WorldWideScience

Sample records for intermetallic phase formation

  1. Experimental formation enthalpies for intermetallic phases and other inorganic compounds

    Science.gov (United States)

    Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei

    2017-01-01

    The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466

  2. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  3. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Full text: The ion implantation at a high intensity mode is an effective method for modification of the surface properties of metals and alloys. Improvement of mechanical and tribological properties of irradiated materials using the high intensity implantation is connected with an element composition and microstructure modification of the surface and subsurface layers. One shows a great interest in intermetallic phase's synthesis by ion implantation, because of unique physical-mechanical properties of the intermetallic compounds. The influence of the irradiation conditions on the structural state and surface properties of implanted materials is not clear enough. The study of the factors influencing on the formation of the surface ion - alloyed layers of metal targets having the high tribological and mechanical properties by high intensity ion implantation is actual. The aim of the present work is a study of the microstructure, phase composition, physical and mechanical properties of the ion-alloyed Ni surfaces formed at high intensity implantation of Ti ions. The implantation Ti ions into Ni samples at high intensity mode was realized using ion source 'Raduga - 5'. The implantation Ti ions into Ni was carried out at accelerating voltage 20 kV for 2 h. The regimes were differed in the samples temperature (580 - 700 K), the distance from the ion implanted samples to the ion source (0.43-0.93 m) and the dose of irradiated ions (0.3·10 18 -2.9·10 18 ion/cm -2 ). The element composition of the implanted samples was analyzed by the electron spectroscopy. The structural-phase state of the Ni ion-modified layers was investigated by the transmission electron microscopy and X-ray diffraction methods. Additionally, the investigation of mechanical and tribological properties of the implanted Ni samples was carried out. It was established that the maximum thickness of the ion-alloyed nickel layers at high intensity mode allows forming the nanoscale intermetallic phases (Ni

  4. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling

    International Nuclear Information System (INIS)

    Wang, H.-W.; Chyou, S.-D.; Wang, S.-H.; Yang, M.-W.; Hsu, C.-Y.; Tien, H.-C.; Huang, N.-N.

    2009-01-01

    The hydriding/dehydriding properties of an intermetallic Mg 2 Ni alloy synthesized by wet ball milling in ethanol have been investigated. The appearance of the particle surface after different milling methods is one obvious difference. The alloyed powders prepared by either dry milling or wet milling under ethanol were characterized for phase content by X-ray diffractometer (XRD). The results show that two broad diffuse peaks, which are an ionic-organic-Mg amorphous material, appear in addition to the nickel element peaks. This unexpected amorphous phase has the special hydrogen absorbing/desorbing features.

  5. Effect of grain refiner on intermetallic phase formation in directional solidification of 6xxx series wrought Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sha, G.; O' Reilly, K.; Cantor, B. [Oxford Univ. (United Kingdom). Centre for Adv. Mat. and Composites; Hamerton, R.; Worth, J.

    2000-07-01

    The effect of a grain refiner on the formation of intermetallic phases in a directionally solidified (Bridgman grown) model 6xxx series wrought Al alloy has been investigated using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A base alloy with and without Al-Ti-B grain refiner was directionally solidified in a Bridgman furnace at growth velocities in the range of 5-120 mm/min. In both cases, the Fe-containing intermetallic phases present were found to be mainly {alpha}-AlFeSi and {beta}-AlFeSi. However, in the alloy with grain refiner solidified at 5mm/min, Al{sub 13}Fe{sub 4} was also observed. Quantitative XRD results indicated that the addition of Al-Ti-B grain refiner has a strong influence on the relative quantities of intermetallic phases forming during solidification at different growth velocities, which was also confirmed by TEM observations. TEM observations also show that depending on where the {beta}-AlFeSi particles solidified e.g. grain boundaries or triple grain junctions, the size and morphology of the particles may change dramatically. TiB{sub 2} particles were observed to nucleate {beta}-AlFeSi at low and high growth velocities in the 6xxx series Al alloys. (orig.)

  6. Formation and transformation of binary intermetallic phases in high purity Al-Fe alloys

    International Nuclear Information System (INIS)

    Griger, A.; Stefaniay, V.; Kovacs-Csetenyi, E.; Turmezey, T.

    1990-01-01

    The solid solubility of iron in aluminium is very low (<0.04%), (all compositions are given in w%) therefore most of the iron content appears as intermetallic phases in combination with aluminium and other elements. The amount of iron does not exceed the level of the eutectic concentration in the commercial aluminium alloys, however the non-desired effect of these primary phases of large size must be taken into consideration. In the case of rapid solidification (RS) the eutectic point shifts to higher values of iron content. The eutectic has a very fine structure and the primary phases formed at high cooling rates have also very low particle size. Because of it, for the sake of improvement of the thermo-mechanical properties of the RS aluminium alloys the quantity of iron can be increased up to 8-10%. Above this concentration the favourable properties do not develop while the elongation decreases

  7. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    Science.gov (United States)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  8. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  9. Investigation on thixojoining to produce hybrid components with intermetallic phase

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  10. Reaction kinetics of the formation of intermetallic Fe – Zn during hot - dip galvanizing of steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-01-01

    Full Text Available This review article mainly describes the composition of intermetallic Fe - Zn, i.e. zeta (ζ, delta (δ1k + δ1p, gamma1 (Γ1 and gamma (Γ on galvanized steel during low temperature galvanization (t ~ 450 °C. It gives detailed the formation, growth of individual phases during galvanization and their interaction. In terms of the kinetics, the formation of the coating is defined by a parabolic kinetic equation of the growth of different intermetallic phases under ideal conditions. From the available literature the rate constants of the formation of individual intermetallic phases and also for the total coating are cited. The composition of the intermetallic phases, iron content, crystal structure, and group symmetry in which the surface of galvanized steel forms.

  11. Phase transformations in intermetallic phases in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)

    2017-11-15

    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  12. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  13. A New Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys (Postprint)

    Science.gov (United States)

    2015-11-02

    George , Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater. 61 (2013) 2628e2638. [4] B... Cantor , I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375e377 (2004...an Al0.5CoCrCuFeNi high entropy alloy, In- termetallics 31 (2012) 165e172. [24] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George , Recovery

  14. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    OpenAIRE

    Steinbach, Sonja; Ratke, Lorenz; Zimmermann, Gerhard; Budenkova, Olga

    2016-01-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al 5 SiFe in the dendritic microstructure was investigated, to study the influence ...

  15. Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patakham, Ussadawut [National Metal and Materials Technology Center, National Science and Technology Development Agency, 114 Thailand Science Park, Klong Nueng, Klong Luang, Pathumthani 12120 (Thailand); Limmaneevichitr, Chaowalit, E-mail: chaowalit.lim@mail.kmutt.ac.th [Production Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha-Utid Rd., Bangmod, Tungkhru, Bangkok 10140 (Thailand)

    2014-12-15

    Highlights: • Iron reduces the modification effects of scandium in Al–Si–Mg alloys. • Morphologies of Sc-rich intermetallic phases vary with Fe and Sc contents and the cooling rates. • Sc neutralizes effects of Fe by changing Fe-rich intermetallic phases from platelets to more cubic. - Abstract: In general, iron has a strong tendency to dissolve in molten aluminum. Iron has very low solid solubility in aluminum–silicon casting alloys, so it will form intermetallic compounds that cause detrimental effects on mechanical properties. In this work, the effects of iron on intermetallic compound formations in scandium modified Al–Si–Mg alloys were studied. There were two levels of iron addition (0.2 and 0.4 wt.%) and two levels of scandium addition (0.2 and 0.4 wt.%). We found that the effects of scandium modification decreased with increasing iron addition. The morphologies of the complex intermetallic compounds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques. It was found that scandium changes the morphology of Fe-rich intermetallic compounds from β-phase (plate-like) to α-phase, which reduces the harmful effects of β-phase.

  16. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  17. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  18. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  19. The nucleation and growth of intermetallic Al-Pt phases

    International Nuclear Information System (INIS)

    Kovacs, A.; Barna, P.B.; Labar, J. l.

    2002-01-01

    The nucleation and growth of intermetallic Al-Pt phases on amorphous carbon was investigated by half shadow technique in co-deposited thin films. In such experimental condition, the composition of the deposited films varied in the range of Al x Pt 1-x (0≤x≤0.6). The coexistence of Al 5 Pt, Al 2 Pt, Al 3 Pt 2 intermetallic phases have been found in the whole range with varying ratio. Vapour depositions were performed in an UHV system. The Al and Pt components were evaporated simultaneously onto amorphous carbon layer supported by TEM micro-grids. Deposition rates were controlled separately by quartz crystal monitors. Substrate temperature during deposition was 350 grad C. A special evaporation arrangement made possible to create a half shadow area on the substrate in which the quantity one of the components increased from zero to the wanted composition of the sample. The composition of the zones was determined by energy dispersive X-ray spectroscopy (EDS) in TEM. The intermetallic phases developed in the sample were investigated by analytical TEM (Philips CM20) and high resolution TEM (JEOL 3010 UHR). The electron diffraction patterns have been evaluated by ProcessDiffraction program. (Authors)

  20. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  1. Effect of Flux onto Intermetallic Compound Formation and Growth

    Directory of Open Access Journals (Sweden)

    Idris Siti Rabiatull Aisha

    2016-01-01

    Full Text Available In this study, the effect of different composition of no-clean flux onto intermetallic compound (IMC formation and growth was investigated. The solder joint between Sn-3Ag-0.5Cu solder alloy and printed circuit board (PCB was made through reflow soldering. They were further aged at 125°C and 150°C for up to 1000 hours. Results showed that fluxes significantly affect the IMC thickness and growth. In addition, during aging, the scallop and columnar morphology of IMC changed to a more planar type for both type of flux during isothermal aging. It was observed that the growth behavior of IMC was closely related to initial soldering condition.

  2. The role of intermetallic phases in the corrosion of magnesium-rare earth alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva Campos, Maria del Rosario

    2016-07-25

    A new concept to develop a RE based Mg alloy with improved corrosion resistance was followed in the current work. Based on subsequent characterisation steps to eliminate less suitable RE elements the best microstructure for improved corrosion resistance was identified. At first, the corrosion properties of selected RE elements were determined. Based on these results RE elements that have a potential to enhance the corrosion resistance of Mg-RE alloys were selected. Two aspects of RE elements were important for the selection: the electrochemical properties and the solid solubility in Mg. If the solubility limit of RE elements in the Mg matrix is exceeded, they form intermetallic phases with Mg. By performing galvanic coupling measurements the compatibility between Mg matrix and intermetallic phases were estimated. At that point three binary Mg-RE alloys systems remained (Mg-Ce, Mg-La, and Mg-Gd). To evaluate the influence of composition (amount of intermetallic phases) on the corrosion behaviour, four concentrations were cast with 1, 5, 10 and 15 wt. % of RE. Ce and La have a lower solid solubility in Mg matrix generating higher volume fraction of the secondary phases, thus higher dissolution rates in the binary Mg-RE alloys. While Gd with higher solid solubility shows a different behaviour. Additions of up to 10 wt. % Gd resulted in similar behaviour compared to 1 wt. % Gd addition. The most promising results were obtained for the Mg-Gd system with 10 wt. % Gd. Thus, the microstructure of this alloy was further modified by heat treatments to understand the influence of microstructural changes on corrosion behaviour. A ternary element was used to attempt further optimisation of the corrosion performance. Additions of Al, Zn, Ga and Y did not show any improvement in the corrosion resistance of Mg10Gd. This is due to increasing volume fractions of critical more noble phases and the microstructure dominated by eutectic phase formation. Thus galvanic effects became much

  3. The role of intermetallic phases in the corrosion of magnesium-rare earth alloys

    International Nuclear Information System (INIS)

    Silva Campos, Maria del Rosario

    2016-01-01

    A new concept to develop a RE based Mg alloy with improved corrosion resistance was followed in the current work. Based on subsequent characterisation steps to eliminate less suitable RE elements the best microstructure for improved corrosion resistance was identified. At first, the corrosion properties of selected RE elements were determined. Based on these results RE elements that have a potential to enhance the corrosion resistance of Mg-RE alloys were selected. Two aspects of RE elements were important for the selection: the electrochemical properties and the solid solubility in Mg. If the solubility limit of RE elements in the Mg matrix is exceeded, they form intermetallic phases with Mg. By performing galvanic coupling measurements the compatibility between Mg matrix and intermetallic phases were estimated. At that point three binary Mg-RE alloys systems remained (Mg-Ce, Mg-La, and Mg-Gd). To evaluate the influence of composition (amount of intermetallic phases) on the corrosion behaviour, four concentrations were cast with 1, 5, 10 and 15 wt. % of RE. Ce and La have a lower solid solubility in Mg matrix generating higher volume fraction of the secondary phases, thus higher dissolution rates in the binary Mg-RE alloys. While Gd with higher solid solubility shows a different behaviour. Additions of up to 10 wt. % Gd resulted in similar behaviour compared to 1 wt. % Gd addition. The most promising results were obtained for the Mg-Gd system with 10 wt. % Gd. Thus, the microstructure of this alloy was further modified by heat treatments to understand the influence of microstructural changes on corrosion behaviour. A ternary element was used to attempt further optimisation of the corrosion performance. Additions of Al, Zn, Ga and Y did not show any improvement in the corrosion resistance of Mg10Gd. This is due to increasing volume fractions of critical more noble phases and the microstructure dominated by eutectic phase formation. Thus galvanic effects became much

  4. Void formation and its impact on Cu−Sn intermetallic compound formation

    International Nuclear Information System (INIS)

    Ross, Glenn; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-01-01

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu_3Sn and Cu_6Sn_5 intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu_3Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu_3Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu_3Sn thickness and an accelerated growth rate of Cu_6Sn_5. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu_3Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu_3Sn to be consumed by Cu_6Sn_5.

  5. Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing

    Energy Technology Data Exchange (ETDEWEB)

    Reza-E-Rabby, Md.; Ross, Kenneth; Overman, Nicole R.; Olszta, Matthew J.; McDonnell, Martin; Whalen, Scott A.

    2018-04-01

    A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.

  6. Sn and Ti influences on intermetallic phases damage in hot dip galvanizing

    Directory of Open Access Journals (Sweden)

    V. Di Cocco

    2012-10-01

    Full Text Available Protection against metallic materials corrosion is one of the most important means to reduce both maintenance costs and environmental impact. In the last years new studies on chemical baths compositions and fluxes have been performed in order to improve processes, corrosion resistance and mechanical behavior of Zn based coatings. Chemical bath composition is often improved by the Sn addition which increases the fluidity of the melt. Ti addition makes the coatings to change color under appropriate heat treatment. In this work a comparative microstructural analysis, in Zn-Sn and Zn-Ti coatings, is performed to evaluate intermetallic phases formation kinetics and the influence of intermetallic microstructure on coating damage under constant bending deformation.

  7. Morphology of intermetallic phases in Al-Si cast alloys and their fracture behaviour

    Directory of Open Access Journals (Sweden)

    Lenka Hurtalová

    2015-03-01

    Full Text Available Applications of Al-Si cast alloys in recent years have increased especially in the automotive industry (dynamic exposed cast, en-gine parts, cylinder heads, pistons and so on. Controlling the microstructure of secondary aluminium cast alloys is very important, because these alloys contain more additional elements that form various intermetallic phases in the structure. Therefore, the contribution is dealing with the valuation type of intermetallic phases and their identification with using optical and scanning microscopy. Some of the intermetallic phases could be identified on the basis of morphology but some of them must be identified according EDX analysis. The properties of alu-minium alloy are affected by morphology of intermetallic phases and therefore it is necessary to study morphology and its fracture behav-iour. The present work shows morphology and typical fracture behaviour as the most common intermetallic phases forming in Al-Si alloys.

  8. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  9. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  10. Void formation and its impact on Cu−Sn intermetallic compound formation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Glenn, E-mail: Glenn.Ross@aalto.fi; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2016-08-25

    Void formation in the Cu−Sn system has been identified as a major reliability issue with small volume electronic interconnects. Voids form during the interdiffusion of electrochemically deposited Cu and Sn, with varying magnitude and density. Electroplating parameters include the electrolytic chemistry composition and the electroplating current density, all of which appear to effect the voiding characteristics of the Cu−Sn system. In addition, interfacial voiding affects the growth kinetics of the Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} intermetallic compounds of the Cu−Sn system. The aim here is to present voiding data as a function of electroplating chemistry and current density over a duration (up to 72 h) of isothermal annealing at 423 K (150 °C). Voiding data includes the average interfacial void size and average void density. Voids sizes grew proportionally as a function of thermal annealing time, whereas the void density grew initially very quickly but tended to saturate at a fixed density. A morphological evolution analysis called the physicochemical approach is utilised to understand the processes that occur when a voided Cu/Cu{sub 3}Sn interface causes changes to the IMC phase growth. The method is used to simulate the intermetallic thickness growths' response to interfacial voiding. The Cu/Cu{sub 3}Sn interface acts as a Cu diffusion barrier disrupting the diffusion of Cu. This resulted in a reduction in the Cu{sub 3}Sn thickness and an accelerated growth rate of Cu{sub 6}Sn{sub 5}. - Highlights: • Average void size is proportional linearly to thermal annealing time. • Average void density grows initially very rapidly followed by saturation. • Voids located close to the Cu/Cu{sub 3}Sn interface affect IMC growth rates. • Voids act as a diffusion barrier inhibiting Cu diffusion towards Sn. • Voids located at the interface cause Cu{sub 3}Sn to be consumed by Cu{sub 6}Sn{sub 5}.

  11. Quantitative assessment of intermetallic phase precipitation in a super duplex stainless steel weld metal using automatic image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, A. [AB Sandvik Steel, Sandviken (Sweden). R and D Centre; Nilsson, J.-O. [AB Sandvik Steel, R and D Centre, Sandviken (Sweden); Bonollo, F. [Univ. di Padova, DTGSI, Vicenza (Italy)

    1999-07-01

    The microstructure of weld metal of the type 25%Cr-10%Ni-4%Mo-0.28%N in both as-welded and isothermally heat treated (temperature range: 700-1050 C: time range: 10s-72h) conditions has been investigated. Multipass welding was performed in Ar+2%N{sub 2} atmosphere using GTAW. By means of the electron diffraction technique. {sigma}-phase and {chi}-phase were detected and investigated. {chi}-phase precipitated more readily than {sigma}-phase and was found to be a precursor to {sigma}-phase by providing suitable nucleation sites. Quantitative image analysis of ferrite and intermetallic phases was performed as well as manual point counting (ISO 9042). Automatic image analysis was found to be more accurate. The results were used to assess the TTT-diagram with respect to intermetallic phase formation. On the basis of these results a CCT-diagram was computed, considering the intermetallic phase formation described by an Avrami type equation and adopting the additivity rule. (orig.)

  12. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  13. The formation of intermetallic compounds during interdiffusion of Mg–Al/Mg–Ce diffusion couples

    International Nuclear Information System (INIS)

    Dai, Jiahong; Jiang, Bin; Li, Xin; Yang, Qingshan; Dong, Hanwu; Xia, Xiangsheng; Pan, Fusheng

    2015-01-01

    Graphical abstract: Al–Ce intermetallic compounds (IMCs) formed in Mg–Al/Mg–Ce diffusion couples. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg atoms of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce, and AlCe were formed via the reaction of Al and Ce. - Highlights: • Al–Ce IMCs formation in the Mg–Al/Mg–Ce diffusion couples was studied. • Formation of Al 4 Ce as the first phase was rationalized using the Gibbs free energy. • The activation energy for the growth of the diffusion reaction zones was 36.6 kJ/mol. - Abstract: The formation of Al–Ce intermetallic compounds (IMCs) during interdiffusion of Mg–Al/Mg–Ce diffusion couples prepared by solid–liquid contact method was investigated at 623 K, 648 K and 673 K for 24 h, 48 h and 72 h, respectively. During the whole diffusion process, Al was the dominant diffusing species, and it substituted for Mg of the Mg–Ce substrate. Five Al–Ce IMCs of Al 4 Ce, Al 11 Ce 3 , Al 3 Ce, Al 2 Ce and AlCe were formed via the reaction of Al and Ce. The formation of Al 4 Ce as the first kind of IMC was rationalized on the basis of an effective Gibbs free energy model. The activation energy for the growth of the total diffusion reaction layer was 36.6 kJ/mol

  14. A theoretical search for intermetallic compounds and solution phases in the binary system Sn/Zn

    Energy Technology Data Exchange (ETDEWEB)

    Appen, Joerg von; Dronskowski, Richard; Hack, Klaus

    2004-10-06

    The binary system Sn/Zn was theoretically investigated by a classical thermodynamic analysis (CALPHAD approach) and by density-functional total-energy calculations on the basis of the LDA/GGA, plane waves/muffin-tin orbitals, and supercell geometries. In harmony with experimental data, both methods agree in that there is only very small solubility between the elements and no formation of a stable intermetallic phase over the entire compositional range. For the hypothetical composition Sn{sub 2}Zn, a total of 30 different crystal structures was quantum-mechanically optimized, and the chemical bondings of Sn{sub 2}Zn adopting the CaF{sub 2} and HgBr{sub 2} structures were analyzed in detail; generally, the more ionic structure types are better suited for the Sn{sub 2}Zn composition than typical intermetallic ones. Theoretical enthalphy-pressure diagrams were generated to explore high-pressure compound formation, and the observed transition pressures between the {alpha}, {beta} and {gamma} allotropes of tin were correctly reproduced by electronic structure theory.

  15. Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging

    Directory of Open Access Journals (Sweden)

    Christopher Breach

    2013-07-01

    Full Text Available A comparison study on the reliability of gold (Au and copper (Cu wire bonding is conducted to determine their corrosion and oxidation behavior in different environmental conditions. The corrosion and oxidation behaviors of Au and Cu wire bonding are determined through soaking in sodium chloride (NaCl solution and high temperature storage (HTS at 175 °C, 200 °C and 225 °C. Galvanic corrosion is more intense in Cu wire bonding as compared to Au wire bonding in NaCl solution due to the minimal formation of intermetallics in the former. At all three HTS annealing temperatures, the rate of Cu-Al intermetallic formation is found to be three to five times slower than Au-Al intermetallics. The faster intermetallic growth rate and lower activation energy found in this work for both Au/Al and Cu/Al as compared to literature could be due to the thicker Al pad metallization which removed the rate-determining step in previous studies due to deficit in Al material.

  16. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Science.gov (United States)

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei

    2015-02-01

    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  17. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    International Nuclear Information System (INIS)

    Wang Junsheng; Lee, Peter D.; Li Mei; Allison, John

    2010-01-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  18. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  19. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  20. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales; Arias, D. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales

    1996-04-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe{sub 2}, Zr{sub 6}Fe{sub 23} and ({alpha}Fe). ZrFe{sub 2} is identified as a cubic Laves type phase (C15) and the ZrFe{sub 2}/ZrFe{sub 2}+Zr{sub 6}Fe{sub 23} boundary composition is 73{+-}1 at.% Fe. Zr{sub 6}Fe{sub 23} is a cubic phase of the Th{sub 6}Mn{sub 23} type and its composition is 80.0{+-}1.5 at.% Fe. The eutectic L{r_reversible}Zr{sub 6}Fe{sub 23}+{tau}-Fe transformation temperature and composition are 1325 C and 91{+-}1 at.% Fe, respectively. The solubility of Zr in {tau}-Fe at 1012 C is 500{+-}50 appm and 1000{+-}100 appm close to the eutectic temperature. (orig.).

  1. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Arias, D.

    1996-01-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe 2 , Zr 6 Fe 23 and (αFe). ZrFe 2 is identified as a cubic Laves type phase (C15) and the ZrFe 2 /ZrFe 2 +Zr 6 Fe 23 boundary composition is 73±1 at.% Fe. Zr 6 Fe 23 is a cubic phase of the Th 6 Mn 23 type and its composition is 80.0±1.5 at.% Fe. The eutectic L↔Zr 6 Fe 23 +τ-Fe transformation temperature and composition are 1325 C and 91±1 at.% Fe, respectively. The solubility of Zr in τ-Fe at 1012 C is 500±50 appm and 1000±100 appm close to the eutectic temperature. (orig.)

  2. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, L.; Starch, W.; Lee, P.J.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J/sub c/) of Nb 45.6 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J/sub c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in the authors own laboratories without extrusion. Very high J/sub c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J/sub c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μ filament Nb-Ti composites

  3. Limitation of critical current density by intermetallic formation in fine filament Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Larbalestier, D.C.; Chengren, Li; Lee, P.J.; Starch, W.

    1985-01-01

    Two experiments have been performed to investigate the role that the intermetallic reaction between the copper matrix and the Nb-Ti filaments plays in limiting the critical current density (J /SUB c/ ) of Nb 46.5 wt% Ti composites. The first experiment involved composites which were industrially extruded. It was found that as the number of heat treatments increased, the J /SUB c/ declined, the resistive transition broadened and the filaments sausaged. The filament sausaging was initiated by intermetallic particles at the filament matrix interface. A series of many heat treatment procedures were then applied to composites fabricated in our own laboratories without extrusion. Very high J /SUB c/ values were obtained at filament sizes of 20 μm. When the same heat treatment procedures were applied to 4 - 5 μm conductors, extensive sausaging and degraded J /SUB c/ values resulted. This degradation was also found to be due to the formation of Cu-Nb-Ti intermetallic compounds. It is concluded that a reliable filament diffusion barrier technology is necessary to permit full flexibility in the heat treatment of 2 - 5 μm filament Nb-Ti composites

  4. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  5. The Role of Second Phase Intermetallic Particles on the Spall Failure of 5083 Aluminum

    Science.gov (United States)

    2016-12-01

    Bradley Survice Engineering Company, Aberdeen, MD A reprint from Journal of Dynamic Behavior of Materials. 2016;2:476–483...Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, USA 2 Survice Engineering Company, Aberdeen Proving Ground, Aberdeen, MD, USA 123 J...2016) 2:476–483 479 123 ligaments between cracks and a second phase intermetallic particle (identified by black arrow) above the crack with an average

  6. Magnetic-field induced phase transitions in intermetallic rare-earth ferrimagnets with a compensation point

    Czech Academy of Sciences Publication Activity Database

    Sabdenov, Ch.K.; Davydova, M.D.; Zvezdin, K.A.; Gorbunov, Denis; Tereshina, I. S.; Andreev, Alexander V.; Zvezdin, A. K.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 551-558 ISSN 1063-777X R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : rare-earth intermetallics * phase diagram * field-induced transition * magnetic anisotropy * high magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.804, year: 2016

  7. Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study

    Directory of Open Access Journals (Sweden)

    H.L. Chen

    2015-09-01

    Full Text Available Electronic structure and elastic properties of Al2Y, Al3Y, Al2Gd and Al3Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT. The ground state energy and elastic constants of each phase were calculated, the formation enthalpy (ΔH, bulk modulus (B, shear modulus (G, Young's modulus (E, Poisson's ratio (ν and anisotropic coefficient (A were derived. The formation enthalpy shows that Al2RE is more stable than Al3RE, and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics. The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases, it may lead to the similar performance when deforming due to their similar elastic constants. The total and partial electron density of states (DOS, Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases. Finally, phonon calculation was conducted, and the thermodynamic properties were obtained and further discussed.

  8. Fracture and fatigue considerations in the development of ductile-phase reinforced intermetallic-matrix composites

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1994-01-01

    The salient microstructural factors influencing fracture and fatigue-crack growth resistance of ductile-particle reinforced intermetallic-matrix composites at ambient temperature are reviewed through examples from the Nb/MoSi 2 , TiNb/TiAl, Nb/TiAl and Nb/Nb 3 Al systems; specific emphasis is placed on properties and morphology of the reinforcement and its interfacial properties with the matrix. It is shown that composites must be fabricated with a high aspect ratio ductile-reinforcement morphology in order to promote crack-particle interception and resultant crack bridging for improved fracture and fatigue properties. Concurrently, however, the ductile phases have contrasting effects on crack growth under monotonic vs. cyclic loading suggesting that composite microstructures tailored for optimal toughness may not necessarily yield optimal fatigue resistance. Perspectives for the future development of damage-tolerant intermetallic-composite microstructures are discussed

  9. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  10. The corrosion resistance of HVOF sprayed coatings with intermetallic phases in aggressive environments

    OpenAIRE

    B. Formanek; J. Cizner; B. Szczucka-Lasota; R. Przeliorz

    2006-01-01

    Purpose: The cyclic corrosion behavior of coatings with intermetallic matrix ( FeAl, NiAl and FeAl-TiAl) was investigated in aggressive gases.Design/methodology/approach: The composite coatings strengthened by a fine dispersive Al2O3 and other ceramic phases were thermally sprayed by HVOF method in Jet Kote 2 system. A kinetics test was carried out by periodic method for exposure times of up to 500 hours. Mass changes of the studied coatings during the corrosion test are presented. The surfac...

  11. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  12. Phase formation in contact of dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Savvin, V S; Kazachkova, Yu A; Povzner, A A [Ural State Technical University-UPI, Mira st., 19, A-203, Yekaterinburg 620002 (Russian Federation)], E-mail: savvin-vs@yandex.ru

    2008-02-15

    Formation and growth of intermediate phases in contact of the crystalline samples forming a two-component eutectic system is considered. It is shown that during the competition to a growing liquid phase the intermediate solid phases cannot grow by diffusion. The alternative is formation of metastable areas of a liquid phase. Measurements of liquid layers extent in Pb-Bi and In-Bi systems have allowed to define the composition of liquid on interface where formation of metastable liquid is possible. The results show that the concentration interval of a liquid layer corresponds to a stable constitution diagram. In order to explain the experimental results the hypothesis according to which the intermediate solid phases are formed as a result of precipitation from metastable melt is considered. The experimental confirmation of formation and crystallization of a metastable liquid is the fact that intergrowth of the samples forming system with an intermetallic phase at temperatures below the temperature of fusion of the most low-melting eutectic is observed. The possibility of the processes concerned with the occurrence of metastable areas of a liquid is showed by means of computer imitation.

  13. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  14. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  15. Multifunctional phenomena in rare-earth intermetallic compounds with a laves phase structure: giant magnetostriction and magnetocaloric effect

    Czech Academy of Sciences Publication Activity Database

    Tereshina, I.; Cwik, J.; Tereshina, Evgeniya; Politova, G.; Burkhanov, G.; Chzhan, V.; Ilyushin, A.; Miller, M.; Zaleski, A.; Nenkov, K.; Schultz, L.

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2504604 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : giant magnetostriction * Laves phase structure * magnetic anisotropy * magnetocaloric effect * rare-earth intermetallic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  16. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  17. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  18. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  19. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  20. The sequence of intermetallic formation and solidification pathway of an Al–13Mg–7Si–2Cu in-situ composite

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed, E-mail: saeedfarahany@gmail.com [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Nordin, Nur Azmah; Ourdjini, Ali; Abu Bakar, TutyAsma; Hamzah, Esah; Idris, Mohd Hasbullah [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru (Malaysia); Hekmat-Ardakan, Alireza [École Polytechnique de Montréal, Dép. de Génie Chimique, P.O. Box 6079, Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

    2014-12-15

    The phase transformation sequence and solidification behaviour of an Al–13Mg–7Si–2Cu in-situ composite was examined using a combination of computer-aided cooling curve thermal analysis and interrupted quenching techniques. Five different phases were identified by analysing the derivative cooling curves, the X-ray diffraction profile, optical and scanning electron microscopy images and the corresponding energy dispersive spectroscopy. It has been found that the solidification of this alloy begins with primary Mg{sub 2}Si precipitation and continues with the formation of eutectic Al–Mg{sub 2}Si, followed by Al{sub 5}FeSi and simultaneous precipitation of Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 2}Cu complex intermetallic phases. The formation of the last three intermetallic compounds changes the solidification behaviour of these composites remarkably due to their complex eutectic formation reactions. The solidification of the alloy, calculated using the Factsage thermochemical analysis software, has demonstrated a good agreement with the experiments in terms of compound prediction, their weight fractions and reaction temperatures. - Highlights: • Solidification path of a commercial Al-13Mg-7Si-2Cu composite was characterized. • Five different phases were identified and then confirmed with EDS and XRD results. • Mg{sub 2}Si, Al-Mg{sub 2}Si,Al{sub 5}FeSi (β),Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} (Q) and Al{sub 2}Cu(θ) precipitated respectively. • Solidification was predicted using the Factsage thermochemical analysis software.

  1. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    Science.gov (United States)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  2. Phase equilibria of Al3(Ti,V,Zr) intermetallic system

    International Nuclear Information System (INIS)

    Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.

    1996-01-01

    Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system

  3. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates.

    Science.gov (United States)

    Knowles, Alexander J; Bhowmik, Ayan; Purkayastha, Surajit; Jones, Nicholas G; Giuliani, Finn; Clegg, William J; Dye, David; Stone, Howard J

    2017-10-01

    The data presented in this article are related to the research article entitled "Laves phase intermetallic matrix composite in situ toughened by ductile precipitates" (Knowles et al.) [1]. The composite comprised a Fe 2 (Mo, Ti) matrix with bcc (Mo, Ti) precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al.) [1]. Here, details are given on a focused ion beam (FIB) slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti) precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM)) micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX) maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP) and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al.) [1] along with details of the transformation matrix determined.

  4. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates

    Directory of Open Access Journals (Sweden)

    Alexander J. Knowles

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “Laves phase intermetallic matrix composite in situ toughened by ductile precipitates” (Knowles et al. [1]. The composite comprised a Fe2(Mo, Ti matrix with bcc (Mo, Ti precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al. [1]. Here, details are given on a focused ion beam (FIB slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al. [1] along with details of the transformation matrix determined.

  5. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  6. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  7. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  8. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  9. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  10. Formation of Ni-Ti intermetallics during reactive sintering at 500-650 degrees C

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Pokorný, P.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Čapek, J.; Karlík, M.; Kopeček, Jaromír

    2015-01-01

    Roč. 155, Apr (2015), s. 113-121 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 Keywords : intermetallic compounds * powder metallurgy * electron microscopy * microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.101, year: 2015

  11. Intermetallic and metal-rich phases in the system Li-Ba-In-N

    International Nuclear Information System (INIS)

    Smetana, Volodymyr; Vajenine, Grigori V.; Kienle, Lorenz; Duppel, Viola; Simon, Arndt

    2010-01-01

    Three new intermetallic phases, BaLi 2.1 In 1.9 , BaLi 1.12 In 0.98 , and BaLi 1.06 In 1.16 and two subnitrides Li 35 In 45 Ba 39 N 9 and LiIn 2 Ba 3 N 0.83 have been synthesized and their crystal structures have been determined. According to single crystal X-ray diffraction data BaLi 2.1 In 1.9 and BaLi 1.12 In 0.98 crystallize with hexagonal symmetry (BaLi 2.1 In 1.9 : P6 3 /mmc, a=10.410(2), c=8.364(2) A, Z=6, V=785.0(2) A 3 ) and BaLi 1.12 In 0.98 : P6/mmm, a=17.469(1), c=10.6409(7) A, Z=30, V=2813.5(8) A 3 ), while BaLi 1.06 In 1.16 has a rhombohedral structure (R-3c, a=18.894(3), c=85.289(17) A, Z=276, V=26368(8) A 3 ). BaLi 2.1 In 1.9 is isostructural with the known phase BaLi 4 . The phase BaLi 1.12 In 0.98 is structurally related to Na 8 K 23 Cd 12 In 48 , while BaLi 1.06 In 1.16 is isostructural with Li 33.3 Ba 13.1 Ca 3 . A sample containing structurally similar BaLi 1.12 In 0.98 and BaLi 1.02 In 1.16 was also investigated by transmission electron microscopy. Li 35 In 45 Ba 39 N 9 and LiIn 2 Ba 3 N 0.83 crystallize with tetragonal (I-42m, a=15.299(2), c=30.682(6) A, Z=2, V=7182(2) A 3 ) and cubic (Fd-3m, a=14.913(2) A, Z=8, V=3316.7(7) A 3 ) symmetry, respectively. While the first-mentioned subnitride belongs to the Li 80 Ba 39 N 9 structure type, the second extends the structural family of Ba 6 In 4.78 N 2.72 . The structural features of the new compounds are discussed in comparison to the known phases and the results of total energy calculations. - Graphical abstract: One-dimensional chain of face-sharing centered icosahedra in BaLi 2.1 In 1.9

  12. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  13. Determination of the enthalpy of formation of Ni-Al intermetallic compounds using differential scanning calorimetry technique

    International Nuclear Information System (INIS)

    Kubaski, Evaldo Toniolo; Capocchi, Jose Deodoro Trani; Cintho, Osvaldo Mitsuyuki

    2010-01-01

    The compositions Ni20Al80, Ni25Al75, Ni40Al60, Ni50Al50, Ni60Al40 and Ni75Al25 (at. %) were heated in a calibrated thermal analysis equipment. All runs were conducted at a heating rate of 10 deg C/min under a dynamic argon atmosphere. Each composition was heated until the completion of the corresponding exothermic reaction responsible for intermetallic compound formation, and, also heated to 1480 deg C. The products obtained were characterized using X ray diffraction in order to identify the intermetallic compounds that were synthesized. Moreover, the results were evaluated using variance analysis. As a result, enthalpies of formation of Ni 2 Al 3 and Ni 3 Al compounds were determined by means of this methodology. Experimental values were 167 kJ/mol and 93 kJ/mol for Ni 2 Al 3 and Ni 3 Al, respectively. The former is 18% lower than the value found on literature, while the latter is 6% greater. (author)

  14. Concurrent nucleation, formation and growth of two intermetallic compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering

    International Nuclear Information System (INIS)

    Park, M.S.; Arróyave, R.

    2012-01-01

    This study investigates the concurrent nucleation, formation and growth of two intermetallic compounds (IMCs), Cu 6 Sn 5 (η) and Cu 3 Sn (ε), during the early stages of soldering in the Cu–Sn system. The nucleation, formation and growth of the IMC layers is simulated through a multiphase-field model in which the concurrent nucleation of both IMC phases is considered to be a stochastic Poisson process with nucleation rates calculated from classical nucleation theory. CALPHAD thermodynamic models are used to calculate the local contributions to the free energy of the system and the driving forces for precipitation of the IMC phases. The nucleation parameters of the η phase are estimated from experimental results and those of the ε phase are assumed to be similar. A parametric investigation of the effects of model parameters (e.g. grain boundary (GB) diffusion rates, interfacial and GB energies) on morphological evolution and IMC layer growth rate is presented and compared with previous works in which nucleation was ignored . In addition, the resulting growth rates are compared with the available literature and it is found that, for a certain range in the model parameters, the agreement is quite satisfactory. This work provides valuable insight into the dominant mechanisms for mass transport as well as morphological evolution and growth of IMC layers during early stages of Pb-free soldering.

  15. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    International Nuclear Information System (INIS)

    Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L.

    2014-01-01

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi) x (TiVZr) phases with D0 22 /D0 23 tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi) x (TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals

  16. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    International Nuclear Information System (INIS)

    Gorny, Anton; Manickaraj, Jeyakumar; Cai, Zhonghou; Shankar, Sumanth

    2013-01-01

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al 13 Fe 4 , τ 5 -Al 8 Fe 2 Si and τ 6 -Al 9 Fe 2 Si 2 phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s −1 . Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ 5 -Al 8 SiFe 2 and τ 6 -Al 9 Fe 2 Si 2 . The τ 5 -Al 8 SiFe 2 phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ 6 -Al 9 Fe 2 Si 2 through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al 13 Fe 4 binary phase precludes the evolution of the τ 5 during solidification and subsequently transforms into the τ 6 phase during solidification. These observations are anomalous to the publications as prior art and simulation predictions of thermodynamic phase diagrams of these alloys, wherein, only one intermetallic phases in the

  17. Phase stability and decomposition processes in Ti-Al based intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kiyomichi [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ono, Toshiaki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohtsubo, Hiroyuki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohmori, Yasuya [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan)

    1995-02-28

    The high-temperature phase equilibria and the phase decomposition of {alpha} and {beta} phases were studied by crystallographic analysis of the solidification microstructures of Ti-48at.%Al and Ti-48at.%Al-2at.%X (X=Mn, Cr, Mo) alloys. The effects on the phase stability of Zr and O atoms penetrating from the specimen surface were also examined for Ti-48at.%Al and Ti-50at.%Al alloys. The third elements Cr and Mo shift the {beta} phase region to higher Al concentrations, and the {beta} phase is ordered to the {beta}{sub 2} phase. The Zr and O atoms stabilize {beta} and {alpha} phases respectively. In the Zr-stabilized {beta} phase, {alpha}{sub 2} laths form with accompanying surface relief, and stacking faults which relax the elastic strain owing to lattice deformation are introduced after formation of {alpha}{sub 2} order domains. Thus shear is thought to operate after the phase transition from {beta} to {alpha}{sub 2} by short-range diffusion. A similar analysis was conducted for the Ti-Al binary system, and the transformation was interpreted from the CCT diagram constructed qualitatively. ((orig.))

  18. Dependence of intermetallic compound formation on the sublayer stacking sequence in Ag–Sn bilayer thin films

    International Nuclear Information System (INIS)

    Rossi, P.J.; Zotov, N.; Bischoff, E.; Mittemeijer, E.J.

    2016-01-01

    Intermetallic compound (IMC) formation in thermally-evaporated Ag–Sn bilayer thin films has been investigated employing especially X-ray diffraction (XRD) and (S)TEM methods. The specific IMCs that are present in the as-deposited state depend sensitively on the stacking sequence of the sublayers. In case of Sn on top of Ag, predominantly Ag 3 Sn is formed, whereas Ag 4 Sn is predominantly present in the as-deposited state for Ag on top of Sn. In the latter case this is accompanied by an extremely fast uptake of a large amount of Sn by the Ag sublayer, leaving behind macroscopic voids in the Sn sublayer. The results are discussed on the basis of the thermodynamics and kinetics of (IMC) product-layer growth in thin films. It is shown that both thermodynamic and kinetic arguments explain the contrasting phenomena observed.

  19. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, David J., E-mail: davidjjorgensen@engr.ucsb.edu; Titus, Michael S.; Pollock, Tresa M.

    2015-10-30

    Highlights: • The single-pulse fs laser ablation threshold of NiAl is 83 mJ/cm{sup 2}. • The transition between low- and high-fluence ablation regimes is 2.8 J/cm{sup 2}. • A bimodal size distribution of nanoparticles is formed with fs laser ablation. • Smaller nanoparticles are enriched in Al during pulsed fs laser ablation. • The target surface is depleted in Al during pulsed fs laser ablation. - Abstract: The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm{sup 2} and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm{sup 2}. Two sizes of nanoparticles consisting of Al, NiAl, Ni{sub 3}Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1–30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm{sup 2} pulse, one hundred 1.7 J/cm{sup 2} pulses, or one thousand 250 mJ/cm{sup 2} pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  20. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A. [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States); Bei, H. [Oak Ridge National Laboratory, Material Science and Technology Division, Oak Ridge, TN 37831 (United States); Russell, A.M. [Iowa State University, Department of Materials Science and Engineering, Ames, IA 50011 (United States); Agnew, S.R., E-mail: sra4p@virginia.edu [Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745 (United States)

    2010-04-15

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction ({approx}5-20 vol.%) of second phases (M{sub 2}R intermetallics and R{sub 2}O{sub 3} oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  1. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics

    International Nuclear Information System (INIS)

    Mulay, R.P.; Wollmershauser, J.A.; Heisel, M.A.; Bei, H.; Russell, A.M.; Agnew, S.R.

    2010-01-01

    Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal-rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (∼5-20 vol.%) of second phases (M 2 R intermetallics and R 2 O 3 oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation.

  2. Isothermal section of the ternary phase diagram U–Fe–Ge at 900 °C and its new intermetallic phases

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: mish@itn.pt [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal); Berthebaud, D.; Lignie, A.; El Sayah, Z.; Moussa, C.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Havela, L. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Gonçalves, A.P. [CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal)

    2015-08-05

    Highlights: • Isothermal section of the U–Fe–Ge at 900 °C was investigated. • Ten ternary compounds and four significant solubility ranges were found. • Three new compounds and a solid solution were discovered. - Abstract: The isothermal section at 900 °C of the U–Fe–Ge ternary system was assessed using experimental results from X-ray diffraction and observations by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy chemical analysis. The phase diagram at this temperature is characterized by the formation of fourteen stable phases: four homogeneity ranges and ten intermetallic compounds. Among these, there is an extension of the binary compound UFe{sub 2} into the ternary system (UFe{sub 2−x}Ge{sub x,}x < 0.15), three ternary line compounds, U{sub 2}Fe{sub 17−x}Ge{sub x} (2 < x < 3.7), UFe{sub 1−x}Ge{sub 2} (0.58 < x < 0.78), UFe{sub 6+x}Ge{sub 6−x} (x < 0.7), and ten ternary stoichiometric compounds, U{sub 2}Fe{sub 3}Ge, U{sub 6}Fe{sub 16}Ge{sub 7}, UFe{sub 4}Ge{sub 2}, U{sub 6}Fe{sub 22}Ge{sub 13}, UFeGe, U{sub 3}Fe{sub 4}Ge{sub 4}, UFe{sub 2}Ge{sub 2}, U{sub 34}Fe{sub 3.32}Ge{sub 33}, U{sub 3}Fe{sub 2}Ge{sub 7}, and U{sub 9}Fe{sub 7}Ge{sub 24}.

  3. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  4. Influence of a magnetic field on microstructure formation in L1{sub 0}-type ferromagnetic intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Farjami, Sahar; Fukuda, Takashi; Kakeshita, Tomoyuki [Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: farjami@mat.eng.osaka-u.ac.jp

    2009-05-01

    The influence of a magnetic field on microstructure formation through a disorder-order transformation has been investigated in Co-Pt and Fe-Pd alloys. Single crystals of disordered Co-50Pt(at%) and Fe-55Pd(at%) were subjected to an ordering heat-treatment under a magnetic field. When the ordering heat-treatment is performed without applying a magnetic field, three equivalent variants are formed. On the other hand, when the ordering heat-treatment is performed under a magnetic field of 0.5 T (in CoPt) - 4 T (in Fe-55Pd) and higher as applied along the [001] direction of the disordered phase, a single variant with an easy axis along the field direction is obtained. The induced anisotropy energy of the ordered phase under a magnetic field of 1 T was 4.1 kJ|m{sup -3} at 773 K for CoPt and 45.3 kJ|m{sup -3} at 673 K for Fe-55Pd.

  5. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  6. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prediction of intermetallic compounds

    International Nuclear Information System (INIS)

    Burkhanov, Gennady S; Kiselyova, N N

    2009-01-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  8. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal, 462026 (India)

    2016-05-06

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  9. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  10. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Anton; Manickaraj, Jeyakumar [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada)

    2013-11-15

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al{sub 13}Fe{sub 4}, τ{sub 5}-Al{sub 8}Fe{sub 2}Si and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s{sup −1}. Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ{sub 5}-Al{sub 8}SiFe{sub 2} and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2}. The τ{sub 5}-Al{sub 8}SiFe{sub 2} phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al{sub 13}Fe{sub 4} binary phase precludes the evolution of the τ{sub 5} during solidification and subsequently transforms into the τ{sub 6} phase during solidification. These observations are anomalous to the publications as prior art and

  11. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  12. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  13. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  14. Structure data of elements and intermetallic phases. SubVol. B. Sulfides, selenides, tellurides. Pt. 1. Ag-Al-Cd-S. Cu-Te-Yb

    Energy Technology Data Exchange (ETDEWEB)

    Hellwege, K H; Hellwege, A M [eds.; Eisenmann, B; Schaefer, H

    1986-01-01

    Volume III/14 'Structure data of elements and intermetallic phases' is a supplement to and extension of Volume III/6. Since the publication of III/6 in 1971 (considering original papers up to 1967), the amount of new information for these substances has increased rapidly. Therefore the data had to be divided into several parts. The first part, III/14b1, is presented herewith. In Volume III/6, simple sulfides, selenides and tellurides were treated together with the intermetallic phases. The data are compiled in the same way as in III/6: for each substance the space group, lattice constants, their dependence on temperature and pressure, and other information is listed in the tables. In several cases, mostly for solid solutions, diagrams are given which are added in a separate chapter. Original papers containing a complete structure analysis are referred to in the tables. (orig./GSCH).

  15. Cerium intermetallics CeTX. Review III

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux

    2016-05-01

    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  16. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    International Nuclear Information System (INIS)

    Tegus, O.; Bao Li-Hong; Song Lin

    2013-01-01

    Since the discovery of giant magnetocaloric effect in MnFeP 1−x As x compounds, much valuable work has been performed to develop and improve Fe 2 P-type transition-metal-based magnetic refrigerants. In this article, the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques, effects of atomic substitution on the magnetism and magnetocalorics of Fe 2 P-type intermetallic compounds MnFeX (X=P, As, Ge, Si) is reviewed. Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP 1−x Si(Ge) x . These new materials show large magnetocaloric effects resembling MnFe(P, As) near room temperature. Some new physical phenomena, such as huge thermal hysteresis and ‘virgin’ effect, were found in new materials. On the basis of Landau theory, a theoretical model was developed for studying the mechanism of phase transition in these materials. Our studies reveal that MnFe(P, Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  17. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.

    Science.gov (United States)

    Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert

    2018-05-01

    In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1−xAlx)2 compounds

    International Nuclear Information System (INIS)

    Ivanova, T.I.; Nikitin, S.A.; Tskhadadze, G.A.; Koshkid’ko, Yu.S.; Suski, W.; Iwasieczko, W.; Badurski, D.

    2014-01-01

    Highlights: • The Al influence on magnetic properties of the Ho (Co 1-x Al x ) 2 compounds is analyzed. • The first-order magnetic transition appears in sample with Al concentrations x ≤ 0.06. • The MCE and Curie temperature TC demonstrate complex Al concentration dependences. • The magnetoresistance for sample with Al concentration x = 0.06 (58%) is maximum. • High magnetic fields changes the Curie temperature T c of the Ho (Co 1−x Al x ) 2 compounds. - Abstract: The magnetization, magnetoresistivity and magnetocaloric effect (MCE) of the Ho (Co 1−x Al x ) 2 Laves phase intermetallic compounds for x ⩽ 0.2 have been investigated. Complex measurements have been carried out in order to determine the influence of substitution in the Co sublattice by Al on the Co moment, type of the magnetic transition and related properties of these compounds. A comparative analysis of the magnetic, transport and magnetocaloric properties of Ho (Co 1−x Al x ) 2 alloys under various Al concentration is represented. Substitutions at the Co site by Al are found to result in the appearance of itinerant electron metamagnetism (IEM) at the small Al concentrations and in positive magnetovolume effect, leading to an initial increase in the ordering temperature; on the other hand the magnetic phase transition temperature as well as ΔT (MCE) do not depend in direct way on the Al concentration. The 16% increase of magnetocaloric effect for the alloy with x = 0.02 is detected in relation to maternal HoCo 2 . A giant value of magnetoresistivity (58%) is observed for the alloy with the same Al concentration

  19. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  20. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  1. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  2. Identification of Intermetallic Compounds and Its Formation Mechanism in Boron Steel Hot-Dipped in Al-7 wt.% Mn Alloy

    Directory of Open Access Journals (Sweden)

    Sung-Yun Kwak

    2017-12-01

    Full Text Available In laser welding and hot stamping Al-Si-coated boron steel, there is a problem that the strength of the joint is lowered due to ferrite formation in the fusion zone. The purpose of this study is to develop an Al-7 wt.% Mn hot-dip coating in which Mn, an austenite stabilizing element, replaces the ferrite stabilizing element Si. The nucleation and formation mechanism of the reaction layer was studied in detail by varying the dipping time between 0 and 120 s at 773 °C. The microstructure and phase constitution of the reaction layer were investigated by various observational methods. Phase formation is discussed using a phase diagram calculated by Thermo-CalcTM. Under a 30 s hot-dipping process, no reaction occurred due to the formation of a Fe3O4 layer on the steel surface. The Fe3O4 layer decomposed by a reduction reaction with Al-Mn molten alloy, constituent elements of steel dissolved into a liquid, and the reaction-layer nucleus was formed toward the liquid phase. A coated layer consists of a solidified layer of Al and Al6Mn and a reactive layer formed beneath it. The reaction layer is formed mainly by inter-diffusion of Al and Fe in the solid state, which is arranged on the steel in the order of Al11Mn4 → FeAl3 (θ → Fe2Al5 (η phases, and the Fe3AlC (κ in several nm bands formed at the interface between the η-phase and steel.

  3. A study of the oxidation of nickel-titanium intermetallics. II. Phase composition of the scale

    Energy Technology Data Exchange (ETDEWEB)

    Chuprina, V G [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1989-06-01

    The phase composition of the scale formed on NiTi during oxidation in air in the temperature range 600-1000 C was investigated by X-ray diffraction and layer-by-layer metallographic analyses. The scale was found to contain NiO, NiO.TiO2, TiO2, Ti2O3, Ti3O5, Ni, and Ni(Ti) solid solution; an Ni3Ti sublayer was present at the scale-alloy boundary. Oxygen diffusion in the scale toward the sublayer and counterdiffusion of Ni(+2) were found to be the principal processes responsible for NiTi oxidation. 8 refs.

  4. Hydrogen in intermetallic phases: the system titanium--nickel--hydrogen. Wasserstoff in intermetallischen phasen am beispiel des systems titan-nickel-wasserftoff

    Energy Technology Data Exchange (ETDEWEB)

    Buchner, H.; Gutjahr, M. A.; Beccu, K. D.; Saeufferer, H.

    1972-07-01

    The intermetallic phases Ti/sub 2/-Ni (E9/sub 3/-type) and TiNi (B2-type) are able to absorb great amounts of hydrogen interstitially. The E9/sub 3/-structure forms four isotypic hydrogen phases, the lattice parameters of which increase with increasing hydrogen contents (..delta..d/sub max/ = 5.3%). The stoichiometric formulas are: Ti/sub 2/NiH/sub 0/./sub 5/; Ti/sub 2/NiH; Ti/sub 2/NiH/sub 2/; Ti/sub 2/NiH/sub 2/./sub 5/. The lattice parameter of the B2-structure increases from 3.01 A to 3.10 A (..delta..d = 3%), thus forming the stoichiometric TiNiH phase. The TiNiH structure possesses an eight-fold superlattice having a B2 type cell. The positions of hydrogen in the two intermetallic phases Ti/sub 2/Ni and TiNi are discussed from the geometrical point of view. Neutron diffraction diagrams verify these positions for only two hydrogen phases (Ti/sub 2/NiH/sub 0/./sub 5/; Ti/sub 2/NiH). Because of extreme experimental difficulties, the exact hydrogen positions in the phases Ti/sub 2/NiH/sub 2/; Ti/sub 2/NiH/sub 2/./sub 5/; TiNiH are still unknown.

  5. Intermetallics Synthesis in the Fe–Al System via Layer by Layer 3D Laser Cladding

    Directory of Open Access Journals (Sweden)

    Floran Missemer

    2013-10-01

    Full Text Available Intermetallide phase formation was studied in a powdered Fe–Al system under layer by layer laser cladding with the aim of fabricating the gradient of properties by means of changing the Fe–Al concentration ratio in the powder mixture from layer to layer. The relationships between the laser cladding parameters and the intermetallic phase structures in the consecutively cladded layers were determined. In order to study the structure formation an optical microscopy, X-ray diffraction analysis, measurement of microhardness, scanning electron microscopy (SEM with energy dispersive X-ray (EDX spectroscopy analysis were used after the laser synthesis of intermetallic compounds.

  6. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira

    2014-01-01

    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques......, in particular in situ and ex situ X-ray diffraction, in situ X-ray absorption spectroscopy, transmission electron microscopy combined with electron energy loss spectroscopy and X-ray fluorescence, we have studied the formation of intermetallic Ni–Ga catalysts of two compositions: NiGa and Ni5Ga3. These methods...... demonstrate that the catalysts with the desired intermetallic phase and composition are formed upon reduction in hydrogen and enable us to propose a mechanism of the Ni–Ga nanoparticles formation. By studying the effect of calcination prior to catalyst reduction, we show that the reactivity depends...

  7. Thermal stability of (AlSi){sub x}(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Shaha, S.K. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Czerwinski, F., E-mail: Frank.Czerwinski@nrcan.gc.ca [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Kasprzak, W. [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-11-10

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi){sub x}(TiVZr) phases with D0{sub 22}/D0{sub 23} tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi){sub x}(TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals.

  8. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    Science.gov (United States)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  9. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    International Nuclear Information System (INIS)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. (review)

  10. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.G.

    1975-01-01

    This patent describes a sintered product having substantially stable permanent magnet properties in air at room temperature. It comprises compacted particulate cobalt--rare earth alloy consisting essentially of a Co 5 R intermetallic phase and a CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase, where R is a rare earth metal. The Co 5 R intermetallic phase is present in an amount of at least 65 percent by weight of the sintered product and the CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase is present in a positive amount having a value ranging up to about 35 percent by weight of the product. The sintered product has a density of at least 87 percent and has pores which are substantially noninterconnecting and wherein the component grains have an average size less than 30 microns

  11. Phase formation in Zr/Fe multilayers during Kr ion irradiation

    International Nuclear Information System (INIS)

    Motta, A. T.

    1998-01-01

    A detailed study has been conducted of the effect of Kr ion irradiation on phase formation in Zr-Fe metallic multilayers, using the Intermediate Voltage Electron Microscopy (IVEM) at Argonne National Laboratory. Metallic multilayers were prepared with different overall compositions (near 50-50 and Fe-rich), and with different wavelengths (repetition thicknesses). These samples were irradiated with 300 keV Kr ions at various temperatures to investigate the final products, as well as the kinetics of phase formation. For the shorter wavelength samples, the final product was in all cases an amorphous Zr-Fe phase, in combination with Fe, while specially for the larger wavelength samples, in the Fe-rich samples the intermetallic compounds ZrFe 2 and Zr 3 Fe were formed in addition to the amorphous phase. The dose to full reaction decreases with temperature, and with wavelength in a manner consistent with a diffusion-controlled reaction

  12. Microstructural evolution of Ni40Zr60 alloy during early stage of mechanical alloying of intermetallic compounds NiZr2 and Ni11Zr9

    International Nuclear Information System (INIS)

    Lee Peeyew; Koch, C.C.

    1994-01-01

    The microstructural change of Ni 40 Zr 60 alloy during mechanical alloying of mixtures of the intermetallic compounds NiZr 2 and Ni 11 Zr 9 has been studied by transmission electron microscopy. A specific ''cauliflower'' phase was formed during early stage of mechanical alloying process. It is suggested that the solid state reaction between intermetallic compounds NiZr 2 and Ni 11 Zr 9 is not the only origin for the formation of the ''cauliflower'' phase. ((orig.))

  13. Formation of metastable and equilibrium phases in the decomposition of the β solid solution in Zr alloys

    International Nuclear Information System (INIS)

    Zakharova, M.I.; Kirov, S.A.; Khundzhua, A.G.

    1978-01-01

    The decomposition of the β solid solution is studied in Zr-Nb alloys with adding Mo, Al, V, Fe by the methods of electron microscopy and X-ray diffraction on single crystals. The intermetallic compounds forming during crystallization of the alloys do not influence the precipitation of the ω- and α-phases during ageing. In the local regions of foils prepared by electropolishing after ageing the formation of the metastable f.c.c. phase and in some cases the inverse transformation of two phase state to the parent phase is observed. (author)

  14. Rare Earth Metal-Based Intermetallics Formation in Al–Cu–Mg and Al–Si–Cu–Mg Alloys: A Metallographic Study

    Directory of Open Access Journals (Sweden)

    A. M. Samuel

    2018-01-01

    Full Text Available This study was conducted on Al–Cu–Mg and Al–Si–Cu–Mg alloys containing either 5%La or 5%Ce. Two levels of Ti addition were examined, i.e., 0.05% and 0.15%. Thermal analysis was the only technique used to obtain castings, from which samples were then sectioned for metallographic examination. Based on the results obtained, the following points may be highlighted. Addition of a fairly large amount of RE metals (La or Ce leads to the appearance of several peaks in the solidification curve between the precipitation of the primary α-Al phase and the (Al–Al2Cu eutectic reaction. Although a significant drop in the eutectic temperature is caused by the addition of 5%La or Ce, the corresponding modification of the eutectic Si is marginal. Two main types of intermetallics were documented: a gray phase in the form of sludge with a fixed composition and a white phase in the shape of thin platelets. Due to the high affinity of RE to react with Si, Fe, and Cu, several compositions were obtained explaining the observed multiple peaks in the solidification curve. Judging by the morphology of the gray phase, it is assumed that this phase is precipitated in the liquid state and acts as a nucleation site for the white phase. Lanthanum and Ce can substitute each other.

  15. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  16. On the competition in phase formation during the crystallisation of Al-Ni-Y metallic glasses

    International Nuclear Information System (INIS)

    Styles, M.J.; Sun, W.W.; East, D.R.; Kimpton, J.A.; Gibson, M.A.; Hutchinson, C.R.

    2016-01-01

    Glassy metals exhibit a range of interesting properties including high strength and corrosion resistance, but often have poor toughness and tensile ductility in the fully amorphous state. It has been shown that combinations of desirable properties can be achieved by the partial crystallisation of glass-forming alloys, either during controlled solidification or by annealing a fully amorphous glass. The aim of this investigation is to understand the competition in phase formation during the crystallisation of metallic glasses in the Al-Ni-Y system. High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the first crystallisation product was found to vary from FCC Al to the intermetallic Al 9 Ni 2 phase with increasing Ni concentration. In addition, the crystallisation sequence also changed from a two-stage to a three-stage process. High number densities of crystallites (∼10 23  m −3 ) were observed initially for both FCC Al and Al 9 Ni 2 . Upon cooling, the partially disordered Al 9 Ni 3 Y phase was found to form preferentially over the intermetallic phases observed during heating. The difference in competition in phase formation during heating and cooling are discussed in terms of nucleation barriers calculated using a recent thermodynamic assessment of the Al-Ni-Y system. The role of compositional heterogeneities in the as-quenched glasses and long-range diffusion on the nucleation process is discussed. - Graphical abstract: High-resolution, in situ synchrotron powder diffraction has been used to quantitatively follow the evolution of phases in 5 different alloys between Al 87 Ni 9 Y 4 and Al 75 Ni 15 Y 10 , as they were continuously heated to melting and subsequently cooled back to ambient temperature. Upon heating, the

  17. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing

    International Nuclear Information System (INIS)

    Mozaffari, A.; Hosseini, M.; Manesh, H. Danesh

    2011-01-01

    Highlights: → Al/Ni metallic composites produced by accumulative roll bonding were heat treated at different temperatures and periods, to investigate the effect of reaction annealing on the structure and mechanical properties. → Based on the annealing conditions, various intermetallic phases were formed. The structure and composition of the composites were detected by SEM and XRD techniques. → The strength of the initial metallic composite can be improved due to the formation of the hard intermetallic phases, by the heat treatment process. - Abstract: In this research, Al/Ni multilayers composites were produced by accumulative roll bonding and then annealed at different temperatures and durations. The structure and mechanical properties of the fabricated metal intermetallic composites (MICs) were investigated. Scanning electron microscopy and X-ray diffraction analyses were used to evaluate the structure and composition of the composite. The Al 3 Ni intermetallic phase is formed in the Al/Ni interface of the samples annealed at 300 and 400 deg. C. When the temperature increased to 500 deg. C, the Al 3 Ni 2 phase was formed in the composite structure and grew, while the Al 3 Ni and Al phases were simultaneously dissociated. At these conditions, the strength of MIC reached the highest content and was enhanced by increasing time. At 600 deg. C, the AlNi phase was formed and the mechanical properties of MIC were intensively degraded due to the formation of structural porosities.

  18. Phase formation of physically associating polymer blends

    International Nuclear Information System (INIS)

    Tanaka, Fumihiko

    1993-01-01

    Polymers exhibit a variety of condensed phases when some of their segments are capable of forming weak bonds which can be created and destroyed by thermal motion. Transition from one phase to another caused by such 'segment association' is reversible by the change of the temperature and the concentration, so that it is called 'reversible phase transition'. What types of reversible phase formation are possible for a given associative interaction? What is the most fundamental laws which govern the competition between molecular association and phase separation? This paper surveys, as typical examples of reversible phases, macroscopic phase separation, microphase formation, solvation, gelation, etc. from the unified point of view, and explores the possibility of new condensed phases caused by their mutual interference. (author)

  19. Simulation of the precipitation process of ordered intermetallic compounds in binary and ternary Ni-Al-based alloys by the phase-field model

    International Nuclear Information System (INIS)

    Hou Hua; Zhao Yuhong; Zhao Yuhui

    2009-01-01

    With the microscopic phase-field model, atomic-scale computer simulation programs for the precipitation mechanism of the ordered intermetallic compound γ' in binary Ni-15.5 at.%Al alloy, θ and γ' in ternary Ni 75 Al x V 25-x alloys were worked out based on the microscopic diffusion equation and non-equilibrium free energy. The simulation can be applied to the whole precipitation process and composition range. A prior assumptions on the new phase structure or transformation path was unnecessary, the possible non-equilibrium phases, atomic clustering and ordering could be described automatically, and atomic images, order parameters and volume fractions of precipitates were obtained. Computer simulation was performed systematically on the precipitation mechanism, precipitation sequence of θ and γ' in complicated system with ordering and clustering simultaneously. Through the simulated atomic images and chemical order parameters of precipitates, we can explain the complex precipitation mechanisms of θ (Ni 3 V) and γ' (Ni 3 Al) ordered phases. For the binary alloy, the precipitation mechanism of γ' phase has the characteristic of both non-classical nucleation and growth (NCNG) and congruent ordering and spinodal decomposition (COSD). For the ternary alloys, the precipitation characteristic of γ' phase transforms from NCNG to COSD gradually, otherwise, the precipitation characteristic of θ phase transforms from COSD to NCNG mechanism gradually

  20. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    Science.gov (United States)

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.

    2016-03-01

    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  1. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Thomson, R.C.

    2010-01-01

    Multicomponent Al-Si based casting alloys are used for a variety of engineering applications, including for example, piston alloys. Properties include good castability, high strength, light weight, good wear resistance and low thermal expansion. In order for such alloys to continue operation to increasingly higher temperatures, alloy element modifications are continually being made to further enhance the properties. Improved mechanical and physical properties are strongly dependent upon the morphologies, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, CuAl 2 , Al 3 Ni 2 , Al 7 Cu 4 Ni, Al 9 FeNi and Al 5 Cu 2 Mg 8 Si 6 phases, all of which may have some solubility for additional elements. Identification is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) has therefore been used for the identification of the various phases. This paper will present comparisons of phase identification methodologies using EBSD alone, and in combination with chemical information, either directly or through post processing.

  2. Formation and Disruption of W-Phase in High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Sephira Riva

    2016-05-01

    Full Text Available High-entropy alloys (HEAs are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a bcc or fcc matrix with minor inclusions of ordered binary intermetallics. HEAs have been proposed for applications in which high temperature stability (including mechanical and chemical stability under high temperature and high mechanical impact is required. On the other hand, the major challenge to overcome for HEAs to become commercially attractive is the achievement of lightweight alloys of extreme hardness and low brittleness. The multicomponent AlCrCuScTi alloy was prepared and characterized using powder X-ray diffraction (PXRD, scanning-electron microscope (SEM and atomic-force microscope equipped with scanning Kelvin probe (AFM/SKP techniques. Results show that the formation of complex multicomponent ternary intermetallic compounds upon heating plays a key role in phase evolution. The formation and degradation of W-phase, Al2Cu3Sc, in the AlCrCuScTi alloy plays a crucial role in its properties and stability. Analysis of as-melted and annealed alloy suggests that the W-phase is favoured kinetically, but thermodynamically unstable. The disruption of the W-phase in the alloy matrix has a positive effect on hardness (890 HV, density (4.83 g·cm−3 and crack propagation. The hardness/density ratio obtained for this alloy shows a record value in comparison with ordinary heavy refractory HEAs.

  3. Solidifying incongruently melting intermetallic phases as bulk single phases using the example of Al{sub 2}Cu and Q-phase in the Al-Mg-Cu-Si system

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Andrea [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Groebner, Joachim; Hampl, Milan [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Engelhardt, Hannes [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany); Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology, Clausthal-Zellerfeld (Germany); Rettenmayr, Markus, E-mail: M.Rettenmayr@uni-jena.de [Institute of Materials Science and Technology, Friedrich-Schiller-University, Jena (Germany)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Samples consisting of pure Al{sub 2}Cu and 95% Q-phase respectively were prepared. Black-Right-Pointing-Pointer The Q-phase composition is Al{sub 17}Cu{sub 9}Mg{sub 44}Si{sub 30}, its solubility range is negligible. Black-Right-Pointing-Pointer The Q-phase peritectic temperature was determined by DSC measurements as 703 Degree-Sign C. Black-Right-Pointing-Pointer A new thermodynamic dataset for the Q-phase has been assessed. - Abstract: Plane front directional solidification experiments were carried out for preparing incongruently melting intermetallic phases in the quaternary alloy system Al-Cu-Mg-Si, particularly the binary Al{sub 2}Cu phase and the quaternary phase ('Q-phase'). By this method, bulk samples that consist of only a single phase are generated. Sample sections consisting of 100% single phase Al{sub 2}Cu and of 95% Q-phase, respectively, were obtained. The composition of the Q-phase was measured by Energy Dispersive X-ray Spectroscopy (EDX). The measured concentrations are close to the Al{sub 3}Cu{sub 2}Mg{sub 9}Si{sub 7} composition that has recently been predicted as most stable by ab initio calculations. A peritectic temperature of 703 Degree-Sign C for the reaction Q {yields} L + Mg{sub 2}Si + (Si) was determined by differential scanning calorimetry (DSC). An optimization of the Calphad database was performed considering the measured composition and peritectic temperature. For validating the optimized database, Scheil calculations were performed and compared with the experimentally determined sequence of solidifying phases.

  4. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials

    International Nuclear Information System (INIS)

    He, P.; Liu, D.

    2006-01-01

    The formation of brittle intermetallic compounds at the interfaces of diffusion bonds is the main cause which leads to poor bond strength. Therefore, it is very important to study and establish the formation and growth model of intermetallic compounds at the interfaces for the control process of diffusion bonding. In this paper, according to the diffusion kinetics and the thermodynamics, the principle of formation of intermetallic compounds at interfaces in the multi-component diffusion couple, the flux-energy principle, is put forward. In the light of diffusion theory, the formation capacity of the phase at the interfaces is determined by specific properties of the composition in the diffusion couple and the composition ratio of the formed phase is in agreement with the diffusion flux. In accordance with the flux-energy principle, the microstructure of the Ni/TC4 interface is Ni/TiNi 3 /TiNi/Ti 2 Ni/TC4, the microstructure of the TC4/00Cr18Ni9Ti interface is 00Cr18Ni9Ti/TiFe 2 /TiFe/Ti 2 Fe/TC4, and the microstructure of the TiAl/40Cr interface is 40Cr/TiC/Ti 3 Al + FeAl + FeAl 2 /TiAl. Multi-intermetallic compounds with the equivalent flux-energy can be formed at the interfaces at the same time

  5. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  6. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  7. Digestive ripening facilitated atomic diffusion at nanosize regime: Case of AuIn{sub 2} and Ag{sub 3}In intermetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India); Jagirdar, Balaji R., E-mail: jagirdar@ipc.iisc.ernet.in [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 (India); Klabunde, Kenneth J. [Department of Chemistry, Kansas State University, Manhattan, KS 66506 (United States)

    2014-10-15

    Highlights: • A digestive ripening facilitated interatomic diffusion process is presented. • Nearly monodisperse AuIn{sub 2} and Ag{sub 3}In intermetallic nanoparticles were synthesized. • Optimization of reaction temperature facilitates interatomic transfer. • Presence of excess ligand plays a crucial role in the digestive ripening process. - Abstract: Monodisperse colloidal gold–indium (AuIn{sub 2}) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn{sub 2} intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn{sub 2} with particle size distribution of 3.7 ± 1.0 nm and 5.0 ± 1.6 nm, respectively. UV–visible spectral studies brought out the absence of SPR band in pure AuIn{sub 2} intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn{sub 2} intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag{sub 3}In intermetallic nanoparticles with the dimension of less than 10 nm.

  8. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  9. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  10. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    Science.gov (United States)

    Stacey, Timothy E; Fredrickson, Daniel C

    2012-04-02

    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  11. The three phases of galaxy formation

    Science.gov (United States)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  12. X-ray and magnetic studies on intermetallic phases of the type CaCu5 using noble metals and strontium

    International Nuclear Information System (INIS)

    Heumann, T.; Birnschein, R.R.

    1976-01-01

    The intermetallic phases SrAu 5 , SrAg 5 and SrPd 5 and their binary part systems with the specific noble metals as well as the pseudobinary series SrAu 5 -SrPd 5 and SrAg 5 -SrPd 5 are dealt with within the framework of this lecture. The noble metals gold, silver and palladium form AB 5 phases with strontium which cristallize in CaCu 5 structure. The atomic susceptibilities of the part systems Ag-SrAg 5 and Au-SrAu 5 as a function of the Sr concentration, of the part system Pd-SrPd 5 as a function of the temperature and the Sr concentration, of Au-Pd as a function of the Pd concentration, of the series SrAu 5 -SrPd 5 as a function of the SrPd 5 concentration, of the series SrAg 5 -SrPd 5 as function of the SrPd 5 concentration, the electrical resistance of Ag-SrAg 5 and Au-SrAu 5 as function of the Sr concentration, the lattice constants of the series SrAu 5 -SrPd 5 as a function of the SrPd 5 concentration, as well as the number of effective magnetones in the system Au-Pd as a function of the Pd concentration, were measured and evaluated. (orig./LH) [de

  13. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    Directory of Open Access Journals (Sweden)

    Martínez-Perales, Laura G.

    2016-03-01

    Full Text Available The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C, pressure (5, 10 y 20 MPa and holding time (3600, 5400 y 7200 seconds. Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.Los intermetálicos α-Al9FeMnSi y β-Al9FeMn2Si formados por sinterización reactiva de polvos Al, Si, Mn, Fe, Cr, Ni se han utilizado en aceros AISI 304L para mejorar la microdureza. Las variables de procesamiento de sinterización reactiva fueron temperatura (600, 650, 700, 750, y 800 °C, presión (5, 10 y 20 MPa y el tiempo de retención (3600, 5400 7200 segundos. Los resultados experimentales muestran que la temperatura es la variable más importante que afecta a la formación del sustrato/recubrimiento, mientras que la presión no parece tener un efecto significativo una influencia significativa. Los resultados muestran las condiciones óptimas de la sinterización reactiva que favorecen la formación del sustrato/recubrimiento a 800 °C, 20 MPa y 7200 segundos. En estas condiciones, la zona de reacción entre el sustrato y el recubrimiento es más compacta y bien

  14. Formation of Ion Phase-Space Vortexes

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.; Armstrong, R. J.

    1984-01-01

    The formation of ion phase space vortexes in the ion two stream region behind electrostatic ion acoustic shocks are observed in a laboratory experiment. A detailed analysis demonstrates that the evolution of such vortexes is associated with ion-ion beam instabilities and a nonlinear equation for ...

  15. Influence of intermetallic growth on the mechanical properties of Zn–Sn–Cu–Bi/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Fei; Yao, Jia; Liang, Jingwei; Qiu, Xiaoming, E-mail: qiuxm13@163.com

    2015-11-15

    The formation of intermetallic reaction layers and their influence on shear strength and fractography was investigated between the Zn–Sn–Cu–Bi (ZSCB) and Cu substrate during the liquid state reaction at 450 °C after 10–90 s. Results showed that reliable solder joints could be obtained at 450 °C after 15–30 s of wetting, accompanied by the creation of scallop ε-CuZn{sub 5}, flat γ-Cu{sub 5}Zn{sub 8} and β-CuZn intermetallic layers in ZSCB/Cu interface. However, with excess increase of soldering time, a transient intermetallic ε-CuZn{sub 4} phase was nuclear and grew at ε-CuZn{sub 5}/γ-Cu{sub 5}Zn{sub 8} interface, which apparently deteriorated the shear strength of solder joints from 76.5 MPa to 51.6 MPa. The sensitivity of the fracture proportion was gradually transformed from monotonic ε-CuZn{sub 5} to the mixture of ε-CuZn{sub 4} and ε-CuZn{sub 5} intermetallic cleavage. Furthermore, the growth mechanism of ε-CuZn{sub 4} intermetallic phase at the ZSCB/Cu interface was discussed. - Highlights: • There are four interfacial intermetallic layers formed at the Zn–Sn–Cu–Bi/Cu interface. • The growth mechanism of ε-CuZn{sub 4} intermetallic phase was discussed. • The wetting time of Zn–Sn–Cu–Bi solder in contact with Cu substrate is a key parameter.

  16. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  17. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    International Nuclear Information System (INIS)

    Hon, M.-H.; Chang, T.-C.; Wang, M.-C.

    2008-01-01

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η'-Cu 6 Sn 5 transforms to the hexagonal η-Cu 6 Sn 5 and the orthorhombic Cu 5 Zn 8 transforms to the body-centered cubic (bcc) γ-Cu 5 Zn 8 as aged at 180 deg. C. The scallop-shaped Cu 6 Sn 5 layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from η'-Cu 6 Sn 5 and reacts with Sn to form Ag 3 Sn, and the Cu 5 Zn 8 layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h

  18. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    Energy Technology Data Exchange (ETDEWEB)

    Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Bldg. 11, 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu, 310, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-06-30

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic {eta}'-Cu{sub 6}Sn{sub 5} transforms to the hexagonal {eta}-Cu{sub 6}Sn{sub 5} and the orthorhombic Cu{sub 5}Zn{sub 8} transforms to the body-centered cubic (bcc) {gamma}-Cu{sub 5}Zn{sub 8} as aged at 180 deg. C. The scallop-shaped Cu{sub 6}Sn{sub 5} layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from {eta}'-Cu{sub 6}Sn{sub 5} and reacts with Sn to form Ag{sub 3}Sn, and the Cu{sub 5}Zn{sub 8} layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h.

  19. Examination of the Mg-Zn phase formation in hot-dip galvanized steel sheet; Untersuchung der Mg-Zn-Phasenbildung in feuerverzinktem Stahlblech

    Energy Technology Data Exchange (ETDEWEB)

    Zywitzki, Olaf; Modes, Thomas; Scheffel, Bert; Metzner, Christoph [Fraunhofer-Institut fuer Elektronenstrahl- und Plasmatechnik, Dresden (Germany)

    2012-07-01

    Zinc-magnesium layers have been produced by a combination of conventional hot-dip galvanizing and PVD magnesium coating. A subsequent short heat treatment causes the diffusion of magnesium into the zinc layer. The influence of the maximum temperature of the heat treatment on the diffusion of magnesium and on the type and distribution of the formed intermetallic Mg-Zn phases has been examined in detail in a temperature range from 300 to 400 C by means of X-ray phase analyses and metallographic cross sections. With increasing temperature a sequential intermetallic Mg-Zn phase formation has been detected. At 300 C, an initial magnesium rich, intermetallic MgZn{sub 2} surface layer is formed, which, at higher temperatures from 335 to 379 C, is progressively transformed into a zinc rich Mg{sub 2}Zn{sub 11} layer by interdiffusion. In this context, the nucleation of the Mg{sub 2}Zn{sub 11} phase takes place on the interface between the MgZn{sub 2} and the Zn phase. Above the peritectic temperature of 381 C, the microstructure is composed of a zinc matrix in which precipitated MgZn{sub 2} is dispersed. (orig.)

  20. Zirconium intermetallics and hydrogen uptake during corrosion

    International Nuclear Information System (INIS)

    Cox, B.

    1987-04-01

    The routes by which hydrogen can enter zirconium alloys containing second phase particles during corrosion are discussed. Both direct diffusion through the bulk of the oxide film, and migration through second phase particles that intersect the surface are considered. An examination of results for hydrogen uptake by zirconium alloys during the early stages of oxidation, when the oxide film is still coherent, suggests that for Zr, Zr-1%Cu and Zr-1%Fe the hydrogen enters by diffusing through the bulk ZrO 2 film, whereas for the Zircaloys the primary migration route may be through the intermetallics. The steps in the latter process are discussed and the evidence available on the properties of the intermetallics collated. A comparison of these data with results for hydrogen uptake by two series of ternary alloys (Zr-1%Nb - 1%X, Zr-1%Cu - 1%X) suggests that high hydrogen uptakes often correlate with intermetallics with high hydrogen solubilities and vice versa. The properties of Zr(Fe/Cr) 2+x intermetallics are examined in an attempt to understand the behaviour of the Zircaloys, and it is concluded that present data establishing composition and unit cell dimensions for such intermetallic particles are not of sufficient accuracy to permit a correlation

  1. Magnetic properties of rare-earth intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.

    1978-01-01

    A review is given of the concepts at present used to explain the magnetic properties of rare-earth intermetallics which have been the subject of numerous investigations in recent years. Rare-earth intermetallics with the formula Rsub(a)Bsub(b) are divided according to the magnetic moment of the B atom(s). If there is no magnetic moment present at the B-site, the exchange is only between the magnetic moments at the R-sites, which can only be of indirect character. One possible model is still the RKKY model, although it usually gives in practice only a qualitative description of the magnetic properties. Typical R-B compounds with the B-moment equal to zero are (for instance) the RA1 2 compounds, and related compounds such as the RZn and RCd compounds as well as compounds of the general formula RB 2 (B = Ni, Os, Ir, Pd, Ru or Rh). Of all intermetallics with nonzero B-moment, the R-3d intermetallics are the most important. These intermetallics can be formed with Mn, Fe, Co and Ni. In these systems there exist in principle three interactions, namely between the R-R, R-3d and 3d-3d atoms. The most important is usually the latter interaction. After a short discussion of the crystal structures which occur with R-3d intermetallics, the basic magnetic properties of R-3d intermetallics are presented. These properties are discussed with respect to the formation of a magnetic moment at the 3d site in the framework of present band theories. Special emphasis is given to a discussion of the localized or itinerant character of 3d electrons. (author)

  2. Phase formation in multicomponent monotectic aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim; Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology (Germany)

    2008-07-01

    Alloys with a miscibility gap in the liquid state are potential materials for advanced bearings in automotive and other applications. While binary alloys, such as Al-Pb or Al-Bi, are well known, the information available for ternary monotectic Al-alloys is scarce. However, the phase formation in multicomponent alloys is not only more challenging from a scientific aspect, it is also a prerequisite for a focused development of advanced alloys. This motivated our detailed study of monotectic Al-Bi-Cu-Sn alloys including both experimental and computational thermodynamic methods. Based on the initially established systematic classification of monotectic ternary Al-alloys, the first promising monotectic reaction was observed in the ternary Al-Bi-Zn system. Further ternary systems Al-Cu-Sn, Al-Bi-Sn, Al-Bi-Cu and Bi-Cu-Sn were investigated as basis for quaternary Al-Bi-Cu-Sn alloys. Experimental investigations of phase equilibria, enthalpies and solidification microstructures were combined with thermodynamic modeling. The results demonstrate that the developed precise thermodynamic description is vital to reveal the distinct multicomponent monotectic features of pertinent phase diagrams. The solidification paths of ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, were also studied using thermodynamic calculations, revealing specific details of phase formation during solidification of selected alloys.

  3. Phase formation in Mg-Sn-Si and Mg-Sn-Si-Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A.; Groebner, J. [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, R., E-mail: schmid-fetzer@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)

    2011-02-17

    Research highlights: > The solidification paths of ternary and quaternary alloys are analyzed in detail, using the tool of thermodynamic calculations. > The precipitation sequence of phases and their amounts compare well with the microstructure of alloys. > The most efficient comparison to the experimental thermal analysis data is done by calculation of the enthalpy variation with temperature. > The viability of a procedure for the selection of multicomponent key samples is demonstrated for the development of the Mg-Ca-Si-Sn phase diagram. - Abstract: Experimental work is done and combined with the Calphad method to generate a consistent thermodynamic description of the Mg-Ca-Si-Sn quaternary system, validated for Mg-rich alloys. The viability of a procedure for the selection of multicomponent key samples is demonstrated for this multicomponent system. Dedicated thermal analysis with DTA/DSC on sealed samples is performed and the microstructure of slowly solidified alloys is analyzed using SEM/EDX. The thermodynamic description and phase diagram of the ternary Mg-Si-Sn system, developed in detail also in this work, deviates significantly from a previous literature proposal. The phase formation in ternary and quaternary alloys is analyzed using the tool of thermodynamic equilibrium and Scheil calculations for the solidification paths and compared with present experimental data. The significant ternary/quaternary solid solubilities of pertinent intermetallic phases are quantitatively introduced in the quaternary Mg-Ca-Si-Sn phase diagram and validated by experimental data.

  4. Toughening and creep in multiphase intermetallics through ...

    Indian Academy of Sciences (India)

    It has however often been the case that the process of ductilisation or toughening has also led to a decrease in high temperature properties, especially creep. In this paper we describe approaches to the ductilisation of two different classes of intermetallic alloys through alloying to introduce beneficial, second phase effects.

  5. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites

    International Nuclear Information System (INIS)

    Price, Richard D.; Jiang Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2011-01-01

    Research highlights: → Residual Al improves the mechanical properties of Ti-Al 3 Ti MIL composites. → Residual Al can eliminate intermetallic centerline delaminations in MILs. → Low levels of residual Al increase fracture toughness in MIL composites. → MIL stiffness, strength, and fracture toughness can be optimized at low Al levels. - Abstract: Metal-intermetallic laminate (MIL) composites consisting of alternating layers of Ti, Al, and the intermetallic Al 3 Ti have been fabricated by reactive foil sintering in open air. Six initially identical stacks of alternating Ti-3Al-2.5 V and 1100-Al foils were processed for different lengths of time, yielding specimens with different metal and intermetallic volume fractions. Their mechanical properties have been investigated with an emphasis on the effect of residual Al at the intermetallic centerline on composite strength and fracture toughness, as well as fracture and failure modes. Samples were cut from each composite plate (in layer orientations parallel and perpendicular to the intended load direction) for mechanical testing in compression and four-point bending under quasi-static and high-rate loading conditions. Examination of the damaged specimens and their fracture surfaces by optical and scanning electron microscopy was performed to establish a correlation between the failure mechanisms present, composite strength, and microstructure. Results indicated that regardless of loading direction, cracks always initiated in the intermetallic region, rarely at the centerline, and crack propagation and failure were heavily influenced by the thickness of the residual aluminum layers. There is an ideal residual aluminum volume fraction that represents the amount of ductile reinforcement that maximizes the combined properties of strength, toughness and stiffness.

  6. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bo [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); School of Mechanical Engineering, Gui Zhou University, Guiyang 550000 (China); Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhao, Yuliang; Li, Yuanyuan [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2015-06-15

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al{sub 6}(FeMn) and needle-like Al{sub 3}(FeMn) phases transform to a new Cu-rich β-Fe (Al{sub 7}Cu{sub 2}(FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al{sub 6}(FeMn) and Al{sub 3}(FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve.

  7. Solid-state transformation of Fe-rich intermetallic phases in Al–5.0Cu–0.6Mn squeeze cast alloy with variable Fe contents during solution heat treatment

    International Nuclear Information System (INIS)

    Lin, Bo; Zhang, Weiwen; Zhao, Yuliang; Li, Yuanyuan

    2015-01-01

    The Al–5.0 wt.% Cu–0.6 wt.% Mn alloys with a variable Fe content were prepared by squeeze casting. Optical microscopy (OM), Deep etching technique, scanning electron microscopy(SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to examine the solid-state transformation of Fe-rich intermetallics during the solution heat treatment. The results showed that the Chinese script-like α-Fe, Al 6 (FeMn) and needle-like Al 3 (FeMn) phases transform to a new Cu-rich β-Fe (Al 7 Cu 2 (FeMn)) phase during solution heat treatment. The possible reaction and overall transformation kinetics of the solid-state phase transformation for the Fe-rich intermetallics were investigated. - Graphical abstract: Display Omitted - Highlights: • The α-Fe, Al 6 (FeMn) and Al 3 (FeMn) phases change to the β-Fe phases. • Possible reactions of Fe phases during solution heat treatment are discussed. • The overall fractional transformation rate follows an Avrami curve

  8. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  9. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  10. Hard magnetic off-stoichiometric (Fe,Sb){sub 2+x}Hf{sub 1-x} intermetallic phase

    Energy Technology Data Exchange (ETDEWEB)

    Goll, D.; Gross, T.; Loeffler, R.; Pflanz, U.; Vogel, T.; Kopp, A.; Grubesa, T.; Schneider, G. [Aalen University, Materials Research Institute (Germany)

    2017-09-15

    By high-throughput screening the ternary Fe-Hf-Sb system, off-stoichiometric (Fe,Sb){sub 2+x}Hf{sub 1-x} with a composition of Fe60.0-Hf26.5-Sb13.5 with high potential as hard magnetic phase is discovered. By quantitative domain structure analysis, promising intrinsic properties of J{sub s} ∝ 1 T, K{sub 1} ∝ 1.5 MJ m{sup -3} are found at room temperature. By magnetometry, bulk intrinsic properties of J{sub s} ∝ 0.7 T, K{sub 1} ∝ 1.4 MJ m{sup -3} are found. Alloying elements like Co or Mn turns out to be an effective adjusting screw on the crystal structure and ferromagnetic behavior. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Theoretical study of phase forming of NaZn sub 1 sub 3 -type rare-earth intermetallics

    CERN Document Server

    Chang Hong; Liang Jing Kui; Rao Guang Hui

    2003-01-01

    By using the interatomic pair potential obtained with the lattice inversion method, the stability of RT sub 1 sub 3 sub - sub x M sub x (R = La, Ce, Pr and Nd; T=Co and Fe; M=Si, Al, Cr, V and Ti) of the NaZn sub 1 sub 3 type and its derivative structure are studied. The structural transition of LaT sub 1 sub 3 sub - sub x Si sub x (T=Co and Fe) between the cubic one with the space group Fm3c and the tetragonal one with I4/mcm is imitated from the viewpoint of energy. As for the function of the third elements, Al and Si are beneficial to the phase stability of RT sub 1 sub 3 sub - sub x M sub x , whereas Cr, Ti and V are unfavourable to the stability. In the calculation, the range of x, with which RT sub 1 sub 3 sub - sub x M sub x could crystallize in the cubic or tetragonal structures, agrees with the experiments very well. The calculated crystallographic parameters coincide with the experimental observation. In the cubic structure, Si and Al prefer the 96i site, and in the tetragonal structure Si first occ...

  12. Influence of the volume-contact area ratio on the growth behavior of the Cu-Sn intermetallic phase

    Science.gov (United States)

    Giddaluri, Venkatakamakshi Supraja

    Solder Joints play a very important role in electronic packaging industry by serving as mechanical support and provides integrity to the device. The increasing demand for high performance, environmental and economic feasibility and miniaturization led to the development of high density interconnects. With the reduction in the size/standoff height of the solder reliability issues in the surface mount assemblies and packaging structures under various rigorous environments are becoming significant. One of the most important impact factors that affect the solder joint reliability is the growth rate IMC formed between the solder and substrate with reduction in joint size. IMC formation is required to ensure good bonding and connectivity of the device in packaging. However excess IMC growth rate is detrimental to the device from mechanical aspects due to its brittle nature. Thus there is a need to study effect the IMC growth rate behavior with the solder joint size/standoff height. In this present study, two solder joints of different standoff heights and same composition (pure Sn solder) are used subjected to reflow process at 270°C for 1--7 min to study solid liquid interfacial reaction on joint size and the same experiment is repeated with SAC alloy of composition (96.5% Sn, 3.0% Ag, 0.5% Cu) to investigate the effect of joint size and initial copper concentration on IMC growth rate. The IMC thickness of the Sn 15microm solder joint at 1 min and 7 min is found to be 1.52microm and 2.86microm respectively while that of Sn 150microm solder joint is 1.31microm and 3.16 microm. The thickness is high in low standoff height sample at the early stage of reaction with decrease in IMC growth rate as the time of reflow increases. In case of 25microm SAC alloy solder joint the IMC thickness from 1 and 7 min is found to be 2.1microm and 3.5microm while that of 250microm SAC alloy solder joint its 1.43microm and3.235microm. Similar trend is observed but the IMC thickness is more

  13. Intermetallics structures, properties, and statistics

    CERN Document Server

    Steurer, Walter

    2016-01-01

    The focus of this book is clearly on the statistics, topology, and geometry of crystal structures and crystal structure types. This allows one to uncover important structural relationships and to illustrate the relative simplicity of most of the general structural building principles. It also allows one to show that a large variety of actual structures can be related to a rather small number of aristotypes. It is important that this book is readable and beneficial in the one way or another for everyone interested in intermetallic phases, from graduate students to experts in solid-state chemistry/physics/materials science. For that purpose it avoids using an enigmatic abstract terminology for the classification of structures. The focus on the statistical analysis of structures and structure types should be seen as an attempt to draw the background of the big picture of intermetallics, and to point to the white spots in it, which could be worthwhile exploring. This book was not planned as a textbook; rather, it...

  14. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    Science.gov (United States)

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.

  15. Interfacial phase formation of Al-Cu bimetal by solid-liquid casting method

    Directory of Open Access Journals (Sweden)

    Ying Fu

    2017-05-01

    Full Text Available The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures (700, 750, 800 oC was investigated by means of metallograph, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds (IMCs near the interface. However, a lower pouring temperature (700 oC resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.

  16. Quasicrystalline phase formation in the mechanically alloyed Al{sub 70}Cu{sub 20}Fe{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, S. N. de, E-mail: snm@dfi.uem.br; Cadore, S.; Pereira, H. A.; Santos, I. A.; Colucci, C. C.; Paesano, A. [Universidade Estadual de Maringa, Departamento de Fisica (Brazil)

    2010-01-15

    In the present work, the formation of the Al{sub 70}Cu{sub 20}Fe{sub 10} icosahedral phase by mechanical alloying the elemental powders in a high-energy planetary mill was investigated by X-ray diffraction and Moessbauer spectroscopy. It was verified that the sample milled for 80 h produces an icosahedral phase besides Al(Cu, Fe) solid solution ({beta}-phase) and Al{sub 2}Cu intermetallic phase. The Moessbauer spectrum for this sample was fitted with a distribution of quadrupole splitting, a doublet and a sextet, revealing the presence of the icosahedral phase, {beta}-phase and {alpha}-Fe, respectively. This compound is not a good hydrogen storage. The results of the X-ray diffraction and Moessbauer spectroscopy of the sample milled for 40 h and annealed at 623 deg. C for 16 h shows essentially single i-phase and tetragonal Al{sub 7}Cu{sub 2} Fe phase.

  17. Composites having an intermetallic containing matrix

    International Nuclear Information System (INIS)

    Nagle, D.C.; Brupbacher, J.M.; Christodoulou, L.

    1990-01-01

    This paper describes a composite material. It comprises: a dispersion of in-situ precipitated second phase particles selected from the group consisting of borides, carbides, nitrides, and sulfides, in an intermetallic containing matrix selected from the group consisting of the aluminides, silicides, and beryllides of nickel, copper, titanium, cobalt, iron, platinum, gold, silver, niobium, tantalum, zinc, molybdenum, hafnium, tin, tungsten, lithium, magnesium, thorium, chromium, vanadium, zirconium, and manganese

  18. Enthalpies of formation of Cd0.917Sr0.083, Cd0.857Sr0.143 and Cd0.667Sr0.333 intermetallic compounds

    International Nuclear Information System (INIS)

    Agarwal, Renu; Singh, Ziley

    2008-01-01

    Cadmium is expected to be the solvent for pyrochemical processing of the metallic nuclear fuel. Therefore, thermodynamic properties of cadmium with various fuel and clad elements are of interest. Enthalpies of formation of the intermetallic compounds of Cd-Sr system, Cd 0.917 Sr 0.083 , Cd 0.857 Sr 0.143 and Cd 0.667 Sr 0.333 were determined by precipitation using Calvet calorimeter. Enthalpies of formation of the compounds were found to be -3.05 ± 0.5 kJ mol -1 at 723 K, -14.2 ± 0.7 kJ mol -1 at 843 K and -28.4 ± 0.8 kJ mol -1 at 863 K, respectively. Enthalpies of formation of Cd 0.917 Sr 0.083 and Cd 0.857 Sr 0.143 were also determined by partial enthalpy of formation measurements and the values were found to be -3.9 ± 1.1 kJ mol -1 at 723 K and -13.42 ± 1.2 kJ mol -1 at 843 K, respectively. Miedema model was used to estimate the enthalpies of formation of these compounds and the estimated values were compared with the experimentally determined values

  19. Intermetallics: past, present and future

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2005-12-01

    Full Text Available Intermetallics have seen extensive world-wide attention over the past decades. For the most part these studies have examined multi-phase aluminide based alloys, because of their high stiffness, combined with reasonable strength and ductility, good structural stability and oxidation resistance, and attempted to improve current Ni-base superalloys, Ti-base alloys, or Fe-base stainless steels for structural aerospace applications. The current status of development and application of such materials is briefly reviewed. Future developments are taking intermetallics from the realm of "improved high-temperature but low-ductility metallic alloys" into the realm of "improved aggressive-environment, high-toughness ceramic-like alloys". Such evolution will be outlined.

    Durante los últimos décadas ha habido un desarrollo de los intermetálicos, sobre todo por aplicaciones estructurales a alta temperatura en aplicaciones aeroespaciales, donde, por su rigidez alta, en combinación con una resistencia mecánica y ductilidad razonable, su buena estabilidad estructural y resistencia a la oxidación, han sido vistos como versiones avanzadas y mejoradas de las aleaciones metálicas como, por ejemplo, las superaleaciones a base de nitrógeno y las aleaciones de titanio. Se discute el desarrollo importante durante las últimas décadas, y también los nuevos desarrollos probables durante los próximos años. Se podrían ver los intermetálicos como versiones mejoradas de los cerámicos.

  20. Intermetallic semiconducting films

    CERN Document Server

    Wieder, H H

    1970-01-01

    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  1. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  2. Fatigue of superalloys and intermetallics

    International Nuclear Information System (INIS)

    Stoloff, N.S.

    1993-01-01

    The fatigue behavior of intermetallic alloys and their composites is contrasted to that of nickel-base superalloys. The roles of microstructure and slip planarity are emphasized. Obstacles to use of intermetallics under cyclic loading conditions are described and future research directions are suggested

  3. Recent advances in ordered intermetallics

    International Nuclear Information System (INIS)

    Liu, C.T.

    1995-01-01

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at elevated temperatures in hostile environments. Their attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at elevated temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past ten years, considerable effort has been devoted to the research and development of ordered intermetallic alloys, and good progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel efforts on alloy design have led to the development of a number of ductile and strong intermetallic alloys based on Ni(3)Al, NiAl, Fe(3)Al, FeAl, Ti(3)Al and TiAl systems for structural applications. (orig.)

  4. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  5. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  6. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lassnig, A., E-mail: alice.lassnig@univie.ac.at [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); Pelzer, R. [Infineon Technologies Austria AG, Siemensstrae 2, 9500 Villach (Austria); Gammer, C. [University of Vienna, Faculty of Physics, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Wien (Austria); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Khatibi, G. [Vienna University of Technology, Institute of Chemical Technology and Analytics, Getreidemarkt 9, 1060 Wien (Austria)

    2015-10-15

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al{sub 2}Cu, Al{sub 4}Cu{sub 9}) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path.

  7. Role of intermetallics on the mechanical fatigue behavior of Cu–Al ball bond interfaces

    International Nuclear Information System (INIS)

    Lassnig, A.; Pelzer, R.; Gammer, C.; Khatibi, G.

    2015-01-01

    The mechanical fatigue behavior of Cu–Al interfaces occurring in thermosonic ball bonds –typically used in microelectronic packages for automotive applications – is investigated by means of a specially designed fatigue test technique. Fully reversed cyclic shear stresses are induced at the bond interface, leading to subsequent fatigue lift off failure and revealing the weakest site of the bond. A special focus is set on the role of interfacial intermetallic compounds (IMC) on the fatigue performance of such interfaces. Therefore fatigue life curves were obtained for three representative microstructural states: The as-bonded state is compared to two annealed states at 200 °C for 200 h and at 200 °C for 2000 h respectively. In the moderately annealed state two IMC layers (Al 2 Cu, Al 4 Cu 9 ) could be identified, whereas in the highly aged state the original pad metallization was almost entirely consumed and AlCu is formed as a third IMC. Finally, the crack path is traced back as a function of interfacial microstructure by means of electron microscopy techniques. Whereas conventional static shear tests reveal no significant decrease of the bond shear force with increased IMC formation the fatigue tests prove a clear degradation in the cyclic mechanical performance. It can be concluded that during cycling the crack deflects easily into the formed intermetallics, leading to early failure of the ball bonds due to their brittle nature. - Highlights: • High cycle fatigue of various miniaturized Cu–Al interfaces is investigated. • Interfacial intermetallic compounds consist of Al2Cu, AlCu and Al4Cu9. • Static shear strength shows minor dependency on interfacial phase formation. • Fatigue tests prove significant degradation with intermetallic compound evolution. • Fatigue fracture surface analysis reveal microstructure dependent crack path

  8. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  9. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  10. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  11. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  12. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  13. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  14. Kinetic study of the formation of the superconducting A15 phase in the Nb-Al-Si system

    International Nuclear Information System (INIS)

    Binh-Phung.

    1978-12-01

    So far, aluminum-containing superconductors showed excellent critical fields and temperatures. Powder Metallurgy shows the most promise in producing these particular kinds of superconductors in the near future. The scope of this research is to apply a kinetic study to observe the behavior of the Nb(Al,Si) system at elevated temperatures. From such observations, an optimized method of obtaining the A15 superconducting phase can be achieved. This study has resulted in a two step heat treatment to obtain the A15 phase. For the primary heat treatment of infiltrated rods, 600 0 C for 11 hours or 650 0 C for 1 hour was found suitable to form a barrier of intermetallic compound around the pores. For the secondary heat treatment, 1700 0 C for 15 seconds resulted in the formation of the A15 superconducting phase with a critical temperature of 18.25 0 K. A15 formation for wires is similar to infiltrated rods. The only difference is the diffusion path which is now much shorter. 600 0 C for 1 hour was found suitable for the primary heat treatment and 1700 0 C for 15 seconds was the most suitable for the secondary heat treatment. The highest critical temperature found thus far was 18.78 0 K

  15. Transformation of iron containing constituent intermetallic particles during hydrothermal treatment

    DEFF Research Database (Denmark)

    Borgaonkar, Shruti; Din, Rameez Ud; Kasama, Takeshi

    2018-01-01

    in the alloys. Furthermore, electron energy loss spectroscopy analysis revealed that the during the steam treatment, the Fe enriched areas of the Al (Fe-Si) Mn type intermetallic particles were transformed into Fe2O3 and Fe3O4 phases, while energy-dispersive X-ray spectroscopy line profile measurements...... by scanning transmission electron microscope showed that Mn and Si were leached out and incorporated into the surrounding oxide layer. Further, the part of intermetallic phase was transformed into polycrystalline material....

  16. Characterization of intermetallics in aluminum to zinc coated interstitial free steel joining by pulsed MIG brazing for automotive application

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Sushovan, E-mail: sushovanbasak@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Das, Hrishikesh, E-mail: hrishichem@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Pal, Tapan Kumar, E-mail: tkpal.ju@gmail.com [Metallurgical and Material Engineering Department, Jadavpur University, Kolkata–700032 (India); Shome, Mahadev, E-mail: mshome@tatasteel.com [Material Characterization & Joining Group, R & D, Tata Steel, Jamshedpur–831007 (India)

    2016-02-15

    In order to meet the demand for lighter and more fuel efficient vehicles, a significant attempt is currently being focused toward the substitution of aluminum for steel in the car body structure. It generates vital challenge with respect to the methods of joining to be used for fabrication. However, the conventional fusion joining has its own difficulty owing to formation of the brittle intermetallic phases. In this present study AA6061-T6 of 2 mm and HIF-GA steel sheet of 1 mm thick are metal inert gas (MIG) brazed with 0.8 mm Al–5Si filler wire under three different heat inputs. The effect of the heat inputs on bead geometry, microstructure and joint properties of MIG brazed Al-steel joints were exclusively studied and characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), electron probe micro analyzer (EPMA) and high resolution transmission electron microscopy (HRTEM) assisted X-ray spectroscopy (EDS) and selective area diffraction pattern. Finally microstructures were correlated with the performance of the joint. Diffusion induced intermetallic thickness measured by FESEM image and concentration profile agreed well with the numerically calculated one. HRTEM assisted EDS study was used to identify the large size FeAl{sub 3} and small size Fe{sub 2}Al{sub 5} type intermetallic compounds at the interface. The growth of these two phases in A2 (heat input: 182 J mm{sup −1}) is attributed to the slower cooling rate with higher diffusion time (~ 61 s) along the interface in comparison to the same for A1 (heat input: 155 J mm{sup −1}) with faster cooling rate and shorter diffusion time (~ 24 s). The joint efficiency as high as 65% of steel base metal is achieved for A2 which is the optimized parameter in the present study. - Highlights: • AA 6061 and HIF-GA could be successfully joined by MIG brazing. • Intermetallics are exclusively studied and characterized by XRD, FESEM and EPMA. • Intermetallic formation by diffusion is

  17. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  18. Superplastic ceramics and intermetallics and their potential applications

    International Nuclear Information System (INIS)

    Wadsworth, J.; Nieh, T.G.

    1994-11-01

    Recent advances in the basic understanding of superplasticity and superplastic forming of ceramics and intermetallics are reviewed. Fine-grained superplastic ceramics, including yttria-stabilized tetragonal zirconia polycrystal, Y- or MgO-doped Al 2 O 3 Hydroxyapatite, β-spodumene glass ceramics, Al 2 0 3 -YTZP two-phase composites, SiC-Si 3 N 4 and Fe-Fe 3 C composites, are discussed. Superplasticity in the nickel-base (e.g., Ni 3 Al and Ni 3 Si) and titanium-base intermetallics (TiAl and T1 3 Al), is described. Deformation mechanisms as well as microstructural requirements and effects such as grain size, grain growth, and grain-boundary phases, on the superplastic deformation behavior am addressed. Factors that control the superplastic tensile elongation of ceramics are discussed. Superplastic forming, and particularly biaxial gas-pressure forming, of several ceramics and intermetallics are presented with comments on the likelihood of commercial application

  19. Linear phase formation by noise simulator

    International Nuclear Information System (INIS)

    Hazi, G.; Por, G.

    1998-01-01

    A new simulation technique is introduced to study noise propagation in nuclear power plants. Noise processes are considered as time functions, and the dynamic behaviour of the reactor core is modelled by ordinary and partial differential equations. The equations are solved by numerical methods and the results (time series) are considered as virtual measurements. The auto power spectral density and the cross power spectral density of these time series are calculated by traditional techniques. The spectrum obtained is compared with the analytical solution to validate the new simulation approach. After validation, the simulator is expanded to investigate some physical phenomena which are unmanageable by analytical calculations. Propagating disturbances are studied, and the effect of non-flat flux shape on phase curves is demonstrated. Numerical problems also are briefly discussed. (author)

  20. Formation of InN phase by sequential ion implantation

    International Nuclear Information System (INIS)

    Santhana Raman, P.; Ravichandran, V.; Nair, K.G.M.; Kesavamoorthy, R.; Kalavathi, S.; Panigrahi, B.K.; Dhara, S.

    2006-01-01

    Formation of InN phase by sequentially implanting nitrogen on indium implanted silica was demonstrated. The growth of embedded InN phase on as-implanted and post-implantation annealed sample was studied using Glancing Incidence X-Ray Diffraction (GIXRD) and Raman spectroscopy. Existence of both cubic and hexagonal phases of InN was observed. Results of irradiation induced ripening of In nanoclusters due to N + ion implantation was also studied. (author)

  1. The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys

    International Nuclear Information System (INIS)

    Gray-Munro, J.E.; Luan, B.; Huntington, L.

    2008-01-01

    The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process. Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process. The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate. A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy

  2. Kinetics of sigma phase formation in a Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Rodrigo Magnabosco

    2009-09-01

    Full Text Available This work determines the kinetics of sigma phase formation in UNS S31803 Duplex Stainless Steel (DSS, describing the phase transformations that occur in isothermal aging between 700 and 900 ºC for time periods up to 1032 hours, allowing the determination of the Time-Temperature-Precipitation (TTP diagram for sigma phase and proposing a model to predict the kinetics of sigma phase formation using a Johnson-Mehl-Avrami (JMA type expression. The higher kinetics of sigma phase formation occurs at 850 ºC. However, isothermal aging between 700 and 900 ºC for time periods up to 1032 hours are not sufficient to the establishment of thermodynamic equilibrium. Activation energy for both nucleation and growth of sigma phase is determined (185 kJ.mol-1 and its value is equivalent to the activation energy for Cr diffusion in ferrite, indicating that diffusion of Cr is probably the major thermally activated process involved in sigma phase formation. The determined JMA type expression presents good fit with experimental data between 700 and 850 ºC.

  3. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  4. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    Science.gov (United States)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  5. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Han [Technology research institute, Ulsan (Korea, Republic of); Lee, Hae Woo [Dong-A University, Busan (Korea, Republic of)

    2014-01-15

    This study investigated the effect of the aging time of weldment of 24Cr-3.5Mo duplex stainless steel on the microstructure and corrosion behavior. After performing FCAW, we carried out heat treatments at varying times at 850 ℃ and performed observation of microstructure, potentio dynamic test, SEM-EDS analysis, and X-ray diffraction analysis. As the aging time increased, the fraction of δ-ferrite decreased sharply, but the fraction of γ slightly increased. The σ phase was generated at a non-metallic inclusion along the grain boundaries of δ-ferrite and γ, while the χ phase was generated in the structure of δ-ferrite. As the intermetallic compounds increased, the critical pitting potential fell sharply, and PREN of the surrounding structure decreased by 5 due to precipitation of the σ phase in 3.5% NaCl at 60 ℃. Pitting occurred intensively under a multi-pass line which relatively had more intermetallic compounds, and the precipitation of the σ phase caused the formation of Cr carbide.

  6. Effect of intermetallic precipitation on the properties of multi passed duplex stainless steel weldment

    International Nuclear Information System (INIS)

    Bae, Seong Han; Lee, Hae Woo

    2014-01-01

    This study investigated the effect of the aging time of weldment of 24Cr-3.5Mo duplex stainless steel on the microstructure and corrosion behavior. After performing FCAW, we carried out heat treatments at varying times at 850 ℃ and performed observation of microstructure, potentio dynamic test, SEM-EDS analysis, and X-ray diffraction analysis. As the aging time increased, the fraction of δ-ferrite decreased sharply, but the fraction of γ slightly increased. The σ phase was generated at a non-metallic inclusion along the grain boundaries of δ-ferrite and γ, while the χ phase was generated in the structure of δ-ferrite. As the intermetallic compounds increased, the critical pitting potential fell sharply, and PREN of the surrounding structure decreased by 5 due to precipitation of the σ phase in 3.5% NaCl at 60 ℃. Pitting occurred intensively under a multi-pass line which relatively had more intermetallic compounds, and the precipitation of the σ phase caused the formation of Cr carbide.

  7. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  8. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Shamah, A.M.; Ibrahim, S. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt); Hanna, F.F., E-mail: fariedhanna@yahoo.com [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2011-02-03

    Research highlights: > Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al{sub 86}Cr{sub 14}, Al{sub 84}Fe{sub 16} and Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  9. Formation of nano quasicrystalline and crystalline phases by mechanical alloying

    International Nuclear Information System (INIS)

    Shamah, A.M.; Ibrahim, S.; Hanna, F.F.

    2011-01-01

    Research highlights: → Mechanical alloying (MA) is an important method to investigate the formation of nano sized quasicrystalline phases in Al 86 Cr 14 , Al 84 Fe 16 and Al 62.5 Cu 25 Fe 12.5 compounds. The second part of the present work is an attempt to examine the possibility of formation of the i-phase of the Al 62.5 Cu 25 Fe 12.5 , which lies in the region of the perfect i-phase in the ternary phase diagram, by rapid solidification method. To perform the obtained quasi phase mechanical alloying and heat treatment at the rapid solidified sample were done. - Abstract: In the present work, the formation of nano quasicrystalline icosahedral phase in Al 86 Cr 14 , Al 84 Fe 16 and Al 62.5 Cu 25 Fe 12.5 alloys has been investigated by mechanical alloying. Mixtures of quasicrystalline and related crystalline phases have been observed under various milling conditions. The X-ray diffraction, differential thermal analysis and electrical resistivity techniques have been used for characterization and physical property measurements. The particle size was calculated by X-ray profile using Williamson-Hall plot method and it was found to be 25-50 nm size.

  10. BCT phase formation in synthesis via microwave assisted hydrothermal method

    International Nuclear Information System (INIS)

    Barra, B.C.; Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Lanzi, C.A.C.

    2012-01-01

    In previous work, samples of barium and calcium titanate (Ba1-xCaxTiO3 (BCT x = 0- 1) were prepared using the microwave assisted hydrothermal method in conditions of relatively short time and temperature. To the sample with 75wt% of Ca no BCT phase was formed but the photoluminescent emission was improved. In the present study, these titanates were synthesized by the same method with other concentrations of Ca, Ba1-xCaxTiO3 (x = 0, 0.20, 0.40, 0. 60, 0.80 and 1) to evaluate the limit of BCT phase formation. Results of X-ray diffraction showed that the phase BCT is formed between zero and 50wt%-Ca, in Ba substitution. Above this concentration, was observed only the formation of carbonates, and to x = 1 there was carbonate formation together with CaTiO3. These results were confirmed by micro Raman spectroscopy. (author)

  11. Controlling phase formation during aluminium/steel Nd:YAG laser brazing

    Directory of Open Access Journals (Sweden)

    Rodriguez, L.

    2006-12-01

    Full Text Available The reduction of fuel consumption of internal combustion motors, imposed by the new anti-pollution and energy saving laws may be attained by reducing the weight of vehicles, introducing, for example, aluminium sections into the main steel car-body. Laser brazing is a process which can be used to perform such a junction. The main problem of welding this kind of materials combination with conventional processes is the potential formation of inter-metallic phases, which reduces the good performance of the joint. Laser brazing allows a very good control of the thermal development of the joint, with a limited precipitation of these brittle phases. This paper presents the results of a feasibility study made with ZnAl-30 as filler metal. The study shows that the type of configuration used for the assembly has a particular influence on the formation of brittle phases and consequently on the mechanical performance of the joint.

    La reducción en el consumo de combustibles fósiles y las emergentes leyes mundiales anti-contaminación, obligan a prever una reducción en el peso de los vehículos de transporte. Esta condición se puede cumplir por ejemplo, introduciendo componentes de Aluminio en el cuerpo de la carrocería principal de acero de los mencionados vehículos. El principal problema que se presenta al realizar este tipo de ensamblaje es la formación de fases íntermetálicas frágiles que pueden comprometer el buen desenvolvimiento de la unión. La soldadura con rayo láser permite un buen control de calor aportado y una formación muy limitada de este tipo de fases. Este trabajo presenta los resultados preliminares de los estudios realizados en uniones soldadas con ZnAl-30 como material de aportación. El estudio muestra que el tipo de configuración utilizada para realizar la soldadura tiene una influencia importante sobre la posibilidad de formación de estas fases ínter-metálicas.

  12. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  13. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  14. Investigation of the phase formation from nickel coated nanostructured silicon

    Science.gov (United States)

    Shilyaeva, Yulia I.; Pyatilova, Olga V.; Berezkina, Alexandra Yu.; Sysa, Artem V.; Dudin, Alexander A.; Smirnov, Dmitry I.; Gavrilov, Sergey A.

    2016-12-01

    In this paper, the influence of the conditions of chemical and electrochemical nickel plating of nanostructured silicon and subsequent heat treatment on the phase composition of Si/Ni structures with advanced interface is studied. Nanostructured silicon formed by chemical and electrochemical etching was used for the formation of a developed interphase surface. The resulting Si/Ni samples were analyzed using scanning electron microscopy, energy dispersive X-ray analysis, and X-ray phase analysis. The experiments have revealed the differences in phase composition of the Si/Ni structures obtained by different methods, both before and after heat treatment.

  15. Growth Law For Peritectic Phases Formation In The Zinc Coating

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2015-09-01

    Full Text Available Some experiments dealing with the isothermal hot dip galvanizing were carried out. The (Zn – coating settled on the Armco-iron substrate were examined after arresting the solidification for different periods of time. The measurement of the thickness of each sub-layer in the coating were performed due to the SEM – analysis. The zinc segregation on the cross-section of the studied sub-layers were also determined by the EDS technique. The growth laws are formulated mathematically for each of the observed sub-layer. The mechanism of the sub-layer formation is also analysed due to the observation of the birth/nucleation of the phases in the sub-layers and the effect of flux onto the sub-layers morphology formation. The appearance of each phase is referred to the Fe-Zn diagram for stable equilibrium according to which these phases are the products of the adequate peritectic transformation.

  16. The Gas-Phase Formation of Methyl Formate in Hot Molecular Cores

    Science.gov (United States)

    Horn, Anne; Møllendal, Harald; Sekiguchi, Osamu; Uggerud, Einar; Roberts, Helen; Herbst, Eric; Viggiano, A. A.; Fridgen, Travis D.

    2004-08-01

    Methyl formate, HCOOCH3, is a well-known interstellar molecule prominent in the spectra of hot molecular cores. The current view of its formation is that it occurs in the gas phase from precursor methanol, which is synthesized on the surfaces of grain mantles during a previous colder era and evaporates while temperatures increase during the process of high-mass star formation. The specific reaction sequence thought to form methyl formate, the ion-molecule reaction between protonated methanol and formaldehyde followed by dissociative recombination of the protonated ion [HCO(H)OCH3]+, has not been studied in detail in the laboratory. We present here the results of both a quantum chemical study of the ion-molecule reaction between [CH3OH2]+ and H2CO as well as new experimental work on the system. In addition, we report theoretical and experimental studies for a variety of other possible gas-phase reactions leading to ion precursors of methyl formate. The studied chemical processes leading to methyl formate are included in a chemical model of hot cores. Our results show that none of these gas-phase processes produces enough methyl formate to explain its observed abundance.

  17. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  18. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    International Nuclear Information System (INIS)

    Samuel, Agnes M.; Samuel, Fawzy H.

    2018-01-01

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al 4 (Ce,La), Al 13 (Ce,La) 2 Cu 3 , Al 7 (Cu,Fe) 6 (Ce,La) 6 Si 2 , Al 4 La, Al 2 La 5 Si 2 , Al 2 Ce 5 Si 2 , Al 2 (Ce,La) 5 Si 2 . Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al 12 La 3 Ti 2 , or Al 12 (Ce,La) 3 Ti 2 . Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  19. Structural control of void formation in dual phase steels

    DEFF Research Database (Denmark)

    Azuma, Masafumi

    The objective of this study is to explore the void formation mechanisms and to clarify the influence of the hardness and structural parameters (volume fraction, size and morphology) of martensite particles on the void formation and mechanical properties in dual phase steels composed of ferrite...... and (iii) strain localization. The critical strain for void formation depends on hardness of the martensite, but is independent of the volume fraction, shape, size and distribution of the martensite. The strain partitioning between the martensite and ferrite depends on the volume fraction and hardness...... of the martensite accelerates the void formation in the martensite by enlarging the size of voids both in the martensite and ferrite. It is suggested that controlling the hardness and structural parameters associated with the martensite particles such as morphology, size and volume fraction are the essential...

  20. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  1. Properties of vacancies type defects in intermetallic compounds of the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, M.I; Fernandez, J.R; Monti, A.M

    2006-01-01

    There are five intermetallic compounds in the Al-Mo system that are stable at low temperatures. Of these, the richest phases in some of the two components are the compounds Al 12 Mo and AlMo 3 , whose Pearson symbols are cI26 and cP8, respectively. In both structures, the atoms of the minority component occupy positions bcc and each one of them is surrounded by 12 atoms first neighbors of the other component. These 13 atoms form icosahedron shaped units or heaps. Unlike what occurs in Al 12 Mo, the AlMo 3 heaps are superposed by sharing atoms from the majority component. The neighboring environment of the majority component is mixed but differs considerably in one or another intermetallic. In each structure, the sites occupied by any given species are crystallographically equivalent, that is, they can self generate from one of the positions and from the crystalline structure's elements of symmetry. This work studies the energy of vacancies and antisites in both compounds and the atomic-jump processes to vacant sites. Computer simulation techniques were used based on minimizing the system's energy. Many-body embedded-atom potentials were used to represent the atomic interactions. The potential mixture used resulted in an adjustment to the crystalline structure of the AlMo 3 phase at low temperatures and to its formation energy (cw)

  2. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, A L; Miguel-Junior, E; Silva, R I.V. da; Angelo, A C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise

    2004-07-01

    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  3. Formation of quasicrystals and amorphous-to-quasicrystalline phase transformation kinetics in Zr65Al7.5Ni10Cu7.5Ag10 metallic glass under pressure

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Zhuang, Yanxin; Rasmussen, Helge Kildahl

    2001-01-01

    The effect of pressure on the formation of quasicrystals and the amorphous-to-quasicrystalline phase transformation kinetics in the supercooled liquid region for a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass have been investigated by in situ high-pressure and high-temperature nonisothermal and isothermal...... of quasicrystals decrease, Atomic mobility is important for the formation of quasicrystals from the metallic glass whereas the relationship of the crystallization temperature vs pressure for the transition from the quasicrystalline state to intermetallic compounds may mainly depend on the thermodynamic potential...... energy barrier. To study the amorphous-to-quasicrystalline phase transformation kinetics in the metallic glass, relative volume fractions of the transferred quasicrystalline phase as a function of annealing time, obtained at 663, 673, 683, and 693 K, have been analyzed in details using 14 nucleation...

  4. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  5. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  6. Simulating the Phases of the Moon Shortly after Its Formation

    Science.gov (United States)

    Noordeh, Emil; Hall, Patrick; Cuk, Matija

    2014-01-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its…

  7. Growth kinetics of the intermetallic phase in diffusion-soldered (Cu-5 at.%Ni)/Sn/(Cu-5 at.%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Miernik, K.; Wojewoda-Budka, J.; Szyszkiewicz, K.; Filipek, R.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2013-01-01

    A stereological analysis was carried out in order to obtain the kinetics parameters of the (Cu1-xNix)6Sn5 growth in the diffusion soldered (Cu–5 at.%Ni)/Sn/(Cu–5 at.%Ni) interconnections where previously anomalous fast growth of this phase was described. The n-parameter in the equation x = ktn was

  8. Electrochemical properties of the passive film on bulk Zr–Fe–Cr intermetallic fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yakui [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xing, Shupei; Ma, Wen [School of Materials Science and Engineering, Inner Mongolia University of Technology, Huhhot 010051 (China)

    2016-12-01

    Highlights: • SPS was employed to prepare Zr-based intermetallics which were commonly existed in zircaloy. • Zr-based intermetallics act as cathode when they embedded in zirconium matrix. • The passive films on surface of intermetallics behaved as n-type semiconductors. • Carrier concentration of Zr(Fe{sub 3}Cr){sub 2} was much lower than that of other intermetallics. - Abstract: Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB{sub 2} type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr–Fe–Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr–Fe and Zr–Cr binary intermetallics.

  9. Diffusion mechanisms in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)

    1992-08-01

    Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.

  10. Intermetallic matrix composites; Proceedings of the MRS Symposium, San Francisco, CA, Apr. 18-20, 1990

    International Nuclear Information System (INIS)

    Anton, D.L.; Martin, P.L.; Miracle, D.B.; Mcmeeking, R.

    1990-01-01

    The present volume on intermetallic matrix composites discusses the modeling, processing, microstructure/property relationships, and compatibility of intermetallic matrix composites. Attention is given to models for the strength of ductile matrix composites, innovative processing techniques for intermetallic matrix composites, ductile phase toughening of brittle intermetallics, and reactive synthesis of NbAl3 matrix composites. Topics addressed include solidification processing of NbCr2 alloys, Ta and Nb reinforced MoSi2, the microstructure and mechanical behavior of Ni3Al-matrix composites, and ductile-phase toughening of Cr3Si with chromium. Also discussed are dislocation morphologies in TiB2/NiAl, the development of highly impact resistant NiAl matrix composites, the effect of notches on the fatigue life of the SCS-6Ti3Al composite, and the chemical stability of fiber-metal matrix composites

  11. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  12. Study on the Formation of Reaction Phase to Si Addition in Boron Steel Hot-Dipped in Al–7Ni Alloy

    Directory of Open Access Journals (Sweden)

    Jung-Gil Yun

    2017-11-01

    Full Text Available In order to reduce the intermetallic compounds formed during the application of an Al–7Ni wt % hot-dip multifunctional coating on boron steel, developed for Tailor Welded Blanks (TWB and hot stamping, 2–6 wt % Si was added to the coating to change the reaction layer. The coating was run at 690 °C for 120 s. Al9FeNi phases were formed on the steel interface, Fe2Al5 was formed on the steel, FeAl3 was generated between the existing layers, and flake-type Al2Fe3Si3 was formed in the Fe2Al5 phase, depending on the Si content. In addition, as Si was added to the coating, the thickness of the Fe2Al5 phase decreased and the thickness of the Al9FeNi phase and Al2Fe3Si3 increased. The decrease in the thickness of the Fe2Al5 phase was mainly due to the effect of the Si solid solution and the Al2Fe3Si3 formation in the Fe2Al5 phase. The reason for the growth of Al9FeNi is that the higher the Si content in the coating, the more the erosion of the interface of the steel material due to the coating solution. Therefore, the outflow of Fe into the coating liquid increased.

  13. Laws of phase formation in ion-implanted metals

    International Nuclear Information System (INIS)

    Kazdaev, H.R.; Abylkhalykova, R.B.; Skakov, M.K.

    2004-01-01

    Full text: Main laws of ordered structures formation at molybdenum implantation by elements forming phases of introduction (B, C, N, 0, Si, P, S) are discovered in this work. According to them the character of structural and phase transformations in molybdenum at ion implantation is determined not by kinetic parameters of bombarding particles and their chemical activity but by size factor η x/Me (ratio of nuclear radii of introduced elements and atoms of a matrix). At change of its meaning in the certain limits the following can be observed: superstructures formation (η x/Mo x/Mo x/Mo >0.69). In the latter case at the further implantation doze increasing recrystallization of molybdenum monocrystalline layers amorphized during previous bombarding with chemical connection formation takes place, characterized by us as ion-inducted synthesis. The phenomenon discovered on the samples implanted by phosphorus ions. As the result, the high-temperature phase of molybdenum monophosphide MoP having densely situated lattice was synthesized. The complete confirmation of the main laws of structural and phased transformations at ion implantation established by results on molybdenum monocrystals with OCC lattice was achieved at realization of similar researches on the other transitive metal - zirconium which differs from molybdenum according to a number of attributes: a type of an initial lattice structural condition (large scaled polycrystal), presence of interparticle borders and high solubility of atmospheric impurities (nitrogen, carbon, oxygen). The discovered laws have proved to be true also according to ion implanted samples of monocrystal tungsten and polycrystal tantalum

  14. Influence of second phase dispersion on void formation during irradiation

    International Nuclear Information System (INIS)

    Sundararaman, M.; Banerjee, S.; Krishnan, R.

    Irradiation-induced void formation in alloys has been found to be strongly influenced by the microstructure, the important microstructural parameters being the dislocation density and the nature, density and distribution of second-phase precipitates. The effects of various types of precipitates on void swelling have been examined using the generally-accepted model of void formation : void embryos are assumed to grow in a situation where equal numbers of vacancies and interstitials are continuously generated by the incident irradiation, the interstitials being somewhat perferentially absorbed in some sinks present in the material. The mechanism of the trapping of defects by a distribution of precipitates has been discussed and the available experimental results on the suppression of void formation in materials containing coherent precipitates have been reviewed. Experimental results on the microstructure developed in a nickel-base alloys, Inconel-718 (considered to be a candidate material for structural applications in fast reactors), have been presented. The method of determination of the coherency strain associated with the precipitates has been illustrated with the help of certain observations made on this alloy. The major difficulty in using a two-phase alloy in an irradiation environment is associated with the irradiation-induced instability of the precipitates. Several processes such as precipitate dislocation (in which the incident radiation removes the outer layer of precipitates by recoil), enhanced diffusion disordering, fragmentation of precipitates, etc. are responsible for bringinq about a significant change in the structure of a two-phase material during irradiation. The effect of these processes on the continued performance of a two-phase alloy subjected to irradiation at an elevated temperature has been discussed. (auth.)

  15. Microstructure and tribological properties of Ti–Cu intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo, Chun; Zhou, Jiansong; Yu, Youjun; Wang, Lingqian; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    Highlights: ► Ti–Cu coating has been synthesized on pure Ti substrate by laser cladding. ► Microstructure and tribological properties of Ti–Cu coating were analyzed. ► The prepared Ti–Cu intermetallic compound coating has excellent wear resistance. -- Abstract: Ti–Cu intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using copper powder as the precursor. It has been found that the prepared coating mainly contains of TiCu, TiCu 3 , Ti 3 Cu, and Ti phases. The transmission electron microscopy results conform further the existence of Ti–Cu intermetallic compound in the fabricated coating. Tribological properties of the prepared Ti–Cu intermetallic compound coating were systematically evaluated. It was found that normal loads and sliding speeds have a strong influence on the friction coefficient and wear rate of Ti–Cu intermetallic compound coating. Namely, the friction coefficient of the Ti–Cu intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the Ti–Cu intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  16. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  17. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  18. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  19. Formation of tungsten blue oxide and its phase constitution

    International Nuclear Information System (INIS)

    Zou, Z.; Wu, E.; Tan, A.; Qian, C.

    1984-01-01

    By means of X-ray diffraction structure analysis, SEM observation, chemical analysis and particle specific surface analysis etc., an investigation was made in order to determine the regularity of tungsten blue oxide formation during reductional calcine process of APT. It was found that the oxygen index (OI) decreased continuously with increasing calcine temperature. The decrease rate of OI variated as the calcine atmosphere being changed, the stronger the reductivity of the atmosphere is, the more OI decreases. The deammonia-dewater process and the phase constitution variation during calcine was studied, some idea for description of phase transformation path was suggested. It was found that the most important parameter affecting phase constitution and transformation is calcine temperature. At the temperature lower than 450 0 C, the main formed phase was ATB, while at higher temperature, the different phase like W/sub 20/O/sub 58/, WO/sub 3/ etc., could be formed by different ways depending on the atmosphere reductivity. The composition and the OI of ATB are changeable. An experiment for some blue oxides reduction at low temperature was carried out. It was found that OI and the constitution of blue oxide strongly affected the particle size of the formed W-powder

  20. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing

    International Nuclear Information System (INIS)

    Li, Yi; Lim, Adeline B.Y.; Luo, Kaiming; Chen, Zhong; Wu, Fengshun; Chan, Y.C.

    2016-01-01

    The evolution of microstructure in Cu/In–48Sn/Cu solder bump interconnects at a current density of 0.7 × 10"4 A/cm"2 and ambient temperature of 55 °C has been investigated. During electromigration, tin (Sn) atoms migrated from cathode to anode, while indium (In) atoms migrated from anode to cathode. As a result, the segregation of the Sn-rich phase and the In-rich phase occurred. A Sn-rich layer and an In-rich layer were formed at the anode and the cathode, respectively. The accumulation rate of the Sn-rich layer was 1.98 × 10"−"9 cm/s. The atomic flux of Sn was calculated to be approximately 1.83 × 10"1"3 atoms/cm"2s. The product of the diffusivity and the effective charge number of Sn was determined to be approximately 3.13 × 10"−"1"0 cm"2/s. The In–48Sn/Cu IMC showed a two layer structure of Cu_6(Sn,In)_5, adjacent to the Cu, and Cu(In,Sn)_2, adjacent to the solder. Both the cathode IMC and the anode IMC thickened with increasing electromigration time. The IMC evolution during electromigration was strongly influenced by the migration of Cu atoms from cathode to anode and the accumulation of Sn-rich and In-rich layers. During electromigration, the Cu(In,Sn)_2 at the cathode interface thickened significantly, with a spalling characteristic, due to the accumulation of In-rich layer and the migration of Cu atoms - while the Cu(In,Sn)_2 at the anode interface reduced obviously, due to the accumulation of Sn-rich layer. The mechanism of electromigration-induced failure in Cu/In–48Sn/Cu interconnects was the cathode Cu dissolution-induced solder melt, which led to the rapid consumption of Cu in the cathode pad during liquid-state electromigration and this finally led to the failure. - Highlights: • Sn migrates to the anode, while In migrates to the cathode, during EM in Cu/In–48Sn/Cu. • The atomic flux of Sn has been calculated. • The interfacial IMCs were identified as: Cu_6(Sn,In)_5 + Cu(In,Sn)_2. • The interface evolution is strongly

  1. Influence of phase transition on pattern formation during catalytic reactions

    OpenAIRE

    Andrade, Roberto Fernandes Silva; Lima, D.; Cunha, F. B.

    2000-01-01

    p.434–445 We investigate the influence of the order of surface phase transitions on pattern formation during chemical reaction on mono-crystal catalysts. We use a model consisting of two partial differential equations, one of which describes the dynamics of the surface state with the help of a Ginzburg–Landau potential. Second- or first-order transitions are described by decreasing or increasing the relative value of the third-order coefficient of the potential. We concentrate on the stabi...

  2. Electronic structure and properties of rare earth and actinide intermetallics

    International Nuclear Information System (INIS)

    Kirchmayr, H.R.

    1984-01-01

    There are 188 contributions, experimental and theoretical, a few on rare earth and actinide elements but mostly on rare earth and actinide intermetallic compounds and alloys. The properties dealt with include 1) crystal structure, 2) magnetic properties and magnetic structure, 3) magnetic phase transformations and valence fluctuations, 4) electrical properties and superconductivity and their temperature, pressure and magnetic field dependence. A few papers deal with crystal growth and novel measuring methods. (G.Q.)

  3. Novel criterion for formation of metastable phase from undercooled melt

    International Nuclear Information System (INIS)

    Kuribayashi, Kazuhiko; Nagashio, Kosuke; Niwata, Kenji; Kumar, M.S. Vijaya; Hibiya, Taketoshi

    2007-01-01

    Undercooling a melt facilitates the preferential nucleation of a metastable phase. In the present study, the formation of metastable phases from undercooled melts was considered from the viewpoint of the competitive nucleation criterion. The classical nucleation theory shows us that the most critical factor for forming a critical nucleus is the interface free energy σ. Furthermore, Spaepen's negentropic model on σ generated the role of the scaling factor α that depends on the polyhedral order in the liquid and solid phases prominent in simple liquids such as the melt of monoatomic metals. In ionic materials such as oxides, however, in which oxygen polyhedrons including a cation at their center are the structural units both in the solid and liquid phases, the entropy of fusion, rather than α, can be expected to become dominant in the determination of σ. In accordance with this idea, using REFeO 3 as the model material (where RE denotes rare-earth elements) the entropy-undercooling regime criterion was proposed and verified

  4. MAX phase formation by intercalation upon annealing of TiCx/Al (0.4 ≤ x ≤ 1) bilayer thin films

    International Nuclear Information System (INIS)

    Abdulkadhim, Ahmed; Takahashi, Tetsuya; Music, Denis; Munnik, Frans; Schneider, Jochen M.

    2011-01-01

    TiC x /Al bilayer thin films were synthesized using combinatorial magnetron sputtering to study the influence of C content on the reaction products at different annealing temperatures. Based on energy-dispersive X-ray analysis calibrated by elastic recoil detection analysis data, x in TiC x was varied from 0.4 to 1.0. Film constitution was studied by X-ray diffraction before and after annealing at temperatures from 500 to 1000 deg. C. The formation of TiC x and Al in the as-deposited samples over the whole C/Ti range was identified. Upon annealing, TiC x reacts with Al to form Ti-Al-based intermetallics. At temperatures as low as 700 deg. C, the formation of MAX phases (space group P6 3 /mmc) is observed at x ≤ 0.7. Based on the comparison between the C content induced changes in the lattice spacing of TiC x and Ti 2 AlC as well as Ti 3 AlC 2 , we infer the direct formation of MAX phases by Al intercalation into TiC x for x ≤ 0.7.

  5. MAX phase formation by intercalation upon annealing of TiC{sub x}/Al (0.4 {<=} x {<=} 1) bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abdulkadhim, Ahmed; Takahashi, Tetsuya [Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany); Music, Denis, E-mail: music@mch.rwth-aachen.de [Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany); Munnik, Frans [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany)

    2011-09-15

    TiC{sub x}/Al bilayer thin films were synthesized using combinatorial magnetron sputtering to study the influence of C content on the reaction products at different annealing temperatures. Based on energy-dispersive X-ray analysis calibrated by elastic recoil detection analysis data, x in TiC{sub x} was varied from 0.4 to 1.0. Film constitution was studied by X-ray diffraction before and after annealing at temperatures from 500 to 1000 deg. C. The formation of TiC{sub x} and Al in the as-deposited samples over the whole C/Ti range was identified. Upon annealing, TiC{sub x} reacts with Al to form Ti-Al-based intermetallics. At temperatures as low as 700 deg. C, the formation of MAX phases (space group P6{sub 3}/mmc) is observed at x {<=} 0.7. Based on the comparison between the C content induced changes in the lattice spacing of TiC{sub x} and Ti{sub 2}AlC as well as Ti{sub 3}AlC{sub 2}, we infer the direct formation of MAX phases by Al intercalation into TiC{sub x} for x {<=} 0.7.

  6. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  7. Phase separation like dynamics during Myxococcus xanthus fruiting body formation

    Science.gov (United States)

    Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua

    2015-03-01

    Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.

  8. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  9. Thermomechanical processing of plasma sprayed intermetallic sheets

    Science.gov (United States)

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  10. Method of production multifilamentary intermetallic superconductors

    International Nuclear Information System (INIS)

    Marancik, W.G.; Young, M.S.

    1980-01-01

    A method of making A-15 type intermetallic superconductors is disclosed which features elimination of numerous annealing steps. Nb or V filaments are embedded in Cu matrices; annular layers of Sn or Ga, respectively, separated from each other by Cu layers, provide the other component of the intermetallic superconductors Nb3Sn and V3Ga

  11. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  12. Nematic phase formation in suspensions of graphene oxide

    Science.gov (United States)

    Fresneau, Nathalie; Campidelli, Stéphane

    The last decade has seen the rise of graphene. Graphene is a single layer of graphite; it can be obtained by direct liquid phase exfoliation of the latter through harsh sonication. This technique presents the disadvantage to produce small graphene flakes (typically in the 0.05 to 0.4 μm2 range for the monolayers) and multilayer graphene with uncontrolled thickness distributions. In order to improve the exfoliation process, one has to counter the strong van der Waals interactions between the carbon planes of graphite. This implies to increase the distance between two planes and it can be done, for example, by oxidizing graphite to introduce oxygen species in the graphenic planes. The fabrication of graphite oxide is known for almost 150 years, and it became popular again these last ten years. Generally, the oxidation of graphite is performed following a method described by Hummers in the 1950's and the material produced by this technique exfoliates quasi-spontaneously into monolayer species called graphene oxide (GO). The highly anisotropic shape of GO (several μm in length and width for a thickness of ca. 1 nm) combined with the presence of oxygenated functions on the sp2 carbon structure of graphene lead to the formation of a lyotropic liquid crystalline phase in water. Above a certain concentration of graphene flakes the gain in translational entropy for a long-range ordered phase outweighs the loss in rotational entropy, and the liquid crystal phase then forms. The value of the threshold is affected by the aspect ratio of the graphene flakes but other factors such as the interactions also play a strong role.

  13. Valence instabilities in cerium intermetallics

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1982-01-01

    The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn 3 . In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn 3 and Cesub(1-x)Ysub(x)Sn 3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn 3 , also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In 3 and Cesub(1-x)Ysub(x)In 3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi 2 , CeSi, and in CeGa 2 . (Auth.)

  14. The role of intermetallic precipitates in Ti-62222S

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D J [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Broderick, T F [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Woodhouse, J B [UES Inc, Dayton, OH (United States); Hoenigman, J R [Wright State Univ., Dayton, OH (United States). Research Inst.

    1996-08-15

    Samples of Ti-62222-0.23wt.%Si were heat treated and aged at temperatures ranging from 1150 F to 1500 F with the view of effecting selective precipitation of {alpha}{sub 2} precipitates and silicides (i.e. Ti{sub x}Zr{sub 5-x}Si{sub 3}). The effect of these intermetallic precipitates on the mechanical properties and fracture morphology was assessed via three separate microstructural conditions: Ti-62222S with {alpha}{sub 2} precipitates, Ti-62222S with {alpha}{sub 2} and silicide precipitates, and Ti-62222S with silicide precipitates. Both types of intermetallic precipitate appear to lower the fracture toughness, however {alpha}{sub 2} promotes intergranular fracture while silicides lead to transgranular failure and dimpling. The combined presence of the {alpha}{sub 2} and silicides leads to mixed mode failure. Further, since {alpha}{sub 2} is present in the {alpha} phase and silicides precipitate out in the {beta} phase, it appears that the effect of each of these intermetallics in Ti-62222S is additive rather than synergistic. (orig.)

  15. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  16. Theoretical energy release of thermites, intermetallics, and combustible metals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1998-06-01

    Thermite (metal oxide) mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, the authors review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  17. Phase Transitions in a Social Impact Model for Opinion Formation

    Science.gov (United States)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    A model for opinion formation in a social group, based on the Theory of Social Impact developed by Latané, is studied by means of numerical simulations. Interactions among the members of the group, as well as with a strong leader competing with the mass media, are considered. The model exhibits first-order transitions between two different states of opinion, which are supported by the leader and the mass media, respectively. The social inertia of the group becomes evident when the opinion of the leader changes periodically. In this case two dynamic states are identified: for long periods of time, the group follows the changes of the leader but, decreasing the period, the opinion of the group remains unchanged. This scenery is suitable for the ocurrence of dynamic phase transitions.

  18. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  19. The gas chimney formation during the steam explosion premixing phase

    International Nuclear Information System (INIS)

    Leskovar, M.

    2001-01-01

    The crucial part in isothermal premixing experiment simulation is the correct prediction of the gas chimney, which forms when the spheres penetrate into water. The first simulation results with the developed original combined multiphase model showed that the gas chimney starts to close at the wrong place at the top of the chimney and not in the middle, like it was observed in the experiments. To find the physical explanation for this identified weakness of our numerical model a comprehensive parametric analysis (mesh size, initial water-air surface thickness, water density, momentum coupling starting position) has been performed. It was established that the reason for the unphysical gas chimney closing at the top could be the gradual air-water density transition in the experiment model, since there is due to the finite differences description always a transition layer with intermediate phases density over the pure water phase. It was shown that this difference between our numerical model and the experiment can be somewhat compensated if the spheres interfacial drag coefficient at the upmost mesh plane of the unphysical air-water transition layer is artificially risen. On this way a more correct gas chimney formation can be obtained.(author)

  20. Ground state searches in fcc intermetallics

    International Nuclear Information System (INIS)

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration

  1. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  2. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  3. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAl (γ intermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  4. REE interactions with hydroxyapatite. Formation of secondary solid phases

    International Nuclear Information System (INIS)

    Seco, F.; Pablo, J. de; Bruno, J.

    2005-01-01

    Full text of publication follows: Lighter rare earth elements (REE) commonly occur in nature as the phosphate mineral monazite, while the heavier REE and Yttrium occur as the phosphate mineral xenotime, which has a similar composition, but different coordination environment of the cation. The geochemical behaviour of REE is mainly controlled by their interactions with phosphate minerals such as hydroxyapatite, Ca 5 (PO 4 ) 3 OH, which is a very common phosphate phase in subsurface environments. Furthermore, is a material considered to be used in a High Level Nuclear Waste repository due to its high capacity in the retention of radionuclides. The objective of this work has been to study the reaction mechanisms and thermodynamics of the interaction of La(III) and Yb(III) with hydroxyapatite as a model for general Ln(III) and Ac(III) behaviour. The surface interaction of La(III) and Yb(III) with synthetic hydroxyapatite has been investigated in batch experiments with low REE 3+ initial concentrations in constant 0.1 M NaClO 4 , at room temperature and in N 2 (g) atmosphere to avoid carbonate complex formation. The initial kinetic experiments indicated that a short contact time is needed to reach equilibrium ( 4 .nH 2 O, where a 0.83 4 .nH 2 O with 1.78 4 medium and under N 2 (g) atmosphere. The experimental data indicate that the solubility equilibria is mainly controlled by the aqueous species REE 3+ until approximately pH=5 where the formation of aqueous complexes of the form REEHPO 4 + , REEPO 4 and REE(PO 4 ) 2 3- must be considered. (authors)

  5. Nonequilibrium phase formation in oxides prepared at low temperature: Fergusonite-related phases

    International Nuclear Information System (INIS)

    Mather, S.A.; Davies, P.K.

    1995-01-01

    Sol-gel methods have been developed to prepare YNbO 4 , YTaO 4 , and other rare-earth niobates and tantalates with fergusonite-related crystal structures. At low temperatures, all of the fergusonites, with the exception of SmTaO 4 , crystallize in a metastable tetragonal (T') structure similar to that of tetragonal zirconia. Although all of the equilibrium forms of these oxides adopt a crystal structure containing an ordered distribution of the trivalent and pentavalent cations, a random cation distribution is obtained in the metastable T' phase. Metastable phase formation is often ascribed solely to kinetically limited topotactic crystallization. However, the changes in the grain size and unit-cell volumes that accompany the metastable-to-equilibrium fergusonite conversions imply that other physical phenomena induced by small-particle synthesis, namely the Gibbs-Thompson pressure effect and the increased contribution of surface energy, cannot be ignored

  6. Intermetallics as innovative CRM-free materials

    Science.gov (United States)

    Novák, Pavel; Jaworska, Lucyna; Cabibbo, Marcello

    2018-03-01

    Many of currently used technical materials cannot be imagined without the use of critical raw materials. They require chromium (e.g. in stainless and tool steels), tungsten and cobalt (tool materials, heat resistant alloys), niobium (steels and modern biomaterials). Therefore there is a need to find substitutes to help the European economy. A promising solution can be the application of intermetallics. These materials offer wide variety of interesting properties, such as high hardness and wear resistance or high chemical resistance. In this paper, the overview of possible substitute materials among intermetallics is presented. Intermetallics based on aluminides and silicides are shown as corrosion resistant materials, composites composed of ceramics in intermetallic matrix as possible tool materials. The manufacturing processes are being developed to minimize the disadvantages of these materials, mainly the room-temperature brittleness.

  7. Hot cracks formation nature in welds Al-Mg-Li and Al-Cu-Li alloy systems

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Mechanism of cleavage formation in alloy systems Al-Mg-Li and Al-Cu-Li welds at thermal test is proposed. This mechanism is connected with stitching spacing and stretching in direction of main deformation of intermetallic compounds inclusions and with active gases movement into the liquid phase [ru

  8. Average accelerator simulation Truebeam using phase space in IAEA format

    International Nuclear Information System (INIS)

    Santana, Emico Ferreira; Milian, Felix Mas; Paixao, Paulo Oliveira; Costa, Raranna Alves da; Velasco, Fermin Garcia

    2015-01-01

    In this paper is used a computational code of radiation transport simulation based on Monte Carlo technique, in order to model a linear accelerator of treatment by Radiotherapy. This work is the initial step of future proposals which aim to study several treatment of patient by Radiotherapy, employing computational modeling in cooperation with the institutions UESC, IPEN, UFRJ e COI. The Chosen simulation code is GATE/Geant4. The average accelerator is TrueBeam of Varian Company. The geometric modeling was based in technical manuals, and radiation sources on the phase space for photons, provided by manufacturer in the IAEA (International Atomic Energy Agency) format. The simulations were carried out in equal conditions to experimental measurements. Were studied photons beams of 6MV, with 10 per 10 cm of field, focusing on a water phantom. For validation were compared dose curves in depth, lateral profiles in different depths of the simulated results and experimental data. The final modeling of this accelerator will be used in future works involving treatments and real patients. (author)

  9. Measuring secondary phases in duplex stainless steels

    Science.gov (United States)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  10. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Agnes M.; Samuel, Fawzy H. [Univ. du Quebec a Chicoutimi (Canada). Dept. des Sciences Appliquees; Doty, Herbert W. [General Motors, Pontiac, MI (United States). Materials Engineering; Valtierra, Salvador [Nemak, S.A., Garza Garcia (Mexico)

    2018-02-15

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al{sub 4}(Ce,La), Al{sub 13}(Ce,La){sub 2}Cu{sub 3}, Al{sub 7}(Cu,Fe){sub 6}(Ce,La){sub 6}Si{sub 2}, Al{sub 4}La, Al{sub 2}La{sub 5}Si{sub 2}, Al{sub 2}Ce{sub 5}Si{sub 2}, Al{sub 2}(Ce,La){sub 5}Si{sub 2}. Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al{sub 12}La{sub 3}Ti{sub 2}, or Al{sub 12}(Ce,La){sub 3}Ti{sub 2}. Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  11. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  12. Formation of ω-phase in Zr-4 at.% Cr alloy

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Kazantseva, N.V.

    1996-01-01

    The ω-phase has been discovered in zirconium-base alloys with the transition metals of Period 4 of the Periodic Table only in Zr-V, Zr-Cr, and Zr-Cu alloys. The first mention about the ω-phase formation in Zr-Cr alloys was given for Zr-4.5 at.%. However, there were no experimental data that confirmed this fact. W.M. Rumball and F.G. Elder presented the X-ray results on the ω-phase formation in Zr-3.9 at.%Cr, but at the present time there are no electron microscope studies of the structure of the ω-phase in this system. Investigations of the features of the ω-phase formation, morphology of the ω-phase and the mechanism of its formation in the different zirconium-base alloys are necessary to establish the common features of the formation of structures with the metastable phases. The task of the present work is to study the conditions and features of the ω-phase formation in the Zr-Cr alloys and the effect of the eutectoid decomposition on the formation of ω-phase. This article is part of the detailed investigations of the feature and condition of the ω-phase formation in zirconium-base alloys with the transition metals of the groups I and V to VIII of the Periodic Table

  13. Crystallographic information of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys

    Directory of Open Access Journals (Sweden)

    Dongyan Liu

    2015-09-01

    Full Text Available The compositions and structures of thermodynamically stable or metastable precipitations in binary Mg-X (X=Sn, Y, Sc, Ag alloys are predicted using ab-initio evolutionary algorithm. The geometry optimizations of the predicted intermetallic compounds are carried out in the framework of density functional theory (DFT [1]. A complete list of the optimized crystallographic information (in cif format of the predicted intermetallic phases is presented here. The data is related to “Predictions on the compositions, structures, and mechanical properties of intermediate phases in binary Mg–X (X=Sn, Y, Sc, Ag alloys” by Liu et al. [2].

  14. Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pascuet, M.I. [CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Fernández, J.R., E-mail: julrfern@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); CAC-CNEA, Avda. Gral Paz 1499, 1650 Buenos Aires (Argentina); UNSAM, Avda. Gral Paz 1499, 1650 Buenos Aires (Argentina)

    2015-12-15

    Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al{sub 2}U, Al{sub 3}U and Al{sub 4}U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al{sub 3}U intermetallic in the Al/U interface in agreement with experimental evidence. - Highlights: • Potential parameters for Al and Al–U systems are obtained. • Intermetallics are characterized by calculating elastic and thermal properties. • Point defect diffusivities are calculated for the three intermetallics. • Growth of the Al{sub 3}U intermetallic is shown to occur in the Al/U interface as in the real alloy.

  15. Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy

    International Nuclear Information System (INIS)

    Pascuet, M.I.; Fernández, J.R.

    2015-01-01

    Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al_2U, Al_3U and Al_4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al_3U intermetallic in the Al/U interface in agreement with experimental evidence. - Highlights: • Potential parameters for Al and Al–U systems are obtained. • Intermetallics are characterized by calculating elastic and thermal properties. • Point defect diffusivities are calculated for the three intermetallics. • Growth of the Al_3U intermetallic is shown to occur in the Al/U interface as in the real alloy.

  16. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  17. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  18. Intermetallic compound development for the 21st century

    International Nuclear Information System (INIS)

    Munroe, P.R.

    2000-01-01

    lntermetallic compounds have been vigorously researched for the past twenty years. As a result of these studies the fundamental behaviour of a number of transition metal aluminides and suicides is now well understood, and a number of alloys with commercially acceptable properties have been developed. Future challenges for these alloys, for example Ni 3 AI, TiAI and Fe 3 AI, are focused on the development of large-scale production routes. However, there remain a number of other intermetallic compounds, such as Laves phases, which exhibit some promising properties, but little is presently known about their intrinsic behaviour. For compounds such as these more fundamental studies are required

  19. Plasticity enhancement mechanisms in refractory metals and intermetallics

    International Nuclear Information System (INIS)

    Gibala, R.; Chang, H.; Czarnik, C.M.; Edwards, K.M.; Misra, A.

    1993-01-01

    Plasticity enhancement associated with surface films and precipitates or dispersoids in bcc refractory metals is operative in ordered intermetallic compounds. Some results are given for NiAl and MoSi 2 -based materials. The monotonic and cyclic plasticity of NiAl at room temperature can be enhanced by surface films. Ductile second phases also enhance the plasticity of NiAl. MoSi 2 exhibits similar effects of surface films and dispersoids, but primarily at elevated temperatures. The plasticity enhancement is associated with enhanced dislocation generation from constrained deformation at the film-substrate or precipitate/dispersoid-matrix interface of the composite systems

  20. Improvement of the surface properties of aluminium by the formation of intermetallic phases and metal matrix composites during laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2011-05-01

    Full Text Available Aluminium is widely used in industry due to its low cost, light weight and excellent workability, but is lacking in wear resistance and hardness. Laser alloying is used to improve the surface properties, such as hardness, by modifying...

  1. Numerical research of influence of laser radiation parameters on the formation of intermetallic phases from metal powders in selective laser melting technology

    Science.gov (United States)

    Agapovichev, A. V.; Knyazeva, A. G.; Smelov, V. G.

    2017-10-01

    A large number of factors influence the quality of the material obtained with selective laser melting. Through correct understanding and managing these factors, it is possible to achieve the necessary quality of the materials, which is highly competitive to the traditional production methods. The technique of selective laser melting is a complex process in which a large number of parameters affect the quality of the final product. The complexity of the process of selective laser melting consists of many thermal, physical and chemical interactions, which are influenced by a large number of parameters. The main parameters of SLM are scanning rate, laser radiation power and layer thickness. In the framework of this paper, there was made an attempt to take into account real physical and chemical processes taking place during the selective laser melting of an Ni-Al alloy.

  2. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Kobashi

    2009-12-01

    Full Text Available The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  3. Investigations of intermetallic alloy hydriding mechanisms. Annual progress report, May 1 1979-April 30, 1980

    International Nuclear Information System (INIS)

    Livesay, B.R.; Larsen, J.W.

    1980-05-01

    Investigations are being conducted on mechanisms involved with the hydrogen-metal interactions which control the absorption and desorption processes in intermetallic compounds. The status of the following investigations is reported: modeling of hydride formation; microbalance investigations; microstructure investigations; flexure experiments; resistivity experiments; and nuclear backscattering measurements. These investigations concern fundamental hydrogen interaction mechanisms involved in storage alloys

  4. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  5. Leading Formative Assessment Change: A 3-Phase Approach

    Science.gov (United States)

    Northwest Evaluation Association, 2016

    2016-01-01

    If you are seeking greater student engagement and growth, you need to integrate high-impact formative assessment practices into daily instruction. Read the final article in our five-part series to find advice aimed at leaders determined to bring classroom formative assessment practices district wide. Learn: (1) what you MUST consider when…

  6. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  7. Microstructure and tribological properties of TiAg intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Chen Jianmin; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Zhou Huidi

    2011-01-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  8. Microstructure and tribological properties of TiAg intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  9. Influence of annealing time and temperature on the Fe3Al intermetallic alloys microstructure modification

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2011-04-01

    Full Text Available There is an industry interesting in intermetallic alloys in recent years. There are widely possibilities to adopt this kind of materials for structural units. More expensive materials can be replaced by them. A property which limits their wider application is the low plasticity at environment and elevated temperatures. In paper the results of the thermal microstructure modification are shown. To this end, the influence of annealing time and temperature on the intermetallic phase Fe3Al grain size was investigated. The impact of these factors on micro-hardness was examined as well. It was found that these operations cause the grain size reduction and the micro-hardness decrease.

  10. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  11. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Ibarra, M. R.; Algarabel, P. A.; Marquina, C.; De Teresa, J. M.; Morellon, L.; Blasco, J.; Magen, C.; Prokhnenko, Olexandr; Kamarád, Jiří; Ritter, C.

    2005-01-01

    Roč. 17, - (2005), S3035-S3055 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : pressure effect * intermetallic compounds * magnetic properties * magnetic phase transitions * magnetotransport properties * oxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2005

  12. First principles electronic and thermal properties of some AlRE intermetallics

    International Nuclear Information System (INIS)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-01-01

    A study on structural and electronic properties of non-magnetic cubic B 2 -type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics

  13. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  14. The Physics of Weldpool Formation: Phase Transition Process In ...

    African Journals Online (AJOL)

    ... phase transition took place but did not significantly alter the microstructure of the weldment. This study also supports the claims made by different investigators about the different heat treatments given to metals to determine a particular hardenability level. This heat treatment process is an indicator of phase change.

  15. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  16. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  17. Real Time Control Software for Electromagnetic Formation Flight, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the focus of space system architectures changes from single, to multiple, and eventually to many spacecraft flying in formation, a greater demand on total...

  18. Evidence of hexatic phase formation in two-dimensional Lennard-Jones binary arrays

    International Nuclear Information System (INIS)

    Li, M.; Johnson, W.L.; Goddard, W.A. III

    1996-01-01

    We report evidence of the hexatic phase formation in Lennard-Jones binary substitutional random arrays from isothermal-isobaric molecular-dynamics simulations. The hexatic phase is analogous to those predicted in Kosterlitz-Thouless theory of melting that is characterized by short-range translational order and quasi-long-range orientational order. At the crystal to hexatic phase transition, dislocation pairs are observed to unbind into isolated dislocations. Further disordering of the hexatic phase, however, does not lead to dissociation of dislocations into disclinations. Instead, the dislocations become clustered and form dislocation networks which results in formation of amorphous phases. copyright 1996 The American Physical Society

  19. Formation of the minor phase shell on the surface of hypermonotectic alloy powders

    International Nuclear Information System (INIS)

    Zhao, J.Z.

    2006-01-01

    The microstructure evolution in an atomized hypermonotectic alloy drop is calculated. The results indicate that the formation of the minor phase shell on the surface of the powder is due to the heterogeneous nucleation of the minor phase droplets on the atomized drop surface and the resultant diffusional transfer of solute during the liquid-liquid phase transformation

  20. Interaction of intermetallic compounds formed by rare earths, scandium, yttrium and 3d-transition metals, with gaseous ammonia

    International Nuclear Information System (INIS)

    Shilkin, S.P.; Volkova, L.S.

    1992-01-01

    Interaction of the RT n intermetallic compounds, where R Sc, Y, rare earths, T = Fe, Co, Ni; n = 2,3,5, with gaseous ammonia under pressure of 1MPa and at temperatures of 293, 723 and 798 K is studied. It is established on the basis of roentgenographic studied, chemical analysis data, X-ray photoelectron spectroscopy and specific surface measurements that metallic matrixes of intermetallides decompose into nitrides and transition metal phases at temperatures of 723 and 798 K under effect of ammonia and independent of structural types of the source materials; partial or complete decomposition of intermetallides through ammonia with formation of transition metal mixture, binary hydrides and nitrides of the most electropositive metal the above systems occurs at the temperature of 293 K depending on the heat of the source compounds and their tendency to decomposition under ammonia effect

  1. An experimental study of praseodymium intermetallic compounds at low temperatures

    International Nuclear Information System (INIS)

    Greidanus, F.J.A.M.

    1982-01-01

    In this thesis the author studies the low temperature properties of praseodymium intermetallic compounds. In chapter 2 some of the techniques used for the experiments described in the subsequent chapters are discussed. A set-up to perform specific-heat experiments below 1 K and a technique for performing magnetic susceptibility measurments below 1 K, using a superconducting quantum interference device (SQUID) are described. Chapter 3 is devoted to the theory of interacting Pr 3+ ions. Both bilinear and biquadratic interactions are dealt with in a molecular-field approximation. It is shown that first as well as second-order phase transitions can occur, depending on the nature of the ground state, and on the ratio of magnetic to crystal-field interactions. In chapters 4, 5, 6 and 7 experimental results on the cubic Laves phase compounds PrRh 2 , PrIr 2 , PrPt 2 , PrRu 2 and PrNi 2 are presented. From inelastic neutron scattering experiments the crystalline electric field parameters of the above compounds are determined. In chapters 5 and 6 susceptibility, neutron-diffraction, hyperfine specific-heat, low-field magnetization, pulsed-field magnetization, specific-heat and resistivity measurements are presented. In chapter 7 the specific heat and differential susceptibility of PrNi 2 below 1 K are studied. Finally, in chapter 8 praseodymium intermetallic compounds with low-symmetry singlet ground states, and cubic compounds with magnetic doublet ground states are studied. (Auth.)

  2. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  3. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  4. Synthesis, growth, and studies (crystal chemistry, magnetic chemistry) of actinide-based intermetallic compounds and alloys with a 1.1.1 stoichiometry

    International Nuclear Information System (INIS)

    Kergadallan, Yann

    1993-01-01

    The first part of this research thesis reports the study of the synthesis and reactivity of intermetallic compounds with a 1.1.1 stoichiometry. It presents the thermal properties of 1.1.1 compounds: general presentation of physical transitions, and of solid solutions and formation heat, application to actinides (reactivity analysis from phase diagrams, techniques of crystal synthesis and crystal growth. It describes experimental techniques: synthesis, determination of fusion temperature by dilatometry, methods used for crystal growth, characterisation techniques (metallography, X ray diffraction on powders, dilatometry). It discusses the obtained results in terms of characterisation of synthesised samples, of crystal growth, and of measurements of fusion temperature. The second part addresses crystal chemistry studies: structure of compounds with a 1.1.1 stoichiometry (Laves structures, Zr, Ti and Pu compounds), techniques of analysis by X-ray diffraction (on powders and on single crystals), result interpretation (UNiX compounds, AnTAl compounds with T being a metal from group VIII, AnTGa compounds, AnNiGe compounds, distance comparison, structure modifications under pressure). The third part concerns physical issues. The author addresses the following topics: physical properties of intermetallic 1.1.1 compounds (magnetism of yttrium phases, behaviour of uranium-based Laves phases, analysis of pseudo-binary diagrams, physical characteristics of uranium-based 1.1.1 compounds, predictions of physical measurements), analysis techniques (Moessbauer spectroscopy, SQUID for Superconducting Quantum Interference Device), and result interpretation

  5. Development of intermetallic coatings for fusion power applications

    International Nuclear Information System (INIS)

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.

    1994-03-01

    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880 degrees C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000 degrees C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures

  6. Conversion of Phase II Unsteady Aerodynamics Experiment Data to Common Format; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.

    1999-01-01

    A vast amount of aerodynamic, structural, and turbine performance data were collected during three phases of the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment (UAE). To compare data from the three phases, a similar format of engineering unit data is required. The process of converting Phase II data from a previous engineering unit format to raw integer counts is discussed. The integer count files can then be input to the new post-processing software, MUNCH. The resulting Phase II engineering unit files are in a common format with current and future UAE engineering unit files. An additional objective for changing the file format was to convert the Phase II data from English units to SI units of measurement

  7. Phase separation and formation of omega phase in the beta matrix of a Ti-V-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Devaraj, A.; Nag, S. [Center for Advanced Research and Technology, Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Bettles, C.J. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, M. [CSIRO Process Science and Engineering, Locked Bag 10, Clayton South, Victoria 3169 (Australia); Fraser, H.L. [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Muddle, B.C. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Banerjee, R., E-mail: rajarshi.banerjee@unt.edu [Center for Advanced Research and Technology, Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States)

    2011-05-15

    The formation of the {omega} phase in the presence of simultaneous development of compositional modulations (or phase separation) within the body-centered cubic {beta} matrix phase of a Ti-10V-6Cu (wt.%) alloy during continuous cooling has been investigated using a combination of transmission electron microscopy and atom probe tomography. While a water quench from the high-temperature {beta} phase field allows apparently athermal formation of {omega} domains without any significant partitioning of solute or modulation in matrix composition, subsequent annealing at 500 {sup o}C for just 60 s leads to unusually rapid growth of the {omega} domains concurrent with, but apparently independent of, a slower development of finer-scale modulations in solute composition occurring apparently uniformly across both {omega} and {beta} phases. In contrast, on slower air cooling from the solution treatment temperature, there are pronounced compositional fluctuations within the {beta} phase, presumably as a product of spinodal decomposition, that are detectable prior to the formation of {omega} phase. The {omega} phase subsequently forms preferentially in solute-depleted regions of the matrix {beta}, with a composition reflecting the local matrix composition and a solute content significantly lower than the average matrix composition. As a result, it has a cuboidal morphology, distinguishably different from the elliposoidal form that is observed in samples water-quenched and annealed at 500 deg. C.

  8. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  9. Enhancement of polar crystalline phase formation in transparent PVDF-CaF{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Goo; Ha, Jong-Wook, E-mail: jongwook@krict.re.kr; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-30

    Highlights: • The crystalline phase in transparent PVDF-CaF{sub 2} composite films was investigated. • CaF{sub 2} promoted the formation of polar crystalline phases in PVDF matrix. • Ordered γ-phase was obtained by thermal treatment of as-cast films at the vicinity of its melting temperature. - Abstract: We consider the influence of calcium fluoride (CaF{sub 2}) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF{sub 2} composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF{sub 2} promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF{sub 2} in the composite films up to 10 wt%. Further addition of CaF{sub 2} suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF{sub 2} composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  10. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  11. Lanthanum hexaboride as advanced structural refiner/getter in TiAl-based refractory intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, A.V., E-mail: karta@korolev-net.ru [Technological Institute for Superhard and Novel Carbon Materials (TISNCM), 7a Centralnaya str., 142190 Troitsk, Moscow (Russian Federation); National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation); Asnis, E.A.; Piskun, N.V.; Statkevich, I.I. [The E.O. Paton Electric Welding Institute, 11 Bozhenko str., 03680 Kyiv (Ukraine); Gorshenkov, M.V.; Tcherdyntsev, V.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-05

    Highlights: • Fist application of LaB{sub 6} additive in TiAl-based intermetallics casting. • Pilot synthesis/casting and study of selected TiAl(Nb,Cr,Zr)B,La alloys set. • Dual effect observed: phase structure refinement and oxygen impurity removal. • Co-precipitation of TiB and La{sub 2}O{sub 3} in melt: 2LaB{sub 6} + 12Ti + 3O → 12TiB↓ + La{sub 2}O{sub 3}↓. • Features of structure refinement and oxygen gettering mechanisms reported. -- Abstract: The work is aimed at the study of the formation and refinement of microstructure appearing in the solidifying refractory TiAl-based intermetallics being inoculated with precise boron addition. The novelty of research consists in test application of lanthanum hexaboride (LaB{sub 6}) ligature within semi-continuous electron beam casting process of selected alloys. Two ingots with nominal compositions Ti–44Al–5Nb–2Cr–1.5Zr–0.4B–0.07La and Ti–44Al–5Nb–1Cr–1.5Zr–1B–0.17La (at.%) have been synthesized and cast along with the reference alloy Ti–44Al–5Nb–3Cr–1.5Zr. Their comparative examination suggests (i) essential microstructural phase refinement effect coupled with (ii) threefold/fourfold decrease of background content of undesirable residual oxygen impurity in both alloys containing LaB{sub 6}. This advanced dual activity (i–ii) of LaB{sub 6} is explained by its complete dissolution, dissociation and following re-precipitation of effective Ti-based monoboride nucleants of orthorhombic B27 structure, those being accompanied by strong internal gettering of dissolved oxygen from the melt and from boride-inoculated solid α{sub 2}-Ti{sub 3}Al phase with liberated elemental lanthanum. The phase composition and structure of cast alloys; state and characterization of newly precipitated TiB boride; features of La{sub 2}O{sub 3} micro/nano-dimensional precipitation and oxygen gettering mechanism are reported and discussed.

  12. Regularities of texture formation in alloys undergoing phase transformations during heat treatment and plastic working

    International Nuclear Information System (INIS)

    Ageev, N.V.; Babarehko, A.A.

    1983-01-01

    Peculiarities of texture formation in metals undergoing phase transformations in the temperature range of heat treatment and hot working are investigated theoretically and experimentally. A low-temperature phase after hot working is shown to inherite a high-temperature phase texture due to definite orientation conformity during phase transformation. Strengthened heat and thermomechanical treatments, as a rule, do not destroy material texture but change it

  13. An Investigation of the Microstructure of an Intermetallic Layer in Welding Aluminum Alloys to Steel by MIG Process.

    Science.gov (United States)

    Nguyen, Quoc Manh; Huang, Shyh-Chour

    2015-12-02

    Butt joints of A5052 aluminum alloy and SS400 steel, with a new type of chamfered edge, are welded by means of metal inert gas welding and ER4043 Al-Si filler metal. The microhardness and microstructure of the joint are investigated. An intermetallic layer is found on the surface of the welding seam and SS400 steel sheet. The hardness of the intermetallic layer is examined using the Vickers hardness test. The average hardness values at the Intermetallic (IMC) layer zone and without the IMC layer zone were higher than that of the welding wire ER4043. The tensile strength test showed a fracture at the intermetallic layer when the tensile strength is 225.9 MPa. The tensile value test indicated the average of welds was equivalent to the 85% tensile strength of the A5052 aluminum alloy. The thickness of the intermetallic layers is non-uniform at different positions with the ranges from 1.95 to 5 μm. The quality of the butt joint is better if the intermetallic layer is minimized. The Si crystals which appeared at the welding seam, indicating that this element participated actively during the welding process, also contributed to the IMC layer's formation.

  14. Synthesis of nano intermetallic Nb{sub 3}Sn by mechanical alloying and annealing at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    López, M., E-mail: marlope@udec.cl [Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción (Chile); Jiménez, J.A. [Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas, C.S.I.C., Av. Gregorio del Amo 8, 28040 Madrid (Spain); Ramam, K.; Mangalaraja, R.V. [Department of Materials Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepción (Chile)

    2014-11-05

    Highlights: • Intermetallic Nb{sub 3}Sn nano grains were synthesized by powder metallurgy route. • Structure analysis was studied using a multiphase Rietveld refinement fit. • The presence of Nb{sub 3}Sn 86% and NbO 8% was identified. • More tin content in the equilibrium Nb–Sn diagram was obtained. • Magnetic properties show Nb{sub 3}Sn powders are soft super paramagnetic materials. - Abstract: In this study, intermetallic Nb{sub 3}Sn of nanometer-sized grains was synthesized by powder metallurgy route. Elemental powders of Nb and Sn in the stoichiometric proportions were mechanically alloyed for 3 h in a high-energy mill under a protective atmosphere of argon. X-ray diffraction patterns of milled powders confirmed the formation of a Nb(Sn) solid solution evidenced by the presence of Nb peaks only, which are shifted to higher angles. Rietveld refinements used to analyze this XRD pattern indicated a better fit when a tetragonal structure with the space group I4/mmm is used instead the Nb cubic lattice with space group Im−3m. Size-strain analysis from line-broadening of peak profiles by using “double-Voigt” approaches showed that the broadening is due to both a small crystallite size (around 6 nm) and microstrains. Subsequent heat treatment of the Nb(Sn) powder mixture was required for the formation of the Nb{sub 3}Sn ordered phase. X-ray diffraction patterns obtained after a thermal treatment at 700 °C for 1 h were fitted using a multiphase Rietveld refinement. Although the resulting powders are composed mainly by Nb{sub 3}Sn (up to 87 weight%), certain amount of other intermetallic phases like Nb{sub 6}Sn{sub 5}, NbSn{sub 2} and Nb and Sn oxides were also determined. In agreement with the Rietveld refinement analysis, microprobe analysis also revealed that changes in chemical composition at different sites of powder particles are preserved even after annealing at 700 °C. Magnetic properties measured at 300 K on resulted Nb{sub 3}Sn powders

  15. New signals of quark-gluon-hadron mixed phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, K.A.; Sagun, V.V.; Ivanytskyi, A.I.; Zinovjev, G.M. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Oliinychenko, D.R. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Goethe University, FIAS, Frankfurt am Main (Germany); Ilgenfritz, E.M. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Nikonov, E.G. [JINR, Laboratory for Information Technologies, Dubna (Russian Federation); Taranenko, A.V. [Moscow Engineering Physics Institute, National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)

    2016-08-15

    Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out at the center-of-mass energy 4.9 GeV and two sets of highly correlated quasi-plateaus in the collision energy dependence of the entropy per baryon, total pion number per baryon, and thermal pion number per baryon which we found at the center-of-mass energies 3.8-4.9 GeV and 7.6-10 GeV. The low-energy set of quasi-plateaus was predicted a long time ago. On the basis of the generalized shock-adiabat model we demonstrate that the low-energy correlated quasi-plateaus give evidence for the anomalous thermodynamic properties inside the quark-gluon-hadron mixed phase. It is also shown that the trace anomaly sharp peak at chemical freeze-out corresponds to the trace anomaly peak at the boundary between the mixed phase and quark gluon plasma. We argue that the high-energy correlated quasi-plateaus may correspond to a second phase transition and discuss its possible origin and location. Besides we suggest two new observables which may serve as clear signals of these phase transformations. (orig.)

  16. Surfaces of Intermetallics: Quasicrystals and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, Chad [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  17. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  18. On mechanism of substructure formation in SmS during isomorphic phase transformations

    International Nuclear Information System (INIS)

    Aptekar', I.L.; Ivanov, V.I.; Tonkov, E.Yu.; Shmyt'ko, I.M.

    1986-01-01

    X-ray diffraction study of substructure characteristics of SmS samples subjected to treatment at different temrerature and pressure in media with different viscosity ( graphite, silicon oil) for realization of P-M-P transformations ( p-semiconductor phase, M - high pressure phase) is performed. It is assumed that with M - phase formation P - matrix volume relaxation delays, therefore the new phase particles occupy smaller volume than the initial matrix which causes the M - phase disorientation. The difference between the phase transformation rate and deformation rate under the pressure in media with various viscosity results in arising different substructural characteristics

  19. Corrosion phase formation on container alloys in basalt repository environments

    International Nuclear Information System (INIS)

    Johnston, R.G.; Anantatmula, R.P.; Lutton, J.M.; Rivera, C.L.

    1986-01-01

    The Basalt Waste Isolation Project is evaluating the suitability of basalt in southeastern Washington State as a possible location for a nuclear waste repository. The performance of the waste package, which includes the waste form, container, and surrounding packing material, will be affected by the stability of container alloys in the repository environment. Primary corrosion phases and altered packing material containing metals leached from the container may also influence subsequent reactions between the waste form and repository environment. Copper- and iron-based alloys were tested at 50 0 to 300 0 C in an air/steam environment and in pressure vessels in ground-water-saturated basalt-bentonite packing material. Reaction phases formed on the alloys were identified and corrosion rates were measured. Changes in adhering packing material were also evaluated. The observed reactions and their possible effects on container alloy durability in the repository are discussed

  20. Phase Formation Control in Plasma Sprayed Alumina–Chromia Coatings

    Czech Academy of Sciences Publication Activity Database

    Dubský, Jiří; Chráska, Pavel; Kolman, Blahoslav Jan; Stahr, C.Ch.; Berger, L.-M.

    2011-01-01

    Roč. 55, č. 3 (2011), s. 294-300 ISSN 0862-5468 R&D Projects: GA ČR GA106/08/1240 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * Chromia * Plasma spraying * Phase stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.382, year: 2011 http://www.ceramics-silikaty.cz/2011/2011_03_294.htm

  1. A tem investigation on intermetallic particles in zircaloy-2

    International Nuclear Information System (INIS)

    Sudarminto, Harini Sosiati; Kuwano, Noriyuki; Oki, Kensuke

    1996-01-01

    Tem investigation were conducted on the heat treated zircaloy-2 having the composition of Zr containing 1.6% Sn, 0.2% Fe, 0.1% Cr and 0.05% Ni (%wt) in order tostudy the characteristics of intermetallic particles related to the microstructural basis on the corrosion effect. Forged zircaloy-2 was annealed in the β-phase at 1050 C degrees for various isothermally in the α-phase region at 650 and 750 C degrees, followed by water quenching. The size precipates, the lower became their number. By increasing the annealing temperature, the growth of precipitates formed in this zircaloy-2 were of the Zr(Cr,Fe) 2 and Zr 2 (Fe,Cr,Ni) types. These kinds of precipitates and the ratios of Fe/Cr were independent of size and shape of precipitates and annealing time and temperature. (author), 16 refs, 2 tabs, 5 figs

  2. SANS study of Th (IV) third phase formation in HNO3 / DHDECMP-n-dodecane system

    International Nuclear Information System (INIS)

    Lohithakshan, K.V.; Aggarwal, S.K.; Aswal, V.K.

    2009-01-01

    Third phase formation taking place during the extraction of Th (IV) from nitric acid medium by DHDECMP in dodecane has been investigated by small angle neutron scattering (SANS) and explained the process with Baxter model. (author)

  3. Effect of aluminium on formation of metastable phases in titanium-niobium alloys

    International Nuclear Information System (INIS)

    Trenogina, T.L.; Derevyanko, V.N.; Vozilkin, V.A.

    2001-01-01

    Specific features of phase transformations in the alloy of Ti-20Nb-29Al (at.%) are investigated in comparison with those in the aluminium-free Ti-21Nb alloy. It is states that in the alloy Ti-20Nb-29Al on quenching the ordering of β-solid solution takes place with B2-structure formation. The B2-matrix experiences decomposition with the formation of ordered Ω 0 -phase which field ranges up to 700 deg C. The investigation results show that the sequence of phase formation in Ti-Nb-Al and aluminium-free alloys is much the same. The only difference between them is the formation of ordered phases in the alloy Ti-20Nb-29Al [ru

  4. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  5. Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.H.; Grubelich, M.C.

    1999-05-14

    Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantages of these systems typically include high energy density, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability and possess insensitive ignition properties. For the specific applications of humanitarian demining and disposal of unexploded ordnance, these pyrotechnic formulations offer additional benefits. The combination of high thermal input with low brisance can be used to neutralize the energetic materials in mines and other ordnance without the "explosive" high-blast-pressure events that can cause extensive collateral damage to personnel, facilities, and the environment. In this paper, we review the applications, benefits, and characteristics of thermite mixtures, intermetallic reactants, and metal fuels. Calculated values for reactant density, heat of reaction (per unit mass and per unit volume), and reaction temperature (without and with consideration of phase changes and the variation of specific heat values) are tabulated. These data are ranked in several ways, according to density, heat of reaction, reaction temperature, and gas production.

  6. Statistics of errors in fibre communication lines with a phase-modulation format and optical phase conjugation

    International Nuclear Information System (INIS)

    Shapiro, Elena G; Fedoruk, Mikhail P

    2011-01-01

    Analytical formulas are derived to approximate the probability density functions of 'zero' and 'one' bits in a linear communication channel with a binary format of optical signal phase modulation. Direct numerical simulation of the propagation of optical pulses in a communication line with optical phase conjugation is performed. The results of the numerical simulation are in good agreement with the analytical approximation. (fibreoptic communication lines)

  7. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  8. A new method for determining gas phase heat of formation of aromatic energetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad H. [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P. O. Box 83145/115 (Iran); Tehrani, Masoud K. [Department of Physics, Malek-ashtar University of Technology, Shahin-shahr P. O. Box 83145/115 (Iran)

    2007-04-15

    A new correlation is introduced for desk calculation of gas phase heat of formation of aromatic energetic compounds that contain the elements of carbon, hydrogen, nitrogen and oxygen. Predicted gas phase heats of formation for 26 energetic compounds have a root mean square of deviation from experiment of 20.67 kJ/mol, which is in good agreement with respect to measured values of oxygen-lean and oxygen-rich aromatic energetic compounds. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  9. The role of zinc on the chemistry of complex intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Weiwei [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  10. Phase-transfer and film formation of silver nanoparticles.

    Science.gov (United States)

    Sarkar, Anjana; Chadha, Ridhima; Biswas, Nandita; Mukherjee, Tulsi; Kapoor, Sudhir

    2009-04-01

    In this article, a simple method for either transfer of silver nanoparticles from formamide to chloroform or to form a film at their interface is demonstrated. The transfer of the particles is a two-step size-dependent process. The size distribution of the colloidal hydrophobic silver particles in chloroform was almost the same as that before its transfer. Particles can be isolated by evaporation of chloroform. During evaporation, the hydrophobic particles become hydrophilic (charged) due to the formation of bilayer of CTAB over their surface. The isolated particles can be re-dispersed easily in polar solvents such as water and methanol. Nanocrystalline film of Ag is also prepared at the formamide-chloroform interface using suitable stabilizers in two immiscible layers. The nanocrystals have been characterized by various microscopic and spectroscopic techniques. The free standing film could be easily transferred on solid support.

  11. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  12. On the role of Nb in Z-phase formation in a 12% Cr steel

    DEFF Research Database (Denmark)

    Cipolla, L.; Danielsen, Hilmar Kjartansson; Di Nunzio, P.E.

    2010-01-01

    Z-phase precipitation in two model alloys, 12CrVNbN and 12CrVN, has been investigated. The alloys were aged up to 104 h and their precipitate evolution was followed by X-ray diffraction and transmission electron microscopy. The formation rate of Z-phase from vanadium-based nitrides, (V,Nb)N, in t...

  13. 640 Gbit/s RZ-to-NRZ format conversion based on optical phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We propose a novel approach for all optical RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal using a simple phase filter implemented by a commercial optical waveshaper....

  14. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    structures of these and related materials. Such calculations allow us to examine various interactions at the atomic scale, interactions which include orbital overlap, two-electron interactions, and Madelung terms. Moreover, these electronic studies also provide links between the angstrom-scale atomic interactions and the macro-scale physical properties, such as magnetism. Over the past few decades, there have been many significant developments toward understanding structure-bonding-property relationships in extended solids in terms of variables including atomic size, valence electron concentration, and electronegativity. However, many simple approaches based on electron counting, e.g., the octet rule, the 18-electron rule, or Wade's rules for boranes, cannot be applied adequately or universally to many of the more complex intermetallic compounds. For intermetallic phases that include late transition metals and post transition main group elements as their constituents, one classification scheme has been developed and effectively applied by using their valence electron count per atom (vec). These compounds are known as Hume-Rothery electron phases, and they have a variety of structure types with vec < 2.0 as shown in Table 1.

  15. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP: potential atmospheric impacts

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2013-06-01

    Full Text Available The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS. Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW, where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  16. Surfactants from the gas phase may promote cloud droplet formation.

    Science.gov (United States)

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  17. Quaternary borocarbides: New class of intermetallic superconductors

    Science.gov (United States)

    Nagarajan, R.; Gupta, L. C.; Dhar, S. K.; Mazumdar, Chandan; Hossain, Zakir; Godart, C.; Levy-Clement, C.; Padalia, B. D.; Vijayaraghavan, R.

    1995-01-01

    Our recent discovery of superconductivity (SC) in the four-element multiphase Y-Ni-B-C system at an elevated temperature (TC approximately 12 K) has opened up great possibilities of identifying new superconducting materials and generating new physics. Superconductivity with Tc (greater than 20 K) higher than that known so far in bulk intermetallics has been observed in multiphase Y-Pd-B-C and Th-Pd-B-C systems and a family of single phase materials RENi2B2C (RE= Y, rare earth) have been found. Our investigations show YNi2B2C to be a strong coupling hard type-II SC. HC2(T) exhibits an unconventional temperature dependence. Specific heat and magnetization studies reveal coexistence of SC and magnetism in RNi2B2C (R = Ho, Er, Tm) with magnetic ordering temperatures (Tc approximately 8 K, 10.5 K, 11 K and Tm approximately 5 K, approximately 7K, approximately 4 K respectively) that are remarkably higher than those in known magnetic superconductors . Mu-SR studies suggest the possibility of Ni atoms carrying a moment in TmNi2B2C. Resistivity results suggests a double re-entrant transition (SC-normal-SC) in HoNi2B2C. RENi2B2C (RE = Ce, Nd, Gd) do not show SC down to 4.2 K. The Nd- and Gd-compounds order magnetically at approximately 4.5 K and approximately 19.5 K, respectively. Two SC transitions are observed in Y-Pd-B-C (Tc approximately 22 K, approximately 10 K) and in Th-Pd-B-C (Tc approximately 20 K, approximately 14 K) systems, which indicate that there are at least two structures which support SC in these borocarbides. In our multiphase ThNi2B2C we observe SC at approximately 6 K. No SC was seen in multiphase UNi2B2C, UPd2B2C, UOs2Ge2C and UPd5B3C(0.35) down to 4.2 K. Tc in YNi2B2C is depressed by substitutions (Gd, Th and U at Y-sites and Fe, Co at Ni-sites).

  18. Vacancies and atomic processes in intermetallics - From crystals to quasicrystals and bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Hans-Eckhardt [Institute of Theoretical and Applied Physics, Stuttgart University, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Baier, Falko [Voith Turbo Comp., Alexanderstr. 2, 89552 Heidenheim (Germany); Mueller, Markus A. [GFT Technologies A. G., Filderhauptstr. 142, 70599 Stuttgart (Germany); Reichle, Klaus J. [Philipp-Matthaeus-Hahn School, Jakob-Beutter-Str. 15, 72336 Balingen (Germany); Reimann, Klaus [NXP Semiconductors, Central Research and Development, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Rempel, Andrey A. [Institute of Solid State Chemistry, Russian Academy of Sciences, Ul. Pervomaiskaya 91, 620041 Ekaterinburg (Russian Federation); Sato, Kiminori [Tokyo Gakugei University, Nukuikita 4-1-1, Koganei, Tokyo 184-8501 (Japan); Ye, Feng [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xue Yuan Road, Beijing 100083 (China); Zhang, Xiangyi [Yanshan University, Qinhuangdao 066004 (China); Sprengel, Wolfgang [Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)

    2011-10-15

    A review is given on atomic vacancies in intermetallic compounds. The intermetallic compounds cover crystalline, quasicrystalline, and bulk metallic glass (BMG) structures. Vacancies can be specifically characterized by their positron lifetimes, by the coincident measurement of the Doppler broadening of the two quanta emitted by positron-electron annihilation, or by time-differential dilatometry. By these techniques, high concentrations and low mobilities of thermal vacancies were found in open-structured B2 intermetallics such as FeAl or NiAl, whereas the concentrations of vacancies are low and their mobilities high in close-packed structure as, e.g., L1{sub 2}-Ni{sub 3}Al. The activation volumes of vacancy formation and migration are determined by high-pressure experiments. The favorable sublattice for vacancy formation is found to be the majority sublattice in Fe{sub 61}Al{sub 39} and in MoSi{sub 2}. In the icosahedral quasicrystal Al{sub 70}Pd{sub 21}Mn{sub 9} the thermal vacancy concentration is low, whereas in the BMG Zr{sub 57}Cu{sub 15.4}Ni{sub 12.6}Nb{sub 3}Al{sub 10} thermal vacancies are found in high concentrations with low mobilities. This may determine the basic mechanisms of the glass transition. Making use of the experimentally determined vacancy data, the main features of atomic diffusion studies in crystalline intermetallics, in quasicrystals, and in BMGs can be understood. Manfred Faehnle and his group have substantially contributed to the theoretical understanding of vacancies and diffusion mechanisms in intermetallics. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Kinetics and mechanism of solid-phase reactions of formation of yttrium ferrite with garnet structure

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, V P; Yakushevskaya, F T; Chalyi, V P

    1977-04-01

    The perovskite phase is formed in the process of ferrogarnet formation both from the mixture of Y and Fe oxides and from mutually precipitated carbonates. The amount of the perovskite phase decreases with increasing duration of annealing. The process of the ferritoformation in the investigated systems can be presented as isovalent cationic substitution on the basis of the crystalline structure of Y/sub 2/O/sub 3/ with the formation of the perovskite structure. When the Fe concentration in orthoferrite increases, the phase with a garnet structure is formed.

  20. Acid-base equilibrium. A thermodynamic study of formation and stability of the Bi-2223 phase

    International Nuclear Information System (INIS)

    Xi, Z.; Zhou, L.

    1993-01-01

    A general acid-base equilibrium theory was proposed to explain the formation and stability of the Bi-2223 phase based on the Lewis acid base theory and principle of metallurgical physical chemistry. The acid-base nature of oxide was defined according to the electrostatic force between cation and oxygen anion. A series of experimental facts were systematically explained based on the theory: substitution of Bi for Ca in the Pb-free 2223 phase, and the effect of substitution of the high-valent cation for Bi 3+ ; oxygen-pressure atmosphere, and the heat-schocking technique on the formation and stability of the 2223 phase. 14 refs., 2 tabs

  1. Microstructure formation and in situ phase identification from undercooled Co-61.8 at.% Si melts solidified on an electromagnetic levitator and an electrostatic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, 2266-98 Shimo-Shidami, Moriyama, Nagoya, Aichi 463-8560 (Japan); Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-mail: li.mingjun@aist.go.jp; Nagashio, Kosuke [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Ishikawa, Takehiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Mizuno, Akitoshi; Adachi, Masayoshi; Watanabe, Masahito [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Tsukuba Space Centre, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Katayama, Yoshinori [Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan)

    2008-06-15

    Co-61.8 at.% Si (CoSi-CoSi{sub 2}) eutectic alloys were solidified on an electromagnetic levitator (EML) and an electrostatic levitator (ESL) at different undercooling levels. The results indicated that there is only a single recalescence event at low undercooling with the CoSi intermetallic compound as primary phase, which is independent of processing facilities, on either an EML or an ESL. The microstructure, however, is strongly dependent on the processing facility. The interior melt flow behavior in the sphere solidified at the EML differs substantially from that at the ESL, thus yielding different microstructures. On high undercooling, double recalescence takes place regardless of levitation condition. In situ X-ray diffraction of alloys solidified on the EML demonstrates that the CoSi{sub 2} compound becomes the primary phase upon the first recalescence, and the CoSi intermetallic phase crystallizes during the second recalescence. In addition to phase identification, real-time diffraction patterns can also provide additional evidence of the fragmentation of the primary phase and the ripening feature in the subsequent cooling process in the semisolid state. The phase competition between the CoSi and CoSi{sub 2} compounds is discussed when considering the nucleation barrier. The low interfacial energy of the CoSi{sub 2} phase favors a preferential nucleation event over the CoSi phase, which also plays a critical role in non-reciprocity nucleation and thus yields a double recalescence profile at high undercooling.

  2. MD study of primary damage in L10 TiAl structural intermetallics

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Computer modelling by molecular dynamics has been applied to study the radiation damage created in collision cascades in L1 0 TiAl intermetallic compound. Either Al or Ti primary knock-on atoms (PKA) with energy 5 keV ⩽ E PKA ⩽ 20 keV were introduced in the intermetallic crystals at temperatures ranging from 100 K to 900 K. At least 24 different cascade for each (E PKA , T, PKA type) set were modelled in order to simulate a random spatial and temporal distribution of PKAs and provide statistical reliability of the results. The total yield of more than 760 simulated cascades is the largest yet reported for this binary intermetallic material. A comprehensive treatment of the modelling results has been carried out. The number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA , T, PKA type) has been established. Preferred formation of Al self-interstitial atoms has been detected in L1 0 TiAl structural intermetallics exposed to irradiation

  3. Effect of hardness of martensite and ferrite on void formation in dual phase steel

    DEFF Research Database (Denmark)

    Azuma, M.; Goutianos, Stergios; Hansen, Niels

    2012-01-01

    The influence of the hardness of martensite and ferrite phases in dual phase steel on void formation has been investigated by in situ tensile loading in a scanning electron microscope. Microstructural observations have shown that most voids form in martensite by evolving four steps: plastic...... deformation of martensite, crack initiation at the martensite/ferrite interface, crack propagation leading to fracture of martensite particles and void formation by separation of particle fragments. It has been identified that the hardness effect is associated with the following aspects: strain partitioning...... between martensite and ferrite, strain localisation and critical strain required for void formation. Reducing the hardness difference between martensite and ferrite phases by tempering has been shown to be an effective approach to retard the void formation in martensite and thereby is expected to improve...

  4. A new method to estimate the atomic volume of ternary intermetallic compounds

    International Nuclear Information System (INIS)

    Pani, M.; Merlo, F.

    2011-01-01

    The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

  5. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  6. Simulating the formation and evolution of galaxies: multi-phase description of the interstellar medium, star formation, and energy feedback

    Science.gov (United States)

    Merlin, E.; Chiosi, C.

    2007-10-01

    Context: Modelling the gaseous component of the interstellar medium (ISM) by Smoothed Particles Hydrodynamics in N-Body simulations (NB-TSPH) is still very crude when compared to the complex real situation. In the real ISM, many different and almost physically decoupled components (phases) coexist for long periods of time, and since they spread over wide ranges of density and temperature, they cannot be correctly represented by a unique continuous fluid. This would influence star formation which is thought to take place in clumps of cold, dense, molecular clouds, embedded in a warmer, neutral medium, that are almost freely moving throughout the tenuous hot ISM. Therefore, assuming that star formation is simply related to the gas content without specifying the component in which this is both observed and expected to occur may not be physically sound. Aims: We consider a multi-phase representation of the ISM in NB-TSPH simulations of galaxy formation and evolution with particular attention to the case of early-type galaxies. Methods: Cold gas clouds are described by the so-called sticky particles algorithm. They can freely move throughout the hot ISM medium; stars form within these clouds and the mass exchange among the three baryonic phases (hot gas, cold clouds, stars) is governed by radiative and Compton cooling and energy feedback by supernova (SN) explosions, stellar winds, and UV radiation. We also consider thermal conduction, cloud-cloud collisions, and chemical enrichment. Results: Our model agrees with and improves upon previous studies on the same subject. The results for the star formation rate agree with recent observational data on early-type galaxies. Conclusions: These models lend further support to the revised monolithic scheme of galaxy formation, which has recently been strengthened by high redshift data leading to the so-called downsizing and top-down scenarios.

  7. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  8. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  9. Mechanical alloying of TiFe intermetallic for hydrogen storage

    International Nuclear Information System (INIS)

    Vega, L.E.R.; Leiva, D.R.; Silva, W.B.; Ishikawa, T.T.; Botta, W.J.; Leal Neto, R.M.

    2016-01-01

    Elementary powders of Ti and Fe in the stoichiometric ratio 50:50 were submitted to mechanical alloying for 2, 6, 10 and 20 h in a planetary ball mill. The synthesis of TiFe intermetallic with high yield was achieved for all milling times. The structural characterization of the samples revealed the trend of the particles to form agglomerates and the formation of cracks. H-absorption capacities of 0,74; 0,90; 0,97 and 0,95 wt. % (at room temperature and 20 bar of H2) were obtained for processing times of 2, 6, 10 and 20 h, respectively, without using a thermal activation process after milling. (author)

  10. Pressure-induced phenomena in U intermetallics

    Czech Academy of Sciences Publication Activity Database

    Sechovský, V.; Honda, F.; Prokeš, K.; Syshchenko, O.; Andreev, Alexander V.; Kamarád, Jiří

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1377-1386 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GA202/02/0739 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 113200002 Keywords : pressure effect * intermetallics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  11. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  12. Phase formation and crystallization behavior of melt spun Sm-Fe-based alloys

    International Nuclear Information System (INIS)

    Shield, J.E.

    1999-01-01

    The phase formation and microstructures of Sm-Fe alloys have been investigated at Sm levels of 11 and 17 atomic percent and with alloying additions of Ti and C. At lower Sm content, virtually phase pure SmFe 7 formed, while higher Sm content resulted in the formation of SmFe 7 , SmFe 2 and amorphous phases. The addition of Ti and C resulted in greater stability and a larger volume fraction of the amorphous phase. The binary Sm-Fe alloys at both Sm levels had tremendously variable microstructures, with large discrepancies in grain size and phase distribution from region to region. The addition of Ti and C tended to result in a more homogeneous microstructure, as well as a refinement in the microstructural scale. (orig.)

  13. Maps of Fe-Al phases formation kinetics parameters during isothermal sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pochec, Ewelina, E-mail: epochec@wat.edu.pl [Department of Advanced Materials and Technology, Military University of Technology (Poland); Jozwiak, Stanislaw; Karczewski, Krzysztof; Bojar, Zbigniew [Department of Advanced Materials and Technology, Military University of Technology (Poland)

    2012-10-10

    Highlights: Black-Right-Pointing-Pointer The sintering temperature and compaction pressure have a strong influence on the sinters structure. Black-Right-Pointing-Pointer The measurements confirmed the presence of the high-aluminium phases from Fe-Al equilibrium system in tested sinters. Black-Right-Pointing-Pointer The kinetics of Fe-Al phase formation can be described by Johnson-Mehl-Avrami modelling. - Abstract: The influence of technological parameters (compaction pressure and sintering temperature) on Fe-Al phase formation was investigated. The kinetics of phase transformation preceding and during an SHS reaction was studied in isothermal conditions by DSC using the JMA (Johnson-Mehl-Avrami) model. This model allowed us to determine basic kinetic parameters, including the Avrami exponent, which characterises the rate and manner of particular phase nucleation. The activation energy (E{sub a}) of particular phase formation was determined by the Kissinger method. XRD analysis and SEM observations of sintered material showed that not only Fe{sub 2}Al{sub 5} phase and low-aluminium solid solution in iron but also aluminium-rich FeAl{sub 2} and FeAl{sub 3} phases are formed during the sintering of an FeAl50 elementary powder mixture in isothermal conditions with an SHS reaction. The above conclusions were confirmed by iron-based solid solution lattice parameter studies and microhardness measurements.

  14. Electride and superconductivity behaviors in Mn5Si3-type intermetallics

    Science.gov (United States)

    Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo

    2017-08-01

    Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.

  15. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  16. Effect of alloying elements on σ phase formation in Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Hosoi, Yuzo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    Alloys of Fe-(8∼12%) Cr-(5∼30%) Mn were solution-treated at 1373 K for 3.6 ks, followed by cold-working of 50% reduction. Both solution-treated and 50% cold-worked materials were aged in the temperature range from 773 to 973 K for 3.6 x 10 3 ks. The identification of σ phase formation was made by using X-ray diffraction from the electrolytically extracted residues of the aged specimens. The region of σ phase formation determined by the present work is wider than that on the phase diagram already reported. It is to be noted that Mn promotes markedly the σ phase formation, and that three different types of σ phase formation are observed depending on Mn content: α→γ + α→γ + α + σ in 10% Mn, α→γ + σ in 15 to 20% Mn alloys, α→χ(Chi) →χ + σ + γ in 25 to 30% Mn alloys. An average electron concentration (e/a) in the σ phase was estimated by quantitative analysis of alloying elements using EPMA. The e/a value in the σ phase formed in Fe-(12∼16%) Cr-Mn alloys aged at 873 K for 3.6 x 10 3 ks is about 7.3, which is independent of Mn content. In order to prevent σ phase formation in Fe-12% Cr-15% Mn alloy, the value of Ni * eq of 11 (Ni * eq = Ni + 30(C) + 25(N)) is required. (author)

  17. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, D.; Robson, J.D.; Withers, P.J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Turski, M. [Magnesium Elektron UK, Rake Lane, Manchester, M27 8BF (United Kingdom)

    2015-06-15

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.

  18. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    International Nuclear Information System (INIS)

    Mackie, D.; Robson, J.D.; Withers, P.J.; Turski, M.

    2015-01-01

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al 8 Mn 5 in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets

  19. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C. [Department of Solid-State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium); Van Stiphout, K.; Santos, N. M.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Bladt, E.; Bals, S. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Comrie, C. M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa)

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.

  20. Third phase formation revisited: the U(VI), HNO3 - TBP, n-dodecane system

    International Nuclear Information System (INIS)

    Chiarizia, R.; Jensen, M.P.; Borkowski, M.; Ferraro, J.R.; Thiyagarajan, P.; Littrell, K.C.

    2003-01-01

    In this work, the system U(VI), HNO 3 -tri-n-butylphosphate (TBP), n-dodecane has been revisited with the objective of gaining information on the coordination chemistry and structural evolution of the species formed in the organic phase before and after third phase formation. Chemical analyses, spectroscopic and EXAFS data indicate that U(VI) is extracted as the UO 2 (NO 3 ) 2 ·2TBP adduct, while the third phase species have the average composition UO 2 (NO 3 ) 2 ·2TBP·HNO 3 . Small-angle neutron scattering (SANS) measurements on TBP solutions loaded with only HNO 3 or with increasing amounts of U(VI) have revealed the presence, before phase splitting, of ellipsoidal aggregates with the major and minor axes up to about 64 and 15 A, respectively. The formation of these aggregates, very likely of the reverse micelle-type, is observed in all cases, that is, when only HNO 3 , only UO 2 (NO 3 ) 2 , or both HNO 3 and UO 2 (NO 3 ) 2 are extracted by the TBP solution. Upon third phase formation, the SANS data reveal the presence of smaller aggregates in the light organic phase, while the heavy organic phase contains pockets of diluent, each with an average of about two molecules of n-dodecane.

  1. Experimental redetermination of the gas-phase enthalpy of formation of ethyl 2-thiophenecarboxylate

    International Nuclear Information System (INIS)

    Santos, Ana Filipa L.O.M.; Ribeiro da Silva, Manuel A.V.

    2013-01-01

    The condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation of ethyl-2-thiophenecarboxylate was derived from the remeasured standard molar energy of combustion, in oxygen, at T = 298.15 K, by rotating bomb combustion calorimetry and the standard molar enthalpy of vaporization, at T = 298.15 K, remeasured by Calvet microcalorimetry. Combining these two values, the following enthalpy of formation in the gas phase, at T = 298.15 K, was then derived for ethyl-2-thiophenecarboxylate: −(277.7 ± 2.9) kJ · mol −1 . The calculated gas-phase enthalpy of formation of the title compound, through the G3(MP2)//B3LYP approach was found to be 278.9 kJ · mol −1 , in excellent agreement with the experimental measured value

  2. Formation of U(IV) Nanoparticles and Their Growth Mechanism in Mildly Acidic Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Kim, Sun Tae; Cho, Hye Ryun; Jung, Euo Chang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Previous studies suggest that U(IV) nanoparticle (NP) formation is one of key steps in mineralization or immobilization of uranium which can be mediated either by microbes or by abiotic geochemical reactions. Colloidal NPs in a groundwater system are potential carrier phases influencing RN migration in subsurface environment. However, the mechanism of U(IV) NP formation and the potential reaction intermediates during this solid phase formation process have not been elucidated in detail so far. In this study we attempted to examine the U(IV) nanoparticle formation reactions preceded by the hydrolysis of U{sup 4+} at different pHs, concentrations and temperatures. The kinetics of U(IV) NP formation from dissolved U(IV) species was monitored under mildly acidic conditions (pH 2 ∼ 3) mainly by using UV-Vis absorption spectrophotometry. Dynamic light scattering (DLS) analysis, nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) were used to characterize the NPs produced during the reactions. The results demonstrate that the U(IV) NP formation process is very sensitive toward temperature variation. The main outcome of this study is the discovery of the autocatalytic nature of U(IV) NP formation from the supersaturated U(OH){sup 3+} solution in a mildly acidic aqueous solution. The structure of reaction intermediates is proposed to contain oxide linkage. In the presentation the proposed mechanism of the U(IV) NP formation reaction and the properties of primary NPs and their clusters will be discussed in detail.

  3. Description of structure of Fe-Zn intermetalic compounds present in hot-dip galvanized coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-10-01

    Full Text Available The article is describing formation, composition, morphology and crystallographic characteristics of intermetalic compounds Fe - Zn present in the coating formed during the process of low-temperature hot-dip galvanizing of carbon steels. In mutual confrontation we introduce older bibliography and results of latest modern researches based on combination of most precise analytical methods.

  4. Control of interfacial intermetallic compounds in Fe–Al joining by Zn addition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); Li, Y.L., E-mail: liyulong1112ster@gmail.com [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Zhang, H. [Key Laboratory of Robot and Welding Automation of Jiangxi Province, School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Guo, W. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada); School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhou, Y. [Center for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2015-10-01

    By Zn addition to the fusion zone, the interfacial intermetallic compounds (IMCs) of laser Al/steel joint changed from layered Fe{sub 2}Al{sub 5} and needle-like FeAl{sub 3} to layered Fe{sub 2}Al{sub 5−x}Zn{sub x} and dispersed FeZn{sub 10} with minor Al-rich amorphous phase. This resulted in an improvement in the joint strength and the change of failure mode.

  5. PAC and μSr investigations of light interstitial diffusion in intermetallic hydrides

    International Nuclear Information System (INIS)

    Boyer, P.; Baudry, A.

    1988-01-01

    Specific aspects of the Perturbed Angular Correlation (PAC) of gamma rays concerning its application to the study of atomic diffusion in solids are presented. PAC results recently obtained on the 181 Ta probe in several crystalline and amorphous phases of Zr 2 Ni hydrides are briefly summarized. Preliminary μSR results relative to these intermetallic hydrides are presented and compared to the PAC data

  6. Formation of omega phase under shock pressure, hydrostatic pressure and irradiation

    International Nuclear Information System (INIS)

    Dey, G.K.

    2016-01-01

    The omega transformation is one of the most intriguing phase transformations. The aspects which make it unique and interesting are the facts that this phase can form from two different parent phases viz. the alpha phase and the beta phase. The alpha to omega transformation has been observed under shock and static pressure and the mechanism involved has been studied in detail. Starting from the nucleation stage to the completion of the transformation, various interesting aspects of the mechanism of transformation has emerged in these studies. Although the parent and product phases are same under these conditions of transformation, a variation in the morphology and the kinetics of the product phase indicate different pathways for alpha to omega transformations. Similarly, the beta to omega transformation is also replete with several interesting features. This transformation can occur under application of pressure, thermal activation and also under irradiation. Here again the morphology of the product phase, the nucleation mechanisms and the kinetics of the phase transformation depend on the path of transformation, though the parent and product phases are same in each path. This presentation highlights the formation of the omega phase under different activations including the ones in extreme conditions in pure Zr and Zr based alloys. Theoretical aspects of the feasibility, pathways and kinetics of the transformations are also emphasized. (author)

  7. Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 degree centigrade

    International Nuclear Information System (INIS)

    Luna-Ramirez, A.; Porcayo-Calderon, J.; Martinez-Villafane, A.; Gonzalez-Rodriguez, J. G.; Chaon-Nava, J. G.

    2012-01-01

    The corrosion behavior of Fe 3 Al-type intermetallic alloys with addition of 1 at. % cerium, lithium and nickel at high temperature has been studied. The various alloys were exposed to an environment composed of 2.5 % SO 2 +N 2 at 900 degree centigrade for 48 h. For all the intermetallic tested, the corrosion kinetics showed a parabolic behavior. The alloy, which showed less corrosion rate, was the Fe3AlNi alloy, being Fe 3 AlCeLi the alloy with the highest corrosion rate. For the various alloys, energy dispersive X-ray spectroscopy analysis, EDS, on the developed scale only detected aluminum, oxygen, and traces of iron and cerium, suggesting the formation of alumina as main component. The intermetallic alloys showed oxide cracking and spalling. The intermetallic chemical composition played an important role in defining the oxide scale morphology and the extent of damage. (Author) 39 refs.

  8. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    OpenAIRE

    J. Kozana; St. Rzadkosz; M. Piękoś

    2010-01-01

    Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation ...

  9. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  10. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    International Nuclear Information System (INIS)

    Qi, Zhiyuan

    2017-01-01

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2 ) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

  11. The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys

    Science.gov (United States)

    Pourbahari, Bita; Mirzadeh, Hamed; Emamy, Massoud

    2018-03-01

    The effects of rare earth intermetallics and grain refinement by alloying and hot extrusion on the mechanical properties of Mg-Gd-Al-Zn alloys have been studied to elucidate some useful ways to enhance the mechanical properties of magnesium alloys. It was revealed that aluminum as an alloying element is a much better grain refining agent compared with gadolinium, but the simultaneous presence of Al and Gd can refine the as-cast grain size more efficiently. The presence of fine and widely dispersed rare earth intermetallics was found to be favorable to achieve finer recrystallized grains during hot deformation by extrusion. The presence of coarse dendritic structure in the GZ61 alloy, grain boundary eutectic containing Mg17Al12 phase in the AZ61 alloy, and rare earth intermetallics with unfavorable morphology in the Mg-4Gd-2Al-1Zn alloy was found to be detrimental to mechanical properties of the alloy in the as-cast condition. As a result, the microstructural refinement induced by hot extrusion process resulted in a significant enhancement in strength and ductility of the alloys. The presence of intermetallic compounds in the extruded Mg-4Gd-2Al-1Zn and Mg-2Gd-4Al-1Zn alloys deteriorated tensile properties, which was related to the fact that such intermetallic compounds act as stress risers and microvoid initiation sites.

  12. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  13. Phase separation and nanocrystal formation in Al-based metallic glasses

    International Nuclear Information System (INIS)

    Antonowicz, Jerzy

    2007-01-01

    Nanocrystallization in a group of Al-RE and Al-RE-TM (RE = rare earth, TM = transition metal) melt-spun amorphous alloys was studied using in situ small- and wide-angle X-ray scattering techniques (SAXS/WAXS) and transmission electron microscopy (TEM). The SAXS/WAXS measurements were carried out during isothermal annealing at temperatures close to crystallization point. A continuously growing interference maximum shifting progressively toward lower angles was found to develop in SAXS regime. Simultaneously taken WAXS spectra reveal formation of the primary fcc-Al nanocrystalline phase. The presence of the SAXS signal maximum indicates the spatial correlation between the compositional fluctuations. The peak position decay is an evidence of an increase of the fluctuation spacing characteristic for the coarsening stage of phase separation. The SAXS/WAXS data analysis indicates that amorphous phase decomposition triggers and controls the fcc-Al nanocrystalline phase formation. The glassy phase initially decomposes into Al-rich and RE-rich regions with typical lengths scale of about 10 nm. The nanocrystals nucleate preferentially inside the Al-rich amorphous regions and their growth is constrained by the region size because of the sluggish atomic diffusion in the RE-rich zones. A different crystallization mechanism is demonstrated in Al-Y-Ni-Co glass where WAXS spectra show formation of the fcc-Al primary phase but no interference peak in SAXS regime was found

  14. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  15. Energy of formation for AgIn liquid binary alloys along the line of phase separation

    CERN Document Server

    Bhuiyan, G M; Ziauddin-Ahmed, A Z

    2003-01-01

    We have investigated the energy of formation for AgIn liquid binary alloys along the solid-liquid phase separation line. A microscopic theory based on the first order perturbation has been applied. The interionic interaction and a reference liquid are the fundamental components of the theory. These are described by a local pseudopotential and the hard sphere liquids, respectively. The results of calculations reveal a characteristic feature that the energy of formation becomes minimum at the equiatomic composition, and thus indicates maximal mix-ability at this concentration. The energy of formation at a particular thermodynamic state that is at T 1173 K predicts the experimental trends fairly well.

  16. Effect of Sr and solidification conditions on characteristics of intermetallic in Al-Si 319 industrial alloys

    International Nuclear Information System (INIS)

    Espinoza-Cuadra, J.; Gallegos-Acevedo, P.; Mancha-Molinar, H.; Picado, A.

    2010-01-01

    An experimental study was carried out to determine the effect of strontium (Sr) on the characteristic of intermetallic phases, particularly the Al 5 FeSi phase which present morphology of platelets or needle-like. The results showed that within the range of variables studied, the modification process caused the disappearance of the needles and only occur the precipitation of phase α (chinese script-like). Refinement of the intermetallic phases occurs in conjunction with the refinement in grain size. Both parameters depend strongly on local cooling rate (T), temperature gradient (G) and apparent rate of solidification front (V). In the case of equiaxed structures the refinement of grain size and intermetallic occurs with increasing local cooling rate and temperature gradient and decrease the apparent rate of solidification front. In the case of columnar structures, refinement of grains and intermetallic requires the increase in values of the three variables indicated. Moreover, the addition of Sr resulted in the modification of silicon eutectic, as noted in others research works.

  17. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    Science.gov (United States)

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  18. Formation of primary pit connection during conchocelis phase of Porphyra yezoensis (Bangiophyceae, Rhodophyta)

    Science.gov (United States)

    Shual, Li; Jiang, Ming; Duan, Delin

    2006-09-01

    The formation of pit connection during conchocelis phase of Porphyra yezoensis Ueda was observed and examined with transmission electron microscope (TEM) and epifluorence microscope. It is indicated that the pit connection was formed in late stage of conchocelis phase and the early stages of conchosporangial cell development, and disappeared in bispore stage. The pit connection contained a thin membrane layer at outer pit plug. Stained with 4', 6'-diamidino-2-phenylidole dihydrochloride hydrate (DAPI), transferring of DNA or RNA between adjacent cells were observed in late stage of conchocelis development, it was deduced that pit connection might serve as a channel for signal transduction and genetic substance transportation in conchocelis phase.

  19. Formation of residual NAPL in three-phase systems: Experiments and numerical simulations

    NARCIS (Netherlands)

    Hofstee, C.; Oostrom, M.

    2002-01-01

    The formation of residual, discontinuous nonaqueous phase liquids (NAPLs) in the vadose zone is a process that is not well understood. The simulators have conveniently implemented the Leverett concept (Leverett and Lewis, 1941) which states that in a water-wet porous media, when fluid wettabilities

  20. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Barilla, J.; Lokajíček, Miloš; Pisaková, Hana; Šimr, P.

    2013-01-01

    Roč. 36, č. 1 (2013), s. 11-17 ISSN 0158-9938 Institutional support: RVO:68378271 Keywords : radiobiological mechanism * chemical phase * DSB formation * oxygen effect Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.848, year: 2013

  1. Keeping a Step Ahead: formative phase of a workplace intervention trial to prevent obesity.

    Science.gov (United States)

    Zapka, Jane; Lemon, Stephenie C; Estabrook, Barbara B; Jolicoeur, Denise G

    2007-11-01

    Ecological interventions hold promise for promoting overweight and obesity prevention in worksites. Given the paucity of evaluative research in the hospital worksite setting, considerable formative work is required for successful implementation and evaluation. This paper describes the formative phases of Step Ahead, a site-randomized controlled trial of a multilevel intervention that promotes physical activity and healthy eating in six hospitals in central Massachusetts. The purpose of the formative research phase was to increase the feasibility, effectiveness, and likelihood of sustainability of the intervention. The Step Ahead ecological intervention approach targets change at the organization, interpersonal work environment, and individual levels. The intervention was developed using fundamental steps of intervention mapping and important tenets of participatory research. Formative research methods were used to engage leadership support and assistance and to develop an intervention plan that is both theoretically and practically grounded. This report uses observational data, program minutes and reports, and process tracking data. Leadership involvement (key informant interviews and advisory boards), employee focus groups and advisory boards, and quantitative environmental assessments cultivated participation and support. Determining multiple foci of change and designing measurable objectives and generic assessment tools to document progress are complex challenges encountered in planning phases. Multilevel trials in diverse organizations require flexibility and balance of theory application and practice-based perspectives to affect impact and outcome objectives. Formative research is an essential component.

  2. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity

    Science.gov (United States)

    Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay

    2017-12-01

    We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary mixtures.

  3. σ and η Phase formation in advanced polycrystalline Ni-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, Stoichko, E-mail: santonov@hawk.iit.edu [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States); Huo, Jiajie; Feng, Qiang [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Isheim, Dieter; Seidman, David N. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208 (United States); Northwestern University Center for Atom Probe Tomography (NUCAPT), 2220 Campus Drive, Evanston, IL 60208 (United States); Helmink, Randolph C.; Sun, Eugene [Rolls-Royce Corporation, 450 S. Meridian Street, Indianapolis, IN 46225 (United States); Tin, Sammy [Illinois Institute of Technology, 10 W. 32nd Street, Chicago, IL 60616 (United States)

    2017-02-27

    In polycrystalline Ni-base superalloys, grain boundary precipitation of secondary phases can be significant due to the effects they pose on the mechanical properties. As new alloying concepts for polycrystalline Ni-base superalloys are being developed to extend their temperature capability, the effect of increasing levels of Nb alloying additions on long term phase stability and the formation of topologically close packed (TCP) phases needs to be studied. Elevated levels of Nb can result in increased matrix supersaturation and promote the precipitation of secondary phases. Long term thermal exposures on two experimental powder processed Ni-base superalloys containing various levels of Nb were completed to assess the stability and precipitation of TCP phases. It was found that additions of Nb promoted the precipitation of η-Ni{sub 6}AlNb along the grain boundaries in powder processed, polycrystalline Ni-base superalloys, while reduced Nb levels favored the precipitation of blocky Cr and Mo – rich σ phase precipitates along the grain boundary. Evaluation of the thermodynamic stability of these two phases in both alloys using Thermo-calc showed that while σ phase predictions are fairly accurate, predictions of the η phase are limited.

  4. Modeling of Eutectic Formation in Al-Si Alloy Using A Phase-Field Method

    Directory of Open Access Journals (Sweden)

    Ebrahimi Z.

    2017-12-01

    Full Text Available We have utilized a phase-field model to investigate the evolution of eutectic silicon in Al-Si alloy. The interfacial fluctuations are included into a phase-field model of two-phase solidification, as stochastic noise terms and their dominant role in eutectic silicon formation is discussed. We have observed that silicon spherical particles nucleate on the foundation of primary aluminum phase and their nucleation continues on concentric rings, through the Al matrix. The nucleation of silicon particles is attributed to the inclusion of fluctuations into the phase-field equations. The simulation results have shown needle-like, fish-bone like and flakes of silicon phase by adjusting the noise coefficients to larger values. Moreover, the role of primary Al phase on nucleation of silicon particles in Al-Si alloy is elaborated. We have found that the addition of fluctuations plays the role of modifiers in our simulations and is essential for phase-field modeling of eutectic growth in Al-Si system. The simulated finger-like Al phases and spherical Si particles are very similar to those of experimental eutectic growth in modified Al-Si alloy.

  5. A new method in prediction of TCP phases formation in superalloys

    International Nuclear Information System (INIS)

    Mousavi Anijdan, S.H.; Bahrami, A.

    2005-01-01

    The purpose of this investigation is to develop a model for prediction of topologically closed-packed (TCP) phases formation in superalloys. In this study, artificial neural networks (ANN), using several different network architectures, were used to investigate the complex relationships between TCP phases and chemical composition of superalloys. In order to develop an optimum ANN structure, more than 200 experimental data were used to train and test the neural network. The results of this investigation shows that a multilayer perceptron (MLP) form of the neural networks with one hidden layer and 10 nodes in the hidden layer has the lowest mean absolute error (MAE) and can be accurately used to predict the electron-hole number (N v ) and TCP phases formation in superalloys

  6. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    Science.gov (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-08

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  7. Investigation of Y6Mn23 and YMn12 intermetallic alloys under high hydrogen pressure

    Science.gov (United States)

    Filipek, S. M.; Sato, R.; Kuriyama, N.; Tanaka, H.; Takeichi, N.

    2010-03-01

    Among three intermetallic compounds existing in Y-Mn system the YMn2 and Y6Mn23 can easily form interstitial hydrides while for YMn12 existence of hydride has never been reported. At moderate hydrogen pressure YMn2 and Y6Mn23 transform into YMn2H4.5 and Y6Mn23H25 respectively. At high hydrogen pressure the YMn2 (C15 or C14 parent structure) forms a unique YMn2H6 (s.g. Fm3m) complex hydride of fluorite structure in which one Mn atom Mn(1) and Y randomly occupy the 8c sites while second manganese (Mn2) in position 4a forms complex anion with 6 hydrogen atoms located in positions 24e. Formation of YMn2H6 independently of the structure of parent phase (C14 or C15) as well as occupation of the same site (8c) by Y and Mn(1) atoms suggested that also Y6Mn23 and YMn12 could transform into YMn2H6 - type hydride in which suitable number of Y atoms will be substituted by Mn(1) in the 8c positions. This assumption was confirmed by exposing R6Mn23 and RMn12 to 1 GPa of hydrogen pressure at 1000C. Formation of (RxMn2-x)MnH6 (where x = 18/29 or 3/13 for R6Mn23 and RMn12 hydrides respectively) was confirmed by XRD. Hydrogen concentration in both R6Mn23 and RMn12 based hydrides reached H/Me = 2 thus value two times higher than in R6Mn23H25.

  8. Investigation of Y6Mn23 and YMn12 intermetallic alloys under high hydrogen pressure

    International Nuclear Information System (INIS)

    Filipek, S M; Sato, R; Kuriyama, N; Tanaka, H; Takeichi, N

    2010-01-01

    Among three intermetallic compounds existing in Y-Mn system the YMn 2 and Y 6 Mn 23 can easily form interstitial hydrides while for YMn 12 existence of hydride has never been reported. At moderate hydrogen pressure YMn 2 and Y 6 Mn 23 transform into YMn 2 H 4.5 and Y 6 Mn 23 H 25 respectively. At high hydrogen pressure the YMn 2 (C15 or C14 parent structure) forms a unique YMn 2 H 6 (s.g. Fm3m) complex hydride of fluorite structure in which one Mn atom Mn(1) and Y randomly occupy the 8c sites while second manganese (Mn2) in position 4a forms complex anion with 6 hydrogen atoms located in positions 24e. Formation of YMn 2 H 6 independently of the structure of parent phase (C14 or C15) as well as occupation of the same site (8c) by Y and Mn(1) atoms suggested that also Y 6 Mn 23 and YMn 12 could transform into YMn 2 H 6 - type hydride in which suitable number of Y atoms will be substituted by Mn(1) in the 8c positions. This assumption was confirmed by exposing R 6 Mn 23 and RMn 12 to 1 GPa of hydrogen pressure at 100 0 C. Formation of (R x Mn 2-x )MnH 6 (where x = 18/29 or 3/13 for R 6 Mn 23 and RMn 12 hydrides respectively) was confirmed by XRD. Hydrogen concentration in both R 6 Mn 23 and RMn 12 based hydrides reached H/Me = 2 thus value two times higher than in R 6 Mn 23 H 25 .

  9. Modification of NiAl intermetallic coatings processed by PTA with chromium carbides

    International Nuclear Information System (INIS)

    Yano, Diogo Henrique Sepel; Brunetti, Cristiano; Pintaude, Giuseppe; Oliveira, Ana Sofia Climaco Monteiro d'

    2010-01-01

    Equipment that operate under high-temperatures can be protected with NiAl intermetallic coatings mainly because of their metallurgical stability. This study as it evaluates the effect of chromium carbide added to Ni-Al intermetallic coatings processed by PTA. Three Ni-Al-Cr23C6 powder mixtures with different carbide fractions (15, 30 and 45 wt%) and another without carbides were deposited by PTA on an AISI 304 stainless steel plate, using two different current intensities (100 and 150A). Coatings were evaluated regarding the presence of welding defects, and resultant microstructures were characterized by X-ray diffraction and scanning electron microscopy. Vickers microhardness and EDS chemical composition were also determined. NiAl and Cr_7C_3 development was confirmed by X-ray diffraction analysis. A combination of NiAl/Cr-Fe-Ni phases was identified. The hardness was strongly related to the formed phases and their amounts. Besides presenting advances toward the development of coatings which can withstand severe operation conditions, the present study shows that PTA hardfacing is able to produce reinforced intermetallic coatings for high-temperature applications. (author)

  10. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  11. Pressure effect on magnetic and magnetotransport properties of intermetallic and colossal magnetoresistance oxide compounds

    International Nuclear Information System (INIS)

    Arnold, Z; Ibarra, M R; Algarabel, P A; Marquina, C; Teresa, Jose MarIa de; Morellon, L; Blasco, J; Magen, C; Prokhnenko, O; Kamarad, J; Ritter, C

    2005-01-01

    The joint power of neutron diffraction and pressure techniques allows us to characterize under unique conditions the nature and different role of basic interactions in solids. We have covered a broad phenomenology in archetypical compounds: intermetallics and magnetic oxides. We have selected compounds in which the effect of moderate pressure is able to modify the electronic structure and bond angles that in turn are in the bases of magnetic and structural transitions. Complex magnetic and structural phase diagrams are reported for compounds with magnetic (Tb 1-X Y X Mn 2 ) and structural (RE 5 Si 4-X Ge X ) instabilities. Pressure-induced change of the magnetic structure in (R 2 Fe 17 ) intermetallics and the effect on the colossal magnetoresistance manganites are described

  12. Novel Nanocrystalline Intermetallic Coatings for Metal Alloys in Coal-fired Environments

    Energy Technology Data Exchange (ETDEWEB)

    Z. Zak Fang; H. Y. Sohn

    2009-08-31

    Intermetallic coatings (iron aluminide and nickel aluminide) were prepared by a novel reaction process. In the process, the aluminide coating is formed by an in-situ reaction between the aluminum powder fed through a plasma transferred arc (PTA) torch and the metal substrate (steel or Ni-base alloy). Subjected to the high temperature within an argon plasma zone, aluminum powder and the surface of the substrate melt and react to form the aluminide coatings. The prepared coatings were found to be aluminide phases that are porosity-free and metallurgically bonded to the substrate. The coatings also exhibit excellent high-temperature corrosion resistance under the conditions which simulate the steam-side and fire-side environments in coal-fired boilers. It is expected that the principle demonstrated in this process can be applied to the preparation of other intermetallic and alloy coatings.

  13. Thermal Expansion of Ni3Al Intermetallic Compound: Experiment and Simulation

    International Nuclear Information System (INIS)

    Wang Hai-Peng; Lü Peng; Zhou Kai; Wei Bing-Bo

    2016-01-01

    The thermal expansion of Ni 3 Al intermetallic compound is determined by a thermal dilatometer and simulated by the molecular dynamics method. The results of the linear thermal expansion coefficients are presented from 200 K up to the maximum temperature of 1600 K. The single phase of Ni 3 Al intermetallic compound is confirmed by x-ray diffraction together with DSC melting and solidification peaks, from which the solidus and the liquidus temperatures are obtained to be 1660 and 1695 K, respectively. The measured linear thermal expansion coefficient increases from 1.5 × 10 −5 to 2.7 × 10 −5 K −1 in the experimental temperature range, in good agreement with the data obtained by the molecular dynamics simulation, just a slight difference from the temperature dependence coefficient. Furthermore, the atomic structure and position are presented to reveal the atom distribution change during thermal expansion of Ni 3 Al compound. (paper)

  14. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  15. New NbCd2 Phase in Niobium-Cadmium Coating Films

    Science.gov (United States)

    Volodin, V. N.; Tuleushev, Yu. Zh.; Zhakanbaev, E. A.; Tsai, K. V.; Rofman, O. V.

    2018-02-01

    Solid solutions in the form of alloy coatings have been obtained for the first time in the Cd concentration range of 64.5% using ion-plasma sputtering and the codeposition of Nb and Cd ultrafine particles. This supports thermal fluctuation melting and the coalescence of fine particles. A coating of niobium and cadmium layers less than 2 nm thick at 68 at % Cd results in the formation of a new phase identified as NbCd2. The tetragonal fcc phase with lattice parameters a = 0.84357 nm and c = 0.54514 nm forms directly during film coating. XRD data for the identification of the intermetallic compound have been determined. The thermal stability of the NbCd 2 intermetallic compound is limited by 200°C. The properties of the synthesized NbCd 2 phase are typical of semiconductors.

  16. Synthesis, characterization and formation mechanism of metastable phase VO2(A) nanorods

    International Nuclear Information System (INIS)

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-01-01

    Graphical abstract: - Highlights: • Pure phases of VO 2 (B) and VO 2 (A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO 2 (B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO 2 (A) phase. • VO 2 (A) nanorods resulted from VO 2 (B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO 2 (A) nanorods were synthesized via the reduction of V 2 O 5 by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO 2 (A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO 2 (B) was firstly formed and then transformed into VO 2 (A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO 2 (A) from VO 2 (B). For VO 2 (A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO 2 (A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO 2 (A) nanorods. VO 2 nanostructures with controllable phases and properties should find their promising applications in a single VO 2 nanodevice

  17. Formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bei, H., E-mail: beih@ornl.gov [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States); Yang, Y., E-mail: ying.yang@computherm.com [CompuTherm LLC, Madison, WI 53719 (United States); Viswanathan, G.B. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Rawn, C.J.; George, E.P. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States)] [University of Tennessee, Department of Materials Science and Engineering, Knoxville, TN 37996 (United States); Tiley, J. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Chang, Y.A. [CompuTherm LLC, Madison, WI 53719 (United States)] [University of Wisconsin-Madison, Madison, WI 53705 (United States)

    2010-10-15

    The formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys were investigated. Guided by thermodynamic calculations, six critically selected alloys were arc melted and annealed at 1600 deg. C for 150 h. Their as-cast and annealed microstructures, including phase fractions and distributions, the compositions of the constituent phases and the crystal structure of the {sigma} phase were analyzed by thermodynamic modeling coupled with experimental characterization by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and transmission electron microscopy. Two key findings resulted from this work. One is the large homogeneity range of the {sigma} phase region, extending from binary Mo-Re to ternary Mo-Re-Si. The other is the formation of a {sigma} phase in Mo-rich alloys either through the peritectic reaction of liquid + Mo{sub ss} {yields} {sigma} or primary solidification. These findings are important in understanding the effects of Re on the microstructure and providing guidance on the design of Mo-Re-Si alloys.

  18. Effects of Phytoplankton Growth Phase on the Formation and Properties of Marine Snow

    Science.gov (United States)

    Montgomery, Q. W.; Proctor, K. W.; Prairie, J. C.

    2016-02-01

    Marine snow aggregates often dominate carbon export from the upper mixed layer to the deep ocean. Thus, understanding the formation and the properties of these aggregates is essential to the study of the biological pump. Aggregate formation is determined by both the encounter rate and the stickiness of the particles that they are composed of. Stickiness of phytoplankton has been linked to production of transparent exopolymer particles (TEP), which has been previously shown to vary in concentration throughout different parts of the phytoplankton growth cycle. The objective of this study is to determine the effects of the growth phase of the diatom Thalassiosira weissflogii to both TEP production and the properties of the resulting aggregates produced. Cultures of T. weissflogii were stopped at separate phases of the phytoplankton growth curve and incubated in rotating cylindrical tanks to form aggregates. Aggregate properties such as size, density, and porosity were measured at the end of each period of roller incubation. Preliminary results describe little variation in the size of the aggregates formed from different parts of the growth phase, but show a significant effect of growth phase on aggregate density. Density is an important factor in the settling of marine aggregates. Therefore, variations in aggregate density during different growth phases may have large implications for the efficiency of the biological pump during different stages of a phytoplankton bloom. Further examination will be performed on the potential effects of TEP abundance on the properties of the aggregates formed at separate growth phases and the resulting implications for carbon flux.

  19. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    Science.gov (United States)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  20. The atomic structure of low-index surfaces of the intermetallic compound InPd

    Energy Technology Data Exchange (ETDEWEB)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de, E-mail: vincent.fournee@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, F-54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstrasse 41, D-80333 München (Germany); Ivarsson, D. C. A.; Armbrüster, M. [Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Ardini, J.; Held, G. [Department of Chemistry, University of Reading, Reading RG6 6AD (United Kingdom); Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Maccherozzi, F. [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Bayer, A. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen (Germany); Lowe, M. [Surface Science Research Centre and Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Pussi, K. [Department of Mathematics and Physics, Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta (Finland); Diehl, R. D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States)

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  1. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  2. Systematic Search for Chemical Reactions in Gas Phase Contributing to Methanol Formation in Interstellar Space.

    Science.gov (United States)

    Gamez-Garcia, Victoria G; Galano, Annia

    2017-10-05

    A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.

  3. Mechanical and oxidation properties of some B2 rare earth–magnesium intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Stumphy, Brad [Iowa State Univ., Ames, IA (United States)

    2006-12-15

    The remainder of Chapter 1 provides background information on three main topics. First is a discussion about the basic structure and composition of binary B2 intermetallic compounds. Second, the mechanical properties of intermetallics are examined, starting with the cause for the typically inherent brittleness observed in B2 intermetallics. A number of B2 compounds have been found to possess an abnormal level of ductility compared to other intermetallics in this class, including a handful of other rare earth–non-rare earth (RM) B2 line compounds, and these findings are also discussed. Finally, oxidation studies of rare earth metals, focusing on yttrium and cerium, as well as magnesium and some B2 materials are discussed. Chapter 2 is an in-depth look into certain aspects of the laboratory work done during this study. The many challenges and difficulties encountered required that a variety of laboratory techniques be attempted in the making, processing, and testing of these two intermetallic materials. The results and ensuing discussion for the mechanical testing that was performed are found in Chapter 3. Tensile and compression testing results for YMg are shown first, followed by those for CeMg. Some samples were made using electrical discharge machining (EDM) while others were polished into the desired shape. A scanning electron microscope (SEM) was utilized to inspect surfaces of the tensile and compression samples. Hardness values and attempts to determine fracture toughness are also recorded before beginning the discussion. Chapter 4 follows the same basic format for the oxidation study portion of the research. Oxidation curves for CeMg are followed by a qualitative chemical analysis using energy dispersive spectroscopy (EDS). The YMg oxidation curves are shown next followed by an x-ray diffraction (XRD) analysis of the oxidation process for this material and a discussion of the results. Chapter 5 is a summary of the research performed in the mechanical and

  4. The formation of quasicrystal phase in Al-Cu-Fe system by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Dilermando Nagle Travessa

    2012-10-01

    Full Text Available In order to obtain quasicrystalline (QC phase by mechanical alloying (MA in the Al-Cu-Fe system, mixtures of elementary Al, Cu and Fe in the proportion of 65-20-15 (at. % were produced by high energy ball milling (HEBM. A very high energy type mill (spex and short milling times (up to 5 hours were employed. The resulting powders were characterized by X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopy (SEM. QC phase was not directly formed by milling under the conditions employed in this work. However, phase transformations identified by DSC analysis reveals that annealing after HEBM possibly results in the formation of the ψ QC phase.

  5. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    International Nuclear Information System (INIS)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L.

    2017-01-01

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  6. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    Energy Technology Data Exchange (ETDEWEB)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L., E-mail: klavsyuk@physics.msu.ru [Moscow State University (Russian Federation)

    2017-01-15

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  7. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  8. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    Science.gov (United States)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  9. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    Science.gov (United States)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  10. Chemical-Reaction-Controlled Phase Separated Drops: Formation, Size Selection, and Coarsening

    Science.gov (United States)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-02-01

    Phase separation under nonequilibrium conditions is exploited by biological cells to organize their cytoplasm but remains poorly understood as a physical phenomenon. Here, we study a ternary fluid model in which phase-separating molecules can be converted into soluble molecules, and vice versa, via chemical reactions. We elucidate using analytical and simulation methods how drop size, formation, and coarsening can be controlled by the chemical reaction rates, and categorize the qualitative behavior of the system into distinct regimes. Ostwald ripening arrest occurs above critical reaction rates, demonstrating that this transition belongs entirely to the nonequilibrium regime. Our model is a minimal representation of the cell cytoplasm.

  11. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  12. Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data

    Directory of Open Access Journals (Sweden)

    Mohammad Mezbahul-Islam

    2014-01-01

    Full Text Available Magnesium-based alloys are becoming a major industrial material for structural applications because of their potential weight saving characteristics. All the commercial Mg alloys like AZ, AM, AE, EZ, ZK, and so forth series are multicomponent and hence it is important to understand the phase relations of the alloying elements with Mg. In this work, eleven essential Mg-based binary systems including Mg-Al/Zn/Mn/Ca/Sr/Y/Ni/Ce/Nd/Cu/Sn have been reviewed. Each of these systems has been discussed critically on the aspects of phase diagram and thermodynamic properties. All the available experimental data has been summarized and critically assessed to provide detailed understanding of the systems. The phase diagrams are calculated based on the most up-to-date optimized parameters. The thermodynamic model parameters for all the systems except Mg-Nd have been summarized in tables. The crystallographic information of the intermetallic compounds of different binary systems is provided. Also, the heat of formation of the intermetallic compounds obtained from experimental, first principle calculations and CALPHAD optimizations are provided. In addition, reoptimization of the Mg-Y system has been done in this work since new experimental data showed wider solubility of the intermetallic compounds.

  13. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  14. Parasitic phase formation in the La Ba2 Cu3 O7-x superconductor

    International Nuclear Information System (INIS)

    Baltra, T.; Fuenzalida, V.M.; Grahmann, C.R.

    1996-01-01

    The parasitic phase formation during the thermal processing of the H Tc La Ba 2 Cu 3 O 7-x superconductor, particularly the Ba Cu O 2 , is studied. The formation of the stable parasitic phase depends on the temperature of the initial treatments and on the heating rate during the sintering process. The superconducting highest purity material is obtained with treatment at 900 deg C and lowest heating rate. The temperature during the final annealing in oxygen of the sample did also affect the transport properties. Samples with the lowest resistivity in the normal state were produced by annealing in oxygen at 300 deg C. The largest orthorhombic distortion was obtained at 325 deg C. (author)

  15. Magnesium nitride phase formation by means of ion beam implantation technique

    International Nuclear Information System (INIS)

    Hoeche, Daniel; Blawert, Carsten; Cavellier, Matthieu; Busardo, Denis; Gloriant, Thierry

    2011-01-01

    Nitrogen implantation technique (Hardion + ) has been applied in order to modify the surface properties of magnesium and Mg-based alloys (AM50, AZ31). Nitrogen ions with an energy of approximately 100 keV were used to form the Mg 3 N 2 phase leading to improved surface properties. The samples were investigated using various characterization methods. Mechanical properties have been tested by means of nanoindention, the electrochemical behavior was measured by potentiodynamic polarization and impedance spectroscopy, phase formation by using grazing incidence Xray diffraction, the chemical state was determined by means of Xray induced photoelectron spectroscopy (XPS) and depth profiling by using secondary ions mass spectroscopy (SIMS). Additionally, the results were compared to calculated depth profiles using SRIM2008. The correlation of the results shows the nitride formation behavior to a depth of about 600 nm.

  16. Lattice dynamical study of omega phase formation in Zr-Al system

    International Nuclear Information System (INIS)

    Ghosh, P.S.; Arya, A.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    The hexagonal ω phase occurs in the alloys in which the high temperature β phase (bcc) is stabilized with respect to the martensitic β -> ω transformation. The compositional ranges over which the ω phase can be stabilized is the characteristic of the alloy system under consideration. The formation of ordered ω (B8 2 -Zr 2 Al) phase, having space group P6 3 /mmc has been viewed in terms of a superimposition of displacive and replacive components of phase transformation. While the lattice collapse mechanism of β -> ω transformation is displacive in nature; a replacive transformation involving diffusion is required for decorating different sublattice sites by different atomic species. Although, the extent of overlap of these transformations in the formation of ordered ω phase has not been established so far; attempts have been made to explore this aspect by examining the sequential formation of several intermediate stable/metastable phases. The partial collapse of 2nd - 3rd and 5th - 6th planes along (111) direction leads to intermediate trigonal ω ' phase upto which the transformation is purely displacive in nature. A chemical ordering sets in after this step leading to B82 structure via ω'' structure. Density functional plane wave based calculations using the projector augmented wave (PAW) potentials are employed under the generalized gradient approximation to exchange and correlation to study (a) relative ground state stabilities of these phases, (b) variation of total energy as a function of displacement (z, z = 0 to 1/12) and (c) Frozen-phonon calculations for 2/3 longitudinal phonon along (111) direction. The energy-displacement curve for the B2 structure shows nearly harmonic behavior for small displacements but shows strong anharmonic behavior for large displacements making trigonal ω ' structure metastable with respect to this kind of transformations. The phonon dispersion of B2 structure exhibits imaginary frequencies along (111) making it a

  17. Containerless automated processing of intermetallic compounds and composites

    Science.gov (United States)

    Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.

    1993-01-01

    An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.

  18. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  19. Phase recording for formation of holographic optical elements on silver-halide photographic emulsions

    Science.gov (United States)

    Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.

    2009-05-01

    Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.

  20. Diffusion in substitutionally disordered B2 intermetallics

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.

    2002-01-01

    In this paper, a comprehensive diffusion kinetics theory is formulated to describe seamlessly tracer and chemical diffusion in antistructurally disordered B2 intermetallics showing positive and negative deviations from stoichiometry. The theory is based around unit processes consisting of six-jump cycles that can be assisted by intrinsic and extrinsic antistructural atoms of either atomic species. The Ising alloy model is used to illustrate the formalism, but the formalism can be adapted to other models. Expressions are developed for the tracer diffusion coefficients, the phenomenological coefficients, the intrinsic diffusion coefficients, the interdiffusion coefficient and the various correlation factor components. Results for the tracer and collective correlation factors and the vacancy wind factor (in interdiffusion) are in excellent agreement with results from Monte Carlo computer simulations based around single vacancy jumps. (author)

  1. SURVIVAL OF INTERSTELLAR MOLECULES TO PRESTELLAR DENSE CORE COLLAPSE AND EARLY PHASES OF DISK FORMATION

    International Nuclear Information System (INIS)

    Hincelin, U.; Wakelam, V.; Hersant, F.; Guilloteau, S.; Commerçon, B.

    2013-01-01

    An outstanding question of astrobiology is the link between the chemical composition of planets, comets, and other solar system bodies and the molecules formed in the interstellar medium. Understanding the chemical and physical evolution of the matter leading to the formation of protoplanetary disks is an important step for this. We provide some new clues to this long-standing problem using three-dimensional chemical simulations of the early phases of disk formation: we interfaced the full gas-grain chemical model Nautilus with the radiation-magnetohydrodynamic model RAMSES, for different configurations and intensities of the magnetic field. Our results show that the chemical content (gas and ices) is globally conserved during the collapsing process, from the parent molecular cloud to the young disk surrounding the first Larson core. A qualitative comparison with cometary composition suggests that comets are constituted of different phases, some molecules being direct tracers of interstellar chemistry, while others, including complex molecules, seem to have been formed in disks, where higher densities and temperatures allow for an active grain surface chemistry. The latter phase, and its connection with the formation of the first Larson core, remains to be modeled

  2. Effect of Al doping on phase formation and thermal stability of iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Mukul, E-mail: mgupta@csr.res.in [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Pandey, Nidhi [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Horisberger, Michael [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stahn, Jochen [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-11-25

    In the present work, we systematically studied the effect of Al doping on the phase formation of iron nitride (Fe–N) thin films. Fe–N thin films with different concentration of Al (Al = 0, 2, 3, 6, and 12 at.%) were deposited using dc magnetron sputtering by varying the nitrogen partial pressure between 0 and 100%. The structural and magnetic properties of the films were studied using x-ray diffraction and polarized neutron reflectivity. It was observed that at the lowest doping level (2 at.% of Al), nitrogen rich non-magnetic Fe–N phase gets formed at a lower nitrogen partial pressure as compared to the un-doped sample. Interestingly, we observed that as Al doping is increased beyond 3 at.%, nitrogen rich non-magnetic Fe–N phase appears at higher nitrogen partial pressure as compared to un-doped sample. The thermal stability of films were also investigated. Un-doped Fe–N films deposited at 10% nitrogen partial pressure possess poor thermal stability. Doping of Al at 2 at.% improves it marginally, whereas, for 3, 6 and 12 at.% Al doping, it shows significant improvement. The obtained results have been explained in terms of thermodynamics of Fe–N and Al–N. - Highlights: • Doping effects of Al on Fe–N phase formation is studied. • Phase formation shows a non-monotonic behavior with Al doping. • Low doping levels of Al enhance and high levels retard the nitridation process. • Al doping beyond 3 at.% improve thermal stability of Fe–N films.

  3. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    Science.gov (United States)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  4. Instability of a Lamellar Phase under Shear Flow: Formation of Multilamellar Vesicles

    Science.gov (United States)

    Courbin, L.; Delville, J. P.; Rouch, J.; Panizza, P.

    2002-09-01

    The formation of closed-compact multilamellar vesicles (referred to in the literature as the ``onion texture'') obtained upon shearing lamellar phases is studied using small-angle light scattering and cross-polarized microscopy. By varying the shear rate γ ˙, the gap cell D, and the smectic distance d, we show that: (i)the formation of this structure occurs homogeneously in the cell at a well-defined wave vector qi, via a strain-controlled process, and (ii)the value of qi varies as (dγ ˙/D)1/3. These results strongly suggest that formation of multilamellar vesicles may be monitored by an undulation (buckling) instability of the membranes, as expected from theory.

  5. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  6. First principles electronic and thermal properties of some AlRE intermetallics

    Science.gov (United States)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  7. First principles electronic and thermal properties of some AlRE intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vipul [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India)], E-mail: vips73@yahoo.com; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Hoshangabad Road, Bhopal, Madhya Pradesh 462 026 (India); Rajagopalan, M. [Department of Physics, Anna University, Chennai-600 025 (India)

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B{sub 2}-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grueneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grueneisen model and compared with the others' theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  8. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    Directory of Open Access Journals (Sweden)

    Chunyan Song

    2016-12-01

    Full Text Available Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %. Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  9. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  10. Araçatuba Formation: palustrine deposits from the initial sedimentation phase of the Bauru Basin

    Directory of Open Access Journals (Sweden)

    Fernandes Luiz A.

    2003-01-01

    Full Text Available The Bauru Basin (Upper Cretaceous accumulated an essentially sandy continental sedimentary sequence. In a first desertic phase the basaltic substratum was covered by a widespread and homogeneous aeolian sand unit with minor loess intercalations. The substratum relief favored the formation of an endorheic drainage system under semi-arid climate, a process that started the development of the Araçatuba Paleoswamp. The palustrine deposits (Araçatuba Formation comprise siltstone and tipically greenish gray narrow tabular strata of sandstone cemented by carbonate. Moulds and gypsite and dolomite pseudomorphs were identified. The moulds seem to be genetically associated with desiccation cracks, root marks and climbing ripple lamination levels, that, on the whole, indicate calm shallow saline waters undergoing phases of subaerial exposition. At the boundaries of the study area, sand units may exhibit sigmoidal features and convolute bedding structure, which is characteristic of marginal deltaic deposits. The Araçatuba Formation is enclosed in and later overlaid by the aeolian deposits of the Vale do Rio do Peixe Formation.

  11. Multilevel modeling of micromechanics and phase formation for microstructural evolution of magnetic zones

    International Nuclear Information System (INIS)

    Suwa, Yoshihiro; Aizawa, Tatsuhiko; Takaya, Shigeru; Nagae, Yuji; Aoto, Kazumi

    2005-03-01

    The present research aims at a proposal of theoretical treatise to describe the local phase transformation from austenite to ferrite in the stainless steels under hot cyclic fatigue conditions. In experiments, this local phase transformation is detected as a magnetized region in the non-magnetic matrix after low-cycle fatigue test at the elevated temperature. The theoretical frame proposed here is composed of two methodologies. In the first approach, microstructure evolution with γ → α transformation is described by the phase field method. In the second approach, micromechanical method on the basis of the unit cell modeling is proposed to develop a new micromechanical analysis. The details of two approached are summarized in the following. (1) Phase formation simulation by the phase field method. Most of reports have started that γ-α phase transformation as a creep damage is induced by dechromization, which comes from carbide precipitation around grain boundaries. A new theoretical treatise is proposed for simulating this γ → α transformation in Fe-Cr-Ni system. Stabilities of both phases are investigated for various chemical compositions. Furthermore, in order to investigate dechromization phenomena in Fe-Cr-Ni-C system, a new theoretical frame is also proposed to handle an interstitial element in phase field method. (2) Low cycle fatigue elasto-plastic analysis by the unit-cell modeling. In experiments, the magnetized zones are generated to distribute at the vicinity of the hard, delta-phase inclusion in the austenitic matrix. The cumulative plastic region advances in the surroundings of this hard inclusion with increasing the number of cycles in the controlled strain range. This predicted profile of cumulative plastic regions corresponds to the experimentally measured, magnetized zones. In addition, the effect of geometric configuration of this inclusion on the plastic region evolution has close relationship of creep damage advancement in experiments

  12. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  13. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such as nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)

  14. Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation

    International Nuclear Information System (INIS)

    Valiulis, G.; Jukna, V.; Jedrkiewicz, O.; Clerici, M.; Rubino, E.; DiTrapani, P.

    2011-01-01

    This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation (SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with, in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are also presented.

  15. Circular Formation Control of Multiagent Systems with Any Preset Phase Arrangement

    Directory of Open Access Journals (Sweden)

    Lina Jin

    2018-01-01

    Full Text Available This paper deals with the circular formation control problem of multiagent systems for achieving any preset phase distribution. The control problem is decomposed into two parts: the first is to drive all the agents to a circle which either needs a target or not and the other is to arrange them in positions distributed on the circle according to the preset relative phases. The first part is solved by designing a circular motion control law to push the agents to approach a rotating transformed trajectory, and the other is settled using a phase-distributed protocol to decide the agents’ positioning on the circle, where the ring topology is adopted such that each agent can only sense the relative positions of its neighboring two agents that are immediately in front of or behind it. The stability of the closed-loop system is analyzed, and the performance of the proposed controller is verified through simulations.

  16. Single crystal growth of europium and ytterbium based intermetallic ...

    Indian Academy of Sciences (India)

    The difference between an intermetallic compound and a regular metal (e.g., ... intriguing properties, there have not been any reports of thorough investigations of .... scanning electron microscope (SEM) equipped with an energy dispersive ...

  17. Magnetocaloric effect in rare-earth intermetallics: Recent trends

    Indian Academy of Sciences (India)

    ... intermetallic hydrides, manganite oxides, Ni–Mn–Sb-type shape memory ... With the help of temperature-dependent heat capacity information in various applied .... for relative cooling power and a wide working temperature range of about ...

  18. Direct characterization of phase transformations and morphologies in moving reaction zones in Al/Ni nanolaminates using dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S., E-mail: judy.kim@materials.ox.ac.uk [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); LaGrange, T.; Reed, B.W. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Knepper, R.; Weihs, T.P. [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Browning, N.D. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Chemical Engineering and Materials Science/Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Campbell, G.H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2011-05-15

    Highlights: > Fast phase transformations are examined in Al/Ni reactive nanolaminates. > Results visible only by dynamic transmission electron microscopy at ns resolution. > NiAl forms under 15 ns after reaction front in all three stoichiometries studied. > DTEM imaging reveals a transient cellular morphology in nonequiatomic films. - Abstract: Phase transformations and transient morphologies are examined as exothermic formation reactions self-propagate across Al/Ni nanolaminate films. The rapid evolution of these phases and sub-micrometer morphological features requires nanoscale temporal and spatial resolution that is not available with traditional in situ electron microscopy. This work uses dynamic transmission electron microscopy to identify intermetallic products and phase morphologies, as exothermic formation reactions self-propagate in nanolaminate films grown with 3:2, 2:3 and 1:1 Al/Ni atomic ratios. Single-shot diffraction patterns with 15 ns temporal resolution reveal that the NiAl intermetallic forms within {approx}15 ns of the reaction front's arrival in all three types of films and is the only intermetallic phase to form, as the reactions self-propagate and quench very rapidly. Time-resolved imaging reveals a transient cellular morphology in the Al-rich and Ni-rich foils, but not in the equiatomic films. The cellular features in the Al-rich and Ni-rich films are attributed to a cooling trajectory through a two-phase field of liquid + NiAl.

  19. Gas phase enthalpies of formation of nitrobenzamides using combustion calorimetry and thermal analysis

    International Nuclear Information System (INIS)

    Ximello, Arturo; Flores, Henoc; Rojas, Aarón; Adriana Camarillo, E.; Patricia Amador, M.

    2014-01-01

    Graphical abstract: - Highlights: • Formation enthalpies of the nitrobenzamides were derived from combustion calorimetry. • Enthalpies of vaporisation and sublimation were calculated by thermogravimetry. • From gas phase enthalpies of formation the stability of the isomers is studied. • Stability of isomers is not driven by a steric hindrance between functional groups. - Abstract: The standard molar energies of combustion of 2-nitrobenzamide, 3-nitrobenzamide and 4-nitrobenzamide were determined with an isoperibolic, static-bomb, combustion calorimeter. From the combustion results, the standard molar enthalpies of combustion and formation for these compounds in the condensed phase at T = 298.15 K were derived. Subsequently, to determine the enthalpies of sublimation, the vapour pressure data as a function of the temperature for the compounds under investigation were estimated using thermogravimetry by applying Langmuir’s equation, and the enthalpies of vaporisation were derived. Standard enthalpies of fusion were measured by differential scanning calorimetry then added to those of vaporisation to obtain reliable results for the enthalpy of sublimation. From the combustion and sublimation data, the gas phase enthalpies of formation were determined to be (−138.9 ± 3.5) kJ · mol −1 , (−122.9 ± 2.9) kJ · mol −1 and (−108.5 ± 3.7) kJ · mol −1 for the ortho, meta and para isomers of nitrobenzamide, respectively. The meaning of these results with regard to the enthalpic stability of these molecular structures is discussed herein

  20. FORMATION REGULARITIES OF PHASE COMPOSITION, STRUCTURE AND PROPERTIES DURING MECHANICAL ALLOYING OF BINARY ALUMINUM COMPOSITES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The paper presents investigation results pertaining to  ascertainment of formation regularities of phase composition and structure during mechanical alloying of binary aluminium composites/substances. The invetigations have been executed while applying a wide range of methods, devices and equipment used in modern material science. The obtained data complement each other. It has been established that presence of oxide and hydro-oxide films on aluminium powder  and introduction of surface-active substance in the composite have significant effect on mechanically and thermally activated phase transformations and properties of semi-finished products.  Higher fatty acids have been used as a surface active substance.The mechanism of mechanically activated solid solution formation has been identified. Its essence is  a formation of  specific quasi-solutions at the initial stage of processing. Mechanical and chemical interaction between components during formation of other phases has taken place along with dissolution  in aluminium while processing powder composites. Granule basis is formed according to the dynamic recrystallization mechanism and possess submicrocrystal structural type with the granule dimension basis less than 100 nm and the grains are divided in block size of not more than 20 nm with oxide inclusions of 10–20 nm size.All the compounds  with the addition of  surface-active substances including aluminium powder without alloying elements obtained by processing in mechanic reactor are disperse hardened. In some cases disperse hardening is accompanied by dispersive and solid solution hardnening process. Complex hardening predetermines a high temperature of recrystallization in mechanically alloyed compounds,  its value exceeds 400 °C.

  1. Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

    International Nuclear Information System (INIS)

    Han, Junhee

    2014-01-01

    In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd 35 Ti 35 Co 30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd-Ti-Co system revealed that the stable miscibility gap of binary Gd-Ti extends into the ternary Gd-Ti-Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be

  2. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  3. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  4. The intermetallic ThRh5: microstructure and enthalpy increments

    International Nuclear Information System (INIS)

    Banerjee, Aparna; Joshi, A.R.; Kaity, Santu; Mishra, R.; Roy, S.B.

    2013-01-01

    Actinide intermetallics are one of the most interesting and important series of compounds. Thermochemistry of these compounds play significant role in understand the nature of bonding in alloys and nuclear fuel performance. In the present paper we report synthesis and characterization of thorium based intermetallic compound ThRh 5 (s) by SEM/EDX technique. The mechanical properties and enthalpy increment as a function of temperature of the alloy has been measured. (author)

  5. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  6. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  7. Codeformation processing of mechanically-dissimilar metal/intermetallic composites

    Science.gov (United States)

    Marte, Judson Sloan

    A systematic and scientific approach has been applied to the study of codeformation processing. A series of composites having mechanically-dissimilar phases were developed in which the high temperature flow behavior of the reinforcement material could be varied independent of the matrix. This was accomplished through the use of a series of intermetallic matrix composites (IMCs) as discontinuous reinforcements in an otherwise conventional metal matrix composite. The IMCs are produced using an in-situ reaction synthesis technique, called the XD(TM) process. The temperature of the exothermic synthesis reaction, called the adiabatic temperature, has been calculated and shown to increase with increasing volume percentage of TiB2 reinforcement. Further, this temperature has been shown to effect the size and spacing of the TiB2, microstructural features which are often used in discontinuous composite strength models. Study of the high temperature flow behavior of the components of the metal/IMC composite is critical to the development of an understanding of codeformation. A series of compression tests performed at 1000° to 1200°C and strain-rates of 10-3 and 10-4 sec-1. Peak flow stresses were used to evaluate the influence of material properties and process conditions. These data were incorporated into phenomenologically-based constitutive equations that have been used to predict the flow behavior. It has been determined that plastic deformation of the IMCs occurs readily, and is largely TiB2 independent, at temperatures approaching the melting point of the intermetallic matrices. Ti-6Al-4V/IMC powder blends were extruded at high temperatures to achieve commensurately deformed microstructures. The results of codeformation processing were analyzed in terms of the plastic strain of the IMC particulates. IMC particle deformation was shown to increase with increasing IMC particle size, volume percentage of IMC, extrusion temperature, homologous temperature, extrusion

  8. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    International Nuclear Information System (INIS)

    Adhe, K.N.; Kain, V.; Madangopal, K.; Gadiyar, H.S.

    1996-01-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr 23 C 6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  9. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    Science.gov (United States)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  10. Thermodynamic behavior of poly(3-alkyl thiophene) blends: Equilibrium cocrystal formation and phase segregation.

    Science.gov (United States)

    Pal, Susmita; Nandi, Arun K

    2005-02-24

    The equilibrium cocrystal formation of poly(3-alkyl thiophene) (P3AT) blends has been studied by isothermal cocrystallization in a differential scanning calorimeter (DSC-7). The equilibrium melting points (T(m)0) of the cocrystals are measured using the Hoffman-Weeks extrapolation procedure. The equilibrium phase diagrams are of three different types: (a) concave upward, (b) linear, and (c) linear with phase separation at higher content of lower melting component. The phase diagram nature depends on the regioregularity difference and also on the difference in the number of carbon atoms in the pendent alkyl group of the components. The origin of biphasic nature of type "c" phase diagram has been explored from the glass transition temperature (Tg) measurement using a dynamic mechanical analyzer. The biphasic compositions show two glass transition temperatures (Tg) as well as two beta transition temperatures (T beta). The T(g)s of phase-separated regions correspond to almost the component values but the T(beta)s correspond to that of a lower (T beta) component value, and the other is higher than that of the higher (T beta) component value. Possible reasons are discussed from the interchain lamella thickness in the P3AT blends and molecular modeling using molecular mechanics program.

  11. Elimination of impurity phase formation in FePt magnetic thin films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wang, Ying; Medwal, Rohit; Sehdev, Neeru; Yadian, Boluo; Tan, T.L.; Lee, P.; Talebitaher, A.; Ilyas, Usman; Ramanujan, R.V.; Huang, Yizhong; Rawat, R.S.

    2014-01-01

    The formation of impurity phases in FePt thin films severely degrades its magnetic properties. The X-ray diffraction patterns of FePt thin films, synthesized using pulsed laser deposition (PLD), showed peaks corresponding to impurity phases, resulting in softer magnetic properties. A systematic investigation was carried to determine the factors that might have led to impurity phase formation. The factors include (i) PLD target composition, (ii) substrate material, (iii) annealing parameters such as temperature, duration and ambience and (iv) PLD deposition parameters such as chamber ambience, laser energy fluence and target–substrate distance. Depositions on the different substrates revealed impurity phase formation only on Si substrates. It was found that the target composition, PLD chamber ambience, and annealing ambience were not the factors that caused the impurity phase formation. The annealing temperature and duration influenced the impurity phases, but are not the cause of their formation. A decrease in the laser energy fluence and increase of the target–substrate distance resulted in elimination of the impurity phases and enhancement in the magnetic and structural properties of FePt thin films. The energy of the ablated plasma species, controlled by the laser energy fluence and the target–substrate distance, is found to be the main factor responsible for the formation of the impurity phases.

  12. New ternary intermetallics, based magnesium, for hydrogen storage

    International Nuclear Information System (INIS)

    Roquefere, J.G.

    2009-05-01

    The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism,...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. (authors)

  13. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  14. Computer simulations of disordering kinetics in irradiated intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; Diaz de la Rubia, T.

    1994-01-01

    Molecular-dynamics computer simulations of collision cascades in intermetallic Cu 3 Au, Ni 3 Al, and NiAl have been performed to study the nature of the disordering processes in the collision cascade. The choice of these systems was suggested by the quite accurate description of the thermodynamic properties obtained using embedded-atom-type potentials. Since melting occurs in the core of the cascades, interesting effects appear as a result of the superposition of the loss (and subsequent recovery) of the crystalline order and the evolution of the chemical order, both processes being developed on different time scales. In our previous simulations on Ni 3 Al and Cu 3 Au [T. Diaz de la Rubia, A. Caro, and M. Spaczer, Phys. Rev. B 47, 11 483 (1993)] we found a significant difference between the time evolution of the chemical short-range order (SRO) and the crystalline order in the cascade core for both alloys, namely the complete loss of the crystalline structure but only partial chemical disordering. Recent computer simulations in NiAl show the same phenomena. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the atomic mobility, the relaxation time, and the saturation value of the chemical short-range order. An analytic model for the time evolution of the SRO is given

  15. The Genealogical Tree of Ethanol: Gas-phase Formation of Glycolaldehyde, Acetic Acid, and Formic Acid

    Science.gov (United States)

    Skouteris, Dimitrios; Balucani, Nadia; Ceccarelli, Cecilia; Vazart, Fanny; Puzzarini, Cristina; Barone, Vincenzo; Codella, Claudio; Lefloch, Bertrand

    2018-02-01

    Despite the harsh conditions of the interstellar medium, chemistry thrives in it, especially in star-forming regions where several interstellar complex organic molecules (iCOMs) have been detected. Yet, how these species are synthesized is a mystery. The majority of current models claim that this happens on interstellar grain surfaces. Nevertheless, evidence is mounting that neutral gas-phase chemistry plays an important role. In this paper, we propose a new scheme for the gas-phase synthesis of glycolaldehyde, a species with a prebiotic potential and for which no gas-phase formation route was previously known. In the proposed scheme, the ancestor is ethanol and the glycolaldehyde sister species are acetic acid (another iCOM with unknown gas-phase formation routes) and formic acid. For the reactions of the new scheme with no available data, we have performed electronic structure and kinetics calculations deriving rate coefficients and branching ratios. Furthermore, after a careful review of the chemistry literature, we revised the available chemical networks, adding and correcting several reactions related to glycolaldehyde, acetic acid, and formic acid. The new chemical network has been used in an astrochemical model to predict the abundance of glycolaldehyde, acetic acid, and formic acid. The predicted abundance of glycolaldehyde depends on the ethanol abundance in the gas phase and is in excellent agreement with the measured one in hot corinos and shock sites. Our new model overpredicts the abundance of acetic acid and formic acid by about a factor of 10, which might imply a yet incomplete reaction network.

  16. RPPAML/RIMS: a metadata format and an information management system for reverse phase protein arrays.

    Science.gov (United States)

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-12-22

    Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1,000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  17. Rare earth-ruthenium-magnesium intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Kersting, Marcel; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    Eight new intermetallic rare earth-ruthenium-magnesium compounds have been synthesized from the elements in sealed niobium ampoules using different annealing sequences in muffle furnaces. The compounds have been characterized by powder and single crystal X-ray diffraction. Sm{sub 9.2}Ru{sub 6}Mg{sub 17.8} (a=939.6(2), c=1779(1) pm), Gd{sub 11}Ru{sub 6}Mg{sub 16} (a=951.9(2), c=1756.8(8) pm), and Tb{sub 10.5}Ru{sub 6}Mg{sub 16.5} (a=942.5(1), c=1758.3(4) pm) crystallize with the tetragonal Nd{sub 9.34}Ru{sub 6}Mg{sub 17.66} type structure, space group I4/mmm. This structure exhibits a complex condensation pattern of square-prisms and square-antiprisms around the magnesium and ruthenium atoms, respectively. Y{sub 2}RuMg{sub 2} (a=344.0(1), c=2019(1) pm) and Tb{sub 2}RuMg{sub 2} (a=341.43(6), c=2054.2(7) pm) adopt the Er{sub 2}RuMg{sub 2} structure and Tm{sub 3}Ru{sub 2}Mg (a=337.72(9), c=1129.8(4) pm) is isotypic with Sc{sub 3}Ru{sub 2}Mg. Tm{sub 3}Ru{sub 2}Mg{sub 2} (a=337.35(9), c=2671(1) pm) and Lu{sub 3}Ru{sub 2}Mg{sub 2} (a=335.83(5), c=2652.2(5) pm) are the first ternary ordered variants of the Ti{sub 3}Cu{sub 4} type, space group I4/mmm. These five compounds belong to a large family of intermetallics which are completely ordered superstructures of the bcc subcell. The group-subgroup scheme for Lu{sub 3}Ru{sub 2}Mg{sub 2} is presented. The common structural motif of all three structure types are ruthenium-centered rare earth cubes reminicent of the CsCl type. Magnetic susceptibility measurements of Y{sub 2}RuMg{sub 2} and Lu{sub 3}Ru{sub 2}Mg{sub 2} samples revealed Pauli paramagnetism of the conduction electrons.

  18. Effect of temperature on the reaction pathway of calcium carbonate formation via precursor phases

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Konrad, Florian; Dietzel, Martin

    2016-04-01

    It has been earlier postulated that some biogenic and sedimentary calcium carbonate (CaCO3) minerals (e.g. calcite and aragonite) are secondary in origin and have originally formed via a metastable calcium carbonate precursor phase (e.g. amorphous CaCO3, [1-2]). Such formation pathways are likely affected by various physicochemical parameters including aqueous Mg and temperature. In an effort to improve our understanding on the formation mechanism of CaCO3 minerals, precipitation experiments were carried out by the addition of a 0.6 M (Ca,Mg)Cl2 solution at distinct Mg/Ca ratios (1/4 and 1/8) into a 1 M NaHCO3 solution under constant pH conditions(8.3 ±0.1). The formation of CaCO3 was systematically examined as a function of temperature (6, 12, 18 and 25 ±0.3° C). During the experimental runs mineral precipitation was monitored by in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. The results revealed two pathways of CaCO3 formation depending on the initial Mg/Ca ratio and temperature: (i) In experiments with a Mg/Ca ratio of 1/4 at ≤ 12° C as well as in experiments with a Mg/Ca ratio of 1/8 at ≤ 18° C, ikaite (CaCO3 6H2O) acts as a precursor phase for aragonite formation. (ii) In contrast higher temperatures induced the formation of Mg-rich amorphous CaCO3 (Mg-ACC) which was subsequently transformed to Mg-rich calcite. In situ Raman spectra showed that the transformation of Mg-ACC to Mg-calcite occurs at a higher rate (˜ 8 min) compared to that of ikaite to aragonite (> 2 h). Thus, the formation of aragonite rather than of Mg-calcite occurs due to the slower release of Ca2+and CO32- ions into the Mg-rich reactive solution during retarded ikaite dissolution. This behavior is generally consistent with the observation that calcite precipitation is inhibited at elevated aqueous Mg/Ca ratios. [1] Addadi L., Raz S. and Weiner S. (2003) Advanced Materials 15, 959-970. [2] Rodriguez-Blanco J. D

  19. Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    International Nuclear Information System (INIS)

    Typel, S.; Wolter, H.H.; Roepke, G.; Blaschke, D.

    2014-01-01

    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium-dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons. (orig.)

  20. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.

    Science.gov (United States)

    Jung, Adina; Filiz, Volkan; Rangou, Sofia; Buhr, Kristian; Merten, Petra; Hahn, Janina; Clodt, Juliana; Abetz, Clarissa; Abetz, Volker

    2013-04-12

    The formation of integral asymmetric membranes from ABC triblock terpolymers by non-solvent-induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post-functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    Science.gov (United States)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  2. Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation

    Science.gov (United States)

    Donaldson, D. James; Kroll, Jay A.; Vaida, Veronica

    2016-07-01

    Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).

  3. Influence of powder pre-annealing on the phase formation and critical current of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Chen, X.P.; Grivel, Jean-Claude; Li, M.Y.

    2004-01-01

    . The effects of different precursors were investigated by XRD, SEM/EDS and critical current measurements. It has been found that both the microstructure and phase formation depended strongly on the different lead-rich phases, which determined the reactivity of the precursor. Tapes fabricated using...... the precursor with Ca2PbO4 phase (tape T1) had lower transformation rate of 2223 phase than tapes fabricated using the precursor with 3321 phase (tape T2). SEM results show that a large fraction of secondary phases with big particle size was formed in the tape T1 during the subsequent sintering, which might...

  4. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  5. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  6. Kinetics of a new phase formation in supersaturated solid solutions. 1. Dilute one-component systems

    International Nuclear Information System (INIS)

    Dubinko, V.I.

    1991-07-01

    A complete set of kinetic equations describing the diffusion decay of supersaturated solutions, as well as the formation of new-phase fluctuations in equilibrium systems, is derived. A novel method of determining forward and backward reaction rates entering the master equation is proposed which does not require the use of any reference cluster size distribution, either the constrained or the true equilibrium one, employed in all modifications of the classical nucleation theory. Instead, this reference distribution can be obtained as an equilibrium solution of the present master equation. The main advantage of this method is the possibility to take into account various factors affecting the diffusion decay, such as the reaction kinetics at the precipitate surfaces and the diffusion kinetics in the mother phase with account of elastic interaction between nucleating species and their clusters. The latter is of a key importance in the irradiation environment considered in the forthcoming second part of the article. (author). 3 refs

  7. Formation of super disperse phase and its influence on equilibrium and thermodynamics of thermal dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Polyachenok, O.G. [Department of Chemistry, Mogilev State University of Foodstuffs, 212027 (Belarus)], E-mail: polyachenok@mogilev.by; Dudkina, E.N.; Branovitskaya, N.V. [Department of Chemistry, Mogilev State University of Foodstuffs, 212027 (Belarus); Polyachenok, L.D. [Department of Chemistry, Mogilev State University of A.A. Kuleshov, 212022 (Belarus)

    2008-01-30

    New data on the dehydration and rehydration processes of calcium, manganese and copper dichlorides are presented that reveal surprising, in a certain sense, behaviour difficult to be explained for the last two chlorides in terms of the usual conception of thermodynamic equilibrium. A substantial role of a super disperse phase at studying the equilibrium of the thermal decomposition of a hydrate is postulated to explain the experimental results for manganese and copper dichlorides. It is shown that the formation of such a phase of the hydrate is able to change appreciably the experimental results, causing the increase of water vapour pressure and the decrease of the derived enthalpy of a reaction. The results obtained allow to understand the reasons for considerable differences of some literature data. They enable to receive more precise and reliable data for thermal dehydration and probably for some other decomposition processes.

  8. Effects of S/V on secondary phase formation on waste glasses

    International Nuclear Information System (INIS)

    Feng, X.; Buck, E.C.; Bates, J.K.; Gong, M.; Dietz, N.L.; Pegg, I.L.

    1994-01-01

    Simulated West Valley high-level nuclear waste glass, WV205, was leached with and without buffered media in both deuterated and ordinary water at glass surface area to solution volumes (S/N) of 200--6000 m -1 . Examination of the glass surface after testing for 14 days indicated that the S/V-induced pH change plays a dominant role in the development of the altered surface layer and the secondary phases formed. The changes due to SN-induced pH determine the rate of surface layer formation, the element distribution in the surface layer, and possibly, the identities of the secondary phases. Changes due to SN-induced elemental concentration also influence glass reaction rate in terms of the layer thickness and the elemental distribution in the surface layers

  9. Pattern Formation During Phase Separation of Polymer-Ionic Liquid Co-Solutions

    Science.gov (United States)

    Meng, Zhiyong; Osuji, Chinedum

    2010-03-01

    Co-solutions of polystyrene (PS) with a 1-butyl-3-methylimidazolium based ionic liquid (IL) in DMF phase separated into IL-rich and PS-rich domains on solvent evaporation. Over a limited range of polymer molecular weights and substrate temperatures, a variety of striped and cellular or polygonal structures were found on the resulting film surface, as visualized using bright-field and phase-contrast optical microscopy. This effect appears to be due to a Benard-Marangoni instability at the free surface of the liquid film as it undergoes evaporation, setting up convection rolls inside the fluid which become locked in place as the system vitrifies on solvent removal. Differential scanning calorimetry shows that the IL does not significantly plasticize the polymer, suggesting that the viscosity of the polystyrene solution itself controls the formation of this instability.

  10. Phase formation in systems Re-Se-Br-MBr (M=Li, Na, K, Rb, Cs

    International Nuclear Information System (INIS)

    Yarovoj, S.S.; Mironov, Yu.V.; Tkachev, S.V.; Fedorov, V.E.

    2009-01-01

    Phase formation in the systems Re-Se-Br-MBr (M=K, Rb, Cs) has been studied by NMR-spectroscopy and X-ray phase analysis. Polymer complexes Re 6 Se 8 Br 2 and M 2 Re 6 Se 8 Br 4 (M=Cs, Rb), and salts containing cluster anions [Re 6 Se 6 Br 8 ] 2- and [Re 6 Se 7 Br 7 ] 3- are the main products of reactions occurring in molten alkali metal halides in the number of cluster anions [{Re 6 Se 8-n Br n }Br 6 ] (4-n)- (0≤n≤4). Effect of alkali metal cation on the composition and ratios of formed products is established

  11. Phase formation in titanium alloys during their quenching from liquid state

    International Nuclear Information System (INIS)

    Golub, S.Ya.; Kotko, A.V.; Kuz'menko, N.N.; Kulak, L.D.; Firstov, S.A.; Khaenko, B.V.

    1992-01-01

    Methods of X-ray diffractin analysis, light and electron microscopy were applied to study structural state of titanium base alloys quenched from liquid state by spinning with cooling in inert gas or at the surface of solid heat exchanger. Phase formation under rapid cooling conditions was considered. The morphology of phases and mutual orientation of their crystal lattices were investigated along with the character of crystallization texture. It was revealed that on melt quenching with 10 5 -10 6 K/s cooling rates the growth of columnar branches of degenerated dendrites was accopanied by Si atoms movement of the order of 0.1 μm. Structure and crack resistance of compacted articles produced from rapidly solidified powders were under study

  12. Halo formation in three-dimensional bunches with various phase space distributions

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-01-01

    Full Text Available A realistic treatment of halo formation must take into account 3D beam bunches and 6D phase space distributions. We recently constructed, analytically and numerically, a new class of self-consistent 6D phase space stationary distributions, which allowed us to study the halo development mechanism without being obscured by the effect of beam redistribution. In this paper we consider nonstationary distributions and study how the halo characteristics compare with those obtained using the stationary distribution. We then discuss the effect of redistribution on the halo development mechanism. In contrast to bunches with a large aspect ratio, we find that the effect of coupling between the r and z planes is especially important as the bunch shape becomes more spherical.

  13. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  14. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.

    Science.gov (United States)

    Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A

    2017-08-24

    Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.

  15. NEPHELINE FORMATION STUDY FOR SLUDGE BATCH 4: PHASE 3 EXPERIMENTAL RESULTS

    International Nuclear Information System (INIS)

    Fox, K

    2006-01-01

    This Phase 3 study was undertaken to complement the previous phases of the nepheline formation studies1, 2 by continuing the investigation into the ability of the nepheline discriminator to predict the occurrence of nepheline crystallization in Sludge Batch 4 (SB4) glasses and into the impact of such phases on the durability of the SB4 glasses. The Phase 3 study had two primary objectives. The first was to continue to demonstrate the ability of the discriminator value to adequately predict the nepheline formation potential for specific glass systems of interest. The second was to generate additional data that have a high probability of supporting the SB4 variability study. To support these two objectives, sixteen glasses were selected based on the most recent SB4 compositional projection, Case 15C Blend 1.3 Four different frits were included, based on previous assessments of projected operating windows and melt rate,4, 5 with four WLs selected for each frit. Eight of these frit-sludge combinations covered WLs which tightly bound the nepheline discriminator value of 0.62, with the intent of refining this value to a level of confidence where it can be incorporated into offline administrative controls and/or the Process Composition Control System (PCCS) to support Slurry Mix Evaporator (SME) acceptability decisions. The remaining eight frit-sludge combinations targeted lower WLs (35 and 40%) and were prepared and analyzed to contribute needed data to the ComPro database6 to support a potential variability study for SB4

  16. Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase

    International Nuclear Information System (INIS)

    Idrissi, M.; Diouri, A.; Damidot, D.; Greneche, J.M.; Talbi, M. Alami; Taibi, M.

    2010-01-01

    The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Moessbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C 4 A 3 S) phase from different mixtures in the CaO-Al 2 O 3 -Fe 2 O 3 -SO 3 system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amounts of reagent grade CaCO 3 , Al 2 O 3 , Fe 2 O 3 and CaSO 4 .2H 2 O for the synthesis of Ca 4 Al (6- 2x) Fe 2x SO 16 , where x, comprised between 0 and 3, is the mole number of Al 2 O 3 substituted by Fe 2 O 3 . With x increasing from 0 to 1.5, both the iron content of C 4 A 3 S phase and the amounts of side components such as C 2 F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 o C, melting phenomena were observed and, instead of the C 4 A 3 S solid solution, ferritic phases and anhydrite were formed.

  17. Spin polarization in rare earth intermetallic compounds

    International Nuclear Information System (INIS)

    Steenwijk, F.J. van

    1976-01-01

    In this thesis the results of Moessbauer experiments performed on a series of intermetallic compounds of europium and gadolinium are reported. For each of these compounds the magnetic hyperfine field, the electric field gradient at the nuclear site and the isomer shift were determined. For most of the compounds the magnetic ordering temperature was also measured. For some of the europium compounds (e.g. EuAu 5 , EuAg 5 , and EuCu 5 ) it could be derived from the measurements that the easy direction of magnetization falls along the crystallographic c-axis. In a number of compounds (e.g. EuCu 5 , EuZn 5 , EuAu 2 and GdCu 5 ), the various contributions to the magnetic hyperfine field were disentangled by the investigation of suitable pseudobinary compounds that are dilute in Eu. The neighbour contribution Hsub(N) and the paramagnetic Curie temperature thetasub(p) were compared with each other in terms of the RKKY model for EuCu 5 and GdCu 5 . Since the correspondence was found to be poor it was concluded that the magnetic behaviour in these compounds cannot be described by a simple free electron picture as is the basis for the RKKY model

  18. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  19. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  20. Computer simulation of disordering kinetics in irradiated A3B intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Caro, A.; Victoria, M.; De la Rubia, T.

    1994-01-01

    Molecular dynamics computer simulations of collision cascades on intermetallic Ni 3 Al, Cu 3 Au and NiAl have been performed to study the nature of the disordering processes in the cascade. The evolution of the crystalline and chemical order parameters show different time scales. To understand these features we study the liquid phase of these three alloys and present simulation results concerning the dynamical melting of small samples, examining the relaxation time and saturation value of the chemical short range order, SRO. A theoretical model for the time evolution of the SRO is given. ((orig.))

  1. Thermodynamic data for uranium and thorium intermetallic compounds: A historical perspective

    International Nuclear Information System (INIS)

    Alcock, C.B.

    1989-01-01

    The development of quantitative information concerning the stabilities of uranium and thorium intermetallic compounds since the publication of Rough and Bauer's phase diagram compilation are reviewed. During this era a number of high temperature measurement techniques have been developed, from gas/solid equilibration to mass spectrometry and from high temperature calorimetry to solid state electrochemistry, and the growth of quantitative information has run parallel to this evolution. The amount of experimental effort now appears to be declining, and the task presently of major importance is to integrate and rationalize the quantitative information, an effort which will undoubtedly lead to new experimental initiatives. (orig.)

  2. p-type doping efficiency in CdTe: Influence of second phase formation

    Science.gov (United States)

    McCoy, Jedidiah J.; Swain, Santosh K.; Sieber, John R.; Diercks, David R.; Gorman, Brian P.; Lynn, Kelvin G.

    2018-04-01

    Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.

  3. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  4. Leaching patterns and secondary phase formation during unsaturated leaching of UO2 at 90 degrees C

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Bates, J.K.; Gerding, T.J.; Veleckis, E.; Tani, B.S.

    1991-11-01

    Experiments are being conducted that examine the reaction of UO 2 with dripping oxygenated ground water at 90 degrees C. The experiments are designed to identify secondary phases formed during UO 2 alteration, evaluate parameters controlling U release, and act as scoping tests for studies with spent fuel. This study is the first of its kind that examines the alteration of UO 2 under unsaturated conditions expected to exist at the proposed Yucca Mountain repository site. Results suggest the UO 2 matrix will readily react within a few months after being exposed to simulated Yucca Mountain conditions. A pulse of rapid U release, combined with the formation of dehydrated schoepite on the UO 2 surface, characterizes the reaction between one to two years. Rapid dissolution of intergrain boundaries and spallation of UO 2 granules appears to be responsible for much of the U released. Differential release of the UO 2 granules may be responsible for much of the variation observed between duplicate experiments. Less than 5 wt % of the released U remains in solution or in a suspended form, while the remaining settles out of solution as fine particles or is reprecipitated as secondary phases. Subsequent to the pulse period, U release rates decline and a more stable assemblage of uranyl silicate phases are formed by incorporating cations from the ground water leachant. Uranophane, boltwoodite, and sklodowskite appear as the final solubility limiting phases that form in these tests. This observed paragenetic sequence (from uraninite to schoepite-type phases to uranyl silicates) is identical to those observed in weathered zones of natural uraninite occurrences. The combined results indicate that the release of radionuclides from spent fuel may not be limited by U solubility constraints, but that spallation of particulate matter may be an important, if not the dominant release mechanism affecting release

  5. Local Cloudiness Development Forecast Based on Simulation of Solid Phase Formation Processes in the Atmosphere

    Science.gov (United States)

    Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid

    2013-04-01

    Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we

  6. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    International Nuclear Information System (INIS)

    Egle, Tobias; Harvard University, Cambridge, MA; Barroo, Cédric; Janvelyan, Nare; Baumgaertel, Andreas C.

    2017-01-01

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal that the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H_3PO_4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.

  7. Metallurgical features of the formation of a solid-phase metal joint upon electric-circuit heating

    Science.gov (United States)

    Latypov, R. A.; Bulychev, V. V.; Zybin, I. N.

    2017-06-01

    The thermodynamic conditions of formation of a joint between metals using the solid-phase methods of powder metallurgy, welding, and deposition of functional coatings upon electric-current heating of the surfaces to be joined are studied. Relations are obtained to quantitatively estimate the critical sizes of the circular and linear active centers that result in the formation of stable bonding zones.

  8. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Directory of Open Access Journals (Sweden)

    Hennessy Bryan T

    2008-12-01

    Full Text Available Abstract Background Reverse Phase Protein Arrays (RPPA are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML. RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.

  9. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    Science.gov (United States)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  10. Kaempferol Inhibits the Primary Attachment Phase of Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Ming, Di; Wang, Dacheng; Cao, Fengjiao; Xiang, Hua; Mu, Dan; Cao, Junjie; Li, Bangbang; Zhong, Ling; Dong, Xiaoyun; Zhong, Xiaobo; Wang, Lin; Wang, Tiedong

    2017-01-01

    The ability to form biofilms on surfaces makes Staphylococcus aureus the main pathogenic factor in implanted medical device infections. The aim of this study was to discover a biofilm inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus biofilms. Here, we describe kaempferol, a small molecule with anti-biofilm activity that specifically inhibited the formation of S. aureus biofilms. Crystal violet (CV) staining and fluorescence microscopy clearly showed that 64 μg/ml kaempferol inhibited biofilm formation by 80%. Meanwhile, the minimum inhibitory concentration (MIC) and growth curve results indicated that kaempferol had no antibacterial activity against the tested bacterial strain. Kaempferol inhibited the primary attachment phase of biofilm formation, as determined by a fibrinogen-binding assay. Moreover, a fluorescence resonance energy transfer (FRET) assay and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analyses revealed that kaempferol reduced the activity of S. aureus sortaseA (SrtA) and the expression of adhesion-related genes. Based on these results, kaempferol provides a starting point for the development of novel anti-biofilm drugs, which may decrease the risk of bacterial drug resistance, to prevent S. aureus biofilm-related infections.

  11. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies

    International Nuclear Information System (INIS)

    Wilson, Charlie

    2012-01-01

    The 20th century has witnessed wholesale transformation in the energy system marked by the pervasive diffusion of both energy supply and end-use technologies. Just as whole industries have grown, so too have unit sizes or capacities. Analysed in combination, these unit level and industry level growth patterns reveal some consistencies across very different energy technologies. First, the up-scaling or increase in unit size of an energy technology comes after an often prolonged period of experimentation with many smaller-scale units. Second, the peak growth phase of an industry can lag these increases in unit size by up to 20 years. Third, the rate and timing of up-scaling at the unit level is subject to countervailing influences of scale economies and heterogeneous market demand. These observed patterns have important implications for experience curve analyses based on time series data covering the up-scaling phases of energy technologies, as these are likely to conflate industry level learning effects with unit level scale effects. The historical diffusion of energy technologies also suggests that low carbon technology policies pushing for significant jumps in unit size before a ‘formative phase’ of experimentation with smaller-scale units are risky. - Highlights: ► Comparative analysis of energy technology diffusion. ► Consistent pattern of sequential formative, up-scaling, and growth phases. ► Evidence for conflation of industry level learning effects with unit level up-scaling. ► Implications for experience curve analyses and technology policy.

  12. A Comparative Discussion of the Catalytic Activity and CO2-Selectivity of Cu-Zr and Pd-Zr (Intermetallic Compounds in Methanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Norbert Köpfle

    2017-02-01

    Full Text Available The activation and catalytic performance of two representative Zr-containing intermetallic systems, namely Cu-Zr and Pd-Zr, have been comparatively studied operando using methanol steam reforming (MSR as test reaction. Using an inverse surface science and bulk model catalyst approach, we monitored the transition of the initial metal/intermetallic compound structures into the eventual active and CO2-selective states upon contact to the methanol steam reforming mixture. For Cu-Zr, selected nominal stoichiometries ranging from Cu:Zr = 9:2 over 2:1 to 1:2 have been prepared by mixing the respective amounts of metallic Cu and Zr to yield different Cu-Zr bulk phases as initial catalyst structures. In addition, the methanol steam reforming performance of two Pd-Zr systems, that is, a bulk system with a nominal Pd:Zr = 2:1 stoichiometry and an inverse model system consisting of CVD-grown ZrOxHy layers on a polycrystalline Pd foil, has been comparatively assessed. While the CO2-selectivity and the overall catalytic performance of the Cu-Zr system is promising due to operando formation of a catalytically beneficial Cu-ZrO2 interface, the case for Pd-Zr is different. For both Pd-Zr systems, the low-temperature coking tendency, the high water-activation temperature and the CO2-selectivity spoiling inverse WGS reaction limit the use of the Pd-Zr systems for selective MSR applications, although alloying of Pd with Zr opens water activation channels to increase the CO2 selectivity.

  13. The impact of liquid-liquid-vapour phase behaviour on coke formation from model coke precusors

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, D.; Shaw, J.M. [Univ. of Toronto, Dept. of Chemical Engineering and Applied Chemistry, Toronto, ON (Canada)

    2000-08-01

    Catalysts used in the hydroprocessing of heavy feedstocks deactivate due to coke deposition. Although the mechanism for coke formation is not fully understood, condensation reactions of polynuclear aromatic compounds present in the feeds are a key aspect. The effect of coke deposition on catalyst performance is typically modelled using accelerated aging agents comprising model coke precursors. Mixtures employed in such studies polynuclear aromatic compounds such as anthracene as the coke precursor, and long chain alkanes such as hexadecane as a diluent. We show in this paper that binary and pseudo binary mixtures of polynuclear aromatic compounds and n-alkanes present TYPE II, TYPE IV, or TYPE III phase behaviour according to the van Konynenburg and Scott (1980) phase projection nomenclature, Incubation periods and the apparent autocatalytic effects associated with coke deposition in such systems are explained through a combination of high temperature phase equilibrium experiments and computations with the model systems n-alkane + anthracene + hydrogen, n-alkane + pyrene + hydrogen, and n-alkane + dibenzo[a,k]chrysene + hydrogen. (au)

  14. The U phase formation in cement-based systems containing high amounts of Na2SO4

    International Nuclear Information System (INIS)

    Li, G.; Moranville, M.; Le Bescop, P.

    1996-01-01

    Simulated cemented low level wastes containing high amounts of Na 2 SO 4 (10--15%) were examined with respect to the mineralogy of the solid phases, chemical composition of the interstitial aqueous phase and immersion behavior in water. All results reveal the formation of a mineral called U phase, first observed by Dosch and zur Strassen in 1967, and its deleterious effects on the samples immersed in water. It appears that this phase can form only at very high alkaline concentration, not compatible with traditional cement paste. Two possible degradation mechanisms associated with the U phase are proposed which are to be elucidated in further works

  15. The influence of the surface distribution of Al6(MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions

    International Nuclear Information System (INIS)

    Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Perez, J.; Rodriguez, M.A.; Marcos, M.

    1998-01-01

    In this paper the behaviour against pitting corrosion of different samples of AA5083 aluminium alloy has been studied. A correlation between the microstructure of the samples and their susceptibility to pitting has been established. Metallographic analysis combined with SEM and EDS techniques have allowed us to detect three intermetallic compounds in the samples. The particle size distribution and surface density of each intermetallic phase have been evaluated for the three AA5083 alloy samples coming from different suppliers. Significant differences in the microstructure of the three samples have been found. Full immersion test carried out in 3.5% aerated aqueous solutions showed that pitting starts at the locations of the Al 6 (MnFe) intermetallic particles. As a consequence of this, the samples with higher Al 6 (MnFe) content showed a higher pit density on its surface. The results of cyclic polarisation tests showed also a good correlation with the microstructural parameters. (orig.)

  16. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  17. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    Directory of Open Access Journals (Sweden)

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  18. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Zhang, L.; Tsuzaki, K.

    2008-01-01

    The effect of 1% Fe and/or 5% Zr (mass%) additions on ω phase formation was investigated for the Ti-15Mo alloy by means of X-ray diffraction analysis and hardness testing. Upon water quenching following solution treatment in the β phase region, the athermal ω phase formation could not be observed in all the alloys, regardless of Fe and Zr additions. The lattice parameter of the β phase decreases with Fe addition, while it increases with Zr addition. Solid solution strengthening by Fe and Zr is not recognized for the β phase. The isothermal ω phase formed after aging at 723 K and 773 K for 3.6 ks, which results in a decrease in the lattice parameter of the β phase and an increase in the hardness. The isothermal ω phase formation is suppressed with Fe and/or Zr additions. This is interpreted as the consequence of the increase in the average value of the bond order (Bo) for the Ti-15Mo-5Zr and Ti-15Mo-5Zr-1Fe alloys, and of the decrease in the average value of the metal d-orbital energy level (Md) for the Ti-15Mo-1Fe alloy. In addition, the degree of the suppression of isothermal ω phase can be predicted by the average values of Bo and Md

  19. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    Science.gov (United States)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  20. Formation of secondary phases during the corrosion of vitrified nuclear waste

    International Nuclear Information System (INIS)

    Zimmer, P.

    2003-11-01

    The first aim of this work was the examination of the formation and long-term stability of secondary phases that form during an aquatic attack on simulated, vitrified nuclear waste. In the glasses used for the investigations actinides had been replaced by rare earth elements (chemical analogues), other radionuclides by inactive isotopes. For predictions about the long-term safety of nuclear waste disposals it is important to identify secondary phases that have formed during the glass corrosion process and to determine their stability. Two different saline solutions (rich in MgCl 2 and in NaCl, respectively) are relevant as a corrosion medium for waste disposals. It showed that in such an environment sulfates, silicates and molybdates represent the main new formations of minerals after 7.5 years of corrosion. However, the formation, long-term stability and sorption characteristics of those minerals regarding rare earth elements depend to a high degree on the corrosion medium as well as on changes in the geochemical environment in the course of the experiment. By means of SEM/EDX barytes of different morphology with up to 15% w/w Sr ((Ba,Sr)SO 4 ) were identified in both corrosion media; they were capable of binding long-term stable radionuclides like Sr. Furthermore, pure rare earth (RE) sulfates were observed in the saline solution rich in MgCl 2 . This formation of RE-sulfates has not been described in the literature so far. Depending on the saline solution, the secondary silicate and molybdate minerals that formed on the glass surfaces differed noticeably in their sorption characteristics and their stability. Another focus of the work was a more profound understanding of the glass corrosion mechanism in the presence of metallic iron since steel jackets are used as technical barriers for the vitrified nuclear waste in nuclear waste disposals. Another important point in connection with the mobilization and immobilization of radionuclides released during glass

  1. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B/B4c Systems Used for Aluminum Alloy Modification

    Science.gov (United States)

    Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.

    2018-03-01

    The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

  2. Effect of Pb and Cr Substitutions on Phase Formation and Excess Conductivity of Bi-2212 Superconductor

    International Nuclear Information System (INIS)

    Khir, F. L. M.; Mohamed, Z.; Yusuf, A. A.; Yusof, M. I. M.; Yahya, A. K.

    2010-01-01

    The influence of Pb and Cr substitutions on the superconducting properties of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) superconductors is reported. The samples were prepared from Bi 2-x Pb x Sr 2 Ca 2-y Cr y Cu 3 O 10-δ (x = 0-0.3, y = 0-0.3) starting composition by the solid-state-reaction method. XRD analysis showed formation of pure Bi-2212 for (x = 0, y = 0), (x = 0.3, y = 0.2,) and (x = 0.3, y = 0.2,) starting compositions. Excess conductivity analysis based on Asmalazov-Larkin theory on single-phased Bi2212 samples showed 2D to 3D transition in superconducting fluctuation behavior (SFB) for all the samples. Highest 2D-3D transition temperature, T 2D-3D was observed at Pb and Cr substitutions of x = 0.3, and x = 0.2, respectively.

  3. New intermetallic compounds Ln(Ag, AL)4 (Ln-Y, Gd, Tb, Dy) and their structure

    International Nuclear Information System (INIS)

    Kuz'ma, Yu.B.; Stel'makhovich, B.M.

    1990-01-01

    By the methods of X-ray analysis crystal structure of compounds Ln(Ag,Al) 4 , where Ln-Y, Gd, Tb, Dy, posessing rhombic structure, is determined. The intermetallics have been prepared for the first time. Ways of atom distribution and their coordinates in DyAg 0.55 Al 3.45 structure (a=0.4296(1), b=04179(1), c=0.9995(3), R=0.093) are specified. Other compounds are formed in case of LnAgAl 3 compositions. Interatomic distances in Dy(Ag,Al) 4 structure are considered. A supposition is made on the formation in Ln-Ag-Al systems of a greater number of intermetallic compounds

  4. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  5. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  6. Phase-Transition-Induced Pattern Formation Applied to Basic Research on Homeopathy: A Systematic Review.

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan

    2018-05-16

     Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review.  Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria.  The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon.  Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.

  7. Effects of Nb content on the Zr{sub 2}Fe intermetallic stability

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, C. E-mail: ciramos@cnea.gov.ar; Saragovi, C.; Granovsky, M.; Arias, D

    2003-02-01

    With the aim of studying the stability range of the Zr{sub 2}Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase ({lambda}{sub 1}) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr{sub 2}Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr{sub 2}Fe+{lambda}{sub 1} region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed.

  8. Effects of Nb content on the Zr2Fe intermetallic stability

    International Nuclear Information System (INIS)

    Ramos, C.; Saragovi, C.; Granovsky, M.; Arias, D.

    2003-01-01

    With the aim of studying the stability range of the Zr 2 Fe intermetallic when adding Nb, the range of existence of the cubic ternary phase (λ 1 ) and the corresponding two-phase field between them, four samples were analyzed, each one containing 35 at.% Fe and different at.% Nb: 0.5, 4 10 and 15. Optical and scanning electron metallographies, X-ray diffraction, microprobe analysis and Moessbauer spectroscopy were performed to determine and characterize the phases present in the samples. Results show that the Zr 2 Fe compound accepts up to nearly 0.5 at.% Nb in solution, since the Zr 2 Fe+λ 1 region is stable in the (0.5-3.5) at.% Nb range. To summarize these results an 800 deg. C section of the ternary Zr-Nb-Fe diagram, in the studied zone, was proposed

  9. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  10. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability

    International Nuclear Information System (INIS)

    Shing Lo, Tak; Karma, Alain; Plapp, Mathis

    2001-01-01

    During the directional solidification of peritectic alloys, two stable solid phases (parent and peritectic) grow competitively into a metastable liquid phase of larger impurity content than either solid phase. When the parent or both solid phases are morphologically unstable, i.e., for a small temperature gradient/growth rate ratio (G/v p ), one solid phase usually outgrows and covers the other phase, leading to a cellular-dendritic array structure closely analogous to the one formed during monophase solidification of a dilute binary alloy. In contrast, when G/v p is large enough for both ph