WorldWideScience

Sample records for intermittent oscillations generated

  1. Oscillating fluid power generator

    Science.gov (United States)

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  2. Lenses generated by intermittent currents

    Science.gov (United States)

    Nof, Doron

    1991-03-01

    A nonlinear mechanism for the generation of anticyclonic lens-like eddies from boundary currents is proposed. In contrast to the familiar generation processes that rely on unstable long waves that grow and close upon themselves or vortex shedding due to the geometry of the boundary, the present mechanism is related to intermittency in the current's mass transport. The essence of the new mechanism is that intermittencies in the transport (such as those in the Denmark Strait or the Mediterranean outflow) lead to unbalanced patches of fluid which break up into a discrete sets of eddies that interact with the boundary. The process is highly nonlinear because both the amplitude and the Rossby number are of order unity. It is modeled as follows: we begin with a rectangular box containing the motionless (light) fluid near the boundary. At, say, t = 0, the conceptual box is removed the unbalanced fluid undergoes two main processes. The first involves the establishment of a set of eddies via breakup and geostrophic adjustment, whereas the second is associated with the interaction of the set with the wall. These two processes are examined independently even though in reality the processes are, obviously, taking place at the same time. To examine the first processes we consider the nonlinear collapse of a (light) rectangular box in the open ocean away from the boundary. The breakup processes involves, of course, some sort of instability (because the patch does not remain intact) but this is not necessarily related to the long wave instability that is usually associated with long gravity currents. The general structures of the resulting final chain of eddies can be computed analytically by using the usual connecting principles, the conservation of potential vorticity and mass. It turns out, however, that the number of eddies and their detailed structure cannot be computed unless one invokes an additional constraint. To resolve this closure difficulty, the integrated angular

  3. Intermittent transport and relaxation oscillations of nonlinear reduced models for fusion plasmas

    International Nuclear Information System (INIS)

    Hamaguchi, S.; Takeda, K.; Bierwage, A.; Tsurimaki, S.; Sato, H.; Unemura, T.; Wakatani, M.; Benkadda, S.

    2005-01-01

    Generation of sheared flows and their effects on turbulent transport are studied for ion temperature gradient (ITG) driven instability and resistive drift instability. With the use of low degree-of-freedom models as well as the full partial differential equation (PDE) models, the minimum mode structures have been identified that are required for the generation of intermittent transport and relaxation oscillations. Generation of turbulence due to magnetohydrodynamic (MHD) instabilities and their roles in the control of stellarator and tokamak plasmas are also discussed. (author)

  4. Downstream effects of intermittent power generation

    Energy Technology Data Exchange (ETDEWEB)

    Bretschko, G. (Austrian Academy of Sciences, Lunz (AT). Inst. fuer Limnologie); Moog, O. (Univ. Agric., Vienna (AT). Inst. Water Prov., Water Quality and Fisheries Management)

    1990-01-01

    Intermittent hydro-power generation creates frequent and dramatic discharge peaks combined with intervening extremely low water conditions downstream of the plant. Studies of the two Austrian rivers showed that whereas no alterations were found in the qualitative composition of zoobenthos, the decrease in abundance and biomass may amount up to 95%. The mismatch between the hydrography of surface water and groundwater might well be a cause of the detrimental effects of frequent and artificially created spates. The drastic reduction of zoobenthic biomass affects not only fish production but minimizes self-purification processes as well. Until tributaries diminish the effects of intermittent power generation, the river is reduced to a mere transport vehicle. (author).

  5. Intermittent Coronal Loop Oscillations by Random Energy Releases

    Science.gov (United States)

    Mendoza-Briceño, César A.; Erdélyi, Robert

    2006-09-01

    High-resolution observations by the SOHO and TRACE spacecraft have confirmed the existence of coronal loop oscillations and waves. In a recent work, Mendoza-Briceño et al. studied the heating response of coronal plasma to energy pulses randomly distributed in time and space along coronal loops. In this paper we focus on the oscillatory patterns and other features, such as cool gas blobs traveling along the loop, during the evolution of spatiotemporal randomly heated flux tubes in the corona. The nature of these oscillatory patterns is investigated using wavelet analysis. Periodic features, such as wave packets, with periods of 150-220, 500-600, and 800-1000 s are found. It is also found that the periods increase with the loop length and decrease with the length of the loop segments along which the pulses are injected. On the other hand, the randomly driven intermittent cool plasma blobs that propagate from one footpoint to the other are analyzed. Although plenty of coronal loop oscillations are detected by the cohort of the current high-resolution satellites, there are more controversial observational evidences about the predicted cold plasma blobs.

  6. Intermittent turbulence and oscillations in the stable boundary layer over land

    NARCIS (Netherlands)

    Wiel, van de B.

    2002-01-01

    As the title of this thesis indicates, our main subject of interest is: "Intermittent turbulence and oscillation in the stable boundary layer over land". As such, this theme connects the different chapters. Here, intermittent turbulence is defined as a sequence of events were 'burst' of

  7. Intermittency in delay-coupled FitzHugh–Nagumo oscillators and ...

    Indian Academy of Sciences (India)

    out intermittency occurs. We introduce a definition of phase such that loss of phase synchrony can be used as a precursor to the intermittent behavior. This sys- tem is comprised of two identical FitzHugh–Nagumo. (FHN) oscillators which are coupled to each other using multiple time-delay diffusive couplings. Such a form of.

  8. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  9. Intermittency in delay-coupled FitzHugh–Nagumo oscillators and ...

    Indian Academy of Sciences (India)

    We study the dynamical properties of in-out intermittency in a system of two identical FitzHugh–. Nagumo oscillators coupled by multiple .... In this section we briefly describe the general qualitative properties of the system described by ... case where the synchronization manifold is transver- sally unstable is quite distinct from ...

  10. Intermittency in low frequency current oscillations in semi-insulating GaAs

    CERN Document Server

    Samuilov, V; Cenys, A; Kyritsi, K G; Anagnostopoulos, A N; Bleris, G L

    2003-01-01

    Spontaneous low frequency current oscillations were observed in semi-insulating crystalline GaAs. If the value of the applied voltage U was increased, a crisis induced intermittency was observed. The time intervals between successive transitions were measured. For values of the control parameter U larger than a critical value two interacting chaotic subattractors were observed. The average time intervals are scaling with the control parameter with a critical exponent very close to -1/2.

  11. Generation of intermittent gravitocapillary waves via parametric forcing

    Science.gov (United States)

    Castillo, Gustavo; Falcón, Claudio

    2018-04-01

    We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.

  12. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    International Nuclear Information System (INIS)

    He, Zhiwei; Sun, Yong; Zhan, Meng

    2013-01-01

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weak coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators

  13. Managing intermittent energy for generating electricity on islands

    International Nuclear Information System (INIS)

    Mahiou, Bernard

    2013-01-01

    France's 'electric islands' are the overseas departments and Corsica that have small, isolated grids in 'zones not interconnected' (ZNI) with the continental grid. What characterizes them is the strong growth of consumption and the quite high cost of electricity, the latter heavily subsidized through arrangements under the legal obligation to 'contribute to the public service of electricity'. Renewable, intermittent forms of energy (especially photovoltaic) have grown exponentially on these islands since 2008 thanks to the backing of public policies for setting objectives, tax exemptions, and the rates for purchasing the electricity thus generated. Owing to several experiments under way, the ZNIs have become laboratories for anticipating the future difficulties that interconnected electricity grids will have to handle once the share of renewable, intermittent electricity will have risen significantly in the energy mix

  14. Sustainable integration of high levels of intermittent generation

    International Nuclear Information System (INIS)

    Pereira, R.; Cabral, P.

    2005-01-01

    The sustainable development of electric power systems rely on three main drivers: the security of supply, the competitiveness and the protection of the environment. For this purpose the promotion of endogenous energy sources, mainly the renewable ones, should be underlined. Still, most of renewable energy sources raise very sensitive issues concerning the security of supply, due to its randomness and unpredictability. The wind power, currently in its fast growing development, plays a relevant role on this matter. From the demand-side perspective, there is also a lot to do regarding the promotion of more efficient use of energy as well as mechanisms that contribute to security of supply. This paper aims to present guidelines for the selection of the most adequate solutions regarding: sustainable evolution of renewable generation technologies, based on the most meritorious resources under economic and security of supply assessments; complementary energy storage systems that allow the integration of intermittent generation ensuring adequate security of supply levels; and sustainable evolution of demand, based on DSM measures selected from different available alternatives. (author)

  15. Surplus from and storage of electricity generated by intermittent sources

    Science.gov (United States)

    Wagner, Friedrich

    2016-12-01

    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  16. Removing Barriers for Effective Deployment of Intermittent Renewable Generation

    Science.gov (United States)

    Arabali, Amirsaman

    The stochastic nature of intermittent renewable resources is the main barrier to effective integration of renewable generation. This problem can be studied from feeder-scale and grid-scale perspectives. Two new stochastic methods are proposed to meet the feeder-scale controllable load with a hybrid renewable generation (including wind and PV) and energy storage system. For the first method, an optimization problem is developed whose objective function is the cost of the hybrid system including the cost of renewable generation and storage subject to constraints on energy storage and shifted load. A smart-grid strategy is developed to shift the load and match the renewable energy generation and controllable load. Minimizing the cost function guarantees minimum PV and wind generation installation, as well as storage capacity selection for supplying the controllable load. A confidence coefficient is allocated to each stochastic constraint which shows to what degree the constraint is satisfied. In the second method, a stochastic framework is developed for optimal sizing and reliability analysis of a hybrid power system including renewable resources (PV and wind) and energy storage system. The hybrid power system is optimally sized to satisfy the controllable load with a specified reliability level. A load-shifting strategy is added to provide more flexibility for the system and decrease the installation cost. Load shifting strategies and their potential impacts on the hybrid system reliability/cost analysis are evaluated trough different scenarios. Using a compromise-solution method, the best compromise between the reliability and cost will be realized for the hybrid system. For the second problem, a grid-scale stochastic framework is developed to examine the storage application and its optimal placement for the social cost and transmission congestion relief of wind integration. Storage systems are optimally placed and adequately sized to minimize the sum of operation

  17. Biological conditions for oscillations and chaos generated by multispecies competition

    NARCIS (Netherlands)

    Huisman, J; Weissing, FJ

    2001-01-01

    We investigate biological mechanisms that generate oscillations and chaos in multispecies competition models. For this purpose, we use a competition model concerned with competition for abiotic essential resources. Because phytoplankton and plants consume quite a number of abiotic essential

  18. Intermittently chaotic oscillations for a differential-delay equation with Gaussian nonlinearity

    Science.gov (United States)

    Hamilton, Ian

    1992-01-01

    For a differential-delay equation the time dependence of the variable is a function of the variable at a previous time. We consider a differential-delay equation with Gaussian nonlinearity that displays intermittent chaos. Although not the first example of a differential-delay equation that displays such behavior, for this example the intermittency is classified as type III, and the origin of the intermittent chaos may be qualitatively understood from the limiting forms of the equation for large and small variable magnitudes.

  19. Charge generation in an oscillating background

    International Nuclear Information System (INIS)

    Funakubo, Koichi; Kakuto, Akira; Otsuki, Shoichiro; Toyoda, Fumihiko

    2001-01-01

    Preheating after inflation, which can be interpreted as particle creation in an oscillating inflation background, represents a state far from thermal equilibrium. We extend the field theoretical treatment of the preheating by Linde et al. to the case of multicomponent complex scalars to show that charges are created in this process if C and CP are violated. A new possibility for baryogenesis based on this mechanism is also discussed. (author)

  20. Charge generation in an oscillating background

    Energy Technology Data Exchange (ETDEWEB)

    Funakubo, Koichi [Department of Physics, Saga Univ., Saga (Japan); Kakuto, Akira; Otsuki, Shoichiro; Toyoda, Fumihiko [Kyushu School of Engineering, Kinki Univ., Iizuka, Fukuoka (Japan)

    2001-05-01

    Preheating after inflation, which can be interpreted as particle creation in an oscillating inflation background, represents a state far from thermal equilibrium. We extend the field theoretical treatment of the preheating by Linde et al. to the case of multicomponent complex scalars to show that charges are created in this process if C and CP are violated. A new possibility for baryogenesis based on this mechanism is also discussed. (author)

  1. Rabi spin oscillations generated by ultrasound in solids.

    Science.gov (United States)

    Calero, C; Chudnovsky, E M

    2007-07-27

    It is shown that ultrasound in the gigahertz range can generate space-time Rabi oscillations between spin states of molecular magnets. We compute dynamics of the magnetization generated by surface acoustic waves and discuss conditions under which this novel quantum effect can be observed.

  2. Generation of dark solitons in oscillating Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Theocharis, G. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Nistazakis, H.E. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece); Department of Telecommunications Science and Technology, University of Peloponnese, Tripolis 22100 (Greece); Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)]. E-mail: dfrantz@cc.uoa.gr; Bishop, A.R. [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-04-11

    We propose an experimentally tractable setting for observing an 'instability' of a repulsive oscillating Bose-Einstein condensate that leads to the generation of dark solitons. We illustrate that when the trap of the condensate (which incorporates a localized impurity) is displaced so that the condensate flow is characterized by an atomic velocity larger than the local speed of sound, dark solitons are generated. The subcritical, near critical and supercritical are analyzed in detail.

  3. Noise generation by ducted combustion systems. [resonant oscillations

    Science.gov (United States)

    Chiu, H. H.; Plett, E. G.; Summerfield, M.

    1973-01-01

    Analysis of the interaction between a zone of nonsteady combustion and its confining duct shows that resonant type oscillations occur with resulting noise intensities far greater than from corresponding unconfined flame zones. The blading action on the flow through the compressor and turbine of an engine generates discrete frequency noise which, it is found, is enhanced by the response of the combustion zone in between. Ducted combustor experiments verify the predicted resonant type noise, the amplitude and frequency of which are strongly influenced by the duct dimensions and end impedance. A convergent exit nozzle results in stronger internal resonant noise oscillations but also generates a higher jet velocity, with the attendant jet noise which exceeds noise from inside the duct at jet Mach numbers near unity.-

  4. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  5. The intermittency of wind, solar, and renewable electricity generators. Technical barrier or rhetorical excuse?

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-09-15

    A consensus has long existed within the electric utility sector of the United States that renewable electricity generators such as wind and solar are unreliable and intermittent to a degree that they will never be able to contribute significantly to electric utility supply or provide baseload power. This paper asks three interconnected questions: (1) What do energy experts really think about renewables in the United States?; (2) To what degree are conventional baseload units reliable?; (3) Is intermittency a justifiable reason to reject renewable electricity resources? To provide at least a few answers, the author conducted 62 formal, semi-structured interviews at 45 different institutions including electric utilities, regulatory agencies, interest groups, energy systems manufacturers, nonprofit organizations, energy consulting firms, universities, national laboratories, and state institutions in the United States. In addition, an extensive literature review of government reports, technical briefs, and journal articles was conducted to understand how other countries have dealt with (or failed to deal with) the intermittent nature of renewable resources around the world. It was concluded that the intermittency of renewables can be predicted, managed, and mitigated, and that the current technical barriers are mainly due to the social, political, and practical inertia of the traditional electricity generation system. (author)

  6. Self-organisation and intermittent coherent oscillations in the EXTRAP T2 reversed field pinch

    International Nuclear Information System (INIS)

    Cecconello, M.; Malmberg, J.A.; Sallander, E.; Drake, J.R.

    2002-01-01

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented

  7. Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch

    Science.gov (United States)

    Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.

  8. Solar atmosphere wave dynamics generated by solar global oscillating eigenmodes

    Science.gov (United States)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.; Zheng, R.

    2018-01-01

    The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun's atmospheric layers. In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5 Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model. We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs). Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.

  9. Parametric generation of multimegahertz acoustic oscillations in laser-generated multibubble system in bulk water

    Science.gov (United States)

    Kudryashov, Sergey I.; Lyon, Kevin; Allen, Susan D.

    2006-05-01

    Using a nanosecond CO2 laser for explosive surface boiling of bulk water, oscillatory acoustic transients from steam bubbles were recorded using a contact photoacoustic technique. Multiple well-resolved, high-amplitude multimegahertz spectral features reflecting parametric interactions between oscillations of cavitating steam bubbles were revealed in the fast Fourier transformation spectra of these transients. A potential parametric generation mechanism for these oscillation modes of steam bubbles is discussed.

  10. On-off intermittency of thalamo-cortical neuronal network oscillations in the electroencephalogram of rodents with genetic predisposition to absence epilepsy

    Science.gov (United States)

    Hramov, Alexander E.; Grubov, Vadim V.; Pavlov, Alexey N.; Sitnikova, Evgenija Yu.; Koronovskii, Alexey A.; Runnova, Anastasija E.; Shurugina, Sveltlana A.; Ivanov, Alexey V.

    2013-02-01

    Spike-wave discharges are electroencephalographic hallmarks of absence epilepsy. Spike-wave discharges are known to originate from thalamo-cortical neuronal network that normally produces sleep spindle oscillations. Although both sleep spindles and spike-wave discharges are considered as thalamo-cortical oscillations, functional relationship between them is still uncertain. The present study describes temporal dynamics of spike-wave discharges and sleep spindles as determined in long-time electroencephalograms (EEG) recorded in WAG/Rij rat model of absence epilepsy. We have proposed the wavelet-based method for the automatic detection of spike-wave discharges, sleep spindles (10-15Hz) and 5-9Hz oscillations in EEG. It was found that non-linear dynamics of spike-wave discharges and sleep spindles fits well to the law of 'on-off intermittency'. Intermittency in sleep spindles and spike-wave discharges implies that (1) temporal dynamics of these oscillations are deterministic in nature, and (2) it might be controlled by a system-level mechanism responsible for circadian modulation of neuronal network activity.

  11. Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks

    CERN Document Server

    Senani, Raj; Singh, V K; Sharma, R K

    2016-01-01

    This book serves as a single-source reference to sinusoidal oscillators and waveform generators, using classical as well as a variety of modern electronic circuit building blocks. It provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators and includes a catalogue of over 600 configurations of oscillators and waveform generators, describing their relevant design details and salient performance features/limitations. The authors discuss a number of interesting, open research problems and include a comprehensive collection of over 1500 references on oscillators and non-sinusoidal waveform generators/relaxation oscillators. Offers readers a single-source reference to everything connected to sinusoidal oscillators and waveform generators, using classical as well as modern electronic circuit building blocks; Provides a state-of-the-art review of a large variety of sinusoidal oscillators and waveform generators; Includes a catalog of over 600 configurations of oscillato...

  12. An innovative intermittent hypoxia model for cell cultures allowing fast Po2 oscillations with minimal gas consumption.

    Science.gov (United States)

    Minoves, Mélanie; Morand, Jessica; Perriot, Frédéric; Chatard, Morgane; Gonthier, Brigitte; Lemarié, Emeline; Menut, Jean-Baptiste; Polak, Jan; Pépin, Jean-Louis; Godin-Ribuot, Diane; Briançon-Marjollet, Anne

    2017-10-01

    Performing hypoxia-reoxygenation cycles in cell culture with a cycle duration accurately reflecting what occurs in obstructive sleep apnea (OSA) patients is a difficult but crucial technical challenge. Our goal was to develop a novel device to expose multiple cell culture dishes to intermittent hypoxia (IH) cycles relevant to OSA with limited gas consumption. With gas flows as low as 200 ml/min, our combination of plate holders with gas-permeable cultureware generates rapid normoxia-hypoxia cycles. Cycles alternating 1 min at 20% O 2 followed by 1 min at 2% O 2 resulted in Po 2 values ranging from 124 to 44 mmHg. Extending hypoxic and normoxic phases to 10 min allowed Po 2 variations from 120 to 25 mmHg. The volume of culture medium or the presence of cells only modestly affected the Po 2 variations. In contrast, the nadir of the hypoxia phase increased when measured at different heights above the membrane. We validated the physiological relevance of this model by showing that hypoxia inducible factor-1α expression was significantly increased by IH exposure in human aortic endothelial cells, murine breast carcinoma (4T1) cells as well as in a blood-brain barrier model (2.5-, 1.5-, and 6-fold increases, respectively). In conclusion, we have established a new device to perform rapid intermittent hypoxia cycles in cell cultures, with minimal gas consumption and the possibility to expose several culture dishes simultaneously. This device will allow functional studies of the consequences of IH and deciphering of the molecular biology of IH at the cellular level using oxygen cycles that are clinically relevant to OSA. Copyright © 2017 the American Physiological Society.

  13. Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency

    International Nuclear Information System (INIS)

    Paradisi, Paolo; Allegrini, Paolo

    2015-01-01

    In many complex systems the non-linear cooperative dynamics determine the emergence of self-organized, metastable, structures that are associated with a birth–death process of cooperation. This is found to be described by a renewal point process, i.e., a sequence of crucial birth–death events corresponding to transitions among states that are faster than the typical long-life time of the metastable states. Metastable states are highly correlated, but the occurrence of crucial events is typically associated with a fast memory drop, which is the reason for the renewal condition. Consequently, these complex systems display a power-law decay and, thus, a long-range or scale-free behavior, in both time correlations and distribution of inter-event times, i.e., fractal intermittency. The emergence of fractal intermittency is then a signature of complexity. However, the scaling features of complex systems are, in general, affected by the presence of added white or short-term noise. This has been found also for fractal intermittency. In this work, after a brief review on metastability and noise in complex systems, we discuss the emerging paradigm of Temporal Complexity. Then, we propose a model of noisy fractal intermittency, where noise is interpreted as a renewal Poisson process with event rate r p . We show that the presence of Poisson noise causes the emergence of a normal diffusion scaling in the long-time range of diffusion generated by a telegraph signal driven by noisy fractal intermittency. We analytically derive the scaling law of the long-time normal diffusivity coefficient. We find the surprising result that this long-time normal diffusivity depends not only on the Poisson event rate, but also on the parameters of the complex component of the signal: the power exponent μ of the inter-event time distribution, denoted as complexity index, and the time scale T needed to reach the asymptotic power-law behavior marking the emergence of complexity. In particular

  14. Intermittent heating of the corona as an alternative to generate fast solar wind flows

    International Nuclear Information System (INIS)

    Grappin, R.; Mangeney, A.; Schwartz, S.J.; Feldman, W.C.

    1999-01-01

    We discuss a new alternative to the generation of fast streams which does not require momentum addition beyond the critical point. We consider the consequences on the solar wind of temporally intermittent heat depositions at the base of the wind. With the help of 1d hydrodynamic simulations we show that the instantaneous wind velocity profile fluctuates around an average profile well above the one corresponding to the Parker solution with a coronal temperature equal to the average coronal temperature imposed at the bottom of the numerical domain. The origin of this result lies in a previously overlooked phenomenon, the overexpansion of hot plasma regions in the subsonic wind. copyright 1999 American Institute of Physics

  15. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  16. Extremal Properties of an Intermittent Poisson Process Generating 1/f Noise

    Science.gov (United States)

    Grüneis, Ferdinand

    2016-08-01

    It is well-known that the total power of a signal exhibiting a pure 1/f shape is divergent. This phenomenon is also called the infrared catastrophe. Mandelbrot claims that the infrared catastrophe can be overcome by stochastic processes which alternate between active and quiescent states. We investigate an intermittent Poisson process (IPP) which belongs to the family of stochastic processes suggested by Mandelbrot. During the intermission δ (quiescent period) the signal is zero. The active period is divided into random intervals of mean length τ0 consisting of a fluctuating number of events; this is giving rise to so-called clusters. The advantage of our treatment is that the spectral features of the IPP can be derived analytically. Our considerations are focused on the case that intermission is only a small disturbance of the Poisson process, i.e., to the case that δ ≤ τ0. This makes it difficult or even impossible to discriminate a spike train of such an IPP from that of a Poisson process. We investigate the conditions under which a 1/f spectrum can be observed. It is shown that 1/f noise generated by the IPP is accompanied with extreme variance. In agreement with the considerations of Mandelbrot, the IPP avoids the infrared catastrophe. Spectral analysis of the simulated IPP confirms our theoretical results. The IPP is a model for an almost random walk generating both white and 1/f noise and can be applied for an interpretation of 1/f noise in metallic resistors.

  17. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  18. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser...

  19. Generation of Digital Modulation for Optical Communication Using Tunable Active-R Oscillator

    Directory of Open Access Journals (Sweden)

    R. Nandi

    1993-12-01

    Full Text Available This paper describes the design of an active-R biphase oscillator using a pair of matched Operational Amplifier (OA and a few resistors. The frequency of oscillation of such oscillator is tunable by a resistor (R0. The oscillator can be readily extended to the digitally tunable version by replacing the tuner resistor with a Binary Weighted Switched Resistor Array (BWSRA. The digitally tunable oscillator can also be hooked up with microprocessor using CMOS CD 4066 switches. Generation of BFSK/BPSK wave modulations have then been considered using this oscillator. Subsequently, the BFSK/BPSK. modulations are used to excite 4N25 Optoisolator. The received BFSK/BPSK signals from the Optoisolator are in full conformity with the correspondingtransmitted ones. Experimental results are included.

  20. Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment

    Science.gov (United States)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2017-08-01

    Most field-based approaches that address runoff generation questions have been conducted in steep landscapes with shallow soils. Runoff generation processes in low relief landscapes with deep soils remain less understood. We addressed this by characterizing dominant runoff generating flow paths by monitoring the timing and magnitude of precipitation, runoff, shallow soil moisture, and shallow and deep groundwater dynamics in a 3.3 ha ephemeral-to-intermittent drainage network in the Piedmont region of North Carolina, USA. This Piedmont region is gently sloped with highly weathered soils characterized by shallow impeding layers due to decreases in saturated hydraulic conductivity with depth. Our results indicated two dominant catchment storage states driven by seasonal evapotranspiration. Within these states, distinct flow paths were activated, resulting in divergent hydrograph recessions. Groundwater dynamics during precipitation events with different input characteristics and contrasting storage states showed distinct shallow and deep groundwater flow path behavior could produce similar runoff magnitudes. During an event with low antecedent storage, activation of a shallow, perched, transient water table dominated runoff production. During an event with high antecedent storage, the deeper water table activated shallow flow paths by rising into the shallow transmissive soil horizons. Despite these differing processes, the relationship between active surface drainage length (ASDL) and runoff was consistent. Hysteretic behavior between ASDL and runoff suggested that while seasonal ASDLs can be predicted based on runoff, the mechanisms and source areas producing flow can be highly variable and not easily estimated from runoff alone. These processes and flow paths have significant implications for stream chemistry across seasons and storage states.

  1. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a power generation park comprising a power output for providing electrical output power to an electricity network . A power generation device comprises a converter device configured for receiving input power from a power generator and providing, in response hereto, the electrical...... output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  2. The study, design and testing of a linear oscillating generator with moving permanent magnets

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros (Pop

    2015-12-01

    Full Text Available This paper presents a study, design and testing of a Linear Oscillating Generator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally it has been shown the comparative analysis between the linear oscillating generator with moving permanent magnets in no load operation and load operation.

  3. Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Alex Pavlides

    2015-12-01

    Full Text Available In Parkinson's disease, an increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with difficulty in movement initiation. An important role in the generation of these oscillations is thought to be played by the motor cortex and by a network composed of the subthalamic nucleus (STN and the external segment of globus pallidus (GPe. Several alternative models have been proposed to describe the mechanisms for generation of the Parkinsonian beta oscillations. However, a recent experimental study of Tachibana and colleagues yielded results which are challenging for all published computational models of beta generation. That study investigated how the presence of beta oscillations in a primate model of Parkinson's disease is affected by blocking different connections of the STN-GPe circuit. Due to a large number of experimental conditions, the study provides strong constraints that any mechanistic model of beta generation should satisfy. In this paper we present two models consistent with the data of Tachibana et al. The first model assumes that Parkinsonian beta oscillation are generated in the cortex and the STN-GPe circuits resonates at this frequency. The second model additionally assumes that the feedback from STN-GPe circuit to cortex is important for maintaining the oscillations in the network. Predictions are made about experimental evidence that is required to differentiate between the two models, both of which are able to reproduce firing rates, oscillation frequency and effects of lesions carried out by Tachibana and colleagues. Furthermore, an analysis of the models reveals how the amplitude and frequency of the generated oscillations depend on parameters.

  4. Model and analysis of solar thermal generators to reduce the intermittency of photovoltaic systems with the use of spectrum splitting

    Science.gov (United States)

    Ayala, Silvana; Wu, Yuechen; Vorndran, Shelby; Santiago, Raphael P.; Kostuk, Raymond K.

    2015-09-01

    In this paper we introduce an approach to damping intermittency in photovoltaic (PV) system output due to fluctuations in solar illumination generated by use of a hybrid PV-thermal electric (TE) generation system. We describe the necessary constrains of the PV-TE system based on its thermodynamic characteristics. The basis for the approach is that the thermal time constant for the TE device is much longer than that of a PV cell. When used in combination with an optimized thermal storage device short periods of intermittency (several minutes) in PV output due to passing clouds can be compensated. A comparison of different spectrum splitting systems to efficiently utilize the incident solar spectrum between the PV and TE converters are also examined. The time-dependent behavior of a hybrid PV-TE converter with a thermal storage element is computed with SMARTS modeled irradiance data and compared to real weather and irradiation conditions for Tucson, Arizona.

  5. Thermal Losses Effect on the Performance of an Intermittent Solar Refrigeration Cycle for Generation Phase

    International Nuclear Information System (INIS)

    Boukhchana, Yasmina; Fellah, Ali; Ben Brahim, Ammar

    2009-01-01

    In this contribution, a study of the thermal losses effect undergone by the different parts of an intermittent absorption solar refrigeration cycle using the Ammonia/Water mixture is presented. After having shown the interest of the intermittent cycles through the discussion of the problem of the adaptation of these cycles to solar energy, mass and thermal assessments for each compartment of the installation were established for the two cases without and with thermal losses. The resulting differential equations system is solved numerically. The theoretical results obtained concern the temperature variations, the vapor flow as well as the compositions of the rich and the poor solutions

  6. Oscillations and concentrations generated by A-free mappings and weak lower semicontinuity of integral functionals

    Czech Academy of Sciences Publication Activity Database

    Fonseca, I.; Kružík, Martin

    Roč.16, č. 2 (2010), s. 472-502 ISSN 1262-3377 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10750506 Keywords : oscillations * concentrations Subject RIV: BA - General Mathematics Impact factor: 1.084, year: 2009 http://library.utia.cas.cz/separaty/2009/MTR/kruzik-oscillations and concentrations generated by a-free mappings and weak lower semicontinuity of integral functionals.pdf

  7. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier

    NARCIS (Netherlands)

    Zong, Z.; Babaie, M.; Staszewski, R.B.

    2016-01-01

    This paper proposes a mm-wave frequency generation technique that improves its phase noise (PN) performance and power efficiency. The main idea is that a fundamental 20 GHz signal and its sufficiently strong third harmonic at 60 GHz are generated simultaneously in a single oscillator. The desired 60

  8. Evaluation of Start Transient Oscillations with the J-2X Engine Gas Generator Assembly

    Science.gov (United States)

    Hulka, J. R.; Morgan, C. J.; Casiano, M. J.

    2015-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, distinctive and oftentimes high-amplitude pressure oscillations and hardware vibrations occurred during the start transient of nearly every workhorse gas generator assembly test, as well as during many tests of engine system hardware. These oscillations appeared whether the steady-state conditions exhibited stable behavior or not. They occurred similarly with three different injector types, and with every combustion chamber configuration tested, including chamber lengths ranging over a 5:1 range, several different nozzle types, and with or without a side branch line simulating a turbine spin start gas supply line. Generally, two sets of oscillations occurred, one earlier in the start transient and at higher frequencies, and the other almost immediately following and at lower frequencies. Multiple dynamic pressure measurements in the workhorse combustion chambers indicated that the oscillations were associated with longitudinal acoustic modes of the combustion chambers, with the earlier and higher frequency oscillation usually related to the second longitudinal acoustic mode and the later and lower frequency oscillation usually related to the first longitudinal acoustic mode. Given that several early development gas generator assemblies exhibited unstable behavior at frequencies near the first longitudinal acoustic modes of longer combustion chambers, the start transient oscillations are presumed to provide additional insight into the nature of the combustion instability mechanisms. Aspects of the steadystate oscillations and combustion instabilities from development and engine system test programs have been reported extensively in the three previous JANNAF Liquid Propulsion Subcommittee meetings (see references below). This paper describes the hardware configurations, start transient sequence operations, and transient and dynamic test data during the start

  9. The Generation of Antiphase Oscillations and Synchrony by a Rebound-Based Vertebrate Central Pattern Generator

    Science.gov (United States)

    Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman

    2014-01-01

    Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left–right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony. PMID:24760866

  10. Modelling of low-current self-generated oscillations in a hollow cathode discharge

    CERN Document Server

    Donko, Z

    1999-01-01

    Low-current self-generated oscillations in a rectangular hollow cathode discharge in helium gas were investigated experimentally and by means of a two-dimensional self-consistent hybrid model. The model combines Monte Carlo simulation of the motion of fast electrons and a fluid description of slow electrons and positive ions. The low-frequency (<=20 kHz) oscillations were found to arise as an effect of the interaction of the gas discharge and the external electric circuit - consisting of a stable voltage source, a series resistor and a capacitor formed by the discharge electrodes. Good agreement was found between the experimentally observed and calculated oscillation frequency and current wave forms. Beside these characteristics the modelling also made it possible to calculate the time dependence of numerous other discharge characteristics (e.g. electron multiplication, ion density, potential distribution) and provided detailed insight into the mechanism of oscillations. The advantage of the present model ...

  11. Effect of mechanical vibration generated in oscillating/vibratory ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated ...

  12. Surface acoustic wave opto-mechanical oscillator and frequency comb generator.

    Science.gov (United States)

    Savchenkov, A A; Matsko, A B; Ilchenko, V S; Seidel, D; Maleki, L

    2011-09-01

    We report on realization of an efficient triply resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyperparametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb by observing the modulation of the light escaping the resonator.

  13. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    Science.gov (United States)

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  14. Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation

    KAUST Repository

    Mansingka, Abhinav S.

    2012-05-01

    This thesis presents a generalized approach for the fully digital design and implementation of chaos generators through the numerical solution of chaotic ordinary differential equations. In particular, implementations use the Euler approximation with a fixed-point twos complement number representation system for optimal hardware and performance. In general, digital design enables significant benefits in terms of power, area, throughput, reliability, repeatability and portability over analog implementations of chaos due to lower process, voltage and temperature sensitivities and easy compatibility with other digital systems such as microprocessors, digital signal processing units, communication systems and encryption systems. Furthermore, this thesis introduces the idea of implementing multidimensional chaotic systems rather than 1-D chaotic maps to enable wider throughputs and multiplier-free architectures that provide significant performance and area benefits. This work focuses efforts on the well-understood family of autonomous 3rd order "jerk" chaotic systems. The effect of implementation precision, internal delay cycles and external delay cycles on the chaotic response are assessed. Multiplexing of parameters is implemented to enable switching between chaotic and periodic modes of operation. Enhanced chaos generators that exploit long-term divergence in two identical systems of different precision are also explored. Digital design is shown to enable real-time controllability of 1D multiscroll systems and 4th order hyperchaotic systems, essentially creating non-autonomous chaos that has thus far been difficult to implement in the analog domain. Seven different systems are mathematically assessed for chaotic properties, implemented at the register transfer level in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA. The statistical properties of the output are rigorously studied using the NIST SP. 800-22 statistical testing suite. The output is

  15. Modelling of the generation phase of an absorption cooling cycle operating intermittently; Modelisation de la phase generation d'un cycle de refrigeration par absorption solaire a fonctionnement intermittent

    Energy Technology Data Exchange (ETDEWEB)

    Boukhchana, Yasmina; Fellah, Ali; Ben Brahim, Ammar [Unite de Recherche, Thermodynamique Appliquee (99/UR/11-21), Universite de Gabes, Ecole Nationale d' ingenieurs, 6072 Gabes (Tunisia)

    2011-01-15

    No abstract prepared. [French] La modelisation en regime dynamique de la phase generation d'une installation frigorifique a absorption solaire a fonctionnement intermittent utilisant le couple ammoniac/eau a ete elaboree. L'etude basee sur l'intermittence du fonctionnement a permis d'elaborer, a travers les bilans matieres et thermiques, un modele thermodynamique reliant les temperatures, les debits et les fractions massiques dans les differents compartiments. Des journees ensoleillees representatives des quatre saisons de l'annee ont ete considerees. Les variations du taux d'ensoleillement, des temperatures et des concentrations ont ete explorees. Les resultats ont montre, moyennant les hypotheses adoptees en particulier a pression de fonctionnement constante, que la demarche proposee a permis d'avoir une temperature de generation autour de 135 C et une temperature de condensation de 60 C. Ces temperatures sont atteinte par l'adaptation de la convection naturelle a l'air pour le fonctionnement du condenseur. (orig.)

  16. Subharmonic generation in Josephson junction fluxon oscillators biased on Fiske steps

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Christiansen, Peter Leth; Parmentier, R. D.

    1983-01-01

    Numerical integration of the perturbed sine-Gordon equation describing a long overlap-geometry Josephson junction in a magnetic field indicates a branched structure of the first Fiske step. The major portion of the step corresponds to a simply periodic fluxon oscillation whereas the branches are ...... are characterized by subharmonic generation. Applied Physics Letters is copyrighted by The American Institute of Physics....

  17. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP.

    Directory of Open Access Journals (Sweden)

    Fernando Siso-Nadal

    Full Text Available BACKGROUND: To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate 'bursting' oscillations of calcium and may enable better filtering of noise. CONCLUSION: We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.

  18. Coherent Rabi oscillations in a molecular system and sub-diffraction-limited pattern generation

    International Nuclear Information System (INIS)

    Liao, Zeyang; Al-Amri, M; Zubairy, M Suhail

    2015-01-01

    The resolution of a photolithography and optical imaging system is restricted by the diffraction limit. Coherent Rabi oscillations have been shown to be able to overcome the diffraction limit in a simple two-level atomic system (Z Liao, M Al-amri, and M S Zubairy 2010 Phys. Rev. Lett. 105 183601). In this paper, we numerically calculate the wave packet dynamics of a molecular system interacting with an ultrashort laser pulse and show that coherent Rabi oscillations in a molecular system are also possible. Moreover, a sub-diffraction-limited pattern can be generated in this system by introducing spatially modulated Rabi oscillations. We also discuss several techniques to improve the visibility of the sub-diffraction-limited pattern. Our result may have important applications in super-resolution optical lithography and optical imaging. (paper)

  19. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  20. Generation of equivalent forms of operational trans-conductance amplifier-RC sinusoidal oscillators: the nullor approach

    Directory of Open Access Journals (Sweden)

    Raj Senani

    2014-06-01

    Full Text Available It has been shown in two earlier papers published from this study that corresponding to a given single-operational trans-conductance amplifier (single-OTA-RC and dual-OTA-RC sinusoidal oscillators, there are three other structurally distinct equivalent forms having the same characteristic equation, one of which employs both grounded capacitors (GC. In this study, an earlier nullor-based theory of generating equivalent op-amp oscillator circuits, proposed by the first author, is extended to derive equivalent OTA-RC circuits which discloses the existence of an additional number of equivalent forms for the same given OTA-RC oscillators than those predicted by the quoted earlier works, and thereby considerably enlarging the set of equivalents of a given OTA-RC oscillator. Furthermore, the presented nullor-based theory of generating equivalent OTA-RC oscillators results in three additional interesting outcomes: (i the revelation that corresponding to any given OTA-RC oscillator there are two ‘both-GC’ oscillators (and not merely one, as derived in the quoted earlier works; (ii the availability of explicit current outputs in several of the derived equivalents and (iii the realisability explicit-current-output ‘quadrature oscillators’ in some of the generated equivalent oscillators. The workability of the generated equivalent OTA-RC oscillators has been verified by SPICE simulations, based on CMOS OTAs using 0.18 µm CMOS technology process parameters, and some sample results are given.

  1. Stability analysis of a power system made up of an intermittent renewable energy source directly tied to a conventional rotating power generator

    International Nuclear Information System (INIS)

    Coiante, D.

    1997-02-01

    A simple power system made up of a conventional rotating power generator in direct connection to an intermittent renewable energy source (with energy or photovoltaic) is modelled on the base of respective functional schemes. The relative variations of the voltage frequency are calculated as an output to an abrupt variation of intermittent tied power and in function of electro-mechanical parameters of the rotating generator (dumping coefficient and inertial rotor coefficient). The stability conditions and the tolerance allowed on the frequency variations are considered in relation to toad service requires. As a consequence, the maximum intermittent power amount, which can be accepted in direct connection, is obtained. For usual conventional rotating machines, the resulting limit is placed in the range of (12-19)% of nominal capacity of power generator

  2. Intermittent synchronization in a network of bursting neurons

    Science.gov (United States)

    Park, Choongseok; Rubchinsky, Leonid L.

    2011-09-01

    Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are common in a variety of neural systems from central pattern generators to human brain circuits. One example of the latter is the subcortical network of the basal ganglia, formed by excitatory and inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and affected in Parkinson's disease. Recent experiments have demonstrated the intermittent nature of the phase-locking of neural activity in this network. Here, we explore one potential mechanism to explain the intermittent phase-locking in a network. We simplify the network to obtain a model of two inhibitory coupled elements and explore its dynamics. We used geometric analysis and singular perturbation methods for dynamical systems to reduce the full model to a simpler set of equations. Mathematical analysis was completed using three slow variables with two different time scales. Intermittently, synchronous oscillations are generated by overlapped spiking which crucially depends on the geometry of the slow phase plane and the interplay between slow variables as well as the strength of synapses. Two slow variables are responsible for the generation of activity patterns with overlapped spiking, and the other slower variable enhances the robustness of an irregular and intermittent activity pattern. While the analyzed network and the explored mechanism of intermittent synchrony appear to be quite generic, the results of this analysis can be used to trace particular values of biophysical parameters (synaptic strength and parameters of calcium dynamics), which are known to be impacted in Parkinson's disease.

  3. True-Randomness and Pseudo-Randomness in Ring Oscillator-Based True Random Number Generators

    OpenAIRE

    Bochard, Nathalie; Bernard, Florent; Fischer, Viktor; Valtchanov, Boyan

    2010-01-01

    12 pages; International audience; The paper deals with true random number generators employing oscillator rings, namely, with the one proposed by Sunar et al. in 2007 and enhanced by Wold and Tan in 2009. Our mathematical analysis shows that both architectures behave identically when composed of the same number of rings and ideal logic components. However, the reduction of the number of rings, as proposed by Wold and Tan, would inevitably cause the loss of entropy. Unfortunately, this entropy...

  4. Electricity Market Liberalisation and Flexibility of Conventional Generation to Balance Intermittent Renewable Energy - Is It Possible to Stay Competitive?

    Science.gov (United States)

    Linkevics, O.; Ivanova, P.; Balodis, M.

    2016-12-01

    Intermittent generation (solar PV and wind energy) integration in power production portfolio as well as electricity price fluctuations have changed the running manner of conventional combined heat and power (CHP) plants: the shift from base load operation to running in cyclic modes. These cogeneration power plants are not adapted to new running conditions. The level of CHP plant flexibility should be improved to operate profitably and efficiently from both technical and fuel usage point of view. There are different ways to increase the flexibility of power plants. Before any improvements, the situation at power plants should be evaluated and the weakest points defined. In this publication, such measures are presented on Riga CHP-2 plant example: installation of heat storage tank; extension of operation rang; acceleration of start-ups.

  5. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    International Nuclear Information System (INIS)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.; Sharypov, K. A.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-01-01

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  6. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  7. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines

    2017-07-25

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  8. Development of the Second-Generation Oscillating Surge Wave Energy Converter with Variable Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yi-Hsiang [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Thresher, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Michael [South Dakota School of Mines and Technology

    2017-06-03

    This study investigates the effect of design changes on the hydrodynamics of a novel oscillating surge wave energy converter being developed at the National Renewable Energy Laboratory. The design utilizes controllable geometry features to shed structural loads while maintaining a rated power over a greater number of sea states. The second-generation design will seek to provide a more refined control of performance because the first-generation design demonstrated performance reductions considered too large for smooth power output. Performance is evaluated using frequency domain analysis with consideration of a nonideal power-take-off system, with respect to power absorption, foundation loads, and power-take-off torque.

  9. Stability Enhancement of a Power System Containing High-Penetration Intermittent Renewable Generation

    Directory of Open Access Journals (Sweden)

    Jorge Morel

    2015-06-01

    Full Text Available This paper considers the transient stability enhancement of a power system containing large amounts of solar and wind generation in Japan. Following the Fukushima Daiichi nuclear disaster there has been an increasing awareness on the importance of a distributed architecture, based mainly on renewable generation, for the Japanese power system. Also, the targets of CO2 emissions can now be approached without heavily depending on nuclear generation. Large amounts of renewable generation leads to a reduction in the total inertia of the system because renewable generators are connected to the grid by power converters, and transient stability becomes a significant issue. Simulation results show that sodium-sulfur batteries can keep the system in operation and stable after strong transient disturbances, especially for an isolated system. The results also show how the reduction of the inertia in the system can be mitigated by exploiting the kinetic energy of wind turbines.

  10. First experimental demonstration of a Self-Oscillating Fluidic Heat Engine (SOFHE) with piezoelectric power generation

    Science.gov (United States)

    Monin, T.; Tessier-Poirier, A.; Léveillé, E.; Juneau-Fecteau, A.; Skotnicki, T.; Formosa, F.; Monfray, S.; Fréchette, L. G.

    2016-11-01

    In this paper, we present the working principle and first experimental demonstration of an innovative approach to harvest low-quality heat sources, the Self-Oscillating Fluidic Heat Engine (SOFHE). Thermal energy is first converted into pressure pulsations by a selfexcited thermo-fluidic oscillator driven by periodic phase change of a fluid in an enclosed channel. A piezoelectric membrane then converts this mechanical energy into an electrical power. After describing the working principle, an experimental demonstration is presented. The P-V diagram of this new thermodynamic cycle is measured, showing a mechanical power of 3.3mW. Combined with a piezoelectric spiral membrane, the converted electrical power generation achieved is close to 1μ W in a 1MΩ load. This work sets the basis for future development of this new type of heat engine for waste heat recovery and to power wireless sensors.

  11. Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation.

    Science.gov (United States)

    Zhang, Wen Qi; Sharping, Jay E; White, Richard T; Monro, Tanya M; Afshar V, Shahraam

    2010-08-02

    In this paper, we use a genetic algorithm and pulse-propagation analysis to design and optimize optical parametric oscillators based on soft-glass microstructured optical fibers. The maximum parametric gain, phase-match, walk-off between pump (1560 nm) and signal (880 nm) pulses, signal feedback ratio and signal-pump synchronization of the cavity are optimized. Pulse propagation analysis suggests that one can implement a fiber optical parametric oscillator capable of generating approximately 200-fs pulses at 880 nm with 43% peak-power conversion, high output pulse quality (time-bandwidth product approximately 0.43) and a wavelength tuning range that is limited only by the glass transmission windows.

  12. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  13. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  14. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  15. Investigation of self-generation of broadband microwave chaotic and noise signals in microwave photonic ring oscillator

    Science.gov (United States)

    Ustinov, A. B.; Kondrashov, A. V.; Kalinikos, B. A.

    2017-11-01

    Nonlinear dynamics of a microwave optoelectronic oscillator was investigated for the first time with the use of time series analysis. The detailed study of the generated microwave waveforms showed a route from stable monochromatic oscillations to noise through a series of bifurcations. The oscillator demonstrated the periodic and chaotic dynamics in the intermediate regimes of self-generation. Peculiarities of the signals and their spectra for the chaotic and noise regimes were found. The chaotic and noise dynamics were proven with the Grassberger-Procaccia method.

  16. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  17. Investigation into the efficacy of generating synthetic pathological oscillations for domain adaptation

    Science.gov (United States)

    Lewis, Rory; Ellenberger, James; Williams, Colton; White, Andrew M.

    2013-11-01

    In the ongoing investigation of integrating Knowledge Discovery in Databases (KDD) into neuroscience, we present a paper that facilitates overcoming the two challenges preventing this integration. Pathological oscillations found in the human brain are difficult to evaluate because 1) there is often no time to learn and train off of the same distribution in the fatally sick, and 2) sinusoidal signals found in the human brain are complex and transient in nature requiring large data sets to work with which are costly and often very expensive or impossible to acquire. Overcoming these challenges in today's neuro-intensive-care unit (ICU) requires insurmountable resources. For these reasons, optimizing KDD for pathological oscillations so machine learning systems can predict neuropathological states would be of immense value. Domain adaptation, which allows a way of predicting on a separate set of data than the training data, can theoretically overcome the first challenge. However, the challenge of acquiring large data sets that show whether domain adaptation is a good candidate to test in a live neuro ICU remains a challenge. To solve this conundrum, we present a methodology for generating synthesized neuropathological oscillations for domain adaptation.

  18. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Wook; Bak, Jeong Hyeon; Yoon, Jong Hyun; Park, Jong Hyeon [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of); Park, Jong Oh [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2016-12-15

    Cable-driven parallel robots (CDPRs) have many advantages over conventional link-based robot manipulators in terms of acceleration due to their low inertia. This paper concerns about under-constrained CDPRs, which have a less number of cables than six, often used favorably due to their simpler structures. Since a smaller number of cables than 6 are employed, however, their payloads have extra degrees of motion freedom and exhibit swaying motions or oscillation. In this paper, a scheme to suppress unwanted oscillatory motions of the payload of a 4-cable-driven CDPR based on a Zero-vibration (ZV) input-shaping scheme is proposed. In this method, a motion in the 3-dimensional space is projected onto the independent motions on two vertical planes perpendicular to each other. On each of the vertical plane, the natural frequency of the CDPR is computed based on a 2-cable-driven planar CDPR model. The precise dynamic model of a planar CDPR is obtained in order to find the natural frequency, which depends on the payload position. The advantage of the proposed scheme is that it is possible to generate an oscillation-free trajectory based on a ZV input-shaping scheme despite the complexity in the dynamics of the CDPR and the difficulty in computing the natural frequencies of the CDPR, which is required in any ZV input-shaping scheme. To verify the effectiveness of the proposed method, a series of computer simulations and experiments were conducted for 3- dimensional motions with a 4-cable-driven CDPR. Their results showed that the motions of the CDPR with the proposed method exhibited a significant reduction in oscillations of the payload. However, when the payload moves near the edges of its workspace, the improvement in oscillation reduction diminished as expected due to the errors in model projection.

  19. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation

    Directory of Open Access Journals (Sweden)

    P. Musumeci

    2013-10-01

    Full Text Available The evolution of picosecond modulations of the longitudinal profile of an electron beam generated in an rf photoinjector is analyzed and optimized with the goal of obtaining high peak current electron bunch trains at very high frequencies (≥THz. Taking advantage of nonlinear longitudinal space charge forces, it is found that more than 500 A peak current 1 THz bunch trains can be generated using a standard 1.6 cell SLAC/UCLA/BNL rf gun. Postacceleration is used to freeze the longitudinal phase space dynamics after one half plasma oscillation. Applications range from tunable narrow bandwidth THz radiation generation to drivers for high frequency high gradient accelerators.

  20. Generation of Shock-Wave Disturbances at Plasma-Vapor Bubble Oscillation

    Science.gov (United States)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2015-11-01

    The complex physical and mathematical model describing all steps of plasma-vapor bubble evolution in the system of the water-ground condensed media is presented. Discharge circuit operation, discharge plasma channel expansion, its transformation into the vapor-plasma bubble and its pulsation, pressure wave generation and propagation of the mechanical stress waves in the ground are self-consistently considered in the model. The model allows investigation of the basic laws of stored energy transformation into the discharge plasma channel, next to the plasma-vapor bubble and transformation of this energy to the energy of pressure wave compressing the surrounding ground. Power characteristics of wave disturbances generated by gas-vapor bubble oscillation in liquid depending on the circuit parameters are analyzed for the prediction of the ground boundary displacement. The dynamics of the shock-wave propagation in water-ground condensed media depending on the rate of the plasma channel energy release is investigated. Simulation of the shock-wave phenomena at a plasma-vapor bubble oscillation in condensed media consecutively describes the physical processes underlying technology for producing piles by electro-discharge stuffing. The quantitative model verified by physical experimental tests will allow optimization of pulse generator parameters and electrode system construction of high-voltage equipment.

  1. EXPERIMENTAL DETERMINATION OF TEMPERATURES IN SPARK GENERATED BUBBLES OSCILLATING IN WATER

    Directory of Open Access Journals (Sweden)

    Karel Vokurka

    2017-05-01

    Full Text Available The surface temperatures of the plasma core in the final stages of the first contraction phase of spark-generated bubbles oscillating under ordinary laboratory conditions in a large expanse of water are determined experimentally. The measurement method is based on an analysis of the optical radiation from the bubbles and on the assumption that the plasma core is radiating as a black-body. It is found that the maximum surface temperatures of the plasma core range 4300–8700 K.

  2. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  3. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  4. Generation of bandwidth-limited tunable picosecond pulses by injection- locked parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Magnitskii, S.A.; Malachova, V.I.; Tarasevich, A.P.; Tunkin, V.G.; Yakubovich, S.D.

    1986-01-01

    We report a new Nd:YAG-pumped picosecond optical parametric oscillator that generates bandwidth-limited pulses. Using two LiNbO/sub 3/ crystals, it produces tunable, near-1.4-..mu..m (signal-wave) pulses of 18-psec duration and ..delta nu.. = 1.2 cm/sup -1/ FWHM (..delta nu..tau = 0.7). The output energy of the optical parametric oscillators in a signal wave is no less than 2 mJ with 10% energy stability. The key to this device is the injection of cw single-frequency GaAs diode-laser radiation. Using the injection of diode-laser radiation, we have measured the spectral intensity of a quantun noise at lambda = 0.85 ..mu..m. The intensity was found to be 6 +- 2 W/cm/sup 2/ cm/sup -1/ sr (theoretical value, 4.7 W/cm/sup 2/ cm/sup -1/ sr).

  5. Averaging of Differential Equations Generating Oscillations and an Application to Control

    International Nuclear Information System (INIS)

    Temam, R.M.; Wirosoetisno, D.

    2002-01-01

    In this article we consider differential equations which generate oscillating solutions. These oscillations are due to the presence of a small parameter ε>0 ; however, they are not present in the coefficients but instead they are caused by a penalty term involving an antisymmetric operator. Our aims are twofold. In the first part we study asymptotics at all orders, for ε → 0 , construct approximate solutions, and derive estimates of the error between the exact solution and the approximate ones. One of the motivations of this part is the study to high orders of the geostrophic asymptotics in atmospheric science, but there are many other possible applications involving in particular the wave equation. The actual applications of our results to atmospheric science will be discussed elsewhere [STW], as well as, on the mathematical side, the application to partial differential equations [TW1]. In the second part of this article we study a control problem involving such an equation and study the behavior of the state equation, of the optimal control, and of the optimality equation as ε → 0 . For the control part we restrict ourselves to a linear equation and to the first order in the asymptotics ε → 0 , leaving nonlinear problems and higher orders to a future work

  6. Processing Binary and Fuzzy Logic by Chaotic Time Series Generated by a Hydrodynamic Photochemical Oscillator.

    Science.gov (United States)

    Gentili, Pier Luigi; Giubila, Maria Sole; Heron, B Mark

    2017-07-05

    This work demonstrates the computational power of a hydrodynamic photochemical oscillator based on a photochromic naphthopyran generating aperiodic time series. The chaotic character of the time series is tested by calculating its largest Lyapunov exponent and the correlation dimension of its attractor after building its phase space through the Takens' theorem. Then, the chaotic dynamic is shown to be suitable to implement all the fundamental Boolean two-inputs-one-output logic gates. Finally, the strategy to implement fuzzy logic systems (FLSs) based on the time series is described. Such FLSs promise to be useful in the field of computational linguistics, which is concerned with the development of artificial intelligent systems able to transform collections of numerical data into natural language texts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-gain ring FEL as a master oscillator for X-ray generation

    Energy Technology Data Exchange (ETDEWEB)

    Vinokurov, N.A. E-mail: n.a.vinokurov@inp.nsk.su; Shevchenko, O.A

    2004-08-01

    High-gain free electron laser (FEL) with bends between undulator sections is discussed. Such FEL configuration may be used for the mirror-free master oscillator in X-ray band. The oscillator linewidth is estimated. Results of computation for the state-of-art electron beam parameters show the feasibility of the X-ray oscillator FEL.

  8. Intermittent chaotic chimeras for coupled rotators

    DEFF Research Database (Denmark)

    Olmi, Simona; Martens, Erik Andreas; Thutupalli, Shashi

    2015-01-01

    Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other...

  9. Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics

    Science.gov (United States)

    Guerrier, Claire; Hayes, John A.; Fortin, Gilles; Holcman, David

    2015-01-01

    How might synaptic dynamics generate synchronous oscillations in neuronal networks? We address this question in the preBötzinger complex (preBötC), a brainstem neural network that paces robust, yet labile, inspiration in mammals. The preBötC is composed of a few hundred neurons that alternate bursting activity with silent periods, but the mechanism underlying this vital rhythm remains elusive. Using a computational approach to model a randomly connected neuronal network that relies on short-term synaptic facilitation (SF) and depression (SD), we show that synaptic fluctuations can initiate population activities through recurrent excitation. We also show that a two-step SD process allows activity in the network to synchronize (bursts) and generate a population refractory period (silence). The model was validated against an array of experimental conditions, which recapitulate several processes the preBötC may experience. Consistent with the modeling assumptions, we reveal, by electrophysiological recordings, that SF/SD can occur at preBötC synapses on timescales that influence rhythmic population activity. We conclude that nondeterministic neuronal spiking and dynamic synaptic strengths in a randomly connected network are sufficient to give rise to regular respiratory-like rhythmic network activity and lability, which may play an important role in generating the rhythm for breathing and other coordinated motor activities in mammals. PMID:26195782

  10. Influence of cathode emission uniformity on microwave generation in relativistic backward wave oscillator

    Science.gov (United States)

    Wu, Ping; Sun, Jun; Teng, Yan

    2017-12-01

    The emission uniformity of explosive emission cathodes is important to the operation of high power microwave generators. Although this concept seems to be widely accepted, the concrete influence of cathode emission uniformity on microwave generation has not been researched in detail and many conclusions on this matter are ambiguous due to the lack of solid evidence. This paper makes an effort to research this issue with particle-in-cell simulations about an X-band relativistic backward wave oscillator. To keep the diode impedance unchanged, an emission model in which each emission cell is artificially assigned a specific current density is adopted. The emission non-uniformity is simulated in three ways: spaced emission, large-area no-emission, and local enhanced emission. The simulation results uncover three phenomena: first, no significant influence is found for the cathode emission uniformity on the microwave starting time as long as no obvious mode competition is excited by emission non-uniformity; second, bad emission uniformity may bring about reduction of microwave power, but this may not happen when the emission non-uniformity is just localized to a few discrete strong emission points; third, under specific circumstances, the emission non-uniformity may lead to the excitation of mode competition, which can significantly delay the starting time and lower the microwave power.

  11. Variation tolerant self-adaptive clock generation architecture based on a ring oscillator

    OpenAIRE

    Pérez Puigdemont, Jordi; Calomarde Palomino, Antonio; Moll Echeto, Francisco de Borja

    2012-01-01

    In this work we propose a self-adaptive clock based on a ring oscillator as the solution for the increasing uncertainty in the critical path delay. This increase in uncertainty forces to add more safety margins to the clock period which produces a circuit performance downgrade. We evaluate three self-adaptive clock systems: free running ring oscillator, infinite impulse response filter controlled RO and TEAtime controlled ring oscillator. The safety margin reduction of th...

  12. Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat.

    Directory of Open Access Journals (Sweden)

    Nicolas eFourcaud-Trocmé

    2014-07-01

    Full Text Available A prominent feature of olfactory bulb (OB dynamics is the expression of characteristic local field potential (LFP rhythms, including a slow respiration-related rhythm and two fast alternating oscillatory rhythms, beta (15-30 Hz and gamma (40-90 Hz. All of these rhythms are implicated in olfactory coding. Fast oscillatory rhythms are known to involve the mitral-granule cell loops. Although the underlying mechanisms of gamma oscillation have been studied, the origin of beta oscillation remains poorly understood. Whether these two different rhythms share the same underlying mechanism is unknown. This study uses a quantitative and detailed current-source density analysis combined with multi-unit activity recordings to shed light on this question in freely breathing anesthetized rats. In particular, we show that gamma oscillation generation involves mainly upper half of the external plexiform layer (EPL and superficial areas of granule cell layer. In contrast, the generation of beta oscillation involves the lower part of the EPL and deep granule cells. This differential involvement of sublaminar networks is neither dependent on odor quality nor on the precise frequency of the fast oscillation under study. Overall, this study demonstrates a functional sublaminar organization of the rat OB, which is supported by previous anatomical findings.

  13. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  14. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina

    Science.gov (United States)

    Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm

    2014-01-01

    During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942

  15. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    Science.gov (United States)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  16. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual Axis Radiographic Hydrotest facility. The pulsed-power source drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B-dot technique to be about ±100 μ at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap

  17. Analysis of Density Wave Oscillations in Helically Coiled Tube Once-Through Steam Generator

    Directory of Open Access Journals (Sweden)

    Junwei Hao

    2016-01-01

    Full Text Available Helically coiled tube Once-Through Steam Generator (H-OTSG is one of the key equipment types for small modular reactors. The flow instability of the secondary side of the H-OTSG is particularly serious, because the working condition is in the range of low and medium pressure. This paper presents research on density wave oscillations (DWO in a typical countercurrent H-OTSG. Based on the steady-state calculation, the mathematical model of single-channel system was established, and the transfer function was derived. Using Nyquist stability criterion of the single variable, the stability cases were studied with an in-house computer program. According to the analyses, the impact law of the geometrical parameters to the system stability was obtained. RELAP5/MOD3.2 code was also used to simulate DWO in H-OTSG. The theoretical analyses of the in-house program were compared to the simulation results of RELAP5. A correction factor was introduced to reduce the error of RELAP5 when modeling helical geometry. The comparison results agreed well which showed that the correction is effective.

  18. Sub-inertial oscillations in the Black Sea generated by the semidiurnal tidal potential

    Science.gov (United States)

    Lukyanova, A. N.; Bagaev, A. V.; Ivanov, V. A.; Zalesny, V. B.

    2017-11-01

    The Black Sea shelf is a region of intense manifestation of various dynamical processes. Under the influence of different natural forces, eddy-wave phenomena develop here, which influence the general circulation of sea waters, biological productivity, and the condition of the engineering structures. Modern numerical models allow us to simulate and analyze the processes of the joint dynamics of marine circulation and large-scale waves. In this work, we study the spatiotemporal spectral characteristics of the sea level and velocity fluctuations formed due to atmospheric forcing and tidal potential. The hydrophysical fields are calculated using the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), σ model based on primitive equations. We use the CORE data as atmospheric forcing at the sea surface; the tidal potential is described by the semidiurnal lunar constituent M2. Analyzing the simulation results makes it possible to emphasize that accounting for the semidiurnal tidal potential not only improves the accuracy of the sea-level calculation at coastal stations, but also generates subinertial baroclinic oscillations previously found in the Black Sea from the data of in situ observations.

  19. Results from the field test of two 1 kW oscillating hydrofoil generators in a tidal canal

    Science.gov (United States)

    Miller, Michael; Cardona, Jennifer; Block, Leanne; Kondo, Kenta; Lee, Michael; Lorick, Rebecca; Manning, Michael; Scherl, Isabel; Simeski, Filip; Spaulding, Arriane; Su, Yunxing; Ellerby, David; Sudderth, Erika; Lewis, Kristen; Kidd, James; Hubbard, William; Pham, Hung Tom; Derecktor, Tom; Winckler, Steve; Fawzi, Alice; Franck, Jennifer; Breuer, Kenneth; Mandre, Shreyas

    2016-11-01

    We present results from field tests of two 1 kW hydrokinetic energy capture devices operating in the Cape Cod Canal, in Bourne, MA. Each device consists of two oscillating hydrofoils with a chord of 0.24 m and span of 1.35 m, operating 90° out of phase with each other and driving a single generator. The pitch of each hydrofoil is mechanically coupled to the heave, also with a 90° phase difference. The two devices are arranged in tandem with a stream-wise separation of 1 span. We find that depending on the operating conditions, the hydrofoil oscillations may synchronize with each other through hydrodynamic interactions. Furthermore, in their optimized operation, the trailing device generates 60-80% of the power generated by the leading device, despite being directly in the wake of the hydrofoils of the upstream device. ARPA-e DE AR0000318.

  20. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis

    Directory of Open Access Journals (Sweden)

    Zhao Yue

    2012-07-01

    Full Text Available Abstract Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.

  1. The role of inhibition in generating and controlling Parkinson's disease oscillations in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-10-01

    Full Text Available Movement disorders in Parkinson's disease (PD are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep brain stimulation (DBS. These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behaviour under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.

  2. Sea-ice cover anomalies in the Arctic Basin associated with atmospheric variability from multi-decadal trends to intermittent quasi-biennial oscillations

    Directory of Open Access Journals (Sweden)

    Motoyoshi Ikeda

    2012-06-01

    Full Text Available Arctic Ocean sea ice has been diminishing since 1970, as shown by National Snow and Ice Data Center data. In addition to decadal variability, low ice anomalies in the Pacific–Siberian region have been occurring at shorter timescales. The influence of the widely-known Northern Annular Mode (NAM occurs across all seasons. In this study, empirical orthogonal function (EOF analysis was applied to sea-level pressure in National Centers for Environmental Prediction Reanalysis data for 1960–2007, showing the NAM to be the leading mode of variability and the Arctic Dipole Mode (ADM to be the second leading mode. The ADM changes markedly across seasons. In autumn–winter, it has a pole over Siberia and a pole over Greenland, at opposite signs at a several-year scale, whereas the spring–summer ADM (ADMSS has a pole over Europe and a pole over Canada. In the 1980s, the most influential mode shifted from the NAM to the ADM, when the Pacific sector had low ice cover at a 1-year lag from the positive ADM, which was marked by low pressure over Siberia. In years when the ADMSS was pronounced, it was responsible for distinct ice variability over the East Siberian–Laptev seas. The frequency separation in this study identified the contributions of the ADM and ADMSS. Effects of the latter are difficult to predict since it is intermittent and changes its sign biennially. The ADM and ADMSS should be closely watched in relation to the ongoing ice reduction in the Pacific–Siberian region.

  3. Oscillation of Angiogenesis with Vascular Dropout in Diabetic Retinopathy by VESsel GENeration Analysis (VESGEN)

    Science.gov (United States)

    Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.

    2010-01-01

    PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P < 0.01). Throughout DR progression, the density of larger vessels (G(sub 1-5)) remained essentially unchanged, and D(sub v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins.

  4. Intermittency '93

    International Nuclear Information System (INIS)

    Bialas, A.

    1993-01-01

    The existing data definitely indicate the existence of intermittency, i.e. of self similar structures in the systems of particles created in high-energy collisions. The effect seems universal: it was found in most of the processes investigated and its measures parameters depend only weakly (if at all) on the process in question. Strong HBT effect was found, suggesting that intermittency is related to space-time structure of the pion source rather than to detailed momentum structure of the production amplitudes. There are indications that this space time structure may be fractal, but more data is needed to establish this. The theoretical explanation remains obscure: it seems that both parton cascade and hadronization play an important role. Their interrelation, however, remains a mystery. 5 figs., 19 refs

  5. The role of amplitude-to-phase conversion in the generation of oscillator flicker phase noise

    Science.gov (United States)

    Hearn, C. P.

    1985-01-01

    The role of amplitude-to-phase conversion as a factor in feedback oscillator flicker phase noise is examined. A limiting stage consisting of parallel-connected opposite polarity diodes operating in a circuit environment contining reactance is shown to exhibit amplitude-to-phase conversion. This mechanism coupled with resistive upconversion provides an indirect route for very low frequency flicker noise to be transferred into the phase of an oscillator signal. It is concluded that this effect is more significant in the lower frequency regimes where the onlinear reactances associated with active devices are overwhelmed by linear reactive elements.

  6. Millisecond precision temporal encoding of stimulus features during cortically generated gamma oscillations in the rat somatosensory cortex.

    Science.gov (United States)

    Bessaih, Thomas; Higley, Michael J; Contreras, Diego

    2018-02-01

    Rodents explore their immediate environment using their whiskers. Such exploration leads to micromotions, which contain many high-frequency (50-200 Hz) components. High-frequency whisker motion is represented faithfully in the temporal structure of the spike trains of trigeminal neurons. However, the representation of high-frequency sensory inputs in cortex is not fully understood. By combining extracellular and intracellular recordings in the rat somatosensory cortex and thalamus, we show that high-frequency sensory inputs, either sinusoidal or white noise, elicit internally generated gamma (20-60 Hz) band oscillations in cortical networks. Gamma oscillations modulate cortical spike probability while preserving sub-millisecond phase relations with high-frequency sensory inputs. Consequently, our results indicate that millisecond precision stimulus-locked spiking activity and sensory-induced gamma oscillation can constitute independent multiplexed coding schemes at the single-cell level. In the natural environment, tactile exploration often leads to high-frequency vibrations at the level of the sensory organs. Single-unit recordings of cortical neurons have pointed towards either a rate or a temporal code for representing high-frequency tactile signals. In cortical networks, sensory processing results from the interaction between feedforward inputs relayed from the thalamus and internally generated activity. However, how the emergent activity represents high-frequency sensory input is not fully understood. Using multisite single-unit, local field potential and intracellular recordings in the somatosensory cortex and thalamus of lightly sedated male rats, we measured neuronal responses evoked by sinusoidal and band-pass white noise whisker stimulation at frequencies that encompass those observed during texture exploration (50-200 Hz). We found that high-frequency sensory inputs relayed from the thalamus elicit both sub-millisecond stimulus-locked responses and

  7. On the design and simulation of an airlift loop bioreactorwith microbubble generation by fluidic oscillation

    Czech Academy of Sciences Publication Activity Database

    Zimmerman, W. B.; Tesař, Václav; Hewakandamby, B.N.; Bandulasena, H.C.H.; Omotowa, O.A.

    2009-01-01

    Roč. 87, C3 (2009), s. 215-227 ISSN 0960-3085 Institutional research plan: CEZ:AV0Z20760514 Keywords : microbubbles * fluidic oscillators * transport phenomena Subject RIV: BK - Fluid Dynamics Impact factor: 0.952, year: 2009 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=V2FDdpCMohHOjGaLDMi&page=1&doc=3&colname=WOS

  8. Intermittent hyperthyreosis

    International Nuclear Information System (INIS)

    Sulman, F.G.; Tal, E.; Pfeifer, Y.; Superstine, E.

    1975-01-01

    Intermittent hyperthyreosis occurs under various forms of stress, especially heat stress. The clinician may diagnose such cases as masked or apathetic hyperthyroidism or 'forme fruste' hyperthyreosis or thyroid autonomy. As most routine and standard tests may here yield inconsistent results, it is the patients' anamnesis which may provide the clue. Our Bioclimatology Unit has now seen over 100 cases in which thyroid hypersensitivity towards heat was the most prominent syndrome: 10-15% of weather-sensitive patients are affected. The patients complain before or during heat spells of such contradictory symptoms as insomnia, irritability, tension, tachycardia, palpitations, precordial pain, dyspnoe, flushes with sweating or chills, tremor, abdominal pain or diarrhea, polyuria or pollakisuria, weight loss in spite of ravenous appetite, fatigue, exhaustion, depression, adynamia, lack of concentration and confusion. Determination of urinary neurohormones allows a differential diagnosis, intermittent hyperthyreosis being characterized by three cardinal symptoms: tachycardia - every case with more than 80 pulse beats being suspect (not specific); urinary histamine - every case excreting more than 90 μg/day being suspect. Again the drawback of this test is its lack of specificity, as histamine may also be increased in cases of allergy and spondylitis; urinary thyroxine - every case excreting more than 20 μg/day T-4 being suspect. This is the only specific test. Therapy should make use of lithium carbonate and betablockers. Propyl thiouracil is rarely required. (orig.) [de

  9. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  10. Harmonic oscillators and resonance series generated by a periodic unstable classical orbit

    Science.gov (United States)

    Kazansky, A. K.; Ostrovsky, Valentin N.

    1995-01-01

    The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.

  11. New-generation of cryogenic sapphire microwave oscillators for space, metrology, and scientific applications

    Science.gov (United States)

    Giordano, Vincent; Grop, Serge; Dubois, Benoît; Bourgeois, Pierre-Yves; Kersalé, Yann; Haye, Gregory; Dolgovskiy, Vladimir; Bucalovic, Nikola; Di Domenico, Gianni; Schilt, Stéphane; Chauvin, Jacques; Valat, David; Rubiola, Enrico

    2012-08-01

    This article reports on the characterization of cryogenic sapphire oscillators (CSOs), and on the first test of a CSO in a real field installation, where ultimate frequency stability and continuous operation are critical issues, with no survey. Thanks to low-vibration liquid-He cryocooler design, Internet monitoring, and a significant effort of engineering, these oscillators could bridge the gap from an experiment to a fully reliable machine. The cryocooler needs scheduled maintenance every 2 years, which is usual for these devices. The direct comparison of two CSOs demonstrates a frequency stability of 5 × 10-16 for 30 s ⩽ τ ⩽ 300 s integration time, and 4.5 × 10-15 at 1 day (1 × 10-14 typical). Two prototypes are fully operational, codenamed ELISA and ULISS. ELISA has been permanently installed the new deep space antenna station of the European Space Agency in Malargüe, Argentina, in May 2012. ULISS is a transportable version of ELISA, modified to fit in a small van (8.5 m2 footprint). Installation requires a few hours manpower and 1 day of operation to attain full stability. ULISS, intended for off-site experiments and as a technology demonstrator, and has successfully completed two long-distance travels.

  12. An efficient linear power generator - Linear motor for oscillating piston machines; Effizienter Lineargenerator / Linearmotor fuer Kolbenmaschine - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2008-07-01

    When an oscillating piston interacts with an electrical generator or motor, it is obvious that the electrical machine should also have linear motion, eliminating the disadvantage of a crankshaft. This work has two parts: construction of an efficient linear generator for a Stirling engine with a free piston and a theoretical study of the efficiency of linear motors for driving compressors. The Stirling engine and the linear generator have a continuous power of 1.3 kW{sub el}. With thermal peak power the planned 1.5 kW{sub el} are attained. The Project 'Stirling Free Piston Generator' for cogeneration will continue. Smaller linear motors with permanent magnets function without electronic control from single-phase AC net. The theoretical study shows how linear motors can be led out by linking the electric vector diagram with the pressure-volume diagram of the compressor. At a power level exceeding a few kW, a three-phase system with power electronics is more suitable. The frequency of oscillation is variable and lower than 50 Hz. The efficiency of the simulated linear motors lies in the range of efficiency class EFF1 of standard motors. The very high efficiencies of rotating motors with permanent magnets are not attained. The combination of the linear motor with an optimised thermal process leads to advantages regarding the efficiency. If a heat pump with linear drive system can operate with hot lubricating oil the losses in the heat exchangers are reduced. The Competence Center for Thermal Machines at Lucerne University of Applied Sciences and Arts shows great interest to pursue the project of a linear heat pump for small temperature differences. (author)

  13. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    International Nuclear Information System (INIS)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-01-01

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  14. Intermittent control of coexisting attractors.

    Science.gov (United States)

    Liu, Yang; Wiercigroch, Marian; Ing, James; Pavlovskaia, Ekaterina

    2013-06-28

    This paper proposes a new control method applicable for a class of non-autonomous dynamical systems that naturally exhibit coexisting attractors. The central idea is based on knowledge of a system's basins of attraction, with control actions being applied intermittently in the time domain when the actual trajectory satisfies a proximity constraint with regards to the desired trajectory. This intermittent control uses an impulsive force to perturb one of the system attractors in order to switch the system response onto another attractor. This is carried out by bringing the perturbed state into the desired basin of attraction. The method has been applied to control both smooth and non-smooth systems, with the Duffing and impact oscillators used as examples. The strength of the intermittent control force is also considered, and a constrained intermittent control law is introduced to investigate the effect of limited control force on the efficiency of the controller. It is shown that increasing the duration of the control action and/or the number of control actuations allows one to successfully switch between the stable attractors using a lower control force. Numerical and experimental results are presented to demonstrate the effectiveness of the proposed method.

  15. Characteristics of infrared pulses generated by optical parametric oscillator from LiNbO sub 3 crystal

    CERN Document Server

    Park, S Y; Kim, D S; Rhee, B K; Park, S H

    2000-01-01

    The optical parametric oscillation (OPO) characteristics of LiNbO sub 3 , which is normally pumped by using the 1.064-mu m laser output from a nanosecond Nd:YAG laser, were investigated. A 5-cm-long LiNbO sub 3 crystal was cut at theta=47 .deg. , and the OPO cavity was formed by using two plain mirrors. The output coupler reflectivity in the 1.40 - 1.60 mu m range was 80.0%, and the back mirror had a reflectivity of 99.5% in the 1.45 - 1.55 mu m range. At a cavity length of 7 cm and a pump pulse energy of 156 mJ (1.7 times above threshold), the optical parametric oscillator generated nanosecond pulses (signal 1.6 mu m and idler 3.18 mu m) up to 16mJ. The change in the output energy was studied as the cavity length was varied from 7 cm to 16 cm at a fixed pump pulse energy of 145 mJ. We also measured the OPO output energy as a function of the reflectivity of the output coupler.

  16. Lamb-type waves generated by a cylindrical bubble oscillating between two planar elastic walls

    Science.gov (United States)

    Doinikov, A. A.; Mekki-Berrada, F.; Thibault, P.; Marmottant, P.

    2016-04-01

    The volume oscillation of a cylindrical bubble in a microfluidic channel with planar elastic walls is studied. Analytical solutions are found for the bulk scattered wave propagating in the fluid gap and the surface waves of Lamb-type propagating at the fluid-solid interfaces. This type of surface wave has not yet been described theoretically. A dispersion equation for the Lamb-type waves is derived, which allows one to evaluate the wave speed for different values of the channel height h. It is shown that for hLamb-type waves decreases with decreasing h, while for h on the order of or greater than λt, their speed tends to the Scholte wave speed. The solutions for the wave fields in the elastic walls and in the fluid are derived using the Hankel transforms. Numerical simulations are carried out to study the effect of the surface waves on the dynamics of a bubble confined between two elastic walls. It is shown that its resonance frequency can be up to 50% higher than the resonance frequency of a similar bubble confined between two rigid walls.

  17. Defect induced intermittency in the transit time dynamics generates 1/f noise in a trimer described by the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.; Doedel, E.J.

    2006-08-01

    We investigate the nonlinear dynamics in a trimer, described by the one-dimensional discrete nonlinear Schrodinger equation (DNLSE), with periodic boundary conditions in the presence of a single on-site defect. We make use of numerical continuation to study different families of stationary and periodic solutions, which allows us to consider suitable perturbations. Taking into account a Poincare section, we are able to study the dynamics in both a thin stochastic layer solution and a global stochasticity solution. We find that the time series of the transit times, the time intervals to traverse some suitable sets in phase space, generate 1/f noise for both stochastic solutions. In the case of the thin stochastic layer solution, we find that transport between two almost invariant sets along with intermittency in small and large time scales are relevant features of the dynamics. These results are reflected in the behaviour of the standard map with suitable parameters. In both chaotic solutions, the distribution of transit times has a maximum and a tail with exponential decay in spite of the presence of long-range correlations in the time series. We motivate our study by considering a ring of weakly-coupled Bose-Einstein condensates (BEC) with attractive interactions, where inversion of populations between two spatially symmetric sites and phase locking take place in both chaotic solutions. (author)

  18. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  19. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    Science.gov (United States)

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  20. Pattern formation in singly resonant second-harmonic generation with competing parametric oscillation

    DEFF Research Database (Denmark)

    Lodahl, P.; Saffman, M.

    1999-01-01

    fundamental field, and its coupling to a pair of nondegenerate parametric fields. The parametric fields are driven by the nonresonant second-harmonic field. Analysis indicates the existence of transverse instability of the pump field alone, as well as the possibility of simultaneous instability of the pump......We theoretically investigate the generation of spatial patterns in intracavity second-harmonic generation. We consider a cavity with planar mirrors that is resonant at the fundamental frequency, but not at the second-harmonic frequency. A mean-field model is derived that describes the resonant...

  1. Studies of neutrino asymmetries generated by ordinary-sterile neutrino oscillations in the early Universe and implications for big bang nucleosynthesis bounds

    Energy Technology Data Exchange (ETDEWEB)

    Foot, R.; Volkas, R.R. [Research Centre for High Energy Physics, School of Physics, University of Melbourne, Parkville, 3052 (Australia)

    1997-04-01

    Ordinary-sterile neutrino oscillations can generate a significant lepton number asymmetry in the early Universe. We study this phenomenon in detail. We show that the dynamics of ordinary-sterile neutrino oscillations in the early Universe can be approximately described by a single integrodifferential equation which we derive from both the density matrix and Hamiltonian formalisms. This equation reduces to a relatively simple ordinary first-order differential equation if the system is sufficiently smooth (static limit). We study the conditions for which the static limit is an acceptable approximation. We also study the effect of the thermal distribution of neutrino momenta on the generation of lepton number. We apply these results to show that it is possible to evade (by many orders of magnitude) the big bang nucleosynthesis (BBN) bounds on the mixing parameters {delta}m{sup 2} and sin{sup 2}2{theta}{sub 0} describing ordinary-sterile neutrino oscillations. We show that the large angle or maximal vacuum oscillation solution to the solar neutrino problem does not significantly modify BBN for most of the parameter space of interest, provided that the {tau} and/or {mu} neutrinos have masses greater than about 1 eV. We also show that the large angle or maximal ordinary-sterile neutrino oscillation solution to the atmospheric neutrino anomaly does not significantly modify BBN for a range of parameters. {copyright} {ital 1997} {ital The American Physical Society}

  2. Optical parametric generation by a simultaneously Q-switched mode-locked single-oscillator thulium-doped fiber laser in orientation-patterned gallium arsenide.

    Science.gov (United States)

    Donelan, Brenda; Kneis, Christian; Scurria, Giuseppe; Cadier, Benoît; Robin, Thierry; Lallier, Eric; Grisard, Arnaud; Gérard, Bruno; Eichhorn, Marc; Kieleck, Christelle

    2016-11-01

    Optical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 μJ per pump pulse.

  3. Cosmic Rays in Intermittent Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2017-04-10

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

  4. Intermittency in Complex Flows

    Science.gov (United States)

    Ben Mahjoub, Otman; Redondo, Jose M.

    2017-04-01

    Experimental results of the complex turbulent wake of a cilinder in 2D [1] and 3D flows [2] were used to investigate the scaling of structure functions, similar research was also performed on wave propagation and breaking in the Ocean [3], in the the stratified Atmosphere (ABL) [4] and in a 100large flume (UPC) for both regular and irregular waves, where long time series of waves propagating and generating breaking turbulence velocity rms and higher order measurements were taken in depth. [3,5] by means of a velocimeter SONTEK3-D. The probability distribution functions of the velocity differences and their non Gaussian distribution related to the energy spectrum indicate that irregularity is an important source of turbulence. From Kolmogorov's K41 and K61 intermittency correction: the p th-order longitudinal velocity structure function δul at scale l in the inertial range of three-dimensional fully developed turbulence is related by ⟨δup⟩ = ⟨(u(x+ l)- u(x))p⟩ ˜ ɛp0/3lp/3 l where ⟨...⟩ represents the spatial average over flow domain, with ɛ0 the mean energy dissipation per unit mass and l is the separation distance. The importance of the random nature of the energy dissipation led to the K62 theory of intermittency, but locality and non-homogeneity are key issues. p p/3 p/3 ξd ⟨δul⟩ ˜ ⟨ɛl ⟩l ˜ l and ξp = p 3 + τp/3 , where now ɛl is a fractal energy dissipation at scale l, τp/3 is the scaling of and ξp is the scaling exponent of the velocity structure function of order p. Both in K41 and K62, the structure functions of third order related to skewness is ξ3 = 1. But this is not true either. We show that scaling exponents ξp do deviate from early studies that only investigated homogeneous turbulence, where a large inertial range dominates. The use of multi-fractal analysis and improvements on Structure function calculations on standard Enhanced mixing is an essential property of turbulence and efforts to alter and to control

  5. Selective generation of two pulse modes in a single all normal dispersion fiber laser oscillator and analysis of their optical characteristics

    Science.gov (United States)

    Kim, S.; Choi, M.; Song, J. Y.; Lee, J. H.; Kim, Y.

    2017-02-01

    Fiber ultrafast pulses such as mode-locked and noise-like pulses have useful optical characteristics for high precision metrology applications. In this study, we develop an ytterbium doped fiber laser with all normal dispersion which can selectively generate two pulse modes, mode-locked and noise-like pulses, by a turn-key system including polarization control and selective detection parts. The spectral and temporal characteristics of two pulses generated from the single oscillator are analyzed and compared with each other through optical spectrum, RF spectrum and autocorrelation. Furthermore, spectral coherence characteristics are verified through interference signals generated by balanced and unbalanced arm interferometers.

  6. Korea next generation reactor development; analysis method development of steam condensation and pressure oscillation induced by air and steam condensation in IRWST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Whan; Lee, Young Yeon; Youn, Deok Hyun; Jo, Dong Woo; Kang, Seok Jae [Pohang University of Science and Technology, Pohang (Korea)

    2002-03-01

    The object of this research is to optimize the design of IRWST installed inside of KNGR through experiment about DCC phenomena. thus, we investigated and analyzed the direct contact condensation of steam and the oscillation of air bubble. And we characterized the pressure oscillation resulting from those. Additionally, the change of pressure at the pool wall during condensation, the variation of temperature of near steam cavity, and the change of steam cavity interface ,using CCD camera, are analyzed. The main experimental parameters were the steam mass flux in the range of 10 400kg/m{sup 2}sec and the subcooled water temperature in the range of 30 90 .deg. C. In the case of air bubble, we measured the frequency of pressure oscillation. Primary pressure of injected air and injection period were in the range of 1 7bar and 0.05 0.3sec, respectively. The experiment result showed results as follows. In chugging region, the pressure pulse generation rate was in the region of low frequency. This can affect adverse effect to IRWST. In the region of condensation oscillation and stable condensation, the variation of frequency of dynamic pressure was decreased with increasing of the water temperature. And decreased as increasing nozzle diameter. The amplitude of pressure oscillation was maximum at the boundary between these two region, and remarkably decreased in the stable condensation region. In the case of air bubble, showed that the frequency of air bubble oscillation decreased with increasing the quantity of injected air. 36 refs., 46 figs., 5 tabs. (Author)

  7. Assessing Relative Volatility/Intermittency/Energy Dissipation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Pakkanen, Mikko; Schmiegel, Jürgen

    process in particular. While this estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, we apply it also to energy price data. Moreover, we develop a probabilistic asymptotic theory for relative power variations of Brownian semistationary......We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency even when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...... processes and Ito semimartingales and discuss how it can be used for inference on relative volatility/intermittency....

  8. Intermittent Explosive Disorder

    OpenAIRE

    Lut Tamam; Meliha Zengin Eroglu; Ozlem Paltaci

    2011-01-01

    Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etio...

  9. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    In this letter, we describe a self-starting optical pulse source generating ultra low noise 15-ps-wide pulses at 10 GHz. It is based on a hybrid optoelectronic oscillator comprising a fiber extended cavity mode-locked diode laser which injection locks a self-oscillating heterojunction bipolar...... phototransistor. Average jitter levels of 40-43 fs and an amplitude noise of 0.1-0.15% over a frequency range of 500 Hz-15 kHz or 500 Hz-1 MHz were obtained, respectively. The noise is slightly larger, a 57- fs jitter and 0.2% amplitude noise, for a frequency range of 100 Hz-1 MHz. A 10-GHz electrical signal...... with a low phase noise (-108 dBc/Hz at 10-kHz offset from the carrier) is also generated....

  10. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  11. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa.

    Science.gov (United States)

    Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu

    2017-09-01

    Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oscilaciones de Potencia, Tensión y Corriente en Unidades de Generación Distribuida; Power, Voltage and Current Oscillations in Distributed Generation Units

    Directory of Open Access Journals (Sweden)

    Marcos Alberto de Armas Teyra

    2013-06-01

    Full Text Available En las plantas de generación distribuidas accionadas por motores reciprocantes es necesario conocer las fluctuaciones de tensión, corriente y potencia para evaluar la calidad de la energía que entregan estos grupos electrógenos y como criterio de diagnóstico técnico. Las causas de estas fluctuaciones son diversas. La fundamental se debe a la presencia de oscilaciones forzadas producidas por el momento irregular de los motores primarios. Otras razones se encuentran en las excentricidades constructivas, el desbalance de corriente, los armónicos espaciales y de tiempo, la variación de la configuración del sistema, etc. En este trabajo fueron evaluadas satisfactoriamente las oscilaciones de una máquina conectada a la red mediante la instalación de un analizador de redes de 32 cortes por ciclo a la salida del generador de una de estas unidades. Se expone como caso de estudio las oscilaciones observadas en un generador de 425 kVA480 V accionado por un motor Diesel de seis cilindros y cuatro tiempos en la Provincia de Cienfuegos, Cuba.  In distributed and standby power plants driven by reciprocating motors, is important to know the voltage, current and power oscillation as a delivery power quality and diagnostic criteria. There are several oscillation causes. The fundamental is due to the irregular torque of primary motors. Other causes are due to constructive eccentricities, current unbalance, time and spatial harmonics, changes in systems configuration, etc. In this paper the fundamental oscillations of a grid connected machine were evaluated with a power analyzer installed in one generating power plant. As a case there are shown the observed oscillations in 425 kVA generator driven by a four times, six cylinders Diesel motor in Cienfuegos Province of Cuba.

  13. Oscilaciones de Potencia, Tensión y Corriente en Unidades de Generación Distribuida: Power, Voltage and Current Oscillations in Distributed Generation Units

    Directory of Open Access Journals (Sweden)

    Marcos Alberto de Armas Teyra

    2013-06-01

    Full Text Available En las plantas de generación distribuidas accionadas por motores reciprocantes es necesario conocer las fluctuaciones de tensión, corriente y potencia para evaluar la calidad de la energía que entregan estos grupos electrógenos y como criterio de diagnóstico técnico. Las causas de estas fluctuaciones son diversas. La fundamental se debe a la presencia de oscilaciones forzadas producidas por el momento irregular de los motores primarios. Otras razones se encuentran en las excentricidades constructivas, el desbalance de corriente, los armónicos espaciales y de tiempo, la variación de la configuración del sistema, etc. En este trabajo fueron evaluadas satisfactoriamente las oscilaciones de una máquina conectada a la red mediante la instalación de un analizador de redes de 32 cortes por ciclo a la salida del generador de una de estas unidades. Se expone como caso de estudio las oscilaciones observadas en un generador de 425 kVA480 V accionado por un motor Diesel de seis cilindros y cuatro tiempos en la Provincia de Cienfuegos, Cuba.In distributed and standby power plants driven by reciprocating motors, is important to know the voltage, current and power oscillation as a delivery power quality and diagnostic criteria. There are several oscillation causes. The fundamental is due to the irregular torque of primary motors. Other causes are due to constructive eccentricities, current unbalance, time and spatial harmonics, changes in systems configuration, etc. In this paper the fundamental oscillations of a grid connected machine were evaluated with a power analyzer installed in one generating power plant. As a case there are shown the observed oscillations in 425 kVA generator driven by a four times, six cylinders Diesel motor in Cienfuegos Province of Cuba.

  14. Intermittent Explosive Disorder

    Science.gov (United States)

    ... Headache Intermittent explosive disorder Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  15. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  16. Oscillator, neutron modulator

    International Nuclear Information System (INIS)

    Agaisse, R.; Leguen, R.; Ombredane, D.

    1960-01-01

    The authors present a mechanical device and an electronic control circuit which have been designed to sinusoidally modulate the reactivity of the Proserpine atomic pile. The mechanical device comprises an oscillator and a mechanism assembly. The oscillator is made of cadmium blades which generate the reactivity oscillation. The mechanism assembly comprises a pulse generator for cycle splitting, a gearbox and an engine. The electronic device comprises or performs pulse detection, an on-off device, cycle pulse shaping, phase separation, a dephasing amplifier, electronic switches, counting scales, and control devices. All these elements are briefly presented

  17. Mouse oocytes fertilised by ICSI during in vitro maturation retain the ability to be activated after refertilisation in metaphase II and can generate Ca2+ oscillations

    Directory of Open Access Journals (Sweden)

    Pomorski Paweł

    2007-06-01

    Full Text Available Abstract Background At fertilisation, mammalian oocytes are activated by oscillations of intracellular Ca2+ ([Ca2+]i. Phospholipase Cζ, which is introduced by fertilising spermatozoon, triggers [Ca2+]i oscillations through the generation of inositol 1,4,5-triphosphate (IP3, which causes Ca2+ release by binding to IP3 receptors located on the endoplasmic reticulum (ER of the oocyte. Ability to respond to this activating stimulus develops during meiotic maturation of the oocyte. Here we examine how the development of this ability is perturbed when a single spermatozoon is introduced into the oocyte prematurely, i.e. during oocyte maturation. Results Mouse oocytes during maturation in vitro were fertilised by ICSI (intracytoplasmic sperm injection 1 – 4 h after germinal vesicle break-down (GVBD and were subsequently cultured until they reached metaphase II (MII stage. At MII stage they were fertilised in vitro for the second time (refertilisation. We observed that refertilised oocytes underwent activation with similar frequency as control oocytes, which also went through maturation in vitro, but were fertilised only once at MII stage (87% and 93%, respectively. Refertilised MII oocytes were able to develop [Ca2+]i oscillations in response to penetration by spermatozoa. We found however, that they generated a lower number of transients than control oocytes. We also showed that the oocytes, which were fertilised during maturation had a similar level of MPF activity as control oocytes, which were not subjected to ICSI during maturation, but had reduced level of IP3 receptors. Conclusion Mouse oocytes, which were experimentally fertilised during maturation retain the ability to generate repetitive [Ca2+]i transients, and to be activated after completion of maturation.

  18. Fractional-length sync-pumped degenerate optical parametric oscillator for 500-MHz 3-μm mid-infrared frequency comb generation.

    Science.gov (United States)

    Ingold, Kirk A; Marandi, Alireza; Rudy, Charles W; Vodopyanov, Konstantin L; Byer, Robert L

    2014-02-15

    We demonstrate a mid-IR frequency comb centered at 3120 nm with 650-nm (20-THz) bandwidth at a comb-teeth spacing of 500 MHz. The generated comb is based on a compact ring-type synchronously pumped optical parametric oscillator (SPOPO) operating at degeneracy and pumped by a mode-locked Er-doped 1560 nm fiber laser at a repetition rate of 100 MHz. We achieve high-repetition rate by using a fractional-length cavity with a roundtrip length of 60 cm, which is one-fifth of the length dictated by conventional synchronous pumping.

  19. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    Science.gov (United States)

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  20. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  1. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons

    Science.gov (United States)

    Rojan, Katharina; Léger, Yoan; Morigi, Giovanna; Richard, Maxime; Minguzzi, Anna

    2017-09-01

    Semiconductor microcavities in the strong-coupling regime exhibit an energy scale in the terahertz (THz) frequency range, which is fixed by the Rabi splitting between the upper and lower exciton-polariton states. While this range can be tuned by several orders of magnitude using different excitonic media, the transition between both polaritonic states is dipole forbidden. In this work, we show that, in cadmium telluride microcavities, the Rabi-oscillation-driven THz radiation is actually active without the need for any change in the microcavity design. This feature results from the unique resonance condition which is achieved between the Rabi splitting and the phonon-polariton states and leads to a giant enhancement of the second-order nonlinearity.

  2. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  3. Intermittent and global transitions in plasma turbulence

    International Nuclear Information System (INIS)

    Vlad, M.; Spineanu, F.; Itoh, K.; Itoh, S.-I.

    2003-07-01

    The dynamics of the transition processes in plasma turbulence described by the nonlinear Langevin equation (1) is studied. We show that intermittent or global transitions between metastable states can appear. The conditions for the generation of these transitions and their statistical characteristics are determined. (author)

  4. [Neurogenic intermittent claudication].

    Science.gov (United States)

    Jarmundowicz, W; Haftek, J

    1984-01-01

    In the period 1971-1981 operations were carried out in 1114 cases of discopathy or lumbar spondylosis. Three patients in this group had pains of the type of intermittent claudication as the main symptoms. In all these cases narrowing of the vertebral canal was found in the lumbar part caused in two cases by degenerative changes and herniation of the intervertebral discs, and in a third case it was due to an extensive connective tissue scar at the site of previously done laminectomy. The nerve roots of the cauda were relieved from pressure surgically and in all cases pains disappeared. The authors discuss factors contributing to the development of neurogenic intermittent claudication.

  5. Assessing relative volatility/intermittency/energy dissipation

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Pakkanen, Mikko S.; Schmiegel, Jürgen

    2014-01-01

    process in particular. This estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, but it is also applicable in other areas. We develop a probabilistic asymptotic theory for realised relative power variations of Brownian semistationary processes......, and introduce inference methods based on the theory. We also discuss how to extend the asymptotic theory to other classes of processes exhibiting stochastic volatility/intermittency. As an empirical application, we study relative energy dissipation in data of atmospheric turbulence.......We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency when the data of interest are generated by a non-semimartingale, or a Brownian semistationary...

  6. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  7. Fate in intermittent claudication

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Gaardsting, O; Hougaard Jensen, K

    1986-01-01

    The fate of 257 consecutive patients (100 women) aged 36-85 years (mean 65) first seen with intermittent claudication in 1977 was analysed after a mean of 6.5 (SD 0.5) years. When first seen none of the patients complained of rest pain or had ulcers or gangrenous lesions on the feet. At follow up...

  8. Beam-plasma generators of stochastic microwave oscillations using for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    International Nuclear Information System (INIS)

    Mitin, L.A.; Perevodchikov, V.I.; Shapiro, A.L.; Zavyalov, M.A.; Bliokh, Yu.P.; Fajnberg, Ya.B.

    1996-01-01

    The results of theoretical and experimental investigations of a generator of stochastic microwave power based on a beam-plasma inertial feedback amplifier is discussed with a view to using stochastic oscillations for plasma heating. The plasma heating efficiency in the region of low-frequency resonance in the geometry of the Tokamak is considered theoretically. It is shown that the temperature of heating is proportional to the power multiplied by the spectra width of the noiselike signal. The creation and heating of plasma by stochastic microwave power in an oversized waveguide without external magnetic field is discussed with a view to plasma-chemistry applications. It is shown that the efficiency of heating are defined by the time of phase instability of the stochastic power. (author). 3 figs., 13 refs

  9. Efficient high-pulse-energy eye-safe laser generated by an intracavity Nd:YLF/KTP optical parametric oscillator: role of thermally induced polarization switching

    International Nuclear Information System (INIS)

    Huang, Y J; Tang, C Y; Huang, Y P; Cho, C Y; Su, K W; Chen, Y F

    2012-01-01

    A high-pulse-energy eye-safe laser at 1552 nm is effectually generated by an intracavity Nd:YLF/KTP optical parametric oscillator (OPO) with the help of the thermally induced polarization switching. The polarization characteristics of the c-cut Nd:YLF laser at 1053 nm in the continuous-wave (CW) and Q-switched operation are comprehensively investigated. We experimentally verify the thermally induced birefringence can lead to a polarization switching between the mutually orthogonal components of the fundamental pulses. Consequently, an efficient intracavity nonlinear frequency conversion can be achieved in an optically isotropic laser crystal without any additional polarization control. With this finding, the pulse energy and peak power of the compact Nd:YLF/KTP eye-safe laser under an incident pump power of 12.7 W and a pulse repetition rate of 5 kHz are up to 306 μJ and 4 kW, respectively

  10. Neutrino Oscillations

    Indian Academy of Sciences (India)

    Neutrino Oscillations: New Windows to the Particle World. General Article Volume 21 Issue 10 ... Neutrino oscillation is a quantum mechanicalphenomenon whereby a neutrino created witha specific lepton flavour (electron, muon, or tau) can later bemeasured to have a different flavour. Historical developmentof the field in ...

  11. Chemical Oscillations

    Indian Academy of Sciences (India)

    The law of mass-action led chemists to the belief that reactions approach equilibrium steadily. So the discovery of chemical oscillations came as a surprise. Now chemists are very familiar with reactions that oscillate in time and/or space. Experimental and theoretical studies of such reac- tions showing temporal and spatial ...

  12. A Cognition-Related Neural Oscillation Pattern, Generated in the Prelimbic Cortex, Can Control Operant Learning in Rats.

    Science.gov (United States)

    Hernández-González, Samuel; Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María

    2017-06-14

    The prelimbic (PrL) cortex constitutes one of the highest levels of cortical hierarchy dedicated to the execution of adaptive behaviors. We have identified a specific local field potential (LFP) pattern generated in the PrL cortex and associated with cognition-related behaviors. We used this pattern to trigger the activation of a visual display on a touch screen as part of an operant conditioning task. Rats learned to increase the presentation rate of the selected θ to β-γ (θ/β-γ) transition pattern across training sessions. The selected LFP pattern appeared to coincide with a significant decrease in the firing of PrL pyramidal neurons and did not seem to propagate to other cortical or subcortical areas. An indication of the PrL cortex's cognitive nature is that the experimental disruption of this θ/β-γ transition pattern prevented the proper performance of the acquired task without affecting the generation of other motor responses. The use of this LFP pattern to trigger an operant task evoked only minor changes in its electrophysiological properties. Thus, the PrL cortex has the capability of generating an oscillatory pattern for dealing with environmental constraints. In addition, the selected θ/β-γ transition pattern could be a useful tool to activate the presentation of external cues or to modify the current circumstances. SIGNIFICANCE STATEMENT Brain-machine interfaces represent a solution for physically impaired people to communicate with external devices. We have identified a specific local field potential pattern generated in the prelimbic cortex and associated with goal-directed behaviors. We used the pattern to trigger the activation of a visual display on a touch screen as part of an operant conditioning task. Rats learned to increase the presentation rate of the selected field potential pattern across training. The selected pattern was not modified when used to activate the touch screen. Electrical stimulation of the recording site prevented

  13. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  14. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-18

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  15. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  16. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels

    DEFF Research Database (Denmark)

    Frenkel-Morgenstern, Milana; Danon, Tamar; Christian, Thomas

    2012-01-01

    The cell cycle is a temporal program that regulates DNA synthesis and cell division. When we compared the codon usage of cell cycle-regulated genes with that of other genes, we discovered that there is a significant preference for non-optimal codons. Moreover, genes encoding proteins that cycle...... at the protein level exhibit non-optimal codon preferences. Remarkably, cell cycle-regulated genes expressed in different phases display different codon preferences. Here, we show empirically that transfer RNA (tRNA) expression is indeed highest in the G2 phase of the cell cycle, consistent with the non...... that non-optimal (wobbly) matching codons influence protein synthesis during the cell cycle. We describe a new mathematical model that shows how codon usage can give rise to cell-cycle regulation. In summary, our data indicate that cells exploit wobbling to generate cell cycle-dependent dynamics...

  17. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  18. Charge oscillations in orbitrons

    International Nuclear Information System (INIS)

    Porto, M.; Gomes, L.C.

    1981-01-01

    A statistical model for the electron distribution in orbitrons is constructed where the effect of the end plates is considered. A comparison is made with the measured density of charge. The electromagnetic oscillations generated by orbitrons are calculated as pressure waves and the results obtained are compared with the data. (Author) [pt

  19. Intermittent hypoxia and neurorehabilitation.

    Science.gov (United States)

    Gonzalez-Rothi, Elisa J; Lee, Kun-Ze; Dale, Erica A; Reier, Paul J; Mitchell, Gordon S; Fuller, David D

    2015-12-15

    In recent years, it has become clear that brief, repeated presentations of hypoxia [i.e., acute intermittent hypoxia (AIH)] can boost the efficacy of more traditional therapeutic strategies in certain cases of neurologic dysfunction. This hypothesis derives from a series of studies in animal models and human subjects performed over the past 35 yr. In 1980, Millhorn et al. (Millhorn DE, Eldridge FL, Waldrop TG. Respir Physiol 41: 87-103, 1980) showed that electrical stimulation of carotid chemoafferent neurons produced a persistent, serotonin-dependent increase in phrenic motor output that outlasts the stimulus for more than 90 min (i.e., a "respiratory memory"). AIH elicits similar phrenic "long-term facilitation" (LTF) by a mechanism that requires cervical spinal serotonin receptor activation and de novo protein synthesis. From 2003 to present, a series of studies demonstrated that AIH can induce neuroplasticity in the injured spinal cord, causing functional recovery of breathing capacity after cervical spinal injury. Subsequently, it was demonstrated that repeated AIH (rAIH) can induce recovery of limb function, and the functional benefits of rAIH are greatest when paired with task-specific training. Since uncontrolled and/or prolonged intermittent hypoxia can elicit pathophysiology, a challenge of intermittent hypoxia research is to ensure that therapeutic protocols are well below the threshold for pathogenesis. This is possible since many low dose rAIH protocols have induced functional benefits without evidence of pathology. We propose that carefully controlled rAIH is a safe and noninvasive modality that can be paired with other neurorehabilitative strategies including traditional activity-based physical therapy or cell-based therapies such as intraspinal transplantation of neural progenitors. Copyright © 2015 the American Physiological Society.

  20. Fate in intermittent claudication

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Gaardsting, O; Hougaard Jensen, K

    1986-01-01

    113 of the patients (44%) had died. Causes of death were no different from those in the general population. Mortality was twice that of the general population matched for age and sex. Mortality among the men was twice that among the women. In men under 60 mortality was four times that expected......, or an ankle/arm pressure index below 50% were individually significantly associated with progression of the arteriosclerotic disease. These findings show the importance of peripheral blood pressure measurements in the management of patients with intermittent claudication due to arteriosclerotic disease....

  1. Complex economic dynamics: Chaotic saddle, crisis and intermittency

    International Nuclear Information System (INIS)

    Chian, Abraham C.-L.; Rempel, Erico L.; Rogers, Colin

    2006-01-01

    Complex economic dynamics is studied by a forced oscillator model of business cycles. The technique of numerical modeling is applied to characterize the fundamental properties of complex economic systems which exhibit multiscale and multistability behaviors, as well as coexistence of order and chaos. In particular, we focus on the dynamics and structure of unstable periodic orbits and chaotic saddles within a periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor merging crisis, and in the chaotic regions associated with type-I intermittency and crisis-induced intermittency, in non-linear economic cycles. Inside a periodic window, chaotic saddles are responsible for the transient motion preceding convergence to a periodic or a chaotic attractor. The links between chaotic saddles, crisis and intermittency in complex economic dynamics are discussed. We show that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits located in the gap regions of chaotic saddles. Non-linear modeling of economic chaotic saddle, crisis and intermittency can improve our understanding of the dynamics of financial intermittency observed in stock market and foreign exchange market. Characterization of the complex dynamics of economic systems is a powerful tool for pattern recognition and forecasting of business and financial cycles, as well as for optimization of management strategy and decision technology

  2. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  3. Metabolic Effects of Intermittent Fasting.

    Science.gov (United States)

    Patterson, Ruth E; Sears, Dorothy D

    2017-08-21

    The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.

  4. Chemical Oscillations

    Indian Academy of Sciences (India)

    behaviour of a few complex chemical systems. We observed that these chemical oscillators are basically .... Kutta fourth order integration method to solve the Lotka-. Volterra equation as per the Fortran program given in ... This is known as the phase plane represen- tation. We have obtained these plots using the software.

  5. Chemical Oscillations

    Indian Academy of Sciences (India)

    relevant species is zero. So, oscillations can appear only if the inhibition step is somehow .... the value of such an experimental parameter can possi- bly move the system between the steady states. Per- ... states for different values of [X], obtained far from equilibrium. Figure 2. System showing. The concentrations [X] ...

  6. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  7. Intermittent dynamics of nonlinear resistive tearing modes at extremely high magnetic Reynolds number

    International Nuclear Information System (INIS)

    Miyoshi, Takahiro; Becchaku, Masahiro; Kusano, Kanya

    2008-01-01

    Nonlinear dynamics of the resistive tearing instability in high magnetic Reynolds number (R m ) plasmas is studied by newly developing an accurate and robust resistive magnetohydrodynamic (MHD) scheme. The results show that reconnection processes strongly depend on R m . Particularly, in a high R m case, small-scale plasmoids induced by a secondary instability are intermittently generated and ejected accompanied by fast shocks. According to the intermittent processes, the reconnection rate increases intermittently at a later nonlinear stage. (author)

  8. Oscillations with laboratory neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Saitta, Biagio

    2001-05-01

    The status of searches for oscillations using neutrinos produced in the laboratory is reviewed. The most recent results from experiments approaching completion are reported and the potential capabilities of long baseline projects being developed in USA and Europe are considered and compared. The steps that should naturally follow this new generation of experiments are outlined and the impact of future facilities - such as neutrino factories or conventional superbeams - in precision measurements of elements of the neutrino mixing matrix is discussed.

  9. Intermittent structures in atmospheric wind fields

    Energy Technology Data Exchange (ETDEWEB)

    Yueksek, Oersan; Muecke, Tanja; Peinke, Joachim [Wind Center for Wind Energy Research, University of Oldenburg (Germany)

    2011-07-01

    For design processes and load calculations of wind energy convertors (WEC) realistic synthetic wind fields are needed. The widely used norm is the standard IEC 61400. The IEC standard considers different simulation methods based on Gaussian statistics. However, the analysis of the measured wind fields by means of velocity increment statistics yields that these do not obey Gaussian statistics but are quite intermittent. The intermittent nature of atmospheric wind affects the whole chain of the wind energy conversion process and is assumed to be a major effect for additional loads and fatigue. A recently proposed method based on continuous time random walks (CTRWs) adequately reproduces the intermittency of turbulent atmospheric velocity increments on small time scales and provides wind fields with the desired high order two point statistics. In this work, we analyze highly time-resolved data sets measured in an extensive grid over the whole rotor plane of a WEC. The atmospheric wind fields are characterized statistically and the dependency of the higher order two point statistics on turbulence intensity, mean wind speed and height is shown. With this knowledge we are able to generate synthetic CTRW wind fields with the correct small scale structure.

  10. Intermedia and Intermittency

    Directory of Open Access Journals (Sweden)

    Veres Bálint

    2014-12-01

    Full Text Available It is commonly known that medial reflections have been initiated by attempts to secure the borders of discrete medial forms and to define the modus operandi of each essentialized medial area. Later on, the focus of study has shifted to plurimedial formations and the interactions between predefined medial genres. In the last few decades, taxonomic approaches to various multi-, inter-, and transmedial phenomena dominated the discussions, which offered invaluable support in mapping the terrain, but at the same time hindered the analysis of the ephemeral, time-dependent aspects of plurimedial operations. While we explore the properties of each medial configuration, we lose sight of the actual historical drivers that produce ever-new configurations. My thesis is that any discourse on intermediality should be paralleled by a discourse on cultural intermittency, and consequently, media studies should involve an approach that focuses on the “ecosystem” of the constantly renewing media configurations from the point of view of their vitalizing potential and capability to trigger heightened experiences. This approach draws much inspiration from K. Ludwig Pfeiffer’s media anthropology that gives orientation in my paper.

  11. Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs, Static Var Compensator (SVC and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs in Multimachine Power Systems

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2017-04-01

    Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.

  12. Coho salmon dependence on intermittent streams.

    Science.gov (United States)

    P.J. Wigington; J.L. Ebersole; M.E. Colvin; S.G. Leibowitz; B. Miller; B. Hansen; H. Lavigne; D. White; J.P. Baker; M.R. Church; J.R. Brooks; M.A. Cairns; J.E. Compton

    2006-01-01

    In this paper, we quantify the contributions of intermittent streams to coho salmon production in an Oregon coastal watershed. We provide estimates of (1) proportion of spawning that occurred in intermittent streams, (2) movement of juveniles into intermittent streams, (3) juvenile survival in intermittent and perennial streams during winter, and (4) relative size of...

  13. Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas

    DEFF Research Database (Denmark)

    Makarov, Yuri V.; Yang, Bo; DeSteese, John G.

    2009-01-01

    This paper addresses the issue of mitigating additional intermittency and fast ramps that are expected to occur at high penetration levels of intermittent resources, including wind generation resources, in the Bonneville Power Administration (BPA) and the California Independent System Operator...

  14. Intermittent Switching between Soliton Dynamic States in a Perturbed Sine-Gordon Model

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Arley, N.; Christiansen, Peter Leth

    1983-01-01

    Chaotic intermittency between soliton dynamic states has been found in a perturbed sine-Gordon system in the absence of an external ac driving term. The system is a model of a long Josephson oscillator with constant loss and bias current in an external magnetic field. The results predict the exis...

  15. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingwen; Tian, Hui; He, Jiansen; Wang, Linghua, E-mail: huitian@pku.edu.cn [School of Earth and Space Sciences, Peking University, 100871 Beijing (China)

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases to zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.

  16. Intermittency in relation with 1/f noise and stochastic differential equations.

    Science.gov (United States)

    Ruseckas, J; Kaulakys, B

    2013-06-01

    One of the models of intermittency is on-off intermittency, arising due to time-dependent forcing of a bifurcation parameter through a bifurcation point. For on-off intermittency, the power spectral density (PSD) of the time-dependent deviation from the invariant subspace in a low frequency region exhibits 1/√f power-law noise. Here, we investigate a mechanism of intermittency, similar to the on-off intermittency, occurring in nonlinear dynamical systems with invariant subspace. In contrast to the on-off intermittency, we consider the case where the transverse Lyapunov exponent is zero. We show that for such nonlinear dynamical systems, the power spectral density of the deviation from the invariant subspace can have 1/f(β) form in a wide range of frequencies. That is, such nonlinear systems exhibit 1/f noise. The connection with the stochastic differential equations generating 1/f(β) noise is established and analyzed, as well.

  17. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  18. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Tobalske, Bret W

    2010-01-01

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  19. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  20. Turbulence and intermittent transport at the boundary of magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2005-01-01

    fluctuation wave forms and transport statistics are also in a good agreement with those derived from the experiments. Associated with the turbulence bursts are relaxation oscillations in the particle and heat confinements as well as in the kinetic energy of the sheared poloidal flows. The formation of blob...... a forcing region with spatially localized sources of particles and heat outside which losses due to the motion along open magnetic-field lines dominate, corresponding to the edge region and the scrape-off layer, respectively. Turbulent states reveal intermittent eruptions of hot plasma from the edge region...

  1. Fast imaging of intermittent electrospraying of water with positive corona discharge

    International Nuclear Information System (INIS)

    Pongrác, B; Janda, M; Martišovitš, V; Machala, Z; Kim, H H

    2014-01-01

    The effect of the electrospraying of water in combination with a positive direct current (dc) streamer corona discharge generated in air was investigated in this paper. We employed high-speed camera visualizations and oscilloscopic discharge current measurements in combination with an intensified charge-coupled device camera for fast time-resolved imaging. The repetitive process of Taylor cone formation and droplet formation from the mass fragments of water during the electrospray was visualized. Depending on the applied voltage, the following intermittent modes of electrospraying typical for water were observed: dripping mode, spindle mode, and oscillating-spindle mode. The observed electrospraying modes were repetitive with a frequency of a few hundreds of Hz, as measured from the fast image sequences. This frequency agreed well with the frequency of the measured streamer current pulses. The presence of filamentary streamer discharges at relatively low voltages probably prevented the establishment of a continuous electrospray in the cone–jet mode. After each streamer, a positive glow corona discharge was established on the water filament tip, and it propagated from the stressed electrode along with the water filament elongation. The results show a reciprocal character of intermittent electrospraying of water, and the presence of corona discharge, where both the electrospray and the discharge affect each other. The generation of a corona discharge from the water cone depended on the repetitive process of the cone formation. Also, the propagation and curvature of the water filament were influenced by the discharge and its resultant space charge. Furthermore, these phenomena were partially influenced by the water conductivity. (paper)

  2. Efficient high-energy pulse generation from a diode-side-pumped passively Q-switched Nd:YAG laser and application for optical parametric oscillator

    International Nuclear Information System (INIS)

    Huang, Y P; Huang, Y J; Cho, C Y

    2014-01-01

    We employ a convex–concave resonator to develop a high-pulse-energy diode-side-pumped passively Q-switched Nd:YAG laser with high extraction efficiency. At a diode pump energy of 227 mJ, the output laser pulse reaches 30 mJ with a pulse width of 6 ns at a repetition rate of 20 Hz. The optical-to-optical conversion efficiency is up to 13.2%. Based on the developed Nd:YAG laser oscillator, we further employ a monolithic KTP crystal to perform the optical parametric oscillator (OPO). With the 1064 nm input energy of 30 mJ, the OPO energy at 1573 nm is found to be 13.3 mJ, corresponding to an OPO conversion efficiency as high as 44.3%. (letters)

  3. Memristor-based relaxation oscillators using digital gates

    KAUST Repository

    Khatib, Moustafa A.

    2012-11-01

    This paper presents two memristor-based relaxation oscillators. The proposed oscillators are designed without the need of any reactive elements, i.e., capacitor or inductor. As the \\'resistance storage\\' property of the memristor can be exploited to generate the oscillation. The proposed oscillators have the advantage that they can be fully integrated on-chip giving an area-efficient solution. Furthermore, these oscillators give higher frequency other than the existing reactance-less oscillator and provide a wider range of the resistance. The concept of operation and the mathematical analysis for the proposed oscillators are explained and verified with circuit simulations showing an excellent agreement. © 2012 IEEE.

  4. Intermittent Turbulence in the Very Stable Ekman Layer

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, James C [Univ. of Washington, Seattle, WA (United States)

    2001-01-01

    This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).

  5. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  6. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  7. Sprint cycling training improves intermittent run performance

    Directory of Open Access Journals (Sweden)

    Hardaway Chun-Kwan Chan

    2018-01-01

    Conclusions: Sprint cycling significantly improved intermittent run performance, VO2max and peak power output at VO2max. Sprint cycling training is suitable for intermittent sports athletes but separate speed and COD training should be included.

  8. Optimal Integration of Intermittent Renewables: A System LCOE Stochastic Approach

    Directory of Open Access Journals (Sweden)

    Carlo Lucheroni

    2018-03-01

    Full Text Available We propose a system level approach to value the impact on costs of the integration of intermittent renewable generation in a power system, based on expected breakeven cost and breakeven cost risk. To do this, we carefully reconsider the definition of Levelized Cost of Electricity (LCOE when extended to non-dispatchable generation, by examining extra costs and gains originated by the costly management of random power injections. We are thus lead to define a ‘system LCOE’ as a system dependent LCOE that takes properly into account intermittent generation. In order to include breakeven cost risk we further extend this deterministic approach to a stochastic setting, by introducing a ‘stochastic system LCOE’. This extension allows us to discuss the optimal integration of intermittent renewables from a broad, system level point of view. This paper thus aims to provide power producers and policy makers with a new methodological scheme, still based on the LCOE but which updates this valuation technique to current energy system configurations characterized by a large share of non-dispatchable production. Quantifying and optimizing the impact of intermittent renewables integration on power system costs, risk and CO 2 emissions, the proposed methodology can be used as powerful tool of analysis for assessing environmental and energy policies.

  9. Synchronization of mobile chaotic oscillator networks

    International Nuclear Information System (INIS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-01-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  10. Nonlinearity, Viscosity and Air-Compressibility Effects on the Helmholtz Resonant Wave Motion Generated by an Oscillating Twin Body in a Free Surface

    Science.gov (United States)

    Ananthakrishnan, Palaniswamy

    2012-11-01

    The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.

  11. Oscillating systems with cointegrated phase processes

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Rahbek, Anders; Ditlevsen, Susanne

    2017-01-01

    We present cointegration analysis as a method to infer the network structure of a linearly phase coupled oscillating system. By defining a class of oscillating systems with interacting phases, we derive a data generating process where we can specify the coupling structure of a network that resemb...

  12. Discontinuous Spirals of Stable Periodic Oscillations

    DEFF Research Database (Denmark)

    Sack, Achim; Freire, Joana G.; Lindberg, Erik

    2013-01-01

    We report the experimental discovery of a remarkable organization of the set of self-generated periodic oscillations in the parameter space of a nonlinear electronic circuit. When control parameters are suitably tuned, the wave pattern complexity of the periodic oscillations is found to increase...

  13. The 2D κ-Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Fabiano M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, Edilberto O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil)

    2014-11-10

    In this Letter, 2D Dirac oscillator in the quantum deformed framework generated by the κ-Poincaré–Hopf algebra is considered. The problem is formulated using the κ-deformed Dirac equation. The resulting theory reveals that the energies and wave functions of the oscillator are modified by the deformation parameter.

  14. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  15. Direct generation of 81 nJ pulses and external compression to a subpicosecond regime with a 4.9 MHz chirped-pulse multipass-cavity Cr⁴⁺:forsterite oscillator.

    Science.gov (United States)

    Cankaya, Huseyin; Akturk, Selcuk; Sennaroglu, Alphan

    2011-05-01

    We report direct generation of 81 nJ chirped pulses from a room-temperature, Kerr lens mode-locked Cr⁴⁺:forsterite oscillator operating at 1258 nm. To increase the pulse energy, the pulse repetition rate of the short x-type resonator was lowered from 143 to 4.9 MHz by the addition of a q-preserving multipass cavity, which provided an additional effective optical path length of 59.4 m. The duration of the chirped pulses was around 5.5 ps with a spectral width of 21 nm. The pulses were externally compressed to 607 fs by using a diffraction grating pair. To our knowledge, this is the highest reported pulse energy directly generated from a room-temperature mode-locked Cr⁴⁺:forsterite laser.

  16. Biological oscillations: Fluorescence monitoring by confocal microscopy

    Science.gov (United States)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  17. Radial evolution of the intermittency of density fluctuations in the fast solar wind

    International Nuclear Information System (INIS)

    Bruno, R.; D'Amicis, R.; Telloni, D.; Primavera, L.; Sorriso-Valvo, L.; Carbone, V.; Malara, F.; Veltri, P.; Pietropaolo, E.

    2014-01-01

    We study the radial evolution of the intermittency of density fluctuations in the fast solar wind. The study is performed by analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between 0.3 and 0.9 AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different timescales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within the fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with the distance from the Sun, at odds with the intermittency of both magnetic field and all other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process. A remarkable, qualitative similarity with the behavior of plasma density fluctuations obtained from a numerical study of the nonlinear evolution of parametric instability in the solar wind supports the idea that this mechanism has an important role in governing density fluctuations in the inner heliosphere.

  18. A family of memristor-based reactance-less oscillators

    KAUST Repository

    Zidan, Mohammed A.

    2013-05-03

    In this paper, we present for the first time a family of memristor-based reactance-less oscillators (MRLOs). The proposed oscillators require no reactive components, that is, inductors or capacitors, rather, the ‘resistance storage’ property of memristor is exploited to generate the oscillation. Different types of MRLO family are presented, and for each type, closed form expressions are derived for the oscillation condition, oscillation frequency, and range of oscillation. Derived equations are further verified using transient circuit simulations. A comparison between different MRLO types is also discussed. In addition, detailed fabrication steps of a memristor device and experimental results for the first MRLO physical realization are presented.

  19. Neutrino oscillations: From a historical perspective to the present status

    International Nuclear Information System (INIS)

    Bilenky, S.

    2016-01-01

    The history of neutrino mixing and oscillations is briefly presented. Basics of neutrino mixing and oscillations and convenient formalism of neutrino oscillations in vacuum are given. The role of neutrino in the Standard Model and the Weinberg mechanism of the generation of the Majorana neutrino masses are discussed.

  20. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  1. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  2. Empirical heuristics for improving Intermittent Demand Forecasting

    OpenAIRE

    Petropoulos, Fotios; Nikolopoulos, Konstantinos; Spithourakis, George; Assimakopoulos, Vassilios

    2013-01-01

    Purpose– Intermittent demand appears sporadically, with some time periods not even displaying any demand at all. Even so, such patterns constitute considerable proportions of the total stock in many industrial settings. Forecasting intermittent demand is a rather difficult task but of critical importance for corresponding cost savings. The current study aims to examine the empirical outcomes of three heuristics towards the modification of established intermittent demand forecasting approaches...

  3. Experimental synchronization of circuit oscillations induced by common telegraph noise.

    Science.gov (United States)

    Nagai, Ken; Nakao, Hiroya

    2009-03-01

    Experimental realization and quantitative investigation of common-noise-induced synchronization of limit-cycle oscillations subject to random telegraph signals are performed using an electronic oscillator circuit. Based on our previous formulation [K. Nagai, Phys. Rev. E 71, 036217 (2005)], dynamics of the circuit is described as random-phase mappings between two limit cycles. Lyapunov exponents characterizing the degree of synchronization are estimated from experimentally determined phase maps and compared with linear damping rates of phase differences measured directly. Noisy on-off intermittency of the phase difference as predicted by the theory is also confirmed experimentally.

  4. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    Science.gov (United States)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  5. STUDIES OF THE ORIGIN OF HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS OF MASS-ACCRETING BLACK HOLES IN X-RAY BINARIES WITH NEXT-GENERATION X-RAY TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric, E-mail: b.beheshtipour@wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, CB 1105, St. Louis, MO 63130 (United States)

    2016-08-01

    Observations with RXTE ( Rossi X-ray Timing Explorer ) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT ( Large Observatory for X-ray Timing ) and polarization signatures with space-borne X-ray polarimeters such as IXPE ( Imaging X-ray Polarimetry Explorer ), PolSTAR ( Polarization Spectroscopic Telescope Array ), PRAXyS ( Polarimetry of Relativistic X-ray Sources ), or XIPE ( X-ray Imaging Polarimetry Explorer ). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT -type mission.

  6. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  7. An intermittency route to global instability in low-density jets

    Science.gov (United States)

    Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

    2017-11-01

    Above a critical Reynolds number (Re), a low-density jet can become globally unstable, transitioning from a steady state (i.e. a fixed point) to a self-excited oscillatory state (i.e. a limit cycle) via a Hopf bifurcation. In this experimental study, we show that this transition can sometimes involve intermittency. When Re is just slightly above the critical point, intermittent bursts of high-amplitude periodic oscillations emerge amidst a background of low-amplitude aperiodic fluctuations. As Re increases further, these intermittent bursts persist longer in time until they dominate the overall dynamics, causing the jet to transition fully to a periodic limit cycle. We identify this as Type-II Pomeau-Manneville intermittency by quantifying the statistical distribution of the duration of the aperiodic fluctuations at the onset of intermittency. This study shows that the transition to global instability in low-density jets is not always abrupt but can involve an intermediate state with characteristics of both the initial fixed point and the final limit cycle. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  8. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn [Key Laboratory of Advanced Transducer and Intelligent Control system, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhe-Jie, E-mail: pandanlzj@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  9. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Guo

    2015-05-01

    Full Text Available We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.

  10. Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77Gbits/s

    KAUST Repository

    Mansingka, Abhinav S.

    2014-06-18

    This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.

  11. Lepton asymmetries from neutrino oscillations

    International Nuclear Information System (INIS)

    Volkas, R.R.

    2000-01-01

    Reasonably large relic neutrino asymmetries can be generated by active-sterile neutrino oscillations. After briefly discussing possible applications, I describe the Quantum Kinetic Equation formalism used to compute the asymmetry growth curves. I then show how the basic features of these curves can be understood on the basis of the adiabatic limit approximation in the collision dominated epoch, and the pure MSW effect at lower temperatures (author)

  12. Probabilistic signatures of spatiotemporal intermittency in the ...

    Indian Academy of Sciences (India)

    where spatiotemporal intermittency with travelling wave laminar states and solitons is seen at points marked with boxes (2). (b) The space-time plot of spatiotemporal intermittency with solitons. the strength of nonlinearity in the map and Ω is the frequency of the map in the absence of nonlinearity. The phase diagram of the ...

  13. Intermittent behavior of the logistic system

    Science.gov (United States)

    Mayer-Kress, G.; Haken, H.

    1981-03-01

    In the discrete logistic model a transition to chaotic behavior via intermittency occurs in a neighborhood of periodic bands. Intermittent behavior is also induced if a stable periodic orbit is perturbed by low-level external noise, whereas alterations due to computer digitalisation produce remarkable periodicities. We compare our numerical results with the predictions of Pomeau and Manneville for the Lorenz system.

  14. Probabilistic signatures of spatiotemporal intermittency in the ...

    Indian Academy of Sciences (India)

    with triangles (△) and asterisks (∗). Inset shows a part of the phase diagram where spatiotemporal intermittency with travelling wave laminar states and solitons is seen at points marked with boxes (2). (b) The space-time plot of spatiotemporal intermittency with solitons. the strength of nonlinearity in the map and Ω is the ...

  15. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Tsujimoto, M. [Department of Electronic Science and Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yamamoto, T. [Wide Bandgap Materials Group, Optical and Electronic Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Marković, B. [Faculty of Sciences, University of Montenegro, George Washington Str., 81000 Podgorica (Montenegro); Mirković, J. [Faculty of Science, University of Montenegro, and CETI, Put Radomira Ivanovica, 81000 Podgorica (Montenegro); Klemm, R. A. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816-2385 (United States)

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  16. Self-seeding ring optical parametric oscillator

    Science.gov (United States)

    Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  17. Universality of oscillating boiling in Leidenfrost transition.

    Science.gov (United States)

    Khavari, Mohammad; Tran, Tuan

    2017-10-01

    The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon and verify the prediction experimentally for various liquids.

  18. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  19. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  20. Prolonged Intermittent Renal Replacement Therapy.

    Science.gov (United States)

    Edrees, Fahad; Li, Tingting; Vijayan, Anitha

    2016-05-01

    Prolonged intermittent renal replacement therapy (PIRRT) is becoming an increasingly popular alternative to continuous renal replacement therapy in critically ill patients with acute kidney injury. There are significant practice variations in the provision of PIRRT across institutions, with respect to prescription, technology, and delivery of therapy. Clinical trials have generally demonstrated that PIRRT is non-inferior to continuous renal replacement therapy regarding patient outcomes. PIRRT offers cost-effective renal replacement therapy along with other advantages such as early patient mobilization and decreased nursing time. However, due to lack of standardization of the procedure, PIRRT still poses significant challenges, especially pertaining to appropriate drug dosing. Future guidelines and clinical trials should work toward developing consensus definitions for PIRRT and ensure optimal delivery of therapy. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Characteristics of intermittent fuel sprays

    Science.gov (United States)

    Jawad, B.; Gulari, E.; Henein, N. A.

    1992-03-01

    The spray-tip penetrations and the drop sizes of intermittent fuel sprays were measured by using a modified pulsed optical spray sizer. The average spray tip speeds were determined from simultaneously recorded needle lift signals and obscuration traces. The speeds of a sequence of fuel pulses injected at about 1000 Hz were analyzed to elucidate penetration mechanisms. A correlation that relates penetration distance to time, pressure drop across the nozzle, fuel density, and ambient gas density was obtained. The temporal variations of drop size in penetrating pulses of sprays were measured. The concentration of drops were calculated by combining drop size and obscuration data. The Sauter mean diameter of penetrating fuel drops increased with an increase of the chamber pressure and decreased with an increase of the injection pressure.

  2. Ginkgo biloba for intermittent claudication.

    Science.gov (United States)

    Nicolaï, Saskia P A; Kruidenier, Lotte M; Bendermacher, Bianca L W; Prins, Martin H; Stokmans, Rutger A; Broos, Pieter P H L; Teijink, Joep A W

    2013-06-06

    People with intermittent claudication (IC) suffer from pain in the muscles of the leg occurring during exercise which is relieved by a short period of rest. Symptomatic relief can be achieved by (supervised) exercise therapy and pharmacological treatments. Ginkgo biloba is a vasoactive agent and is used to treat IC. To assess the effect of Ginkgo biloba on walking distance in people with intermittent claudication. For this update the Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (March 2013) and CENTRAL (2013, Issue 2). Randomised controlled trials of Ginkgo biloba extract, irrespective of dosage, versus placebo in people with IC. Two authors independently assessed trials for selection, assessed study quality and extracted data. We extracted number of patients, mean walking distances or times and standard deviations. To standardise walking distance or time, caloric expenditures were used to express the difference between the different treadmill protocols, which were calculated from the speed and incline of the treadmill. Fourteen trials with a total of 739 participants were included. Eleven trials involving 477 participants compared Ginkgo biloba with placebo and assessed the absolute claudication distance (ACD). Following treatment with Ginkgo biloba at the end of the study the ACD increased with an overall effect size of 3.57 kilocalories (confidence interval (CI) -0.10 to 7.23, P = 0.06), compared with placebo. This translates to an increase of just 64.5 ( CI -1.8 to 130.7) metres on a flat treadmill with an average speed of 3.2 km/h. Publication bias leading to missing data or "negative" trials is likely to have inflated the effect size. Overall, there is no evidence that Ginkgo biloba has a clinically significant benefit for patients with peripheral arterial disease.

  3. Intermittency and local heating in the solar wind.

    Science.gov (United States)

    Osman, K T; Matthaeus, W H; Wan, M; Rappazzo, A F

    2012-06-29

    Evidence for nonuniform heating in the solar wind plasma near current sheets dynamically generated by magnetohydrodynamic (MHD) turbulence is obtained using measurements from the ACE spacecraft. These coherent structures only constitute 19% of the data, but contribute 50% of the total plasma internal energy. Intermittent heating manifests as elevations in proton temperature near current sheets, resulting in regional heating and temperature enhancements extending over several hours. The number density of non-Gaussian structures is found to be proportional to the mean proton temperature and solar wind speed. These results suggest magnetofluid turbulence drives intermittent dissipation through a hierarchy of coherent structures, which collectively could be a significant source of coronal and solar wind heating.

  4. Intermittent hypoxia can aggravate motor neuronal loss and cognitive dysfunction in ALS mice.

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    Full Text Available Patients with ALS may be exposed to variable degrees of chronic intermittent hypoxia. However, all previous experimental studies on the effects of hypoxia in ALS have only used a sustained hypoxia model and it is possible that chronic intermittent hypoxia exerts effects via a different molecular mechanism from that of sustained hypoxia. No study has yet shown that hypoxia (either chronic intermittent or sustained can affect the loss of motor neurons or cognitive function in an in vivo model of ALS.To evaluate the effects of chronic intermittent hypoxia on motor and cognitive function in ALS mice.Sixteen ALS mice and 16 wild-type mice were divided into 2 groups and subjected to either chronic intermittent hypoxia or normoxia for 2 weeks. The effects of chronic intermittent hypoxia on ALS mice were evaluated using the rotarod, Y-maze, and wire-hanging tests. In addition, numbers of motor neurons in the ventral horn of the spinal cord were counted and western blot analyses were performed for markers of oxidative stress and inflammatory pathway activation.Compared to ALS mice kept in normoxic conditions, ALS mice that experienced chronic intermittent hypoxia had poorer motor learning on the rotarod test, poorer spatial memory on the Y-maze test, shorter wire hanging time, and fewer motor neurons in the ventral spinal cord. Compared to ALS-normoxic and wild-type mice, ALS mice that experienced chronic intermittent hypoxia had higher levels of oxidative stress and inflammation.Chronic intermittent hypoxia can aggravate motor neuronal death, neuromuscular weakness, and probably cognitive dysfunction in ALS mice. The generation of oxidative stress with activation of inflammatory pathways may be associated with this mechanism. Our study will provide insight into the association of hypoxia with disease progression, and in turn, the rationale for an early non-invasive ventilation treatment in patients with ALS.

  5. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  6. Mechanical ventilation during anaesthesia: challenges and opportunities for investigating the respiration-related cardiovascular oscillations.

    Science.gov (United States)

    Beda, Alessandro; Carvalho, Nadja C; Güldner, Andreas; Koch, Thea; de Abreu, Marcelo Gama

    2011-08-01

    The vast majority of the available literature regarding cardiovascular oscillations refers to spontaneously breathing subjects. Only a few studies investigated cardiovascular oscillations, and especially respiration-related ones (RCVO), during intermittent positive pressure mechanical ventilation (IPPV) under anaesthesia. Only a handful considered assisted IPPV, in which spontaneous breathing activity is supported, rather than replaced as in controlled IPPV. In this paper, we review the current understanding of RCVO physiology during IPPV, from literature retrieved through PubMed website. In particular, we describe how during controlled IPPV under anaesthesia respiratory sinus arrhythmia appears to be generated by non-neural mechano-electric feedback in the heart (indirectly influenced by tonic sympathetic regulation of vascular tone and heart contractility) and not by phasic vagal modulation of central origin and/or baroreflex mechanisms. Furthermore, assisted IPPV differs from controlled IPPV in terms of RCVO, reintroducing significant central respiratory vagal modulation of respiratory sinus arrhythmia. This evidence indicates against applying to IPPV interpretative paradigms of RCVO derived from spontaneously breathing subjects, and against considering together IPPV and spontaneously breathing subjects for RCVO-based risk assessment. Finally, we highlight the opportunities that IPPV offers for future investigations of RCVO genesis and interactions, and we indicate several possibilities for clinical applications of RCVO during IPPV.

  7. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  8. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  9. Intermittent Swimming with a Flexible Propulsor

    Science.gov (United States)

    Akoz, Emre; Moored, Keith

    2017-11-01

    Aquatic animals use a variety of swimming gaits to propel themselves efficiently through the oceans. One type of gait known as intermittent or burst-and-coast swimming is used by species such as saithe, cod and trout. Recent studies have shown that this gait can save up to 60% of a swimmer's energy by exploiting an inviscid Garrick mechanism. These detailed studies have examined the effects of an intermittent swimming gait on rigid propulsors, yet the caudal fins of intermittent swimmers are in fact highly flexible propulsors. In this respect, to gain a comprehensive understanding of intermittent swimming, the effect of elasticity on the swimming performance and wake flow of an intermittent swimmer is investigated. To accomplish this a torsional spring structural model is strongly coupled to a fast boundary element method solver that captures the fluid-structure interaction of a two-dimensional self-propelled intermittently pitching hydrofoil. It is shown that flexibility introduces extra vortices to the coasting phase of motion that can either promote or diminish thrust production depending upon the hydrofoil parameters. An optimal intermittent flexible swimmer is shown to increase its efficiency by as much as 28% when compared to an optimal continuous flexible swimmer. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  10. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  11. Intermittent cranial lung herniation in two dogs.

    Science.gov (United States)

    Guglielmini, Carlo; De Simone, Antonio; Valbonetti, Luca; Diana, Alessia

    2007-01-01

    Two aged dogs with chronic obstructive airway disease were evaluated because of intermittent swelling of the ventral cervical region. Radiographs made at expiration and caudal positioning of the forelimbs allowed identification of intermittent cervical lung herniation of the left and right cranial lung lobe in both dogs. Pulmonary hyperinflation, increased expiratory effort, and chronic coughing were considered responsible for the lung herniation. Cervical lung hernia should be included in the differential diagnoses of intermittent cervical swelling in dogs with chronic respiratory disorders associated with increased expiratory effort and chronic coughing.

  12. Neutrino oscillations in deconstructed dimensions

    International Nuclear Information System (INIS)

    Haellgren, Tomas; Ohlsson, Tommy; Seidl, Gerhart

    2005-01-01

    We present a model for neutrino oscillations in the presence of a deconstructed non-gravitational large extra dimension compactified on the boundary of a two-dimensional disk. In the deconstructed phase, sub-mm lattice spacings are generated from the hierarchy of energy scales between ∼ 1 TeV and the usual B-L breaking scale ∼ 10 15 GeV. Here, short-distance cutoffs down to ∼ 1 eV are motivated by the strong coupling behavior of gravity in local discrete extra dimensions. This could make it possible to probe the discretization of extra dimensions and non-trivial field configurations in theory spaces which have only a few sites, i.e., for coarse latticizations. Thus, the model has relevance to present and future precision neutrino oscillation experiments. (author)

  13. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    In this talk, I shall try to give a bird's eye view of the current status of neutrino oscillations. ..... the night effect. An asymmetry between the night and day rates would be an unambiguous signal for neutrino oscillations independent of the details of the solar ... It is particularly important to see the effect of the core of the earth [19].

  14. Active-bridge oscillator

    Science.gov (United States)

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  15. On the Dirac oscillator

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima

    2007-01-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  16. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  17. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)

    2011-09-19

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.

  18. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  19. The issue of mass generation: the search for the Higgs boson in the D0 experiment at the proton-antiproton collider of Fermilab and the measurement of neutrino oscillation with OPERA

    International Nuclear Information System (INIS)

    Lucotte, A.

    2004-09-01

    The first part is dedicated to the theoretical aspects of the mechanism of mass generation in the standard model. The implications of this mechanism in the experimental field concerning the Higgs boson search and neutrinos are detailed. The second part presents the D0 experiment at the Tevatron (Fermilab) and describes in a detailed way the forward pre-shower (FPS) that is a sub-detector of D0 whose aim is to identify the electrons. FPS has required a specific triggering system linked to a data acquisition line. The third part is devoted to the Opera experiment that is planned to operate in 2006. The purpose of this experiment is to confirm the oscillations of muon neutrinos and tau neutrinos through the direct detection of a tau lepton in the pure beam of muon neutrinos produced in CERN. The author describes his contribution to the design and testing of the front-end read electronics of the Opera scintillator tracker. (A.C.)

  20. Mixing and diffusion in intermittent overturning turbulence

    Science.gov (United States)

    Redondo, Jose M.; Mahjoub, Otman B.; Gonzalez-Nieto, Pilar L.; Lawry, Andrew

    2014-05-01

    The improvements in experimental methods and high resolution image analysis are nowadays able to detect subtle changes in the structure of the turbulence over a wide range of temporal and spatial scales [1], we compare the scaling shown by different mixing fronts driven by buoyancy that form a Rayleigh-Taylor mixing front. We use PIV and density front tracking in several experimental configurations akin to geophysical overturning [2-7]. We parametrize the role of unstable stratification by means of the Atwood number and compare both the scaling and the multifractal and the maximum local fractal structure functions of the different markers used to visualize the front. Both reactive and passive scalar tracers are used to investigate the mixing structure and the intermittency of the flow. Different initial conditions are compared and the mixing efficiency of the overal turbulent process evaluated [6-7]. An interesting approach, relating the Multi-Fractal dimension spectra, the intermittency and the spectral exponent is to find relationships that may be used to parameterise the sub-grid turbulence in terms of generalized diffusivities [4 ] that take into account the topology and the self-similarity of the Mixing RT and RM flows. As an example, a relationship between the diffusivity, the exponent β, the intermittency μ, and D(i), may be found for the volume fraction or the concentration, at the same time other locally measured parameters such as the enstrophy or the gradient alignment as well as their multi-fractal structures may turn out to be physically relevant indicators of the local turbulence and the mixing. Several methods of deriving local eddy diffusivity and local entrainment should give more realistic estimates of the spatial/temporal non-homogeneities (and intermittencies in the Kolmogorov 62 sense obtained as spatial correlations of the turbulent dissipation, or from structure functions) and these values may be used to parameterise turbulence at a variety

  1. Sky dancer: an intermittent system

    Science.gov (United States)

    Cros, Anne; Rodríguez Romero, Jesse Alexander; Damián Díaz Andrade, Oscar

    2009-11-01

    Sky dancers attract people sight to make advertising. What is the origin of those large vertical tubes fluctuations above an air blower? This study complements the previous one [1] about the system analysis from a dynamical system point of view. As a difference from the ``garden hose-instability'' [2], the tube shape has got ``break points''. Those ``break points'' separate the air-filled bottom tube portion from its deflated top portion. We record the tube dynamics with a high-speed videocamera simultaneously that we measure the pressure at the air blower exit. The intermittent pressure evolution displays picks when the tube fluctuates. We compare those overpressure values with the ones that appears in a rigid tube whose exit is partially obstructed. [1] F. Castillo Flores & A. Cros ``Transition to chaos of a vertical collapsible tube conveying air flow'' J. Phys.: Conf. Ser. 166, 012017 (2009). [2] A. S. Greenwald & J. Dungundji ``Static and dynamic instabilities of a propellant line'' MIT Aeroelastic and Structures Research Lab, AFOSR Sci. Report: AFOSR 67-1395 (1967).

  2. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  3. Social Smoking among Intermittent Smokers

    Science.gov (United States)

    Shiffman, Saul; Li, Xiaoxue; Dunbar, Michael S.; Ferguson, Stuart G.; Tindle, Hilary A.; Scholl, Sarah M.

    2015-01-01

    Background “Social smoking” - smoking mostly or even only with others – may be an important pattern that implies smoking motivated extrinsically by social influences. Non-daily smokers (intermittent smokers; ITS) are often assumed to be social smokers, with some authors even assuming that all ITS are social smokers (SS+). We sought to identify and characterize social smokers in a sample of ITS. Methods 204 adult ITS (smoking 4–27 days/month) recorded the circumstances of smoking in their natural settings using Ecological Momentary Assessment, while also recording their circumstances in nonsmoking moments. SS+ were defined as ITS who were with others when they smoked most of their cigarettes, and who were ≥ 50% more likely to be with others when smoking than when not. Results Only 13% of ITS were SS+. Although defined solely on the basis of presence of others, SS+ showed a distinct pattern of smoking across multiple dimensions: Compared to other ITS (who were significantly less likely to smoke when with others), SS+ smoking was more associated with socializing, being with friends and acquaintances, drinking alcohol, weekends, evening or nighttime, being in other people’s homes, but not their own home. SS+ smoking was low in the morning and increased in the evening. SS+ smoked fewer days/week and were less dependent, but did not differ demographically. Conclusions Social smoking does constitute a highly distinct smoking pattern, but is not common among adult ITS. PMID:26205313

  4. On-line intermittent connector anomaly detection

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper investigates a non-traditional use of differential current sensor and current sensor to detect intermittent disconnection problems in connectors. An...

  5. Star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  6. Bladder Management in Children: Intermittent Catheterization Education.

    Science.gov (United States)

    Fortuna, Suzanne Marie; Korcal, Layna; Thomas, Ginger

    2018-03-01

    Clean intermittent catheterization (IC) of the bladder is one example of advanced medical care required by students with special health care needs. The success of a child's intermittent catheterization program in a community setting such as a school is dependent on an educated team. This article discusses indications and problems that arise with IC bladder management in the pediatric population. The article also provides information about current best practice for IC management to assist school nurses in the optimization of bladder health.

  7. Seismoacoustic signatures of fluid oscillations in the volcanic plumbing system and eruption column

    Science.gov (United States)

    Matoza, R. S.; Garces, M. A.; Chouet, B. A.; D'Auria, L.; Hedlin, M. A.; Bass, H.

    2007-05-01

    Portable arrays of broadband infrasound sensors collocated with broadband seismometers near Mount St. Helens (MSH), USA, and Tungurahua, Ecuador, have recorded many signals attributed to subsurface fluid oscillations, and strong signals associated with violent degassing. At MSH, long period (LP) seismic events modeled by a pressure transient in a subsurface resonant steam-filled crack, intermittently generate impulsive infrasonic pressure signals, while two dominantly phreatic eruptions were accompanied by strong infrasonic jet noises, and notably different seismicity. Tungurahua has produced countless explosions, LPs, gliding harmonic tremor, and jet noise lasting for several days at a time, indicative of alternating styles of degassing. We summarize the observations and then present preliminary numerical investigations of the coupling mechanism between seismic and acoustic LP events at MSH using a 3D finite difference representation of the elastodynamic and acoustic wave equations, including the effects of topography and wind. We also investigate the hypothesis that infrasonic signals observed during moderate to large eruptions at both volcanoes are generated by the same physical mechanisms underlying the generation of sonic jet noise, such as from the jet engines of flight vehicles.

  8. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  9. SU(1,2) invariance in two-dimensional oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)

    2017-02-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.

  10. Exercise training for intermittent claudication.

    Science.gov (United States)

    McDermott, Mary M

    2017-11-01

    The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as

  11. Fractal Scaling Models of Resonant Oscillations in Chain Systems of Harmonic Oscillators

    Directory of Open Access Journals (Sweden)

    Müller H.

    2009-04-01

    Full Text Available Logarithmic scaling invariance is a wide distributed natural phenomenon and was proved in the distributions of physical properties of various processes — in high en- ergy physics, chemistry, seismicity, biology, geology and technology. Based on the Gantmacher-Krein continued fraction method the present paper introduces fractal scal- ing models of resonant oscillations in chain systems of harmonic oscillators. These models generate logarithmic scaling spectra. The introduced models are not based on any statements about the nature of the link or interaction between the elements of the oscillating system. Therefore the model statements are quite generally, what opens a wide field of possible applications.

  12. Harmonic oscillator Green's function

    International Nuclear Information System (INIS)

    Macek, J.H.; Ovchinnikov, S.Yu.; Khrebtukov, D.B.

    2000-01-01

    The Green's function for the harmonic oscillator in three dimensions plays an important role in the theory of atomic collisions. One representation of low-energy ion-atom collisions involves harmonic oscillator potentials. A closed-form expression for the harmonic oscillator Green's function, needed to exploit this representation, is derived. This expression is similar to the expression for the Coulomb Green's function obtained by Hostler and Pratt. Calculations of electron distributions for a model system of ion-atom collisions are reported to illustrate the theory.

  13. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  14. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  15. Dynamic droop scheme considering effect of intermittent renewable energy source

    DEFF Research Database (Denmark)

    Wang, Yanbo; Chen, Zhe; Deng, Fujin

    2016-01-01

    This paper presents a dynamic droop control scheme for islanded microgrids dominated by intermittent renewable energy sources, which is able to perform desirable power sharing in the presence of renewable energy source fluctuation. First, allowable maximum power points of wind generator and PV...... flexibility and effectiveness in the presence of the renewable energy sources fluctuation....... controller of each DG unit is activated through local logic variable inferred by wind speed and solar insolation information. Simulation results are given for validating the droop control scheme. The proposed dynamic droop scheme preserves the advantage of conventional droop control method, and provides...

  16. Fluctuation relations with intermittent non-Gaussian variables.

    Science.gov (United States)

    Budini, Adrián A

    2011-12-01

    Nonequilibrium stationary fluctuations may exhibit a special symmetry called fluctuation relations (FRs). Here, we show that this property is always satisfied by the subtraction of two random and independent variables related by a thermodynamiclike change of measure. Taking one of them as a modulated Poisson process, it is demonstrated that intermittence and FRs are compatible properties that may coexist naturally. Strong non-Gaussian features characterize the probability distribution and its generating function. Their associated large deviation functions develop a "kink" at the origin and a plateau regime respectively. Application of this model in different stationary nonequilibrium situations is discussed.

  17. Google matrix and Ulam networks of intermittency maps.

    Science.gov (United States)

    Ermann, L; Shepelyansky, D L

    2010-03-01

    We study the properties of the Google matrix of an Ulam network generated by intermittency maps. This network is created by the Ulam method which gives a matrix approximant for the Perron-Frobenius operator of dynamical map. The spectral properties of eigenvalues and eigenvectors of this matrix are analyzed. We show that the PageRank of the system is characterized by a power law decay with the exponent beta dependent on map parameters and the Google damping factor alpha . Under certain conditions the PageRank is completely delocalized so that the Google search in such a situation becomes inefficient.

  18. Fractal Scaling Models of Resonant Oscillations in Chain Systems of Harmonic Oscillators

    OpenAIRE

    Müller H.

    2009-01-01

    Logarithmic scaling invariance is a wide distributed natural phenomenon and was proved in the distributions of physical properties of various processes — in high en- ergy physics, chemistry, seismicity, biology, geology and technology. Based on the Gantmacher-Krein continued fraction method the present paper introduces fractal scal- ing models of resonant oscillations in chain systems of harmonic oscillators. These models generate logarithmic scaling spect...

  19. Pair creation and plasma oscillations

    International Nuclear Information System (INIS)

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses

  20. Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway.

    Science.gov (United States)

    Worth, J R P; Holland, B R; Beeton, N J; Schönfeld, B; Rossetto, M; Vaillancourt, R E; Jordan, G J

    2017-10-17

    Investigating species distributions across geographic barriers is a commonly utilized method in biogeography to help understand the functional traits that allow plants to disperse successfully. Here the biogeographic pattern analysis approach is extended by using chloroplast DNA whole-genome 'mining' to examine the functional traits that have impacted the dispersal of widespread temperate forest species across an intermittent seaway, the 200 km wide Bass Strait of south-eastern Australia. Multiple, co-distributed species of both dry and wet forests were sampled from five regions on either side of the Strait to obtain insights into past dispersal of these biomes via seed. Using a next-generation sequencing-based pool-seq method, the sharing of single nucleotide polymorphisms (SNPs) was estimated between all five regions in the chloroplast genome. A total of 3335 SNPs were detected in 20 species. SNP sharing patterns between regions provided evidence for significant seed-mediated gene flow across the study area, including across Bass Strait. A higher proportion of shared SNPs in dry forest species, especially those dispersed by birds, compared with wet forest species suggests that dry forest species have undergone greater seed-mediated gene flow across the study region during past climatic oscillations and sea level changes associated with the interglacial/glacial cycles. This finding is consistent with a greater propensity for long-distance dispersal for species of open habitats and proxy evidence that expansive areas of dry vegetation occurred during times of exposure of Bass Strait during glacials. Overall, this study provides novel genetic evidence that habitat type and its interaction with dispersal traits are major influences on dispersal of plants. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Fluctuations in LC Oscillators

    Directory of Open Access Journals (Sweden)

    O. Ondracek

    1994-03-01

    Full Text Available An analysis of the phase and amplitude fluctuations in oscillators with simple resonant circuit is presented. Negative feedback is used to minimize effect of the inherent noise produced by bipolar transistor on fluctuation characteristics.

  2. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  3. Observations of the snakelike oscillation phenomenon on HT-7 tokamak

    International Nuclear Information System (INIS)

    Hu Liqun; Wan Baonian; Shi Yuejiang; Yang Yu; Gao Xiang; Li Jiangang; Kuang Guangli; Zhao Yanping; Xie Jikang; Mao Jianshan; Xu Yi

    2003-01-01

    Snakelike oscillation phenomenon has been frequently observed on HT-7 superconducting tokamak in various target plasmas. The longest lifetime snake, found in the pellet-fuelled discharge, can survive ten big sawtooth collapses and persist intermittently for a long lifetime of 53.7 ms more than three times the particle confinement time τ P . The Ohmic spontaneous snake frequently occurs in the high-density discharge after wall siliconization or wall lithium-containing siliconization when the central line-averaged density is over a threshold value of 3.5x10 13 cm -3 , appears after the onset of the large sawtooth event and persists intermittently for a comparable long lifetime to that of the pellet-induced snake. In the ion Bernstein wave (IBW) heated plasma, while the antenna frequency ω is set at 30 MHz and the second harmonic deuterium cyclotron resonance layer is close to the sawtooth inversion radius, spontaneous snake oscillation easily occurs in the later phase of the IBW heated plasma or after switching off IBW power. In the low hybrid current drive plasma, negative snake appears and terminates silently. Suppression of the sawtooth activity and the impurity accumulation in the central region of the plasma are found to play a significant role in the occurrence of the spontaneous snake oscillation. In this paper, behaviours of the pellet-induced snakes have been summarized. Characteristics of various spontaneous snakes have also been presented and discussed

  4. Again on neutrino oscillations

    International Nuclear Information System (INIS)

    Bilenky, S.M.; Pontecorvo, B.

    1976-01-01

    The general case is treated of a weak interaction theory in which a term violating lepton charges is present. In such a scheme the particles with definite masses are Majorana neutrinos (2N if in the weak interaction participate N four-component neutrinos). Neutrino oscillations are discussed and it is shown that the minimum average intensity at the earth of solar neutrinos is 1/2N of the intensity expected when oscillations are absent

  5. Neutrino oscillations with LSND

    International Nuclear Information System (INIS)

    Stancu, Ion

    2000-01-01

    The Liquid Scintillator Neutrino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF) has conducted searches for ν-bar μ → ν-bar e oscillations using ν-bar μ from μ + decay at rest (DAR) and for ν μ → ν e oscillations using ν μ from π + decay in flight (DIF). For the 1993-1995 data taking period, significant beam-excess events have been found in both oscillation channels. For the DAR search, a total excess of 51.8 +18.7 -16.9 ± 8.0 events from the ν-bar e p → e + n inverse β-decay reaction is observed, with e + energies between 20-60 MeV. For the DIF search, a total excess of 18.1 ± 6.6 ± 4.0 events from the ν e C → e - X inclusive reaction is observed, with e - energies between 60-200 MeV. If interpreted as neutrino oscillations, these excesses correspond to oscillation probabilities of (3.1±1.2±0.5) x 10 -3 and (2.6 ± 1.0 ± 0.5) x 10 -3 , respectively. Additional data collected during the 1996-1998 runs has been preliminarily analyzed for the DAR channel and yields very good agreement with the previously obtained results, for a combined oscillation probability of (3.3±0.9±0.5) x 10 -3

  6. Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled

    NARCIS (Netherlands)

    Brouwer, Anne Sjoerd; Van Den Broek, Machteld; Seebregts, Ad; Faaij, André

    The electricity sector in OECD countries is on the brink of a large shift towards low-carbon electricity generation. Power systems after 2030 may consist largely of two low-carbon generator types: Intermittent Renewable Energy Sources (IRES) such as wind and solar PV and thermal generators such as

  7. Electromagnetic radiation due to nonlinear oscillations of a charged drop

    Science.gov (United States)

    Shiryaeva, S. O.; Grigor'ev, A. N.; Kolbneva, N. Yu.

    2016-03-01

    The nonlinear oscillations of a spherical charged drop are asymptotically analyzed under the conditions of a multimode initial deformation of its equilibrium shape. It is found that if the spectrum of initially excited modes contains two adjacent modes, the translation mode of oscillations is excited among others. In this case, the center of the drop's charge oscillates about the equilibrium position, generating a dipole electromagnetic radiation. It is shown that the intensity of this radiation is many orders of magnitude higher than the intensity of the drop's radiation, which arises in calculations of the first order of smallness and is related to the drop's charged surface oscillations.

  8. Dependence of synchronization frequency of Kuramoto oscillators ...

    Indian Academy of Sciences (India)

    its involvement in the generation of alpha rhythms in the brain. Unfortunately, Wiener's mathematical approach based on Fourier integrals [7] has turned out to be a dead end. [9]. In 1975, Kuramoto introduced a model, which took into consideration oscillators, which were coupled to each other and showed the phenomenon ...

  9. The Yo-Yo intermittent recovery test

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Iaia, F. Marcello; Krustrup, Peter

    2008-01-01

    The two Yo-Yo intermittent recovery (IR) tests evaluate an individual's ability to repeatedly perform intense exercise. The Yo-Yo IR level 1 (Yo-Yo IR1) test focuses on the capacity to carry out intermittent exercise leading to a maximal activation of the aerobic system, whereas Yo-Yo IR level 2...... (Yo-Yo IR2) determines an individual's ability to recover from repeated exercise with a high contribution from the anaerobic system. Evaluations of elite athletes in various sports involving intermittent exercise showed that the higher the level of competition the better an athlete performs in the Yo......-Yo IR tests. Performance in the Yo-Yo IR tests for young athletes increases with rising age. The Yo-Yo IR tests have shown to be a more sensitive measure of changes in performance than maximum oxygen uptake. The Yo-Yo IR tests provide a simple and valid way to obtain important information...

  10. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  11. First harmonic injection locking of 24-GHz-oscillators

    Directory of Open Access Journals (Sweden)

    M. R. Kühn

    2003-01-01

    Full Text Available An increasing number of applications is proposed for the 24 GHz ISM-band, like automotive radar systems and short-range communication links. These applications demand for oscillators providing moderate output power of a few mW and moderate frequency stability of about 0.5%. The maximum oscillation frequency of low-cost off-theshelf transistors is too low for stable operation of a fundamental 24GHz oscillator. Thus, we designed a 24 GHz first harmonic oscillator, where the power generated at the fundamental frequency (12 GHz is reflected resulting in effective generation of output power at the first harmonic. We measured a radiated power from an integrated planar antenna of more than 1mW. Though this oscillator provides superior frequency stability compared to fundamental oscillators, for some applications additional stabilization is required. As a low-cost measure, injection locking can be used to phase lock oscillators that provide sufficient stability in free running mode. Due to our harmonic oscillator concept injection locking has to be achieved at the first harmonic, since only the antenna is accessible for signal injection. We designed, fabricated and characterized a harmonic oscillator using the antenna as a port for injection locking. The locking range was measured versus various parameters. In addition, phase-noise improvement was investigated. A theoretical approach for the mechanism of first harmonic injection locking is presented.

  12. Generalized deformed para-Bose oscillator and nonlinear algebras

    International Nuclear Information System (INIS)

    Ha Huy Bang.

    1995-10-01

    Generalized deformed commutation relations for a single mode para-Bose oscillator and for a system of two para-Bose oscillators are constructed. It turns out that generalized deformed para-Bose oscillators are not, in general, exactly independent. Furthermore, we also discuss about the Fock space corresponding to generalized deformed para-Bose oscillators. Finally, we show how SU(2) and SU(1,1) generators can be constructed in terms of generalized deformed para-Bose creation and annihilation operators. The algebras SU(2) and SU(1,1) of generalized deformed oscillators are the special cases of generalized deformed para-Bose oscillators algebras but, interestingly, they have the same form. (author). 23 refs

  13. A Design Principle for a Posttranslational Biochemical Oscillator

    Directory of Open Access Journals (Sweden)

    Craig C. Jolley

    2012-10-01

    Full Text Available Multisite phosphorylation plays an important role in biological oscillators such as the circadian clock. Its general role, however, has been elusive. In this theoretical study, we show that a simple substrate with two modification sites acted upon by two opposing enzymes (e.g., a kinase and a phosphatase can show oscillations in its modification state. An unbiased computational analysis of this oscillator reveals two common characteristics: a unidirectional modification cycle and sequestering of an enzyme by a specific modification state. These two motifs cause a substrate to act as a coupled system in which a unidirectional cycle generates single-molecule oscillators, whereas sequestration synchronizes the population by limiting the available enzyme under conditions in which substrate is in excess. We also demonstrate the conditions under which the oscillation period is temperature compensated, an important feature of the circadian clock. This theoretical model will provide a framework for analyzing and synthesizing posttranslational oscillators.

  14. Unsteady propulsion by an intermittent swimming gait

    Science.gov (United States)

    Akoz, Emre; Moored, Keith W.

    2018-01-01

    Inviscid computational results are presented on a self-propelled swimmer modeled as a virtual body combined with a two-dimensional hydrofoil pitching intermittently about its leading edge. Lighthill (1971) originally proposed that this burst-and-coast behavior can save fish energy during swimming by taking advantage of the viscous Bone-Lighthill boundary layer thinning mechanism. Here, an additional inviscid Garrick mechanism is discovered that allows swimmers to control the ratio of their added mass thrust-producing forces to their circulatory drag-inducing forces by decreasing their duty cycle, DC, of locomotion. This mechanism can save intermittent swimmers as much as 60% of the energy it takes to swim continuously at the same speed. The inviscid energy savings are shown to increase with increasing amplitude of motion, increase with decreasing Lighthill number, Li, and switch to an energetic cost above continuous swimming for sufficiently low DC. Intermittent swimmers are observed to shed four vortices per cycle that form into groups that are self-similar with the DC. In addition, previous thrust and power scaling laws of continuous self-propelled swimming are further generalized to include intermittent swimming. The key is that by averaging the thrust and power coefficients over only the bursting period then the intermittent problem can be transformed into a continuous one. Furthermore, the intermittent thrust and power scaling relations are extended to predict the mean speed and cost of transport of swimmers. By tuning a few coefficients with a handful of simulations these self-propelled relations can become predictive. In the current study, the mean speed and cost of transport are predicted to within 3% and 18% of their full-scale values by using these relations.

  15. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  16. The Yo-Yo intermittent recovery test

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Iaia, F. Marcello; Krustrup, Peter

    2008-01-01

    The two Yo-Yo intermittent recovery (IR) tests evaluate an individual's ability to repeatedly perform intense exercise. The Yo-Yo IR level 1 (Yo-Yo IR1) test focuses on the capacity to carry out intermittent exercise leading to a maximal activation of the aerobic system, whereas Yo-Yo IR level 2......-Yo IR tests. Performance in the Yo-Yo IR tests for young athletes increases with rising age. The Yo-Yo IR tests have shown to be a more sensitive measure of changes in performance than maximum oxygen uptake. The Yo-Yo IR tests provide a simple and valid way to obtain important information...

  17. Sprint cycling training improves intermittent run performance

    OpenAIRE

    Hardaway Chun-Kwan Chan; Weeraya Ka-Yan Ho; Patrick Shu-Hang Yung

    2018-01-01

    Background/Objective: The aim of this study was to examine the effect of sprint cycling training on the intermittent run performance, sprinting speed, and change of direction (COD) ability of recreational intermittent sports athletes. Methods: Sixteen participants participated in the study. The experimental group (EG, n = 8) received a total of 12 sessions of sprint cycling training in a 4-week period and the control group (CG, n = 8) received no training. Both EG and CG were instructed to...

  18. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  19. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    intermittency or longer-term form of chaos. We call this attractor the Heartbeat of the Southern Oscillation as the phenomenon is measurable in the Southern Oscillation. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.

  20. Height fluctuations and intermittency of V sub 2 O sub 5 films by atomic force microscopy

    CERN Document Server

    Iraji-Zad, A; Tabar, M R R; Allaei, S M V

    2003-01-01

    The spatial scaling law and intermittency of the V sub 2 O sub 5 surface roughness has been investigated by atomic force microscopy. The intermittency of the height fluctuations has been checked by two different methods, first, by measuring the scaling exponent of the q-th moment of height-difference fluctuations i.e. C sub q = (|h(x sub 1) - h(x sub 2)|), and second, by defining the generating function Z(q, N) and generalized multi-fractal dimension D sub q. These methods predict that there is no intermittency in the height fluctuations. The observed roughness and dynamical exponents can be explained by numerical simulation on the basis of the forced Kuramoto-Sivashinsky equation.

  1. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  2. Numerical studies on the interaction between two parallel D-cylinder and oscillated foil

    Science.gov (United States)

    Chao, Li-Ming; Zhang, Dong; Cao, Yong-Hui; Pan, Guang

    2018-02-01

    To understand the interaction between the oscillated body and oncoming vortex, some numerical studies have been conducted on a system including two parallel D-cylinder and one oscillated foil in this paper. It is found that the distance between parallel D-cylinder and oscillated foil would play a key role in affecting the change regulation of thrust generation of oscillated foil, and the kinematics of oscillated foil would determine the value of propulsive thrust, the gap between two parallel D-cylinder would only affect the hydrodynamic performance of oscillated foil at intermediate conditions.

  3. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    Science.gov (United States)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  4. Oscillating Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we use the theory of summability of divergent series, presented earlier in Chap. 4, to derive the analogs of the Euler-Maclaurin summation formula for oscillating sums. These formulas will, in turn, be used to perform many remarkable deeds with ease. For instance, they can be used to derive analytic expressions for summable divergent series, obtain asymptotic expressions of oscillating series, and even accelerate the convergence of series by several orders of magnitude. Moreover, we will prove the notable fact that, as far as the foundational rules of summability calculus are concerned, summable divergent series behave exactly as if they were convergent.

  5. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  6. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  7. Oscillators from nonlinear realizations

    Science.gov (United States)

    Kozyrev, N.; Krivonos, S.

    2018-02-01

    We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.

  8. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    Science.gov (United States)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    2017-06-14

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.

  9. Universality of oscillating boiling in Leidenfrost transition

    Science.gov (United States)

    Tran, Tuan; Khavari, Mohammad

    2017-11-01

    The Leidenfrost transition leads a boiling system to the boiling crisis, a state in which the liquid loses contact with the heated surface due to excessive vapor generation. Here, using experiments of liquid droplets boiling on a heated surface, we report a new phenomenon, termed oscillating boiling, at the Leidenfrost transition. We show that oscillating boiling results from the competition between two effects: separation of liquid from the heated surface due to localized boiling, and rewetting. We argue theoretically that the Leidenfrost transition can be predicted based on its link with the oscillating boiling phenomenon, and verify the prediction experimentally for various liquids. This work was funded by Nanyang Technological University and A*STAR, Singapore.

  10. Circadian oscillators in the mouse brain

    DEFF Research Database (Denmark)

    Rath, Martin F; Rovsing, Louise; Møller, Morten

    2014-01-01

    The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators...... residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice...... and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes...

  11. Fractal structures and intermittency in QCD

    International Nuclear Information System (INIS)

    Gustafson, Goesta.

    1990-04-01

    New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account

  12. Intermittent mechanical and clinical intravalvar regurgitation aortic ...

    African Journals Online (AJOL)

    due to intravalvar occlusion caused by thrombosis and/or tissue ingrowth or to periprosthetic regurgitation. .... position). A. The tilting disc of the prosthetic aortic valve is in the normal closed position during diastole. B. The disc is 'stuck' in the open position during diastole. Intermittent AR in patients with aortic prosthetic ...

  13. Acute intermittent porphyria presenting as progressive muscular ...

    African Journals Online (AJOL)

    Acute intermittent porphyria, the most common porphyria affecting the nervous system, typically presents with neurovisceral crises followed by a motor neuropathy. We describe a 23-year-old black South African man presenting with a progressive stuttering, lower motor neuron syndrome developing over months. He had not ...

  14. Walking training for intermittent claudication in diabetes

    NARCIS (Netherlands)

    Ubels, FL; Links, TP; Sluiter, WJ; Smit, AJ

    OBJECTIVE - Walking training (WT) is an established treatment for patients with intermittent claudication (IC). Abnormalities specific to diabetes, such as a relative preponderance of distal lesions and the contribution of microcirculatory disease, might well influence the results of WT. We compared

  15. Cooling tower modification for intermittent operation

    International Nuclear Information System (INIS)

    Midkiff, W.S.

    1975-03-01

    One of the cooling towers at Los Alamos Scientific Laboratory is being operated intermittently. The cooling tower has been modified to restrict air flow and to keep the tower from drying out. The modifications are relatively inexpensive, simple to operate, and have proved effective. (U.S.)

  16. Intermittent demand : Linking forecasting to inventory obsolescence

    NARCIS (Netherlands)

    Teunter, Ruud H.; Syntetos, Aris A.; Babai, M. Zied

    2011-01-01

    The standard method to forecast intermittent demand is that by Croston. This method is available in ERP-type solutions such as SAP and specialised forecasting software packages (e.g. Forecast Pro), and often applied in practice. It uses exponential smoothing to separately update the estimated demand

  17. Prevalence of intermittent preventive treatment with sulphadoxine ...

    African Journals Online (AJOL)

    Cite as: Orish VN, Onyeabor OS, Boampong JN , Afoakwah R, Nwaefuna E, Acquah S, et al. Prevalence of intermittent preventive treat- ment with sulphadoxine-pyrimethamine (IPTp-SP) use ..... by the increase of SP drug resistance in pregnant wom- en in Ghana since the adoption and implementation of. IPTp-SP policy35.

  18. Intermittent resistive faults in digital cmos circuits

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Ebrahimi, Hassan

    2015-01-01

    A major threat in extremely dependable high-end process node integrated systems in e.g. Avionics are no failures found (NFF). One category of NFFs is the intermittent resistive fault, often originating from bad (e.g. Via or TSV-based) interconnections. This paper will show the impact of these faults

  19. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  20. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    Science.gov (United States)

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  1. 40 CFR 51.119 - Intermittent control systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Intermittent control systems. 51.119... Intermittent control systems. (a) The use of an intermittent control system (ICS) may be taken into account in... of any constant pollution control system which was in use before December 31, 1970, or the equivalent...

  2. [Effects of intermittent hypoxic exposure on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha and erythropoietin levels].

    Science.gov (United States)

    Zhang, Cheng-yan; Zhang, Ji-xin; Lü, Xiao-tao; Li, Bao-yu

    2009-10-01

    To investigate the effects of intermittent hypoxic exposure and normoxic convalescence on the parameter of erythrocyte and serum hypoxia inducible factor-1 alpha (HIF-1alpha) and erythropoietin (EPO) levels. Rat models of intermittent hypoxic exposure were established, combined with the clinical research on volunteers experiencing the intermittent plateau work. Blood samples for red blood cell (RBC) counts, hemoglobin (Hb) and hematocrit (HCT) were collected, serum HIF-1alpha and EPO levels were measured using enzyme linked immunosorbent assay. RBC counts, Hb concentration and HCT were significantly higher than the normoxic group (P hypoxic exposure can enhance serum hypoxia inducible factor-1 alpha and erythropointin levels and the generation of red blood cells, which leads to an increase in hemoglobin concentration and hematocrit. The results have changed with the hypoxic exposure period prolonged. Normoxic convalescence after intermittent hypoxic exposure can make the related indexes reduced, and contribute to the organism recovery.

  3. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model for thi...

  4. Neutrino oscillation experiments

    International Nuclear Information System (INIS)

    Camilleri, L.

    1996-01-01

    Neutrino oscillation experiments (ν μ →ν e and ν μ →ν τ ) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs

  5. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  6. The variational spiked oscillator

    International Nuclear Information System (INIS)

    Aguilera-Navarro, V.C.; Ullah, N.

    1992-08-01

    A variational analysis of the spiked harmonic oscillator Hamiltonian -d 2 / d x 2 + x 2 + δ/ x 5/2 , δ > 0, is reported in this work. A trial function satisfying Dirichlet boundary conditions is suggested. The results are excellent for a large range of values of the coupling parameter. (author)

  7. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  8. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  9. Nonlinearity in oscillating bridges

    Directory of Open Access Journals (Sweden)

    Filippo Gazzola

    2013-09-01

    Full Text Available We first recall several historical oscillating bridges that, in some cases, led to collapses. Some of them are quite recent and show that, nowadays, oscillations in suspension bridges are not yet well understood. Next, we survey some attempts to model bridges with differential equations. Although these equations arise from quite different scientific communities, they display some common features. One of them, which we believe to be incorrect, is the acceptance of the linear Hooke law in elasticity. This law should be used only in presence of small deviations from equilibrium, a situation which does not occur in widely oscillating bridges. Then we discuss a couple of recent models whose solutions exhibit self-excited oscillations, the phenomenon visible in real bridges. This suggests a different point of view in modeling equations and gives a strong hint how to modify the existing models in order to obtain a reliable theory. The purpose of this paper is precisely to highlight the necessity of revisiting the classical models, to introduce reliable models, and to indicate the steps we believe necessary to reach this target.

  10. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1993-01-01

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  11. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    sRUBABATI GOsWAMI. Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Email: sruba@mri.ernet.in. Abstract. This article summarises the status of the solar neutrino oscillation phe- nomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed ...

  12. Plasma Magnetosphere of Oscillating and Rotating Neutron Stars in General Relativity

    Science.gov (United States)

    Ahmedov, Bobomurat; Morozova, Viktoriya; Zanotti, Olindo

    2016-07-01

    We discuss a number of analytical studies, aimed at adding the influence of oscillations experienced by a pulsar/magnetar on its plasma magnetopshere. We show that particular modes of oscillations may considerably increase the pulsar/magnetar luminosity and apply the obtained theoretical results on the plasma magnetosphere of oscillating and rotating neutron stars i) to propose a qualitative model for the explanation of the phenomenology of intermittent part time pulsars, ii) to study the conditions for radio emission in rotating and oscillating magnetars by focusing on the main physical processes determining the position of their death lines, i.e. of those lines that separate the regions where the neutron star may be radio loud or radio quiet, iii) to explain the subpulse drift phenomena adopting the space-charge limited flow model and comparing the plasma drift velocity in the inner region of pulsar magnetospheres with the observed velocity of drifting subpulses.

  13. Intermittency in the Helimak, a simple magnetic torus

    Science.gov (United States)

    Taylor, E. I.; Rowan, W. L.; Gentle, K. W.; Horton, W.; Bernard, T.

    2017-10-01

    Irregularly-spaced, large-amplitude bursts are observed in the Helimak plasma turbulence with sufficient definition to investigate their physical basis and possibly improve understanding of the induced particle transport. The Helimak is an experimental realization of a sheared cylindrical slab that generates and heats a plasma with microwaves and confines it in a helical magnetic field. Although it is MHD stable, the plasma is always in a nonlinearly saturated state of microturbulence. The intermittency in this turbulence manifests itself in highly skewed PDFs of the normalized electron density. Cross-conditional averaging exposes large amplitude structures propagating down the density gradient at a few hundred meters per second. Introduction of a radial electric field via bias plates appears to suppress these intermittent transport events (ITEs) for Er pointing down the density gradient. In addition, the cross-conditionally averaged waveforms are relatively unchanged as connection length is varied. Within certain regimes, our measurements are consistent with the predictions of a stochastic model that represents the plasma fluctuations as a random sequence of burst events. Furthermore, we attempt to gain insight into the physical origin of these ITEs by searching for similar statistical behavior in fluid and gyrokinetic simulations. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 04ER5476.

  14. Training algorithms evaluation for artificial neural network to temporal prediction of photovoltaic generation

    International Nuclear Information System (INIS)

    Arantes Monteiro, Raul Vitor; Caixeta Guimarães, Geraldo; Rocio Castillo, Madeleine; Matheus Moura, Fabrício Augusto; Tamashiro, Márcio Augusto

    2016-01-01

    Current energy policies are encouraging the connection of power generation based on low-polluting technologies, mainly those using renewable sources, to distribution networks. Hence, it becomes increasingly important to understand technical challenges, facing high penetration of PV systems at the grid, especially considering the effects of intermittence of this source on the power quality, reliability and stability of the electric distribution system. This fact can affect the distribution networks on which they are attached causing overvoltage, undervoltage and frequency oscillations. In order to predict these disturbs, artificial neural networks are used. This article aims to analyze 3 training algorithms used in artificial neural networks for temporal prediction of the generated active power thru photovoltaic panels. As a result it was concluded that the algorithm with the best performance among the 3 analyzed was the Levenberg-Marquadrt.

  15. Direct observation of surface-state thermal oscillations in SmB6 oscillators

    Science.gov (United States)

    Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing

    2018-01-01

    SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.

  16. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  17. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular ...

  18. CONDITIONED ANALYSIS OF HIGH-LATITUDE SOLAR WIND INTERMITTENCY

    International Nuclear Information System (INIS)

    D'Amicis, R.; Consolini, G.; Bavassano, B.; Bruno, R.

    2012-01-01

    The solar wind is a turbulent medium displaying intermittency. Its intermittent features have been widely documented and studied, showing how the intermittent character is different in fast and slow wind. In this paper, a statistical conditioned analysis of the solar wind intermittency for a period of high-latitude fast solar wind is presented. In particular, the intermittent features are investigated as a function of the Alfvénic degree of fluctuations at a given scale. The results show that the main contribution to solar wind intermittency is due to non-Alfvénic structures, while Alfvénic increments are found to be characterized by a smaller level of intermittency than the previous ones. Furthermore, the lifetime statistics of Alfvénic periods are discussed in terms of a multiscale texture of randomly oriented flux tubes.

  19. Investigation of intermittency in simulated and experimental turbulence data by wavelet analysis

    International Nuclear Information System (INIS)

    Mahdizadeh, N.; Ramisch, M.; Stroth, U.; Lechte, C.; Scott, B.D.

    2004-01-01

    Turbulent transport in magnetized plasmas has an intermittent nature. Peaked probability density functions and a 1/frequency decay of the power spectra have been interpreted as signs of self-organized criticality generated, similar to a sand pile, by the critical gradients of ion- (ITG) or electron-temperature-gradient (ETG) driven instabilities. In order to investigate the degree of intermittency in toroidally confined plasmas in the absence of critical pressure or temperature gradients, data from the drift-Alfven-wave turbulence code DALF3 [B. Scott, Plasma Phys. Controlled Fusion 39, 1635 (1997)], running with a fixed background pressure gradient, and from a weakly driven low-temperature plasma are analyzed. The intermittency is studied on different temporal scales, which are separated by a wavelet transform. Simulated and experimental data reproduce the results on intermittent transport found in fusion plasmas. It can therefore be expected that in fusion plasmas, too, a substantial fraction of the bursty nature of turbulent transport is not related to avalanches caused by a critical gradient as generated by ITG or ETG turbulence

  20. Observation and analysis of oscillations in linear accelerators

    International Nuclear Information System (INIS)

    Seeman, J.T.

    1991-11-01

    This report discusses the following on oscillation in linear accelerators: Betatron Oscillations; Betatron Oscillations at High Currents; Transverse Profile Oscillations; Transverse Profile Oscillations at High Currents.; Oscillation and Profile Transient Jitter; and Feedback on Transverse Oscillations

  1. Free piston variable-stroke linear-alternator generator

    Science.gov (United States)

    Haaland, C.M.

    1998-12-15

    A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.

  2. Insights from intermittent binocular rivalry and EEG

    Directory of Open Access Journals (Sweden)

    Michael A Pitts

    2011-09-01

    Full Text Available Novel stimulation and analytical approaches employed in EEG studies of ambiguous figures have recently been applied to binocular rivalry. The combination of intermittent stimulus presentation and EEG source imaging has begun to shed new light on the neural underpinnings of binocular rivalry. Here, we review the basics of the intermittent paradigm and highlight methodological issues important for interpreting previous results and designing future experiments. We then outline current analytical approaches, including EEG microstates, event-related potentials, and statistically-based source estimation, and propose a spatio-temporal model that integrates findings from several studies. Finally, we discuss the advantages and limitations of using binocular rivalry as a tool to investigate the neural basis of perceptual awareness.

  3. Effects of vacusac in intermittent claudication

    DEFF Research Database (Denmark)

    Himmelstrup, H; Himmelstrup, Bodil; Mehlsen, J

    1991-01-01

    The effect of a new physical treatment modality, Vacusac, was tested on a group of patients with stable intermittent claudication. Twenty-two patients with a median age of 65 years and a median duration of intermittent claudication of 5 years were randomized to either active or placebo treatments....... Seventeen patients completed the study. The effect of treatment was quantified by measurements of systemic and peripheral systolic blood pressures and by measurements of the pain-free and the maximal walking distance on a treadmill. The ankle pressure index (ankle systolic pressure/arm systolic pressure......) and toe pressure index (toe systolic pressure/arm systolic pressure) were calculated. After 25 active treatments, administered over a period of 2 months, the patients allocated to this group attained a significant increase in the pain-free walking distance from 54 m (24-107 m) to 99 m (30-420 m) (P less...

  4. Intermittent character of interplanetary magnetic field fluctuations

    International Nuclear Information System (INIS)

    Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca

    2007-01-01

    Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field

  5. Intermittency exponent of the turbulent energy cascade

    International Nuclear Information System (INIS)

    Cleve, J.; Greiner, M.; Pearson, B.R.; Sreenivasan, K.R.

    2006-12-01

    We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with each other and with a trend that increases with the Taylor microscale Reynolds number, R λ , of up to about 1000 and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly all R λ , this being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly. (author)

  6. Optimal intermittent search strategies: smelling the prey

    International Nuclear Information System (INIS)

    Revelli, J A; Wio, H S; Rojo, F; Budde, C E

    2010-01-01

    We study the kinetics of the search of a single fixed target by a searcher/walker that performs an intermittent random walk, characterized by different states of motion. In addition, we assume that the walker has the ability to detect the scent left by the prey/target in its surroundings. Our results, in agreement with intuition, indicate that the prey's survival probability could be strongly reduced (increased) if the predator is attracted (or repelled) by the trace left by the prey. We have also found that, for a positive trace (the predator is guided towards the prey), increasing the inhomogeneity's size reduces the prey's survival probability, while the optimal value of α (the parameter that regulates intermittency) ceases to exist. The agreement between theory and numerical simulations is excellent.

  7. Intermittent preventive treatment of malaria in pregnancy

    DEFF Research Database (Denmark)

    Mbonye, A.K.; Bygbjerg, Ib Christian; Magnussen, Pascal

    2008-01-01

    OBJECTIVE: To assess whether traditional birth attendants, drug-shop vendors, community reproductive-health workers, or adolescent peer mobilizers could administer intermittent preventive treatment (IPTp) for malaria with sulfadoxine-pyrimethamine to pregnant women. METHODS: A non-randomized comm......OBJECTIVE: To assess whether traditional birth attendants, drug-shop vendors, community reproductive-health workers, or adolescent peer mobilizers could administer intermittent preventive treatment (IPTp) for malaria with sulfadoxine-pyrimethamine to pregnant women. METHODS: A non......, still births, and maternal and child deaths were secondary endpoints. FINDINGS: 1404 (67.5%) of 2081 with the new delivery system received two doses of sulfadoxine-pyrimethamine versus 281 (39.9%) of 704 with health units (P

  8. Current and Voltage Mode Multiphase Sinusoidal Oscillators Using CBTAs

    Directory of Open Access Journals (Sweden)

    M. Sagbas

    2013-04-01

    Full Text Available Current-mode (CM and voltage-mode (VM multiphase sinusoidal oscillator (MSO structures using current backward transconductance amplifier (CBTA are proposed. The proposed oscillators can generate n current or voltage signals (n being even or odd equally spaced in phase. n+1 CBTAs, n grounded capacitors and a grounded resistor are used for nth-state oscillator. The oscillation frequency can be independently controlled through transconductance (gm of the CBTAs which are adjustable via their bias currents. The effects caused by the non-ideality of the CBTA on the oscillation frequency and condition have been analyzed. The performance of the proposed circuits is demonstrated on third-stage and fifth-stage MSOs by using PSPICE simulations based on the 0.25 µm TSMC level-7 CMOS technology parameters.

  9. Bloch-Like Oscillations in Finite Quantum Structures

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten; Lassen, Benny

    of individual quantum wells and changing the coupling strength as a function of position. It is, furthermore, demonstrated that the application of a magnetic field to a structure of quantum wells may lead to the observation of Bloch oscillations (similar to Bloch oscillations stemming from the Stark effect......Inspired by several attempts to generate Bloch-like oscillations in different fields of physics [1,2], we examine a multitude of oscillator systems and interactions that lead to Bloch oscillations in finite quantum structures. A general requirement is the existence of a common period in the time...... dependence of different eigenstates which is guaranteed if eigenenergies are distributed in, e.g., a Stark ladder. We show that one possibility to create a Stark ladder is to vary the individual well widths in a chain of quantum wells. For this system we study the effect of permuting the positions...

  10. Neutrino oscillations in discrete-time quantum walk framework

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Mandal, Sanjoy; Chandrashekar, C.M. [C. I. T. Campus, The Institute of Mathematical Sciences, Chennai (India); Homi Bhabha National Institute, Training School Complex, Mumbai (India)

    2017-02-15

    Here we present neutrino oscillation in the framework of quantum walks. Starting from a one spatial dimensional discrete-time quantum walk we present a scheme of evolutions that will simulate neutrino oscillation. The set of quantum walk parameters which is required to reproduce the oscillation probability profile obtained in both, long range and short range neutrino experiment is explicitly presented. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental set-up with access to control a single six-level system, a multiparticle three-qubit or a qubit-qutrit system. We also present the entanglement between spins and position space, during neutrino propagation that will quantify the wave function delocalization around instantaneous average position of the neutrino. This work will contribute towards understanding neutrino oscillation in the framework of the quantum information perspective. (orig.)

  11. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  12. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  13. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine th...

  14. Long-range forecasting of intermittent streamflow

    OpenAIRE

    F. F. van Ogtrop; R. W. Vervoort; G. Z. Heller; D. M. Stasinopoulos; R. A. Rigby

    2011-01-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a probabilistic statistical model to forecast streamflow 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probabil...

  15. Climate, intermittent humidification, and humidifier fever.

    OpenAIRE

    Anderson, K; Watt, A D; Sinclair, D; Lewis, C; McSharry, C P; Boyd, G

    1989-01-01

    Two summer outbreaks of humidifier fever (HF) are described in a microprocessor factory (factory A) and a printing factory (factory B). The air in each factory was humidified intermittently and controlled by present humidistats operating to maintain a relative humidity of 45% by an air handler incorporating a spray humidifier in factory A and two ceiling mounted spray humidifiers in factory B. Questionnaire data from each workforce suggested that although symptoms apparently occurred most com...

  16. AN ELDERLY WOMAN WITH INTERMITTENT CLAUDICATION

    Directory of Open Access Journals (Sweden)

    Nayyer Naveed Wazir

    2006-01-01

    Full Text Available This case report illustrates the misdiagnosis of intermittent claudication in an elderly with multiple cardiac risk factors. Careful clinical evaluation and imaging shifts the diagnosis from peripheral vascular disease to spinal stenosis. The decision whether to offer conservative therapy or proceed to spinal surgery requires an accurate assessment of the severity of the symptoms without ignoring the important role of patient preferences.

  17. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  18. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  19. Plasma oscillations in porous samples

    Directory of Open Access Journals (Sweden)

    Kornyushin Y.

    2004-01-01

    Full Text Available The influence of the shape of a sample on the type of uniform dipole collective electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole oscillations cannot exist. They exist in samples of a thin slab shape only. However in essentially porous materials the electrostatic energy of the oscillation in a sample is considerably larger thus leading to stronger restoring force and higher frequency of the oscillation. When this frequency exceeds the Langmuir frequency, the oscillation becomes of a bulk type. .

  20. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  1. Oscillations in quasineutral plasmas

    International Nuclear Information System (INIS)

    Grenier, E.

    1996-01-01

    The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called open-quotes quasineutral regimeclose quotes of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs

  2. Explanation of appearance and characteristic of intermittency chaos of the impact oscillator

    Czech Academy of Sciences Publication Activity Database

    Peterka, František; Kotera, T.; Čipera, S.

    2004-01-01

    Roč. 2004, č. 19 (2004), s. 1251-1259 ISSN 0960-0779 R&D Projects: GA ČR GA101/00/0007; GA ČR GA101/97/0607 Institutional research plan: CEZ:AV0Z2076919 Keywords : impact * nonlinear dynamic system * chaos Subject RIV: BI - Acoustics Impact factor: 1.526, year: 2004

  3. A new device to mimic intermittent hypoxia in mice.

    Directory of Open Access Journals (Sweden)

    Kamil J Chodzyński

    Full Text Available Intermittent hypoxia (hypoxia-reoxygenation is often associated with cardiovascular morbidity and mortality. We describe a new device which can be used to submit cohorts of mice to controlled and standardised hypoxia-normoxia cycles at an individual level. Mice were placed in individual compartments to which similar gas flow parameters were provided using an open loop strategy. Evaluations made using computational fluid dynamics were confirmed by studying changes in haemoglobin oxygen saturation in vivo. We also modified the parameters of the system and demonstrated its ability to generate different severities of cyclic hypoxemia very precisely, even with very high frequency cycles of hypoxia-reoxygenation. The importance of the parameters on reoxygenation was shown. This device will allow investigators to assess the effects of hypoxia-reoxygenation on different pathological conditions, such as obstructive sleep apnoea or chronic obstructive pulmonary disease.

  4. Kepler's third law and the oscillator's isochronism

    Science.gov (United States)

    Gorringe, V. M.; Leach, P. G. L.

    1993-11-01

    Two classes of differential equations which have Kepler-like and oscillatorlike elliptical orbits are shown to have generalizations of the conserved angular momentum, energy, and Laplace-Runge-Lenz vector (Jauch-Hill-Fradkin tensor for the oscillator case). Both possess a generator of self-similar transformations and the related period-semimajor axis relation is a generalization of Kepler's third law in which the constant of proportionality depends explicitly on the eccentricity of the orbit.

  5. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  6. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Ping Ju

    2016-07-01

    Full Text Available According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO mechanism is taken into consideration. The GFO is the power system oscillation excited by the random excitations, such as power fluctuations from renewable power generation. Firstly, properties of the oscillations observed in the real power grid are analyzed. Using the GFO mechanism, the observed oscillations seem to be the GFO caused by some random excitation. Then the variation of the wind power measured in this power gird is found to be the random excitation which may cause the GFO phenomenon. Finally, simulations are carried out and the power spectral density of the simulated oscillation is compared to that of the observed oscillation, and they are similar with each other. The observed oscillation is thus explained well using the GFO mechanism and the GFO phenomenon has now been observed for the first time in real power grids.

  7. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    Science.gov (United States)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  8. A Chaotic Oscillator Based on HP Memristor Model

    Directory of Open Access Journals (Sweden)

    Guangyi Wang

    2015-01-01

    Full Text Available This paper proposes a simple autonomous memristor-based oscillator for generating periodic signals. Applying an external sinusoidal excitation to the autonomous system, a nonautonomous oscillator is obtained, which contains HP memristor model and four linear circuit elements. This memristor-based oscillator can generate periodic, chaotic, and hyperchaotic signals under the periodic excitation and an appropriate set of circuit parameters. It also shows that the system exhibits alternately a hidden attractor with no equilibrium and a self-excited attractor with a line equilibrium as time goes on. Furthermore, some specialties including burst chaos, irregular periodic bifurcations, and nonintermittence chaos of the circuit are found by theoretical analysis and numerical simulations. Finally, a discrete model for the HP memristor is given and the main statistical properties of this memristor-based oscillator are verified via DSP chip experiments and NIST (National Institute of Standards and Technology tests.

  9. A new control strategy of SMES for mitigating subsynchronous oscillations

    Science.gov (United States)

    Farahani, Mohsen

    2012-12-01

    This paper proposes a new strategy to mitigate the subsynchronous oscillations in power systems compensated by series capacitors via control of active power of superconducting magnetic energy storage (SMES) unit. The strategy is based on the generator acceleration signal. So, the SMES absorbs or generates the energy imbalance caused by different disturbances in the power system and suppresses the subsynchronous oscillations. The chaotic optimization algorithm (COA) is used to achieve the optimal parameter of the proposed controller. To validate the capability of the SMES in damping oscillations, some simulations with different disturbances are performed on the first model of IEEE second benchmark model. All the simulation results show that the subsynchronous resonance as well as low frequency oscillation (LFO) is satisfactorily mitigated by the SMES controlled by the proposed strategy.

  10. Abdominal Aortic Hemodynamics in Intermittent Claudication Patients at Rest and during Dynamic Pedaling Exercise.

    Science.gov (United States)

    Cheng, Christopher P; Taylor, Charles A; Dalman, Ronald L

    2015-11-01

    Lower-extremity exercise has been shown to eliminate adverse hemodynamics conditions, such as low and oscillating blood flow and wall shear stress, in the abdominal aortas of healthy young and older adults. We use cine phase-contrast magnetic resonance imaging and a custom MRI-compatible exercise cycle to quantify hemodynamic changes because of pedaling exercise in patients diagnosed with intermittent claudication. With only an average heart increase of 35 ± 18% and exercise workload of 36 ± 16 watts, the patients experienced approximately 3- and 6-fold increases in blood flow, and 4- and 16-fold increases in wall shear stress at the supraceliac and infrarenal aortic locations, respectively. Also, all oscillations in flow and shear stress at rest were eliminated with exercise. Claudication patients experience 3- to 4-fold lower oscillations in flow and shear stress at rest as compared with healthy age-matched controls, likely because of reduced distal arterial compliance as a result of distal atherosclerosis. The magnitude of flow and shear oscillatory indices may be good indicators of distal arterial compliance and health, and may provide predictive power for the efficacy of focal interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  12. Neutrino oscillations at LAMPF

    International Nuclear Information System (INIS)

    Carlini, R.; Choi, C.; Donohue, J.

    1985-01-01

    Work at Argonne continues on the construction of the neutrino oscillation experiment (E645). Construction of detector supports and active shield components were completed at the Provo plant of the principal contractor for the project (the Pittsburgh-Des Moines Corporation). Erection of the major experimental components was completed at the LAMPF experimental site in mid-March 1985. Work continues on the tunnel which will house the detector. Construction of detector components (scintillators and proportional drift tubes) is proceeding at Ohio State University and Louisiana State University. Consolidation of these components into the 20-ton neutrino detector is beginning at LAMPF

  13. Theory of oscillators

    CERN Document Server

    Andronov, Aleksandr Aleksandrovich; Vitt, Aleksandr Adolfovich

    1966-01-01

    Theory of Oscillators presents the applications and exposition of the qualitative theory of differential equations. This book discusses the idea of a discontinuous transition in a dynamic process. Organized into 11 chapters, this book begins with an overview of the simplest type of oscillatory system in which the motion is described by a linear differential equation. This text then examines the character of the motion of the representative point along the hyperbola. Other chapters consider examples of two basic types of non-linear non-conservative systems, namely, dissipative systems and self-

  14. Circadian Rhythms in Acute Intermittent Porphyria—a Pilot Study

    Science.gov (United States)

    Larion, Sebastian; Caballes, F. Ryan; Hwang, Sun-Il; Lee, Jin-Gyun; Rossman, Whitney Ellefson; Parsons, Judy; Steuerwald, Nury; Li, Ting; Maddukuri, Vinaya; Groseclose, Gale; Finkielstein, Carla V.; Bonkovsky, Herbert L.

    2013-01-01

    Acute intermittent porphyria (AIP) is an inherited disorder of heme synthesis wherein a partial deficiency of porphobilinogen [PBG] deaminase [PBGD], with other factors may give rise to biochemical and clinical manifestations of disease. The biochemical hallmarks of active AIP are relative hepatic heme deficiency and uncontrolled up-regulation of hepatic 5-aminolevulinic acid [ALA] synthase-1 [ALAS1] with overproduction of ALA and PBG. The treatment of choice is intravenous heme, which restores the deficient regulatory heme pool of the liver and represses ALAS1. Recently, heme has been shown to influence circadian rhythms by controlling their negative feedback loops. We evaluated whether subjects with AIP exhibited an altered circadian profile. Over a 21 h period, we measured levels of serum cortisol, melatonin, ALA, PBG, and mRNA levels [in peripheral blood mononuclear cells] of selected clock-controlled genes and genes involved in heme synthesis in 10 Caucasian [European-American] women who were either post-menopausal or had been receiving female hormone therapy, 6 of whom have AIP and 4 do not and are considered controls. Four AIP subjects with biochemical activity exhibited higher levels of PBG and lower levels and dampened oscillation of serum cortisol, and a trend for lower levels of serum melatonin, than controls or AIP subjects without biochemical activity. Levels of clock-controlled gene mRNAs showed significant increases over baseline in all subjects at 5 am and 11 pm, whereas mRNA levels of ALAS1, ALAS2, and PBGD were increased only at 11 pm in subjects with active AIP. This pilot study provides evidence for disturbances of circadian markers in women with active AIP that may trigger or sustain some common clinical features of AIP. PMID:23650938

  15. Brain Oscillations, Hypnosis, and Hypnotizability

    Science.gov (United States)

    Jensen, Mark P.; Adachi, Tomonori; Hakimian, Shahin

    2014-01-01

    In this article, we summarize the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, and are usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. Here we propose that it is this role that may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis; specifically that theta oscillations may facilitate, and that changes in gamma activity observed with hypnosis may underlie, some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis, and for enhancing response to hypnotic treatments. PMID:25792761

  16. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  17. Bounded-oscillation Pushdown Automata

    Directory of Open Access Journals (Sweden)

    Pierre Ganty

    2016-09-01

    Full Text Available We present an underapproximation for context-free languages by filtering out runs of the underlying pushdown automaton depending on how the stack height evolves over time. In particular, we assign to each run a number quantifying the oscillating behavior of the stack along the run. We study languages accepted by pushdown automata restricted to k-oscillating runs. We relate oscillation on pushdown automata with a counterpart restriction on context-free grammars. We also provide a way to filter all but the k-oscillating runs from a given PDA by annotating stack symbols with information about the oscillation. Finally, we study closure properties of the defined class of languages and the complexity of the k-emptiness problem asking, given a pushdown automaton P and k >= 0, whether P has a k-oscillating run. We show that, when k is not part of the input, the k-emptiness problem is NLOGSPACE-complete.

  18. Intermittent oral iron supplementation during pregnancy (Review)

    Science.gov (United States)

    Peña-Rosas, Juan Pablo; De-Regil, Luz Maria; Dowswell, Therese; Viteri, Fernando E

    2014-01-01

    Background Anaemia is a frequent condition during pregnancy, particularly among women from developing countries who have insufficient iron intake to meet increased iron needs of both the mother and the fetus. Traditionally, gestational anaemia has been prevented with the provision of daily iron supplements throughout pregnancy, but adherence to this regimen due to side effects, interrupted supply of the supplements, and concerns about safety among women with an adequate iron intake, have limited the use of this intervention. Intermittent (i.e. one, two or three times a week on non-consecutive days) supplementation with iron alone or in combination with folic acid or other vitamins and minerals has recently been proposed as an alternative to daily supplementation. Objectives To assess the benefits and harms of intermittent supplementation with iron alone or in combination with folic acid or other vitamins and minerals to pregnant women on neonatal and pregnancy outcomes. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (23 March 2012). We also searched the WHO International Clinical Trials Registry Platform (ICTRP) for ongoing studies and contacted relevant organisations for the identification of ongoing and unpublished studies (23 March 2012). Selection criteria Randomised or quasi-randomised trials. Data collection and analysis We assessed the methodological quality of trials using standard Cochrane criteria. Two review authors independently assessed trial eligibility, extracted data and conducted checks for accuracy. Main results This review includes 21 trials from 13 different countries, but only 18 trials (with 4072 women) reported on our outcomes of interest and contributed data to the review. All of these studies compared daily versus intermittent iron supplementation. Three studies provided iron alone, 12 iron+folic acid and three more iron plus multiple vitamins and minerals. Their methodological quality was mixed

  19. Intermittent claudication in a professional rugby player.

    Science.gov (United States)

    Bray, A E; Lewis, W A

    1992-04-01

    Intermittent claudication in a professional rugby player is described. The typical features of a delayed and difficult diagnosis of an external iliac artery stenosis were found. The noninvasive diagnostic protocol used to investigate this young patient with a minimal arterial lesion enabled accurate localization and angioplasty to be performed at the same time as diagnostic angiography. The patient was symptom free with normal arterial pressures on follow-up. It is suggested that appropriate noninvasive investigations should be performed before angiography in young people with minimal lesions.

  20. A stochastic model for intermittent search strategies

    International Nuclear Information System (INIS)

    Benichou, O; Coppey, M; Moreau, M; Suet, P H; Voituriez, R

    2005-01-01

    It is often necessary, in scientific or everyday life problems, to find a randomly hidden target. What is then the optimal strategy to reach it as rapidly as possible? In this article, we develop a stochastic theory for intermittent search behaviours, which are often observed: the searcher alternates phases of intensive search and slow motion with fast displacements. The first results of this theory have already been announced recently. Here we provide a detailed presentation of the theory, as well as the full derivation of the results. Furthermore, we explicitly discuss the minimization of the time needed to find the target

  1. Renewable energies: the cost of intermittency

    International Nuclear Information System (INIS)

    Crassous, Renaud; Roques, Fabien

    2013-01-01

    The authors indicate the different adaptations which will be required for the electric system to cope with the intermittency of solar and wind energy production, and propose an approximate assessment of the associated costs. Different types of adaptation are addressed: secure production in case of absence of wind or sun (electricity imports, construction of additional power stations), use of more flexible production means (gas turbines), grid extensions (connection to offshore production sites, routing of production one part of the country to the other). They think that beyond a 20 per cent share for renewable energies, these costs could rapidly increase

  2. Game performance and intermittent hypoxic training

    OpenAIRE

    Hinckson, E A; Hamlin, M J; Wood, M R; Hopkins, W G

    2007-01-01

    Live high‐train low altitude exposure simulated by hypoxic devices may improve athletic performance. In this study, intermittent normobaric hypoxia was achieved with the GO2altitude® hypoxicator to determine its effects on sea level performance in rugby players. Ten players were randomly assigned to two groups. Players in each group received 14 sessions of either hypoxic (10–15% O2) or normoxic (21% O2) exposure at rest over 14 consecutive days in a single blind fashion. Various performance m...

  3. An Artificial Muscle Ring Oscillator

    OpenAIRE

    O’Brien, Benjamin Marc; Anderson, Iain Alexander

    2012-01-01

    Dielectric elastomer artificialmuscles have great potential for the creation of novel pumps, motors, and circuitry. Control of these devices requires an oscillator, either as a driver or clock circuit, which is typically provided as part of bulky, rigid, and costly external electronics. Oscillator circuits based on piezo-resistive dielectric elastomer switch technology provide a way to embed oscillatory behavior into artificial muscle devices. Previous oscillator circuits were not digital, ab...

  4. Intermittent fasting and cardiovascular disease: current evidence and unresolved questions.

    Science.gov (United States)

    Tinsley, Grant M; Horne, Benjamin D

    2018-01-01

    Intermittent fasting has produced a variety of beneficial health effects in animal models, although high-quality research in humans has been limited. This special report examines current evidences for intermittent fasting in humans, discusses issues that require further examination, and recommends new research that can improve the knowledge base in this emerging research area. While potentially useful for health improvement, intermittent fasting requires further study prior to widespread implementation for health purposes. Randomized, longer-term studies are needed to determine whether using intermittent fasting as a lifestyle rather than a diet is feasible and beneficial for the health of some members of the human population.

  5. Commercial and Industrial Base Intermittent Resource Management Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila; Sporborg, Pamela; Sheik, Imran; Huffaker, Erich; Piette, Mary Ann

    2010-11-30

    This scoping study summarizes the challenges with integrating wind and solar generation into the California's electricity grid. These challenges include: Smoothing intra-hour variability; - Absorbing excess renewable energy during over-generation periods; - Addressing morning and evening ramping periods. In addition, there are technical challenges to integrating retail demand response (DR) triggered by the wholesale conditions into the CAISO markets. The study describes the DR programs available to the consumers through the utilities in California and CAISO's ancillary services market because an integration of the wholesale and retail DR requires an understanding of these different offerings and the costs associated with acquiring them. Demand-side active and passive storage systems are proposed as technologies that may be used to mitigate the effects of intermittence due to renewable generation. Commercial building technologies as well as industrial facilities with storage capability are identified as targets for the field tests. Two systems used for ancillary services communications are identified as providing the triggers for DR enablement. Through the field tests, issues related to communication, automation and flexibility of demand-side resources will be explored and the performance of technologies that participate in the field tests will be evaluated. The major outcome of this research is identifying and defining flexibility of DR resources and optimized use of these resources to respond to grid conditions.

  6. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  7. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    Backward wave oscillator; high power microwave generation; capacitor charging power supply; relativistic electron beam; Marx generator; high-voltage pulse ... Bhabha Atomic Research Centre, Mumbai 400 085, India; D.C. Accelerator Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  8. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  9. Spatial computation with gamma oscillations

    Science.gov (United States)

    Engelhard, Ben; Vaadia, Eilon

    2014-01-01

    Gamma oscillations in cortex have been extensively studied with relation to behavior in both humans and animal models; however, their computational role in the processing of behaviorally relevant signals is still not clear. One oft-overlooked characteristic of gamma oscillations is their spatial distribution over the cortical space and the computational consequences of such an organization. Here, we advance the proposal that the spatial organization of gamma oscillations is of major importance for their function. The interaction of specific spatial distributions of oscillations with the functional topography of cortex enables select amplification of neuronal signals, which supports perceptual and cognitive processing. PMID:25249950

  10. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  11. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    Science.gov (United States)

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  12. Novel diode-based laser system for combined transcutaneous monitoring and computer-controlled intermittent treatment of jaundiced neonates

    Science.gov (United States)

    Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.

    2001-06-01

    The high efficacy of laser phototherapy combined with transcutaneous monitoring of serum bilirubin provides optimum safety for jaundiced infants from the risk of bilirubin encephalopathy. In this paper the authors introduce the design and operating principles of a new laser system that can provide simultaneous monitoring and treatment of several jaundiced babies at one time. The new system incorporates diode-based laser sources oscillating at selected wavelengths to achieve both transcutaneous differential absorption measurements of bilirubin concentration in addition to the computer controlled intermittent laser therapy through a network of optical fibers. The detailed description and operating characteristics of this system are presented.

  13. Large scale integration of intermittent renewable energy sources in the Greek power sector

    International Nuclear Information System (INIS)

    Voumvoulakis, Emmanouil; Asimakopoulou, Georgia; Danchev, Svetoslav; Maniatis, George; Tsakanikas, Aggelos

    2012-01-01

    As a member of the European Union, Greece has committed to achieve ambitious targets for the penetration of renewable energy sources (RES) in gross electricity consumption by 2020. Large scale integration of RES requires a suitable mixture of compatible generation units, in order to deal with the intermittency of wind velocity and solar irradiation. The scope of this paper is to examine the impact of large scale integration of intermittent energy sources, required to meet the 2020 RES target, on the generation expansion plan, the fuel mix and the spinning reserve requirements of the Greek electricity system. We perform hourly simulation of the intermittent RES generation to estimate residual load curves on a monthly basis, which are then inputted in a WASP-IV model of the Greek power system. We find that the decarbonisation effort, with the rapid entry of RES and the abolishment of the grandfathering of CO 2 allowances, will radically transform the Greek electricity sector over the next 10 years, which has wide-reaching policy implications. - Highlights: ► Greece needs 8.8 to 9.3 GW additional RES installations by 2020. ► RES capacity credit varies between 12.2% and 15.3%, depending on interconnections. ► Without institutional changes, the reserve requirements will be more than double. ► New CCGT installed capacity will probably exceed the cost-efficient level. ► Competitive pressures should be introduced in segments other than day-ahead market.

  14. Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior.

    Science.gov (United States)

    Sakaguchi, Yutaka; Tanaka, Masato; Inoue, Yasuyuki

    2015-07-01

    It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Intermittent exotropia: facts, opinions, and unknowns.

    Science.gov (United States)

    Romanchuk, Kenneth G

    2011-01-01

    Intermittent exotropia (IXT) can be a controversial topic, often eliciting lively discussion. This lecture will discuss its definition, incidence, age of onset, presentation, natural variation, criteria for deterioration, goals of treatment, effectiveness of surgical treatment, types of surgical treatment, and unwanted effects of surgical treatment. Results from the scientific literature, opinions of respected colleagues, the opinion of the author, and the results of live polling of the audience during the John Pratt-Johnson lecture are presented. IXT is defined as an exotropia that is present intermittently predominantly for distance. Its incidence is about 1% and it usually has an onset before age 5. Patients often present because of concern regarding the appearance of the eye misalignment. There is natural variation in the control of IXT, the angle of IXT, and the amount of stereopsis. Criteria that denote deterioration are increasing frequency of IXT, progressively and consistently increasing angle of IXT, loss of binocular vision, and increasing concern regarding the patient's appearance and its effect on social interaction. Goals of treatment are to retain equal or nearly equal vision, to obtain acceptable cosmesis, and to retain binocular vision. The long-term success of surgical treatment is not well proven. Persistent postoperative overcorrection is an unwanted effect of surgical treatment. The inherent biologic variation that occurs when measuring the components of IXT makes it difficult to be dogmatic about IXT, particularly when trying to decide when deterioration is occurring.

  16. Intermittency Statistics in the Expanding Solar Wind

    Science.gov (United States)

    Cuesta, M. E.; Parashar, T. N.; Matthaeus, W. H.

    2017-12-01

    The solar wind is observed to be turbulent. One of the open questions in solar wind research is how the turbulence evolves as the solar wind expands to great distances. Some studies have focused on evolution of the outer scale but not much has been done to understand how intermittency evolves in the expanding wind beyond 1 AU (see [1,2]). We use magnetic field data from Voyager I spacecraft from 1 to 10AU to study the evolution of statistics of magnetic discontinuities. We perform various statistical tests on these discontinuities and make connections to the physical processes occurring in the expanding wind.[1] Tsurutani, Bruce T., and Edward J. Smith. "Interplanetary discontinuities: Temporal variations and the radial gradient from 1 to 8.5 AU." Journal of Geophysical Research: Space Physics 84.A6 (1979): 2773-2787.[2] Greco, A., et al. "Evidence for nonlinear development of magnetohydrodynamic scale intermittency in the inner heliosphere." The Astrophysical Journal 749.2 (2012): 105.

  17. Fluorescence intermittency in single cadmium selenide nanocrystals

    Science.gov (United States)

    Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E.

    1996-10-01

    SEMICONDUCTOR nanocrystals offer the opportunity to study the evolution of bulk materials properties as the size of a system increases from the molecular scale1,2. In addition, their strongly size-dependent optical properties render them attractive candidates as tunable light absorbers and emitters in optoelectronic devices such as light-emitting diodes3,4 and quantum-dot lasers5,6, and as optical probes of biological systems7. Here we show that light emission from single fluorescing nanocrystals of cadmium selenide under continuous excitation turns on and off intermittently with a characteristic timescale of about 0.5 seconds. This intermittency is not apparent from ensemble measurements on many nanocrystals. The dependence on excitation intensity and the change in on/off times when a passivating, high-bandgap shell of zinc sulphide encapsulates the nanocrystal8,9 suggests that the abrupt turning off of luminescence is caused by photo-ionization of the nanocrystal. Thus spectroscopic measurements on single nanocrystals can reveal hitherto unknown aspects of their photophysics.

  18. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  19. Intermittent preventive treatment of malaria in pregnancy

    DEFF Research Database (Denmark)

    Mbonye, A.K.; Bygbjerg, Ib Christian; Magnussen, Pascal

    2008-01-01

    OBJECTIVE: To assess whether traditional birth attendants, drug-shop vendors, community reproductive-health workers, or adolescent peer mobilizers could administer intermittent preventive treatment (IPTp) for malaria with sulfadoxine-pyrimethamine to pregnant women. METHODS: A non-randomized comm......OBJECTIVE: To assess whether traditional birth attendants, drug-shop vendors, community reproductive-health workers, or adolescent peer mobilizers could administer intermittent preventive treatment (IPTp) for malaria with sulfadoxine-pyrimethamine to pregnant women. METHODS: A non......-randomized community trial was implemented in 21 community clusters (intervention) and four clusters where health units provided routine IPTp (control). The primary outcome measures were access and adherence to IPTp, number of malaria episodes, prevalence of anaemia, and birth weight. Numbers of live births, abortions......, still births, and maternal and child deaths were secondary endpoints. FINDINGS: 1404 (67.5%) of 2081 with the new delivery system received two doses of sulfadoxine-pyrimethamine versus 281 (39.9%) of 704 with health units (P malaria episodes decreased from 906 (49...

  20. Game performance and intermittent hypoxic training

    Science.gov (United States)

    Hinckson, E A; Hamlin, M J; Wood, M R; Hopkins, W G

    2007-01-01

    Live high‐train low altitude exposure simulated by hypoxic devices may improve athletic performance. In this study, intermittent normobaric hypoxia was achieved with the GO2altitude® hypoxicator to determine its effects on sea level performance in rugby players. Ten players were randomly assigned to two groups. Players in each group received 14 sessions of either hypoxic (10–15% O2) or normoxic (21% O2) exposure at rest over 14 consecutive days in a single blind fashion. Various performance measures were obtained consecutively in a single testing session pre‐ and post‐exposure. Effects of hypoxic exposure on maximum speed and sprint times were trivial (<1.0%) but unclear (90% likely range, ±5% to ±9%). In rugby simulation, hypoxic exposure produced impairments of peak power in two scrums (15%, ±8%; 9%, ±7%) and impairments of time in offensive sprints (7%, ±8%) and tackle sprints (11%, ±9%). Pending further research, rugby players would be unwise to use normobaric intermittent hypoxic exposure to prepare for games at sea level. PMID:17311807

  1. Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Born, Andreas [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); Oeschger Centre for Climate Change Research, Bern (Switzerland); Bjerknes Centre for Climate Research, Bergen (Norway); University of Bergen, Geophysical Institute, Bergen (Norway); Mignot, Juliette [IPSL/UPMC/CNRS/IRD/MNHN, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, Paris (France)

    2012-07-15

    Internal variability of the Atlantic subpolar gyre is investigated in a 600 years control simulation of a comprehensive coupled climate model. The subpolar gyre shows irregular oscillations of decadal time scale with most spectral power between 15 and 20 years. Positive and negative feedback mechanisms act successively on the circulation leading to an internal oscillation. This involves periodically enhanced deep convection in the subpolar gyre center and intermittently enhanced air-sea thermal coupling. As a result, anomalies of the large-scale atmospheric circulation can be transferred to the ocean on the ocean's intrinsic time scale, exciting the oscillator stochastically. A detailed understanding of oscillatory mechanisms of the ocean and their sensitivity to atmospheric forcing holds considerable potential for decadal predictions as well as for the interpretation of proxy data records. (orig.)

  2. DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    JAGADEESH PASUPULETI

    2006-06-01

    Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.

  3. Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Azimi, Mandana; Syed, Aamer; Hindle, Michael

    2014-10-01

    Use of submicrometer particles combined with condensational growth techniques has been proposed to reduce drug losses within components of high-flow nasal cannula therapy systems and to enhance the dose reaching the lower respiratory tract. These methods have been evaluated using continuous inhalation flow rather than realistic inhalation/exhalation breathing cycles. The goal of this study was to evaluate in vitro aerosol drug delivery using condensational growth techniques during high-flow nasal cannula therapy using realistic breathing profiles and incorporating intermittent aerosol delivery techniques. A mixer-heater combined with a vibrating mesh nebulizer was used to generate a submicrometer aerosol using a formulation of 0.2% albuterol sulfate and 0.2% sodium chloride in water. Delivery efficiency of the aerosol for 1 min through a nasal cannula was considered using an intermittent delivery regime with aerosol being emitted for either the entire inhalation time (2 s) or half of the inhalation period (1 s) and compared with continuous delivery. The deposition of the aerosol was evaluated in the nasal delivery components (ventilator tubing and cannula) and an in vitro adult nose-mouth-throat (NMT) model using 3 realistic breathing profiles. Significant improvements in dose delivered to the exit of the NMT model (ex-NMT) were observed for both condensational growth methods using intermittent aerosol delivery compared with continuous delivery, and increasing the tidal volume was found useful. The combination of the largest tidal volume with the shortest intermittent delivery time resulted in the lowest respiration losses and the highest ex-NMT delivered dose. Intermittent aerosol delivery using realistic breathing profiles of submicrometer condensational growth aerosols was found to be efficient in delivering nasally administered drugs in an in vitro airway model. Copyright © 2014 by Daedalus Enterprises.

  4. Modes of exercise training for intermittent claudication.

    Science.gov (United States)

    Lauret, Gert Jan; Fakhry, Farzin; Fokkenrood, Hugo J P; Hunink, M G Myriam; Teijink, Joep A W; Spronk, Sandra

    2014-07-04

    According to international guidelines and literature, all patients with intermittent claudication should receive an initial treatment of cardiovascular risk modification, lifestyle coaching, and supervised exercise therapy. In most studies, supervised exercise therapy consists of treadmill or track walking. However, alternative modes of exercise therapy have been described and yielded similar results to walking. Therefore, the following question remains: Which exercise mode gives the most beneficial results? To assess the effects of different modes of supervised exercise therapy on the maximum walking distance (MWD) of patients with intermittent claudication. To assess the effects of different modes of supervised exercise therapy on pain-free walking distance (PFWD) and health-related quality of life scores (HR-QoL) of patients with intermittent claudication. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Cochrane Peripheral Vascular Diseases Group Specialised Register (July 2013); CENTRAL (2013, Issue 6), in The Cochrane Lib rary; and clinical trials databases. The authors searched the MEDLINE (1946 to July 2013) and Embase (1973 to July 2013) databases and reviewed the reference lists of identified articles to detect other relevant citations. Randomised controlled trials of studies comparing alternative modes of exercise training or combinations of exercise modes with a control group of supervised walking exercise in patients with clinically determined intermittent claudication. The supervised walking programme needed to be supervised at least twice a week for a consecutive six weeks of training. Two authors independently selected studies, extracted data, and assessed the risk of bias for each study. Because of different treadmill test protocols to assess the maximum or pain-free walking distance, we converted all distances or walking times to total metabolic equivalents (METs) using the American College of Sports Medicine

  5. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    Directory of Open Access Journals (Sweden)

    Lindsay B. Baker

    2015-07-01

    Full Text Available Intermittent sports (e.g., team sports are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h. Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1 potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2 the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3 what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports. Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before

  6. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance.

    Science.gov (United States)

    Baker, Lindsay B; Rollo, Ian; Stein, Kimberly W; Jeukendrup, Asker E

    2015-07-14

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game

  7. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    Science.gov (United States)

    Baker, Lindsay B.; Rollo, Ian; Stein, Kimberly W.; Jeukendrup, Asker E.

    2015-01-01

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a

  8. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  9. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  10. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  11. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  12. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  13. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  14. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  15. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  16. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  17. Oscillating universe with quintom matter

    International Nuclear Information System (INIS)

    Xiong Huahui; Cai Yifu; Qiu Taotao; Piao Yunsong; Zhang Xinmin

    2008-01-01

    In this Letter, we study the possibility of building a model of the oscillating universe with quintom matter in the framework of 4-dimensional Friedmann-Robertson-Walker background. Taking the two-scalar-field quintom model as an example, we find in the model parameter space there are five different types of solutions which correspond to: (I) a cyclic universe with the minimal and maximal values of the scale factor remaining the same in every cycle, (II) an oscillating universe with its minimal and maximal values of the scale factor increasing cycle by cycle, (III) an oscillating universe with its scale factor always increasing, (IV) an oscillating universe with its minimal and maximal values of the scale factor decreasing cycle by cycle, and (V) an oscillating universe with its scale factor always decreasing

  18. Bound by Children: Intermittent Cohabitation and Living Together Apart

    Science.gov (United States)

    Cross-Barnet, Caitlin; Cherlin, Andrew; Burton, Linda

    2011-01-01

    In this article, we examine variations in low-income mothers' patterns of intermittent cohabitation and the voluntary and involuntary nature of these unions. Intermittent cohabitation involves couples living together and separating in repeating cycles. Using Three-City Study ethnographic data, we identified 45 low-income mothers involved in these…

  19. Intermittent Testicular Torsion | Obi | Nigerian Journal of Clinical ...

    African Journals Online (AJOL)

    Methods: Clinical and demographic data of all patients treated for intermittent testicular torsion from January 2007 to June 2015 were prospectively collected in a pro forma and analyzed. A diagnosis of intermittent torsion was made on the basis of recurrent scrotal pain, presence of abnormal testicular lie in otherwise normal ...

  20. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intermittent mandatory ventilation attachment. 868.5955 Section 868.5955 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5955 Intermittent mandatory ventilation attachment. (a)...

  1. Lack of Responsiveness during the Onset and Offset of Sevoflurane Anesthesia Is Associated with Decreased Awake-Alpha Oscillation Power

    Directory of Open Access Journals (Sweden)

    Kara J. Pavone

    2017-05-01

    Full Text Available Anesthetic drugs are typically administered to induce altered states of arousal that range from sedation to general anesthesia (GA. Systems neuroscience studies are currently being used to investigate the neural circuit mechanisms of anesthesia-induced altered arousal states. These studies suggest that by disrupting the oscillatory dynamics that are associated with arousal states, anesthesia-induced oscillations are a putative mechanism through which anesthetic drugs produce altered states of arousal. However, an empirical clinical observation is that even at relatively stable anesthetic doses, patients are sometimes intermittently responsive to verbal commands during states of light sedation. During these periods, prominent anesthesia-induced neural oscillations such as slow-delta (0.1–4 Hz oscillations are notably absent. Neural correlates of intermittent responsiveness during light sedation have been insufficiently investigated. A principled understanding of the neural correlates of intermittent responsiveness may fundamentally advance our understanding of neural dynamics that are essential for maintaining arousal states, and how they are disrupted by anesthetics. Therefore, we performed a high-density (128 channels electroencephalogram (EEG study (n = 8 of sevoflurane-induced altered arousal in healthy volunteers. We administered temporally precise behavioral stimuli every 5 s to assess responsiveness. Here, we show that decreased eyes-closed, awake-alpha (8–12 Hz oscillation power is associated with lack of responsiveness during sevoflurane effect-onset and -offset. We also show that anteriorization—the transition from occipitally dominant awake-alpha oscillations to frontally dominant anesthesia induced-alpha oscillations—is not a binary phenomenon. Rather, we suggest that periods, which were defined by lack of responsiveness, represent an intermediate brain state. We conclude that awake-alpha oscillation, previously thought to be

  2. Impact of precipitation intermittency on NAO-temperature signals in proxy records

    Directory of Open Access Journals (Sweden)

    M. Casado

    2013-03-01

    Full Text Available In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores or indirect (e.g. tree ring cellulose, speleothem calcite archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction and ERA-interim to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 °C and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO. Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom. In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation and Greenland ice core data. Our findings support the use of archives of past δ18O for NAO reconstructions.

  3. Solution Hamilton-Jacobi equation for oscillator Caldirola-Kanai

    Directory of Open Access Journals (Sweden)

    LEONARDO PASTRANA ARTEAGA

    2016-12-01

    Full Text Available The method allows Hamilton-Jacobi explicitly determine the generating function from which is possible to derive a transformation that makes soluble Hamilton's equations. Using the separation of variables the partial differential equation of the first order called Hamilton-Jacobi equation is solved; as a particular case consider the oscillator Caldirola-Kanai (CK, which is characterized in that the mass presents a temporal evolution exponentially  . We demonstrate that the oscillator CK position presents an exponential decay in time similar to that obtained in the damped sub-critical oscillator, which reflects the dissipation of total mechanical energy. We found that in the limit that the damping factor  is small, the behavior is the same as an oscillator with simple harmonic motion, where the effects of energy dissipation is negligible.

  4. Stability of synchrony against local intermittent fluctuations in tree-like power grids.

    Science.gov (United States)

    Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen

    2017-12-01

    90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.

  5. Stability of synchrony against local intermittent fluctuations in tree-like power grids

    Science.gov (United States)

    Auer, Sabine; Hellmann, Frank; Krause, Marie; Kurths, Jürgen

    2017-12-01

    90% of all Renewable Energy Power in Germany is installed in tree-like distribution grids. Intermittent power fluctuations from such sources introduce new dynamics into the lower grid layers. At the same time, distributed resources will have to contribute to stabilize the grid against these fluctuations in the future. In this paper, we model a system of distributed resources as oscillators on a tree-like, lossy power grid and its ability to withstand desynchronization from localized intermittent renewable infeed. We find a remarkable interplay of the network structure and the position of the node at which the fluctuations are fed in. An important precondition for our findings is the presence of losses in distribution grids. Then, the most network central node splits the network into branches with different influence on network stability. Troublemakers, i.e., nodes at which fluctuations are especially exciting the grid, tend to be downstream branches with high net power outflow. For low coupling strength, we also find branches of nodes vulnerable to fluctuations anywhere in the network. These network regions can be predicted at high confidence using an eigenvector based network measure taking the turbulent nature of perturbations into account. While we focus here on tree-like networks, the observed effects also appear, albeit less pronounced, for weakly meshed grids. On the other hand, the observed effects disappear for lossless power grids often studied in the complex system literature.

  6. Vasovagal oscillations and vasovagal responses produced by the Vestibulo-Sympathetic Reflex in the rat

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2014-04-01

    Full Text Available Sinusoidal galvanic vestibular stimulation (sGVS induces oscillations in blood pressure (BP and heart rate (HR i.e., vasovagal oscillations, and decreases in BP and HR i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz. The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the Vestibulo-Sympathetic Reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.

  7. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  8. Acute intermittent porphyria: Diagnosis per chance

    Directory of Open Access Journals (Sweden)

    Soundravally R

    2008-10-01

    Full Text Available Objectives: To report a case of acute intermittent porphyria (AIP diagnosed by chance during routine investigations. Clinical Presentation and Intervention: A 21-year-old female presented with vague gastrointestinal symptoms. Upon admission, she was disoriented. Later she developed generalized seizures and was treated with phenytoin, but the condition worsened. Upon investigation, her liver function, renal function, blood sugar level and electrolytes were within normal limits. When kept for routine laboratory testing, the color change in urine prompted us to investigate for porphyria. It was positive for phorphobilinogen (PBG and urophorphyrin. Since AIP had been diagnosed, the initial treatment with phenytoin was discontinued with a favorable outcome. A screening test for PBG in urine by Ehrlich′s reagent was performed on the patient′s mother and was positive. Conclusion: A high degree of suspicion at the laboratory can also determine the diagnosis of AIP, which is often missed by the clinician.

  9. Intermittent hypoxia and cancer: Undesirable bed partners?

    Science.gov (United States)

    Almendros, Isaac; Gozal, David

    2017-08-14

    The deleterious effects of intermittent hypoxia (IH) on cancer biology have been primarily evaluated in the context of the aberrant circulation observed in solid tumors which results in recurrent intra-tumoral episodic hypoxia. From those studies, IH has been linked to an accelerated tumor progression, metastasis and resistance to therapies. More recently, the role of IH in cancer has also been studied in the context of obstructive sleep apnea (OSA), since IH is a hallmark characteristic of this condition. Such recent studies are undoubtedly adding more information regarding the role of IH on tumor malignancy. In terms of the IH patterns associated with OSA, this altered oxygenation paradigm has been recently proposed as a determinant factor in fostering cancer incidence and progression from both in vitro and in vivo experimental models. Here, we summarize all the available evidence to date linking IH effects on several types of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Towards an intermittency-friendly energy system

    DEFF Research Database (Denmark)

    Blarke, Morten

    2012-01-01

    are capitulating as wind power penetration levels are moving above 25%; some operators are retiring cogeneration units entirely, while other operators are making way for heat-only boilers. This development is jeopardizing the system-wide energy, economic, and environmental benefits that distributed cogeneration...... still has to offer. The solution is for distributed operators to adapt their technology and operational strategies to achieve a better co-existence between cogeneration and wind power. Four options for doing so are analysed including a new concept that integrates a high pressure compression heat pump......Distributed cogeneration has played a key role in the implementation of sustainable energy policies for three decades. However, increasing penetration levels of intermittent renewables is challenging that position. The paradigmatic case of West Denmark indicates that distributed operators...

  11. Compensatory mechanisms activated with intermittent energy restriction

    DEFF Research Database (Denmark)

    Coutinho, Sílvia Ribeiro; Halset, Eline Holli; Gåsbakk, Sigrid

    2017-01-01

    Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy......: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting......) were measured before and after WL. Results: Changes in body weight (≈12.5% WL) and composition were similar in both groups. Fasting RQ and ExEff at 10 W increased in both groups. Losing weight, either by IER or CER dieting, did not induce significant changes in subjective appetite ratings. RMR...

  12. Beneficial effects of intermittent suction and pressure treatment in intermittent claudication

    DEFF Research Database (Denmark)

    Mehlsen, J; Himmelstrup, H; Himmelstrup, Bodil

    1993-01-01

    The present study reports on the effects of a physical treatment modality in patients with intermittent claudication. During this treatment a major part of the skin surface is subjected to intermittent suction and pressure. In a previous, preliminary study the authors found a beneficial effect...... participated in an open trial investigating the possible effects of the treatment on platelet aggregation and fibrinolysis. Pain-free and maximal walking distances were measured on a treadmill, and systolic blood pressure was measured on the upper limb, the ankle, and the first toe bilaterally. The threshold...... for adenosine diphosphate (ADP)-induced platelet aggregation was tested, and the fibrinolytic activity was estimated from the euglobulin clot lysis time. Active treatment resulted in significant improvements in pain-free and maximal walking distances, whereas no changes could be found during placebo...

  13. Secret Underlying Unexplained Abdominal Pain, Neurological Symptoms and Intermittent Hypertension: Acute Intermittent Porphyria

    Directory of Open Access Journals (Sweden)

    Komac Andac

    2017-06-01

    Full Text Available A 21-year-old female patient with abdominal pain, vomiting and constipation was admitted to the hospital with the possible diagnosis of diabetic ketoacidosis. Due to increased abdominal pain and constipation the patient underwent a surgery with the diagnosis of ileus. However, no pathological findings were found in the abdominal organs apart from serous fluid in the abdominal cavity. The patient became hypertensive, tachycardic and had an episode of seizures postoperatively. Neurological manifestations with unexplained abdominal pain indicated a diagnosis of acute intermittent porphyria (AIP. Acute intermittent porphyria diagnosis is based on elevated urinary δ-aminolevulinic acid (ALA and porphobilinogen (PBG levels as well as hydroxymethylbilane synthase (HMBS IVS13-2 A>G heterozygous mutation. Familial Mediterranean Fever (FMF gene mutations were not confirmed. Porphyria should be considered in the differential diagnosis of patients with recurrent abdominal pain, neurological symptoms and lack of FMF gene polymorphism.

  14. Oscillations of atomic nuclei in crystals

    OpenAIRE

    Vdovenkov, V. A.

    2002-01-01

    Oscillations of atomic nuclei in crystals are considered in this paper. It is shown that elastic nuclei oscillations relatively electron envelops (inherent, I-oscillations) and waves of such oscillations can exist in crystals at adiabatic condition. The types and energy quantums of I-oscillations for different atoms are determined. In this connection the adiabatic crystal model is offered. Each atom in the adiabatic model is submitted as I-oscillator whose stationary oscillatory terms are sho...

  15. Cost effectiveness of intermittent screening followed by treatment versus intermittent preventive treatment during pregnancy in West Africa

    DEFF Research Database (Denmark)

    Fernandes, Silke; Sicuri, Elisa; Halimatou, Diawara

    2016-01-01

    Background: Emergence of high-grade sulfadoxine-pyrimethamine (SP) resistance in parts of Africa has led to growing concerns about the efficacy of intermittent preventive treatment of malaria during pregnancy (IPTp) with SP. The incremental cost-effectiveness of intermittent screening and treatme...

  16. Intermittent intravenous followed by intermittent oral 1 alpha(OH)D3 treatment of secondary hyperparathyroidism in uraemia

    DEFF Research Database (Denmark)

    Brandi, L; Daugaard, H; Egsmose, C

    1996-01-01

    OBJECTIVES: To examine whether intermittent oral 1 alpha(OH)D3 treatment of patients on haemodialysis with secondary hyperparathyroidism (HPT) was able to maintain the marked suppression of PTH, which previously had been induced by an intermittent intravenous administration of 1 alpha(OH)D3...

  17. Intermittent drinking, oxytocin and human health.

    Science.gov (United States)

    Pruimboom, L; Reheis, D

    2016-07-01

    Looking at a waterhole, it is surprising that so many animals share the same space without visible signs of anxiety or aggression. Although waterholes are the preferred feeding locations of large carnivores, waterholes are shared by all type of herbivores of all sizes and shapes, including elephants. Recent research shows that the homeostatic disturbances leading to the "thirst feeling" not only activate specific substances regulating water and mineral household, but also the "trust and love" hormone oxytocin, while decreasing the production of the typical stress hormone cortisol. People using drugs, seem to be in search for oxytocin, as evidenced in studies with individuals on drugs such as ecstasy and gamma-hydroxybyturate. Hot environment, drought and increased sweating also activate specific oxytocin-producing parts of the hypothalamus, just as breastfeeding does in mother and infant. Water homeostasis is the only allostatic system activating trust neuro-anatomy and we suggest that this is due to the fact that all animals depend on water, whereas food type is species specific. Our hypothesis; regulating drinking behaviour through intermittent bulk drinking could increase oxytocin signalling, recover human trust and increase health by down-regulation of stress axis activity and inflammatory activity of the immune system. Intermittent bulk drinking should be defined as water (including tea and coffee) drinking up to a feeling of satiety and regulated by a mild feeling of thirst. This would mean that people would not drink less quantity but less frequently and that's how all animals, but also human newborns behave. It is the latter group, which is probably the only group of humans with a normal fluid homeostasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Intermittent Explosive Disorder: A Controversial Diagnosis].

    Science.gov (United States)

    Zapata, Juan Pablo; Palacio, Juan David

    2016-01-01

    Intermittent explosive disorder (IED) is aan externalizing externalising disorder characterized characterised by recurrent aggression episodes. Even though this disorder was described several decades ago, and it carries personal and social consequences, there is little in the medical scientific literature on this. bibliographic production about it is scanty. To perform a conceptualization conceptualisation of this disorder, through the review and bibliometric analysis of the available scientific articles. A search was performed in databases with the english English terms intermittent explosive disorder, impulse disorders control [MeSH], in combination with other terms. A bibliometric analysis in the GoPubMed® search engineer was also performed using all data obtained in the search. was also perfomed. IED prevalence ranges from 1.4% to 7%, it presents more frequently during middle adolescence, and with more noticeable repercussions in men males than in womenfemales. The psychopathological core of IED is the impulsive aggressive behaviour that presents in the form of «attacks» that occurs in response to a lower precipitating stimulus. Scientific publications about IED are few and relatively recent, and the vast majority is provided bycomes from the United States (56.56%), and headed by a single author. This fact highlights the need to replicate the findings described about the IED in order to demonstrate the validity and reliability of its diagnostic criteria. It is possible that doubts about the existence of a diagnosis lead have led to such a scant literature about the IED. Available studies about IED allow have allowed characterizing a group of subjects with episodes of impulsive aggression to be characterised, but this description requires replication in different latitudesneeds to be repeated in different areas. Copyright © 2015 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. Squinting and photophobia in intermittent exotropia.

    Science.gov (United States)

    Oh, Baek-Lok; Suh, Soh-Youn; Choung, Ho-Kyung; Kim, Seong-Joon

    2014-05-01

    To report factors associated with preoperative squinting, defined as transient eye closure in bright light, and photophobia and the factors affecting improvement of these symptoms postoperatively in intermittent exotropia. In this retrospective study, patients (N = 99) were divided into groups according to the presence (n = 54) or absence (n = 45) of preoperative squinting and the presence (n = 64) or absence (n = 35) of photophobia. Clinical characteristics, including overaction or underaction of the oblique muscle and fundus intorsion and extorsion, were compared between the two groups. The squinting and photophobia groups were further categorized into two subgroups each according to postoperative improvement. The extended list of characteristics, including the duration from onset to surgery, postoperative angle of deviation, and fusion, was compared between the two subgroups. Preoperatively, 54 (54.5%) and 64 (64.6%) patients had squinting and photophobia, respectively. The coincidence of squinting and photophobia was marginally significant (p = 0.05). Postoperatively, squinting and photophobia disappeared in 64.8 and 59.4% of the patients, respectively. The photophobia group had a younger onset age of strabismus than the nonphotophobia group (39.3 vs. 56.4 months; p = 0.03). Good fusional status at the near range was more common in the nonsquinting group than in the squinting group (74.3 vs. 47.6%; p = 0.02). Superior oblique overaction was significantly more common in the squinting group than in the nonsquinting group (11.1 vs. 0%; p = 0.03). Early surgical correction and successful outcomes were associated with squinting improvement (p = 0.001 and p = 0.02, respectively). More than 50% of patients with intermittent exotropia had squinting or photophobia, and approximately 60% of symptomatic patients experienced improvement postoperatively. The onset of strabismus, near fusion, superior oblique overaction, and fundus intorsion were related to these symptoms

  20. Managing server clusters on intermittent power

    Directory of Open Access Journals (Sweden)

    Navin Sharma

    2015-12-01

    Full Text Available Reducing the energy footprint of data centers continues to receive significant attention due to both its financial and environmental impact. There are numerous methods that limit the impact of both factors, such as expanding the use of renewable energy or participating in automated demand-response programs. To take advantage of these methods, servers and applications must gracefully handle intermittent constraints in their power supply. In this paper, we propose blinking—metered transitions between a high-power active state and a low-power inactive state—as the primary abstraction for conforming to intermittent power constraints. We design Blink, an application-independent hardware–software platform for developing and evaluating blinking applications, and define multiple types of blinking policies. We then use Blink to design both a blinking version of memcached (BlinkCache and a multimedia cache (GreenCache to demonstrate how application characteristics affect the design of blink-aware distributed applications. Our results show that for BlinkCache, a load-proportional blinking policy combines the advantages of both activation and synchronous blinking for realistic Zipf-like popularity distributions and wind/solar power signals by achieving near optimal hit rates (within 15% of an activation policy, while also providing fairer access to the cache (within 2% of a synchronous policy for equally popular objects. In contrast, for GreenCache, due to multimedia workload patterns, we find that a staggered load proportional blinking policy with replication of the first chunk of each video reduces the buffering time at all power levels, as compared to activation or load-proportional blinking policies.

  1. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2003-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  2. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2005-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  3. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2006-01-01

    .... Intermittent androgen ablation therapy (IAAT) may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  4. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    National Research Council Canada - National Science Library

    Wang, Zhou

    2004-01-01

    .... Intermittent androgen ablation therapy may slow down the development of androgen refractory tumors because intermittent recovery of androgens can induce differentiation of prostatic epithelial cells...

  5. The stability of large oscillating bubbles

    Science.gov (United States)

    Blake, John; Pearson, Antony

    2002-11-01

    In a most remarkable paper, in October 1942, Penney & Price developed a theory for the stability of large oscillating bubbles; in their case they were interested in underwater explosions. Much of our current understanding on the stability of oscillating bubbles can be traced to the theoretical and experimental insight shown in this paper. While interest in this particular area continues with regard ship survivability to underwater explosions, other newer areas include the oscillatory behaviour of of seismic airgun generated bubbles. Apart from large volume oscillations with a characteristic period, the other dominant parameter is associated with buoyancy. An appropriate parameter is chosen that provides a measure of the distance of migration of a bubble over one period. An analytical and computational analysis of this class of problem reveals that this pressure gradient driven instability, normally observed in the form of a high speed liquid jet threading the bubble, is the most dominant surface instability, a characteristic feature borne out in most experimental and practical applications due to the presence of an incipient pressure gradient associated with hydrostatics, dynamics or boundaries

  6. Bloch oscillations in organic and inorganic polymers

    Science.gov (United States)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; de Almeida Fonseca, Antonio Luciano; e Silva, Geraldo Magela

    2017-04-01

    The transport of polarons above the mobility threshold in organic and inorganic polymers is theoretically investigated in the framework of a one-dimensional tight-binding model that includes lattice relaxation. The computational approach is based on parameters for which the model Hamiltonian suitably describes different polymer lattices in the presence of external electric fields. Our findings show that, above critical field strengths, a dissociated polaron moves through the polymer lattice as a free electron performing Bloch oscillations. These critical electric fields are considerably smaller for inorganic lattices in comparison to organic polymers. Interestingly, for inorganic lattices, the free electron propagates preserving charge and spin densities' localization which is a characteristic of a static polaron. Moreover, in the turning points of the spatial Bloch oscillations, transient polaron levels are formed inside the band gap, thus generating a fully characterized polaron structure. For the organic case, on the other hand, no polaron signature is observed: neither in the shape of the distortion—those polaron profile signatures are absent—nor in the energy levels—as no such polaron levels are formed during the simulation. These results solve controversial aspects concerning Bloch oscillations recently reported in the literature and may enlighten the understanding about the charge transport mechanism in polymers above their mobility edge.

  7. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  8. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes

    Science.gov (United States)

    Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; Soderstrom, J. R.

    1991-01-01

    Oscillations have been obtained at frequencies from 100 to 712 GHz in InAs/AlSb double-barrier resonant-tunneling diodes at room temperature. The measured power density at 360 GHz was 90 W/sq cm, which is 50 times that generated by GaAs/AlAs diodes at essentially the same frequency. The oscillation at 712 GHz represents the highest frequency reported to date from a solid-state electronic oscillator at room temperature.

  9. A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall

    Science.gov (United States)

    Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.

    2017-06-01

    Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.

  10. Heat transfer with oscillating pressure and oscillating flow

    Science.gov (United States)

    Kornhauser, Alan A.; Smith, Joseph L., Jr.

    Heat exchangers in Stirling engines and many other reciprocating machines operating under conditions of both oscillating pressure and oscillating flow are discussed. Experiments were done on an apparatus consisting of a piston-cylinder space connected to an annular dead-end heat exchanger space. Instantaneous heat flux and center gas temperature were measured at six locations along the heat exchanger. The results were used to test the model, with the complex Nusselt number correlated against oscillating-flow Peclet number. The experimental results showed that the complex Nusselt number was capable of predicting the heat flux, but that there was at least one other important independent variable besides oscillating-flow Peclet number. Dimensional analysis suggested that this was either the ratio of gas thermal properties to those of the wall or a measure of compressibility effects.

  11. Neutrino oscillation: status and outlooks

    International Nuclear Information System (INIS)

    Nedelec, P.

    1994-01-01

    Whether the neutrinos are massive or not is one of the most puzzling question of physics today. If they are massive, they can contribute significantly to the Dark Matter of the Universe. An other consequence of a non-zero mass of neutrinos is that they might oscillate from one flavor to another. This oscillation process is by now the only way to detect a neutrino with a mass in the few eV range. Several neutrino experiments are currently looking for such an oscillation, in different modes, using different techniques. An overview of the experimental situation for neutrino experiments at accelerators is given. (author). 9 refs., 5 figs., 5 tabs

  12. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  13. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  14. Principal oscillation patterns

    International Nuclear Information System (INIS)

    Storch, H. von; Buerger, G.; Storch, J.S. von

    1993-01-01

    The Principal Oscillation Pattern (POP) analysis is a technique which is used to simultaneously infer the characteristic patterns and time scales of a vector time series. The POPs may be seen as the normal modes of a linearized system whose system matrix is estimated from data. The concept of POP analysis is reviewed. Examples are used to illustrate the potential of the POP technique. The best defined POPs of tropospheric day-to-day variability coincide with the most unstable modes derived from linearized theory. POPs can be derived even from a space-time subset of data. POPs are successful in identifying two independent modes with similar time scales in the same data set. The POP method can also produce forecasts which may potentially be used as a reference for other forecast models. The conventional POP analysis technique has been generalized in various ways. In the cyclostationary POP analysis, the estimated system matrix is allowed to vary deterministically with an externally forced cycle. In the complex POP analysis not only the state of the system but also its ''momentum'' is modeled. Associated correlation patterns are a useful tool to describe the appearance of a signal previously identified by a POP analysis in other parameters. (orig.)

  15. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  16. Small thermal oscillation analysis of the MOTA

    International Nuclear Information System (INIS)

    Guthrie, G.L.

    1978-09-01

    The MOTA (Materials Open Test Assembly) was designed to achieve a degree of thermal regulation compatible with the generation of useful materials property data obtained by irradiation of candidate reactor structural materials in the FFTF. Attaining a high degree of regulation is limited by the necessity to avoid undamped thermal oscillations. The report documents some of the analyses used to select usable configurations and determine effects of parameter choices, and investigates limitations on allowable gains of the sensor-control-valve assembly. The main purpose of the document is to make the methods available to others, rather than to give a tabulation of specific numerical results

  17. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2009-01-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-? theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  18. Nonlinear theoretical tools for fusion-related microturbulence: Historical evolution, and recent applications to stochastic magnetic fields, zonal-flow dynamics, and intermittency

    Science.gov (United States)

    Krommes, J. A.

    2009-05-01

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  19. Nonlinear Theoretical Tools for Fusion-related Microturbulence: Historical Evolution, and Recent Applications to Stochastic Magnetic Fields, Zonal-flow Dynamics, and Intermittency

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2009-05-19

    Fusion physics poses an extremely challenging, practically complex problem that does not yield readily to simple paradigms. Nevertheless, various of the theoretical tools and conceptual advances emphasized at the KaufmanFest 2007 have motivated and/or found application to the development of fusion-related plasma turbulence theory. A brief historical commentary is given on some aspects of that specialty, with emphasis on the role (and limitations) of Hamiltonian/symplectic approaches, variational methods, oscillation-center theory, and nonlinear dynamics. It is shown how to extract a renormalized ponderomotive force from the statistical equations of plasma turbulence, and the possibility of a renormalized K-χ theorem is discussed. An unusual application of quasilinear theory to the problem of plasma equilibria in the presence of stochastic magnetic fields is described. The modern problem of zonal-flow dynamics illustrates a confluence of several techniques, including (i) the application of nonlinear-dynamics methods, especially center-manifold theory, to the problem of the transition to plasma turbulence in the face of self-generated zonal flows; and (ii) the use of Hamiltonian formalism to determine the appropriate (Casimir) invariant to be used in a novel wave-kinetic analysis of systems of interacting zonal flows and drift waves. Recent progress in the theory of intermittent chaotic statistics and the generation of coherent structures from turbulence is mentioned, and an appeal is made for some new tools to cope with these interesting and difficult problems in nonlinear plasma physics. Finally, the important influence of the intellectually stimulating research environment fostered by Prof. Allan Kaufman on the author's thinking and teaching methodology is described.

  20. Synchronous long-term oscillations in a synthetic gene circuit.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Lord, Nathan D; Vinnicombe, Glenn; Paulsson, Johan

    2016-10-27

    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.

  1. Global Status of Neutrino Oscillation

    Indian Academy of Sciences (India)

    monojit

    2014-11-08

    Outline of talk. Neutrino Oscillations: the context. Solar and geo neutrino physics. Reactor neutrino physics. Atmospheric and long-baseline neutrino physics. Atmospheric neutrinos and INO. Nov 8, 2014, IASc Annual Meeting, IIT-Madras, Chennai – p. 2 ...

  2. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  3. A Possible Mechanism for Driving Oscillations in Hot Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dederick, Ethan; Jackiewicz, Jason, E-mail: dederiej@nmsu.edu, E-mail: jasonj@nmsu.edu [New Mexico State University, Las Cruces, NM (United States)

    2017-03-10

    The κ -mechanism has been successful in explaining the origin of observed oscillations of many types of “classical” pulsating variable stars. Here we examine quantitatively if that same process is prominent enough to excite the potential global oscillations within Jupiter, whose energy flux is powered by gravitational collapse rather than nuclear fusion. Additionally, we examine whether external radiative forcing, i.e., starlight, could be a driver for global oscillations in hot Jupiters orbiting various main-sequence stars at defined orbital semimajor axes. Using planetary models generated by the Modules for Experiments in Stellar Astrophysics and nonadiabatic oscillation calculations, we confirm that Jovian oscillations cannot be driven via the κ -mechanism. However, we do show that, in hot Jupiters, oscillations can likely be excited via the suppression of radiative cooling due to external radiation given a large enough stellar flux and the absence of a significant oscillatory damping zone within the planet. This trend does not seem to be dependent on the planetary mass. In future observations, we can thus expect that such planets may be pulsating, thereby giving greater insight into the internal structure of these bodies.

  4. Intermittent fasting: a "new" historical strategy for controlling seizures?

    Science.gov (United States)

    Hartman, Adam L; Rubenstein, James E; Kossoff, Eric H

    2013-05-01

    In antiquity, fasting was a treatment for epilepsy and a rationale for the ketogenic diet (KD). Preclinical data indicate the KD and intermittent fasting do not share identical anticonvulsant mechanisms. We implemented an intermittent fasting regimen in six children with an incomplete response to a KD. Three patients adhered to the combined intermittent fasting/KD regimen for 2 months and four had transient improvement in seizure control, albeit with some hunger-related adverse reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Photoluminescence intermittency of semiconductor quantum dots in dielectric environments

    Energy Technology Data Exchange (ETDEWEB)

    Isaac, A.

    2006-08-11

    The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. (orig.)

  6. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    OpenAIRE

    Baker, Lindsay B.; Rollo, Ian; Stein, Kimberly W.; Jeukendrup, Asker E.

    2015-01-01

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are...

  7. Fourier and wavelet analyses of intermittent and resonant pressure components in a slot burner

    Science.gov (United States)

    Pagliaroli, Tiziano; Mancinelli, Matteo; Troiani, Guido; Iemma, Umberto; Camussi, Roberto

    2018-01-01

    In laboratory-scale burner it has been observed that the acoustic excitations change the flame topology inducing asymmetry and oscillations. Hence, an acoustic and aeroacoustic study in non reactive condition is of primary importance during the design stage of a new burner in order to avoid the development of standing waves which can force the flame. So wall pressure fluctuations inside and outside of a novel slot burner have been studied experimentally and numerically for a broad range of geometrical parameters and mass flow rates. Wall pressure fluctuations have been measured through cavity-mounted microphones, providing uni- and multi-variate pressure statistics in both the time and frequency domains. Furthermore, since the onset of combustion-driven oscillations is always presaged by intermittent bursts of high amplitude, a wavelet-based conditional sampling procedure was applied to the database in order to detect coherent signatures embedded in the pressure time signals. Since for a particular case the coherent structures identified have a multi-scale signature, a wavelet-based decomposition technique was proposed as well to separate the contribution of the large- and small-scale flow structures to the pressure fluctuation field. As a main outcome of the activity no coupling between standing waves and velocity fluctuations was observed, but only well localized pressure signatures with shape strongly affected by the neighbouring flow physics.

  8. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  9. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  10. Supporting the externality of intermittency in policies for renewable energy

    International Nuclear Information System (INIS)

    Bunn, Derek W.; Muñoz, José I.

    2016-01-01

    We analyse the joint problem of supporting renewables and resource adequacy in a liberalised electricity market and present a detailed model-based comparison of two alternative policies. We undertake this in the context of the British market. We show how, ceteris paribus, the progressive replacement of coal with wind imposes extra costs of reserve and evaluate alternative way to meet this, whether through capacity payments funded by customers, or a reliability requirement on wind generators with capital cost or energy feed-in subsidies. We consider the reality of market concentration and the extent to which pragmatic regulation could allow prices to rise above marginal cost to reduce the extent of direct subsidies and complex market designs. We also evaluate the implied cost of carbon reduction in a progressive replacement of coal with wind, when the security is maintained by extra peaking gas. We find that support through capital allowances rather than the energy market is more efficient. - Highlights: • Progressively replacing coal by offshore wind may require increasing subsidies. • Risk-averse investors seek higher financial hurdles with more intermittent technologies. • The externality of providing extra reserves should be bundled with the renewable subsidies. • Using capital grants rather than green certificates leads to lower costs.

  11. Intermittent Renewable Management Pilot Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Kiliccote, Sila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Homan, Gregory [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Anderson, Robert [Olivine, Inc., San Ramon, CA (United States); Hernandez, John [Pacific Gas & Electric Company, San Francisco, CA (United States)

    2015-04-01

    The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with direct participation of third-parties and customers including customer acceptance; market transformation challenges (wholesale market, technology); technical and operational feasibility; and value to the rate payers, DR resource owners and the utility on providing an enabling mechanism for DR resources into the wholesale markets. The customer had the option of committing to either three contiguous hour blocks for 24 days or six contiguous hours for 12 days a month with day-ahead notification that aligned with the CAISO integrated forward market. As a result of their being available, the customer was paid $10/ kilowatt (kW)-month for capacity in addition to CAISO energy settlements. The participants were limited to no more than a 2 megawatt (MW) capacity with a six-month commitment. Four participants successfully engaged in the pilot. In this report, we provide the description of the pilot, participant performance results, costs and value to participants as well as outline some of the issues encountered through the pilot. Results show that participants chose to participate with storage and the value of CAISO settlements were significantly lower than the capacity payments provided by the utility as incentive payments. In addition, this pilot revealed issues both on the participant side and system operations side. These issues are summarized in the report.The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with

  12. Enhancement of multitasking performance and neural oscillations by transcranial alternating current stimulation

    NARCIS (Netherlands)

    Hsu, W.Y.; Zanto, T.P.; van Schouwenburg, M.R.; Gazzaley, A.

    2017-01-01

    Multitasking is associated with the generation of stimulus-locked theta (4–7 Hz) oscillations arising from prefrontal cortex (PFC). Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that influences endogenous brain oscillations. Here, we investigate

  13. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  14. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  15. Signature of the quasi-27-day oscillation in the MLT and its relation with solar irradiance and convection

    Science.gov (United States)

    Guharay, A.; Batista, P. P.; Buriti, R. A.; Schuch, N. J.

    2017-08-01

    Intermittent occurrence of the quasi-27-day oscillation is observed in the mesosphere and lower thermosphere (MLT) zonal wind in the long term database over three southern hemispheric Brazilian locations, i.e. Sao Joao do Cariri (7.4°S, 36.5°W), Cachoeira Paulista (22.7°S, 45°W) and Santa Maria (29.7°S, 53.7°W). The oscillation shows a peak amplitude of ∼15 m/s in the lower MLT. To determine the plausible sources of the quasi-27-day oscillation, the variation of the solar Ly-α flux and outgoing longwave radiation (proxy for convection) have been looked into. The oscillation shows considerable consistency with the solar UV flux implying potential solar influence on excitation. The oscillation in the MLT also exhibits good correlation with the outgoing longwave radiation at Cachoeira Paulista indicating plausible influence of lower atmospheric convective activity. Non-concurrent occurrence of the oscillation among the observational stations indicates potential role of local geophysical conditions. The zonal background wind in the MLT might cause dissipation of the upward propagating waves (modulated by 27-day oscillation) and hence imprint the lower atmospheric 27-day signature in the MLT.

  16. Turbulence intermittency and burst properties in tokamak scrape-off layer

    International Nuclear Information System (INIS)

    Antar, G.Y.; Devynck, P.; Garbet, X.; Luckhardt, S.C.

    2001-01-01

    Density fluctuation measured by a reciprocating Langmuir probe on the Tore Supra tokamak [Garbet et al., Nucl. Fusion 32, 2147 (1992)] is investigated. The purpose of this article is to give a rather comprehensive analysis of intermittency by using several data analyses to compare the bursts properties to that of coherent structures and avalanches. The probability distribution of the density fluctuations is found positively skewed, while a Gaussian shape for the negative values is recorded. It is shown that the fluctuation spectra possess one scaling region with a power law close to the one predicted by a Kolmogorov-Kraichnan model in the inverse cascade subrange. However, a net deviation from this law at higher moment orders is demonstrated. The deviation from the mono-fractal model is investigated by the multifractal analysis that reveals the variety of the dissipative structures similar to what is found in fully developed fluid turbulence. The spectra are found asymmetric, indicating the presence of structures not generated by a multiplicative process. Using conditional analysis, a detailed study of the intermittent bursts independently of the background is performed. The typical form of the intermittent structures is asymmetric. Furthermore, they do not conserve mass for only positive density fluctuations are recorded. Their poloidal velocity is estimated to be 70% greater than the background turbulence, suggesting that they may not result from a diffusive process

  17. Scaling Features of Multimode Motions in Coupled Chaotic Oscillators

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Sosnovtseva, Olga; Mosekilde, Erik

    2003-01-01

    Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus-Chaos) to different states of chaotic phase ...

  18. Spatiotemporal structures in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a competing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are established where either the up- or down-conversion processes dominate...

  19. Long-range forecasting of intermittent streamflow

    Science.gov (United States)

    van Ogtrop, F. F.; Vervoort, R. W.; Heller, G. Z.; Stasinopoulos, D. M.; Rigby, R. A.

    2011-11-01

    Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS) to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth) of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  20. Long-range forecasting of intermittent streamflow

    Directory of Open Access Journals (Sweden)

    F. F. van Ogtrop

    2011-11-01

    Full Text Available Long-range forecasting of intermittent streamflow in semi-arid Australia poses a number of major challenges. One of the challenges relates to modelling zero, skewed, non-stationary, and non-linear data. To address this, a statistical model to forecast streamflow up to 12 months ahead is applied to five semi-arid catchments in South Western Queensland. The model uses logistic regression through Generalised Additive Models for Location, Scale and Shape (GAMLSS to determine the probability of flow occurring in any of the systems. We then use the same regression framework in combination with a right-skewed distribution, the Box-Cox t distribution, to model the intensity (depth of the non-zero streamflows. Time, seasonality and climate indices, describing the Pacific and Indian Ocean sea surface temperatures, are tested as covariates in the GAMLSS model to make probabilistic 6 and 12-month forecasts of the occurrence and intensity of streamflow. The output reveals that in the study region the occurrence and variability of flow is driven by sea surface temperatures and therefore forecasts can be made with some skill.

  1. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  2. The "galloping" history of intermittent claudication.

    Science.gov (United States)

    Bollinger, A; Eckert, J; Rüttimann, B; Becker, F

    2000-11-01

    Intermittent claudication (IC) due to arterial occlusive disease was first diagnosed by the French veterinary surgeon Jean-François Bouley jeune in a horse drawing a cabriolet in the streets of Paris as early as 1831. The animal was repeatedly exercised and always started to limp with the hind legs at similar work loads. Autopsy revealed partially thrombosed aneurysm of the abdominal aorta and occlusions of both femoral arteries which were correctly identified as the cause of IC. In 1858 the famous neurologist Jean-Martin Charcot working at the Salpêtrière in Paris first discovered the condition in a patient, who was wounded by a bullet during the conquest of Algery and developed iliac artery aneurysm obliterated by a thrombus. He was aware of the first description in veterinary medicine. In Germany IC was also first mentioned in horses (Rademacher, 1838). 13 reports of patients were contributed by the neurologist Heinrich Erb in 1898 and 1904. Some interesting features of the phenomenon of IC like the amount of exercise necessary to provoke it, localization, social relevance, prolongation of the Achilles tendon reflex, decrease of maximal plantar flexion force of the foot and production of "Lewis factor p" are summarized. In human patients arteriosclerosis is the well recognized principal cause of arterial obstructions, in horses, however, the lesions are due to infection by the roundworm Strongylus vulgaris. In the fascinating life cycle the larvae migrate into the intima of small and large arteries and provoke aneurysms and intravascular thrombosis.

  3. Emotion regulation deficits in intermittent explosive disorder.

    Science.gov (United States)

    Fettich, Karla C; McCloskey, Michael S; Look, Amy E; Coccaro, Emil F

    2015-01-01

    Intermittent explosive disorder (IED) is a psychiatric disorder characterized by repeated acts of affective aggression. Despite the diagnostic emphasis on the failure to control aggressive impulses, there is little research on affective processes and emotion regulation in IED; however, this research suggests possible dysfunctions in experiences of emotional intensity and lability. The hypothesis in the present study was that compared to individuals with other psychiatric disorders, and psychologically healthy individuals, individuals with IED experience greater negative affect intensity and emotional lability. Participants (N = 373) consisted of 202 individuals diagnosed with IED, 68 non-IED psychiatric controls (PC), and 103 healthy volunteers (HV). Emotion regulation was assessed using the General Behavior Inventory, the Affective Lability Scale, and the Affect Intensity Measure. Results showed that IED participants reported greater negative affect intensity and greater emotional lability across several emotion domains (e.g., anger, anxiety, depression) than PC and HV participants. These findings suggest that IED is characterized by more global emotion regulation deficits than those associated with anger alone. Aggr. Behav. 41:25-33 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  4. Defense styles in Intermittent Explosive Disorder.

    Science.gov (United States)

    Puhalla, Alexander A; McCloskey, Michael S; Brickman, Lauren J; Fauber, Robert; Coccaro, Emil F

    2016-04-30

    The overreliance on immature and/or neurotic defense mechanisms, as opposed to more mature defensive functioning has been linked to several psychiatric disorders. However, to date, the role of defense styles among individuals with Intermittent Explosive Disorder (IED) has not been examined. Given that individuals with IED display difficulties controlling their anger and aggression, one might expect these individuals to exhibit more immature and less mature defense styles. The current study compared participants with IED to a personality disorder (PD) comparison group, as well as to healthy volunteers (HV) on the Defense Style Questionnaire, a self-report measure that assesses the extent to which individuals endorse using mature, immature, and neurotic defense styles. Subjects with IED had significantly higher scores than both comparison groups on immature defense styles and exhibited lower scores on mature defense mechanisms. Hierarchical regression of significant defense style subscales showed that higher levels of acting out and lower levels of sublimation uniquely discriminated participants with IED from the PD and HV comparison groups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Factors Relevant to Utility Integration of Intermittent Renewable Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y.; Parsons, B.

    1993-08-24

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among fmdings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface, (2) cost penalties have not occurred at low to moderate penetration levels (and high levels am feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also indentified.

  6. Factors relevant to utility integration of intermittent renewable technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yih-huei; Parsons, B.K.

    1993-08-01

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among findings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface; (2) cost penalties have not occurred at low to moderate penetration levels (and high levels are feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also identified.

  7. Scaling laws and intermittent structures in solar wind MHD turbulence

    Science.gov (United States)

    Veltri, Pierluigi; Mangeney, André

    1999-06-01

    Thirteen months of velocity and magnetic field data from ISEE space experiment have been used to calculate spectra and structure functions using Haar wavelets technique in the range from 1 minute to about 1 day. Using conditioned structure function definition we have been able to eliminate the intermittency effects in the spectra and thus to evidentiate which kind of phenomenology of nonlinear cascade between Kolmogorov and Kraichnan is taking place in Solar Wind turbulence. By the same technique the most intermittent structures in solar wind turbulence can also be identified and they turn out to be either shock waves or one dimensional current sheets, at variance with ordinary fluid intermittency, where the most intermittent structures are two dimensional vortices.

  8. Computing moving and intermittent queue propagation in highway work zones.

    Science.gov (United States)

    2012-07-01

    Drivers may experience intermittent congestion and moving queue conditions in work zones due to several reasons such as presence of lane closure, roadway geometric changes, higher demand, lower speed, and reduced capacity. The congestion and queue ha...

  9. Sensing and characterization of EMI during intermittent connector anomalies

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a new on-line methodology for detecting intermittent disconnection failures. The detection principle operates on the fundamental Lorentz Law that...

  10. Discomfort caused by low-frequency lateral oscillation, roll oscillation and roll-compensated lateral oscillation.

    Science.gov (United States)

    Beard, George F; Griffin, Michael J

    2013-01-01

    Roll compensation during cornering (aligning the feet-to-head axis of the body with the resultant force) reduces lateral acceleration, but how any improvement in comfort depends on the frequency of the acceleration has not previously been investigated. Seated subjects judged the discomfort caused by lateral oscillation, roll oscillation and fully roll-compensated lateral oscillation at each of seven frequencies (0.25-1.0 Hz). Irrespective of whether it was caused by pure lateral acceleration or gravitational acceleration due to pure roll, acceleration in the plane of the seat caused similar discomfort at frequencies less than 0.4 Hz. From 0.4 to 1.0 Hz, with the same lateral acceleration in the plane of the seat, there was greater discomfort from roll oscillation than from lateral acceleration. With fully roll-compensated lateral oscillation, discomfort was less than with either the lateral component or the roll component of the motion from 0.2 to 0.5 Hz, but discomfort increased with increasing frequency and caused similar discomfort to pure roll oscillation at 1.0 Hz. Tilting can reduce passenger exposure to vehicle lateral acceleration when cornering, but how comfort depends on the frequency of motion was unknown. This study shows 'tilt-compensation' only improves comfort at frequencies less than 0.5 Hz. The findings affect tilting vehicles and the prediction of discomfort caused by low-frequency motions.

  11. Bound by Children: Intermittent Cohabitation and Living Together Apart

    OpenAIRE

    Cross-Barnet, Caitlin; Cherlin, Andrew; Burton, Linda

    2011-01-01

    In this article, we examine variations in low-income mothers' patterns of intermittent cohabitation and the voluntary and involuntary nature of these unions. Intermittent cohabitation involves couples living together and separating in repeating cycles. Using Three-City Study ethnographic data, we identified 45 low-income mothers involved in these arrangements, 18 of whom resided with their children's fathers occasionally while saying that they were not in a cohabiting relationship. We term su...

  12. Transfert thermique à travers une interface de contact intermittent en ...

    African Journals Online (AJOL)

    Transfert thermique à travers une interface de contact intermittent en régime périodique établi. ... Mots clés: modélisation; conduction; contact intermittent; pseudo résistance de contact; résistance de contact; couplage de matériaux. In this paper, we present one-dimensional model to describe the thermal transfer through an ...

  13. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting

    OpenAIRE

    Andrea Efrem Toninelli; Junfeng Wang; Mingshen Liu; Hong Wu; Tianzhong Liu

    2016-01-01

    This study investigated the effect of intermittent lighting on the growth performances of a Scenedesmus dimorphus biofilm. Flashing light effect (FLE) is common in traditional suspended cultures of microalgae; yet, publications about this phenomenon, in the context of biofilm cultivation, are scarce. In this work we demonstrate that, thanks to intermittent illumination, it is possible for attached cultivations to fulfill FLE, improve photoefficiency and productivity as well as providing prote...

  14. The minimum transition hypothesis for intermittent hierarchical motor control

    Directory of Open Access Journals (Sweden)

    Amir eKarniel

    2013-02-01

    Full Text Available In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis and its predictions with regards to the structure of muscle synergies. The minimum transitions hypothesis (MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  15. The minimum transition hypothesis for intermittent hierarchical motor control.

    Science.gov (United States)

    Karniel, Amir

    2013-01-01

    In intermittent control, instead of continuously calculating the control signal, the controller occasionally changes this signal at certain sparse points in time. The control law may include feedback, adaptation, optimization, or any other control strategies. When, where, and how does the brain employ intermittency as it controls movement? These are open questions in motor neuroscience. Evidence for intermittency in human motor control has been repeatedly observed in the neural control of movement literature. Moreover, some researchers have provided theoretical models to address intermittency. Even so, the vast majority of current models, and I would dare to say the dogma in most of the current motor neuroscience literature involves continuous control. In this paper, I focus on an area in which intermittent control has not yet been thoroughly considered, the structure of muscle synergies. A synergy in the muscle space is a group of muscles activated together by a single neural command. Under the assumption that the motor control is intermittent, I present the minimum transition hypothesis (MTH) and its predictions with regards to the structure of muscle synergies. The MTH asserts that the purpose of synergies is to minimize the effort of the higher level in the hierarchy by minimizing the number of transitions in an intermittent control signal. The implications of the MTH are not only for the structure of the muscle synergies but also to the intermittent and hierarchical nature of the motor system, with various predictions as to the process of skill learning, and important implications to the design of brain machine interfaces and human robot interaction.

  16. Lactate Kinetics After Intermittent and Continuous Exercise Training

    OpenAIRE

    Gharbi, Adnene; Chamari, Karim; Kallel, Amjad; Ahmaidi, Saîd; Tabka, Zouhair; Abdelkarim, Zbidi

    2008-01-01

    The purpose of this study was to assess, the effects of continuous and intermittent exercise training on lactate kinetic parameters and maximal aerobic speed (MAS) using field tests. Twenty-four male sport students were equally divided into continuous (CT) and intermittent (IT) physically trained groups. Another six participants acted as non-trained controls (CG). The trained participants practiced 6-days per week for 6 weeks. Before and after training, all participants completed an increment...

  17. Derived neutrophil lymphocyte ratio is predictive of survival from intermittent therapy in advanced colorectal cancer: a post hoc analysis of the MRC COIN study.

    Science.gov (United States)

    Grenader, Tal; Nash, Stephen; Adams, Richard; Kaplan, Richard; Fisher, David; Maughan, Tim; Bridgewater, John

    2016-03-15

    The phase III COntinuous or INtermittent (COIN) trial failed to show non-inferiority of intermittent compared with continuous chemotherapy for advanced colorectal cancer in overall survival (OS). The present analysis evaluated whether the derived neutrophil to lymphocyte ratio (dNLR) could predict the effect of intermittent vs continuous chemotherapy on OS in patients with advanced colorectal cancer. A post hoc exploratory analysis of COIN arms A and C was performed. Landmark analysis was conducted on all patients with available WBC and neutrophils data. The dNLR was calculated using a formula which has previously demonstrated predictive power in cancer patients: dNLR = ANC/(WBC-ANC). A high dNLR was defined using a cut-off value of ⩾ 2.22. Derived neutrophil to lymphocyte ratio was then correlated with clinical outcomes. Survival curves were generated based on dNLR using the Kaplan-Meier method. Comparison between groups was performed using Cox regression. A total of 1630 patients were assigned to the continuous (N = 815) or intermittent (N = 815) arms. There was a strong association between dNLR level and OS. The median survival times in the ITT population were 18.6 months and 12.5 months for patients with low and high dNLR, respectively (HR = 1.70; 95% CI = 1.52-1.90; P COIN intermittent vs continuous treatment arms. Derived neutrophil to lymphocyte ratio does not predict for detrimental survival in patients treated with intermittent therapy.

  18. Suppression of methanogenesis in hydrogen fermentation by intermittent feeding.

    Science.gov (United States)

    Yun, Jeonghee; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-01-01

    This study investigated whether intermittent feeding by using a concentrated carbon source is an appropriate method for selective enrichment of hydrogenesis by means of methanogen suppression. In a conventional reactor fed continuously for 10 d, methanogens increased from 2.8 × 10(7) to 1.1 × 10(9) gene copy number (GCN)/mg-cell dry weight, and methane concentration in the resulting biogas was 5.8%. However, when a carbon source was intermittently supplied for 10 d to the reactor, the number of methanogens was reduced 98.9% from 2.77 × 10(7) to 1.2 × 10(3) GCN/mg-cell dry weight, and methane was not detected during this period of intermittent feeding. Intermittent feeding shifted the dominants in the reactor from Clostridiaceae (70.5%) and Lactobacillaceae (11.0%) to Acetobacteraceae (62.0%) and Clostridiaceae (38.0%). In the reactor operated in continuous feeding mode after intermittent feeding, methane concentration was below 0.3% and the portion of methanogens in the bacterial community was maintained below 0.2%. These results suggest that the intermittent feeding of a carbon source during hydrogen production processes is a suitable method to suppress the activity of methanogens.

  19. Uncoupling of Vascular Nitric Oxide Synthase Caused by Intermittent Hypoxia

    Directory of Open Access Journals (Sweden)

    Mohammad Badran

    2016-01-01

    Full Text Available Objective. Obstructive sleep apnea (OSA, characterized by chronic intermittent hypoxia (CIH, is often present in diabetic (DB patients. Both conditions are associated with endothelial dysfunction and cardiovascular disease. We hypothesized that diabetic endothelial dysfunction is further compromised by CIH. Methods. Adult male diabetic (BKS.Cg-Dock7m +/+ Leprdb/J (db/db mice (10 weeks old and their heterozygote littermates were subjected to CIH or intermittent air (IA for 8 weeks. Mice were separated into 4 groups: IA (intermittent air nondiabetic, IH (intermittent hypoxia nondiabetic, IADB (intermittent air diabetic, and IHDB (intermittent hypoxia diabetic groups. Endothelium-dependent and endothelium-independent relaxation and modulation by basal nitric oxide (NO were analyzed using wire myograph. Plasma 8-isoprostane, interleukin-6 (IL-6, and asymmetric dimethylarginine (ADMA were measured using ELISA. Uncoupling of eNOS was measured using dihydroethidium (DHE staining. Results. Endothelium-dependent vasodilation and basal NO production were significantly impaired in the IH and IADB group compared to IA group but was more pronounced in IHDB group. Levels of 8-isoprostane, IL-6, ADMA, and eNOS uncoupling were ≈2-fold higher in IH and IADB groups and were further increased in the IHDB group. Conclusion. Endothelial dysfunction is more pronounced in diabetic mice subjected to CIH compared to diabetic or CIH mice alone. Oxidative stress, ADMA, and eNOS uncoupling were exacerbated by CIH in diabetic mice.

  20. The specificity of the Loughborough Intermittent Shuttle Test for recreational soccer players is independent of their intermittent running ability.

    Science.gov (United States)

    Coratella, Giuseppe; Beato, Marco; Schena, Federico

    2016-01-01

    The aim of the present study was to evaluate whether or not recreational soccer players (SP) and non-soccer players (non-SP) with similar intermittent-running ability had similar physiological responses to a soccer match-simulation protocol. Twenty-two recreational SP and 19 fitness-matched non-SP participated. Yo-Yo level 1 assessed intermittent-running ability, while the Loughborough Intermittent Shuttle Test served as soccer match-simulation protocol. Heart rate (HR), blood lactate concentration [La - ] and rating of perceived exertion (RPE) were recorded after each bout (1-5, plus an exhaustive task). SP had lower HR after the third, fourth and fifth bout, compared to non-SP. Similarly, SP had lower [La - ] after the third, fourth and the fifth bout. SP also had lower RPE after the third, fourth and fifth bout. The appropriateness of intermittent-running ability as the main determinant of physical performance in SP was questioned.

  1. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    A variety of stimuli can trigger intracellular calcium oscillations. Relatively little is known about the molecular mechanisms decoding these events. We show that ALG-2, a Ca2+-binding protein originally isolated as a protein associated with apoptosis, is directly linked to Ca2+ signalling. We...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  2. Classical and quantum properties of optical parametric oscillators

    CERN Document Server

    Martinelli, M; Nussenzveig, P; Souto-Ribeiro, P H

    2001-01-01

    We present a review of the Optical Parametric Oscillator (OPO), describing its operation and the quantum correlation between the light beams generated by this oscillator. We show the construction of an OPO using a Potassium Titanyl Phosphate crystal, pumped by a frequency doubled Nd:YAG laser, and discuss the stability of the system and related thermal effects. We have measured the quantum correlation of signal and idler beams in a transient regime, obtaining a noise correlation level 39 % below the shot noise level.

  3. Primer on coupling collective electronic oscillations to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Solem, J.C.; Biedenharn, L.C. Jr.

    1987-07-01

    On the basis of simple heuristic models, we show that atomic electrons can amplify fields observed at the nucleus, generate harmonics, and drive higher multipolarities. Considered is a model with the nucleus at the focus of a uniformly charged ellipsoid. It amplifies an oscillating external electric field and produces an oscillating electric-field gradient but no higher derivatives. The electric field has only odd harmonics and the electric-field gradient has only even harmonics. There is an optimum intensity for driving each harmonic. Commented on is the relevance of these results to the U/sup 235/ experiment and to the gamma-ray laser.

  4. Intermittency and Topology of Shock Induced Mixing

    Science.gov (United States)

    Tellez, Jackson; Redondo, Jose M.; Ben Mahjoub, Otman; Malik, Nadeem; Vila, Teresa

    2016-04-01

    The advance of a Rayleigh-Taylor front is described in Linden & Redondo (1991),[1-3] and may be shown to follow a quadratic law in time where the width of the growing region of instability depends on the local mixing efficiency of the different density fluids that accelerate against each other g is the acceleration and A is the Atwood number defined as the diference of densities divided by their sum. This results show the independence of the large amplitude structures on the initial conditions the width of the mixing region depends also on the intermittency of the turbulence. Then dimensional analysis may also depend on the relevant reduced acceleration driven time and the molecular reactive time akin to Damkholer number and the fractal structure of the contact zone [2,4]. Detailed experiments and simulations on RT and RM shock induced fronts analized with respect to structure functions are able to determine which mechanisms are most effective in local mixing which increase the effective fractal dimension, as well as the effect of higher order geometrical parameters, such as the structure functions, in non-homogeneous fluids (Mahjoub et al 1998)[5]. The structure of a Mixing blob shows a relatively sharp head with most of the mixing taking place at the sides due to what seems to be shear instability very similar to the Kelvin-Helmholtz instabilities, but with sideways accelerations. The formation of the blobs and spikes with their secondary instabilities produces a turbulent cascade, evident just after about 1 non-dimensional time unit, from a virtual time origin that takes into account the linear growth phase, as can be seen by the growth of the fractal dimension for different volume fractions. Two-dimensional cuts of the 3D flow also show that vortex flows have closed or spiral streamlines around their core. Examples of such flows can be also seen in the laboratory, for example at the interface of atwo-layer stratified fluid in a tank in which case streamlines

  5. Oscillation mode analysis considering the interaction between a DFIG-based wind turbine and the grid

    Science.gov (United States)

    Wu, Wangping; Xie, Da; Lu, Yupu; Zhao, Zuyi; Yu, Songtao

    2017-01-01

    Sub-synchronous interactions between wind farms and transmission networks with series compensation have drawn great attention. As most large wind farms in Europe and Asia employ doubly fed induction generator turbines, there has recently been a growing interest in studying this phenomenon. To study the stability of wind turbine with doubly fed induction generator after a small disturbance, a complete small signal system is built in this paper. By using eigenvalue and participation factor analysis, the relation between the modes and state variables can be discovered. Thereafter, the oscillation modes are classified into electrical resonance, sub-synchronous resonance, sub-synchronous oscillation, sub-synchronous control interaction, and low frequency oscillation. To verify the oscillation frequency of each oscillation mode, time-domain simulation based on MATLAB/Simulink is presented. The simulation results justify the effectiveness of the small-signal models.

  6. Real oscillations of virtual neutrinos

    International Nuclear Information System (INIS)

    Grimus, W.; Stockinger, P.

    1996-01-01

    We study the conditions for neutrino oscillations in a field-theoretical approach by taking into account that only the neutrino production and detection processes, which are localized in space around the coordinates x searrow P and x searrow D , respectively, can be manipulated. In this sense the neutrinos whose oscillations are investigated appear as virtual lines connecting production with detection in the total Feynman graph and all neutrino fields or states to be found in the discussion are mass eigenfields or eigenstates. We perform a thorough examination of the integral over the spatial components of the inner neutrino momentum and show that in the asymptotic limit L=|x searrow D -x searrow P |→∞ the virtual neutrinos become open-quote open-quote real close-quote close-quote and under certain conditions the usual picture of neutrino oscillations emerges without ambiguities. copyright 1996 The American Physical Society

  7. Damping of coupled harmonic oscillators

    Science.gov (United States)

    Dolfo, Gilles; Vigué, Jacques

    2018-03-01

    When two harmonic oscillators are coupled in the presence of damping, their dynamics exhibit two very different regimes depending on the relative magnitude of the coupling and damping terms At resonance, when the coupling has its largest effect, if the coupling dominates the damping, there is a periodic exchange of energy between the two oscillators while, in the opposite case, the energy transfer from one oscillator to the other one is irreversible. We prove that the border between these two regimes goes through an exceptional point and we briefly explain what is an exceptional point. The present paper is written for undergraduate students, with some knowledge in classical mechanics, but it may also be of interest for graduate students.

  8. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  9. DIGITAL SELF-OSCILLATING MODULATOR

    DEFF Research Database (Denmark)

    2007-01-01

    A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises an alter......A digital self-oscillating modulator (1) having a digital reference signal as input (Vref) comprises a forward loop with a first output and a feedback loop. The feedback loop comprises a feedback block (18) having a transfer function (MFB) and a digital output. The forward loop comprises...

  10. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  11. Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet

    International Nuclear Information System (INIS)

    Rezende, S.M.; de Aguiar, F.M.

    1990-01-01

    Spin-wave instabilities driven by microwave fields display auto-oscillations, intermittency, quasiperiodicity, period-doubling and chaos like other nonlinear dynamic systems. Several of these phenomena, first observed nearly 30 years ago, only recently have been investigated systematically and understood in the light of modern nonlinear dynamics. The authors review recent experimental results in yttrium-iron-garnet subject to three different spin-wave pumping mechanisms: parallel pumping, subsidiary resonance (first-order Suhl process) and premature saturation of the main resonance (second-order Suhl process). A theoretical model derived from first principles leading to coupled nonlinear spin-ave equations is used to interpret the observed spin-wave instabilities, auto-oscillations, and chaotic dynamics. Improvements needed in the model are also indicated

  12. Neutrino oscillations in a predictive SUSY GUT

    International Nuclear Information System (INIS)

    Blazek, T.; Raby, S.; Tobe, K.

    1999-01-01

    In this paper we present a predictive SO(10) supersymmetric grand unified theory with the family symmetry U(2)xU(1) which has several nice features. We are able to fit fermion masses and mixing angles, including recent neutrino data, with nine parameters in the charged fermion sector and four in the neutrino sector. The family symmetry plays a preeminent role. (i) The model is ''natural''--we include all terms allowed by the symmetry. It restricts the number of arbitrary parameters and enforces many zeros in the effective mass matrices. (ii) Family symmetry breaking from U(2)xU(1)→U(1)→ nothing generates the family hierarchy. It also constrains squark and slepton mass matrices, thus ameliorating flavor violation resulting from squark and slepton loop contributions. (iii) It naturally gives large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data and small angle ν e -ν s mixing, consistent with the small mixing angle Mikheyev-Smirnov-Wolfenstein (MSW) solution to solar neutrino data. (iv) Finally, in this paper we assume minimal family symmetry-breaking vacuum expectation values (VEV's). As a result we cannot obtain a three neutrino solution to both atmospheric and solar neutrino oscillations. In addition, the solution discussed here cannot fit liquid scintillation neutrino detector (LSND) data even though this solution requires a sterile neutrino ν s . It is important to note, however, that with nonminimal family symmetry-breaking VEV's, a three neutrino solution is possible with the small mixing angle MSW solution to solar neutrino data and large angle ν μ -ν τ mixing describing atmospheric neutrino oscillation data. In the four neutrino case, nonminimal family VEV's may also permit a solution for LSND. The results with nonminimal family breaking are still under investigation and will be reported in a future paper. (c) 1999 The American Physical Society

  13. Synchronized oscillations and acoustic fluidization in confined granular materials

    Science.gov (United States)

    Giacco, F.; de Arcangelis, L.; Ciamarra, M. Pica; Lippiello, E.

    2018-01-01

    According to the acoustic fluidization hypothesis, elastic waves at a characteristic frequency form inside seismic faults even in the absence of an external perturbation. These waves are able to generate a normal stress which contrasts the confining pressure and promotes failure. Here, we study the mechanisms responsible for this wave activation via numerical simulations of a granular fault model. We observe the particles belonging to the percolating backbone, which sustains the stress, to perform synchronized oscillations over ellipticlike trajectories in the fault plane. These oscillations occur at the characteristic frequency of acoustic fluidization. As the applied shear stress increases, these oscillations become perpendicular to the fault plane just before the system fails, opposing the confining pressure, consistently with the acoustic fluidization scenario. The same change of orientation can be induced by external perturbations at the acoustic fluidization frequency.

  14. Load Insensitive, Low Voltage Quadrature Oscillator Using Single Active Element

    Directory of Open Access Journals (Sweden)

    Jitendra Mohan

    2017-01-01

    Full Text Available In this paper, a load insensitive quadrature oscillator using single differential voltage dual-X second generation current conveyor operated at low voltage is proposed. The proposed circuit employs single active element, three grounded resistors and two grounded capacitors. The proposed oscillator offers two load insensitive quadrature current outputs and three quadrature voltage outputs simultaneously. Effects of non-idealities along with the effects of parasitic are further studied. The proposed circuit enjoys the feature of low active and passive sensitivities. Additionally, a resistorless realization of the proposed quadrature oscillator is also explored. Simulation results using PSPICE program on cadence tool using 90 nm Complementary Metal Oxide Semiconductor (CMOS process parameters confirm the validity and practical utility of the proposed circuit.

  15. A multi-GHz chaotic optoelectronic oscillator based on laser terminal voltage

    International Nuclear Information System (INIS)

    Chang, C. Y.; Choi, Daeyoung; Locquet, A.; Wishon, Michael J.; Citrin, D. S.; Merghem, K.; Ramdane, Abderrahim; Martinez, A.; Lelarge, François

    2016-01-01

    A multi-GHz chaotic optoelectronic oscillator based on an external cavity semiconductor laser (ECL) is demonstrated. Unlike the standard optoelectronic oscillators for microwave applications, we do not employ the dynamic light output incident on a photodiode to generate the microwave signal, but instead generate the microwave signal directly by measuring the terminal voltage V(t) of the laser diode of the ECL under constant-current operation, thus obviating the photodiode entirely.

  16. Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods.

    Science.gov (United States)

    Zeiler, Frederick A; Donnelly, Joseph; Calviello, Leanne; Menon, David K; Smielewski, Peter; Czosnyka, Marek

    2017-12-01

    The purpose of this study was to perform a systematic, scoping review of commonly described intermittent/semi-intermittent autoregulation measurement techniques in adult traumatic brain injury (TBI). Nine separate systematic reviews were conducted for each intermittent technique: computed tomographic perfusion (CTP)/Xenon-CT (Xe-CT), positron emission tomography (PET), magnetic resonance imaging (MRI), arteriovenous difference in oxygen (AVDO 2 ) technique, thigh cuff deflation technique (TCDT), transient hyperemic response test (THRT), orthostatic hypotension test (OHT), mean flow index (Mx), and transfer function autoregulation index (TF-ARI). MEDLINE ® , BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to December 2016), and reference lists of relevant articles were searched. A two tier filter of references was conducted. The total number of articles utilizing each of the nine searched techniques for intermittent/semi-intermittent autoregulation techniques in adult TBI were: CTP/Xe-CT (10), PET (6), MRI (0), AVDO 2 (10), ARI-based TCDT (9), THRT (6), OHT (3), Mx (17), and TF-ARI (6). The premise behind all of the intermittent techniques is manipulation of systemic blood pressure/blood volume via either chemical (such as vasopressors) or mechanical (such as thigh cuffs or carotid compression) means. Exceptionally, Mx and TF-ARI are based on spontaneous fluctuations of cerebral perfusion pressure (CPP) or mean arterial pressure (MAP). The method for assessing the cerebral circulation during these manipulations varies, with both imaging-based techniques and TCD utilized. Despite the limited literature for intermittent/semi-intermittent techniques in adult TBI (minus Mx), it is important to acknowledge the availability of such tests. They have provided fundamental insight into human autoregulatory capacity, leading to the development of continuous and more commonly applied techniques in the intensive care unit (ICU). Numerous methods of

  17. Tangent map intermittency as an approximate analysis of intermittency in a high dimensional fully stochastic dynamical system: The Tangled Nature model

    Science.gov (United States)

    Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto

    2016-12-01

    It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low

  18. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  19. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  20. Subsynchronous Oscillation Problem Research in the UHVDC System of a Regional Power Grid in China

    Directory of Open Access Journals (Sweden)

    Qu Ying

    2016-01-01

    Full Text Available Along with the grid structure being more and more complex and the rapid development of the HVDC system, studying the subsynchronous oscillation (SSO problem on HVDC system has more engineering practice significance. The paper studies subsynchronous oscillations problem of generators near the ±800kV UHVDC converter station, and analyzes the subsynchronous oscillation possibilities through PSCAD/EMTDC simulation. At last, though the researched UHVDC thermal plants have none SSO risk but it needs other measures to make the relevant generators return on normal operation.