cultureware generates rapid normoxia-hypoxia cycles. Cycles alternating 1 min at 20% O 2 followed by 1 min at 2% O 2 resulted in Po 2 values ranging from 124 to 44 mmHg. Extending hypoxic and normoxic phases to 10 min allowed Po 2 variations from 120 to 25 mmHg. The volume of culture medium or the presence of cells only modestly affected the Po 2 variations. In contrast, the nadir of the hypoxia phase increased when measured at different heights above the membrane. We validated the physiological relevance of this model by showing that hypoxia inducible factor-1α expression was significantly increased by IH exposure in human aortic endothelial cells, murine breast carcinoma (4T1) cells as well as in a blood-brain barrier model (2.5-, 1.5-, and 6-fold increases, respectively). In conclusion, we have established a new device to perform rapid intermittent hypoxia cycles in cell cultures, with minimal gas consumption and the possibility to expose several culture dishes simultaneously. This device will allow functional studies of the consequences of IH and deciphering of the molecular biology of IH at the cellular level using oxygen cycles that are clinically relevant to OSA. Copyright © 2017 the American Physiological Society.

  20. Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency

    International Nuclear Information System (INIS)

    Paradisi, Paolo; Allegrini, Paolo

    2015-01-01

    In many complex systems the non-linear cooperative dynamics determine the emergence of self-organized, metastable, structures that are associated with a birth–death process of cooperation. This is found to be described by a renewal point process, i.e., a sequence of crucial birth–death events corresponding to transitions among states that are faster than the typical long-life time of the metastable states. Metastable states are highly correlated, but the occurrence of crucial events is typically associated with a fast memory drop, which is the reason for the renewal condition. Consequently, these complex systems display a power-law decay and, thus, a long-range or scale-free behavior, in both time correlations and distribution of inter-event times, i.e., fractal intermittency. The emergence of fractal intermittency is then a signature of complexity. However, the scaling features of complex systems are, in general, affected by the presence of added white or short-term noise. This has been found also for fractal intermittency. In this work, after a brief review on metastability and noise in complex systems, we discuss the emerging paradigm of Temporal Complexity. Then, we propose a model of noisy fractal intermittency, where noise is interpreted as a renewal Poisson process with event rate r_p. We show that the presence of Poisson noise causes the emergence of a normal diffusion scaling in the long-time range of diffusion generated by a telegraph signal driven by noisy fractal intermittency. We analytically derive the scaling law of the long-time normal diffusivity coefficient. We find the surprising result that this long-time normal diffusivity depends not only on the Poisson event rate, but also on the parameters of the complex component of the signal: the power exponent μ of the inter-event time distribution, denoted as complexity index, and the time scale T needed to reach the asymptotic power-law behavior marking the emergence of complexity. In particular

  1. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  2. Electric Generator in the System for Damping Oscillations of Vehicles

    Directory of Open Access Journals (Sweden)

    Serebryakov A.

    2017-04-01

    Full Text Available The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  3. Electric Generator in the System for Damping Oscillations of Vehicles

    Science.gov (United States)

    Serebryakov, A.; Kamolins, E.; Levin, N.

    2017-04-01

    The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.

  4. Transient thermal stresses in circular cylinder under intermittently sudden heat generation

    International Nuclear Information System (INIS)

    Sugano, Y.; Saito, K.; Takeuti, Y.

    1975-01-01

    The thermal stresses associated with the transient temperature distribution arising in a circular cylinder under intermittently changing sudden heat generation over a finite band and with heat loss to a surrounding medium on the remainder of the cylinder surface are exactly analysed. For the first time the temperature field in a circular cylinder under sudden heat generation over a finite band of the cylinder surface is determined by combined use of Fourier cosine, Laplace transforms in axial position and time, respectively. Secondly it is assumed that the temperature fields in a circular cylinder subjected to heat generation Qsub(i) (i=0, 1, 2, ...) independently over a finite band are given by T 0 (r,z,t), T 1 (r,z,t), T 2 (r,z,t),... respectively. Tsub(i)(r,z,t) indicates the temperature field before the i-th heat generation Qsub(i). The thermal stresses associated with the temperature field described above are analysed by using the Hoyle stress functions. Numerical calculations are carried out for the extensive case of the ratio of the heat-generating length to the diameter of cylinder. It is found that the time in which the maximum stresses occur on the cylinder surface does not depend on the heat-generating length-to-diameter ratio

  5. Calculation of a steam generating tube stressed state under temperature oscillations in burnout zone

    International Nuclear Information System (INIS)

    Vorob'ev, V.A.; Loshchinin, V.M.; Remizov, O.V.

    1982-01-01

    The technique for evaluating the steam generating tube stressed state under the wall temperature oscillations in the burnout zone is described. The technique is based on analytical solutions for transfer functions connecting the amplitude of surface temperature oscillation with the amplitude and frequency of heat transfer coefficient oscillation and amplitude of thermoelastic stress oscillation with that of temperature oscillation. The results of calculations according to considered technique are compared with that of the problem numerical solution. The conclusion is made that the technique under consideration may be applied for evaluation of steam generator evaporating tube lifetime [ru

  6. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    International Nuclear Information System (INIS)

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-01-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. copyright 1999 American Institute of Physics

  7. Regulatory road maps for the integration of intermittent electricity generation: Methodology development and the case of The Netherlands

    International Nuclear Information System (INIS)

    Welle, Adriaan J. van der; Joode, Jeroen de

    2011-01-01

    The envisaged increase in the share of electricity generation from intermittent renewable energy sources (RES-E) like wind and photovoltaics will pose challenges to the existing electricity system. A successful integration of these sources requires a cost-efficient use of system flexibility. The literature on the options to improve system flexibility, and thus the costs of successfully integrating intermittent electricity generating units, is still growing but what is lacking is an overarching systematic view on when to adopt which option in particular energy systems. This paper aims to bridge this gap in literature. We use existing insights on market and network integration of intermittent electricity sources within a regulatory road map framework. The framework allows policy makers and other electricity system stakeholders to arrive at a consistent strategy in dealing with integration issues over a longer period of time. In this contribution we present and explain the framework and apply it for the case of The Netherlands. - Highlights: → Successful integration of intermittent electricity generation requires a cost-efficient use of system flexibility. → An overarching systematic view on when to adopt which flexibility option in particular energy systems was lacking. → We identify a consistent strategy in dealing with integration issues over a longer period of time. → We present this regulatory road map framework and apply it for the case of The Netherlands.

  8. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  9. Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation

    International Nuclear Information System (INIS)

    Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar

    2015-01-01

    Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization

  10. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  11. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?

    NARCIS (Netherlands)

    Wit, Hero P.; van Dijk, Pim

    Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of

  12. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?

    Science.gov (United States)

    Wit, Hero P; van Dijk, Pim

    2012-08-01

    Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of SOAEs.

  13. Clustering of Cochlear Oscillations in Frequency Plateaus as a Tool to Investigate SOAE Generation

    DEFF Research Database (Denmark)

    Epp, Bastian; Wit, Hero; van Dijk, Pim

    2016-01-01

    of coupled oscillators (OAM) [7] are also found in a transmission line model (TLM) which is able to generate realistic SOAEs [2] and if these frequency plateaus can be used to explain the formation of SOAEs. The simulations showed a clustering of oscillators along the simulated basilar membrane Both, the OAM...

  14. Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting

    Science.gov (United States)

    Ayala, Silvana; Wu, Yuechen; Vorndran, Shelby; Santiago, Raphael P.; Kostuk, Raymond K.

    2015-09-01

    In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.

  15. Precipitation-generated oscillations in open cellular cloud fields.

    Science.gov (United States)

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  16. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Alex Pavlides

    2015-12-01

    Full Text Available In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN and the external segment of globus pallidus (GPe. Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.

  17. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-10-01

    Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  18. Oscillations and concentrations generated by A-free mappings and weak lower semicontinuity of integral functionals

    Czech Academy of Sciences Publication Activity Database

    Fonseca, I.; Kružík, Martin

    Roč.16, č. 2 (2010), s. 472-502 ISSN 1262-3377 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10750506 Keywords : oscillations * concentrations Subject RIV: BA - General Mathematics Impact factor: 1.084, year: 2009 http://library.utia.cas.cz/separaty/2009/MTR/kruzik-oscillations and concentrations generated by a-free mappings and weak lower semicontinuity of integral functionals.pdf

  19. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  20. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier

    NARCIS (Netherlands)

    Zong, Z.; Babaie, M.; Staszewski, R.B.

    2016-01-01

    This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60

  1. Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly

    Science.gov (United States)

    Hulka, J. R.; Morgan, C. J.; Casiano, M. J.

    2015-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start

  2. Effect of mechanical vibration generated in oscillating/vibratory ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated ...

  3. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  4. Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation

    KAUST Repository

    Mansingka, Abhinav S.

    2012-05-01

    This thesis presents a generalized approach for the fully digital design and implementation of chaos generators through the numerical solution of chaotic ordinary differential equations. In particular, implementations use the Euler approximation with a fixed-point twos complement number representation system for optimal hardware and performance. In general, digital design enables significant benefits in terms of power, area, throughput, reliability, repeatability and portability over analog implementations of chaos due to lower process, voltage and temperature sensitivities and easy compatibility with other digital systems such as microprocessors, digital signal processing units, communication systems and encryption systems. Furthermore, this thesis introduces the idea of implementing multidimensional chaotic systems rather than 1-D chaotic maps to enable wider throughputs and multiplier-free architectures that provide significant performance and area benefits. This work focuses efforts on the well-understood family of autonomous 3rd order "jerk" chaotic systems. The effect of implementation precision, internal delay cycles and external delay cycles on the chaotic response are assessed. Multiplexing of parameters is implemented to enable switching between chaotic and periodic modes of operation. Enhanced chaos generators that exploit long-term divergence in two identical systems of different precision are also explored. Digital design is shown to enable real-time controllability of 1D multiscroll systems and 4th order hyperchaotic systems, essentially creating non-autonomous chaos that has thus far been difficult to implement in the analog domain. Seven different systems are mathematically assessed for chaotic properties, implemented at the register transfer level in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA. The statistical properties of the output are rigorously studied using the NIST SP. 800-22 statistical testing suite. The output is

  5. Three-generation neutrino oscillations in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Hao, E-mail: yhzhang1994@gmail.com; Li, Xue-Qian, E-mail: lixq@nankai.edu.cn

    2016-10-15

    Three-generation MSW effect in curved spacetime is studied and a brief discussion on the gravitational correction to the neutrino self-energy is given. The modified mixing parameters and corresponding conversion probabilities of neutrinos after traveling through celestial objects of constant densities are obtained. The method to distinguish between the normal hierarchy and inverted hierarchy is discussed in this framework. Due to the gravitational redshift of energy, in some extreme situations, the resonance energy of neutrinos might be shifted noticeably and the gravitational effect on the self-energy of neutrino becomes significant at the vicinities of spacetime singularities.

  6. Stability analysis of a power system made up of an intermittent renewable energy source directly tied to a conventional rotating power generator

    International Nuclear Information System (INIS)

    Coiante, D.

    1997-02-01

    A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator

  7. Third harmonic generation by Bloch-oscillating electrons in a quasioptical array

    International Nuclear Information System (INIS)

    Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.

    1999-01-01

    We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics

  8. Generating macroscopic chaos in a network of globally coupled phase oscillators

    Science.gov (United States)

    So, Paul; Barreto, Ernest

    2011-01-01

    We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662

  9. Intermittent synchronization in a network of bursting neurons

    Science.gov (United States)

    Park, Choongseok; Rubchinsky, Leonid L.

    2011-09-01

    Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are common in a variety of neural systems from central pattern generators to human brain circuits. One example of the latter is the subcortical network of the basal ganglia, formed by excitatory and inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and affected in Parkinson's disease. Recent experiments have demonstrated the intermittent nature of the phase-locking of neural activity in this network. Here, we explore one potential mechanism to explain the intermittent phase-locking in a network. We simplify the network to obtain a model of two inhibitory coupled elements and explore its dynamics. We used geometric analysis and singular perturbation methods for dynamical systems to reduce the full model to a simpler set of equations. Mathematical analysis was completed using three slow variables with two different time scales. Intermittently, synchronous oscillations are generated by overlapped spiking which crucially depends on the geometry of the slow phase plane and the interplay between slow variables as well as the strength of synapses. Two slow variables are responsible for the generation of activity patterns with overlapped spiking, and the other slower variable enhances the robustness of an irregular and intermittent activity pattern. While the analyzed network and the explored mechanism of intermittent synchrony appear to be quite generic, the results of this analysis can be used to trace particular values of biophysical parameters (synaptic strength and parameters of calcium dynamics), which are known to be impacted in Parkinson's disease.

  10. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  11. State diagram of spin-torque oscillator with perpendicular reference layer and planar field generation layer

    Directory of Open Access Journals (Sweden)

    Mengwei Zhang

    2015-06-01

    Full Text Available The state diagram of spin-torque oscillator (STO with perpendicular reference layer (REF and planar field generation layer (FGL was studied by a macrospin model and a micro-magnetic model. The state diagrams are calculated versus the current density, external field and external field angle. It was found that the oscillation in FGL could be controlled by current density combined with external field so as to achieve a wide frequency range. An optimized current and applied field region was given for microwave assisted magnetic recording (MAMR, considering both frequency and output field oscillation amplitude. The results of the macro-spin model were compared with those of the micro-magnetic model. The macro-spin model was qualitatively different from micro-magnetics and experimental results when the current density was large and the FGL was non-uniform.

  12. Coherent Rabi oscillations in a molecular system and sub-diffraction-limited pattern generation

    International Nuclear Information System (INIS)

    Liao, Zeyang; Al-Amri, M; Zubairy, M Suhail

    2015-01-01

    The resolution of a photolithography and optical imaging system is restricted by the diffraction limit. Coherent Rabi oscillations have been shown to be able to overcome the diffraction limit in a simple two-level atomic system (Z Liao, M Al-amri, and M S Zubairy 2010 Phys. Rev. Lett. 105 183601). In this paper, we numerically calculate the wave packet dynamics of a molecular system interacting with an ultrashort laser pulse and show that coherent Rabi oscillations in a molecular system are also possible. Moreover, a sub-diffraction-limited pattern can be generated in this system by introducing spatially modulated Rabi oscillations. We also discuss several techniques to improve the visibility of the sub-diffraction-limited pattern. Our result may have important applications in super-resolution optical lithography and optical imaging. (paper)

  13. Modeling and sizing a Storage System coupled with intermittent renewable power generation

    International Nuclear Information System (INIS)

    Bridier, Laurent

    2016-01-01

    This thesis aims at presenting an optimal management and sizing of an Energy Storage System (ESS) paired up with Intermittent Renewable Energy Sources (IReN). Firstly, we developed a technical-economic model of the system which is associated with three typical scenarios of utility grid power supply: hourly smoothing based on a one-day-ahead forecast (S1), guaranteed power supply (S2) and combined scenarios (S3). This model takes the form of a large-scale non-linear optimization program. Secondly, four heuristic strategies are assessed and lead to an optimized management of the power output with storage according to the reliability, productivity, efficiency and profitability criteria. This ESS optimized management is called 'Adaptive Storage Operation' (ASO). When compared to a mixed integer linear program (MILP), this optimized operation that is practicable under operational conditions gives rapidly near-optimal results. Finally, we use the ASO in ESS optimal sizing for each renewable energy: wind, wave and solar (PV). We determine the minimal sizing that complies with each scenario, by inferring the failure rate, the viable feed-in tariff of the energy, and the corresponding compliant, lost or missing energies. We also perform sensitivity analysis which highlights the importance of the ESS efficiency and of the forecasting accuracy and the strong influence of the hybridization of renewables on ESS technical-economic sizing. (author) [fr

  14. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  15. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    OpenAIRE

    Morel, Jorge; Obara, Shin’ya; Morizane, Yuta

    2015-01-01

    This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to...

  16. Energy intermittency

    CERN Document Server

    Sorensen, Bent

    2014-01-01

    The first book to consider intermittency as a key point of an energy system, Energy Intermittency describes different levels of variability for traditional and renewable energy sources, presenting detailed solutions for handling energy intermittency through trade, collaboration, demand management, and active energy storage. Addressing energy supply intermittency systematically, this practical text:Analyzes typical time-distributions and intervals between episodes of demand-supply mismatch and explores their dependence on system layouts and energy source characteristicsSimulates scenarios regar

  17. Generation of equivalent forms of operational trans-conductance amplifier-RC sinusoidal oscillators: the nullor approach

    Directory of Open Access Journals (Sweden)

    Raj Senani

    2014-06-01

    Full Text Available It has been shown in two earlier papers published from this study that corresponding to a given single-operational trans-conductance amplifier (single-OTA-RC and dual-OTA-RC sinusoidal oscillators, there are three other structurally distinct equivalent forms having the same characteristic equation, one of which employs both grounded capacitors (GC. In this study, an earlier nullor-based theory of generating equivalent op-amp oscillator circuits, proposed by the first author, is extended to derive equivalent OTA-RC circuits which discloses the existence of an additional number of equivalent forms for the same given OTA-RC oscillators than those predicted by the quoted earlier works, and thereby considerably enlarging the set of equivalents of a given OTA-RC oscillator. Furthermore, the presented nullor-based theory of generating equivalent OTA-RC oscillators results in three additional interesting outcomes: (i the revelation that corresponding to any given OTA-RC oscillator there are two ‘both-GC’ oscillators (and not merely one, as derived in the quoted earlier works; (ii the availability of explicit current outputs in several of the derived equivalents and (iii the realisability explicit-current-output ‘quadrature oscillators’ in some of the generated equivalent oscillators. The workability of the generated equivalent OTA-RC oscillators has been verified by SPICE simulations, based on CMOS OTAs using 0.18 µm CMOS technology process parameters, and some sample results are given.

  18. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  19. Generation and Evolution of Chaos in Double-Well Duffing Oscillator under Parametrical Excitation

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available The generation and evolution of chaotic motion in double-well Duffing oscillator under harmonic parametrical excitation are investigated. Firstly, the complex dynamical behaviors are studied by applying multibifurcation diagram and Poincaré sections. Secondly, by means of Melnikov’s approach, the threshold value of parameter μ for generation of chaotic behavior in Smale horseshoe sense is calculated. By the numerical simulation, it is obvious that as μ exceeds this threshold value, the behavior of Duffing oscillator is still steady-state periodic but the transient motion is chaotic; until the top Lyapunov exponent turns to positive, the motion of system turns to permanent chaos. Therefore, in order to gain an insight into the evolution of chaotic behavior after μ passing the threshold value, the transient motion, basin of attraction, and basin boundary are also investigated.

  20. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    Science.gov (United States)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  1. Strategy generator for optimal xenon oscillation control: Based on a new concept of axial offsets

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro; Horimoto, Toshiaki

    1993-01-01

    Recently a new concept for controlling xenon oscillations has been used to optimize the control procedure for stabilizing an oscillation. The concept is based on two additional newly defined axial offsets, AO i and AO x together with the conventional axial offset AO p of axial power distribution. However, as the AOs are evaluated on line, it is impossible to predict the behavior of the AOs in advance. In order to overcome this situation a small auxiliary program has been developed. This program can generate the transients of the three AOs for the free running xenon oscillation. Then the user can input the most favorable conditions to eliminate the xenon oscillation such as total control hours, final AO p or time interval of the control rod movement. And an optimum search for the given final conditions is performed. The program can be used as a tool for a scoping study, the result of which can be obtained in a short time and also very easily

  2. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  3. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia; Zhang, Fang; He, Weihua; Zhang, Xiaoyuan; Feng, Yujie; Logan, Bruce E.

    2014-01-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  4. Conservative Chaos Generators with CCII+ Based on Mathematical Model of Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    J. Slezak

    2008-09-01

    Full Text Available In this detailed paper, several novel oscillator's configurations which consist only of five positive second generation current conveyors (CCII+ are presented and experimentally verified. Each network is able to generate the conservative chaotic attractors with the certain degree of the structural stability. It represents a class of the autonomous deterministic dynamical systems with two-segment piecewise linear (PWL vector fields suitable also for the theoretical analysis. Route to chaos can be traced and observed by a simple change of the external dc voltage. Advantages and other possible improvements are briefly discussed in the text.

  5. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines

    2017-07-25

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  6. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  7. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  8. Analysis of Generator Oscillation Characteristics Based on Multiple Synchronized Phasor Measurements

    Science.gov (United States)

    Hashiguchi, Takuhei; Yoshimoto, Masamichi; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro

    In recent years, there has been considerable interest in the on-line measurement, such as observation of power system dynamics and evaluation of machine parameters. On-line methods are particularly attractive since the machine’s service need not be interrupted and parameter estimation is performed by processing measurements obtained during the normal operation of the machine. Authors placed PMU (Phasor Measurement Unit) connected to 100V outlets in some Universities in the 60Hz power system and examine oscillation characteristics in power system. PMU is synchronized based on the global positioning system (GPS) and measured data are transmitted via Internet. This paper describes an application of PMU for generator oscillation analysis. The purpose of this paper is to show methods for processing phase difference and to estimate damping coeffcient and natural angular frequency from phase difference at steady state.

  9. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  10. Research on Shaft Subsynchronous Oscillation Characteristics of Parallel Generators and SSDC Application in Mitigating SSO of Multi-Generators

    Directory of Open Access Journals (Sweden)

    Shen Wang

    2015-02-01

    Full Text Available Subsynchronous oscillation (SSO of generators caused by high voltage direct current (HVDC systems can be solved by applying supplemental subsynchronous damping controller (SSDC. SSDC application in mitigating SSO of single-generator systems has been studied intensively. This paper focuses on SSDC application in mitigating SSO of multi-generator systems. The phase relationship of the speed signals of the generators under their common mechanical natural frequencies is a key consideration in SSDC design. The paper studies in detail the phase relationship of the speed signals of two generators in parallel under their shared mechanical natural frequency, revealing regardless of whether the two generators are identical or not, there always exists a common-mode and an anti-mode under their common natural frequency, and the phase relationship of the speed signals of the generators depends on the extent to which the anti-mode is stimulated. The paper further demonstrates that to guarantee the effectiveness of SSDC, the anti-phase mode component of its input signal should be eliminated. Based on the above analysis, the paper introduces the design process of SSDC for multi-generator systems and verifies its effectiveness through simulation in Power Systems Computer Aided Design/Electromagnetic Transients including Direct Current (PSCAD/EMTDC.

  11. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  12. The generation of two-dimensional vortices by transverse oscillation of a soap film

    International Nuclear Information System (INIS)

    Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.; Rabinovich, M.I.; Weidman, P.D.

    1998-01-01

    An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20 - 200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, hor-ellipsis, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parameter space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. copyright 1998 American Institute of Physics

  13. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  14. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  15. Enhanced alpha-oscillations in visual cortex during anticipation of self-generated visual stimulation.

    Science.gov (United States)

    Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray

    2014-11-01

    The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.

  16. Investigation into the efficacy of generating synthetic pathological oscillations for domain adaptation

    Science.gov (United States)

    Lewis, Rory; Ellenberger, James; Williams, Colton; White, Andrew M.

    2013-11-01

    In the ongoing investigation of integrating Knowledge Discovery in Databases (KDD) into neuroscience, we present a paper that facilitates overcoming the two challenges preventing this integration. Pathological oscillations found in the human brain are difficult to evaluate because 1) there is often no time to learn and train off of the same distribution in the fatally sick, and 2) sinusoidal signals found in the human brain are complex and transient in nature requiring large data sets to work with which are costly and often very expensive or impossible to acquire. Overcoming these challenges in today's neuro-intensive-care unit (ICU) requires insurmountable resources. For these reasons, optimizing KDD for pathological oscillations so machine learning systems can predict neuropathological states would be of immense value. Domain adaptation, which allows a way of predicting on a separate set of data than the training data, can theoretically overcome the first challenge. However, the challenge of acquiring large data sets that show whether domain adaptation is a good candidate to test in a live neuro ICU remains a challenge. To solve this conundrum, we present a methodology for generating synthesized neuropathological oscillations for domain adaptation.

  17. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    Science.gov (United States)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  18. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Wook; Bak, Jeong Hyeon; Yoon, Jong Hyun; Park, Jong Hyeon [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of); Park, Jong Oh [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2016-12-15

    Cable-driven parallel robots (CDPRs) have many advantages over conventional link-based robot manipulators in terms of acceleration due to their low inertia. This paper concerns about under-constrained CDPRs, which have a less number of cables than six, often used favorably due to their simpler structures. Since a smaller number of cables than 6 are employed, however, their payloads have extra degrees of motion freedom and exhibit swaying motions or oscillation. In this paper, a scheme to suppress unwanted oscillatory motions of the payload of a 4-cable-driven CDPR based on a Zero-vibration (ZV) input-shaping scheme is proposed. In this method, a motion in the 3-dimensional space is projected onto the independent motions on two vertical planes perpendicular to each other. On each of the vertical plane, the natural frequency of the CDPR is computed based on a 2-cable-driven planar CDPR model. The precise dynamic model of a planar CDPR is obtained in order to find the natural frequency, which depends on the payload position. The advantage of the proposed scheme is that it is possible to generate an oscillation-free trajectory based on a ZV input-shaping scheme despite the complexity in the dynamics of the CDPR and the difficulty in computing the natural frequencies of the CDPR, which is required in any ZV input-shaping scheme. To verify the effectiveness of the proposed method, a series of computer simulations and experiments were conducted for 3- dimensional motions with a 4-cable-driven CDPR. Their results showed that the motions of the CDPR with the proposed method exhibited a significant reduction in oscillations of the payload. However, when the payload moves near the edges of its workspace, the improvement in oscillation reduction diminished as expected due to the errors in model projection.

  19. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation

    Directory of Open Access Journals (Sweden)

    P. Musumeci

    2013-10-01

    Full Text Available The evolution of picosecond modulations of the longitudinal profile of an electron beam generated in an rf photoinjector is analyzed and optimized with the goal of obtaining high peak current electron bunch trains at very high frequencies (≥THz. Taking advantage of nonlinear longitudinal space charge forces, it is found that more than 500 A peak current 1 THz bunch trains can be generated using a standard 1.6 cell SLAC/UCLA/BNL rf gun. Postacceleration is used to freeze the longitudinal phase space dynamics after one half plasma oscillation. Applications range from tunable narrow bandwidth THz radiation generation to drivers for high frequency high gradient accelerators.

  20. On the evaluation of lifetime of evaporative tubes of once-through steam generators at steam-generating surface temperature oscillations in the burnout region

    International Nuclear Information System (INIS)

    Vorob'ev, V.A.; Loshchinin, V.M.; Remizov, O.V.

    1978-01-01

    Suggested is a method for evaluation of a stressed state of evaporation tubes of once-through steam generators at temperature oscillations in the burnout region. Calculated is the amplitude of steam-generating surface temperature oscillations in the burnout region depending on the frequency of a liquid-steam boundary transfer and on this basis determined are thermal stresses in a tube wall. Knowing a fatigue curve gives the possibility to evaluate a heat transfer tube lifetime

  1. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  2. Intermittent chaotic chimeras for coupled rotators

    DEFF Research Database (Denmark)

    Olmi, Simona; Martens, Erik Andreas; Thutupalli, Shashi

    2015-01-01

    Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other...

  3. Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback.

    Science.gov (United States)

    Lin, Lyu-Chih; Liu, Ssu-Hsin; Lin, Fan-Yi

    2017-10-16

    We study the stability of period-one (P1) oscillations experimentally generated by semiconductor lasers subject to optical injection (OI) and by those subject to optical feedback (OF). With unique advantages of broad frequency tuning range and large sideband rejection ratio, P1 oscillations can be useful in applications such as photonic microwave generation, radio-over-fiber communication, and laser Doppler velocimeter. The stability of the P1 oscillations is critical for these applications, which can be affected by spontaneous emission and fluctuations in both temperature and injection current. Although linewidths of P1 oscillations generated by various schemes have been reported, the mechanisms and roles which each of the OI and the OF play have however not been investigated in detail. To characterize the stability of the P1 oscillations generated by the OI and the OF schemes, we measure the linewidths and linewidth reduction ratios (LRRs) of the P1 oscillations. The OF scheme has a narrowest linewidth of 0.21 ± 0.03 MHz compared to 4.7 ± 0.6 MHz in the OI scheme. In the OF scheme, a much larger region of LRRs higher than 90% is also found. The superior stability of the OF scheme is benefited by the fact that the P1 oscillations in the OF scheme are originated from the undamped relaxation oscillation of a single laser and can be phase-locked to one of its external cavity modes, whereas those in the OI scheme come from two independent lasers which bear no phase relation. Moreover, excess P1 linewidth broadening in the OI scheme caused by fluctuation in injection parameters associated with frequency jitter and relative intensity noise (RIN) is also minimized in the OF scheme.

  4. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  5. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    OpenAIRE

    Abhirup Lahiri

    2011-01-01

    This paper reports two new circuit topologies using second-generation current conveyors (CCIIs) for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs) using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantag...

  6. NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific?

    Science.gov (United States)

    Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J

    2013-12-01

    Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  7. Simulation studies of plasma waves in the electron foreshock: The generation of downshifted oscillations

    International Nuclear Information System (INIS)

    Dum, C.T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beamvelocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially, a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely ironed out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out

  8. Simulation studies of plasma waves in the electron foreshock - The generation of downshifted oscillations

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.

  9. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    Science.gov (United States)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  10. New Canonic Active RC Sinusoidal Oscillator Circuits Using Second-Generation Current Conveyors with Application as a Wide-Frequency Digitally Controlled Sinusoid Generator

    Directory of Open Access Journals (Sweden)

    Abhirup Lahiri

    2011-01-01

    Full Text Available This paper reports two new circuit topologies using second-generation current conveyors (CCIIs for realizing variable frequency sinusoidal oscillators with minimum passive components. The proposed topologies in this paper provide new realizations of resistance-controlled and capacitor-controlled variable frequency oscillators (VFOs using only four passive components. The first topology employs three CCIIs, while the second topology employs two CCIIs. The second topology provides an advantageous feature of frequency tuning through two grounded elements. Application of the proposed circuits as a wide-frequency range digitally controlled sinusoid generator is exhibited wherein the digital frequency control has been enabled by replacing both the capacitors by two identical variable binary capacitor banks tunable by means of the same binary code. SPICE simulations of the CMOS implementation of the oscillators using 0.35 μm TSMC CMOS technology parameters and bipolar implementation of the oscillators using process parameters for NR200N-2X (NPN and PR200N-2X (PNP of bipolar arrays ALA400-CBIC-R have validated their workability. One of the oscillators (with CMOS implementation is exemplified as a digitally controlled sinusoid generator with frequency generation from 25 kHz to 6.36 MHz, achieved by switching capacitors and with power consumption of 7 mW in the entire operating frequency range.

  11. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  12. Influence of cathode emission uniformity on microwave generation in relativistic backward wave oscillator

    Science.gov (United States)

    Wu, Ping; Sun, Jun; Teng, Yan

    2017-12-01

    The emission uniformity of explosive emission cathodes is important to the operation of high power microwave generators. Although this concept seems to be widely accepted, the concrete influence of cathode emission uniformity on microwave generation has not been researched in detail and many conclusions on this matter are ambiguous due to the lack of solid evidence. This paper makes an effort to research this issue with particle-in-cell simulations about an X-band relativistic backward wave oscillator. To keep the diode impedance unchanged, an emission model in which each emission cell is artificially assigned a specific current density is adopted. The emission non-uniformity is simulated in three ways: spaced emission, large-area no-emission, and local enhanced emission. The simulation results uncover three phenomena: first, no significant influence is found for the cathode emission uniformity on the microwave starting time as long as no obvious mode competition is excited by emission non-uniformity; second, bad emission uniformity may bring about reduction of microwave power, but this may not happen when the emission non-uniformity is just localized to a few discrete strong emission points; third, under specific circumstances, the emission non-uniformity may lead to the excitation of mode competition, which can significantly delay the starting time and lower the microwave power.

  13. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    2014-05-01

    Full Text Available High-frequency oscillations (above 30 Hz have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF or Generalized Integrate-and-Fire (GIF neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i the firing rate response to the noisy background input, ii the membrane potential distribution, and iii the shape of Inhibitory Post-Synaptic Potentials (IPSPs. For hyperpolarizing inhibition, the GIF IPSP profile (factor iii exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i and ii, respectively, which tend to decrease synchrony. If inhibition is shunting instead

  14. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    Science.gov (United States)

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  15. Intermittent hydronephrosis

    International Nuclear Information System (INIS)

    Knop, J.; Vogel, H.; Hupe, W.

    1981-01-01

    An intermittent hydronephrosis was observed in a 40-year old patient. This disease pattern is due to an incongruity between the formation of urine and the transport capacity in the ureteropelvic junction. The latent impediment of flow becomes manifest with increased urine secretion. Irreversible renal damage can be the result of the repeatedly occurring hydronephrotic crises. (orig.) [de

  16. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor

    Directory of Open Access Journals (Sweden)

    Hong-en Qu

    2017-01-01

    Full Text Available Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  17. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.

    Science.gov (United States)

    Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning

    2017-12-01

    Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  18. Investigation on the performance of an optically generated RF local oscillator signal in Ku-band DVB-S systems

    NARCIS (Netherlands)

    Khan, M.R.H.; Marpaung, D.A.I.; Burla, M.; Roeloffzen, C.G.H.; Bernhardi, Edward; de Ridder, R.M.

    2011-01-01

    We investigate a way to externally generate the local oscillator (LO) signal used for downconversion of the Ku-band (10.7 − 12.75 GHz) RF signal received from a phased array antenna (PAA). The signal is then translated to an intermediate frequency (950 − 2150 MHz) at the output of the mixer of

  19. A modelling breakthrough for market design analysis to test massive intermittent generation integration in markets results of selected OPTIMATE studies

    DEFF Research Database (Denmark)

    Beaude, Francois; Atayi, A.; Bourmaud, J.-Y.

    2013-01-01

    The OPTIMATE1 platform focuses on electricity system and market designs modelling in order to assess current and innovative designs in Europe. The current paper describes the results of the first validation studies' conducted with the tool. These studies deal with day-ahead market rules, load...... flexibility, cross-border management and intermittent renewable support schemes with a view to better integrating large amounts of renewable energy in Europe. Market and system designs were assessed based on economic efficiency, security of supply2 and environmental impact3 indicators. These results give...

  20. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  1. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual-Axis Radiographic Hydrotest facility. The pulsed-power sources drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first of 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B technique to be about ±100 μm at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap. 7 refs., 6 figs

  2. Synaptic Remodeling Generates Synchronous Oscillations in the Degenerated Outer Mouse Retina

    Directory of Open Access Journals (Sweden)

    Wadood eHaq

    2014-09-01

    Full Text Available During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs establish contacts with remnant cone photoreceptors (cones as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs, we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from HCs. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells.

  3. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual Axis Radiographic Hydrotest facility. The pulsed-power source drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B-dot technique to be about ±100 μ at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap

  4. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-01-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited

  5. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  6. Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasi-biennial oscillations

    Directory of Open Access Journals (Sweden)

    Motoyoshi Ikeda

    2012-06-01

    Full Text Available Arctic Ocean sea ice has been diminishing since 1970, as shown by National Snow and Ice Data Center data. In addition to decadal variability, low ice anomalies in the Pacific–Siberian region have been occurring at shorter timescales. The influence of the widely-known Northern Annular Mode (NAM occurs across all seasons. In this study, empirical orthogonal function (EOF analysis was applied to sea-level pressure in National Centers for Environmental Prediction Reanalysis data for 1960–2007, showing the NAM to be the leading mode of variability and the Arctic Dipole Mode (ADM to be the second leading mode. The ADM changes markedly across seasons. In autumn–winter, it has a pole over Siberia and a pole over Greenland, at opposite signs at a several-year scale, whereas the spring–summer ADM (ADMSS has a pole over Europe and a pole over Canada. In the 1980s, the most influential mode shifted from the NAM to the ADM, when the Pacific sector had low ice cover at a 1-year lag from the positive ADM, which was marked by low pressure over Siberia. In years when the ADMSS was pronounced, it was responsible for distinct ice variability over the East Siberian–Laptev seas. The frequency separation in this study identified the contributions of the ADM and ADMSS. Effects of the latter are difficult to predict since it is intermittent and changes its sign biennially. The ADM and ADMSS should be closely watched in relation to the ongoing ice reduction in the Pacific–Siberian region.

  7. Intermittency '93

    International Nuclear Information System (INIS)

    Bialas, A.

    1993-01-01

    The existing data definitely indicate the existence of intermittency, i.e. of self similar structures in the systems of particles created in high-energy collisions. The effect seems universal: it was found in most of the processes investigated and its measures parameters depend only weakly (if at all) on the process in question. Strong HBT effect was found, suggesting that intermittency is related to space-time structure of the pion source rather than to detailed momentum structure of the production amplitudes. There are indications that this space time structure may be fractal, but more data is needed to establish this. The theoretical explanation remains obscure: it seems that both parton cascade and hadronization play an important role. Their interrelation, however, remains a mystery. 5 figs., 19 refs

  8. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.

    Science.gov (United States)

    Craig, Michael T; McBain, Chris J

    2015-02-25

    Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations. Copyright © 2015 the authors 0270-6474/15/353616-09$15.00/0.

  9. Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons

    OpenAIRE

    Pedroarena, Christine; Llinás, Rodolfo

    1997-01-01

    Cortical-projecting thalamic neurons, in guinea pig brain slices, display high-frequency membrane potential oscillations (20–80 Hz), when their somata are depolarized beyond −45 mV. These oscillations, preferentially located at dendritic sites, are supported by the activation of P/Q type calcium channels, as opposed to the expected persistent sodium conductance responsible for such rhythmic behavior in other central neurons. Short hyperpolarizing pulses reset the phase and transiently increas...

  10. The role of inhibition in generating and controlling Parkinson's disease oscillations in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-10-01

    Full Text Available Movement disorders in Parkinson's disease (PD are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep brain stimulation (DBS. These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behaviour under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.

  11. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  12. Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.

    2010-01-01

    PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P < 0.01). Throughout DR progression, the density of larger vessels (G(sub 1-5)) remained essentially unchanged, and D(sub v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins.

  13. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Intermittent hyperthyreosis

    International Nuclear Information System (INIS)

    Sulman, F.G.; Tal, E.; Pfeifer, Y.; Superstine, E.

    1975-01-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or 'forme fruste' hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: tachycardia - every case with more than 80 pulse beats being suspect (not specific); urinary histamine - every case excreting more than 90 μg/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; urinary thyroxine - every case excreting more than 20 μg/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and betablockers. Propyl thiouracil is rarely required. (orig.) [de

  15. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    In this letter, we describe a self-starting optical pulse source generating ultra low noise 15-ps-wide pulses at 10 GHz. It is based on a hybrid optoelectronic oscillator comprising a fiber extended cavity mode-locked diode laser which injection locks a self-oscillating heterojunction bipolar...

  16. Development and field tests of a damping controller to mitigate electromechanical oscillations on large diesel generating units

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Fabricio G.; Barreiros, Jose A.L.; Barra, Walter Jr.; Costa, Carlos T. Jr. [Universidade Federal do Para (UFPA), Instituto de Tecnologia, Faculdade de Engenharia Eletrica, Campus Universitario do Guama, CEP: 66075-900, Belem (Brazil); Ferreira, Andre M.D. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Campus Belem, Departamento de Controle e Processos Industriais, Av. Almirante Barroso, 1155 (Marco), CEP: 66093-020, Belem (Brazil)

    2011-02-15

    This paper presents the development and field tests of a digital damping controller designed to mitigate intra-plant electromechanical oscillations via the speed governor system of fast acting units. The controller performance is assessed on an 18-MVA diesel generating unit, at Santana Power Plant (Amapa State, Amazon Region at Northern Brazil). In order to design the damping control law, a set of parametric ARX models representing the plant dynamics at several load conditions, are previously identified from data collected on field tests. The damping controller gains are calculated by using the identified ARX models parameters as inputs to a discrete-time pole-placement design method (pole-shifting) and then embedded on a DSP based microcontroller digital system, for field tests assessment. The digital damping controller modulates the diesel engine inlet valve position according to the observed oscillation on the measured electric power, using a PWM device, which is specially developed to this application. The experimental results shown the good performance of the developed controller on damping efficiently the electromechanical oscillations observed between generating units at Santana Power Plant. (author)

  17. Study on the Neutrino Oscillation with a Next Generation Medium-Baseline Reactor Experiment

    International Nuclear Information System (INIS)

    Joo, Kyung Kwang; Shin, Chang Dong

    2014-01-01

    For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angle θ 13 , providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements of θ 12 ,Δm 12 2 , and mass hierarchy will be explored. The precise measurement of θ 13 would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package

  18. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    International Nuclear Information System (INIS)

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.

    2010-01-01

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  19. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models.

    Science.gov (United States)

    Macedo, R G; Verhaagen, B; Fernandez Rivas, D; Gardeniers, J G E; van der Sluis, L W M; Wesselink, P R; Versluis, M

    2014-01-01

    Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet fully elucidated. Using sensitive equipment, the sonoluminescence (SL) and sonochemiluminescence (SCL) around these files have been measured in this study, showing that cavitation occurs even at very low power settings. Luminol photography and high-speed visualizations provided information on the spatial and temporal distribution of the cavitation bubbles. A large bubble cloud was observed at the tip of the files, but this was found not to contribute to SCL. Rather, smaller, individual bubbles observed at antinodes of the oscillating file with a smaller amplitude were leading to SCL. Confinements of the size of bovine and human root canals increased the amount of SL and SCL. The root canal models also showed the occurrence of air entrainment, resulting in the generation of stable bubbles, and of droplets, near the air-liquid interface and leading eventually to a loss of the liquid. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  1. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  2. Gap junction networks can generate both ripple-like and fast ripple-like oscillations

    Science.gov (United States)

    Simon, Anna; Traub, Roger D.; Vladimirov, Nikita; Jenkins, Alistair; Nicholson, Claire; Whittaker, Roger G.; Schofield, Ian; Clowry, Gavin J.; Cunningham, Mark O.; Whittington, Miles A.

    2014-01-01

    Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to ‘ordinary’ (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples ( 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable. PMID:24118191

  3. Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen

    International Nuclear Information System (INIS)

    Anderson, Dennis; Leach, Matthew

    2004-01-01

    If intermittent renewable energy technologies such as those based on solar, wind, wave and tidal resources are eventually to supply significant shares of total energy supplies, it is crucial that the energy storage problem is solved. There are several (long-recognised) possibilities ahead including compressed air, pumped storage, further developments in batteries, regenerable fuel cells, 'super-capacitors' and so forth. But one that is being revisited extensively by industry and research establishments is the production and storage of hydrogen from electricity at off-peak times, and in times when there would be a surplus of renewable energy, for reuse in the electricity, gas and transport markets; short-term and even seasonal and longer-term storage is technically feasible with this option. This paper looks at the costs of the option both in the near-term and the long-term relative to the current costs of electricity and natural gas supplies. While the costs of hydrogen would necessarily be greater than those of natural gas (though not disruptively so), when used in conjunction with emerging technologies for decentralised generation and combined heat and power there is scope for appreciable economies in electricity supply. A lot will depend on innovation at the systems level, and on how we operate our electricity and gas grids and regulate our electricity and gas industries. We have also suggested that we now need to experiment more, at the commercial level, and in the laboratories, with the hydrogen option

  4. Defect induced intermittency in the transit time dynamics generates 1/f noise in a trimer described by the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.; Doedel, E.J.

    2006-08-01

    We investigate the nonlinear dynamics in a trimer, described by the one-dimensional discrete nonlinear Schrodinger equation (DNLSE), with periodic boundary conditions in the presence of a single on-site defect. We make use of numerical continuation to study different families of stationary and periodic solutions, which allows us to consider suitable perturbations. Taking into account a Poincare section, we are able to study the dynamics in both a thin stochastic layer solution and a global stochasticity solution. We find that the time series of the transit times, the time intervals to traverse some suitable sets in phase space, generate 1/f noise for both stochastic solutions. In the case of the thin stochastic layer solution, we find that transport between two almost invariant sets along with intermittency in small and large time scales are relevant features of the dynamics. These results are reflected in the behaviour of the standard map with suitable parameters. In both chaotic solutions, the distribution of transit times has a maximum and a tail with exponential decay in spite of the presence of long-range correlations in the time series. We motivate our study by considering a ring of weakly-coupled Bose-Einstein condensates (BEC) with attractive interactions, where inversion of populations between two spatially symmetric sites and phase locking take place in both chaotic solutions. (author)

  5. An efficient linear power generator - Linear motor for oscillating piston machines; Effizienter Lineargenerator / Linearmotor fuer Kolbenmaschine - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2008-07-01

    When an oscillating piston interacts with an electrical generator or motor, it is obvious that the electrical machine should also have linear motion, eliminating the disadvantage of a crankshaft. This work has two parts: construction of an efficient linear generator for a Stirling engine with a free piston and a theoretical study of the efficiency of linear motors for driving compressors. The Stirling engine and the linear generator have a continuous power of 1.3 kW{sub el}. With thermal peak power the planned 1.5 kW{sub el} are attained. The Project 'Stirling Free Piston Generator' for cogeneration will continue. Smaller linear motors with permanent magnets function without electronic control from single-phase AC net. The theoretical study shows how linear motors can be led out by linking the electric vector diagram with the pressure-volume diagram of the compressor. At a power level exceeding a few kW, a three-phase system with power electronics is more suitable. The frequency of oscillation is variable and lower than 50 Hz. The efficiency of the simulated linear motors lies in the range of efficiency class EFF1 of standard motors. The very high efficiencies of rotating motors with permanent magnets are not attained. The combination of the linear motor with an optimised thermal process leads to advantages regarding the efficiency. If a heat pump with linear drive system can operate with hot lubricating oil the losses in the heat exchangers are reduced. The Competence Center for Thermal Machines at Lucerne University of Applied Sciences and Arts shows great interest to pursue the project of a linear heat pump for small temperature differences. (author)

  6. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    International Nuclear Information System (INIS)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-01-01

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  7. Numerical investigations of single bubble oscillations generated by a dual frequency excitation

    International Nuclear Information System (INIS)

    Guédra, Matthieu; Inserra, Claude; Gilles, Bruno; Béra, Jean-Christophe

    2015-01-01

    The oscillations of a single bubble excited with a dual frequency acoustic field are numerically investigated. Computations are made for an air bubble in water exposed to an acoustic field with a linearly varying amplitude. The bubble response to an excitation containing two frequencies f 1 = 500 kHz and f 2 = 400 kHz at the same amplitude is compared to the monofrequency case where only f 1 is present. Time-frequency representations show a sharp transition in the bifrequency case, for which the low frequency component f 2 becomes resonant while the high frequency component f 1 is strongly attenuated. The temporal evolution of the power spectra reveals that the resonance of the low frequency component is correlated with the time varying mean radius of the bubble. It is also observed that the total power of the bubble response in the bifrequency case can reach almost twice the power obtained in the monofrequency case, which indicates a strong enhancement of the cavitating behavior of the bubble for this specific frequency combination. (paper)

  8. A standing pressure wave hypothesis of oscillating forces generated during a steam line break

    International Nuclear Information System (INIS)

    Tinoco, H.

    2001-01-01

    A rapid glance at the figure depicting the net forces acting on the reactor vessel and internals, as obtained through a CFD simulation of a BWR steam line break, reveals an amazing oscillating regularity of these forces which is in glaring contrast to the chaotic behaviour of the steam pressure field in the steam annulus. Assuming that the decompression process excites and maintains standing pressure waves in the annular cylindrical region constituted by the steam annulus, it is possible to reconstruct the net forces acting on the reactor vessel and internals through the contribution of almost only the first dispersive mode. If a Neumann boundary condition is assumed at the section connecting the steam annulus to the steam dome, the frequency predicted is approximately % 5.9 higher than that of the CFD simulations. However, this connecting section allows wave transmission, and a more appropriate boundary condition should be one of the Robin type. Therefore, this section is modelled as an absorbing wall, and the corresponding normal impedance is calculated using the CFD simulations. Week non-linear effects can also be observed in the calculated forces through the presence of the first subharmonic. By the methodology described above, an estimate of the forces acting on the reactor vessel and internals of unit 3 of Forsmark Nuclear Power Plant has been obtained. (author)

  9. Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino 275-0016 (Japan); Sekikawa, Munehisa [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki 214-8571 (Japan)

    2015-02-15

    Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

  10. Limited and time-delayed internal resource allocation generates oscillations and chaos in the dynamics of citrus crops

    International Nuclear Information System (INIS)

    Ye, Xujun; Sakai, Kenshi

    2013-01-01

    Alternate bearing or masting is a yield variability phenomenon in perennial crops. The complex dynamics in this phenomenon have stimulated much ecological research. Motivated by data from an eight-year experiment with forty-eight individual trees, we explored the mechanism inherent to these dynamics in Satsuma mandarin (Citrus unshiu Marc.). By integrating high-resolution imaging technology, we found that the canopy structure and reproduction output of individual citrus crops are mutually dependent on each other. Furthermore, it was revealed that the mature leaves in early season contribute their energy to the fruiting of the current growing season, whereas the younger leaves show a delayed contribution to the next growing season. We thus hypothesized that the annual yield variability might be caused by the limited and time-delayed resource allocation in individual plants. A novel lattice model based on this hypothesis demonstrates that this pattern of resource allocation will generate oscillations and chaos in citrus yield

  11. Limited and time-delayed internal resource allocation generates oscillations and chaos in the dynamics of citrus crops

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xujun, E-mail: yexujun@cc.hirosaki-u.ac.jp [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Faculty of Agriculture and Life Sciences, Hirosaki University, Aomori 036-8561 (Japan); Sakai, Kenshi, E-mail: ken@cc.tuat.ac.jp [Environmental and Agricultural Engineering Department, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan)

    2013-12-15

    Alternate bearing or masting is a yield variability phenomenon in perennial crops. The complex dynamics in this phenomenon have stimulated much ecological research. Motivated by data from an eight-year experiment with forty-eight individual trees, we explored the mechanism inherent to these dynamics in Satsuma mandarin (Citrus unshiu Marc.). By integrating high-resolution imaging technology, we found that the canopy structure and reproduction output of individual citrus crops are mutually dependent on each other. Furthermore, it was revealed that the mature leaves in early season contribute their energy to the fruiting of the current growing season, whereas the younger leaves show a delayed contribution to the next growing season. We thus hypothesized that the annual yield variability might be caused by the limited and time-delayed resource allocation in individual plants. A novel lattice model based on this hypothesis demonstrates that this pattern of resource allocation will generate oscillations and chaos in citrus yield.

  12. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  13. Spatiotemporal Oscillations in Tokamak Edge Layer and their Generation by Various Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Daybelge, U.; Yarim, C., E-mail: daybelge@itu.edu.tr [Istanbul Technical University, Istanbul (Turkey); Nicolai, A. [Forschungszentrum Juelich, Juelich (Germany)

    2012-09-15

    Full text: Toroidal and poloidal rotations of plasma at the edge region of tokamak devices have long been known to play an important role, such as enhancing the confinement properties by suppressing turbulent behaviour, improving tolerance to error fields and increasing stability to neoclassical tearing modes. Hence, understanding of creation and evolution of rotation is important, since external momentum would not be enough or could not even be realized especially for future large fusion devices. In addition to the externally applied momentum, several mechanisms have been suggested to explain the reasons for spontaneous toroidal rotation of plasmas. For a tokamak edge region as found, for example, within the operational boundaries of the ASDEX upgrade, relevance of the collisional neoclassical theory was recently emphasized. In this regime gyrostresses play a considerable role in modifying the coupled flux surface averaged continuity, energy and momentum equations. Examination of the terms in these equations that are responsible for diffusion or reaction and acting as sources, can show the share of the neoclassical mechanisms to terms like intrinsic rotation, etc. Using similarities of our equations to the nonlinear reaction-diffusion equations with a susceptibility to the Turing instability and applying some robust numerical methods, we present here an approach based on the spatiotemporal simulation of the oscillations in plasma temperature, density, toroidal and poloidal rotation velocities under various perturbative effects. Present study considers a subsonic, collisional plasma in front of the magnetic separatrix. Study indicates a nonlinear, three-time-scales-coupling between the evolutions of the density, temperature and poloidal and toroidal rotation velocities. Numerical solutions of the coupled system for the vector W = [T,N,U{sub {phi}}, U{sub {theta}}] were studied under various given sources such as a periodic pellet injection or loop voltage variation

  14. Intermittency in Complex Flows

    Science.gov (United States)

    Ben Mahjoub, Otman; Redondo, Jose M.

    2017-04-01

    Experimental results of the complex turbulent wake of a cilinder in 2D [1] and 3D flows [2] were used to investigate the scaling of structure functions, similar research was also performed on wave propagation and breaking in the Ocean [3], in the the stratified Atmosphere (ABL) [4] and in a 100large flume (UPC) for both regular and irregular waves, where long time series of waves propagating and generating breaking turbulence velocity rms and higher order measurements were taken in depth. [3,5] by means of a velocimeter SONTEK3-D. The probability distribution functions of the velocity differences and their non Gaussian distribution related to the energy spectrum indicate that irregularity is an important source of turbulence. From Kolmogorov's K41 and K61 intermittency correction: the p th-order longitudinal velocity structure function δul at scale l in the inertial range of three-dimensional fully developed turbulence is related by ⟨δup⟩ = ⟨(u(x+ l)- u(x))p⟩ ˜ ɛp0/3lp/3 l where ⟨...⟩ represents the spatial average over flow domain, with ɛ0 the mean energy dissipation per unit mass and l is the separation distance. The importance of the random nature of the energy dissipation led to the K62 theory of intermittency, but locality and non-homogeneity are key issues. p p/3 p/3 ξd ⟨δul⟩ ˜ ⟨ɛl ⟩l ˜ l and ξp = p 3 + τp/3 , where now ɛl is a fractal energy dissipation at scale l, τp/3 is the scaling of and ξp is the scaling exponent of the velocity structure function of order p. Both in K41 and K62, the structure functions of third order related to skewness is ξ3 = 1. But this is not true either. We show that scaling exponents ξp do deviate from early studies that only investigated homogeneous turbulence, where a large inertial range dominates. The use of multi-fractal analysis and improvements on Structure function calculations on standard Enhanced mixing is an essential property of turbulence and efforts to alter and to control

  15. Cosmic Rays in Intermittent Magnetic Fields

    International Nuclear Information System (INIS)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S.; Snodin, Andrew P.

    2017-01-01

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  16. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  17. Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.

    2010-01-01

    PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P dropout were dominated first by remodeling of arteries and subsequently by veins.

  18. Studies of neutrino asymmetries generated by ordinary-sterile neutrino oscillations in the early Universe and implications for big bang nucleosynthesis bounds

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R.; Volkas, R.R. [Research Centre for High Energy Physics, School of Physics, University of Melbourne, Parkville, 3052 (Australia)

    1997-04-01

    Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Universe. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations in the early Universe can be approximately described by a single integrodifferential equation which we derive from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordinary first-order differential equation if the system is sufficiently smooth (static limit). We study the conditions for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to evade (by many orders of magnitude) the big bang nucleosynthesis (BBN) bounds on the mixing parameters {delta}m{sup 2} and sin{sup 2}2{theta}{sub 0} describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the parameter space of interest, provided that the {tau} and/or {mu} neutrinos have masses greater than about 1 eV. We also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric neutrino anomaly does not significantly modify BBN for a range of parameters. {copyright} {ital 1997} {ital The American Physical Society}

  19. Intermittent search strategies

    Science.gov (United States)

    Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R.

    2011-01-01

    This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. It is first shown that intermittent search strategies are actually widely observed at various scales. At the macroscopic scale, this is, for example, the case of animals looking for food; at the microscopic scale, intermittent transport patterns are involved in a reaction pathway of DNA-binding proteins as well as in intracellular transport. Second, generic stochastic models are introduced, which show that intermittent strategies are efficient strategies that enable the minimization of search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, it is proposed that intermittent strategies could also be used in a broader context to design and accelerate search processes.

  20. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models

    NARCIS (Netherlands)

    Macedo, R.G.; Verhaagen, B.; Fernandez Rivas, D.; Gardeniers, J.G.E.; van der Sluis, L.W.M.; Wesselink, P.R.; Versluis, M.

    2014-01-01

    Ultrasonically Activated Irrigation makes use of an ultrasonically oscillating file in order to improve the cleaning of the root canal during a root canal treatment. Cavitation has been associated with these oscillating files, but the nature and characteristics of the cavitating bubbles were not yet

  1. Intermittent behavior in the brain neuronal network in the perception of ambiguous images

    Science.gov (United States)

    Hramov, Alexander E.; Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.

    2017-03-01

    Characteristics of intermittency during the perception of ambiguous images have been studied in the case the Necker cube image has been used as a bistable object for demonstration in the experiments, with EEG being simultaneously measured. Distributions of time interval lengths corresponding to the left-oriented and right-oriented Necker cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform which was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a electroencephalographical marker of Necker cube recognition process in human brain.

  2. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  3. Improved foilless Ku-band transit-time oscillator for generating gigawatt level microwave with low guiding magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Junpu; He, Juntao, E-mail: hejuntao12@163.com; Zhang, Jiande; Jiang, Tao; Hu, Yi [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-09-15

    An improved foilless Ku-band transit-time oscillator with low guiding magnetic field is proposed and investigated in this paper. With a non-uniform buncher and a coaxial TM{sub 02} mode dual-resonant reflector, this improved device can output gigawatt level Ku-band microwave with relatively compact radial dimensions. Besides the above virtue, this novel reflector also has the merits of high TEM reflectance, being more suitable for pre-modulating the electron beam and enhancing the conversion efficiency. Moreover, in order to further increase the conversion efficiency and lower the power saturation time, a depth-tunable coaxial collector and a resonant cavity located before the extractor are employed in our device. Main structure parameters of the device are optimized by particle in cell simulations. The typical simulation result is that, with a 380 kV, 8.2 kA beam guided by a magnetic field of about 0.6 T, 1.15 GW microwave pulse at 14.25 GHz is generated, yielding a conversion efficiency of about 37%.

  4. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  5. Intermittency in branching models

    International Nuclear Information System (INIS)

    Chiu, C.B.; Texas Univ., Austin; Hwa, R.C.; Oregon Univ., Eugene

    1990-01-01

    The intermittency properties of three branching models have been investigated. The factorial moments show power-law behavior as function of small rapidity width. The slopes and energy dependences reveal different characteristics of the models. The gluon model has the weakest intermittency. (orig.)

  6. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    Science.gov (United States)

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Intermittent bursts induced by double tearing mode reconnection

    Science.gov (United States)

    Wei, Lai; Wang, Zheng-Xiong

    2014-06-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  8. Intermittent bursts induced by double tearing mode reconnection

    International Nuclear Information System (INIS)

    Wei, Lai; Wang, Zheng-Xiong

    2014-01-01

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines

  9. Intermittent bursts induced by double tearing mode reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Lai; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-06-15

    Reversed magnetic shear (RMS) configuration is assumed to be the steady-state operation scenario for the future advanced tokamaks like International Thermonuclear Experimental Reactor. In this work, we numerically discover a phenomenon of violent intermittent bursts induced by self-organized double tearing mode (DTM) reconnection in the RMS configuration during the very long evolution, which may continuously lead to annular sawtooth crashes and thus badly impact the desired steady-state operation of the future advanced RMS tokamaks. The key process of the intermittent bursts in the off-axis region is similar to that of the typical sawtooth relaxation oscillation in the positive magnetic shear configuration. It is interestingly found that in the decay phase of the DTM reconnection, the zonal field significantly counteracts equilibrium field to make the magnetic shear between the two rational surfaces so weak that the residual self-generated vortices of the previous DTM burst are able to trigger a reverse DTM reconnection by curling the field lines.

  10. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  11. Bursting and large-scale intermittency in turbulent convection with differential rotation

    International Nuclear Information System (INIS)

    Garcia, O.E.; Bian, N.H.

    2003-01-01

    The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior is the unidirectional and conservative transfer of kinetic energy from the fluctuating motions to the mean component of the flows, and its dissipation at large scales. Results from numerical simulations further demonstrate the intimate relation between these low-frequency modulations and the large-scale intermittency of convective turbulence, as manifested by exponential tails in single-point probability distribution functions. Moreover, the spatio-temporal evolution of convective structures illustrates the mechanism triggering avalanche events in the transport process. The latter involves the overlap of delocalized mixing regions when the barrier to transport, produced by the mean component of the flow, transiently disappears

  12. Single ICCII Sinusoidal Oscillators Employing Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    J. W. Horng

    2011-09-01

    Full Text Available Two inverting second-generation current conveyors (ICCII based sinusoidal oscillators are presented. The first sinusoidal oscillator is composed of one ICCII, two grounded capacitors and two resistors. The oscillation condition and oscillation frequency can be orthogonally controllable. The second sinusoidal oscillator is composed of one ICCII, two grounded capacitors and three resistors. The oscillation condition and oscillation frequency can be independently controllable through different resistors.

  13. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  14. Proton driver optimization for new-generation neutrino superbeams to search for sub-leading νμ→νe oscillations (θ13 angle)

    International Nuclear Information System (INIS)

    Ferrari, A; Rubbia, A; Rubbia, C; Sala, P R

    2002-01-01

    In this paper, we perform a systematic study of particle production and neutrino yields for different incident proton energies E p and baselines L, with the aim of optimizing the parameters of a neutrino beam for the investigation of θ 13 -driven neutrino oscillations in the Δm 2 range allowed by Superkamiokande results. We study the neutrino energy spectra in the 'relevant' region of the first maximum of the oscillation at a given baseline L. We find that to each baseline L corresponds an 'optimal' proton energy E p which minimizes the required integrated proton intensity needed to observe a fixed number of oscillated events. In addition, we find that the neutrino event rate in the relevant region scales approximately linearly with the proton energy. Hence, baselines L and proton energies E p can be adjusted and the performance for neutrino oscillation searches will remain approximately unchanged provided that the product of the proton energy times the number of protons on target remains constant. We apply these ideas to the specific cases of 2.2, 4.4, 20, 50 and 400 GeV protons. We simulate focusing systems that are designed to best capture the secondary pions of the 'optimal' energy. We compute the expected sensitivities to sin 2 2θ 13 for the various configurations by assuming the existence of new-generation accelerators able to deliver integrated proton intensities on target times the proton energy of the order of O(5x10 23 ) GeVxpot/year

  15. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  16. Intermittent heating of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kohonen, K

    1983-02-01

    Conditions for intermittent heating of buildings are considered both theoretically and experimentally. Thermal behaviour of buildings adn rooms in intermittent heating is simulated by a program based on the convective heat balance equation and by simplified RC-models. The preheat times and the heating energy savings compared with continuous heating are presented for typical lightweight, mediumweight and heavyweight classroom and office modules. Formulaes for estimating the oversizing of the radiator network, the maximum heat output of heat exchangers in district heating and the efficiency of heating boilers in intermittent heating are presented. The preheat times and heating energy savings with different heating control systems are determined also experimentally in eight existing buildings. In addition some principles for the planning and application of intermittent heating systems are suggested.

  17. Optimal intermittent search strategies

    International Nuclear Information System (INIS)

    Rojo, F; Budde, C E; Wio, H S

    2009-01-01

    We study the search kinetics of a single fixed target by a set of searchers performing an intermittent random walk, jumping between different internal states. Exploiting concepts of multi-state and continuous-time random walks we have calculated the survival probability of a target up to time t, and have 'optimized' (minimized) it with regard to the transition probability among internal states. Our model shows that intermittent strategies always improve target detection, even for simple diffusion states of motion

  18. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa.

    Science.gov (United States)

    Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu

    2017-09-01

    Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Oscilaciones de Potencia, Tensión y Corriente en Unidades de Generación Distribuida; Power, Voltage and Current Oscillations in Distributed Generation Units

    Directory of Open Access Journals (Sweden)

    Marcos Alberto de Armas Teyra

    2013-06-01

    Full Text Available En las plantas de generación distribuidas accionadas por motores reciprocantes es necesario conocer las fluctuaciones de tensión, corriente y potencia para evaluar la calidad de la energía que entregan estos grupos electrógenos y como criterio de diagnóstico técnico. Las causas de estas fluctuaciones son diversas. La fundamental se debe a la presencia de oscilaciones forzadas producidas por el momento irregular de los motores primarios. Otras razones se encuentran en las excentricidades constructivas, el desbalance de corriente, los armónicos espaciales y de tiempo, la variación de la configuración del sistema, etc. En este trabajo fueron evaluadas satisfactoriamente las oscilaciones de una máquina conectada a la red mediante la instalación de un analizador de redes de 32 cortes por ciclo a la salida del generador de una de estas unidades. Se expone como caso de estudio las oscilaciones observadas en un generador de 425 kVA480 V accionado por un motor Diesel de seis cilindros y cuatro tiempos en la Provincia de Cienfuegos, Cuba.  In distributed and standby power plants driven by reciprocating motors, is important to know the voltage, current and power oscillation as a delivery power quality and diagnostic criteria. There are several oscillation causes. The fundamental is due to the irregular torque of primary motors. Other causes are due to constructive eccentricities, current unbalance, time and spatial harmonics, changes in systems configuration, etc. In this paper the fundamental oscillations of a grid connected machine were evaluated with a power analyzer installed in one generating power plant. As a case there are shown the observed oscillations in 425 kVA generator driven by a four times, six cylinders Diesel motor in Cienfuegos Province of Cuba.

  20. Oscilaciones de Potencia, Tensión y Corriente en Unidades de Generación Distribuida: Power, Voltage and Current Oscillations in Distributed Generation Units

    Directory of Open Access Journals (Sweden)

    Marcos Alberto de Armas Teyra

    2013-06-01

    Full Text Available En las plantas de generación distribuidas accionadas por motores reciprocantes es necesario conocer las fluctuaciones de tensión, corriente y potencia para evaluar la calidad de la energía que entregan estos grupos electrógenos y como criterio de diagnóstico técnico. Las causas de estas fluctuaciones son diversas. La fundamental se debe a la presencia de oscilaciones forzadas producidas por el momento irregular de los motores primarios. Otras razones se encuentran en las excentricidades constructivas, el desbalance de corriente, los armónicos espaciales y de tiempo, la variación de la configuración del sistema, etc. En este trabajo fueron evaluadas satisfactoriamente las oscilaciones de una máquina conectada a la red mediante la instalación de un analizador de redes de 32 cortes por ciclo a la salida del generador de una de estas unidades. Se expone como caso de estudio las oscilaciones observadas en un generador de 425 kVA480 V accionado por un motor Diesel de seis cilindros y cuatro tiempos en la Provincia de Cienfuegos, Cuba.In distributed and standby power plants driven by reciprocating motors, is important to know the voltage, current and power oscillation as a delivery power quality and diagnostic criteria. There are several oscillation causes. The fundamental is due to the irregular torque of primary motors. Other causes are due to constructive eccentricities, current unbalance, time and spatial harmonics, changes in systems configuration, etc. In this paper the fundamental oscillations of a grid connected machine were evaluated with a power analyzer installed in one generating power plant. As a case there are shown the observed oscillations in 425 kVA generator driven by a four times, six cylinders Diesel motor in Cienfuegos Province of Cuba.

  1. Muonic molecular ions p p μ and p d μ driven by superintense VUV laser pulses: Postexcitation muonic and nuclear oscillations and high-order harmonic generation

    Science.gov (United States)

    Paramonov, Guennaddi K.; Saalfrank, Peter

    2018-05-01

    The non-Born-Oppenheimer quantum dynamics of p p μ and p d μ molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z ) is studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and ρ , a transversal degree of freedom. It is shown that in both p p μ and p d μ , muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values , , and demonstrate "post-laser-pulse" oscillations in both p p μ and p d μ . In the case of p d μ , the post-laser-pulse oscillations of and appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For p d μ it is found that there exists a unique characteristic frequency ωoscp d μ representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of p d μ . The homonuclear p p μ ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.

  2. Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Márquez, Bicky A., E-mail: bmarquez@ivic.gob.ve; Suárez-Vargas, José J., E-mail: jjsuarez@ivic.gob.ve; Ramírez, Javier A. [Centro de Física, Instituto Venezolano de Investigaciones Científicas, km. 11 Carretera Panamericana, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2014-09-01

    Controlled transitions between a hierarchy of n-scroll attractors are investigated in a nonlinear optoelectronic oscillator. Using the system's feedback strength as a control parameter, it is shown experimentally the transition from Van der Pol-like attractors to 6-scroll, but in general, this scheme can produce an arbitrary number of scrolls. The complexity of every state is characterized by Lyapunov exponents and autocorrelation coefficients.

  3. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  4. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  5. Optimal intermittent search strategies

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, F; Budde, C E [FaMAF, Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina); Wio, H S [Instituto de Fisica de Cantabria, Universidad de Cantabria and CSIC E-39005 Santander (Spain)

    2009-03-27

    We study the search kinetics of a single fixed target by a set of searchers performing an intermittent random walk, jumping between different internal states. Exploiting concepts of multi-state and continuous-time random walks we have calculated the survival probability of a target up to time t, and have 'optimized' (minimized) it with regard to the transition probability among internal states. Our model shows that intermittent strategies always improve target detection, even for simple diffusion states of motion.

  6. Intermittency and random matrices

    Science.gov (United States)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  7. Intermittent and global transitions in plasma turbulence

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Itoh, K.; Itoh, S.-I.

    2003-07-01

    The dynamics of the transition processes in plasma turbulence described by the nonlinear Langevin equation (1) is studied. We show that intermittent or global transitions between metastable states can appear. The conditions for the generation of these transitions and their statistical characteristics are determined. (author)

  8. Intermittent Testicular Torsion

    African Journals Online (AJOL)

    2017-06-02

    Jun 2, 2017 ... had prior episodes of testicular pain, suggesting that they may have had intermittent torsion before .... None of the patients had antecedent history of sexual exposure, fever, or urinary tract infection .... torsion of the spermatic cord portends an increased risk of acute testicular infarction. J Urol 2008;180 4 ...

  9. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  10. Column oscillations of the electrostatic Van de Graaff generator of 5 MeV; Oscillations de la colonne du generateur electrostatique type Van de Graaff de 5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    In this report, we study the transverse oscillations due to the operation of the straps of Van de Graaff column. we try to search for the parameters influencing on these oscillations, what allow us to fix the limits of this survey. We show that the column can be assimilated to a linear oscillating system, what allow us to apply him the properties of oscillating systems. The used experimental method consists in comparing the oscillation frequency of the column, in relation to the stationary space (for us the building), with the frequency of the strap evasion in relation to the column. (M.B.) [French] Dans ce rapport, on etudiera les oscillations transversales dues aux fonctionnement des courroies d'une colonne de Van de Graaff. nous nous attacherons a rechercher les parametres influant sur ces oscillations, ce qui nous permettra de fixer les limites de cette etude. On montrera que la colonne peut etre assimilee a un systeme oscillant lineaire, ce qui nous permettra de lui appliquer les proprietes des systemes oscillants. La methode experimentale employee consiste a comparer la frequence des oscillations de la colonne, par rapport a l'espace fixe (pour nous le batiment), avec la frequence du louvoiement de courroie par rapport a la colonne. (M.B.)

  11. A wavelet-based intermittency detection technique from PIV investigations in transitional boundary layers

    Science.gov (United States)

    Simoni, Daniele; Lengani, Davide; Guida, Roberto

    2016-09-01

    The transition process of the boundary layer growing over a flat plate with pressure gradient simulating the suction side of a low-pressure turbine blade and elevated free-stream turbulence intensity level has been analyzed by means of PIV and hot-wire measurements. A detailed view of the instantaneous flow field in the wall-normal plane highlights the physics characterizing the complex process leading to the formation of large-scale coherent structures during breaking down of the ordered motion of the flow, thus generating randomized oscillations (i.e., turbulent spots). This analysis gives the basis for the development of a new procedure aimed at determining the intermittency function describing (statistically) the transition process. To this end, a wavelet-based method has been employed for the identification of the large-scale structures created during the transition process. Successively, a probability density function of these events has been defined so that an intermittency function is deduced. This latter strictly corresponds to the intermittency function of the transitional flow computed trough a classic procedure based on hot-wire data. The agreement between the two procedures in the intermittency shape and spot production rate proves the capability of the method in providing the statistical representation of the transition process. The main advantages of the procedure here proposed concern with its applicability to PIV data; it does not require a threshold level to discriminate first- and/or second-order time-derivative of hot-wire time traces (that makes the method not influenced by the operator); and it provides a clear evidence of the connection between the flow physics and the statistical representation of transition based on theory of turbulent spot propagation.

  12. The impact of intermittent or sustained carbon dioxide on intermittent hypoxia initiated respiratory plasticity. What is the effect of these combined stimuli on apnea severity?

    Science.gov (United States)

    Mateika, Jason H; Panza, Gino; Alex, Raichel; El-Chami, Mohamad

    2017-10-31

    The following review explores the effect that intermittent or sustained hypercapnia coupled to intermittent hypoxia has on respiratory plasticity. The review explores published work which suggests that intermittent hypercapnia leads to long-term depression of respiration when administered in isolation and prevents the initiation of long-term facilitation when administered in combination with intermittent hypoxia. The review also explores the impact that sustained hypercapnia alone and in combination with intermittent hypoxia has on the magnitude of long-term facilitation. After exploring the outcomes linked to intermittent hypoxia/hypercapnia and intermittent hypoxia/sustained hypercapnia the translational relevance of the outcomes as it relates to breathing stability during sleep is addressed. The likelihood that naturally induced cycles of intermittent hypoxia, coupled to oscillations in carbon dioxide that range between hypocapnia and hypercapnia, do not initiate long-term facilitation is addressed. Moreover, the conditions under which intermittent hypoxia/sustained hypercapnia could serve to improve breathing stability and mitigate co-morbidities associated with sleep apnea are considered. Published by Elsevier B.V.

  13. Density-wave oscillations

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Bratianu, C.

    1979-01-01

    Boiling flow in a steam generator, a water-cooled reactor, and other multiphase processes can be subject to instabilities. It appears that the most predominant instabilities are the so-called density-wave oscillations. They can cause difficulties for three main reasons; they may induce burnout; they may cause mechanical vibrations of components; and they create system control problems. A comprehensive review is presented of experimental and theoretical studies concerning density-wave oscillations. (author)

  14. Quasistatic Dynamics with Intermittency

    International Nuclear Information System (INIS)

    Leppänen, Juho; Stenlund, Mikko

    2016-01-01

    We study an intermittent quasistatic dynamical system composed of nonuniformly hyperbolic Pomeau–Manneville maps with time-dependent parameters. We prove an ergodic theorem which shows almost sure convergence of time averages in a certain parameter range, and identify the unique physical family of measures. The theorem also shows convergence in probability in a larger parameter range. In the process, we establish other results that will be useful for further analysis of the statistical properties of the model.

  15. Quasistatic Dynamics with Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    Leppänen, Juho; Stenlund, Mikko, E-mail: mikko.stenlund@helsinki.fi [University of Helsinki, Department of Mathematics and Statistics (Finland)

    2016-06-15

    We study an intermittent quasistatic dynamical system composed of nonuniformly hyperbolic Pomeau–Manneville maps with time-dependent parameters. We prove an ergodic theorem which shows almost sure convergence of time averages in a certain parameter range, and identify the unique physical family of measures. The theorem also shows convergence in probability in a larger parameter range. In the process, we establish other results that will be useful for further analysis of the statistical properties of the model.

  16. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  17. Comparative investigation of long-wave infrared generation based on ZnGeP{sub 2} and CdSe optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Gang, Li; Guo-Li, Zhu; Pei-Bei, Meng; You-Lun, Ju; Wang Yue-Zhu, E-mail: yaobq08@hit.edu.cn [National Key Laboratory of Tunable Laser Technology Harbin Institute of Technology Harbin 150001 (China)

    2012-03-15

    Long-wave infrared (IR) generation based on type-II (o{yields}e+o) phase matching ZnGeP{sub 2} (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 {mu}m Tm,Ho:GdVO{sub 4} laser is reported. The comparisons of the bire-fringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 {mu}m is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 {mu}m. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 {mu}m with a single crystal 28 mm in length. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  19. Relationship Between the Parameters of the Linear and Nonlinear Wave Generation Stages in a Magnetospheric Cyclotron Maser in the Backward-Wave Oscillator Regime

    Science.gov (United States)

    Demekhov, A. G.

    2017-03-01

    By using numerical simulations we generalize certain relationships between the parameters of quasimonochromatic whistler-mode waves generated at the linear and nonlinear stages of the cyclotron instability in the backward-wave oscillator regime. One of these relationships is between the wave amplitude at the nonlinear stage and the linear growth rate of the cyclotron instability. It was obtained analytically by V.Yu.Trakhtengerts (1984) for a uniform medium under the assumption of constant frequency and amplitude of the generated wave. We show that a similar relationship also holds for the signals generated in a nonuniform magnetic field and having a discrete structure in the form of short wave packets (elements) with fast frequency drift inside each element. We also generalize the formula for the linear growth rate of absolute cyclotron instability in a nonuniform medium and analyze the relationship between the frequency drift rate in the discrete elements and the wave amplitude. These relationships are important for analyzing the links between the parameters of chorus emissions in the Earth's and planetary magnetospheres and the characteristics of the energetic charged particles generating these signals.

  20. Beam-plasma generators of stochastic microwave oscillations using for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mitin, L A; Perevodchikov, V I; Shapiro, A L; Zavyalov, M A [All-Russian Electrotechnical Inst., Moscow (Russian Federation); Bliokh, Yu P; Fajnberg, Ya B [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The results of theoretical and experimental investigations of a generator of stochastic microwave power based on a beam-plasma inertial feedback amplifier is discussed with a view to using stochastic oscillations for plasma heating. The plasma heating efficiency in the region of low-frequency resonance in the geometry of the Tokamak is considered theoretically. It is shown that the temperature of heating is proportional to the power multiplied by the spectra width of the noiselike signal. The creation and heating of plasma by stochastic microwave power in an oversized waveguide without external magnetic field is discussed with a view to plasma-chemistry applications. It is shown that the efficiency of heating are defined by the time of phase instability of the stochastic power. (author). 3 figs., 13 refs.

  1. Gravity waves observed from the Equatorial Wave Studies (EWS campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations

    Directory of Open Access Journals (Sweden)

    V. Deepa

    2006-10-01

    Full Text Available The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO is estimated.

  2. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Science.gov (United States)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  3. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  4. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  5. Widespread neural oscillations in the delta band dissociate rule convergence from rule divergence during creative idea generation

    NARCIS (Netherlands)

    Boot, N.; Baas, M.; Mühlfeld, E.; de Dreu, C.K.W.; van Gaal, S.

    Critical to creative cognition and performance is both the generation of multiple alternative solutions in response to open-ended problems (divergent thinking) and a series of cognitive operations that converges on the correct or best possible answer (convergent thinking). Although the neural

  6. Intermittency in nuclear multifragmentation

    International Nuclear Information System (INIS)

    Ploszajczak, M.; Tucholski, A.

    1990-07-01

    Fluctuations of the fragment size distribution in a percolation model and in nuclear multifragmentation following the breakup of high energy nuclei in the nuclear emulsion are studied using the method of scaled factorial moments. An intermittent patern of fluctuations is found in the data as well as in the percolation lattice calculation. This is a consequence of both a self-similarity in the fragment size distribution and a random character for the scaling law. These fluctuations are in general well-described by percolation model. The multifractal dimensions are calculated and their relevance to the study of possible critical behaviour is pointed out. (orig.)

  7. Multidimensional intermittency in hadronic collisions

    International Nuclear Information System (INIS)

    Pan, J.; Hwa, R.C.

    1992-06-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ECCO is extended to 3-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in lnp T , and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle φ. The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent ν = 1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined

  8. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  9. Complex economic dynamics: Chaotic saddle, crisis and intermittency

    International Nuclear Information System (INIS)

    Chian, Abraham C.-L.; Rempel, Erico L.; Rogers, Colin

    2006-01-01

    Complex economic dynamics is studied by a forced oscillator model of business cycles. The technique of numerical modeling is applied to characterize the fundamental properties of complex economic systems which exhibit multiscale and multistability behaviors, as well as coexistence of order and chaos. In particular, we focus on the dynamics and structure of unstable periodic orbits and chaotic saddles within a periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor merging crisis, and in the chaotic regions associated with type-I intermittency and crisis-induced intermittency, in non-linear economic cycles. Inside a periodic window, chaotic saddles are responsible for the transient motion preceding convergence to a periodic or a chaotic attractor. The links between chaotic saddles, crisis and intermittency in complex economic dynamics are discussed. We show that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits located in the gap regions of chaotic saddles. Non-linear modeling of economic chaotic saddle, crisis and intermittency can improve our understanding of the dynamics of financial intermittency observed in stock market and foreign exchange market. Characterization of the complex dynamics of economic systems is a powerful tool for pattern recognition and forecasting of business and financial cycles, as well as for optimization of management strategy and decision technology

  10. Computed tomography image using sub-terahertz waves generated from a high-Tc superconducting intrinsic Josephson junction oscillator

    International Nuclear Information System (INIS)

    Kashiwagi, T.; Minami, H.; Kadowaki, K.; Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Tsujimoto, M.; Yamamoto, T.; Marković, B.; Mirković, J.; Klemm, R. A.

    2014-01-01

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+δ was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications

  11. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-18

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  12. Self-oscillations in cw solid-state ultrashort-pulse-generating lasers with mode locking by self-focusing

    International Nuclear Information System (INIS)

    Kalashnikov, V L; Krimer, D O; Mejid, F; Poloiko, I G; Mikhailov, V P

    1999-01-01

    Steady-state and transient regimes of ultrashort pulse generation are studied for cw solid-state lasers with mode locking by self-focusing. It is shown that the control parameter, which governs the nature of lasing, is the relationship between self-phase-modulation and the saturation intensity of an efficient shutter, induced by the Kerr self-focusing. Numerical modelling based on mapping the parameters of a quasi-soliton ultrashort pulse, considered in the aberration-free approximation, yields results in good agreement with experiments. (control of laser radiation parameters)

  13. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa; Mansingka, Abhinav S.; Salama, Khaled N.; Zidan, Mohammed A.

    2014-01-01

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  14. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  15. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  16. Chemical Oscillations

    Indian Academy of Sciences (India)

    the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.

  17. Intermittent Switching between Soliton Dynamic States in a Perturbed Sine-Gordon Model

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Arley, N.; Christiansen, Peter Leth

    1983-01-01

    Chaotic intermittency between soliton dynamic states has been found in a perturbed sine-Gordon system in the absence of an external ac driving term. The system is a model of a long Josephson oscillator with constant loss and bias current in an external magnetic field. The results predict the exis......Chaotic intermittency between soliton dynamic states has been found in a perturbed sine-Gordon system in the absence of an external ac driving term. The system is a model of a long Josephson oscillator with constant loss and bias current in an external magnetic field. The results predict...

  18. Metabolic Effects of Intermittent Fasting.

    Science.gov (United States)

    Patterson, Ruth E; Sears, Dorothy D

    2017-08-21

    The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.

  19. Fate in intermittent claudication

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Gaardsting, O; Hougaard Jensen, K

    1986-01-01

    , or an ankle/arm pressure index below 50% were individually significantly associated with progression of the arteriosclerotic disease. These findings show the importance of peripheral blood pressure measurements in the management of patients with intermittent claudication due to arteriosclerotic disease........ The rate of clinical progression of the arteriosclerotic disease (that is, rest pain or gangrene) of the worst affected leg was 7.5% in the first year after referral. Thereafter the rate was 2.2% a year. An ankle systolic blood pressure below 70 mm Hg, a toe systolic blood pressure below 40 mm Hg...... 113 of the patients (44%) had died. Causes of death were no different from those in the general population. Mortality was twice that of the general population matched for age and sex. Mortality among the men was twice that among the women. In men under 60 mortality was four times that expected...

  20. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow dif...

  1. The BUMP model of response planning: intermittent predictive control accounts for 10 Hz physiological tremor.

    Science.gov (United States)

    Bye, Robin T; Neilson, Peter D

    2010-10-01

    Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-21

    We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

  3. Naftidrofuryl for intermittent claudication.

    Science.gov (United States)

    De Backer, T L M; Vander Stichele, R; Lehert, P; Van Bortel, L

    2008-04-16

    Lifestyle changes and cardiovascular prevention measures are a primary treatment for intermittent claudication (IC). Symptomatic treatment with vasoactive agents (Anatomic Therapeutic Chemical Classification (ATC) for medicines from the World Health Organisation class CO4A) is controversial. To evaluate evidence on the efficacy and safety of oral naftidrofuryl (ATC CO4 21) versus placebo on the pain-free walking distance (PFWD) of people with IC by using a meta-analysis based on individual patient data (IPD). The Cochrane Peripheral Vascular Diseases Group searched their Trials Register (last searched December 2007) and CENTRAL (last searched 2007, Issue 4). We searched MEDLINE, EMBASE, International Pharmaceutical Abstracts, the Science Citation Index and contacted the authors and checked the reference lists of retrieved articles. We asked the manufacturing company for IPD. We included only randomized controlled trials (RCTs) with low or moderate risk of bias for which the IPD were available. We collected data from the electronic data file or from the case report form and checked the data by a statistical quality control procedure. All randomized patients were analyzed following the intention-to-treat (ITT) principle. The geometric mean of the relative improvement in PFWD was calculated for both treatment groups in all identified studies. The effect of the drug was assessed compared with placebo on final walking distance (WDf) using multilevel and random-effect models and adjusting for baseline walking distance (WD0). For the responder analysis, therapeutic success was defined as an improvement of walking distance of at least 50%. We included seven studies in the IPD (n = 1266 patients). One of these studies (n = 183) was only used in the sensitivity analysis so that the main analysis included 1083 patients. The ratio of the relative improvement in PFWD (naftidrofuryl compared with placebo) was 1.37 (95% confidence interval (CI) 1.32 to 1.51, P < 0.001). The

  4. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  5. Intermedia and Intermittency

    Directory of Open Access Journals (Sweden)

    Veres Bálint

    2014-12-01

    Full Text Available It is commonly known that medial reflections have been initiated by attempts to secure the borders of discrete medial forms and to define the modus operandi of each essentialized medial area. Later on, the focus of study has shifted to plurimedial formations and the interactions between predefined medial genres. In the last few decades, taxonomic approaches to various multi-, inter-, and transmedial phenomena dominated the discussions, which offered invaluable support in mapping the terrain, but at the same time hindered the analysis of the ephemeral, time-dependent aspects of plurimedial operations. While we explore the properties of each medial configuration, we lose sight of the actual historical drivers that produce ever-new configurations. My thesis is that any discourse on intermediality should be paralleled by a discourse on cultural intermittency, and consequently, media studies should involve an approach that focuses on the “ecosystem” of the constantly renewing media configurations from the point of view of their vitalizing potential and capability to trigger heightened experiences. This approach draws much inspiration from K. Ludwig Pfeiffer’s media anthropology that gives orientation in my paper.

  6. Intermittent dynamics of nonlinear resistive tearing modes at extremely high magnetic Reynolds number

    International Nuclear Information System (INIS)

    Miyoshi, Takahiro; Becchaku, Masahiro; Kusano, Kanya

    2008-01-01

    Nonlinear dynamics of the resistive tearing instability in high magnetic Reynolds number (R m ) plasmas is studied by newly developing an accurate and robust resistive magnetohydrodynamic (MHD) scheme. The results show that reconnection processes strongly depend on R m . Particularly, in a high R m case, small-scale plasmoids induced by a secondary instability are intermittently generated and ejected accompanied by fast shocks. According to the intermittent processes, the reconnection rate increases intermittently at a later nonlinear stage. (author)

  7. Chronic Intermittent Hypoxia Induces Atherosclerosis

    OpenAIRE

    Savransky, Vladimir; Nanayakkara, Ashika; Li, Jianguo; Bevans, Shannon; Smith, Philip L.; Rodriguez, Annabelle; Polotsky, Vsevolod Y.

    2007-01-01

    Rationale: Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established.

  8. Dynamic characterizers of spatiotemporal intermittency

    OpenAIRE

    Gupte, Neelima; Jabeen, Zahera

    2006-01-01

    Systems of coupled sine circle maps show regimes of spatiotemporally intermittent behaviour with associated scaling exponents which belong to the DP class, as well as regimes of spatially intermittent behaviour (with associated regular dynamical behaviour) which do not belong to the DP class. Both types of behaviour are seen along the bifurcation boundaries of the synchronized solutions, and contribute distinct signatures to the dynamical characterizers of the system, viz. the distribution of...

  9. Small-world networks exhibit pronounced intermittent synchronization

    Science.gov (United States)

    Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen

    2017-11-01

    We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.

  10. Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas

    DEFF Research Database (Denmark)

    Makarov, Yuri V.; Yang, Bo; DeSteese, John G.

    2009-01-01

    This paper addresses the issue of mitigating additional intermittency and fast ramps that are expected to occur at high penetration levels of intermittent resources, including wind generation resources, in the Bonneville Power Administration (BPA) and the California Independent System Operator...

  11. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    Numerical fluid simulations of interchange turbulence for geometry and parameters relevant to the boundary region of magnetically confined plasmas are shown to result in intermittent transport qualitatively similar to recent experimental measurements. The two-dimensional simulation domain features...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...... fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...

  12. Electro-generating renewable energies: which potential by 2025/2030? The Ademe's scenario: is its treatment of the electric mix credible for the treatment of the intermittency of renewable energies, is its cost acceptable, are its consumption predictions realistic?

    International Nuclear Information System (INIS)

    Flocard, Hubert; Nifenecker, Herve; Perves, Jean Pierre

    2012-01-01

    This document proposes a critical point of view on the scenario developed by the ADEME on the potential of electricity production by renewable energies by 2025/2030. According to this scenario, nuclear power is divided by two and the fleet of intermittent renewable energies (wind and photovoltaic) is multiplied by seven. This report assesses the investments costs associated with this intermittent fleet and with a necessary adaptation of the high voltage and distribution grids. It also outlines that massive imports of energy could be necessary when the production of these renewable sources is at its low point. It notices that stopping half of the nuclear fleet will entail a loss of revenues which will not take benefit of a reduction of greenhouse gas

  13. Intermittency in 197Au fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Holynski, R.; Olszewski, A.; Szarska, M.; Wilczynska, B.; Wolter, W.; Wosiek, B.; Cherry, M.L.; Deines-Jones, P.; Jones, W.V.; Sengupta, K.; Wefel, B.

    1995-07-01

    The concept of factorial moments was applied to an analysis of the dynamical fluctuations in the charge distributions of the fragments emitted from gold nuclei with energies 10.6 and < 1.0 GeV/n interacting with emulsion nuclei. Clear evidence for intermittent fluctuations has been found in an analysis using all the particles released from the gold projectile, with a stronger effect observed below 1 GeV/n than at 10.6 GeV/n. For the full data sets, however, the intermittency effect was found to be very sensitive to the singly charged particles, and neglecting these particles strongly reduces the intermittency signal. When the analysis is restricted to the multiply charged fragments, an intermittency effect is revealed only for multifragmentation events, although one that is enhanced as compared to the analysis of all, singly and multiply charged, particles. The properties of the anomalous fractal dimensions suggest a sequential decay mechanism, rather than the existence of possible critical behaviour in the process of nuclear fragmentation. The likely influence of the charge conservation effects and the finite size of decaying systems on the observed intermittency signals was pointed out. (author). 37 refs, 9 figs, 5 tabs

  14. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Tobalske, Bret W

    2010-01-01

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  15. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  16. Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs, Static Var Compensator (SVC and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs in Multimachine Power Systems

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2017-04-01

    Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.

  17. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  18. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  19. Fast imaging of intermittent electrospraying of water with positive corona discharge

    International Nuclear Information System (INIS)

    Pongrác, B; Janda, M; Martišovitš, V; Machala, Z; Kim, H H

    2014-01-01

    The effect of the electrospraying of water in combination with a positive direct current (dc) streamer corona discharge generated in air was investigated in this paper. We employed high-speed camera visualizations and oscilloscopic discharge current measurements in combination with an intensified charge-coupled device camera for fast time-resolved imaging. The repetitive process of Taylor cone formation and droplet formation from the mass fragments of water during the electrospray was visualized. Depending on the applied voltage, the following intermittent modes of electrospraying typical for water were observed: dripping mode, spindle mode, and oscillating-spindle mode. The observed electrospraying modes were repetitive with a frequency of a few hundreds of Hz, as measured from the fast image sequences. This frequency agreed well with the frequency of the measured streamer current pulses. The presence of filamentary streamer discharges at relatively low voltages probably prevented the establishment of a continuous electrospray in the cone–jet mode. After each streamer, a positive glow corona discharge was established on the water filament tip, and it propagated from the stressed electrode along with the water filament elongation. The results show a reciprocal character of intermittent electrospraying of water, and the presence of corona discharge, where both the electrospray and the discharge affect each other. The generation of a corona discharge from the water cone depended on the repetitive process of the cone formation. Also, the propagation and curvature of the water filament were influenced by the discharge and its resultant space charge. Furthermore, these phenomena were partially influenced by the water conductivity. (paper)

  20. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  1. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  2. Characterization of intermittency in zooplankton behaviour in turbulence.

    Science.gov (United States)

    Michalec, François-Gaël; Schmitt, François G; Souissi, Sami; Holzner, Markus

    2015-10-01

    We consider Lagrangian velocity differences of zooplankters swimming in still water and in turbulence. Using cumulants, we quantify the intermittency properties of their motion recorded using three-dimensional particle tracking velocimetry. Copepods swimming in still water display an intermittent behaviour characterized by a high probability of small velocity increments, and by stretched exponential tails. Low values arise from their steady cruising behaviour while heavy tails result from frequent relocation jumps. In turbulence, we show that at short time scales, the intermittency signature of active copepods clearly differs from that of the underlying flow, and reflects the frequent relocation jumps displayed by these small animals. Despite these differences, we show that copepods swimming in still and turbulent flow belong to the same intermittency class that can be modelled by a log-stable model with non-analytical cumulant generating function. Intermittency in swimming behaviour and relocation jumps may enable copepods to display oriented, collective motion under strong hydrodynamic conditions and thus, may contribute to the formation of zooplankton patches in energetic environments.

  3. Discrete repulsive oscillator wavefunctions

    International Nuclear Information System (INIS)

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  4. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  5. Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach

    Directory of Open Access Journals (Sweden)

    Carlo Lucheroni

    2018-03-01

    Full Text Available We propose a system level approach to value the impact on costs of the integration of intermittent renewable generation in a power system, based on expected breakeven cost and breakeven cost risk. To do this, we carefully reconsider the definition of Levelized Cost of Electricity (LCOE when extended to non-dispatchable generation, by examining extra costs and gains originated by the costly management of random power injections. We are thus lead to define a ‘system LCOE’ as a system dependent LCOE that takes properly into account intermittent generation. In order to include breakeven cost risk we further extend this deterministic approach to a stochastic setting, by introducing a ‘stochastic system LCOE’. This extension allows us to discuss the optimal integration of intermittent renewables from a broad, system level point of view. This paper thus aims to provide power producers and policy makers with a new methodological scheme, still based on the LCOE but which updates this valuation technique to current energy system configurations characterized by a large share of non-dispatchable production. Quantifying and optimizing the impact of intermittent renewables integration on power system costs, risk and CO 2 emissions, the proposed methodology can be used as powerful tool of analysis for assessing environmental and energy policies.

  6. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  7. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  8. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  9. External vortex pumping by oscillating plate arrays of mayfly nymphs

    Science.gov (United States)

    Sensenig, Andrew; Kiger, Ken; Shultz, Jeffrey

    2009-11-01

    Mayfly nymphs are aquatic insects, many of which can generate ventilation currents by beating two linear arrays of external plate-like gills. The oscillation Reynolds number associated with the gill motion changes with animal size, varying from Re ˜ 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontogenetic changes in pumping mechanisms associated with transitions from a more viscous- to inertia-dominated flow. Observation of the 3-D kinematics of the gill motion of the species C. triangulifer reveal that the mayfly makes a transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Time-resolved PIV measurements within the inter-gill space reveal the basic elements of the flow consist of vortex rings generated by the strokes of the individual gills. For the larger Re case, the phasing of the plate motion generates a complex array of small vortices that interact to produce an intermittent dorsally directed jet. For Restroke kinematics. Thus we argue the transition in the kinematics is a reflection of a single mechanism adapted over the traversed Re range, rather than a shift to a completely new mechanism. This work is supported by the NSF under grant CBET-0730907.

  10. Memristor-based relaxation oscillators using digital gates

    KAUST Repository

    Khatib, Moustafa A.

    2012-11-01

    This paper presents two memristor-based relaxation oscillators. The proposed oscillators are designed without the need of any reactive elements, i.e., capacitor or inductor. As the \\'resistance storage\\' property of the memristor can be exploited to generate the oscillation. The proposed oscillators have the advantage that they can be fully integrated on-chip giving an area-efficient solution. Furthermore, these oscillators give higher frequency other than the existing reactance-less oscillator and provide a wider range of the resistance. The concept of operation and the mathematical analysis for the proposed oscillators are explained and verified with circuit simulations showing an excellent agreement. © 2012 IEEE.

  11. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  12. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  13. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  14. Synchronization of mobile chaotic oscillator networks

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp [Center for Spatial Information Science, The University of Tokyo, 277-8568 Chiba (Japan); Kurths, Jürgen [Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany and Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen (United Kingdom); Díaz-Guilera, Albert [Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  15. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  16. Synchronization of mobile chaotic oscillator networks.

    Science.gov (United States)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  17. Quasioptical Josephson oscillator

    International Nuclear Information System (INIS)

    Wengler, M.J.; Pance, A.; Liu, B.

    1991-01-01

    This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer

  18. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    International Nuclear Information System (INIS)

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.; Pietropaolo, E.

    2014-01-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  19. Nonlinearity, Viscosity and Air-Compressibility Effects on the Helmholtz Resonant Wave Motion Generated by an Oscillating Twin Body in a Free Surface

    Science.gov (United States)

    Ananthakrishnan, Palaniswamy

    2012-11-01

    The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.

  20. Discontinuous Spirals of Stable Periodic Oscillations

    DEFF Research Database (Denmark)

    Sack, Achim; Freire, Joana G.; Lindberg, Erik

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...

  1. Neutrino Oscillations

    Indian Academy of Sciences (India)

    work of Takaaki Kajita and Arthur B McDonald clearly demon- strated the ... time belief that neutrinos are massless particles. .... SK is a second generation, 50,000 t wa- ..... values of the parameters of the PMNS matrix based on a global .... [13] Y Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino.

  2. Generation of continuously tunable, 5-12 {mu}m radiation by difference frequency mixing of output waves of a KTP optical parametric oscillator in a ZnGeP{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Haidar, S [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Miyamoto, K [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan); Ito, H [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 (Japan)

    2004-12-07

    Signal and idlers waves obtained from a Nd : YAG laser pumped KTP optical parametric oscillator (OPO) are difference frequency mixed in a ZnGeP{sub 2} (ZGP) crystal to generate radiation in the mid-infrared. The KTP OPO is operated in the type-II phase matching mode, and the extraordinary and ordinary waves are tunable from 1.76 {mu}m to 2.36 {mu}m and from 2.61 {mu}m to 1.90 {mu}m, respectively. The orthogonally polarized waves are difference frequency mixed in a ZGP crystal to generate mid-IR radiation tunable from 5 to 12 {mu}m.

  3. Biological oscillations: Fluorescence monitoring by confocal microscopy

    Science.gov (United States)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  4. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    Science.gov (United States)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  5. A family of memristor-based reactance-less oscillators

    KAUST Repository

    Zidan, Mohammed A.

    2013-05-03

    In this paper, we present for the first time a family of memristor-based reactance-less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented.

  6. A family of memristor-based reactance-less oscillators

    KAUST Repository

    Zidan, Mohammed A.; Omran, Hesham; Smith, Casey; Syed, Ahad; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2013-01-01

    In this paper, we present for the first time a family of memristor-based reactance-less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented.

  7. An intermittency route to global instability in low-density jets

    Science.gov (United States)

    Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

    2017-11-01

    Above a critical Reynolds number (Re), a low-density jet can become globally unstable, transitioning from a steady state (i.e. a fixed point) to a self-excited oscillatory state (i.e. a limit cycle) via a Hopf bifurcation. In this experimental study, we show that this transition can sometimes involve intermittency. When Re is just slightly above the critical point, intermittent bursts of high-amplitude periodic oscillations emerge amidst a background of low-amplitude aperiodic fluctuations. As Re increases further, these intermittent bursts persist longer in time until they dominate the overall dynamics, causing the jet to transition fully to a periodic limit cycle. We identify this as Type-II Pomeau-Manneville intermittency by quantifying the statistical distribution of the duration of the aperiodic fluctuations at the onset of intermittency. This study shows that the transition to global instability in low-density jets is not always abrupt but can involve an intermediate state with characteristics of both the initial fixed point and the final limit cycle. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  8. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    International Nuclear Information System (INIS)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock

  9. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    International Nuclear Information System (INIS)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-01-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical

  10. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  11. Stochastic Resonance in a System of Coupled Chaotic Oscillators

    International Nuclear Information System (INIS)

    Krawiecki, A.

    1999-01-01

    Noise-free stochastic resonance is investigated numerically in a system of two coupled chaotic Roessler oscillators. Periodic signal is applied either additively or multiplicatively to the coupling term. When the coupling constant is varied the oscillators lose synchronization via attractor bubbling or on-off intermittency. Properly chosen signals are analyzed which reflect the sequence of synchronized (laminar) phases and non-synchronized bursts in the time evolution of the oscillators. Maximum of the signal-to-noise ratio as a function of the coupling constant is observed. Dependence of the signal-to-noise ratio on the frequency of the periodic signal and parameter mismatch between the oscillators is investigated. Possible applications of stochastic resonance in the recovery of signals in secure communication systems based on chaotic synchronization are briefly discussed. (author)

  12. Neutrino oscillations at proton accelerators

    International Nuclear Information System (INIS)

    Michael, Douglas

    2002-01-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments

  13. Neutrino Oscillations at Proton Accelerators

    Science.gov (United States)

    Michael, Douglas

    2002-12-01

    Data from many different experiments have started to build a first glimpse of the phenomenology associated with neutrino oscillations. Results on atmospheric and solar neutrinos are particularly clear while a third result from LSND suggests a possibly very complex oscillation phenomenology. As impressive as the results from current experiments are, it is clear that we are just getting started on a long-term experimental program to understand neutrino masses, mixings and the physics which produce them. A number of exciting fundamental physics possibilities exist, including that neutrino oscillations could demonstrate CP or CPT violation and could be tied to exotic high-energy phenomena including strings and extra dimensions. A complete exploration of oscillation phenomena demands many experiments, including those possible using neutrino beams produced at high energy proton accelerators. Most existing neutrino experiments are statistics limited even though they use gigantic detectors. High intensity proton beams are essential for producing the intense neutrino beams which we need for next generation neutrino oscillation experiments.

  14. The Yo-Yo intermittent recovery test

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Iaia, F. Marcello; Krustrup, Peter

    2008-01-01

    The two Yo-Yo intermittent recovery (IR) tests evaluate an individual's ability to repeatedly perform intense exercise. The Yo-Yo IR level 1 (Yo-Yo IR1) test focuses on the capacity to carry out intermittent exercise leading to a maximal activation of the aerobic system, whereas Yo-Yo IR level 2...

  15. Intermittent behavior of the logistic system

    Science.gov (United States)

    Mayer-Kress, G.; Haken, H.

    1981-03-01

    In the discrete logistic model a transition to chaotic behavior via intermittency occurs in a neighborhood of periodic bands. Intermittent behavior is also induced if a stable periodic orbit is perturbed by low-level external noise, whereas alterations due to computer digitalisation produce remarkable periodicities. We compare our numerical results with the predictions of Pomeau and Manneville for the Lorenz system.

  16. Generating matrix elements of the hamiltonian of the algebraic version of resonating group method on intrinsic wave functions with various oscillator lengths

    International Nuclear Information System (INIS)

    Badalov, S.A.; Filippov, G.F.

    1986-01-01

    The receipts to calculate the generating matrix elements of the algebraic version of resonating group method (RGM) are given for two- and three-cluster nucleon systems, the center of mass motion being separeted exactly. For the Hamiltonian with Gaussian nucleon-nucleon potential dependence the generating matrix elements of the RGM algebraic version can be written down explictly if matrix elements of the corresponding system on wave functions of the Brink cluster model are known

  17. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  18. ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.

    2014-01-01

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas

  19. Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Edrees, Fahad; Li, Tingting; Vijayan, Anitha

    2016-05-01

    Prolonged intermittent renal replacement therapy (PIRRT) is becoming an increasingly popular alternative to continuous renal replacement therapy in critically ill patients with acute kidney injury. There are significant practice variations in the provision of PIRRT across institutions, with respect to prescription, technology, and delivery of therapy. Clinical trials have generally demonstrated that PIRRT is non-inferior to continuous renal replacement therapy regarding patient outcomes. PIRRT offers cost-effective renal replacement therapy along with other advantages such as early patient mobilization and decreased nursing time. However, due to lack of standardization of the procedure, PIRRT still poses significant challenges, especially pertaining to appropriate drug dosing. Future guidelines and clinical trials should work toward developing consensus definitions for PIRRT and ensure optimal delivery of therapy. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Damping of Coherent oscillations

    CERN Document Server

    Vos, L

    1996-01-01

    Damping of coherent oscillations by feedback is straightforward in principle. It has been a vital ingredient for the safe operation of accelerators since a long time. The increasing dimensions and beam intensities of the new generation of hadron colliders impose unprecedented demands on the performance of future systems. The arguments leading to the specification of a transverse feedback system for the CERN SPS in its role as LHC injector and the LHC collider itself are developped to illustrate this. The preservation of the transverse emittance is the guiding principle during this exercise keeping in mind the hostile environment which comprises: transverse impedance bent on developping coupled bunch instabilities, injection errors, unwanted transverse excitation, unavoidable tune spreads and noise in the damping loop.

  1. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  2. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  3. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  4. Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77Gbits/s

    KAUST Repository

    Mansingka, Abhinav S.

    2014-06-18

    This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.

  5. Intermittent cranial lung herniation in two dogs.

    Science.gov (United States)

    Guglielmini, Carlo; De Simone, Antonio; Valbonetti, Luca; Diana, Alessia

    2007-01-01

    Two aged dogs with chronic obstructive airway disease were evaluated because of intermittent swelling of the ventral cervical region. Radiographs made at expiration and caudal positioning of the forelimbs allowed identification of intermittent cervical lung herniation of the left and right cranial lung lobe in both dogs. Pulmonary hyperinflation, increased expiratory effort, and chronic coughing were considered responsible for the lung herniation. Cervical lung hernia should be included in the differential diagnoses of intermittent cervical swelling in dogs with chronic respiratory disorders associated with increased expiratory effort and chronic coughing.

  6. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Marković, B. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Mirković, J. [Faculty of Science, University of Montenegro, and CETI, Put Radomira Ivanovica, 81000 Podgorica (Montenegro); Klemm, R. A. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816-2385 (United States)

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  7. Magnetic intermittency of solar wind turbulence in the dissipation range

    Science.gov (United States)

    Pei, Zhongtian; He, Jiansen; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua

    2016-04-01

    The feature, nature, and fate of intermittency in the dissipation range are an interesting topic in the solar wind turbulence. We calculate the distribution of flatness for the magnetic field fluctuations as a functionof angle and scale. The flatness distribution shows a "butterfly" pattern, with two wings located at angles parallel/anti-parallel to local mean magnetic field direction and main body located at angles perpendicular to local B0. This "butterfly" pattern illustrates that the flatness profile in (anti-) parallel direction approaches to the maximum value at larger scale and drops faster than that in perpendicular direction. The contours for probability distribution functions at different scales illustrate a "vase" pattern, more clear in parallel direction, which confirms the scale-variation of flatness and indicates the intermittency generation and dissipation. The angular distribution of structure function in the dissipation range shows an anisotropic pattern. The quasi-mono-fractal scaling of structure function in the dissipation range is also illustrated and investigated with the mathematical model for inhomogeneous cascading (extended p-model). Different from the inertial range, the extended p-model for the dissipation range results in approximate uniform fragmentation measure. However, more complete mathematicaland physical model involving both non-uniform cascading and dissipation is needed. The nature of intermittency may be strong structures or large amplitude fluctuations, which may be tested with magnetic helicity. In one case study, we find the heating effect in terms of entropy for large amplitude fluctuations seems to be more obvious than strong structures.

  8. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  9. Social Smoking among Intermittent Smokers

    Science.gov (United States)

    Shiffman, Saul; Li, Xiaoxue; Dunbar, Michael S.; Ferguson, Stuart G.; Tindle, Hilary A.; Scholl, Sarah M.

    2015-01-01

    Background “Social smoking” - smoking mostly or even only with others – may be an important pattern that implies smoking motivated extrinsically by social influences. Non-daily smokers (intermittent smokers; ITS) are often assumed to be social smokers, with some authors even assuming that all ITS are social smokers (SS+). We sought to identify and characterize social smokers in a sample of ITS. Methods 204 adult ITS (smoking 4–27 days/month) recorded the circumstances of smoking in their natural settings using Ecological Momentary Assessment, while also recording their circumstances in nonsmoking moments. SS+ were defined as ITS who were with others when they smoked most of their cigarettes, and who were ≥ 50% more likely to be with others when smoking than when not. Results Only 13% of ITS were SS+. Although defined solely on the basis of presence of others, SS+ showed a distinct pattern of smoking across multiple dimensions: Compared to other ITS (who were significantly less likely to smoke when with others), SS+ smoking was more associated with socializing, being with friends and acquaintances, drinking alcohol, weekends, evening or nighttime, being in other people’s homes, but not their own home. SS+ smoking was low in the morning and increased in the evening. SS+ smoked fewer days/week and were less dependent, but did not differ demographically. Conclusions Social smoking does constitute a highly distinct smoking pattern, but is not common among adult ITS. PMID:26205313

  10. Intermittent ileocoecal intususception in adult

    International Nuclear Information System (INIS)

    Cambal, M.; Zonca, P.; Maly, T.

    2013-01-01

    Aim: Aim of our paper is to present a case-report of chronic invagination in adult patient. Material: 28-years old woman with one year history of intermittent abdominal pain with symptoms of subileus state. She has underwent abdominal ultrasonography, abdominal X-ray, colonoscopy, irigography and abdominal CT. Appendectomy indicated for diagnosis of chronic appendicitis did not improve symptoms. Consecutively during acute problems were irigography and CT performed and diagnosis of an incomplete colon transversum obstruction of uncertain origin was established. There was stated suspicion of an intususception and patient was due to a repeated gastrointestinal passage indicated for an explorative laparotomy. During operation there was identified threefold invagination – colo-colonic, ileo-colonic and ileo-ileal. As a leading point of invagination was found in terminal ileum intraluminal polypous tumor 5 cm in diameter. Because of the secondary chronic changes of right colon wall and terminal ileum wall, after partial desinvagination right hemicolectomy was performed. Results: Patient was primary healed and now is without any subjective problems. Conclusion: Invagination is an acute abdominal event of obturative-strangulative type and it mainly occurs in infantile age. It is astonishing how long were patient´s difficulties lasting without obvious acute ileus. It is necessary in clinical practice to think on these rare reasons of gastrointestinal passage disorders. (author)

  11. White adipose tissue coloring by intermittent fasting.

    Science.gov (United States)

    Kivelä, Riikka; Alitalo, Kari

    2017-11-01

    Intermittent fasting (IF) has been shown to promote metabolic health in several organisms. Two recent papers show that IF induces white adipose tissue beiging and increases thermogenesis, which improves metabolic health in mice.

  12. On-line intermittent connector anomaly detection

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper investigates a non-traditional use of differential current sensor and current sensor to detect intermittent disconnection problems in connectors. An...

  13. Feigenbaum attractor and intermittency in particle collisions

    International Nuclear Information System (INIS)

    Batunin, A.V.

    1992-01-01

    The hypothesis is proposed that the Feigenbaum attractor arising as a limit set in an infinite pichfork bifurcation sequence for unimodal one-dimensional maps underlies the intermittency phenomena in particle collisions. 23 refs.; 8 figs

  14. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  15. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  16. Characterization of wind power resource and its intermittency

    Science.gov (United States)

    Gunturu, U. B.; Schlosser, C. A.

    2011-12-01

    Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for

  17. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  19. Self-sustained oscillations of complex genomic regulatory networks

    International Nuclear Information System (INIS)

    Ye Weiming; Huang Xiaodong; Huang Xuhui; Li Pengfei; Xia Qinzhi; Hu Gang

    2010-01-01

    Recently, self-sustained oscillations in complex networks consisting of non-oscillatory nodes have attracted great interest in diverse natural and social fields. Oscillatory genomic regulatory networks are one of the most typical examples of this kind. Given an oscillatory genomic network, it is important to reveal the central structure generating the oscillation. However, if the network consists of large numbers of genes and interactions, the oscillation generator is deeply hidden in the complicated interactions. We apply the dominant phase-advanced driving path method proposed in Qian et al. (2010) to reduce complex genomic regulatory networks to one-dimensional and unidirectionally linked network graphs where negative regulatory loops are explored to play as the central generators of the oscillations, and oscillation propagation pathways in the complex networks are clearly shown by tree branches radiating from the loops. Based on the above understanding we can control oscillations of genomic networks with high efficiency.

  20. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  1. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  2. Superconducting low-noise oscillator

    International Nuclear Information System (INIS)

    Riebman, L.

    1992-01-01

    This patent describes a cryogenic oscillator having low phase noise and low noise. It comprises resonant circuit means formed of superconducting material for generating a signal at a desired frequency; linear amplifier means electrically connected to the resonant circuit means at first and second locations thereon; limiter means electrically connected to the resonant circuit means at a third location thereon; and buffer amplifier means for applying the signal generated by the resonant circuit means to a load and electrically connected to the resonant circuit means at a fourth location thereon. This patent also describes a method of minimizing phase noise and 1/f noise in an oscillator circuit of the type having a resonant circuit driving a load and at least a linear amplifier connected to the resonant circuit defining a closed loop having a loop gain greater than unity, and having a limiter for stabilizing the oscillator. It comprises connecting between the resonant circuit and the load a buffer amplifier and connecting the linear amplifier and the buffer amplifier to the resonant circuit

  3. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  4. Google matrix and Ulam networks of intermittency maps.

    Science.gov (United States)

    Ermann, L; Shepelyansky, D L

    2010-03-01

    We study the properties of the Google matrix of an Ulam network generated by intermittency maps. This network is created by the Ulam method which gives a matrix approximant for the Perron-Frobenius operator of dynamical map. The spectral properties of eigenvalues and eigenvectors of this matrix are analyzed. We show that the PageRank of the system is characterized by a power law decay with the exponent beta dependent on map parameters and the Google damping factor alpha . Under certain conditions the PageRank is completely delocalized so that the Google search in such a situation becomes inefficient.

  5. Dynamic droop scheme considering effect of intermittent renewable energy source

    DEFF Research Database (Denmark)

    Wang, Yanbo; Chen, Zhe; Deng, Fujin

    2016-01-01

    This paper presents a dynamic droop control scheme for islanded microgrids dominated by intermittent renewable energy sources, which is able to perform desirable power sharing in the presence of renewable energy source fluctuation. First, allowable maximum power points of wind generator and PV...... flexibility and effectiveness in the presence of the renewable energy sources fluctuation....... controller of each DG unit is activated through local logic variable inferred by wind speed and solar insolation information. Simulation results are given for validating the droop control scheme. The proposed dynamic droop scheme preserves the advantage of conventional droop control method, and provides...

  6. Fluctuation relations with intermittent non-Gaussian variables.

    Science.gov (United States)

    Budini, Adrián A

    2011-12-01

    Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.

  7. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  8. The issue of mass generation: the search for the Higgs boson in the D0 experiment at the proton-antiproton collider of Fermilab and the measurement of neutrino oscillation with OPERA

    International Nuclear Information System (INIS)

    Lucotte, A.

    2004-09-01

    The first part is dedicated to the theoretical aspects of the mechanism of mass generation in the standard model. The implications of this mechanism in the experimental field concerning the Higgs boson search and neutrinos are detailed. The second part presents the D0 experiment at the Tevatron (Fermilab) and describes in a detailed way the forward pre-shower (FPS) that is a sub-detector of D0 whose aim is to identify the electrons. FPS has required a specific triggering system linked to a data acquisition line. The third part is devoted to the Opera experiment that is planned to operate in 2006. The purpose of this experiment is to confirm the oscillations of muon neutrinos and tau neutrinos through the direct detection of a tau lepton in the pure beam of muon neutrinos produced in CERN. The author describes his contribution to the design and testing of the front-end read electronics of the Opera scintillator tracker. (A.C.)

  9. Intermittent ephemeral river-breaching

    Science.gov (United States)

    Reniers, A. J.; MacMahan, J. H.; Gallagher, E. L.; Shanks, A.; Morgan, S.; Jarvis, M.; Thornton, E. B.; Brown, J.; Fujimura, A.

    2012-12-01

    In the summer of 2011 we performed a field experiment in Carmel River State Beach, CA, at a time when the intermittent natural breaching of the ephemeral Carmel River occurred due to an unusually rainy period prior to the experiment associated with El Nino. At this time the river would fill the lagoon over the period of a number of days after which a breach would occur. This allowed us to document a number of breaches with unique pre- and post-breach topographic surveys, accompanying ocean and lagoon water elevations as well as extremely high flow (4m/s) velocities in the river mouth during the breaching event. The topographic surveys were obtained with a GPS-equipped backpack mounted on a walking human and show the evolution of the river breaching with a gradually widening and deepening river channel that cuts through the pre-existing beach and berm. The beach face is qualified as a steep with an average beach slope of 1:10 with significant reflection of the incident waves (MacMahan et al., 2012). The wave directions are generally shore normal as the waves refract over the deep canyon that is located offshore of the beach. The tide is mixed semi-diurnal with a range on the order of one meter. Breaching typically occurred during the low-low tide. Grain size is highly variable along the beach with layers of alternating fine and coarse material that could clearly be observed as the river exit channel was cutting through the beach. Large rocky outcroppings buried under the beach sand are also present along certain stretches of the beach controlling the depth of the breaching channel. The changes in the water level measured within the lagoon and the ocean side allows for an estimate of the volume flux associated with the breach as function of morphology, tidal elevation and wave conditions as well as an assessment of the conditions and mechanisms of breach closure, which occurred on the time scale of O(0.5 days). Exploratory model simulations will be presented at the

  10. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  11. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  12. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)

    2011-09-19

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.

  13. Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway.

    Science.gov (United States)

    Worth, J R P; Holland, B R; Beeton, N J; Schönfeld, B; Rossetto, M; Vaillancourt, R E; Jordan, G J

    2017-10-17

    Investigating species distributions across geographic barriers is a commonly utilized method in biogeography to help understand the functional traits that allow plants to disperse successfully. Here the biogeographic pattern analysis approach is extended by using chloroplast DNA whole-genome 'mining' to examine the functional traits that have impacted the dispersal of widespread temperate forest species across an intermittent seaway, the 200 km wide Bass Strait of south-eastern Australia. Multiple, co-distributed species of both dry and wet forests were sampled from five regions on either side of the Strait to obtain insights into past dispersal of these biomes via seed. Using a next-generation sequencing-based pool-seq method, the sharing of single nucleotide polymorphisms (SNPs) was estimated between all five regions in the chloroplast genome. A total of 3335 SNPs were detected in 20 species. SNP sharing patterns between regions provided evidence for significant seed-mediated gene flow across the study area, including across Bass Strait. A higher proportion of shared SNPs in dry forest species, especially those dispersed by birds, compared with wet forest species suggests that dry forest species have undergone greater seed-mediated gene flow across the study region during past climatic oscillations and sea level changes associated with the interglacial/glacial cycles. This finding is consistent with a greater propensity for long-distance dispersal for species of open habitats and proxy evidence that expansive areas of dry vegetation occurred during times of exposure of Bass Strait during glacials. Overall, this study provides novel genetic evidence that habitat type and its interaction with dispersal traits are major influences on dispersal of plants. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  15. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...... actions. The phenomenon is illustrated, and calculations of the small change of the adiabatic invariant is outlined....

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  17. Coherent Structures and Intermittency in Plasma Turbulence

    International Nuclear Information System (INIS)

    Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2008-01-01

    The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.

  18. Intermittency in {sup 197}Au fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowska, A; Holynski, R; Olszewski, A; Szarska, M; Wilczynska, B; Wolter, W; Wosiek, B [Institute of Nuclear Physics, Cracow (Poland); Cherry, M L; Deines-Jones, P; Jones, W V; Sengupta, K; Wefel, B [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy; Waddington, C J [Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy; Pozharova, E A; Skorodko, T Yu [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); KLMM Collaboration

    1995-07-01

    The concept of factorial moments was applied to an analysis of the dynamical fluctuations in the charge distributions of the fragments emitted from gold nuclei with energies 10.6 and < 1.0 GeV/n interacting with emulsion nuclei. Clear evidence for intermittent fluctuations has been found in an analysis using all the particles released from the gold projectile, with a stronger effect observed below 1 GeV/n than at 10.6 GeV/n. For the full data sets, however, the intermittency effect was found to be very sensitive to the singly charged particles, and neglecting these particles strongly reduces the intermittency signal. When the analysis is restricted to the multiply charged fragments, an intermittency effect is revealed only for multifragmentation events, although one that is enhanced as compared to the analysis of all, singly and multiply charged, particles. The properties of the anomalous fractal dimensions suggest a sequential decay mechanism, rather than the existence of possible critical behaviour in the process of nuclear fragmentation. The likely influence of the charge conservation effects and the finite size of decaying systems on the observed intermittency signals was pointed out. (author). 37 refs, 9 figs, 5 tabs.

  19. Bursting and large-scale intermittency in turbulent convection with differential rotation

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.

    2003-01-01

    The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior...

  20. Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled

    NARCIS (Netherlands)

    Brouwer, Anne Sjoerd; Van Den Broek, Machteld; Seebregts, Ad; Faaij, André

    The electricity sector in OECD countries is on the brink of a large shift towards low-carbon electricity generation. Power systems after 2030 may consist largely of two low-carbon generator types: Intermittent Renewable Energy Sources (IRES) such as wind and solar PV and thermal generators such as

  1. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  2. Chaos synchronization based on intermittent state observer

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui; Zhou Shi-Ping; Xu De-Ming

    2004-01-01

    This paper describes the method of synchronizing slave to the master trajectory using an intermittent state observer by constructing a synchronizer which drives the response system globally tracing the driving system asymptotically. It has been shown from the theory of synchronization error-analysis that a satisfactory result of chaos synchronization is expected under an appropriate intermittent period and state observer. Compared with continuous control method,the proposed intermittent method can target the desired orbit more efficiently. The application of the method is demonstrated on the hyperchaotic Rossler systems. Numerical simulations show that the length of the synchronization interval rs is of crucial importance for our scheme, and the method is robust with respect to parameter mismatch.

  3. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  4. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  5. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  6. Shape of power spectrum of intermittent chaos

    International Nuclear Information System (INIS)

    So, B.C.; Mori, H.

    1984-01-01

    Power spectra of intermittent chaos are calculated analytically. It is found that the power spectrum near onset point consists of a large number of Lorentzian lines with two peaks around frequencies ω = 0 and ω = ω 0 , where ω 0 is a fundamental frequency of a periodic orbit before the onset point, and furthermore the envelope of lines around ω = 0 obeys the power law 1/ + ω +2 , whereas the envelope around ω 0 obeys 1/ + ω-ω 0 +4 . The universality of these power law dependence in a certain class of intermittent chaos are clarified from a phenomenological view point. (author)

  7. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  8. Observation of Quasichanneling Oscillations

    International Nuclear Information System (INIS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.

    2017-01-01

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  9. LSND neutrino oscillation results

    International Nuclear Information System (INIS)

    Louis, W.C.

    1996-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations, where a neutrino of one type (say bar ν μ ) spontaneously transforms into a neutrino of another type (say bar ν e ). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. In 1995 the LSND experiment published data showing candidate events that are consistent with bar ν μ oscillations. Additional data are reported here which provide stronger evidence for neutrino oscillations

  10. Neutrino Oscillation Physics

    International Nuclear Information System (INIS)

    Kayser, Boris

    2014-01-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures

  11. Neutrino Oscillation Physics

    Energy Technology Data Exchange (ETDEWEB)

    Kayser, Boris [Fermilab (United States)

    2014-07-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  12. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-01-01

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  13. Which factors make clean intermittent (self) catheterisation successful?

    NARCIS (Netherlands)

    Cobussen-Boekhorst, H.; Beekman, J.; Wijlick, E. van; Schaafstra, J.; Kuppevelt, D. van; Heesakkers, J.P.

    2016-01-01

    AIMS AND OBJECTIVES: To explore which factors determine successful intermittent catheterisation. BACKGROUND: Intermittent catheterisation is a safe, effective treatment and is associated with improved quality of life, although negative issues are reported. Factors which determine adherence are

  14. OSCILLATING FILAMENTS. I. OSCILLATION AND GEOMETRICAL FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas, E-mail: gritschm@usm.uni-muenchen.de [University Observatory Munich, LMU Munich, Scheinerstrasse 1, D-81679 Munich (Germany)

    2017-01-10

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  15. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    records in combination with theoretical models of ENSO. This fundamental result that shows the ENSO phenomenon has a stable tropical Pacific attractor with El Niño and La Niña phases, tropical and extratropical coupling and an intermittency or longer-term form of chaos. We call this attractor the Heartbeat of the Southern Oscillation as the phenomenon is measurable in the Southern Oscillation. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.

  16. Fractal structures and intermittency in QCD

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1990-04-01

    New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account

  17. Intermittent demand : Linking forecasting to inventory obsolescence

    NARCIS (Netherlands)

    Teunter, Ruud H.; Syntetos, Aris A.; Babai, M. Zied

    2011-01-01

    The standard method to forecast intermittent demand is that by Croston. This method is available in ERP-type solutions such as SAP and specialised forecasting software packages (e.g. Forecast Pro), and often applied in practice. It uses exponential smoothing to separately update the estimated demand

  18. Acute intermittent porphyria presenting as progressive muscular ...

    African Journals Online (AJOL)

    Acute intermittent porphyria, the most common porphyria affecting the nervous system, typically presents with neurovisceral crises followed by a motor neuropathy. We describe a 23-year-old black South African man presenting with a progressive stuttering, lower motor neuron syndrome developing over months. He had not ...

  19. Cooling tower modification for intermittent operation

    International Nuclear Information System (INIS)

    Midkiff, W.S.

    1975-03-01

    One of the cooling towers at Los Alamos Scientific Laboratory is being operated intermittently. The cooling tower has been modified to restrict air flow and to keep the tower from drying out. The modifications are relatively inexpensive, simple to operate, and have proved effective. (U.S.)

  20. Intermittent preventive treatment of malaria in pregnancy

    DEFF Research Database (Denmark)

    Mbonye, A.K.; Hansen, Kristian Schultz; Bygbjerg, Ib Christian

    2008-01-01

    The main objective of this study was to assess whether traditional birth attendants, drug-shop vendors, community reproductive health workers and adolescent peer mobilisers could administer intermittent preventive treatment (IPTp) with sulfadoxine-pyrimethamine (SP) to pregnant women. The study w...

  1. Management of patients with intermittent claudication

    NARCIS (Netherlands)

    S. Spronk (Sandra)

    2008-01-01

    textabstractIntermittent claudication is the first and mildest manifestation of peripheral arterial disease, caused by the atherosclerotic process of progressive narrowing of one or more of the arteries of the peripheral circulation.1 If the arterial system fails, it results in a progressive oxygen

  2. Intermittent resistive faults in digital cmos circuits

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Ebrahimi, Hassan

    2015-01-01

    A major threat in extremely dependable high-end process node integrated systems in e.g. Avionics are no failures found (NFF). One category of NFFs is the intermittent resistive fault, often originating from bad (e.g. Via or TSV-based) interconnections. This paper will show the impact of these faults

  3. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  4. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  5. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  6. Intermittency in the particle production and in the nuclear multifragmentation

    International Nuclear Information System (INIS)

    Bozek, P.; Ploszajczak, M.

    1991-01-01

    Intermittency is a manifestation of scale invariance and randomness in physical systems. Intermittency in relativistic heavy-ion collisions and, in particular, the projectile dependence, multiplicity dependence and source-size dependence are discussed in the frame of the model of spatio-temporal intermittency. Moreover, recent theoretical results in intermittency studies of the nuclear multifragmentation are presented. (author) 35 refs., 4 figs., 1 tab

  7. pH-regulated chemical oscillators.

    Science.gov (United States)

    Orbán, Miklós; Kurin-Csörgei, Krisztina; Epstein, Irving R

    2015-03-17

    The hydrogen ion is arguably the most ubiquitous and important species in chemistry. It also plays a key role in nearly every biological process. In this Account, we discuss systems whose behavior is governed by oscillations in the concentration of hydrogen ion. The first chemical oscillators driven by changes in pH were developed a quarter century ago. Since then, about two dozen new pH oscillators, systems in which the periodic variation in pH is not just an indicator but an essential prerequisite of the oscillatory behavior, have been discovered. Mechanistic understanding of their behavior has grown, and new ideas for their practical application have been proposed and, in some cases, tested. Here we present a catalog of the known pH oscillators, divide them into mechanistically based categories based on whether they involve a single oxidant and reductant or an oxidant and a pair of reductants, and describe general mechanisms for these two major classes of systems. We also describe in detail the chemistry of one example from each class, hydrogen peroxide-sulfide and ferricyanide-iodate-sulfite. Finally, we consider actual and potential applications. These include using pH oscillators to induce oscillation in species that would otherwise be nonoscillatory, creating novel spatial patterns, generating periodic transitions between vesicle and micelle states, stimulating switching between folded and random coil states of DNA, building molecular motors, and designing pulsating drug delivery systems. We point out the importance for future applications of finding a batch pH oscillator, one that oscillates in a closed system for an extended period of time, and comment on the progress that has been made toward that goal.

  8. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  9. Signatures of nonlinearity in single cell noise-induced oscillations

    NARCIS (Netherlands)

    Thomas, P.; Straube, A.V.; Timmer, J.; Fleck, C.; Grima, R.

    2013-01-01

    A class of theoretical models seeks to explain rhythmic single cell data by postulating that they are generated by intrinsic noise in biochemical systems whose deterministic models exhibit only damped oscillations. The main features of such noise-induced oscillations are quantified by the power

  10. Intermittent Rivers and Biodiversity. Large scale analyses between hydrology and ecology in intermittent rivers

    OpenAIRE

    Blanchard, Q.

    2014-01-01

    Intermittent rivers are characterized by a temporary interruption of their flow which can manifest in a variety of ways, as much on a spatial scale as on a temporal one. This particular aspect of intermittent river hydrology gives rise to unique ecosystems, combining both aquatic and terrestrial habitats. Neglected for a long time by scientists and once considered biologically depauperate and ecologically unimportant, these fragile habitats are nowadays acknowledged for their rendered service...

  11. A review of recent studies on the mechanisms and analysis methods of sub-synchronous oscillation in wind farms

    Science.gov (United States)

    Wang, Chenggen; Zhou, Qian; Gao, Shuning; Luo, Jia; Diao, Junchao; Zhao, Haoran; Bu, Jing

    2018-04-01

    This paper reviews the recent studies of Sub-Synchronous Oscillation(SSO) in wind farms. Mechanisms and analysis methods are the main concerns of this article. A classification method including new types of oscillation occurred between wind farms and HVDC systems and oscillation caused by Permanent Magnet Synchronous Generators(PMSG) is proposed. Characteristics of oscillation analysis techniques are summarized.

  12. Transitions in low Re pumping by oscillating plate arrays of mayfly nymphs

    Science.gov (United States)

    Kiger, Ken; Sensenig, Andrew; Shultz, Jeffrey

    2008-11-01

    Mayfly nymphs are aquatic insects which alter behavior and metabolism to accommodate changes in ambient dissolved oxygen. Many species can generate a ventilation current to compensate for low oxygen levels by beating two linear arrays of plate-like gills that line the lateral edge of the abdomen. The oscillation Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontological changes in pumping mechanisms associated with transitions from a viscous- to inertia-dominated flow. Observation of the detailed 3-D kinematics of the gill motion of the species Centroptilum triangulifer reveal that the mayfly makes a marked transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Results of the time-resolved flow within the inter-gill space shows that for Re>12 the plate motion generates a complex array of bound and shed vortices, which interact to produce an intermittent dorsally directed jet. For the Re<5, distinct bound vortices are still observed, but increased diffusive effects creates vortices which simultaneously envelope several gills, forcing a new flow pattern to emerge. Details of the flow mechanism and its implications will be discussed. This work is supported by NSF under grant CBET-0730907.

  13. Neuronal oscillations enhance stimulus discrimination by ensuring action potential precision

    DEFF Research Database (Denmark)

    Schaefer, Andreas T; Angelo, Kamilla; Spors, Hartwig

    2006-01-01

    generated membrane potential oscillations dramatically improve action potential (AP) precision by removing the membrane potential variance associated with jitter-accumulating trains of APs. This increased AP precision occurred irrespective of cell type and--at oscillation frequencies ranging from 3 to 65 Hz......Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical approaches, that both synaptically and intrinsically......, membrane potential oscillations dramatically enhance the discriminatory capabilities of individual neurons and networks of cells and provide one attractive explanation for their abundance in neurophysiological systems....

  14. Periodic synchronization and chimera in conformist and contrarian oscillators

    Science.gov (United States)

    Hong, Hyunsuk

    2014-06-01

    We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.

  15. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  16. [Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels].

    Science.gov (United States)

    Zhang, Cheng-yan; Zhang, Ji-xin; Lü, Xiao-tao; Li, Bao-yu

    2009-10-01

    To investigate the effects of intermittent hypoxic exposure and normoxic convalescence on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) levels. Rat models of intermittent hypoxic exposure were established, combined with the clinical research on volunteers experiencing the intermittent plateau work. Blood samples for red blood cell (RBC) counts, hemoglobin (Hb) and hematocrit (HCT) were collected, serum HIF-1alpha and EPO levels were measured using enzyme linked immunosorbent assay. RBC counts, Hb concentration and HCT were significantly higher than the normoxic group (P hypoxic exposure can enhance serum hypoxia inducible factor-1 alpha and erythropointin levels and the generation of red blood cells, which leads to an increase in hemoglobin concentration and hematocrit. The results have changed with the hypoxic exposure period prolonged. Normoxic convalescence after intermittent hypoxic exposure can make the related indexes reduced, and contribute to the organism recovery.

  17. Oscillating neutrinos from the Galactic center

    International Nuclear Information System (INIS)

    Crocker, R.M.; Volkas, R.R.; Melia, F.

    1999-11-01

    It has recently been demonstrated that the γ-ray emission spectrum of the EGRET-identified, central Galactic source 2EG J1746-2852 can be well fitted by positing that these photons are generated by the decay of π 0, s produced in p-p scattering at or near an energizing shock. Such scattering also produces charged pions which decay leptonically. The ratio of γ-rays to neutrinos generated by the central Galactic source may be accurately determined and a well-defined and potentially-measurable high energy neutrino flux at Earth is unavoidable. An opportunity, therefore, to detect neutrino oscillations over an unprecedented scale is offered by this source. In this paper we assess the prospects for such an observation with the generation of neutrino Cerenkov telescopes now in the planning stage. We determine that the next generation of detectors may find an oscillation signature in the Galactic Center (GC) signal, but that such an observation will probably not further constrain the oscillation parameter space mapped out by current atmospheric, solar, reactor and accelerator neutrino oscillation experiments

  18. Lyapunov exponent of the random frequency oscillator: cumulant expansion approach

    International Nuclear Information System (INIS)

    Anteneodo, C; Vallejos, R O

    2010-01-01

    We consider a one-dimensional harmonic oscillator with a random frequency, focusing on both the standard and the generalized Lyapunov exponents, λ and λ* respectively. We discuss the numerical difficulties that arise in the numerical calculation of λ* in the case of strong intermittency. When the frequency corresponds to a Ornstein-Uhlenbeck process, we compute analytically λ* by using a cumulant expansion including up to the fourth order. Connections with the problem of finding an analytical estimate for the largest Lyapunov exponent of a many-body system with smooth interactions are discussed.

  19. Mutual phase-locking of planar nano-oscillators

    Directory of Open Access Journals (Sweden)

    K. Y. Xu

    2014-06-01

    Full Text Available Characteristics of phase-locking between Gunn effect-based planar nano-oscillators are studied using an ensemble Monte Carlo (EMC method. Directly connecting two oscillators in close proximity, e.g. with a channel distance of 200 nm, only results in incoherent oscillations. In order to achieve in-phase oscillations, additional considerations must be taken into account. Two coupling paths are shown to exist between oscillators. One coupling path results in synchronization and the other results in anti-phase locking. The coupling strength through these two paths can be adjusted by changing the connections between oscillators. When two identical oscillators are in the anti-phase locking regime, fundamental components of oscillations are cancelled. The resulting output consists of purely second harmonic oscillations with a frequency of about 0.66 THz. This type of second harmonic generation is desired for higher frequency applications since no additional filter system is required. This transient phase-locking process is further analyzed using Adler's theory. The locking range is extracted, and a criterion for the channel length difference required for realizing phased arrays is obtained. This work should aid in designing nano-oscillator arrays for high power applications and developing directional transmitters for wireless communications.

  20. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    Science.gov (United States)

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  1. A Design Principle for a Posttranslational Biochemical Oscillator

    Directory of Open Access Journals (Sweden)

    Craig C. Jolley

    2012-10-01

    Full Text Available Multisite phosphorylation plays an important role in biological oscillators such as the circadian clock. Its general role, however, has been elusive. In this theoretical study, we show that a simple substrate with two modification sites acted upon by two opposing enzymes (e.g., a kinase and a phosphatase can show oscillations in its modification state. An unbiased computational analysis of this oscillator reveals two common characteristics: a unidirectional modification cycle and sequestering of an enzyme by a specific modification state. These two motifs cause a substrate to act as a coupled system in which a unidirectional cycle generates single-molecule oscillators, whereas sequestration synchronizes the population by limiting the available enzyme under conditions in which substrate is in excess. We also demonstrate the conditions under which the oscillation period is temperature compensated, an important feature of the circadian clock. This theoretical model will provide a framework for analyzing and synthesizing posttranslational oscillators.

  2. Spontaneous blood pressure oscillations in mechanically ventilated patients with sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Greve, Anders M

    2016-01-01

    OBJECTIVE: In the present hypothesis-generating study, we investigated whether spontaneous blood pressure oscillations are suppressed to lower frequencies, and whether abolished oscillations are associated with an adverse outcome in mechanically ventilated patients with sepsis. METHODS: We...... retrospectively subjected invasive steady-state blood pressure recordings from 65 mechanically ventilated patients with sepsis to spectral analysis. Modified spectral bands were visually identified by plotting spectral power against frequency. RESULTS: Modified middle-frequency and low-frequency (MF' and LF......') oscillations were absent in 9% and 22% of the patients, respectively. In patients in whom spontaneous blood pressure oscillations were preserved, the MF' oscillations occurred at 0.021 Hz (median, interquartile range 0.013-0.030), whereas the LF' oscillations occurred at 0.009 Hz (median, interquartile range 0...

  3. Reactor Neutrino Oscillations: KamLAND and KASKA

    International Nuclear Information System (INIS)

    Suekane, F.

    2006-01-01

    Nuclear reactors generate a huge number of low energy ν-bar e 's. The reactor neutrinos have been used to study properties of neutrinos since its discovery a half century ago. Recently, KamLAND group finally discovered reactor neutrino oscillation with average baseline 180 km. According to the 3 flavor scheme of standard theory and measured oscillation parameters so far, the reactor neutrino is expected to perform another type of small oscillation at a baseline 1.8 km. KASKA experiment is a project to detect this small oscillation and to measure the last neutrino mixing angle θ 13 by using the world most powerful reactor complex, Kashiwazaki-Kariwa nuclear power station. In this proceedings, phenomena of neutrino oscillation and the two reactor oscillation experiments, KamLAND and KASKA, are introduced

  4. Inertial Oscillations and the Galilean Transformation

    Science.gov (United States)

    Korotaev, G. K.

    2018-03-01

    This paper presents a general solution of shallow-water equations on the f-plane. The solution describes the generation of inertial oscillations by wind-pulse forcing over the background of currents arbitrarily changing in time and space in a homogeneous fluid. It is shown that the existence of such a complete solution of shallow-water equations on the f-plane is related to their invariance with respect to the generalized Galilean transformations. Examples of velocity hodographs of inertial oscillations developing over the background of a narrow jet are presented which explain the diversity in their forms.

  5. Intermittent control: a computational theory of human control.

    Science.gov (United States)

    Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik

    2011-02-01

    The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.

  6. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  7. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    Science.gov (United States)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    2017-06-14

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.

  8. Investigation of intermittency in simulated and experimental turbulence data by wavelet analysis

    International Nuclear Information System (INIS)

    Mahdizadeh, N.; Ramisch, M.; Stroth, U.; Lechte, C.; Scott, B.D.

    2004-01-01

    Turbulent transport in magnetized plasmas has an intermittent nature. Peaked probability density functions and a 1/frequency decay of the power spectra have been interpreted as signs of self-organized criticality generated, similar to a sand pile, by the critical gradients of ion- (ITG) or electron-temperature-gradient (ETG) driven instabilities. In order to investigate the degree of intermittency in toroidally confined plasmas in the absence of critical pressure or temperature gradients, data from the drift-Alfven-wave turbulence code DALF3 [B. Scott, Plasma Phys. Controlled Fusion 39, 1635 (1997)], running with a fixed background pressure gradient, and from a weakly driven low-temperature plasma are analyzed. The intermittency is studied on different temporal scales, which are separated by a wavelet transform. Simulated and experimental data reproduce the results on intermittent transport found in fusion plasmas. It can therefore be expected that in fusion plasmas, too, a substantial fraction of the bursty nature of turbulent transport is not related to avalanches caused by a critical gradient as generated by ITG or ETG turbulence

  9. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  10. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  11. Intermittency exponent of the turbulent energy cascade

    International Nuclear Information System (INIS)

    Cleve, J.; Greiner, M.; Pearson, B.R.; Sreenivasan, K.R.

    2006-12-01

    We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with each other and with a trend that increases with the Taylor microscale Reynolds number, R λ , of up to about 1000 and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly all R λ , this being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly. (author)

  12. Effects of intermittent hypoxia on running economy.

    Science.gov (United States)

    Burtscher, M; Gatterer, H; Faulhaber, M; Gerstgrasser, W; Schenk, K

    2010-09-01

    We investigated the effects of two 5-wk periods of intermittent hypoxia on running economy (RE). 11 male and female middle-distance runners were randomly assigned to the intermittent hypoxia group (IHG) or to the control group (CG). All athletes trained for a 13-wk period starting at pre-season until the competition season. The IHG spent additionally 2 h at rest on 3 days/wk for the first and the last 5 weeks in normobaric hypoxia (15-11% FiO2). RE, haematological parameters and body composition were determined at low altitude (600 m) at baseline, after the 5 (th), the 8 (th) and the 13 (th) week of training. RE, determined by the relative oxygen consumption during submaximal running, (-2.3+/-1.2 vs. -0.3+/-0.7 ml/min/kg, Ptraining phase. Georg Thieme Verlag KG Stuttgart . New York.

  13. Optimal intermittent search strategies: smelling the prey

    International Nuclear Information System (INIS)

    Revelli, J A; Wio, H S; Rojo, F; Budde, C E

    2010-01-01

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of α (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  14. Optimal intermittent search strategies: smelling the prey

    Energy Technology Data Exchange (ETDEWEB)

    Revelli, J A; Wio, H S [Instituto de Fisica de Cantabria, Universidad de Cantabria and CSIC, E-39005 Santander (Spain); Rojo, F; Budde, C E [Fa.M.A.F., Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina)

    2010-05-14

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of {alpha} (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  15. Optimal Dynamics of Intermittent Water Supply

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  16. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    Science.gov (United States)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  17. Oscillations in neutron stars

    International Nuclear Information System (INIS)

    Hoeye, Gudrun Kristine

    1999-01-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l → 4) f-modes we were also able to derive a formula that determines II l+1 from II l and II l-1 to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n c , while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  18. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  19. AN ELDERLY WOMAN WITH INTERMITTENT CLAUDICATION

    Directory of Open Access Journals (Sweden)

    Nayyer Naveed Wazir

    2006-01-01

    Full Text Available This case report illustrates the misdiagnosis of intermittent claudication in an elderly with multiple cardiac risk factors. Careful clinical evaluation and imaging shifts the diagnosis from peripheral vascular disease to spinal stenosis. The decision whether to offer conservative therapy or proceed to spinal surgery requires an accurate assessment of the severity of the symptoms without ignoring the important role of patient preferences.

  20. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...

  1. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...

  2. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  3. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network...... that resembles biological processes. In particular we study a network of Winfree oscillators, for which we present a statistical analysis of various simulated networks, where we conclude on the coupling structure: the direction of feedback in the phase processes and proportional coupling strength between...... individual components of the system. We show that we can correctly classify the network structure for such a system by cointegration analysis, for various types of coupling, including uni-/bi-directional and all-to-all coupling. Finally, we analyze a set of EEG recordings and discuss the current...

  4. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  5. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  6. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  7. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  8. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  9. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  10. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  11. Intermittency and dynamical Lee-Yang zeros of open quantum systems.

    Science.gov (United States)

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2014-12-01

    We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

  12. Efficient search by optimized intermittent random walks

    International Nuclear Information System (INIS)

    Oshanin, Gleb; Lindenberg, Katja; Wio, Horacio S; Burlatsky, Sergei

    2009-01-01

    We study the kinetics for the search of an immobile target by randomly moving searchers that detect it only upon encounter. The searchers perform intermittent random walks on a one-dimensional lattice. Each searcher can step on a nearest neighbor site with probability α or go off lattice with probability 1 - α to move in a random direction until it lands back on the lattice at a fixed distance L away from the departure point. Considering α and L as optimization parameters, we seek to enhance the chances of successful detection by minimizing the probability P N that the target remains undetected up to the maximal search time N. We show that even in this simple model, a number of very efficient search strategies can lead to a decrease of P N by orders of magnitude upon appropriate choices of α and L. We demonstrate that, in general, such optimal intermittent strategies are much more efficient than Brownian searches and are as efficient as search algorithms based on random walks with heavy-tailed Cauchy jump-length distributions. In addition, such intermittent strategies appear to be more advantageous than Levy-based ones in that they lead to more thorough exploration of visited regions in space and thus lend themselves to parallelization of the search processes.

  13. Training algorithms evaluation for artificial neural network to temporal prediction of photovoltaic generation

    International Nuclear Information System (INIS)

    Arantes Monteiro, Raul Vitor; Caixeta Guimarães, Geraldo; Rocio Castillo, Madeleine; Matheus Moura, Fabrício Augusto; Tamashiro, Márcio Augusto

    2016-01-01

    Current energy policies are encouraging the connection of power generation based on low-polluting technologies, mainly those using renewable sources, to distribution networks. Hence, it becomes increasingly important to understand technical challenges, facing high penetration of PV systems at the grid, especially considering the effects of intermittence of this source on the power quality, reliability and stability of the electric distribution system. This fact can affect the distribution networks on which they are attached causing overvoltage, undervoltage and frequency oscillations. In order to predict these disturbs, artificial neural networks are used. This article aims to analyze 3 training algorithms used in artificial neural networks for temporal prediction of the generated active power thru photovoltaic panels. As a result it was concluded that the algorithm with the best performance among the 3 analyzed was the Levenberg-Marquadrt.

  14. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  15. The gamma oscillation: master or slave?

    Science.gov (United States)

    Schroeder, Charles E; Lakatos, Peter

    2009-06-01

    The idea that gamma enhancement reflects a state of high neuronal excitability and synchrony, critical for active brain operations, sets gamma up as a "master" or executor process that determines whether an input is effectively integrated and an effective output is generated. However, gamma amplitude is often coupled to the phase of lower frequency delta or theta oscillations, which would make gamma a "slave" to lower frequency activity. Gamma enslavement is productive and typical during rhythmic mode brain operations; when a predictable rhythm is in play, low and mid-frequency oscillations can be entrained and their excitability fluctuations of put to work in sensory and motor functions. When there is no task relevant rhythm that the system can entrain to, low frequency oscillations become detrimental to processing. Then, a continuous (vigilance) mode of operation is implemented; the system's sensitivity is maximized by suppressing lower frequency oscillations and exploiting continuous gamma band oscillations. Each mode has costs and benefits, and the brain shifts dynamically between them in accord with task demands.

  16. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  17. Understanding the effects of predictability, duration, and spatial pattern of drying on benthic invertebrate assemblages in two contrasting intermittent streams

    Science.gov (United States)

    von Schiller, Daniel; Barberá, Gonzalo G.; Díaz, Angela M.; Arce, Maria Isabel; del Campo, Rubén; Tockner, Klement

    2018-01-01

    In the present study, we examined the effects of different drying conditions on the composition, structure and function of benthic invertebrate assemblages. We approached this objective by comparing invertebrate assemblages in perennial and intermittent sites along two intermittent Mediterranean streams with contrasting predictability, duration, and spatial patterns of drying: Fuirosos (high predictability, short duration, downstream drying pattern) and Rogativa (low predictability, long duration, patchy drying pattern). Specifically, we quantified the contribution of individual taxa to those differences, the degree of nestedness, and shifts in the composition, structure and function of benthic invertebrate assemblages along flow intermittence gradients. We observed greater effects of drying on the benthic invertebrate composition in Fuirosos than in Rogativa, resulting in a higher dissimilarity of assemblages between perennial and intermittent sites, as well as a lower degree of nestedness. Furthermore, a higher number of biotic metrics related to richness, abundance and biological traits were significantly different between perennial and intermittent sites in Fuirosos, despite a shorter dry period compared to Rogativa. At the same time, slightly different responses were detected during post-drying (autumn) than pre-drying (spring) conditions in this stream. In Rogativa, shifts in benthic invertebrate assemblages along increasing gradients of flow intermittence were found for three metrics (Ephemeroptera, Plecoptera and Trichoptera (EPT) and Odonata, Coleoptera and Heteroptera (OCH) abundances and aerial active dispersal. Furthermore, we demonstrated that combined gradients of dry period duration and distance to nearest perennial reach can generate complex, and different, responses of benthic invertebrate assemblages, depending on the flow intermittence metric. Our study advances the notion that special attention should be paid to the predictability, duration and

  18. Energy measurements from betatron oscillations

    International Nuclear Information System (INIS)

    Himel, T.; Thompson, K.

    1989-03-01

    In the Stanford Linear Collider the electron beam is accelerated from 1--50 GeV in a distance of 3 km. The energy is measured and corrected at the end with an energy feedback loop. There are no bends within the linear accelerator itself, so no intermediate energy measurements are made. Errors in the energy profile due to mis-phasing of the rf, or due to calibration errors in the klystrons' rf outputs are difficult to detect. As the total betatron phase advance down the accelerator is about 30 /times/ 2π, an energy error of a few percent can cause a large error in the total phase advance. This in turn degrades the performance of auto-steering programs. We have developed a diagnostic program which generates and measures several betatron oscillations in the accelerator. It then analyzes this oscillation, looking for frequency changes which indicate energy errors. One can then compensate for or correct these energy errors. 6 refs., 1 fig

  19. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  20. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  1. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  2. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  3. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  4. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  5. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators

    Science.gov (United States)

    Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.

    2017-06-01

    We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.

  6. High-frequency plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Akhiezer, A I; Fainberg, Y B; Sitenko, A G; Stepanov, K; Kurilko, V; Gorbatenko, M; Kirochkin, U [Academy of Sciences of the Ukrainian SSR (USSR)

    1958-07-01

    It is well known that the electrical conductivity of a plasma, the ion-electron equilibration time, and the time required to heat the electron component of the plasma all increase greatly with increasing temperature. Consequently, the usual method of Joule heating a plasma may be difficult to apply in the region of high temperatures (> 10{sup 6}K), especially if the plasma current alone, without any additional measures, is used to generate magnetic fields for the confinement of the plasma. Therefore, it is of interest to study methods of plasma heating that do not directly use Joule heat, especially methods by which energy is directly supplied to the ion component during the time between collisions. Some of these methods make use of ionic resonance as well as other resonance phenomena which can occur in plasma in an external magnetic field. This paper deals with certain aspects of the theory of high-frequency plasma oscillations.

  7. Anharmonic oscillator and Bogoliubov transformation

    International Nuclear Information System (INIS)

    Pattnayak, G.C.; Torasia, S.; Rath, B.

    1990-01-01

    The anharmonic oscillator occupies a cornerstone in many problems in physics. It was observed that none of the authors have tested Bogoliubov transformation to study anharmonic oscillator. The groundstate energy of the anharmonic oscillator is studied using Bogoliubov transformation and the results presented. (author)

  8. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  9. Free piston variable-stroke linear-alternator generator

    Science.gov (United States)

    Haaland, Carsten M.

    1998-01-01

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.

  10. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  11. Intensely oscillating cavitation bubble in microfluidics

    International Nuclear Information System (INIS)

    Siew-Wan, Ohl; Tandiono; Klaseboer, Evert; Dave, Ow; Choo, Andre; Claus-Dieter, Ohl

    2015-01-01

    This study reports the technical breakthrough in generating intense ultrasonic cavitation in the confinement of a microfluidics channel [1], and applications that has been developed on this platform for the past few years [2,3,4,5]. Our system consists of circular disc transducers (10-20 mm in diameter), the microfluidics channels on PDMS (polydimethylsiloxane), and a driving circuitry. The cavitation bubbles are created at the gas- water interface due to strong capillary waves which are generated when the system is driven at its natural frequency (around 100 kHz) [1]. These bubbles oscillate and collapse within the channel. The bubbles are useful for sonochemistry and the generation of sonoluminescence [2]. When we add bacteria (Escherichia coli), and yeast cells (Pichia pastoris) into the microfluidics channels, the oscillating and collapsing bubbles stretch and lyse these cells [3]. Furthermore, the system is effective (DNA of the harvested intracellular content remains largely intact), and efficient (yield reaches saturation in less than 1 second). In another application, human red blood cells are added to a microchamber. Cell stretching and rapture are observed when a laser generated cavitation bubble expands and collapses next to the cell [4]. A numerical model of a liquid pocket surrounded by a membrane with surface tension which was placed next to an oscillating bubble was developed using the Boundary Element Method. The simulation results showed that the stretching of the liquid pocket occurs only when the surface tension is within a certain range. (paper)

  12. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  13. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  14. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...

  15. Reducing the market impact of large shares of intermittent energy in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Zvingilaite, Erika

    2010-01-01

    The increasing prevalence of renewable and intermittent energy sources in the electricity system is creating new challenges for the interaction of the system. In Denmark, high renewable shares have been achieved without great difficulty, mainly due to the flexibility of the nearby Nordic hydro......-power dominated system. Further increases in the share of renewable energy sources require that additional options are considered to facilitate integration with the lowest possible cost. With large shares of intermittent energy, the impact can be observed on wholesale prices, giving both lower prices and higher...... and the attractiveness of additional interconnection capacity. This paper also analyses options for increasing the flexibility of heat generation involving large and decentralized CHP plants and heat generation based on electricity. The incentives that the market provides for shifting demand and using electricity...

  16. Renewable energies: the cost of intermittency

    International Nuclear Information System (INIS)

    Crassous, Renaud; Roques, Fabien

    2013-01-01

    The authors indicate the different adaptations which will be required for the electric system to cope with the intermittency of solar and wind energy production, and propose an approximate assessment of the associated costs. Different types of adaptation are addressed: secure production in case of absence of wind or sun (electricity imports, construction of additional power stations), use of more flexible production means (gas turbines), grid extensions (connection to offshore production sites, routing of production one part of the country to the other). They think that beyond a 20 per cent share for renewable energies, these costs could rapidly increase

  17. Spatio-temporal intermittency on the sandpile

    International Nuclear Information System (INIS)

    Erzan, A.; Sinha, S.

    1990-08-01

    The self-organized critical state exhibited by a sandpile model is shown to correspond to motion on an attractor characterized by an invariant distribution of the height variable. The largest Lyapunov exponent is equal to zero. The model nonetheless displays intermittent chaos, with a multifractal distribution of local expansion coefficients in history space. Laminar spatio-temporal regions are interrupted by chaotic bursts caused by avalanches. We introduce the concept of local histories in configuration space and show that their expansion parameters also exhibit a multifractal distribution in time and space. (author). 22 refs, 5 figs

  18. Intermittent claudication in a professional rugby player.

    Science.gov (United States)

    Bray, A E; Lewis, W A

    1992-04-01

    Intermittent claudication in a professional rugby player is described. The typical features of a delayed and difficult diagnosis of an external iliac artery stenosis were found. The noninvasive diagnostic protocol used to investigate this young patient with a minimal arterial lesion enabled accurate localization and angioplasty to be performed at the same time as diagnostic angiography. The patient was symptom free with normal arterial pressures on follow-up. It is suggested that appropriate noninvasive investigations should be performed before angiography in young people with minimal lesions.

  19. A stochastic model for intermittent search strategies

    International Nuclear Information System (INIS)

    Benichou, O; Coppey, M; Moreau, M; Suet, P H; Voituriez, R

    2005-01-01

    It is often necessary, in scientific or everyday life problems, to find a randomly hidden target. What is then the optimal strategy to reach it as rapidly as possible? In this article, we develop a stochastic theory for intermittent search behaviours, which are often observed: the searcher alternates phases of intensive search and slow motion with fast displacements. The first results of this theory have already been announced recently. Here we provide a detailed presentation of the theory, as well as the full derivation of the results. Furthermore, we explicitly discuss the minimization of the time needed to find the target

  20. Intermittent oral iron supplementation during pregnancy (Review)

    Science.gov (United States)

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    Background Anaemia is a frequent condition during pregnancy, particularly among women from developing countries who have insufficient iron intake to meet increased iron needs of both the mother and the fetus. Traditionally, gestational anaemia has been prevented with the provision of daily iron supplements throughout pregnancy, but adherence to this regimen due to side effects, interrupted supply of the supplements, and concerns about safety among women with an adequate iron intake, have limited the use of this intervention. Intermittent (i.e. one, two or three times a week on non-consecutive days) supplementation with iron alone or in combination with folic acid or other vitamins and minerals has recently been proposed as an alternative to daily supplementation. Objectives To assess the benefits and harms of intermittent supplementation with iron alone or in combination with folic acid or other vitamins and minerals to pregnant women on neonatal and pregnancy outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (23 March 2012). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) for ongoing studies and contacted relevant organisations for the identification of ongoing and unpublished studies (23 March 2012). Selection criteria Randomised or quasi-randomised trials. Data collection and analysis We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. Main results This review includes 21 trials from 13 different countries, but only 18 trials (with 4072 women) reported on our outcomes of interest and contributed data to the review. All of these studies compared daily versus intermittent iron supplementation. Three studies provided iron alone, 12 iron+folic acid and three more iron plus multiple vitamins and minerals. Their methodological quality was mixed

  1. Synchrony-optimized networks of non-identical Kuramoto oscillators

    International Nuclear Information System (INIS)

    Brede, Markus

    2008-01-01

    In this Letter we discuss a method for generating synchrony-optimized coupling architectures of Kuramoto oscillators with a heterogeneous distribution of native frequencies. The method allows us to relate the properties of the coupling network to its synchronizability. These relations were previously only established from a linear stability analysis of the identical oscillator case. We further demonstrate that the heterogeneity in the oscillator population produces heterogeneity in the optimal coupling network as well. Two rules for enhancing the synchronizability of a given network by a suitable placement of oscillators are given: (i) native frequencies of adjacent oscillators must be anti-correlated and (ii) frequency magnitudes should positively correlate with the degree of the node they are placed at

  2. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  3. Neutrino oscillations in discrete-time quantum walk framework

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Mandal, Sanjoy; Chandrashekar, C.M. [C. I. T. Campus, The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India)

    2017-02-15

    Here we present neutrino oscillation in the framework of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters which is required to reproduce the oscillation probability profile obtained in both, long range and short range neutrino experiment is explicitly presented. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental set-up with access to control a single six-level system, a multiparticle three-qubit or a qubit-qutrit system. We also present the entanglement between spins and position space, during neutrino propagation that will quantify the wave function delocalization around instantaneous average position of the neutrino. This work will contribute towards understanding neutrino oscillation in the framework of the quantum information perspective. (orig.)

  4. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  5. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  6. Intermittent fasting and cardiovascular disease: current evidence and unresolved questions.

    Science.gov (United States)

    Tinsley, Grant M; Horne, Benjamin D

    2018-01-01

    Intermittent fasting has produced a variety of beneficial health effects in animal models, although high-quality research in humans has been limited. This special report examines current evidences for intermittent fasting in humans, discusses issues that require further examination, and recommends new research that can improve the knowledge base in this emerging research area. While potentially useful for health improvement, intermittent fasting requires further study prior to widespread implementation for health purposes. Randomized, longer-term studies are needed to determine whether using intermittent fasting as a lifestyle rather than a diet is feasible and beneficial for the health of some members of the human population.

  7. Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.; Sargent, E. H.

    2014-01-01

    with foreign cations can stabilize the vacancies, inhibiting intermittency and improving quantum yield, providing an explanation of recent experimental observations. © 2014 American Physical Society.

  8. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  9. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  10. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.

    2009-01-01

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  11. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  12. Commercial and Industrial Base Intermittent Resource Management Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Sporborg, Pamela; Sheik, Imran; Huffaker, Erich; Piette, Mary Ann

    2010-11-30

    This scoping study summarizes the challenges with integrating wind and solar generation into the California's electricity grid. These challenges include: Smoothing intra-hour variability; - Absorbing excess renewable energy during over-generation periods; - Addressing morning and evening ramping periods. In addition, there are technical challenges to integrating retail demand response (DR) triggered by the wholesale conditions into the CAISO markets. The study describes the DR programs available to the consumers through the utilities in California and CAISO's ancillary services market because an integration of the wholesale and retail DR requires an understanding of these different offerings and the costs associated with acquiring them. Demand-side active and passive storage systems are proposed as technologies that may be used to mitigate the effects of intermittence due to renewable generation. Commercial building technologies as well as industrial facilities with storage capability are identified as targets for the field tests. Two systems used for ancillary services communications are identified as providing the triggers for DR enablement. Through the field tests, issues related to communication, automation and flexibility of demand-side resources will be explored and the performance of technologies that participate in the field tests will be evaluated. The major outcome of this research is identifying and defining flexibility of DR resources and optimized use of these resources to respond to grid conditions.

  13. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  14. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  15. Density oscillations within hadrons

    International Nuclear Information System (INIS)

    Arnold, R.; Barshay, S.

    1976-01-01

    In models of extended hadrons, in which small bits of matter carrying charge and effective mass exist confined within a medium, oscillations in the matter density may occur. A way of investigating this possibility experimentally in high-energy hadron-hadron elastic diffraction scattering is suggested, and the effect is illustrated by examining some existing data which might be relevant to the question [fr

  16. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    Science.gov (United States)

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  17. Neutrino Oscillations Physics

    Science.gov (United States)

    Fogli, Gianluigi

    2005-06-01

    We review the status of the neutrino oscillations physics, with a particular emphasis on the present knowledge of the neutrino mass-mixing parameters. We consider first the νμ → ντ flavor transitions of atmospheric neutrinos. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at ±1σ (and NDF = 1) as: Δm2 = (2.6 ± 0.4) × 10-3 eV2 and sin 2 2θ = 1.00{ - 0.05}{ + 0.00} . Such indications, presently dominated by SK, could be strengthened by further K2K data. Then we point out that the recent data from the Sudbury Neutrino Observatory, together with other relevant measurements from solar and reactor neutrino experiments, in particular the KamLAND data, convincingly show that the flavor transitions of solar neutrinos are affected by Mikheyev-Smirnov-Wolfenstein (MSW) effects. Finally, we perform an updated analysis of two-family active oscillations of solar and reactor neutrinos in the standard MSW case.

  18. Numerically controlled oscillator for the Fermilab Booster

    International Nuclear Information System (INIS)

    Crisp, J.L.; Ducar, R.J.

    1989-01-01

    In order to improve the stability of the Fermilab Booster low level rf system, a numerically controlled oscillator system is being constructed. Although the system has not been implemented to date, the design is outlined in this paper. The heart of the new system consists of a numerically synthesized frequency generator manufactured by the Sciteq Company. The 3 GHz/sec rate and 30 to 53 MHz range of the Booster frequency program required the design of a CAMAC based, fast-cycling (1 MHz), 65K x 32 bit, digital function generator. A 1 MHz digital adder and 12 bit analog to digital converter will be used to correct small program errors by phase locking the oscillator to the beam. 6 refs., 1 fig

  19. Randomized, controlled trial comparing synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in preterm infants.

    Science.gov (United States)

    Reyes, Zenaida C; Claure, Nelson; Tauscher, Markus K; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo

    2006-10-01

    Prolonged mechanical ventilation is associated with lung injury in preterm infants. In these infants, weaning from synchronized intermittent mandatory ventilation may be delayed by their inability to cope with increased respiratory loads. The addition of pressure support to synchronized intermittent mandatory ventilation can offset these loads and may facilitate weaning. The purpose of this work was to compare synchronized intermittent mandatory ventilation and synchronized intermittent mandatory ventilation plus pressure support in weaning from mechanical ventilation and the duration of supplemental oxygen dependency in preterm infants with respiratory failure. Preterm infants weighing 500 to 1000 g at birth who required mechanical ventilation during the first postnatal week were randomly assigned to synchronized intermittent mandatory ventilation or synchronized intermittent mandatory ventilation plus pressure support. In both groups, weaning followed a set protocol during the first 28 days. Outcomes were assessed during the first 28 days and until discharge or death. There were 107 infants enrolled (53 synchronized intermittent mandatory ventilation plus pressure support and 54 synchronized intermittent mandatory ventilation). Demographic and perinatal data, mortality, and morbidity did not differ between groups. During the first 28 days, infants in the synchronized intermittent mandatory ventilation plus pressure support group reached minimal ventilator settings and were extubated earlier than infants in the synchronized intermittent mandatory ventilation group. Total duration of mechanical ventilation, duration of oxygen dependency, and oxygen need at 36 weeks' postmenstrual age alone or combined with death did not differ between groups. However, infants in synchronized intermittent mandatory ventilation plus pressure support within the 700- to 1000-g birth weight strata had a shorter oxygen dependency. The results of this study suggest that the addition of

  20. Large scale integration of intermittent renewable energy sources in the Greek power sector

    International Nuclear Information System (INIS)

    Voumvoulakis, Emmanouil; Asimakopoulou, Georgia; Danchev, Svetoslav; Maniatis, George; Tsakanikas, Aggelos

    2012-01-01

    As a member of the European Union, Greece has committed to achieve ambitious targets for the penetration of renewable energy sources (RES) in gross electricity consumption by 2020. Large scale integration of RES requires a suitable mixture of compatible generation units, in order to deal with the intermittency of wind velocity and solar irradiation. The scope of this paper is to examine the impact of large scale integration of intermittent energy sources, required to meet the 2020 RES target, on the generation expansion plan, the fuel mix and the spinning reserve requirements of the Greek electricity system. We perform hourly simulation of the intermittent RES generation to estimate residual load curves on a monthly basis, which are then inputted in a WASP-IV model of the Greek power system. We find that the decarbonisation effort, with the rapid entry of RES and the abolishment of the grandfathering of CO 2 allowances, will radically transform the Greek electricity sector over the next 10 years, which has wide-reaching policy implications. - Highlights: ► Greece needs 8.8 to 9.3 GW additional RES installations by 2020. ► RES capacity credit varies between 12.2% and 15.3%, depending on interconnections. ► Without institutional changes, the reserve requirements will be more than double. ► New CCGT installed capacity will probably exceed the cost-efficient level. ► Competitive pressures should be introduced in segments other than day-ahead market.

  1. Different types of bursting calcium oscillations in non-excitable cells

    International Nuclear Information System (INIS)

    Perc, Matjaz; Marhl, Marko

    2003-01-01

    In the paper different types of bursting Ca 2+ oscillations are presented. We analyse bursting behaviour in four recent mathematical models for Ca 2+ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic bursting Ca 2+ oscillations are classified into several subtypes. The classification is based on the dynamics of separated fast and slow subsystems, the so-called fast-slow burster analysis. For regular bursting Ca 2+ oscillations two types of bursting are specified: Point-Point and Point-Cycle bursting. In particular, the slow passage effect, important for the Hopf-Hopf and SubHopf-SubHopf bursting subtypes, is explained by local divergence calculated for the fast subsystem. Quasi-periodic bursting Ca 2+ oscillations can be found in only one of the four studied mathematical models and appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca 2+ oscillations, we found that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca 2+ oscillations provides better insight into mechanisms of complex intra- and intercellular Ca 2+ signalling. This improves our understanding of several important biological phenomena in cellular signalling like complex frequency-amplitude signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue

  2. Fractional Bateman—Feshbach Tikochinsky Oscillator

    Science.gov (United States)

    Dumitru, Baleanu; Jihad, H. Asad; Ivo, Petras

    2014-02-01

    In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Hamiltonian of the complex Bateman—Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractional Euler-Lagrange equations is given within the Grünwald—Letnikov approach, which is power series expansion of the generating function.

  3. Kepler's third law and the oscillator's isochronism

    Science.gov (United States)

    Gorringe, V. M.; Leach, P. G. L.

    1993-11-01

    Two classes of differential equations which have Kepler-like and oscillatorlike elliptical orbits are shown to have generalizations of the conserved angular momentum, energy, and Laplace-Runge-Lenz vector (Jauch-Hill-Fradkin tensor for the oscillator case). Both possess a generator of self-similar transformations and the related period-semimajor axis relation is a generalization of Kepler's third law in which the constant of proportionality depends explicitly on the eccentricity of the orbit.

  4. Fractional Bateman—Feshbach Tikochinsky Oscillator

    International Nuclear Information System (INIS)

    Baleanu, Dumitru; Asad, Jihad H.; Petras Ivo

    2014-01-01

    In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Hamiltonian of the complex Bateman—Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractional Euler-Lagrange equations is given within the Grünwald—Letnikov approach, which is power series expansion of the generating function. (physics of elementary particles and fields)

  5. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  6. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  7. Intermittency Statistics in the Expanding Solar Wind

    Science.gov (United States)

    Cuesta, M. E.; Parashar, T. N.; Matthaeus, W. H.

    2017-12-01

    The solar wind is observed to be turbulent. One of the open questions in solar wind research is how the turbulence evolves as the solar wind expands to great distances. Some studies have focused on evolution of the outer scale but not much has been done to understand how intermittency evolves in the expanding wind beyond 1 AU (see [1,2]). We use magnetic field data from Voyager I spacecraft from 1 to 10AU to study the evolution of statistics of magnetic discontinuities. We perform various statistical tests on these discontinuities and make connections to the physical processes occurring in the expanding wind.[1] Tsurutani, Bruce T., and Edward J. Smith. "Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU." Journal of Geophysical Research: Space Physics 84.A6 (1979): 2773-2787.[2] Greco, A., et al. "Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere." The Astrophysical Journal 749.2 (2012): 105.

  8. Chronic intermittent hypoxia predisposes to liver injury.

    Science.gov (United States)

    Savransky, Vladimir; Nanayakkara, Ashika; Vivero, Angelica; Li, Jianguo; Bevans, Shannon; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-04-01

    Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH). OSA is associated with nonalcoholic steatohepatitis (NASH) in obese subjects. The aim of this study was to investigate the effects of CIH on the liver in the absence of obesity. Lean C57BL/6J mice (n = 15) on a regular chow diet were exposed to CIH for 12 weeks and compared with pair-fed mice exposed to intermittent air (IA, n = 15). CIH caused liver injury with an increase in serum ALT (224 +/- 39 U/l versus 118 +/- 22 U/l in the IA group, P fasting serum insulin levels, and mild elevation of fasting serum total cholesterol and triglycerides (TG). Liver TG content was unchanged, whereas cholesterol content was decreased. Histology showed swelling of hepatocytes, no evidence of hepatic steatosis, and marked accumulation of glycogen in hepatocytes. CIH led to lipid peroxidation of liver tissue with a malondialdehyde (MDA)/free fatty acids (FFA) ratio of 0.54 +/- 0.07 mmol/mol versus 0.30 +/- 0.01 mmol/mol in control animals (P obesity, CIH leads to mild liver injury via oxidative stress and excessive glycogen accumulation in hepatocytes and sensitizes the liver to a second insult, whereas NASH does not develop.

  9. Intermittent preventive treatment of malaria in pregnancy

    DEFF Research Database (Denmark)

    Mbonye, A.K.; Bygbjerg, Ib Christian; Magnussen, Pascal

    2008-01-01

    OBJECTIVE: To assess whether traditional birth attendants, drug-shop vendors, community reproductive-health workers, or adolescent peer mobilizers could administer intermittent preventive treatment (IPTp) for malaria with sulfadoxine-pyrimethamine to pregnant women. METHODS: A non-randomized comm......OBJECTIVE: To assess whether traditional birth attendants, drug-shop vendors, community reproductive-health workers, or adolescent peer mobilizers could administer intermittent preventive treatment (IPTp) for malaria with sulfadoxine-pyrimethamine to pregnant women. METHODS: A non......-randomized community trial was implemented in 21 community clusters (intervention) and four clusters where health units provided routine IPTp (control). The primary outcome measures were access and adherence to IPTp, number of malaria episodes, prevalence of anaemia, and birth weight. Numbers of live births, abortions......, still births, and maternal and child deaths were secondary endpoints. FINDINGS: 1404 (67.5%) of 2081 with the new delivery system received two doses of sulfadoxine-pyrimethamine versus 281 (39.9%) of 704 with health units (P malaria episodes decreased from 906 (49...

  10. Intermittent hyperthyreosis. A heat stress syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Sulman, F G; Tal, E; Pfeifer, Y; Superstine, E [Hebrew Univ., Jerusalem (Israel). Dept. of Applied Pharmacology

    1975-09-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or 'forme fruste' hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: tachycardia - every case with more than 80 pulse beats being suspect (not specific); urinary histamine - every case excreting more than 90 ..mu..g/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; urinary thyroxine - every case excreting more than 20 ..mu..g/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and betablockers. Propyl thiouracil is rarely required.

  11. Novel diode-based laser system for combined transcutaneous monitoring and computer-controlled intermittent treatment of jaundiced neonates

    Science.gov (United States)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-06-01

    The high efficacy of laser phototherapy combined with transcutaneous monitoring of serum bilirubin provides optimum safety for jaundiced infants from the risk of bilirubin encephalopathy. In this paper the authors introduce the design and operating principles of a new laser system that can provide simultaneous monitoring and treatment of several jaundiced babies at one time. The new system incorporates diode-based laser sources oscillating at selected wavelengths to achieve both transcutaneous differential absorption measurements of bilirubin concentration in addition to the computer controlled intermittent laser therapy through a network of optical fibers. The detailed description and operating characteristics of this system are presented.

  12. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  13. Adequacy in dialysis: intermittent versus continuous therapies.

    Science.gov (United States)

    Misra, M; Nolph, K D

    2000-01-01

    A vital conceptual difference between intermittent and continuous dialysis therapies is the difference in the relationship between Kt/V urea and dietary protein intake. For a given level of protein intake the intermittent therapies require a higher Kt/V urea due to the reasons mentioned above. The recently released adequacy guidelines by DOQI for intermittent and continuous therapies are based on these assumptions. The link between adequacy targets and patient survival is well documented for an intermittent therapy like HD. For a continuous therapy like CAPD however, the evidence linking improved peritoneal clearance to better survival is not as direct. However, present consensus allows one to extrapolate results based on HD. The concept of earlier and healthier initiation of dialysis is gaining hold and incremental dialysis forms an integral aspect of the whole concept. Tools like urea kinetic modeling give us valuable insight in making mathematical projections about the timing as well as dosing of dialysis. Daily home hemodialysis is still an underutilized modality despite offering best survival figures. Hopefully, with increasing availability of better and simpler machines its use will increase. Still several questions remain unanswered. Despite availability of data in hemodialysis patients suggesting that an increased dialysis prescription leads to a better survival, optimal dialysis dose is yet to be defined. Concerns regarding methodology of such studies and conclusions thereof has been raised. Other issues relating to design of the studies, variation in dialysis delivery, use of uncontrolled historical standards and lack of patient randomization etc also need to be considered when designing such trials. Hopefully an ongoing prospective randomized trial, namely the HEMO study, looking at two precisely defined and carefully maintained dialysis prescriptions will provide some insight into adequacy of dialysis dose and survival. In diabetic patients, the

  14. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  15. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance.

    Science.gov (United States)

    Baker, Lindsay B; Rollo, Ian; Stein, Kimberly W; Jeukendrup, Asker E

    2015-07-14

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game

  16. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    Directory of Open Access Journals (Sweden)

    Lindsay B. Baker

    2015-07-01

    Full Text Available Intermittent sports (e.g., team sports are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h. Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1 potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2 the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3 what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports. Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before

  17. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Ping Ju

    2016-07-01

    Full Text Available According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO mechanism is taken into consideration. The GFO is the power system oscillation excited by the random excitations, such as power fluctuations from renewable power generation. Firstly, properties of the oscillations observed in the real power grid are analyzed. Using the GFO mechanism, the observed oscillations seem to be the GFO caused by some random excitation. Then the variation of the wind power measured in this power gird is found to be the random excitation which may cause the GFO phenomenon. Finally, simulations are carried out and the power spectral density of the simulated oscillation is compared to that of the observed oscillation, and they are similar with each other. The observed oscillation is thus explained well using the GFO mechanism and the GFO phenomenon has now been observed for the first time in real power grids.

  18. Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Azimi, Mandana; Syed, Aamer; Hindle, Michael

    2014-10-01

    Use of submicrometer particles combined with condensational growth techniques has been proposed to reduce drug losses within components of high-flow nasal cannula therapy systems and to enhance the dose reaching the lower respiratory tract. These methods have been evaluated using continuous inhalation flow rather than realistic inhalation/exhalation breathing cycles. The goal of this study was to evaluate in vitro aerosol drug delivery using condensational growth techniques during high-flow nasal cannula therapy using realistic breathing profiles and incorporating intermittent aerosol delivery techniques. A mixer-heater combined with a vibrating mesh nebulizer was used to generate a submicrometer aerosol using a formulation of 0.2% albuterol sulfate and 0.2% sodium chloride in water. Delivery efficiency of the aerosol for 1 min through a nasal cannula was considered using an intermittent delivery regime with aerosol being emitted for either the entire inhalation time (2 s) or half of the inhalation period (1 s) and compared with continuous delivery. The deposition of the aerosol was evaluated in the nasal delivery components (ventilator tubing and cannula) and an in vitro adult nose-mouth-throat (NMT) model using 3 realistic breathing profiles. Significant improvements in dose delivered to the exit of the NMT model (ex-NMT) were observed for both condensational growth methods using intermittent aerosol delivery compared with continuous delivery, and increasing the tidal volume was found useful. The combination of the largest tidal volume with the shortest intermittent delivery time resulted in the lowest respiration losses and the highest ex-NMT delivered dose. Intermittent aerosol delivery using realistic breathing profiles of submicrometer condensational growth aerosols was found to be efficient in delivering nasally administered drugs in an in vitro airway model. Copyright © 2014 by Daedalus Enterprises.

  19. A Chaotic Oscillator Based on HP Memristor Model

    Directory of Open Access Journals (Sweden)

    Guangyi Wang

    2015-01-01

    Full Text Available This paper proposes a simple autonomous memristor-based oscillator for generating periodic signals. Applying an external sinusoidal excitation to the autonomous system, a nonautonomous oscillator is obtained, which contains HP memristor model and four linear circuit elements. This memristor-based oscillator can generate periodic, chaotic, and hyperchaotic signals under the periodic excitation and an appropriate set of circuit parameters. It also shows that the system exhibits alternately a hidden attractor with no equilibrium and a self-excited attractor with a line equilibrium as time goes on. Furthermore, some specialties including burst chaos, irregular periodic bifurcations, and nonintermittence chaos of the circuit are found by theoretical analysis and numerical simulations. Finally, a discrete model for the HP memristor is given and the main statistical properties of this memristor-based oscillator are verified via DSP chip experiments and NIST (National Institute of Standards and Technology tests.

  20. A new control strategy of SMES for mitigating subsynchronous oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Mohsen, E-mail: m.farahani@basu.ac.ir [Bu-Ali Sina University, Department of Electrical Engineering, Hamedan-Iran (Iran, Islamic Republic of)

    2012-12-14

    This paper proposes a new strategy to mitigate the subsynchronous oscillations in power systems compensated by series capacitors via control of active power of superconducting magnetic energy storage (SMES) unit. The strategy is based on the generator acceleration signal. So, the SMES absorbs or generates the energy imbalance caused by different disturbances in the power system and suppresses the subsynchronous oscillations. The chaotic optimization algorithm (COA) is used to achieve the optimal parameter of the proposed controller. To validate the capability of the SMES in damping oscillations, some simulations with different disturbances are performed on the first model of IEEE second benchmark model. All the simulation results show that the subsynchronous resonance as well as low frequency oscillation (LFO) is satisfactorily mitigated by the SMES controlled by the proposed strategy.

  1. A new control strategy of SMES for mitigating subsynchronous oscillations

    International Nuclear Information System (INIS)

    Farahani, Mohsen

    2012-01-01

    This paper proposes a new strategy to mitigate the subsynchronous oscillations in power systems compensated by series capacitors via control of active power of superconducting magnetic energy storage (SMES) unit. The strategy is based on the generator acceleration signal. So, the SMES absorbs or generates the energy imbalance caused by different disturbances in the power system and suppresses the subsynchronous oscillations. The chaotic optimization algorithm (COA) is used to achieve the optimal parameter of the proposed controller. To validate the capability of the SMES in damping oscillations, some simulations with different disturbances are performed on the first model of IEEE second benchmark model. All the simulation results show that the subsynchronous resonance as well as low frequency oscillation (LFO) is satisfactorily mitigated by the SMES controlled by the proposed strategy.

  2. Dynamical Friedel oscillations of a Fermi sea

    Science.gov (United States)

    Zhang, J. M.; Liu, Y.

    2018-02-01

    We study the scenario of quenching an interaction-free Fermi sea on a one-dimensional lattice ring by suddenly changing the potential of a site. From the point-of-view of the conventional Friedel oscillation, which is a static or equilibrium problem, it is of interest what temporal and spatial oscillations the local sudden quench will induce. Numerically, the primary observation is that for a generic site, the local particle density switches between two plateaus periodically in time. Making use of the proximity of the realistic model to an exactly solvable model and employing the Abel regularization to assign a definite value to a divergent series, we obtain an analytical formula for the heights of the plateaus, which turns out to be very accurate for sites not too close to the quench site. The unexpect relevance and the incredible accuracy of the Abel regularization are yet to be understood. Eventually, when the contribution of the defect mode is also taken into account, the plateaus for those sites close to or on the quench site can also be accurately predicted. We have also studied the infinite lattice case. In this case, ensuing the quench, the out-going wave fronts leave behind a stable density oscillation pattern. Because of some interesting single-particle property, this dynamically generated Friedel oscillation differs from its conventional static counterpart only by the defect mode.

  3. Airfoil flow instabilities induced by background flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Selerowicz, W.C.; Szumowski, A.P. [Technical Univ. Warsaw (Poland)

    2002-04-01

    The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, {alpha}=4 and {alpha}=8.5 , which correspond to the attached and separated steady airfoil flows, respectively. (orig.)

  4. Intermittent, Non Cyclic Severe Mechanical Aortic Valve Regurgitation

    Science.gov (United States)

    Choi, Jong Hyun; Song, Seunghwan; Lee, Myung-Yong

    2013-01-01

    Mechanical aortic prosthesis dysfunction can result from thrombosis or pannus formation. We describe an unusual case of intermittent, non cyclic mechanical aortic prosthesis dysfunction due to pannus formation with thrombus in the absence of systolic restriction of disk excursion, that presented with intermittent severe aortic regurgitation. PMID:24459568

  5. Intermittent versus Continuous Physiotherapy in Children with Cerebral Palsy

    Science.gov (United States)

    Christiansen, Annette Sandahl; Lange, Christa

    2008-01-01

    The aim of this study was to compare the effect of the delivery of the same amount of intermittent versus continuous physiotherapy given to children with cerebral palsy (CP). This was organized either in an intermittent regime four times a week for 4 weeks alternating with a 6-week treatment pause, or a continuous once or twice a week regime, both…

  6. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  7. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  8. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  9. Theory of oscillators

    CERN Document Server

    Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich

    1966-01-01

    Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-

  10. Solar and stellar oscillations

    International Nuclear Information System (INIS)

    Fossat, E.

    1981-01-01

    We try to explain in simple words what a stellar oscillation is, what kind of restoring forces and excitation mechanisms can be responsible for its occurence, what kind of questions the theoretician asks to the observer and what kind of tools the latter is using to look for the answers. A selected review of the most striking results obtained in the last few years in solar seismology and the present status of their consequences on solar models is presented. A brief discussion on the expected extension towards stellar seismology will end the paper. A selected bibliography on theory as well as observations and recent papers is also included. (orig.)

  11. Coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, J; Scott, A C

    1983-01-01

    Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.

  12. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  13. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  14. Stability of synchrony against local intermittent fluctuations in tree-like power grids

    Science.gov (United States)

    Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen

    2017-12-01

    90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.

  15. Intermittent metabolic switching, neuroplasticity and brain health

    Science.gov (United States)

    Mattson, Mark P.; Moehl, Keelin; Ghena, Nathaniel; Schmaedick, Maggie; Cheng, Aiwu

    2018-01-01

    During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease. PMID:29321682

  16. Compensatory mechanisms activated with intermittent energy restriction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid

    2018-01-01

    Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy...... restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age......: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting...

  17. Towards an intermittency-friendly energy system

    DEFF Research Database (Denmark)

    Blarke, Morten

    2012-01-01

    Distributed cogeneration has played a key role in the implementation of sustainable energy policies for three decades. However, increasing penetration levels of intermittent renewables is challenging that position. The paradigmatic case of West Denmark indicates that distributed operators...... are capitulating as wind power penetration levels are moving above 25%; some operators are retiring cogeneration units entirely, while other operators are making way for heat-only boilers. This development is jeopardizing the system-wide energy, economic, and environmental benefits that distributed cogeneration...... still has to offer. The solution is for distributed operators to adapt their technology and operational strategies to achieve a better co-existence between cogeneration and wind power. Four options for doing so are analysed including a new concept that integrates a high pressure compression heat pump...

  18. Scale Dependence of Spatiotemporal Intermittence of Rain

    Science.gov (United States)

    Kundu, Prasun K.; Siddani, Ravi K.

    2011-01-01

    It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.

  19. Beneficial effects of intermittent suction and pressure treatment in intermittent claudication

    DEFF Research Database (Denmark)

    Mehlsen, J; Himmelstrup, H; Himmelstrup, Bodil

    1993-01-01

    administration. The treatment caused significant increments in the ADP thresholds for platelet aggregation, while the effects on fibrinolysis were uncertain. It is concluded that intermittent suction and pressure treatment offers a new approach for conservative treatment of intermittent claudication....... participated in an open trial investigating the possible effects of the treatment on platelet aggregation and fibrinolysis. Pain-free and maximal walking distances were measured on a treadmill, and systolic blood pressure was measured on the upper limb, the ankle, and the first toe bilaterally. The threshold...... for adenosine diphosphate (ADP)-induced platelet aggregation was tested, and the fibrinolytic activity was estimated from the euglobulin clot lysis time. Active treatment resulted in significant improvements in pain-free and maximal walking distances, whereas no changes could be found during placebo...

  20. Stable And Oscillating Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  1. Isotropic oscillator: spheroidal wave functions

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Pogosyan, G.S.; Ter-Antonyan, V.M.; Sisakyan, A.N.

    1985-01-01

    Solutions of the Schroedinger equation are found for an isotropic oscillator (10) in prolate and oblate spheroidal coordinates. It is shown that the obtained solutions turn into spherical and cylindrical bases of the isotropic oscillator at R→0 and R→ infinity (R is the dimensional parameter entering into the definition of prolate and oblate spheroidal coordinates). The explicit form is given for both prolate and oblate basis of the isotropic oscillator for the lowest quantum states

  2. Neutrino oscillations. Theory and experiment

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2001-01-01

    Theoretical schemes on neutrino oscillations are considered. The experimental data on neutrino oscillations obtained in the Super-Kamiokande (Japan) and SNO (Canada) experiments are given. Comparison of these data with the predictions obtained in the theoretical schemes is done. Conclusion is made that the experimental data confirm only the scheme with transitions (oscillations) between aromatic ν e -, ν μ -, ν τ - neutrinos with maximal angle mixings. (author)

  3. [Intermittent Explosive Disorder: A Controversial Diagnosis].

    Science.gov (United States)

    Zapata, Juan Pablo; Palacio, Juan David

    2016-01-01

    Intermittent explosive disorder (IED) is aan externalizing externalising disorder characterized characterised by recurrent aggression episodes. Even though this disorder was described several decades ago, and it carries personal and social consequences, there is little in the medical scientific literature on this. bibliographic production about it is scanty. To perform a conceptualization conceptualisation of this disorder, through the review and bibliometric analysis of the available scientific articles. A search was performed in databases with the english English terms intermittent explosive disorder, impulse disorders control [MeSH], in combination with other terms. A bibliometric analysis in the GoPubMed® search engineer was also performed using all data obtained in the search. was also perfomed. IED prevalence ranges from 1.4% to 7%, it presents more frequently during middle adolescence, and with more noticeable repercussions in men males than in womenfemales. The psychopathological core of IED is the impulsive aggressive behaviour that presents in the form of «attacks» that occurs in response to a lower precipitating stimulus. Scientific publications about IED are few and relatively recent, and the vast majority is provided bycomes from the United States (56.56%), and headed by a single author. This fact highlights the need to replicate the findings described about the IED in order to demonstrate the validity and reliability of its diagnostic criteria. It is possible that doubts about the existence of a diagnosis lead have led to such a scant literature about the IED. Available studies about IED allow have allowed characterizing a group of subjects with episodes of impulsive aggression to be characterised, but this description requires replication in different latitudesneeds to be repeated in different areas. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. Managing server clusters on intermittent power

    Directory of Open Access Journals (Sweden)

    Navin Sharma

    2015-12-01

    Full Text Available Reducing the energy footprint of data centers continues to receive significant attention due to both its financial and environmental impact. There are numerous methods that limit the impact of both factors, such as expanding the use of renewable energy or participating in automated demand-response programs. To take advantage of these methods, servers and applications must gracefully handle intermittent constraints in their power supply. In this paper, we propose blinking—metered transitions between a high-power active state and a low-power inactive state—as the primary abstraction for conforming to intermittent power constraints. We design Blink, an application-independent hardware–software platform for developing and evaluating blinking applications, and define multiple types of blinking policies. We then use Blink to design both a blinking version of memcached (BlinkCache and a multimedia cache (GreenCache to demonstrate how application characteristics affect the design of blink-aware distributed applications. Our results show that for BlinkCache, a load-proportional blinking policy combines the advantages of both activation and synchronous blinking for realistic Zipf-like popularity distributions and wind/solar power signals by achieving near optimal hit rates (within 15% of an activation policy, while also providing fairer access to the cache (within 2% of a synchronous policy for equally popular objects. In contrast, for GreenCache, due to multimedia workload patterns, we find that a staggered load proportional blinking policy with replication of the first chunk of each video reduces the buffering time at all power levels, as compared to activation or load-proportional blinking policies.

  5. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...

  6. Chemotaxis and Actin Oscillations

    Science.gov (United States)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  7. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic of the ampli......A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  8. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  9. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  10. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2006-01-01

    .... Intermittent androgen ablation therapy (IAAT) may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  11. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2004-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  12. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2005-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  13. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2003-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  14. The influence of riparian-hyporheic zone on the hydrological responses in an intermittent stream

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2002-01-01

    Full Text Available Stream and riparian groundwater hydrology has been studied in a small intermittent stream draining a forested catchment for a system representative of a Mediterranean climate. The relationship between precipitation and stream runoff and the interactions between stream water and the surrounding riparian groundwater have been analysed under a wide spectrum of meteorological conditions. The hypothesis that the hydrological condition of the near-stream groundwater compartment can regulate the runoff generation during precipitation events was tested. Stream runoff is characterised by a summer dry period, and precipitation input explained only 25% of runoff variability over the study period (r2 =0.25, d.f.=51, p2=0.80, d.f.=34, p Keywords: riparian zone, groundwater hydrology, runoff, intermittent stream, Mediterranean climate

  15. Observation of deep oscillation usage and its effectiveness on burn scars – case report

    Directory of Open Access Journals (Sweden)

    Justyna A. Pogorzelska

    2017-03-01

    Full Text Available An organism that has undergone tissue damage pursues its immediate recovery. In order to do so, it uses a dynamic and congeneric process of regeneration consisting of several phases. Currently, innovative methods are being sought influencing tissue healing. One such system is deep oscillation, which is based on an intermittent electrostatic field created between the device and the patient’s skin. It causes a unique, deep, and resonant vibration. It is a noninvasive and painless method. The aim of deep oscillation is purposeful interfering in the physiological processes of tissue trophism. In the thesis, the case of 16-month-old girl is presented, who experienced a thermal scald to her left arm and her chest. The aim of the following thesis is observation of deep oscillation use and its effectiveness in the event of newly formed burn scars that undergo remodelling and can lead to curtailment of the healing process.

  16. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, Matthias; Omel' chenko, Oleh E. [Weierstrass Institute, Mohrenstrasse 39, Berlin 10117 (Germany); Sieber, Jan [College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF (United Kingdom)

    2015-05-15

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

  17. Coordination of the Walking Stick Insect Using a System of Nonlinear Coupled Oscillators

    National Research Council Canada - National Science Library

    Marvin, Daryl J

    1992-01-01

    The area of walking machines is investigated. A design for a central pattern generator composed of nonlinear coupled oscillators which generates the characteristic gaits of the walking stick insect is presented...

  18. A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall

    Science.gov (United States)

    Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.

    2017-06-01

    Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.

  19. Investigation of intermittent magnetic flux in the auroral zones with kilometer radiation (AKR)

    International Nuclear Information System (INIS)

    Liu, S.Q.; Li, X.Q.

    2001-01-01

    On the basis of the nonlinear equations for self-generated magnetic fields, it is numerically shown that the magnetic fields self-generated are instable and may collapse, resulting in spatially highly intermittent flux fragment. Numerical results show that the enhanced magnetic flux has a strength about up to 10 -2 Gauss in range about around 250-350 km in auroral zones with kilometric radiation (AKR), which correspond to estimated values in both the strength and characteristic scale by Mckean et al. [J. Geophys. Res. [Oceans] 96, 21055 (1991)

  20. DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    JAGADEESH PASUPULETI

    2006-06-01

    Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.