WorldWideScience

Sample records for intermetallic alloy ti-48al

  1. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  2. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    Science.gov (United States)

    Garip, Y.; Ozdemir, O.

    2018-03-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  3. Vacuum brazing of TiAl48Cr2Nb2 casting alloys based on TiAlintermetallic compound

    Directory of Open Access Journals (Sweden)

    Z. Mirski

    2010-01-01

    Full Text Available A growing interest in modern engineering materials characterised by increasingly better operational parameters combined with a necessity to obtain joints of such materials representing good operation properties create important research and technological problems of today. These issues include also titanium joints or joints of titanium alloys based on intermetallic compounds. Brazing is one of the basic and sometimes even the only available welding method used for joining the aforesaid materials in production of various systems, heat exchangers and, in case of titanium alloys based on intermetallic compounds, turbine elements and space shuttle plating etc. This article presents the basic physical and chemical properties as well as the brazability of alloys based on intermetallic compounds. The work also describes the principle and mechanisms of diffusion-brazed joint formation as well as reveals the results of metallographic and strength tests involving diffusion-welded joints of TiAl48Cr3Nb2 casting alloy based on TiAl (γ phase with the use of sandwich-type layers of silver-based parent metal (grade B- Ag72Cu-780 (AG 401 and copper (grade CF032A. Structural examination was performed by means of light microscopy, scanning electron microscope (SEM and energy dispersion spectrometer (EDS. Furthermore, the article reveals the results of shear strength tests involving the aforementioned joints.

  4. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  5. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  6. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  7. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  8. High temperature cyclic oxidation of Ti-Al based intermetallic in static laboratory air

    International Nuclear Information System (INIS)

    Astuty Amrin; Esah Hamzah; Nurfashahidayu Mohd Badri; Hafida Hamzah

    2007-01-01

    The objective of this study is to investigate the oxidation behaviour of binary γ-Ti Al based intermetallics with composition (at%) of 45A, 48Al and 50 Al, and ternary alloys of Ti-48Al containing 2Cr and 4Cr. Thermal cyclic oxidation was conducted discontinuously at temperatures of 700 degree Celsius and 900 degree Celsius in static laboratory air. Optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX) and X-ray diffraction (XRD) techniques were employed for the analysis. SEM examination of cross-sectional samples using secondary electron and line-scan analysis after exposure at 700 degree Celsius showed that non-adherent oxides scales formed due to the spallation caused by cyclic condition. For exposure to 900 degree Celsius, only binary alloys exhibited breakaway oxidation whereas the oxide scales formed on the ternary alloys were well-adhered on the substrate alloy. Overall, exposure at 900 degree Celsius resulted in thicker and harder oxide scales and addition of Cr seems to improve oxidation resistance of Ti-Al based intermetallics at higher temperature. (author)

  9. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  10. Microstructure of two phases alloy Al3Ti/Al3Ti0.75Fe0.25

    International Nuclear Information System (INIS)

    Angeles, C.; Rosas, G.; Perez, R.

    1998-01-01

    The titanium-aluminium system presents three intermetallic compounds from those Al 3 Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al 3 Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al 2 Ti phase over Al 3 Ti intermetallic compound increases its ductility. (Author)

  11. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  12. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  13. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  14. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  15. Titanium as an intermetallic phase stabilizer and its effect on the mechanical and thermal properties of Al-Si-Mg-Cu-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se-Weon [Korea Institute of Industrial Technology, 6 Cheomdan-gwagiro 208 beon-gil, Buk-gu, Gwangju 500-480 (Korea, Republic of); Cho, Hoon-Sung [School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757 (Korea, Republic of); Kumai, Shinji [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, S8-10, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-12-15

    The effect of precipitation of intermetallics on the mechanical and thermal properties of Al-6.5Si-0.44Mg-0.9Cu-(Ti) alloys (in wt%) during various artificial aging treatments was studied using a universal testing machine and a laser flash apparatus. The solution treatment of the alloy samples was conducted at 535 °C for 6 h, followed by quenching in warm water. The solution-treated samples were artificially aged for 5 h at different temperatures ranging from 170 °C to 220 °C. After the artificial aging treatment, the Al-6.5Si-0.44Mg-0.9Cu alloy (the Ti-free alloy) had a lower ultimate tensile strength (UTS) than the Al-6.5Si-0.44Mg-0.9Cu-0.2Ti alloy. The UTS response of the alloys was enhanced by the addition of Ti, with the maximum UTS showing an increase from 348 MPa for the Ti-free alloy to 363 MPa for that containing 0.2 wt% Ti, aged at 180 °C. The Ti-free alloy had a higher thermal diffusivity than the Ti-containing alloy over all temperature ranges. Upon increasing the temperature from 180 °C to 220 °C, the room temperature thermal diffusivities increased because the solute concentration in the α-Al matrix rapidly decreased. In particular, the thermal diffusivity increased significantly between 200 °C and 400 °C. This temperature range matched the range of intermetallic phase precipitation as confirmed by differential scanning calorimetry and measurement of the coefficient of thermal expansion. During the artificial aging treatment, the intermetallic phases precipitated and grew rapidly. These reactions induced a reduction of the solute atoms in the solid solution, thus producing a more significant reduction in the thermal diffusivity. As the temperature was increased to above 400 °C, the formation of intermetallic phases ceased, and the thermal diffusivity showed a steady value, regardless of the aging temperature.

  16. Crack resistance behaviour of an intermetallic Ti-Al-Si-Nb alloy at room temperature

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.; Pfuff, M.J.

    1996-01-01

    The room temperature crack growth behaviour of a Ti-Al-Si-Nb alloy consisting of the two intermetallic phases (Ti, Nb) 3 (Al, Si) and (Ti, Nb) 5 (Si, Al) 3 is investigated in the present paper. The material exhibits a heterogeneous disordered microstructure and fails in a brittle manner. Crack growth is associated with a pronounced crack resistance behaviour. For a sample of nominally identical specimens the R-curves scatter around a mean curve with a standard deviation which remains roughly constant as the crack grows. A natural extension of the bundle model introduced in a previous paper is used to simulate R-curves and their scatter is in reasonably good agreement with the experimental findings. (orig.)

  17. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Science.gov (United States)

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  18. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  19. Production of low oxygen contamination orthorhombic Ti-Al-Nb intermetallic foil

    International Nuclear Information System (INIS)

    Gill, S.C.; Peters, J.A.; Blatter, P.; Jaquet, J.C.; Morris, M.A.

    1996-01-01

    Aerospace industries continue the search for high performance materials, and recent years have seen rapid developments being made in the capabilities of Ti-Al based intermetallic alloys. Interest in these alloys is caused by their attractive combination of strength and density, but major drawbacks include brittleness at low temperature and sensitivity to interstitial contamination. Development of a relatively new class of alloys was stimulated in 1988 by the discovery of Banerjee et al. of a Ti-Al-Nb orthorhombic (O) phase based on the Ti 2 AlNb composition. Some important applications for these alloys require the use of foil ( 2 phase and leads to material embrittlement. ELIT (Extra Low Interstitial Transfer) pack-rolling, developed by Sulzer Innotec, offers a technique to avoid oxygen contamination

  20. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  1. Microstructure of two phases alloy Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}; Microestructura de una aleacion de dos fases Al{sub 3}Ti/Al{sub 3}Ti{sub 0.75}Fe{sub 0.25}

    Energy Technology Data Exchange (ETDEWEB)

    Angeles, C; Rosas, G; Perez, R [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The titanium-aluminium system presents three intermetallic compounds from those Al{sub 3}Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al{sub 3}Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al{sub 2}Ti phase over Al{sub 3}Ti intermetallic compound increases its ductility. (Author)

  2. Synthesis of Fe-Al-Ti Based Intermetallics with the Use of Laser Engineered Net Shaping (LENS

    Directory of Open Access Journals (Sweden)

    Monika Kwiatkowska

    2015-04-01

    Full Text Available The Laser Engineered Net Shaping (LENS technique was combined with direct synthesis to fabricate L21-ordered Fe-Al-Ti based intermetallic alloys. It was found that ternary Fe-Al-Ti alloys can be synthesized using the LENS technique from a feedstock composed of a pre-alloyed Fe-Al powder and elemental Ti powder. The obtained average compositions of the ternary alloys after the laser deposition and subsequent annealing were quite close to the nominal compositions, but the distributions of the elements in the annealed samples recorded over a large area were inhomogeneous. No traces of pure Ti were observed in the deposited alloys. Macroscopic cracking and porosity were observed in all investigated alloys. The amount of porosity in the samples was less than 1.2 vol. %. It seems that the porosity originates from the porous pre-alloyed Fe-Al powders. Single-phase (L21, two-phase (L21-C14 and multiphase (L21-A2-C14 Fe-Al-Ti intermetallic alloys were obtained from the direct laser synthesis and annealing process. The most prominent feature of the ternary Fe-Al-Ti intermetallics synthesized by the LENS method is their fine-grained structure. The grain size is in the range of 3–5 μm, indicating grain refinement effect through the highly rapid cooling of the LENS process. The Fe-Al-Ti alloys synthesized by LENS and annealed at 1000 °C in the single-phase B2 region were prone to an essential grain growth. In contrast, the alloys annealed at 1000 °C in the two-phase L21-C14 region exhibited almost constant grain size values after the high-temperature annealing.

  3. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  4. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  5. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  6. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys

    International Nuclear Information System (INIS)

    Liang, S.X.; Yin, L.X.; Che, H.W.; Jing, R.; Zhou, Y.K.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Highlights: • Phase structure is greatly dependent on the Al content. • Intermetallic compound will precipitates while Al content is over 6.9 wt%. • Equiaxed α-phase grains present in the hot-rolled alloy with 6.9 wt% Al. • Alloys with Al content from 3.3 wt% to 5.6 wt% have good mechanical properties. - Abstract: Zirconium alloys show attractive properties for astronautic applications where the most important factors are anti-irradiation, corrosion resistance, anti-oxidant, very good strength-to-weight ratio. The effects of Al content (2.2–6.9 wt%) on structure and mechanical properties of the hot-rolled ZrTiAlV alloy samples were investigated in this study. Each sample of the hot-rolled ZrTiAlV alloys with Al contents from 2.2 wt% to 5.6 wt% is composed of the α phase and β phase, meanwhile, the relative content of the α phase increased with the Al content. However, the (ZrTi) 3 Al intermetallic compound was observed as the Al content increased to 6.9 wt%. Changes of phase compositions and structure with Al content distinctly affected mechanical properties of ZrTiAlV alloys. Yield strength of the alloy with 2.2 wt% Al is below 200 MPa. As Al content increased to 5.6 wt%, the yield strength, tensile strength and elongation of the examined alloy are 1088 MPa, 1256 MPa and 8%, respectively. As Al content further increased to 6.9 wt%, a rapid decrease in ductility was observed as soon as the (ZrTi) 3 Al intermetallic compound precipitated. Results show that the ZrTiAlV alloys with Al contents between 3.3 wt% and 5.6 wt% have excellent mechanical properties

  7. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2011-10-01

    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  8. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  9. Micromechanisms of fracture and fatigue in Ti3Al based and TiAl based intermetallics

    International Nuclear Information System (INIS)

    James, A.W.; Chave, R.A.; Hippsley, C.A.; Bowen, P.

    1993-01-01

    Micromechanisms of fracture and fatigue crack growth resistance in specific Ti 3 Al based and TiAl based intermetallics are reviewed. Effects of test temperature, environment and microstructure on crack growth resistance are considered in detail for several Ti 3 Al and Ti'Al based intermetallic systems under development. The implications of these studies for the structural reliability of these materials is also addressed briefly. (orig.)

  10. Synthesis and Mechanical Characterization of Binary and Ternary Intermetallic Alloys Based on Fe-Ti-Al by Resonant Ultrasound Vibrational Methods.

    Science.gov (United States)

    Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A

    2018-05-07

    Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.

  11. Effect of grain refiner on intermetallic phase formation in directional solidification of 6xxx series wrought Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sha, G.; O' Reilly, K.; Cantor, B. [Oxford Univ. (United Kingdom). Centre for Adv. Mat. and Composites; Hamerton, R.; Worth, J.

    2000-07-01

    The effect of a grain refiner on the formation of intermetallic phases in a directionally solidified (Bridgman grown) model 6xxx series wrought Al alloy has been investigated using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A base alloy with and without Al-Ti-B grain refiner was directionally solidified in a Bridgman furnace at growth velocities in the range of 5-120 mm/min. In both cases, the Fe-containing intermetallic phases present were found to be mainly {alpha}-AlFeSi and {beta}-AlFeSi. However, in the alloy with grain refiner solidified at 5mm/min, Al{sub 13}Fe{sub 4} was also observed. Quantitative XRD results indicated that the addition of Al-Ti-B grain refiner has a strong influence on the relative quantities of intermetallic phases forming during solidification at different growth velocities, which was also confirmed by TEM observations. TEM observations also show that depending on where the {beta}-AlFeSi particles solidified e.g. grain boundaries or triple grain junctions, the size and morphology of the particles may change dramatically. TiB{sub 2} particles were observed to nucleate {beta}-AlFeSi at low and high growth velocities in the 6xxx series Al alloys. (orig.)

  12. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  13. Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys

    Science.gov (United States)

    Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang

    2018-01-01

    Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155

  14. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  15. Lanthanum hexaboride as advanced structural refiner/getter in TiAl-based refractory intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, A.V., E-mail: karta@korolev-net.ru [Technological Institute for Superhard and Novel Carbon Materials (TISNCM), 7a Centralnaya str., 142190 Troitsk, Moscow (Russian Federation); National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation); Asnis, E.A.; Piskun, N.V.; Statkevich, I.I. [The E.O. Paton Electric Welding Institute, 11 Bozhenko str., 03680 Kyiv (Ukraine); Gorshenkov, M.V.; Tcherdyntsev, V.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, 119049 Moscow (Russian Federation)

    2014-03-05

    Highlights: • Fist application of LaB{sub 6} additive in TiAl-based intermetallics casting. • Pilot synthesis/casting and study of selected TiAl(Nb,Cr,Zr)B,La alloys set. • Dual effect observed: phase structure refinement and oxygen impurity removal. • Co-precipitation of TiB and La{sub 2}O{sub 3} in melt: 2LaB{sub 6} + 12Ti + 3O → 12TiB↓ + La{sub 2}O{sub 3}↓. • Features of structure refinement and oxygen gettering mechanisms reported. -- Abstract: The work is aimed at the study of the formation and refinement of microstructure appearing in the solidifying refractory TiAl-based intermetallics being inoculated with precise boron addition. The novelty of research consists in test application of lanthanum hexaboride (LaB{sub 6}) ligature within semi-continuous electron beam casting process of selected alloys. Two ingots with nominal compositions Ti–44Al–5Nb–2Cr–1.5Zr–0.4B–0.07La and Ti–44Al–5Nb–1Cr–1.5Zr–1B–0.17La (at.%) have been synthesized and cast along with the reference alloy Ti–44Al–5Nb–3Cr–1.5Zr. Their comparative examination suggests (i) essential microstructural phase refinement effect coupled with (ii) threefold/fourfold decrease of background content of undesirable residual oxygen impurity in both alloys containing LaB{sub 6}. This advanced dual activity (i–ii) of LaB{sub 6} is explained by its complete dissolution, dissociation and following re-precipitation of effective Ti-based monoboride nucleants of orthorhombic B27 structure, those being accompanied by strong internal gettering of dissolved oxygen from the melt and from boride-inoculated solid α{sub 2}-Ti{sub 3}Al phase with liberated elemental lanthanum. The phase composition and structure of cast alloys; state and characterization of newly precipitated TiB boride; features of La{sub 2}O{sub 3} micro/nano-dimensional precipitation and oxygen gettering mechanism are reported and discussed.

  16. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  17. Phase equilibria of Al3(Ti,V,Zr) intermetallic system

    International Nuclear Information System (INIS)

    Park, S.I.; Han, S.Z.; Choi, S.K.; Lee, H.M.

    1996-01-01

    Trialuminides such as DO 22 -structured Al 3 Ti are promising candidates as potential materials for elevated temperature applications because of their attractive high temperature strength and excellent oxidation resistance along with their low density. However, in the tetragonal structure, slip systems are restricted due to low symmetry and the primary deformation mode is twinning. And, therefore, monolithic trialuminide compounds have been very impractical to be used as structural materials. When transition elements such as Ti, V and Zr which constitute trialuminides are alloyed in aluminum, they have low solubilities and low diffusion coefficients in the Al matrix. If precipitated as trialuminide intermetallics, they maintain a small lattice mismatch with the Al matrix, which reduces the interfacial energy between matrix and precipitates. As a result, these precipitates would have a large coarsening resistance in the matrix. As most of the previous works have been concentrated on the microstructural stability and mechanical properties, thermochemical properties will be treated in this work. In this study, phase equilibria and diagrams of Al 3 (Ti,V,Zr) systems will be experimentally determined and then thermodynamically analyzed with a hope to extend to the Al-Al 3 (Ti,V,Zr) composite system. This approach will then be used as a guide for alloy design of Al-Al 3 (Ti,V,Zr) composite system

  18. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    Science.gov (United States)

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  19. Tailoring ultrafine grained and dispersion-strengthened Ti2AlC/TiAl ...

    Indian Academy of Sciences (India)

    and Ti-Al pre-alloyed powders at low temperature of 1150◦C. The composite mainly consisted ... Metal–matrix composites; mechanical properties; microstructures; sintering. 1. Introduction γ-TiAl-based intermetallic alloys have been extensively.

  20. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Surface improvement and biocompatibility of TiAl{sub 24}Nb{sub 10} intermetallic alloy using rf plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Rahman, A.M. [Physics Department, Faculty of Science, Sohag University (Egypt)], E-mail: ahmedphys96@hotmail.com; Maitz, M.F. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden Rossendorf (Germany); Kassem, M.A. [Department of Materials and Metals Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University (Egypt); El-Hossary, F.M. [Physics Department, Faculty of Science, Sohag University (Egypt); Prokert, F.; Reuther, H.; Pham, M.T.; Richter, E. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden Rossendorf (Germany)

    2007-09-30

    The present work describes the surface improvement and biocompatibility of TiAl{sub 24}Nb{sub 10} intermetallic alloy using rf plasma nitriding. The nitriding process was carried out at different plasma power from 400 W to 650 W where the other plasma conditions were fixed. Grazing incidence X-ray diffractometry (GIXRD), Auger electron spectroscopy (AES), tribometer and a nanohardness tester were employed to characterize the nitrided layer. Further potentiodynamic polarization method was used to describe the corrosion behavior of the un-nitrided and nitrided alloy. It has been found that the Vickers hardness (HV) and corrosion resistance values of the nitrided layers increase with increasing plasma power while the wear rates of the nitrided layers reduce by two orders of magnitude as compared to those of the un-nitrided layer. This improvement in surface properties of the intermetallic alloy is due to formation of a thin modified layer which is composed of titanium nitride in the alloy surface. Moreover, all modified layers were tested for their sustainability as a biocompatible material. Concerning the application area of biocompatibility, the present treated alloy show good surface properties especially for the nitrided alloy at low plasma power of 400 W.

  2. Phase stability and decomposition processes in Ti-Al based intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kiyomichi [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ono, Toshiaki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohtsubo, Hiroyuki [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan); Ohmori, Yasuya [Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790 (Japan)

    1995-02-28

    The high-temperature phase equilibria and the phase decomposition of {alpha} and {beta} phases were studied by crystallographic analysis of the solidification microstructures of Ti-48at.%Al and Ti-48at.%Al-2at.%X (X=Mn, Cr, Mo) alloys. The effects on the phase stability of Zr and O atoms penetrating from the specimen surface were also examined for Ti-48at.%Al and Ti-50at.%Al alloys. The third elements Cr and Mo shift the {beta} phase region to higher Al concentrations, and the {beta} phase is ordered to the {beta}{sub 2} phase. The Zr and O atoms stabilize {beta} and {alpha} phases respectively. In the Zr-stabilized {beta} phase, {alpha}{sub 2} laths form with accompanying surface relief, and stacking faults which relax the elastic strain owing to lattice deformation are introduced after formation of {alpha}{sub 2} order domains. Thus shear is thought to operate after the phase transition from {beta} to {alpha}{sub 2} by short-range diffusion. A similar analysis was conducted for the Ti-Al binary system, and the transformation was interpreted from the CCT diagram constructed qualitatively. ((orig.))

  3. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.

    1999-01-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics

  4. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    Science.gov (United States)

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  5. Microstructure and tribological properties of TiCu2Al intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Chen Jianmin; Zhou Huidi

    2011-01-01

    TiCu 2 Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu 2 Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu 2 Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu 2 Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  6. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    A direct laser fabrication technique (DLF) has been used to fabricate near net shape samples of a -TiAl alloy using gas atomized Ti48A148Mn2Nb2 alloy powder as a feed stock material. The microstructures of these Ti48Al48Mn2Nb2 laser treated samples have been characterized using optical, scanning (SEM) and ...

  7. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  8. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  9. The possibility to use TiAl intermetallics for high temperature applications

    International Nuclear Information System (INIS)

    Molotkov, A.V.

    1993-01-01

    Titanium aluminide TiAl is the promising heat resisting structural material with operation temperature up to 850-900 deg C. This intermetallic compound is characterized by low density and high specific values of elasticity moduli and heat resistance properties in wide temperature range, as compared to known heat resisting titanium, iron and nickel base alloys. Test batch of pressed blades was manufactured of TiAl with the use of powder technology. Results of testing showed, that endurance strength of blades exceeded by 30% the strength, required for operation. The calculations showed, that the use of such blades in gas-turbine cagines could provide 30-40% decrease of mass of compressor blading

  10. Design and properties of advanced {gamma}(TiAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appel, F; Clemens, H; Oehring, M [Institute for Materials Research, GKSS Research Centre, Max-Planck-Strasse, D-21502 Geesthacht (Germany)

    2001-07-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  11. Design and properties of advanced γ(TiAl) alloys

    International Nuclear Information System (INIS)

    Appel, F.; Clemens, H.; Oehring, M.

    2001-01-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  12. Microstructural analyses of intermetallic TiAl(Nb)-compounds prepared by arc melting and by powder metallurgy

    International Nuclear Information System (INIS)

    Chen, S.

    1988-01-01

    Intermetallic compounds based on TiAl with Nb or V as alloying additions prepared by powder metallurgy (P/M) and arc melting (A/M) techniques have been investigated with respect to their potential as new high temperature materials. All the alloys with nominal Al-concentrations 34-36 wt% contain two phases, γ-TiAl and α 2 -Ti 3 Al, but significant differences in the distribution of γ and α 2 were found between the P/M and A/M materials. The role of impurities during processing and the microstructural stability in the planned service temperature range 700-1000 0 C are discussed. In the P/M TiAl alloys two carbide precipitates have been found, which are the cubic Perovskite-AlTi 3 C phase in the γ-matrix and the hexagonal H-AlTi 2 (C, N) phase at grain boundaries. At high temperatures the AlTi 3 C phase dissolves and is replaced by more stable H-phase, and therefore no longer contributes to the high temperature strength of the material. Mechanical properties of both the P/M and A/M alloys are compared in association with the processing methods and the resulting microstructures. (orig.) With 71 figs., 22 tabs [de

  13. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of γ-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation γ-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed

  14. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  15. Microstructure and tribological properties of TiCu{sub 2}Al intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun, E-mail: guochun@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin; Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-04-15

    TiCu{sub 2}Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu{sub 2}Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu{sub 2}Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu{sub 2}Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.

  16. Influences of precursor constitution and processing speed on microstructure and wear behavior during laser clad composite coatings on γ-TiAl intermetallic alloy

    International Nuclear Information System (INIS)

    Liu Xiubo; Yu Rongli

    2009-01-01

    The effects of constitution of precursor mixed powders and scan speed on microstructure and wear properties were designed and investigated during laser clad γ/Cr 7 C 3 /TiC composite coatings on γ-TiAl intermetallic alloy substrates with NiCr-Cr 3 C 2 precursor mixed powders. The results indicate that both the constitution of the precursor mixed powders and the beam scan rate have remarkable influence on microstructure and attendant hardness as well as wear resistance of the formed composite coatings. The wear mechanisms of the original TiAl alloy and laser clad composite coatings were investigated. The composite coating with an optimum compromise between constitution of NiCr-Cr 3 C 2 precursor mixed powders as well as being processed under moderate scan speed exhibits the best wear resistance under dry sliding wear test conditions

  17. Intermetallic alloys - overview on new materials developments for structural applications in West Germany

    International Nuclear Information System (INIS)

    Sauthoff, G.

    1990-01-01

    As a result of recent research on intermetallics for high-temperature applications several alloy systems which are based on intermetallics are regarded as promising for new materials developments, and respective developments have been initiated in West Germany. The present work is aimed a lightweight materials on one hand and at high-temperature high-strength materials on the other hand. The overview surveys the work in West Germany on γ-TiAl, Ti 5 Si 3 -based alloys, Mg 2 Si-Al, NiAl-Cr, Al 3 Nb-NiAl and Laves phase-based alloys, and the mechanical properties - strength, ductility and/or toughness - are described. (orig.) [de

  18. Microstructural, mechanical characterisation and fractography of As-cast Ti-Al alloy

    International Nuclear Information System (INIS)

    Hamzah, E.; Ong, W.R.; Tamin, M.N.

    2007-01-01

    The effect of alloying element, namely chromium (Cr) on the microstructures, mechanical characterization and fracture surface of gamma titanium aluminide (Ti Al) has been studied. Micro-hardness and fatigue crack growth tests were performed on as-cast samples with composition of Ti-48at%Al and Ti-48%Al-2at%Cr. Prior to the micro-hardness tests; samples were metallurgically prepared for microstructural and structural analysis using optical microscope and scanning electron microscope. Field emission scanning electron microscope (FESEM) technique was employed to investigate the fracture surface of sample after fatigue crack growth test. Micro-hardness tests results showed increasing hardness value of Ti-48Al alloys when chromium is added. Both titanium aluminide alloys exhibited a nearly lamellae microstructure. However, finer laths of plates in lamellar structure have been observed in Ti-48at%Al-2at%Cr. FESEM micrograph of surface fracture indicates a mixed mode of failure for both alloys. (author)

  19. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    International Nuclear Information System (INIS)

    Samuel, Agnes M.; Samuel, Fawzy H.

    2018-01-01

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al 4 (Ce,La), Al 13 (Ce,La) 2 Cu 3 , Al 7 (Cu,Fe) 6 (Ce,La) 6 Si 2 , Al 4 La, Al 2 La 5 Si 2 , Al 2 Ce 5 Si 2 , Al 2 (Ce,La) 5 Si 2 . Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al 12 La 3 Ti 2 , or Al 12 (Ce,La) 3 Ti 2 . Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  20. Intermetallic precipitation in rare earth-treated A413.1 alloy. A metallographic study

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Agnes M.; Samuel, Fawzy H. [Univ. du Quebec a Chicoutimi (Canada). Dept. des Sciences Appliquees; Doty, Herbert W. [General Motors, Pontiac, MI (United States). Materials Engineering; Valtierra, Salvador [Nemak, S.A., Garza Garcia (Mexico)

    2018-02-15

    The present study was performed mainly on A413.1 alloy. Measured amounts of La, Ce or La+Ce, Ti and Sr were added to the molten alloy in the form of master alloys. Samples sectioned from castings obtained from thermal analysis experiments were used for preparing samples for metallographic examination. The results show that addition of rare earth (RE) metals to Al-Si alloys increased the α-Al nucleation temperature and depressed the Al-Si eutectic formation temperature, thereby increasing the solidification range. Depending upon the alloying elements/additives, a large number of RE-based intermetallics could be formed: Al{sub 4}(Ce,La), Al{sub 13}(Ce,La){sub 2}Cu{sub 3}, Al{sub 7}(Cu,Fe){sub 6}(Ce,La){sub 6}Si{sub 2}, Al{sub 4}La, Al{sub 2}La{sub 5}Si{sub 2}, Al{sub 2}Ce{sub 5}Si{sub 2}, Al{sub 2}(Ce,La){sub 5}Si{sub 2}. Under an electron microscope, these phases appear in backscatter imaging mode in the form of thin grayish-white platelets on the dark gray Al matrix. The average thickness of these platelets is about 1.5 μm. When the alloy is grain refined with Ti-based master alloys, precipitation of a gray phase in the form of sludge is observed: Al{sub 12}La{sub 3}Ti{sub 2}, or Al{sub 12}(Ce,La){sub 3}Ti{sub 2}. Regardless the alloy composition, the RE/Al ratios remain constant in each type of intermetallic. Rare earth metals have a strong affinity to react with Sr (resulting in partial modification of the eutectic Si particles) as well as some transition elements, in particular Ti and Cu. Iron has a very low affinity for interaction with RE metals. It is only confined to Fe-based intermetallics.

  1. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    Science.gov (United States)

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  2. MD study of primary damage in L10 TiAl structural intermetallics

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Computer modelling by molecular dynamics has been applied to study the radiation damage created in collision cascades in L1 0 TiAl intermetallic compound. Either Al or Ti primary knock-on atoms (PKA) with energy 5 keV ⩽ E PKA ⩽ 20 keV were introduced in the intermetallic crystals at temperatures ranging from 100 K to 900 K. At least 24 different cascade for each (E PKA , T, PKA type) set were modelled in order to simulate a random spatial and temporal distribution of PKAs and provide statistical reliability of the results. The total yield of more than 760 simulated cascades is the largest yet reported for this binary intermetallic material. A comprehensive treatment of the modelling results has been carried out. The number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA , T, PKA type) has been established. Preferred formation of Al self-interstitial atoms has been detected in L1 0 TiAl structural intermetallics exposed to irradiation

  3. Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C

    Science.gov (United States)

    Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon

    2018-04-01

    In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.

  4. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  5. Recent advances in ordered intermetallics

    International Nuclear Information System (INIS)

    Liu, C.T.

    1995-01-01

    Ordered intermetallic alloys based on aluminides and silicides offer many advantages for structural use at elevated temperatures in hostile environments. Their attractive properties include excellent oxidation and corrosion resistance, light weight, and superior strength at elevated temperatures. The major concern for structural use of intermetallics was their low ductility and poor fracture resistance at ambient temperatures. For the past ten years, considerable effort has been devoted to the research and development of ordered intermetallic alloys, and good progress has been made on understanding intrinsic and extrinsic factors controlling brittle fracture in intermetallic alloys based on aluminides and silicides. Parallel efforts on alloy design have led to the development of a number of ductile and strong intermetallic alloys based on Ni(3)Al, NiAl, Fe(3)Al, FeAl, Ti(3)Al and TiAl systems for structural applications. (orig.)

  6. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  7. Environmental embrittlement of intermetallic compounds in Fe-Al alloys

    Institute of Scientific and Technical Information of China (English)

    张建民; 张瑞林; S.H.YU; 余瑞璜

    1996-01-01

    First,it is proposed that hydrogen atoms occupy the interstitial sites in Fe3Al and FeAl.Then the environmental embrittlement of intermetallic compounds in Fe-Al alloys is studied in the light of calculated valence electron structures and bond energy of Fe3Al and FeAl containing hydrogen atoms.From the analyses it is found that the states of metal atoms will change,in which more lattice electrons will become covalent electrons to bond with hydrogen atoms when the atomic hydrogen diffuses into the intermetallic compounds in Fe-Al alloys,which will result in the decrease of local metallicity in Fe3Al and FeAl.Meanwhile,it is found that the crystal will easily cleave since solute hydrogen bonds with metal atoms and severely anisotropic bonds form.As a conclusion,these factors result in the environmental embrittlement of Fe3Al and FeAl.

  8. Morphology of intermetallic phases in Al-Si cast alloys and their fracture behaviour

    Directory of Open Access Journals (Sweden)

    Lenka Hurtalová

    2015-03-01

    Full Text Available Applications of Al-Si cast alloys in recent years have increased especially in the automotive industry (dynamic exposed cast, en-gine parts, cylinder heads, pistons and so on. Controlling the microstructure of secondary aluminium cast alloys is very important, because these alloys contain more additional elements that form various intermetallic phases in the structure. Therefore, the contribution is dealing with the valuation type of intermetallic phases and their identification with using optical and scanning microscopy. Some of the intermetallic phases could be identified on the basis of morphology but some of them must be identified according EDX analysis. The properties of alu-minium alloy are affected by morphology of intermetallic phases and therefore it is necessary to study morphology and its fracture behav-iour. The present work shows morphology and typical fracture behaviour as the most common intermetallic phases forming in Al-Si alloys.

  9. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    Science.gov (United States)

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  10. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  11. Impact of Alloying on Stacking Fault Energies in γ-TiAl

    Directory of Open Access Journals (Sweden)

    Phillip Dumitraschkewitz

    2017-11-01

    Full Text Available Microstructure and mechanical properties are key parameters influencing the performance of structural multi-phase alloys such as those based on intermetallic TiAl compounds. There, the main constituent, a γ -TiAl phase, is derived from a face-centered cubic structure. Consequently, the dissociation of dislocations and generation of stacking faults (SFs are important factors contributing to the overall deformation behavior, as well as mechanical properties, such as tensile/creep strength and, most importantly, fracture elongation below the brittle-to-ductile transition temperature. In this work, SFs on the { 111 plane in γ -TiAl are revisited by means of ab initio calculations, finding their energies in agreement with previous reports. Subsequently, stacking fault energies are evaluated for eight ternary additions, namely group IVB–VIB elements, together with Ti off-stoichiometry. It is found that the energies of superlattice intrinsic SFs, anti-phase boundaries (APBs, as well as complex SFs decrease by 20–40% with respect to values in stoichiometric γ -TiAl once an alloying element X is present in the fault plane having thus a composition of Ti-50Al-12.5X. In addition, Mo, Ti and V stabilize the APB on the (111 plane, which is intrinsically unstable at 0 K in stoichiometric γ -TiAl.

  12. The effect of heat treatment variables on the phase transformations at 1,420 C in Ti-48Al and Ti-48Al-2Mn-2Nb alloys

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    1995-01-01

    The effect of heat treatment variables such as initial microstructure, isothermal reaction time and cooling rate on the phase transformations occurring at 1,420 C in Ti-48Al and Ti-48Al-2Mn-2Nb alloys was studied. The main effect of the initial microstructure, which comprised either lamellae of α 2 and γ or equiaxed γ grains, was to alter the kinetics, through a change in the chemical driving force of the phase transformations. Therefore, the equiaxed γ grains transformed to α much faster than the lamellar structure and in the initially lamellar structure, growth of α resulted in the delineation of the initial dendritic structure formed during solidification. The effect of the rate of cooling from the heat treatment temperature on the final morphology of these alloys was drastic and resulted in a change in morphology from lamellar grains obtained on furnace cooling to a feathery and mottled morphology obtained on water quenching. TEM analysis of water quenched Ti-48Al-2Mn-2Nb revealed complex morphologies including a structure which consisted of equiaxed γ grains and residual α 2 and abutting colonies of γ and α 2 . Based on the TEM results, the early stages of formation of γ from α were studied and mechanisms of nucleation and growth discussed. The relative importance and the coexistence of massive and martensitic transformation products is also discussed

  13. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process

    International Nuclear Information System (INIS)

    Chen Shuhai; Li Liqun; Chen Yanbin; Huang Jihua

    2011-01-01

    Research highlights: → The microstructures of interfacial zones were confirmed in detail by transmission electron microscope (TEM). Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, obvious stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately below 1 μm). → Metallurgical characteristics for laser welding-brazing process in the environment of far from equilibrium was expounded by microstructures of the joints, the characteristics of thermal process and element diffusion behavior. - Abstract: Joining mechanism of Ti/Al dissimilar alloys was investigated during laser welding-brazing process with automated wire feed. The microstructures of fusion welding and brazing zones were analysed in details by transmission electron microscope (TEM). It was found that microstructures of fusion welding zone consist of α-Al grains and ternary near-eutectic structure with α-Al, Si and Mg 2 Si. Interfacial reaction layers of brazing joint were composed of α-Ti, nanosize granular Ti 7 Al 5 Si 12 and serration-shaped TiAl 3 . For the first time, apparent stacking fault structure in intermetallic phase TiAl 3 was found when the thickness of the reaction layer was very thin (approximately less than 1 μm). Furthermore, crystallization behavior of fusion zone and mechanism of interfacial reaction were discussed in details.

  14. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  15. TEM characterization of plate-shaped L12-(Al,Ag)3Ti precipitates in a Ag-modified TiAl based intermetallics

    International Nuclear Information System (INIS)

    Yuan, Y.; Liu, H.W.; Zhao, X.N.; Meng, X.K.; Liu, Z.G.

    2006-01-01

    L1 2 -(Al,Ag) 3 Ti phase in a L1 0 -TiAl(Ag) intermetallic compound with a nominal composition of Ti-54 at.% Al-4 at.% Ag has been studied by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray (EDX). TEM observations revealed that the alloy aged at 1273 K consists of L1 0 phase and L1 2 phase. The compositions of L1 2 phase and the matrix have been determined. The habit plane of L1 2 phase was analyzed by trace line method. It was revealed that the habit plane changed to one of {1 1 2) planes compared with our previous result. The semi-coherent interface was formed between L1 0 phase and L1 2 phase. HRTEM characterized the interface structure directly. The dislocation loops and ledges at the interphase boundary were observed. The results were discussed in terms of the competition between elastic strain and interfacial energy, ledge mechanism of phase transformation caused by long-range diffusion of the atoms

  16. X – ray and neutron diffraction of TiAl alloys

    International Nuclear Information System (INIS)

    Valkov, Stefan; Petrov, Peter; Neov, Dimitar; Beskrovny, Anatoly; Kozlenko, Denis

    2015-01-01

    TiAl alloys were prepared by electron beam hybrid method. Composite Ti-Al film, from composite target, was deposited on Ti substrate by electron beam evaporation, followed by electron beam treatment with scanning electron beam. Experiments were made using Leybold Heraus (EWS 300/ 15 - 60) with the following technological parameters : accelerating voltage U = 60kV; beam current I=40 mA, speed of movement of specimens V=5 cm/s, current of the focusing lens If =512mA, specimen distance D0 = 38cm. X- ray and neutron diffraction methods were used to determine the phase composition on the surface and at the volume, respectively. Time of flight neutron diffraction study of TiAl specimens was performed on DN-2 diffractometer at fast pulsed IBR-2 reactor in FLNP JINR (Dubna, Russia).We found that intermetallic TiAl phases were successfully obtained on the surface, as well as in the volume.

  17. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  18. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  19. Effect of thermomechanical treatments on phase distribution and microstructure evolution of a Ti-48Al-2Mn-2Nb alloy

    International Nuclear Information System (INIS)

    Morris, M.A.; Leboeuf, M.

    1995-01-01

    Titanium aluminide alloys based on TiAl offer potential benefits as intermetallics for structural applications due to their low density and attractive properties at high temperature. However, their strength and ductility are very dependent on microstructural morphologies and much research is being devoted to obtaining optimal properties. The large grain sizes and solute segregations associated with conventional castings have forced much of the work to be focused on obtaining finer microstructures, both in terms of grain sizes as well as lamellar spacings. Thermomechanical treatments have been used to produce a large variety of structural morphologies ranging from fully lamellar to duplex and equiaxed and in which the proportion of each phase is also variable. By choosing the correct temperature and strain rate parameters, it may be possible to modify the microstructure by dynamic recrystallization, if during the mechanical process the lamellae of the α 2 phase can be broken down and be used to accelerate the kinetics of nucleation of the new γ grains. The present study has been carried out in order to examine this process and the authors have compared the different refined microstructures that can be obtained by a new thermomechanical process (ELIT pack-rolling) of a Ti-48Al-2Mn-2Nb alloy with respect to those obtained by heat treatments only

  20. Phase transformations and resulting microstructures in Ti - 47 Al -2 Cr alloy

    International Nuclear Information System (INIS)

    Ghasemi-Armaki, H.; Heshmati-Manesh, S.; Jafarian, H. R.; Nili-Ahmadabadi, M.

    2008-01-01

    During the last three decades, intermetallic alloys have focused attention because of their high strength to weight ratio and good creep resistance. Titanium aluminide alloys based on γ-Ti Al are potential candidates to replace Ni-based super alloys currently used in jet engine components at high temperatures because of their low density, high melting temperature, good elevated-temperature strength and modulus retention, high resistance to oxidation and hydrogen absorption, and excellent creep properties. One of the major concerns in these alloys is their poor ductility at room and intermediate temperatures which has been improved slightly by microstructure modifications through heat treatment. Thus, modification of microstructure during cooling and CCT diagram in these alloys is of vital importance. In this study, Ti - 47 Al - 2 Cr intermetallic alloy has been prepared by remelting 4 times with a vacuum arc remelting furnace. Homogenizing treatment was done at 1125 d eg C for 72 h in a sealed vacuum quartz tube. All heat treatments on the samples were carried out in a vacuum heat treatment furnace under a pressure of 10 -1 bar. The atmosphere inside the furnace was changed to that of high purity argon for each heat treatment as an added precaution against oxidation. In this paper, phase transformations in a γ-Ti Al based intermetallic alloy containing chromium were investigated. Heat treatments on samples of this alloy at temperatures above Tα and subsequent cooling with various cooling rates resulted in variety of microstructures. The schematic CCT diagram for this alloy was drawn from microstructural studies using microscopy routs and X-ray diffraction. Then, cyclic heat treatment with grain refining purpose was conducted on a sample of this alloy having massive gamma microstructure. During cyclic heat treatment, gradual dissociation of the gamma phase resulted in the formation of a Widmanstaetten type structure. Trend of microstructure evolution and

  1. A Novel Process for Joining Ti Alloy and Al Alloy using Two-Stage Sintering Powder Metallurgy

    Science.gov (United States)

    Long, Luping; Liu, Wensheng; Ma, Yunzhu; Wu, Lei; Liu, Chao

    2018-04-01

    The major challenges for conventional diffusion bonding of joining Ti alloy and Al alloy are the undesirable interfacial reaction, low matrixes and joint strength. To avoid the problem in diffusion bonding, a novel two-stage sintering powder metallurgy process is developed. In the present work, the interface characterization and joint performance of the bonds obtained by powder metallurgy bonding are investigated and are compared with the diffusion bonded Ti/Al joints obtained with the same and the optimized process parameters. The results show that no intermetallic compound is visible in the Ti/Al joint obtained by powder metallurgy bonding, while a new layer formed at the joint diffusion bonded with the same parameters. The maximum tensile strength of joint obtained by diffusion bonding is 58 MPa, while a higher tensile strength reaching 111 MPa for a bond made by powder metallurgy bonding. Brittle fractures occur at all the bonds. It is shown that the powder metallurgy bonding of Ti/Al is better than diffusion bonding. The results of this study should benefit the bonding quality.

  2. Annealing Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS Process

    International Nuclear Information System (INIS)

    Yoshida, R; Tsuda, T; Fujiwara, H; Miyamoto, H; Ameyama, K

    2014-01-01

    The Ti-Al alloy/pure Ti harmonic-structured composite was produced by mechanical milling and spark plasma sintering process for improvement of low ductility at room temperature of Ti-Al alloy. The harmonic-structured composite with the dispersed area having coarse grained titanium and the network area having fine-grained Ti-48mol%Al alloy demonstrates high strength and high ductility at room temperature. The annealing effect of the microstructure on the mechanical properties in the Ti-Al alloy/pure Ti harmonic-structured composite are investigated. The microstructure of the Ti-Al alloy/pure Ti harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the Ti-Al network structure and pure Ti dispersed regions, the average grain size of pure Ti dispersed region is only coarsen by annealing. The harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the high hardness. The tensile results reveal that the Ti-Al alloy/pure Ti harmonic- structured composite annealed at 873 K exhibits high strength and especially high ductility

  3. Effects of ductile phase volume fraction on the mechanical properties of Ti-Al3Ti metal-intermetallic laminate (MIL) composites

    International Nuclear Information System (INIS)

    Price, Richard D.; Jiang Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2011-01-01

    Research highlights: → Residual Al improves the mechanical properties of Ti-Al 3 Ti MIL composites. → Residual Al can eliminate intermetallic centerline delaminations in MILs. → Low levels of residual Al increase fracture toughness in MIL composites. → MIL stiffness, strength, and fracture toughness can be optimized at low Al levels. - Abstract: Metal-intermetallic laminate (MIL) composites consisting of alternating layers of Ti, Al, and the intermetallic Al 3 Ti have been fabricated by reactive foil sintering in open air. Six initially identical stacks of alternating Ti-3Al-2.5 V and 1100-Al foils were processed for different lengths of time, yielding specimens with different metal and intermetallic volume fractions. Their mechanical properties have been investigated with an emphasis on the effect of residual Al at the intermetallic centerline on composite strength and fracture toughness, as well as fracture and failure modes. Samples were cut from each composite plate (in layer orientations parallel and perpendicular to the intended load direction) for mechanical testing in compression and four-point bending under quasi-static and high-rate loading conditions. Examination of the damaged specimens and their fracture surfaces by optical and scanning electron microscopy was performed to establish a correlation between the failure mechanisms present, composite strength, and microstructure. Results indicated that regardless of loading direction, cracks always initiated in the intermetallic region, rarely at the centerline, and crack propagation and failure were heavily influenced by the thickness of the residual aluminum layers. There is an ideal residual aluminum volume fraction that represents the amount of ductile reinforcement that maximizes the combined properties of strength, toughness and stiffness.

  4. Development of a TiAl Alloy by Spark Plasma Sintering

    Science.gov (United States)

    Couret, Alain; Voisin, Thomas; Thomas, Marc; Monchoux, Jean-Philippe

    2017-12-01

    Spark plasma sintering (SPS) is a consolidated powder metallurgy process for which the powder sintering is achieved through an applied electric current. The present article aims to describe the method we employed to develop a TiAl-based alloy adjusted for this SPS process. Owing to its enhanced mechanical properties, this alloy was found to fully match the industrial specifications for the aeronautic and automotive industries, which require a high strength at high temperature and a reasonably good ductility at room temperature. A step-by-step method was followed for this alloy development. Starting from a basic study on the as-SPSed GE alloy (Ti-48Al-2Cr-2Nb) in which the influence of the microstructure was studied, the microstructure-alloy composition relationships were then investigated to increase the mechanical properties. As a result of this study, we concluded that tungsten had to be the major alloying element to improve the resistance at high temperature and a careful addition of boron would serve the properties at room temperature. Thus, we developed the IRIS alloy (Ti-48Al-2W-0.08B). Its microstructure and mechanical properties are described here.

  5. NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti-6Al-4V substrates

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2014-03-01

    Full Text Available The NiTi intermetallic possesses a number of good properties, such as high wear, oxidation, and corrosion resistance. This paper focuses on the deposition of NiTi intermetallic coatings on Ti6Al4V substrate by laser melting of Ti and Ni elemental...

  6. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Liu Xiangfa; Ding Haimin

    2009-01-01

    Because flake-like TiAl 3 particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl 3 particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of α-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption

  7. Mechanical alloying of TiFe intermetallic for hydrogen storage

    International Nuclear Information System (INIS)

    Vega, L.E.R.; Leiva, D.R.; Silva, W.B.; Ishikawa, T.T.; Botta, W.J.; Leal Neto, R.M.

    2016-01-01

    Elementary powders of Ti and Fe in the stoichiometric ratio 50:50 were submitted to mechanical alloying for 2, 6, 10 and 20 h in a planetary ball mill. The synthesis of TiFe intermetallic with high yield was achieved for all milling times. The structural characterization of the samples revealed the trend of the particles to form agglomerates and the formation of cracks. H-absorption capacities of 0,74; 0,90; 0,97 and 0,95 wt. % (at room temperature and 20 bar of H2) were obtained for processing times of 2, 6, 10 and 20 h, respectively, without using a thermal activation process after milling. (author)

  8. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    Science.gov (United States)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  9. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaoguang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn; Ding Haimin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-03-05

    Because flake-like TiAl{sub 3} particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl{sub 3} particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of {alpha}-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption.

  10. Formation of Al3Ti/Mg composite by powder metallurgy of Mg-Al-Ti system.

    Science.gov (United States)

    Yang, Zi R; Qi Wang, Shu; Cui, Xiang H; Zhao, Yu T; Gao, Ming J; Wei, Min X

    2008-07-01

    An in situ titanium trialuminide (Al 3 Ti)-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg-Al-Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC), x-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Al 3 Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg-Al-Ti system, Al 3 Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg-Al-Ti system is almost the same as that of the Al-Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  11. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  12. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  13. Multi-step wrought processing of TiAl-based alloys

    International Nuclear Information System (INIS)

    Fuchs, G.E.

    1997-04-01

    Wrought processing will likely be needed for fabrication of a variety of TiAl-based alloy structural components. Laboratory and development work has usually relied on one-step forging to produce test material. Attempts to scale-up TiAl-based alloy processing has indicated that multi-step wrought processing is necessary. The purpose of this study was to examine potential multi-step processing routes, such as two-step isothermal forging and extrusion + isothermal forging. The effects of processing (I/M versus P/M), intermediate recrystallization heat treatments and processing route on the tensile and creep properties of Ti-48Al-2Nb-2Cr alloys were examined. The results of the testing were then compared to samples from the same heats of materials processed by one-step routes. Finally, by evaluating the effect of processing on microstructure and properties, optimized and potentially lower cost processing routes could be identified

  14. Fabrication, interfacial characterization and mechanical properties of continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yuqiang; Lin, Chunfa; Han, Xiaoxiao; Chang, Yunpeng; Guo, Chunhuan, E-mail: guochunhuan@hrbeu.edu.cn; Jiang, Fengchun, E-mail: fengchunjiang@hrbeu.edu.cn

    2017-03-14

    Continuous Al{sub 2}O{sub 3} ceramic fiber reinforced Ti/Al{sub 3}Ti metal-intermetallic laminated (CCFR-MIL) composite was fabricated using a vacuum hot pressing (VHP) sintering method and followed by hot isostatic pressing (HIP). The microstructure characteristics of the interfaces between Ti and Al{sub 3}Ti, as well as Al{sub 2}O{sub 3} fiber and Al{sub 3}Ti intermetallic were analyzed by scanning electron microscopy (SEM). Elemental distribution in the interfacial reaction zones were quantitatively examined by energy-dispersive spectroscopy (EDS). The phases in the composite were identified by X-ray diffractometer (XRD). The mechanical properties of the CCFR-MIL composite were measured using compression and tensile tests under quasi-static strain rate. The experimental results indicated that the residual Al was found in Al{sub 3}Ti intermetallic layer of CCFR-MIL composite. The interfacial reactions occurred during HIP and the reaction products were determined to be Al{sub 2}Ti, TiSi{sub 2}, TiO{sub 2} and Al{sub 2}SiO{sub 5} phases. Compared to Ti/Al{sub 3}Ti MIL composite without fiber reinforcement, both the strength and failure strain of CCFR-MIL composite under both compressive and tensile stress states increased due to the contribution of the continuous ceramic Al{sub 2}O{sub 3} fiber.

  15. Effects of Be additions on microstructures of TiAl intermetallic compounds

    International Nuclear Information System (INIS)

    Nonaka, Katsuhiko; Tanosaki, Kazuo; Kawabata, Takeshi; Nakajima, Hideo

    1997-01-01

    TiAl-0.1-3.0 mol%Be alloys made by the argon arc melting method were investigated to characterize microstructures in cast and annealed conditions using optical microscopy, SEM, EPMA and X-ray diffractometer. The addition of Be to TiAl resulted in a decrease of α 2 phase, thereby coarsening grains and a shift of γ/(γ+α 2 ) phase boundary to Ti-rich side. Two types of Be compound were observed: one was a few micron size of particles which contain a large amount of oxygen and the other was a coarse and eutectic-like phase (θ) which has an atomic ratio of Ti:Al:Be=41:30:29. The solubility limit of Be in TiAl was less than 0.1 mol%. In the (γ+θ) two phase and (γ+α 2 +θ) three phase regions, an increase of Be addition beyond the solubility limit resulted in a small increase of Ti/Al compositional ratio in γ phase. A volume fraction of lamellar structure in TiAl-Be ternary alloys was smaller in the cast structure but was larger in the annealed structure than that in TiAl binary alloys which have nearly the same Ti/Al ratio as that in the ternary alloys, because the Be addition may increase the stacking fault energy and will stabilize the lamellar twin boundaries, respectively. (author)

  16. Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    International Nuclear Information System (INIS)

    Shaha, S.K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D.L.

    2014-01-01

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi) x (TiVZr) phases with D0 22 /D0 23 tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi) x (TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals

  17. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fakhraei, O. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Farhangi, H. [Center of Excellence for High Performance Materials, School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-01-10

    In current research, the effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy have been investigated. Scanning electron microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis were utilized to study the microstructure and fracture surfaces of samples. Microstructural analysis of the cast alloy showed the dendrites of a primary {alpha}-phase solid solution within the eutectic matrix which consists of {beta}-Al{sub 3}Mg{sub 2} intermetallic and {alpha}-solid solution. The results indicated that adding Al-5Ti-1B to the alloy caused a significant rise in the ultimate tensile strength (UTS) and elongation values from 168 MPa and 1.2% to maximum 253 MPa and 2.4%, respectively. The main mechanisms for the observed enhancement were found to be due to the refinement of grains during solidification and also segregation of Ti to the tip of Al ({alpha}) dendrites. This phenomenon controls the dendritic growth and changes the morphology of this phase from interconnected coarse dendrites to a star-like morphology.

  18. Structure and hardness of TiAl-TiB2 composite prepared by hot isostatic pressing of mechanically alloyed powders. Mekanikaru aroingu funmatsu no HIP shoketsu ni yori sakuseishita TiAl/TiB2 fukugo zairyo no soshiki to kodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T; Shimakage, K [Muroran Inst. of Technology, Hokkaido (Japan). Faculty of Engineering; Miyakawa, S [Muroran Inst. of Technology, Hokkaido (Japan). Graduate Student

    1992-11-20

    The practical application of Ti-Al system intermetallic compounds is expected as an advanced light heat resistant material. TiAl group out of them, as for the specific strength, has an equivalent maximum working temperature as that of the nickel base alloy, which is utilized as a turbine material for the current aircraft, and moreover it is also said that it is superior in the creep and rupture properties to the latter. In this study, by mechanical alloying (MA) of each mixed powder of Ti-Al and Ti-B, by suing heptane as a grinding aid, each MA powder of the amorphous TiAl containing carbon and extremely fine compound TiB2 were prepared, and subsequently the true density sintering by the hot isostatic pressing (HIP) was performed, and by doing these, the preparation of TiAl/TiB2 system composite material with a high composite ratio of TiO2 was tried. Consequently, by the MA treatment of the mixed powder of Ti and B for more than 50 hours, the compound powder of TiB2 mixed with TiB could be prepared, and its hardness has shown the maximum value Hmv=l200 with a composition of TiAl/25 mol % TiB2. 14 refs., 10 figs., 2 tabs.

  19. Fabrication of Functionally Graded Ti and γ-TiAl by Laser Metal Deposition

    Science.gov (United States)

    Yan, Lei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joseph W.; Liou, Frank

    2017-12-01

    TiAl alloys have become a popular choice in the aerospace and automotive industries, owing to their high specific yield strength, specific modulus, and oxidation resistance over titanium alloys and Ni-based super alloys at elevated temperatures. Although laser metal deposition (LMD) techniques have been available for manufacturing metal alloys for a decade, limited research has been focused on joining intermetallic materials with dissimilar materials using LMD. Here, LMD was used to join titanium aluminide Ti-48Al-2Cr-2Nb and commercially pure titanium with an innovative transition path. The theorized transition was implemented by fabricating functionally graded material (FGM). Porosity- and crack-free deposits were successfully fabricated. Energy dispersive x-ray spectroscopy analysis revealed the final composition was very close to the design composition. X-ray diffraction showed the expected phases were formed. The Vickers hardness, ultimate tensile strength, and coefficient of thermal expansion were evaluated to characterize the FGM's mechanical and physical properties. The properties of the material were comparable to those of as-cast material as reported in the literature.

  20. Vanadium Influence on Iron Based Intermetallic Phases in AlSi6Cu4 Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2014-10-01

    Full Text Available Negative effect of iron in Al-Si alloys mostly refers with iron based intermetallic phases, especially Al5FeSi phases. These phases are present in platelet-like forms, which sharp edges are considered as main cracks initiators and also as contributors of porosity formation. In recent times, addition of some elements, for example Mn, Co, Cr, Ni, V, is used to reduce influence of iron. Influence of vanadium in aluminium AlSi6Cu4 alloy with intentionally increased iron content is presented in this article. Vanadium amount has been graduated and chemical composition of alloy has been analysed by spectral analysis. Vanadium influence on microstructural changes was evaluated by microstructural analysis and some of intermetallic particles were reviewed by EDX analysis.

  1. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  2. High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite

    International Nuclear Information System (INIS)

    Rao, K.T.V.; Ritchie, R.O.

    1998-01-01

    The high-temperature fatigue-crack propagation and fracture resistance of a model γ-TiAl intermetallic composite reinforced with 20 vol. % ductile β-TiNb particles is examined at elevated temperatures of 650 and 800 C and compared with behavior at room temperature. TiNb reinforcements are found to enhance the fracture toughness of γ-TiAl, even at high temperatures, from about 123 to ∼40 MPa m 1/2 , although their effectiveness is lower compared to room temperature due to the reduction in strength of TiNb particles. Under monotonic loading, crack-growth response in the composite is characterized by resistance-curve behavior arising from crack trapping, renucleation and resultant crack bridging effects attributable to the presence of TiNb particles. In addition, crack-tip blunting associated with plasticity increases the crack-initiation (matrix) toughness of the composite, particularly at 800 C, above the ductile-to-brittle transition temperature (DBTT) for γ-TiAl. High-temperature fatigue-crack growth resistance, however, is marginally degraded by the addition of TiNb particles in the C-R (edge) orientation, similar to observations made at room temperature; premature fatigue failure of TiNb ligaments in the crack wake diminishes the role of bridging under cyclic loading. Both fatigue and fracture resistance of the composite are slightly lower at 650 C (just below the DBTT for TiAl) compared to the behavior at ambient and 800 C. Overall, the beneficial effect of adding ductile TiNb reinforcements to enhance the room-temperature fracture and fatigue resistance of γ-TiAl alloys is retained up to 800 C, in air environments. There is concern, however, regarding the long-term environmental stability of these composite microstructures in unprotected atmospheres

  3. Grain refinement of Al wrought alloys with newly developed AlTiC master alloys; Kornfeinung von Al-Knetlegierungen mit neu entwickelten AlTiC-Vorlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, W. [Vereinigte Aluminium-Werke AG, Bonn (Germany). Forschung und Entwicklung

    2000-10-01

    AlTiC master alloys are a new grain refiner type to produce an equiaxed grain structure of cast extrusion and rolling ingots. These master alloys contain Ti carbides which act as nucleants of the {alpha} solid solution during solidification. The TiC content is lower than the TiB{sub 2} content of the industrial proved AlTiB master alloys. Benefits of the AlTiC master alloys are the low agglomeration tendency of the Ti carbides in the melt and that no Zr poisoning takes place. Despite of the low Ti carbide content the grain refinement performance can be very efficient, if low melt temperatures during casting will be used and as result of this a sufficient constitutional supercooling at the solidification front is achieved. (orig.)

  4. Grain refining efficiency of Al-Ti-C alloys

    International Nuclear Information System (INIS)

    Birol, Yuecel

    2006-01-01

    The problems associated with boride agglomeration and the poisoning effect of Zr in Zr-bearing alloys have created a big demand for boron-free grain refiners. The potential benefits of TiC as a direct nucleant for aluminium grains have thus generated a great deal of interest in TiC-bearing alloys in recent years. In Al-Ti-C grain refiners commercially available today, Al 3 Ti particles are introduced into the melt along with the TiC particles. Since the latter are claimed to nucleate α-Al directly, it is of great technological interest to see if reducing the Ti:C ratio further, i.e., increasing the C content of the grain refiner, will produce an increase in the grain refining efficiency of these alloys. A series of grain refiner samples with the Ti concentration fixed at 3% and a range of C contents between 0 and 0.75 were obtained by appropriately mixing an experimental Al-3Ti-0.75C alloy with Al-10Ti alloy and commercial purity aluminium. The grain refining efficiency of these grain refiners was assessed to investigate the role of the insoluble TiC and the soluble Al 3 Ti particles. The optimum chemistry for the Al-Ti-C grain refiners was also identified

  5. Grain refining efficiency of Al-Ti-C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birol, Yuecel [Materials Institute, Marmara Research Center, TUBITAK, 41470 Gebze, Kocaeli (Turkey)]. E-mail: yucel.birol@mam.gov.tr

    2006-09-28

    The problems associated with boride agglomeration and the poisoning effect of Zr in Zr-bearing alloys have created a big demand for boron-free grain refiners. The potential benefits of TiC as a direct nucleant for aluminium grains have thus generated a great deal of interest in TiC-bearing alloys in recent years. In Al-Ti-C grain refiners commercially available today, Al{sub 3}Ti particles are introduced into the melt along with the TiC particles. Since the latter are claimed to nucleate {alpha}-Al directly, it is of great technological interest to see if reducing the Ti:C ratio further, i.e., increasing the C content of the grain refiner, will produce an increase in the grain refining efficiency of these alloys. A series of grain refiner samples with the Ti concentration fixed at 3% and a range of C contents between 0 and 0.75 were obtained by appropriately mixing an experimental Al-3Ti-0.75C alloy with Al-10Ti alloy and commercial purity aluminium. The grain refining efficiency of these grain refiners was assessed to investigate the role of the insoluble TiC and the soluble Al{sub 3}Ti particles. The optimum chemistry for the Al-Ti-C grain refiners was also identified.

  6. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Thermal stability of (AlSi){sub x}(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr

    Energy Technology Data Exchange (ETDEWEB)

    Shaha, S.K. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Czerwinski, F., E-mail: Frank.Czerwinski@nrcan.gc.ca [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Kasprzak, W. [CanmetMATERIALS, Natural Resources Canada, 183 Longwood Road South, Hamilton, Ontario L8P 0A5 (Canada); Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada)

    2014-11-10

    Highlights: • Al–Si–Cu–Mg alloy was modified by introducing Zr, V, and Ti. • The chemistry of the phases was identified using SEM/EDX. • The crystal lattice parameters of the phases were characterized using EBSD. • To investigate the phase stability, XRD was performed up to 600 °C. • Thermal analysis was done to find out the possible phase transformation reactions. - Abstract: The Al–Si–Cu–Mg cast alloy was modified with additions of Ti–V–Zr to improve the thermal stability of intermetallics at increased temperatures. A combination of electron microscopy, electron backscatter diffraction, and high temperature X-ray diffraction was explored to identify phases and temperatures of their thermal stability. The micro-additions of transition metals led to formation of several (AlSi){sub x}(TiVZr) phases with D0{sub 22}/D0{sub 23} tetragonal crystal structure and different lattice parameters. While Cu and Mg rich phases along with the eutectic Si dissolved at temperatures from 300 to 500 °C, the (AlSi){sub x}(TiVZr) phases were stable up to 696–705 °C which is the beneficial to enhance the high temperature properties. Findings of this study are useful for selecting temperatures during melting and heat treatment of Al–Si alloys with additions of transition metals.

  8. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  9. Influence of electric current on microstructure evolution in Ti/Al and Ti/TiAl{sub 3} during spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Haley, J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616-5294 (United States); Kulkarni, K. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, UP (India); Aindow, M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Lavernia, E.J., E-mail: lavernia@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616-5294 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575 (United States)

    2015-11-05

    The synthesis of γ-TiAl from elemental metals via solid-state reactive diffusion processing routes involves multiple reaction steps with the formation of various intermediate intermetallic compounds, starting with TiAl{sub 3} because this phase is favored kinetically. To understand the processes by which the TiAl{sub 3} intermediate is eliminated during synthesis of γ-TiAl alloy via spark plasma sintering (SPS), the reaction between Ti and TiAl{sub 3} during SPS was studied with emphasis on the effects of the applied electric current and starting TiAl{sub 3} microstructure on the reaction kinetics and the underlying diffusion mechanisms. The intermediate intermetallic phases Ti{sub 3}Al, TiAl and TiAl{sub 2} were formed between the Ti and TiAl{sub 3} upon SPS processing at 900 °C. The applied electric current did not alter the character of the phases formation in the Ti/TiAl{sub 3} system, but thermodynamic calculations suggest that the activation energy for the nucleation of TiAl{sub 2} is reduced significantly with an electric current flowing. Moreover, the kinetics of the reactions between Ti and TiAl{sub 3} were enhanced when the starting TiAl{sub 3} microstructure was refined. The electric field also had a more significant influence on the grain growth kinetics for TiAl{sub 2} and TiAl in powder blend compacts with refined microstructures. - Highlights: • Reaction between Ti and TiAl{sub 3} during spark plasma sintering was studied. • Refined starting TiAl{sub 3} microstructure enhanced the reactions kinetics. • The nucleation barrier of TiAl{sub 2} was reduced by the applied electric field. • The applied electric field restrained the grain growth of TiAl and TiAl{sub 2}.

  10. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  11. Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance

    International Nuclear Information System (INIS)

    Venkateswara Rao, K.T.; Ritchie, R.O.; Odette, G.R.

    1994-01-01

    The influence of the type, volume fraction, thickness and orientation of ductile phase reinforcements on the room temperature fatigue and fracture resistance of γ-TiAl intermetallic alloys is investigated. Large improvements in toughness compared to monolithic γ-TiAl are observed in both the TiNb- and Nb-reinforced composites under monotonic loading. Toughness increases with increasing ductile phase content, reinforcement thickness and strength; orientation effect are minimal. Crack-growth behavior is characterized by steep resistance curves primarily due to crack trapping/renucleation and extensive crack bridging by the ductile-phase particles. In contrast, under cyclic loading the influence of ductile phases on fatigue resistance is strongly dependent upon reinforcement orientation. Compared to monolithic γ-TiAl, improvements in fatigue-crack growth resistance are observed in TiNb-reinforced composites only in the face (C-L) orientation; crack-growth rates for the edge (C-R) orientation are actually faster in the composite. In comparison, Nb-particle reinforcements offer less toughening under monotonic loading but enhance the fatigue properties compared to TiNb reinforcements under cyclic loading

  12. Iron Intermetallic Phases in the Alloy Based on Al-Si-Mg by Applying Manganese

    Directory of Open Access Journals (Sweden)

    Podprocká R.

    2017-09-01

    Full Text Available Manganese is an effective element used for the modification of needle intermetallic phases in Al-Si alloy. These particles seriously degrade mechanical characteristics of the alloy and promote the formation of porosity. By adding manganese the particles are being excluded in more compact shape of “Chinese script” or skeletal form, which are less initiative to cracks as Al5FeSi phase. In the present article, AlSi7Mg0.3 aluminium foundry alloy with several manganese content were studied. The alloy was controlled pollution for achieve higher iron content (about 0.7 wt. % Fe. The manganese were added in amount of 0.2 wt. %, 0.6 wt. %, 1.0 wt. % and 1.4 wt. %. The influence of the alloying element on the process of crystallization of intermetallic phases were compared to microstructural observations. The results indicate that increasing manganese content (> 0.2 wt. % Mn lead to increase the temperature of solidification iron rich phase (TAl5FeSi and reduction this particles. The temperature of nucleation Al-Si eutectic increase with higher manganese content also. At adding 1.4 wt. % Mn grain refinement and skeleton particles were observed.

  13. Deformation twinning in metals and ordered intermetallics-Ti and Ti-aluminides

    Science.gov (United States)

    Yoo, M. H.; Fu, C. L.; Lee, J. K.

    1991-06-01

    The role of deformation twinning in the strength and ductility of metals and ordered intermetallic alloys is examined on the basis of crystallography, energetics and kinetics of deformation twinning. A systematic analysis is made by taking Ti, Ti3AI, TiAl, and A13Ti as four model systems. In comparison with profuse twinning in Ti, the intrinsic difficulty of twinning in Ti3A1 is rationalized in terms of the interchange shuffling mechanism. A fault (SISF) dragging mechanism based on the interaction torque explains the physical source for the low mobility of screw superdislocations in TiAl, which may lead to (111) [ 11bar{2}] twin nucleation. In TiAl and A13Ti alloys, the twin-slip (ordinary) conjugate relationship makes an important contribution to the strain compatibility for high-temperature plasticity. Potentially beneficial alloying additions to promote twinning are discussed. Les conséquences de la déformation par maclage sur la fracture et la ductilité des métaux et alliages intermétalliques ordonnés sont étudiées en fonction de la cristallographie, de l'énergie et de la cinétique des déformations par maclage. Une analyse systématique a été faite en considérant Ti, Ti3AI, TiAl et A13Ti comme quatre systèmes modèles. En comparaison avec le nombre important de maclages observés dans Ti, la difficulté intrinsèque des maclages dans Ti3AI est rationalisée en terme de mécanisme d'“interchange shuffling”. Un mécanisme de “dragging fault” basé sur l'interaction “torque” explique l'origine physique de la faible mobilité des superdislocations vissées dans TiAl qui peuvent conduire à la nucléation des macles (111) 112. Dans les alliages tels TiAl et A13Ti, la relation conjuguée entre la macle et le glissement (ordinaire) contribue de façon importante à la compatibilité des contraintes lors de la déformation plastique à haute température. Des effets bénéfiques potentiels liés à des éléments d'addition sur le processus

  14. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  15. The massive transformation in Ti-Al alloys: mechanistic observations

    International Nuclear Information System (INIS)

    Zhang, X.D.; Godfrey, S.; Weaver, M.; Strangwood, M.; Kaufman, M.J.; Loretto, M.H.

    1996-01-01

    The massive α→γ m transformation, as observed using analytical transmission electron microscopy, in Ti-49Al, Ti-48Al-2Nb-2Mn, Ti-55Al-25Ta and Ti-50Al-20Ta alloys is described. Conventional solution heating and quenching experiments have been combined with the more rapid quenching possible using electron beam melting in order to provide further insight into the early stages of the transformation of these alloys. It is shown that the γ develops first at grain boundaries as lamellae in one of the grains and that these lamellae intersect and spread into the adjacent grain in a massive manner. Consequently, there is no orientation relationship between the massive gamma (γ m ) and the grain being consumed whereas there is the expected relation between the γ m and the first grain which is inherited from the lamellae. It is further shown that the γ m grows as an f.c.c. phase after initially growing with the L1 0 structure. Furthermore, it is shown that the massive f.c.c. phase then orders to the L1 0 structure producing APDB-like defects which are actually thin 90 degree domains separating adjacent domains that have the same orientation yet are out of phase. The advancing γ m interface tends to facet parallel either to one of its four {111} planes or to the basal plane in the grain being consumed by impinging on existing γ lamellae. Thin microtwins and α 2 platelets then form in the γ m presumably due, respectively, to transformation stresses and supersaturation of the γ m with titanium for alloys containing ∼48% Al; indeed, there is a local depletion in aluminium across the α 2 platelets as determined using fine probe microanalysis

  16. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  17. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  18. The mechanism of formation of a fine duplex microstructure in Ti-48Al-2Mn-2Nb alloys

    International Nuclear Information System (INIS)

    Ramanujan, R.V.; Maziasz, P.J.

    1996-01-01

    The mechanism of formation of the fine duplex microstructure resulting from the α → γ transformation in water-quenched Ti-48Al-2Mn-2Nb alloys was studied using transmission and analytical electron microscopy. As-cast Ti-48Al-2Mn-2Nb alloys were heat treated in the α phase field and water quenched to room temperature. The resulting microstructure (referred to as a fine duplex microstructure) consisted of equiaxed grains and abutting lath colonies. Both the colonies and the grains were composed of the γ phase, twinned γ laths, and α 2 laths. It was found that the transformation from α to γ in the fine duplex microstructure took place through long range diffusional processes, and competitive growth between the equiaxed and lath morphology occurred. Nucleation of the γ phase from the α matrix can occur through nucleation on stacking faults, followed by growth through the sympathetic nucleation and growth of new γ laths on a substrate lath. The observed misorientations and the interfacial structures between the laths were found to be consistent with such a mechanism. Competition between such nucleation and growth mechanisms for the equiaxed and lath morphologies of γ leads to the formation of lath colonies (of γ and α 2 ) interspersed with equiaxed grains in these alloys

  19. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B/B4c Systems Used for Aluminum Alloy Modification

    Science.gov (United States)

    Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.

    2018-03-01

    The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

  20. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  1. Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061

    International Nuclear Information System (INIS)

    Wu, Aiping; Song, Zhihua; Nakata, Kazuhiro; Liao, Jinsun; Zhou, Li

    2015-01-01

    Highlights: • Friction stir butt welding of titanium alloy Ti6Al4V and aluminum alloy A6061-T6. • Welding parameters affect interfacial microstructure of the joint. • Welding parameters affect the mechanical property of joint and fracture position. • Joining mechanism of Ti6Al4V/A6061 dissimilar alloys by FSW is investigated. - Abstract: Titanium alloy Ti6Al4V and aluminum alloy 6061 dissimilar material joints were made with friction stir welding (FSW) method. The effects of welding parameters, including the stir pin position, the rotating rate and the travel speed of the tool, on the interface and the properties of the joints were investigated. The macrostructure of the joints and the fracture surfaces of the tensile test were observed with optical microscope and scanning electron microscope (SEM). The interface reaction layer was investigated with transmission electron microscopy (TEM). The factors affecting the mechanical properties of the joints were discussed. The results indicated that the tensile strength of the joints and the fracture location are mainly dependent on the rotating rate, and the interface and intermetallic compound (IMC) layer are the governing factor. There is a continuous 100 nm thick TiAl 3 IMC at the interface when the rotating rate is 750 rpm. When the welding parameters were appropriate, the joints fractured in the thermo-mechanically affected zone (TMAZ) and the heat affected zone (HAZ) of the aluminum alloy and the strength of the joints could reach 215 MPa, 68% of the aluminum base material strength, as well as the joint could endure large plastic deformation

  2. Effects of O in a binary-phase TiAl-Ti3Al alloy: from site occupancy to interfacial energetics

    International Nuclear Information System (INIS)

    Wei Ye; Xu Huibin; Zhou Hongbo; Zhang Ying; Lu Guanghong

    2011-01-01

    We have investigated site occupancy and interfacial energetics of a TiAl-Ti 3 Al binary-phase system with O using a first-principles method. Oxygen is shown to energetically occupy the Ti-rich octahedral interstitial site, because O prefers to bond with Ti rather than Al. The occupancy tendency of O in TiAl alloy from high to low is α 2 -Ti 3 Al to the γ-α 2 interface and γ-TiAl. We demonstrate that O can largely affect the mechanical properties of the TiAl-Ti 3 Al system. Oxygen at the TiAl-Ti 3 Al interface reduces both the cleavage energy and the interface energy, and thus weakens the interface strength but strongly stabilizes the TiAl/Ti 3 Al interface with the O 2 molecule as a reference. Consequently, the mechanical property variation of TiAl alloy due to the presence of O not only depends on the number of TiAl/Ti 3 Al interfaces but also is related to the O concentration in the alloy.

  3. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  4. Investigation of the brittle fracture behavior of intermetallic Ti-Al-Si-Nd-alloys

    International Nuclear Information System (INIS)

    Wittkowsky, B.U.

    1995-01-01

    The object of this paper is the fracture behaviour of three Ti-Al-Si-Nb alloys. Fracture mechanical data are experimentally determined and their statistical properties are investigated. To describe the fracture process of disordered heterogeneous brittle materials a statistical model was developed, based on damage mechanics. With the aid of this model it was possible to attribute the fracture behaviour, the fracture mechanical data and their statistical properties to the microstructure of the materials studied. (orig.) [de

  5. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  6. A new approach to grain refinement of an Mg-Li-Al cast alloy

    International Nuclear Information System (INIS)

    Jiang, B.; Qiu, D.; Zhang, M.-X.; Ding, P.D.; Gao, L.

    2010-01-01

    Crystallographic calculation based on the edge-to-edge matching model predicted that both TiB 2 and Al 3 Ti intermetallic compounds have strong potential to be effective grain refiners for β phase in the Mg-14Li-1Al alloy due to the small atomic matching misfit across the interface between the compounds and β phase. Experimental results showed that addition of 1.25 wt%Al-5Ti-1B master alloy reduced grain size of β phase in the alloy from 1750 to 500 μm. The possible grain refining mechanisms were also discussed.

  7. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  8. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  9. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  10. Formation of Al3Ti/Mg composite by powder metallurgy of Mg–Al–Ti system

    Directory of Open Access Journals (Sweden)

    Zi R Yang et al

    2008-01-01

    Full Text Available An in situ titanium trialuminide (Al3Ti-particle-reinforced magnesium matrix composite has been successfully fabricated by the powder metallurgy of a Mg–Al–Ti system. The reaction processes and formation mechanism for synthesizing the composite were studied by differential scanning calorimetry (DSC, x-ray diffractometry (XRD, scanning electron microscopy (SEM and energy-dispersive x-ray spectroscopy (EDS. Al3Ti particles are found to be synthesized in situ in the Mg alloy matrix. During the reaction sintering of the Mg–Al–Ti system, Al3Ti particles are formed through the reaction of liquid Al with as-dissolved Ti around the Ti particles. The formed intermetallic particles accumulate at the original sites of the Ti particles. As sintering time increases, the accumulated intermetallic particles disperse and reach a relatively homogeneous distribution in the matrix. It is found that the reaction process of the Mg–Al–Ti system is almost the same as that of the Al–Ti system. Mg also acts as a catalytic agent and a diluent in the reactions and shifts the reactions of Al and Ti to lower temperatures. An additional amount of Al is required for eliminating residual Ti and solid-solution strengthening of the Mg matrix.

  11. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2014-02-01

    Full Text Available Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  12. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  13. Molecular dynamics simulations of radiation damage in D019 Ti3Al intermetallic compound

    International Nuclear Information System (INIS)

    Voskoboinikov, Roman E.

    2013-01-01

    Molecular dynamics (MD) has been applied to simulate the radiation damage created in displacement cascades in D0 19 Ti 3 Al structural intermetallics. Collision cascades formed by the recoil of either Al or Ti primary knock-on atoms (PKA) with energy E PKA = 5, 10, 15 or 20 keV were considered in Ti 3 Al single crystals at T = 100, 300, 600 and 900 K. At least 24 different cascades for each (E PKA , T, PKA type) set were simulated. A comprehensive treatment of the modelling results has been carried out. We have evaluated the number of Frenkel pairs, fraction of Al and Ti vacancies, self-interstitial atoms and anti-sites as a function of (E PKA ,T, PKA type). Preferred formation of both Al vacancies and self-interstitial atoms in D0 19 Ti 3 Al exposed to irradiation has been detected

  14. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  15. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM"+ alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β_o phase and ζ-silicide particles is observed emanating from the α_2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  16. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  17. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-03-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  18. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    Science.gov (United States)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-05-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  19. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    Science.gov (United States)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  20. Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 degree centigrade

    International Nuclear Information System (INIS)

    Luna-Ramirez, A.; Porcayo-Calderon, J.; Martinez-Villafane, A.; Gonzalez-Rodriguez, J. G.; Chaon-Nava, J. G.

    2012-01-01

    The corrosion behavior of Fe 3 Al-type intermetallic alloys with addition of 1 at. % cerium, lithium and nickel at high temperature has been studied. The various alloys were exposed to an environment composed of 2.5 % SO 2 +N 2 at 900 degree centigrade for 48 h. For all the intermetallic tested, the corrosion kinetics showed a parabolic behavior. The alloy, which showed less corrosion rate, was the Fe3AlNi alloy, being Fe 3 AlCeLi the alloy with the highest corrosion rate. For the various alloys, energy dispersive X-ray spectroscopy analysis, EDS, on the developed scale only detected aluminum, oxygen, and traces of iron and cerium, suggesting the formation of alumina as main component. The intermetallic alloys showed oxide cracking and spalling. The intermetallic chemical composition played an important role in defining the oxide scale morphology and the extent of damage. (Author) 39 refs.

  1. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  2. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    Science.gov (United States)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  3. Modeling of TiAl Alloy Grating by Investment Casting

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2015-12-01

    Full Text Available The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experiments, which were carried out on Vacuum Skull Furnace using an investment block mold. The investment casting of TiAl grating was conducted for verifying the correctness and feasibility of the proposed method. The tensile test results indicated that, at room temperature, the tensile strength and elongation were approximately 675 MPa and 1.7%, respectively. The microstructure and mechanical property of the investment cast TiAl alloy were discussed.

  4. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuaki [Toyota Motor Corp., Shizuoka (Japan). Materials Engineering Div. III; Flemings, M.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1998-06-01

    A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3,600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the fading effect encountered with most grain refiners.

  5. Modeling of TiAl Alloy Grating by Investment Casting

    OpenAIRE

    Yi Jia; Shulong Xiao; Jing Tian; Lijuan Xu; Yuyong Chen

    2015-01-01

    The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experimen...

  6. In situ synthesis of Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin (China); Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology, IL (United States); Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun [Department of Materials Science and Engineering of Tianjin University, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-25

    Highlights: •Using zwitterionic surfactant to enhance the dispersion of the CNTs on the powder surface. •CNTs as carbon source decreased the formation temperature of Ti{sub 2}AlC. •Al{sub 2}O{sub 3} was generated in situ from the oxygen atoms introduced in the drying procedure. •Nanosized Ti{sub 3}Al was precipitated at 1250 °C and distribute in the TiAl matrix homogeneously. •Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composite was synthesized in situ by sintering pre-alloy Ti–Al coated with CNTs. -- Abstract: Bulk Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were in situ synthesized by vacuum sintering mechanically alloyed Ti–50 at.% Al powders coated with carbon nanotubes (CNTs). The pre-alloyed Ti–50 at.% Al powder was obtained by ball milling Ti and Al powders. The multi-walled carbon nanotubes as the carbon resource were covered on the surface of the pre-alloyed powders by immersing them into a water solution containing the CNTs. A zwitterionic surfactant was used to enhance the dispersion of the CNTs on the powder surface. The samples were cold pressed and sintered in vacuum at temperatures from 950 to 1250 °C, respectively. The results show that the reaction of forming Ti{sub 2}AlC can be achieved below 950 °C, which is 150 °C lower than in the Ti–Al–TiC system and 250 °C lower than for the Ti–Al–C system due to the addition of CNTs. Additionally, the reinforcement of Al{sub 2}O{sub 3} particles was introduced in situ in Ti{sub 2}AlC/TiAl by the drying process and subsequent sintering of the composite powders. Dense Ti{sub 2}AlC–Al{sub 2}O{sub 3}/TiAl composites were obtained by sintering at 1250 °C and exhibited a homogeneous distribution of Ti{sub 2}AlC, Al{sub 2}O{sub 3} and precipitated Ti{sub 3}Al particles and a resulting high hardness.

  7. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  8. Enhancing the high temperature capability of Ti-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Donchev, Alexander; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt/Main (Germany); Kolitsch, Andreas; Yankov, Rossen [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

    2012-08-15

    Titanium is a widely used structural material for applications below approximately 500 C but right now it cannot be used at higher temperatures. Titanium forms a fast growing rutile layer under these conditions. Furthermore enhanced oxygen uptake into the metal subsurface zone leads to embrittlement which deteriorates the mechanical properties. To overcome this problem a combined Al- plus F-treatment was developed. The combination of Al-enrichment in the surface zone so that intermetallic Ti{sub x}Al{sub y}-layers are produced which form a protective alumina layer during high temperature exposure plus stabilization of the Al{sub 2}O{sub 3}-scale by the fluorine effect led to significantly improved resistance against increased oxidation and embrittlement in high temperature exposure tests of several Ti-alloys. In this paper, the experimental procedures and achieved improvements are described. The results will be discussed for the use of Ti-alloys at elevated temperatures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    Science.gov (United States)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  10. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Bivas [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Lawrence, Samantha K.; Bahr, David F. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Schroeder, Jeremy L.; Birch, Jens [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Sands, Timothy D. [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  11. Reactive wetting of Ti-6Al-4V alloy by molten Al 4043 and 6061 alloys at 600-700 C

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qiaoli; Li, Fuxiang; Jin, Peng; Yu, Weiyuan [Lanzhou Univ. of Technology (China). State Key Lab. of Advanced Processing and Recycling of Non-ferrous Metal

    2017-06-15

    Wetting of Ti-6Al-4V alloy by two industrial grade Al alloys (i.e., Al 6061 and 4043 alloys) was studied using the sessile drop method at 600-700 C under high vacuum. Al/Ti-6Al-4V is a typical reactive wetting system with good final wettability accompanied by the formation of precursor film which is actually an extended reaction layer. The formation mechanism for the precursor film is ''subcutaneous infiltration''. The small amount of alloying element Si in the alloys can cause significant segregation at the liquid/solid interface which satisfies the thermodynamic condition. The wetting behavior can be described by the classic reaction product control models, and Ti{sub 7}Al{sub 5}Si{sub 12} decomposition and Al{sub 3}Ti formation correspond to the two spreading stages. The small difference in alloying elements in Al 6061 and 4043 resulted in distinctly different interface structures, formation of precursor film and spreading dynamics, especially for the Si segregation at the interface.

  12. Compressive performance and crack propagation in Al alloy/Ti{sub 2}AlC composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanaor, D.A.H., E-mail: dorian.hanaor@sydney.edu.au [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Hu, L. [Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Kan, W.H.; Proust, G. [School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Foley, M. [Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, NSW 2006 (Australia); Karaman, I.; Radovic, M. [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2016-08-30

    Composite materials comprising a porous Ti{sub 2}AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti{sub 2}AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti{sub 2}AlC phase interfaces are key considerations in the design of high performance metal/Ti{sub 2}AlC phase composites.

  13. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate

    International Nuclear Information System (INIS)

    Huang, Can; Zhang, Yongzhong; Vilar, Rui; Shen, Jianyun

    2012-01-01

    Highlights: ► TiVCrAlSi high entropy alloy coatings were obtained on Ti–6Al–4V by laser cladding. ► (Ti,V) 5 Si 3 forms because the formation is accompanied of large variation on enthalpy. ► Wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. ► The wear mechanism is investigated. -- Abstract: Approximately equimolar ratio TiVCrAlSi high entropy alloy coatings has been deposited by laser cladding on Ti–6Al–4V alloy. The analysis of the microstructure by scanning electron microscopy (SEM) shows that the coating is metallurgically bonded to the substrate. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analyses show that TiVCrAlSi coating is composed of precipitates of (Ti,V) 5 Si 3 dispersed in a body-centered cubic (BCC) matrix. Intermetallic compound (Ti,V) 5 Si 3 forms because the formation is accompanied by larger variation on enthalpy, which may offset the entropy term. The dry sliding wear tests show that the wear resistance of Ti–6Al–4V is improved by laser cladding with TiVCrAlSi. The enhancement of the wear resistance is explained by the presence of the hard silicide phase dispersed in a relatively ductile BCC matrix, which allows sliding wear to occur in the mild oxidative regime for a wide range of testing conditions.

  14. Sapphire/TiAl composites - structure and properties

    International Nuclear Information System (INIS)

    Povarova, K.B.; Antonova, A.V.; Mileiko, S.T.; Sarkissyan, N.S.

    2001-01-01

    Ti-Al-intermetallic-based alloys with lamellar microstructure, -γ(TiAl) +α 2 (Ti 3 Al) are characterized by a high melting point of 1460 o C, a low density of ∼3.9 g/cm 3 , a high gas corrosion resistance up to a temperature of about 900 o C, a high creep resistance up to a temperature of about 800 o C, and a sufficiently high fracture toughness at low temperatures, up to 30 Mpa x m 1/2 . Hence, they are considered as excellent matrices for fibres of high melting point. Unlike well-developed SiC/TiAl composites, which have an obvious upper limit for the usage temperature due to SiC/TiAl interaction, Sapphire/TiAl composites remain nearly unknown because fibres to be used in such composites have not been really available. At the present time, such fibres are developed in Solid State Physics Inst. of RAS. The results of preliminary creep tests of Al 2 O 3 /TiAl composites obtained by using pressure casting have shown that usage of such composite systems shifts the temperature limit for light structural materials in terms of creep resistance to, at least, 1050 o C: creep strength on 100 h time base reaches 120 MPa at that temperature. It occurs also that Sapphire-fibres/TiAl-matrix composite specimens have an increased gas corrosion resistance by more than one order of the magnitudes as compared with that of the matrix alloy. (author)

  15. Effect of Al-5Ti-0.62C-0.2Ce Master Alloy on the Microstructure and Tensile Properties of Commercial Pure Al and Hypoeutectic Al-8Si Alloy

    Directory of Open Access Journals (Sweden)

    Wanwu Ding

    2017-06-01

    Full Text Available Al-5Ti-0.62C-0.2Ce master alloy was synthesized by a method of thermal explosion reaction in pure molten aluminum and used to modify commercial pure Al and hypoeutectic Al-8Si alloy. The microstructure and tensile properties of commercial pure Al and hypoeutectic Al-8Si alloy with different additions of Al-5Ti-0.62C-0.2Ce master alloy were investigated. The results show that the Al-5Ti-0.62C-0.2Ce alloy was composed of α-Al, granular TiC, lump-like TiAl3 and block-like Ti2Al20Ce. Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min can significantly refine macro grains of commercial pure Al into tiny equiaxed grains. The Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 30 min still has a good refinement effect. The tensile strength and elongation of commercial pure Al modified by the Al-5Ti-0.62C-0.2Ce master alloy (0.3 wt %, 5 min increased by roughly 19.26% and 61.83%, respectively. Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min can significantly refine both α-Al grains and eutectic Si of hypoeutectic Al-8Si alloy. The dendritic α-Al grains were significantly refined to tiny equiaxed grains. The morphology of the eutectic Si crystals was significantly refined from coarse needle-shape or lath-shape to short rod-like or grain-like eutectic Si. The tensile strength and elongation of hypoeutectic Al-8Si alloy modified by the Al-5Ti-0.62C-0.2Ce master alloy (1.5 wt %, 10 min increased by roughly 20.53% and 50%, respectively. The change in mechanical properties corresponds to evolution of the microstructure.

  16. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  17. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  18. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  19. Mechanical alloying of TiFe intermetallic for hydrogen storage; Elaboracao mecanica do intermetalico TiFe para armazenagem de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Vega, L.E.R.; Leiva, D.R.; Silva, W.B.; Ishikawa, T.T.; Botta, W.J., E-mail: luis.romero@ppgcem.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Leal Neto, R.M. [Instituto de Pesquisas Energéticas e Nucleares (CCTM/IPEN/CNEN-SP), São Paulo, SP (Brazil). Centro de Ciências e Tecnologia de Materiais

    2016-07-01

    Elementary powders of Ti and Fe in the stoichiometric ratio 50:50 were submitted to mechanical alloying for 2, 6, 10 and 20 h in a planetary ball mill. The synthesis of TiFe intermetallic with high yield was achieved for all milling times. The structural characterization of the samples revealed the trend of the particles to form agglomerates and the formation of cracks. H-absorption capacities of 0,74; 0,90; 0,97 and 0,95 wt. % (at room temperature and 20 bar of H2) were obtained for processing times of 2, 6, 10 and 20 h, respectively, without using a thermal activation process after milling. (author)

  20. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  1. Effect on strength of ternary alloying additions in L12 intermetallics

    International Nuclear Information System (INIS)

    Wu Yuanpang.

    1991-01-01

    The thermodynamic properties of {111} antiphase boundaries (APBs) as well as the site preference of ternary additions in an A 3 B intermetallic with L1 2 structure are studied, using a thermodynamic model. A survey of the results from a variety of ternary alloying additions to Ni 3 Al has shown that there is a conflict in the actual role which solid solution strengthening plays in the athermal increment of yield strength. For instance, a good quantitative agreement with linear concentration law is observed only in alloys with stoichiometric compositions but not in the general case of non-stoichiometric alloys. In the light of the possibility that micro-segregation could explain the experimental discrepancy, the author extends the binary solid solution strengthening theory to the ternary system in an L1 2 structure for the four real systems of Ni-Al-Si, Ni-Al-Ti, Ni-Al-Hf, and Ni-Al-V. It is found that ternary site preference plays an important role in the ternary solid solution strengthening theory with L1 2 structure. Good quantitative agreement was found between the calculated and experimentally measured strength for both stoichiometric and nonstoichiometric alloys

  2. Microstructure and refinement performance of Al-Ti-C master alloy: Effect of excess Ti on the growth and nucleating ability of TiC particles

    Science.gov (United States)

    Svynarenko, Kateryna; Zhang, Yubo; Jie, Jinchuan; Kutsova, Valentyna; Li, Tingju

    2017-09-01

    Al-5Ti-0.2C, Al-0.8Ti-0.2C, Al-8Ti-2C, and Al-10Ti master alloys were prepared and used to investigate the influence of excess Ti on the growth of TiC particles and its ability to nucleate Al-grains. The results of a microstructure analysis of TiC-containing alloys and refined CPAl were interrelated to the results of a refinement test. It was found that the presence of excess Ti is essential at the stage of master alloy preparation, as it facilitates the growth and uniform distribution of TiC within the structure. In Al-5Ti-0.2C alloy containing excess Ti, carbide particles grow faster and to a higher extent (from 0.29 μm to 0.44 μm) compared to Al-0.8Ti-0.2C alloy produced without excess Ti (from 0.29 μm to 0.32 μm). The results support the "Ti-transition zone theory" as the mechanism of grain refinement by TiC-containing master alloys. The refinement performance of Al-5Ti-0.2C is superior compared to the one achieved by adding Al-8Ti-2C and Al-10Ti master alloys in corresponding concentrations. For the TiC particles to become favourable nucleating sites, they must undergo certain interaction with excess Ti at the stage of master alloy preparation.

  3. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  4. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  5. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  6. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    Science.gov (United States)

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  7. Effect of HIP temperatures on the microstructure and mechanical properties of carbide dispersed Ti-48Al-1Mn mechanically alloyed compacts

    International Nuclear Information System (INIS)

    Ameyama, Kei; Hashii, Mitsuya; Imai, Nobuyuki; Fujii, Toshinori; Sasaki, Nobuyuki.

    1996-01-01

    The effect of hot isostatic pressing (HIP) temperature on the microstructure and mechanical properties of Ti-48 mol%Al-1 mol%Mn compacts fabricated by mechanical alloying was investigated. N-heptane was used as a process control agent for the mechanical alloying. The compacts HIP treated at 1173, 1373 or 1573 K showed an ultra-fine equiaxed grain structure, i.e., a microduplex structure, consisting of TiAl (γ) and Ti 2 AlC phases, and their average grain sizes were 185 nm, 510 nm and 1.5 μm, respectively. The γ phase was considered to be formed by an α → γ massive transformation during heating. On the other hand, the compacts HIP treated at 1623 or 1673 K showed quite different microstructures from the above HIP compacts. The 1623 K-HIP compact was composed of equiaxed γ grains, whose size was approximately 11.5 μm, rectangular shaped Ti 2 AlC particles, and a small amount of the grain boundary nucleated α phase. Although the 1673 K-HIP compact showed a microstructure similar to the 1623 K-HIP compact, the γ grains were coarsened to be approximately 27.8 μm in diameter and the Ti 2 AlC particles were more elongated rectangles. Furthermore, the amount of the grain boundary nucleated α phase was increased and the lamella α phase nucleated at γ twin boundaries was observed in the 1673 K-HIP compact. Mechanical properties determined by compressive testing at various temperatures made clear that the compacts HIP treated at 1173, 1373 or 1573 K have good workability at elevated temperatures and those HIP treated at 1623 or 1673 K have good high temperature strength. These mechanical properties were influenced significantly by the microstructure, especially by the grain size and morphology of the Ti 2 AlC phase. (author)

  8. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  9. Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis

    International Nuclear Information System (INIS)

    Kral, M.V.; McIntyre, H.R.; Smillie, M.J.

    2004-01-01

    Intermetallic phases in sand cast eutectic Al-Si alloys were characterized using a combination of SEM, EDS and EBSD pattern analysis. Chinese script α-phase particles were consistent with cubic Al 19 (Fe,Mn) 5 Si 2 . Plate-shaped β-phase particles were consistent with tetragonal Al 3 (Fe,Mn)Si 2

  10. Preferential site occupancy of alloying elements in TiAl-based phases

    Energy Technology Data Exchange (ETDEWEB)

    Holec, David, E-mail: david.holec@unileoben.ac.at; Reddy, Rajeev K.; Klein, Thomas; Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2016-05-28

    First principles calculations are used to study the preferential occupation of ternary alloying additions into the binary Ti-Al phases, namely, γ-TiAl, α{sub 2}-Ti{sub 3}Al, β{sub o}-TiAl, and B19-TiAl. While the early transition metals (TMs, group IVB, VB, and VIB elements) prefer to substitute for Ti atoms in the γ-, α{sub 2}-, and B19-phases, they preferentially occupy Al sites in the β{sub o}-TiAl. Si is, in this context, an anomaly, as it prefers to sit on the Al sublattice for all four phases. B and C are shown to prefer octahedral Ti-rich interstitial positions instead of substitutional incorporation. The site preference energy is linked with the alloying-induced changes of energy of formation, hence alloying-related (de)stabilisation of the phases. We further show that the phase-stabilisation effect of early TMs on β{sub o}-phase has a different origin depending on their valency. Finally, an extensive comparison of our predictions with available theoretical and experimental data (which is, however, limited mostly to the γ-phase) shows a consistent picture.

  11. Surface, dynamic and structural properties of liquid Al-Ti alloys

    International Nuclear Information System (INIS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  12. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  13. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    Science.gov (United States)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  14. Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5 Intermetallic Compound During Mechanical Alloying Process

    Directory of Open Access Journals (Sweden)

    A. Khajesarvi

    2015-07-01

    Full Text Available In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5 intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM and X-ray diffractometry (XRD. The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

  15. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    Science.gov (United States)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  16. Burner rig hot corrosion of a single crystal Ni-48Al-Ti-Hf-Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, J.A.; Darolia, R.; Cuy, M.D.

    1999-07-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a {gamma}{prime} layer ahead of the advancing oxide fingers.

  17. Nanoporous alumina formed by self-organized two-step anodization of Ni3Al intermetallic alloy in citric acid

    International Nuclear Information System (INIS)

    Stępniowski, Wojciech J.; Cieślak, Grzegorz; Norek, Małgorzata; Karczewski, Krzysztof; Michalska-Domańska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jóźwik, Paweł; Bojar, Zbigniew

    2013-01-01

    Highlights: ► Anodic porous alumina was formed by Ni 3 Al intermetallic alloy anodization. ► The anodizations were conducted in 0.3 M citric acid. ► Nanopores geometry depends on anodizing voltage. ► No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni 3 Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni 3 Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 μm/h was found for the anodization at 0 °C and 2.0 V. The highest one – 2.29 μm/h – was noticed for 10.0 V and 30 °C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 °C) to 32.0 nm (12.0 V, 0 °C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 °C) to 177.9 nm (12.0 V, 30 °C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/μm 2 (2.0 V, 0 °C) to 94.9 pores/μm 2 (12.0 V, 0 °C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni 3 Al intermetallic alloy are depending on the operating conditions.

  18. The behavior of intermetallic compounds at large plastic strains

    International Nuclear Information System (INIS)

    Gray, G.T.; Embury, J.D.

    1993-01-01

    This paper contains a summary of a broad study of intermetallics which includes the following materials, Ni 3 Al, Ti-48Al-1V, Ti-24Al-11Nb, Ti-48Al-2Cr-2Nb, and Ti-24.5 Al-10.5Nb-1.5Mo. Much effort has been devoted to the study of ordered materials at modes plastic strains and the problem of premature failure. However by utilizing stress states other than simple tension it is possible to study the deformation of intermetallic compounds up to large plastic strains and to consider the behavior of these materials in the regime where stresses approach the theoretical stress. The current work outlines studies of the work hardening rate of a number of titanium and nickel-based intermetallic compounds deformed in compression. Attention is given to the structural basis of the sustained work hardening. The large strain plasticity of these materials is summarized in a series of diagrams. Fracture in these materials in compression occurs via catastrophic shear at stresses of the order of E/80 (where E is the elastic modulus)

  19. The influence of Ti on the microstructure and tensile properties of cast Al–4.5Cu–0.3Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, H. [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Emamy, M., E-mail: emamy@ut.ac.ir [School of Metallurgy and Materials Engineering, University of Tehran, P.O. Box 14395-731, Tehran (Iran, Islamic Republic of); Razaghian, A. [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2014-01-10

    Current study was undertaken to investigate the effect of different amounts of titanium (0.001–0.5 wt%) on the microstructure, tensile properties and quality index of a high strength aluminum alloy (Al–4.5 Cu–0.3Mg). It was found that this alloy is susceptible to hot tearing and at least 0.05 wt% Ti is necessary to remove such a defect. The microstructural studies of the alloy revealed that Ti addition reduces the grain size from 190 μm to 48 μm, but adding higher Ti content (>0.05 wt% Ti) does not change the grain size considerably. Further investigations on tensile tests revealed that the addition of Ti increases ultimate tensile strength (UTS) but reduces elongation values. T6 heat treatment improved UTS, elongation and quality index values of the casting. Fracture surfaces via scanning electron microscopy (SEM) revealed ductile fracture mode in both as-cast and heat-treated conditions. At higher Ti contents, the presence of Al{sub 3}Ti intermetallic on grain boundaries was found to be the favored path for crack growth.

  20. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  1. Fracture toughness of Ti-Al3Ti-Al-Al3Ti laminate composites under static and cyclic loading conditions

    Science.gov (United States)

    Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.

    2015-10-01

    The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.

  2. The studies of the martensite transformations in a Ti36.5Ni48.5Hf15 alloy

    International Nuclear Information System (INIS)

    Han, S.; Jin, S.; Chinese Academy of Sciences, Beijing; Zou, W.; Zhang, Z.; Yang, D.

    1995-01-01

    In recent years, high temperature shape memory alloy (SMA) has attracted much interest by many groups of researchers. Many kinds of alloys, such as TiNiPd and NiAL alloys were reported to have shape memory effect in high temperatures. But for different kinds of reasons, these alloys were not put to practical use. TiNi alloys have been considered the best shape memory materials until now. Adding a third element whose characteristics are similar to Ti or Ni in TiNi binary alloys can produce a new style SMA, which has been done in many cases. In most circumstances, Ni was substituted and only a few investigations on the TiNi alloys was Ti replaced. But in recent years, many investigators have given more attention to this subject. In 1976, Eckelmeyer showed that Zr was one of the element that can raise the phase transformation temperatures of TiNi alloys. In 1990, Krupp obtained a patent on TiNiZr SMA with high transformation temperatures for TiNi alloys. J.H. Mulder also published his work on TiNiZr alloys in 1992. In their previous work, a new type of high temperature SMA Ti 36.5 Ni 48.5 Hf 15 alloy were investigated in more detail by DSC measurement, TEM and high-resolution observations

  3. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  4. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  5. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  6. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  7. Hydrogen-Induced Phase Transformation and Microstructure Evolution for Ti-6Al-4V Parts Produced by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-04-01

    Full Text Available In this paper, phase transitions and microstructure evolution in titanium Ti-6Al-4V alloy parts produced by electron beam melting (EBM under hydrogenation was investigated. Hydrogenation was carried out at the temperature of 650 °C to the absolute hydrogen concentrations in the samples of 0.29, 0.58, and 0.90 wt. %. Comparative analysis of microstructure changes in Ti-6Al-4V alloy parts was performed using scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Furthermore, in-situ XRD was used to investigate the phase transitions in the samples during hydrogenation. The structure of Ti-6Al-4V parts produced by EBM is represented by the α phase plates with the transverse length of 0.2 μm, the β phase both in the form of plates and globular grains, and metastable α″ and ω phases. Hydrogenation to the concentration of 0.29 wt. % leads to the formation of intermetallic Ti3Al phase. The dimensions of intermetallic Ti3Al plates and their volume fraction increase significantly with hydrogen concentration up to 0.58 wt. % along with precipitation of nano-sized crystals of titanium δ hydrides. Individual Ti3Al plates decay into nanocrystals with increasing hydrogen concentration up to 0.9 wt. % accompanied by the increase of proportion and size of hydride plates. Hardness of EBM Ti-6Al-4V alloy decreases with hydrogen content.

  8. Microstructure and grain refining performance of melt-spun Al-5Ti-1B master alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan; Liu Xiangfa

    2003-01-01

    In the present work, the microstructure and grain refining performance of the melt-spun Al-5Ti-1B (wt%) master alloy have been investigated, using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and grain refining tests. It has been found that the microstructure of the melt-spun Al-5Ti-1B master alloy is mainly composed of two phases: metastable, supersaturated α-Al solid solution and uniformly dispersed TiB 2 particles, quite different from that of the rod-like alloy consisting of three phases: α-Al, blocky TiAl 3 , and clusters of TiB 2 particles. Quenching temperatures and wheel speeds (cooling rates), however, have no obvious effect on the microstructure of the melt-spun Al-5Ti-1B alloy. Grain refining tests show that rapid solidification has a significant effect on the grain refining performance of Al-5Ti-1B alloy and leads to the great increase of nucleation rate of the alloy. Nevertheless, the melt-spun Al-5Ti-1B master alloy prepared at different wheel speeds and quenching temperatures possesses the similar grain refining performance. The reasons for the microstructure formation and the improvement of the grain refining performance of the melt-spun Al-5Ti-1B master alloy have been also discussed

  9. Effect of the addition of Al-Ti-C master alloy on the microstructure and microhardness of a cast Al-10Mg alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The microstructure and microhardness of a cast Al-10wt%Mg (henceforth Al-l0Mg) alloy with 0.2wt% addition of Al-5Ti-0.25C master alloy were compared with those of a refiner-free alloy of similar chemical composition.It was found that this level of the master alloy addition not only caused an effective grain refinement, but also caused a significant increase in the microhardness of the Al-10Mg alloy.Microchemical analysis revealed that TiC particles existed in the grain center.The relationship between the holding time and grain size was also studied.It shows that the grain refining efficiency is faded observably with the holding time.This is explained in terms of the instability of TiC particles.

  10. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    Science.gov (United States)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  11. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    Science.gov (United States)

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The effects of boron in TiAl/Ti3Al

    International Nuclear Information System (INIS)

    Feng, C.R.; Michel, D.J.; Crowe, C.R.

    1989-01-01

    The authors discuss the TiAl/Ti 3 Al interfacial misfit dislocations structures investigated by TEM in Ti-45Al alloy and Ti-45Al/TiB 2 composite. For TiAl with c/a = 1.02, only a single set of misfit dislocation arrays are crystallographically possible; these were observed in Ti-45Al alloy. However, the observation of three sets of misfit dislocation arrays in the Ti-45Al/TiB 2 composite suggests that the occupation of octahedral sites in the TiAl structure by excess boron was responsible for a decrease in the c/a ratio leading to an increased fcc character of the TiAl at the TiAl/Ti 3 Al interface

  13. Processing and characterization of AlCoFeNiXTi{sub 0,5} (X = Mn, V) high entropy alloys; Processamento e caracterizacao de ligas de alta entropia AlCoFeNixTi{sub 0,5} (X = Mn, V)

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, C., E-mail: carlos.triveno@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais; Lopes, E.S.N.; Caram, R. [Universidade Estadual de Campinas (FEM/DEMA/UNICAMP), Campinas, SP (Brazil); Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), Sao Carlos, SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi{sub 0,5} and AlCoFeNiVTi{sub 0,5} alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi{sub 0,5} alloy showed better mechanical properties than the AlCoFeNiMnTi{sub 0,5} alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  14. Structure and mechanical properties of as-cast (ZrTi){sub 100−x}B{sub x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xia, C.Q.; Jiang, X.J.; Wang, X.Y.; Zhou, Y.K.; Feng, Z.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Tan, C.L. [Beijing Institute of Spacecraft System Engineering, Beijing 100094 (China); Ma, M.Z. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, R.P., E-mail: riping@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-07-15

    Highlights: • Trace boron additions result in significant grain refinement. • Large numbers of stacking faults are observed in ZrB{sub 2} and TiB intermetallics. • The tensile strength is enhanced by increasing the amount of B. • Intermetallics microcracking causes the failure of the alloys. - Abstract: The microstructure, mechanical properties, and fracture characteristics of (Zr{sub 50}Ti{sub 50}){sub 100−x}B{sub x} alloys (x = 0, 0.5, 1, 2 at.%) obtained by casting were investigated. Trace additions of boron (B) to the Zr{sub 50}Ti{sub 50} alloys induced significant microstructural changes. Changes included the promotion of dendritic growth and refinement in prior-β grain and α′-lath size. Large numbers of stacking faults were also observed in ZrB{sub 2} and TiB intermetallics. The location of B atoms and the lattice mismatch energy between intermetallics and matrix were responsible for the stacking faults. (ZrTi)B alloys demonstrated higher tensile strength than matrix material. Both the intermetallics with high strength and modulus and the grain refinement played important roles in improving the mechanical properties of alloys. This result could be explained in terms of a shear-lag model based on the load transfer concept and Hall–Petch mechanism. The elongation-to-failure of (ZrTi)B alloys decreased with increased B concentration. The reduction in elongation-to-failure of (ZrTi)B alloys could be attributed to the presence of ZrB{sub 2} and TiB intermetallics and refinement of α′-laths.

  15. Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy

    International Nuclear Information System (INIS)

    Pascuet, M.I.; Fernández, J.R.

    2015-01-01

    Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al_2U, Al_3U and Al_4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al_3U intermetallic in the Al/U interface in agreement with experimental evidence. - Highlights: • Potential parameters for Al and Al–U systems are obtained. • Intermetallics are characterized by calculating elastic and thermal properties. • Point defect diffusivities are calculated for the three intermetallics. • Growth of the Al_3U intermetallic is shown to occur in the Al/U interface as in the real alloy.

  16. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    Energy Technology Data Exchange (ETDEWEB)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi (Japan); Nagasaka, Takuya; Muroga, Takeo [National Inst. for Fusion Science, Toki, Gifu (Japan); Shibayama, Tamaki [Center for Advanced Research of Energy Technology, Hokkaido University, Sapporo, Hokkaido (Japan); Tomiyama, Shigeki [Daido Bunseki Research Inc., Nagoya, Aichi (Japan); Sakata, Masafumi [Daido Steel Co. Ltd., Nagoya (Japan)

    2000-09-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  17. Fabrication of V-Cr-Ti-Y-Al-Si alloys by levitation melting

    International Nuclear Information System (INIS)

    Chuto, Toshinori; Satou, Manabu; Abe, Katsunori; Nagasaka, Takuya; Muroga, Takeo; Shibayama, Tamaki; Tomiyama, Shigeki; Sakata, Masafumi

    2000-01-01

    Three allows of V-4Cr-4Ti type containing Si, Al and Y were fabricated by 2.5 kg scale levitation melting in this study. Workability and recrystallization behavior of the alloys were studied in order to establish the fabrication method of high-purity large ingot of V-Cr-Ti-Si-Al-Y type alloys, especially reducing interstitial impurity levels. Oxygen contents decreased with increasing yttrium contents and were kept below 180 mass ppm over wide region in the ingots. Nitrogen contents in the V-Cr-Ti-Y-Si-Al type alloys were only 100 mass ppm, which were as low as that in the starting materials. Only the V-4Cr-4Ti-0.1Y, Si, Al alloy could be cold-rolled at as-melted condition. Because large yttrium inclusions were observed in the alloys containing 0.5 mass%Y, it is necessary to optimize yttrium contents to avoid large inclusions and to obtain good workability. (author)

  18. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Lin Zhaoqing; Squartini, Tiziano

    2011-01-01

    Research highlights: → In this study, Fe 3 Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. → Laser cladding of Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can increase wear resistance of substrate. → In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of Ti 3 Al and B. → This principle can be used to improve the Fe 3 Al + TiB 2 laser-cladded coating. - Abstract: Laser cladding of the Fe 3 Al + TiB 2 /Al 2 O 3 pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti 3 Al/Fe 3 Al + TiB 2 /Al 2 O 3 ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al 2 O 3 can react with TiB 2 leading to formation of amount of Ti 3 Al and B. This principle can be used to improve the Fe 3 Al + TiB 2 laser cladded coating, it was found that with addition of Al 2 O 3 , the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  19. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada)

    2015-10-15

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase. The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.

  20. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  1. Annealing effects on structure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys

    International Nuclear Information System (INIS)

    Zhang, K B; Fu, Z Y; Zhang, J Y; Wang, W M; Lee, S W; Niihara, K

    2011-01-01

    Novel CoCrFeNiTiAl x (x:molar ratio, other elements are equimolar) high-entropy alloys were prepared by vacuum arc melting and these alloys were subsequently annealed at 1000 deg. C for 2 h. The annealing effects on structure and mechanical properties were investigated. Compared with the as-cast alloys, there are many complex intermetallic phases precipitated from the solid solution matrix in the as-annealed alloys with Al content lower than Al 1.0 . Only simple BCC solid solution structure appears in the as-annealed Al 1.5 and Al 2.0 alloys. This kind of alloys exhibit high resistance to anneal softening. Most as-annealed alloys possess even higher Visker hardness than the as-cast ones. The as-annealed Al 0.5 alloys shows the highest compressive strength while the Al 0 alloy exhibits the best ductility, which is about 2.6 GPa and 13%, respectively. The CoCrFeNiTiAl x high-entropy alloys possess integrated high temperature mechanical property as well.

  2. Structure and mechanical properties of TiZr binary alloy after Al addition

    International Nuclear Information System (INIS)

    Jiang, X.J.; Jing, R.; Liu, C.Y.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Microstructure and mechanical properties of hot-rolled TiZrAl alloys were studied. The results showed that the microstructure of all alloys mainly consisted of lamellar α phase. The thickness of the lamellar α phase gradually increased with increasing aluminum content. Moreover, large numbers of stacking faults was observed in Ti–25Zr–15Al (at%) alloy. The aluminum addition strongly affected the mechanical properties of the TiZrAl alloys. With increased aluminum contents, the strength increased evidently, whereas, the elongation decreased. Ti–25Zr–15Al (at%) with the highest aluminum contents in all alloys, possessed the highest tensile strength (σ b =1319 MPa), i.e. strengthened by 41% compared with Ti–25Zr (at%) alloy, and still retained the elongation of 5.5%. According to the classical size and/or modulus misfits model, the effect of aluminum addition was significant in TiZr alloys because of the considerable misfits between aluminum and zirconium

  3. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  4. Thermodynamic aspects of grain refinement of Al-Si alloys using Ti and B

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, Joachim [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Mirkovic, Djordje [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Technical University of Clausthal, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)]. E-mail: schmid-fetzer@tu-clausthal.de

    2005-03-25

    A thermodynamic assessment of ternary Al-Si-Ti phases was performed. Published datasets for the other subsystems were checked and adapted. Based on that, a consistent thermodynamic description of quaternary Al-Si-Ti-B alloys was generated. This was applied in a calculation of Al-Si-Ti-B phase diagram sections for practically relevant temperatures and compositions of Al-Si alloys from Al-rich to typical Al-Si foundry alloys. These stable and metastable phase diagrams could be correlated to many detailed aspects of possible reactions observed or suggested in experimental studies of grain refining. Understanding the mechanisms of grain refining of Al wrought alloys and Al-Si foundry alloys using titanium and boron requires a fundamental knowledge of both thermodynamic and kinetic aspects of this complex process. This work focuses exclusively on the thermodynamic aspects and the phase diagrams, which were not available for the quaternary alloys and partly incomplete and inconsistent for the ternary subsystems.

  5. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.

  6. Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and anneal-.

  7. Cobalt-doped Ti–48Al–2Cr–2Nb alloy fabricated by cold compaction and pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Yu, P. [Department of Micro-Nano Material and Device, The South University of Science and Technology of China, Shenzhen, 518055 (China); Schaffer, G.B. [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia); Qian, M., E-mail: ma.qian@uq.edu.au [The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Brisbane, Qld 4072 (Australia)

    2013-07-01

    An addition of 1.5 at% Co to Ti–48Al–2Cr–2Nb (in at%) transformed the alloy from essentially unsinterable to fully sinterable at 1300 °C. This, together with a simple powder coating process developed recently, has allowed near-net shape fabrication of the alloy for the first time by cold compaction and pressureless sintering. The addition of Co results in the formation of an intermediate face centred cubic (fcc) CoAl{sub 2}Ti phase prior to 1220 °C during heating. It subsequently reacts with an α phase leading to the formation of a Co-containing, wettable sintering liquid through a two-step process, CoAl{sub 2}Ti+α→Liquid at 1256.2 °C and CoAl{sub 2}Ti+α→γ-TiAl+Liquid at 1267.2 °C, and therefore full densification of the alloy. Without Co, sintering of the Ti–48Al–2Cr–2Nb alloy powder at 1300 °C is controlled by the slow self-diffusion of Ti and interdiffusion of Ti and Al according to the activation energy determined. Transmission electron microscopy (TEM) identified an fcc CoAl{sub 2}Ti phase and a hexagonal close packed (hcp) Co-enriched Ti(Al, Co, Cr, Nb) phase in the final as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy. They both form during cooling at 1240 °C through Liquid+α→CoAl{sub 2}Ti+Ti (Al, Co, Cr, Nb). The tensile and compressive properties of the as-sintered Ti–48Al–2Cr–2Nb–1.5Co alloy were compared to the original General Electric (GE) Ti–48Al–2Cr–2Nb alloy fabricated by casting or metal injection moulding.

  8. Hydrogenations of alloys and intermetallic compounds of magnesium

    International Nuclear Information System (INIS)

    Gavra, Z.

    1981-08-01

    A kinetic and thermodynamic study of the hydrogenation of alloys and intermetallic compounds of magnesium is presented. It was established that the addition of elements of the IIIA group (Al, Ga, In) to magnesium catalyses its hydrogenation. This is explained by the mechanism of diffusion of magnesium cation vacancies. The hydride Mg 2 NiH 4 was characterized by thermal analysis, x-ray diffraction and NMR measurements. The possibility of forming pseudo-binary compounds of Mg 2 Ni by the substitution of nickel or magnesium was examined. The hydrogenation of the inter-metallic compounds of the Mg-Al system was investigated. It was found that the addition of indium and nickel affected the hydrogenation kinetics. A preliminary study of the hydrogenation of various binary and ternary alloys of magnesium was carried out. (Author)

  9. Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk

    2005-01-01

    In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt

  10. The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys

    Science.gov (United States)

    Pourbahari, Bita; Mirzadeh, Hamed; Emamy, Massoud

    2018-03-01

    The effects of rare earth intermetallics and grain refinement by alloying and hot extrusion on the mechanical properties of Mg-Gd-Al-Zn alloys have been studied to elucidate some useful ways to enhance the mechanical properties of magnesium alloys. It was revealed that aluminum as an alloying element is a much better grain refining agent compared with gadolinium, but the simultaneous presence of Al and Gd can refine the as-cast grain size more efficiently. The presence of fine and widely dispersed rare earth intermetallics was found to be favorable to achieve finer recrystallized grains during hot deformation by extrusion. The presence of coarse dendritic structure in the GZ61 alloy, grain boundary eutectic containing Mg17Al12 phase in the AZ61 alloy, and rare earth intermetallics with unfavorable morphology in the Mg-4Gd-2Al-1Zn alloy was found to be detrimental to mechanical properties of the alloy in the as-cast condition. As a result, the microstructural refinement induced by hot extrusion process resulted in a significant enhancement in strength and ductility of the alloys. The presence of intermetallic compounds in the extruded Mg-4Gd-2Al-1Zn and Mg-2Gd-4Al-1Zn alloys deteriorated tensile properties, which was related to the fact that such intermetallic compounds act as stress risers and microvoid initiation sites.

  11. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  12. Influence of annealing time and temperature on the Fe3Al intermetallic alloys microstructure modification

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2011-04-01

    Full Text Available There is an industry interesting in intermetallic alloys in recent years. There are widely possibilities to adopt this kind of materials for structural units. More expensive materials can be replaced by them. A property which limits their wider application is the low plasticity at environment and elevated temperatures. In paper the results of the thermal microstructure modification are shown. To this end, the influence of annealing time and temperature on the intermetallic phase Fe3Al grain size was investigated. The impact of these factors on micro-hardness was examined as well. It was found that these operations cause the grain size reduction and the micro-hardness decrease.

  13. Atomic interaction of the MEAM type for the study of intermetallics in the Al–U alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pascuet, M.I. [CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Fernández, J.R., E-mail: julrfern@cnea.gov.ar [CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); CAC-CNEA, Avda. Gral Paz 1499, 1650 Buenos Aires (Argentina); UNSAM, Avda. Gral Paz 1499, 1650 Buenos Aires (Argentina)

    2015-12-15

    Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al{sub 2}U, Al{sub 3}U and Al{sub 4}U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al{sub 3}U intermetallic in the Al/U interface in agreement with experimental evidence. - Highlights: • Potential parameters for Al and Al–U systems are obtained. • Intermetallics are characterized by calculating elastic and thermal properties. • Point defect diffusivities are calculated for the three intermetallics. • Growth of the Al{sub 3}U intermetallic is shown to occur in the Al/U interface as in the real alloy.

  14. In Situ Characterization Techniques Based on Synchrotron Radiation and Neutrons Applied for the Development of an Engineering Intermetallic Titanium Aluminide Alloy

    Directory of Open Access Journals (Sweden)

    Petra Erdely

    2016-01-01

    Full Text Available Challenging issues concerning energy efficiency and environmental politics require novel approaches to materials design. A recent example with regard to structural materials is the emergence of lightweight intermetallic TiAl alloys. Their excellent high-temperature mechanical properties, low density and high stiffness constitute a profile perfectly suitable for their application as advanced aero-engine turbine blades or as turbocharger turbine wheels in next-generation automotive engines. As the properties of TiAl alloys during processing as well as during service are dependent on the phases occurring, detailed knowledge of their volume fractions and distribution within the microstructure is of paramount importance. Furthermore, the behavior of the individual phases during hot deformation and subsequent heat treatments is of interest to define reliable and cost-effective industrial production processes. In situ high-energy X-ray diffraction methods allow tracing the evolution of phase fractions over a large temperature range. Neutron diffraction unveils information on order-disorder transformations in TiAl alloys. Small-angle scattering experiments offer insights into the materials’ precipitation behavior. This review attempts to shine a light on selected in situ diffraction and scattering techniques and the ways in which they promoted the development of an advanced engineering TiAl alloy.

  15. Microstructure, process, and tensile property relationships in an investment cast near-γTiAl alloy

    International Nuclear Information System (INIS)

    Jones, P.E.; Porter, W.J. III.; Keller, M.M.; Eylon, D.

    1992-01-01

    The brittle nature of near-γ TiAl alloys makes fabrication difficult. This paper reports on developing near-net shape technologies, such as investment casting, for these alloys which is one of the essential approached to their commercial introduction. The near-γ TiAl alloy Ti-48Al-2Nb-2Cr (a%) is investment cast with two cooling rates. The effect of casting cooling rate on the fill and surface integrity was studied for complex shape thin walled components. Block and bar castings are hot isostatically pressed (HIP'd) and heat treated to produce duplex (lamellar + equiaxed) microstructures for mechanical property evaluation. The relationships between the casting conditions, microstructures, and tensile properties are studied. The strength and elongation below the ductile to brittle transition temperature are dependent on the casting cooling rate and section size. The tensile properties improved with faster cooling during the casting process as a result of microstructural refinement. Faster cooled castings are more fully transformed to a duplex structure during post-casting heat treatments. Above the ductile to brittle transition temperature the effect of casting cooling rate on tensile properties is less pronounced

  16. Fabrication and thermal characterization of amorphous and nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti compound

    Energy Technology Data Exchange (ETDEWEB)

    Tavoosi, Majid, E-mail: ma.tavoosi@gmail.com

    2017-01-15

    In this study, the fabrication and structural characterization of amorphous/nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti phase has been performed. In this regards, milling and annealing processes were applied on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} (at. %) powder mixture for different periods of time. The prepared samples were characterized using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM) and differential scanning calorimetery (DSC). According to the results, supersaturated solid solution, nanocrystalline Al{sub 9}FeNi/Al{sub 3}Ti (with average crystallite size of about 7 nm) and amorphous phases indicated three different microstructures which can be formed in Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} system during milling process. The formed supersaturated solid solution and amorphous phases were unstable and transformed to Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound during annealing process. It is shown that, Al{sub 9}FeNi phase in Al{sub 9}FeNi/Al{sub 3}Ti intermetallic compound can decompose into Al{sub 3}Ni, Al{sub 13}Fe{sub 4} and liquid phases during a reversible peritectic reaction at 809 °C. - Highlights: • We study the effect of milling process on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} alloy. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} supersaturated solid solution phase. • We study the effect of annealing on Al{sub 80}Fe{sub 10}Ti{sub 5}Ni{sub 5} amorphous phase. • We study the thermal behaviour of Al{sub 9}FeNi/Al{sub 3}Ti compound.

  17. Effect of Co on Si and Fe-containing intermetallic compounds (IMCs) in Al-20Si-5Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fatih Kilicaslan, M. [Department of Physics, Faculty of Art and Science, Kastamonu University, Kastamonu (Turkey); Yilmaz, Fikret [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey); Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr [Division of Advanced Materials Engineering, Institute for Rare Metals, Kongju National University, Cheonan 331717 (Korea, Republic of); Uzun, Orhan, E-mail: orhan.uzun@gop.edu.tr [Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tokat (Turkey)

    2012-10-30

    The effects of cobalt addition on microstructure and mechanical properties of Al-20Si-5Fe-XCo (X=0, 1, 3, and 5) alloys were reported in this study. The alloys were produced by both conventional sand casting and melt-spinning at 20 m/s disk velocity. Microstructures of the samples were investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Vickers micro-hardness tester was used for hardness measurements. Results showed that Co addition can alter morphology of Fe-bearing intermetallic compounds (IMCs) from long rod/needle-like structures to short rod-like ones, and lead to a more homogenous distribution in the microstructure. Addition of 5 wt% Co leads to a decrease in average size of the primary silicon phases in as-cast Al-Si alloys. In melt-spun alloys, with the addition of Co, the microstructure became finer and more homogenously distributed, while thickness of the featureless zone has seen great increase. The optimum Fe to Co ratio was found to be 1 for suppressing the undesirable effect of Fe-bearing acicular/needle-like intermetallic compounds.

  18. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  19. Study of the properties of internal oxidized Cu - Al - Ti - Hf alloys

    International Nuclear Information System (INIS)

    Solopov, V.I.; Daneliya, E.P.; Daneliya, G.V.; Lebasova, O.P.

    1982-01-01

    Investigation results of mechanical properties and electric conductivity of rods of internally oxidized alloys Cu-Al-Ti-Hf depending on chemical composition, varying in the limits ensuring the formation of disperse enough and evenly distributed over the volume oxide phase. (0-1%Al, 0-0.5%Ti, 0-0.3%Hf, the restcopper), in the process of internal oxidation are presented. Internally oxidized alloys Cu-Al-Ti-Hf have increased strength properties with insignificant increase of specific electric resistance as compared with the known internally oxidized alloys Cu-Al. At that, the best combination of physicomechanical properties is achieved at small contents of titanium (0.01-0.05%) and hafnium (0.01-0.1%)

  20. Nanoporous alumina formed by self-organized two-step anodization of Ni{sub 3}Al intermetallic alloy in citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stepniowski, Wojciech J., E-mail: wstepniowski@wat.edu.pl [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland); Cieslak, Grzegorz; Norek, Malgorzata; Karczewski, Krzysztof; Michalska-Domanska, Marta; Zasada, Dariusz; Polkowski, Wojciech; Jozwik, Pawel; Bojar, Zbigniew [Department of Advanced Materials and Technology, Faculty of New Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str., 00-908 Warszawa (Poland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Anodic porous alumina was formed by Ni{sub 3}Al intermetallic alloy anodization. Black-Right-Pointing-Pointer The anodizations were conducted in 0.3 M citric acid. Black-Right-Pointing-Pointer Nanopores geometry depends on anodizing voltage. Black-Right-Pointing-Pointer No barrier layer was formed during anodization. - Abstract: Formation of the nanoporous alumina on the surface of Ni{sub 3}Al intermetallic alloy has been studied in details and compared with anodization of aluminum. Successful self-organized anodization of this alloy was performed in 0.3 M citric acid at voltages ranging from 2.0 to 12.0 V using a typical two-electrode cell. Current density records revealed different mechanism of the porous oxide growth when compared to the mechanism pertinent for the anodization of aluminum. Electrochemical impedance spectroscopy experiments confirmed the differences in anodic oxide growth. Surface and cross-sections of the Ni{sub 3}Al intermetallic alloy with anodic oxide were observed with field-emission scanning electron microscope and characterized with appropriate software. Nanoporous oxide growth rate was estimated from cross-sectional FE-SEM images. The lowest growth rate of 0.14 {mu}m/h was found for the anodization at 0 Degree-Sign C and 2.0 V. The highest one - 2.29 {mu}m/h - was noticed for 10.0 V and 30 Degree-Sign C. Pore diameter was ranging from 18.9 nm (2.0 V, 0 Degree-Sign C) to 32.0 nm (12.0 V, 0 Degree-Sign C). Interpore distance of the nanoporous alumina was ranging from 56.6 nm (2.0 V, 0 Degree-Sign C) to 177.9 nm (12.0 V, 30 Degree-Sign C). Pore density (number of pore occupying given area) was decreasing with anodizing voltage increase from 394.5 pores/{mu}m{sup 2} (2.0 V, 0 Degree-Sign C) to 94.9 pores/{mu}m{sup 2} (12.0 V, 0 Degree-Sign C). All the geometrical features of the anodic alumina formed by two-step self-organized anodization of Ni{sub 3}Al intermetallic alloy are depending on the

  1. Microstructure engineering of TiAl-based refractory intermetallics within power-down directional solidification process

    International Nuclear Information System (INIS)

    Kartavykh, A.V.; Tcherdyntsev, V.V.; Gorshenkov, M.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: ► VGF power-down technique is suitable for TiAl-based alloys solidification with tailored microstructure. ► Both columnar-dendrite and granular structures are created in Ti–46Al–8Nb ingots. ► Granular microstructure has been refined with TiB 2 addition to the melt. ► TiB 2 re-precipitate into (Ti,Nb)B particles, those acting as point seeds for fine equiaxed grains nucleation. -- Abstract: The work is aimed at the study of the formation and refinement of primary microstructure appearing in the refractory lightweight structural TiAl-based alloy of Ti–46Al–8Nb (at.%) nominal composition. For tailored microstructure development, the Directional Solidification (DS) of pre-synthesized alloy was performed in the vertical multizone resistive electro-furnace by power-down technique in pure argon environment. Both columnar-dendrite, and equiaxed-granular reproducible as-cast microstructures have been produced in DS ingots, basing on Columnar-to-Equiaxed Transition (CET) diagram and experimental exploration. Particular attention was paid further to equiaxed microstructure improvement by combination of modifying doping of alloy with boron grain refiner and DS processing. As a result the perfect inoculated microstructure of Ti–44Al–7Nb–2B (at.%) ingots was produced with 100 μm mean grain diameter, low scattering of dimensional grain characteristics and high tolerance to DS process parameters variation

  2. Evolution of a novel Si-18Mn-16Ti-11P alloy in Al-Si melt and its influence on microstructure and properties of high-Si Al-Si alloy

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Zhou

    Full Text Available A novel Si-18Mn-16Ti-11P master alloy has been developed to refine primary Si to 14.7 ± 1.3 μm, distributed uniformly in Al-27Si alloy. Comparing with traditional Cu-14P and Al-3P, Si-18Mn-16Ti-11P provided a much better refining effect, with in-situ highly active AlP. The refined Al-27Si alloy exhibited a CTE of 16.25 × 10−6/K which is slightly higher than that of Sip/Al composites fabricated by spray deposition. The UTS and elongation of refined Al-27Si alloy were increased by 106% and 235% comparing with those of unrefined alloy. It indicates that the novel Si-18Mn-16Ti-11P alloy is more suitable for high-Si Al-Si alloys and may be a candidate for refining hypereutectic Al-Si alloy for electronic packaging applications. Moreover, studies showed that TiP is the only P-containing phase in Si-18Mn-16Ti-11P master alloy. A core-shell reaction model was established to reveal mechanism of the transformation of TiP to AlP in Al-Si melts. The transformation is a liquid-solid diffusion reaction driven by chemical potential difference and the reaction rate is controlled by diffusion. It means sufficient holding time is necessary for Si-18Mn-16Ti-11P master alloy to achieve better refining effect. Keywords: Hypereutectic Al-Si alloy, Primary Si, Refinement, AlP, Thermal expansion behavior, Si-18Mn-16Ti-11P master alloy

  3. Penetration resistance and ballistic-impact behavior of Ti/TiAl3 metal/intermetallic laminated composites (MILCs: A computational investigation

    Directory of Open Access Journals (Sweden)

    Jennifer S. Snipes

    2016-06-01

    Full Text Available A comprehensive computational engineering analysis is carried out in order to assess suitability of the Ti/TiAl3 metal/intermetallic laminated composites (MILCs for use in both structural and add-on armor applications. This class of composite materials consists of alternating sub-millimeter thick layers of Ti (the ductile and tough constituent and TiAl3 (the stiff and hard constituent. In recent years, this class of materials has been investigated for potential use in light-armor applications as a replacement for the traditional metallic or polymer-matrix composite materials. Within the computational analysis, an account is given to differing functional requirements for candidate materials when used in structural and add-on ballistic armor. The analysis employed is of a transient, nonlinear-dynamics, finite-element character, and the problem investigated involves normal impact (i.e. under zero obliquity angle of a Ti/TiAl3 MILC target plate, over a range of incident velocities, by a fragment simulating projectile (FSP. This type of analysis can provide more direct information regarding the ballistic limit of the subject armor material, as well as help with the identification of the nature and the efficacy of various FSP material-deformation/erosion and kinetic-energy absorption/dissipation phenomena and processes. The results obtained clearly revealed that Ti/TiAl3 MILCs are more suitable for use in add-on ballistic, than in structural armor applications.

  4. Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

    Science.gov (United States)

    Knipling, Keith E; Dunand, David C; Seidman, David N

    2007-12-01

    Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms after casting. At these aging temperatures, the Zr:Ti atomic ratio in the precipitates is about 10 and 5, respectively, indicating that Ti remains mainly in solid solution rather than partitioning to the Al(3)(Zr(1)-(x)Ti(x)) precipitates. This is interpreted as being due to the very small diffusivity of Ti in alpha-Al, consistent with prior studies on Al-Sc-Ti and Al-Sc-Zr alloys, where the slower diffusing Zr and Ti atoms make up a small fraction of the Al(3)(Zr(1)-(x)Ti(x)) precipitates. Unlike those alloys, however, the present Al-Zr-Ti alloys exhibit no interfacial segregation of Ti at the matrix/precipitate heterophase interface, a result that may be affected by a significant disparity in the evaporation fields of the alpha-Al matrix and Al(3)(Zr(1)-(x)Ti(x)) precipitates and/or a lack of local thermodynamic equilibrium at the interface.

  5. Nucleation and Growth of Cu-Al Intermetallics in Al-Modified Sn-Cu and Sn-Ag-Cu Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Anderson, Iver E.; Handwerker, Carol A.

    2015-03-01

    Lead-free solder alloys Sn-Cu (SC) and Sn-Ag-Cu (SAC) are widely used by the microelectronics industry, but enhanced control of the microstructure is needed to improve solder performance. For such control, nucleation and stability of Cu-Al intermetallic compound (IMC) solidification catalysts were investigated by variation of the Cu (0.7-3.0 wt.%) and Al (0.0-0.4 wt.%) content of SC + Al and SAC + Al alloys, and of SAC + Al ball-grid array (BGA) solder joints. All of the Al-modified alloys produced Cu-Al IMC particles with different morphologies and phases (occasionally non-equilibrium phases). A trend of increasing Cu-Al IMC volume fraction with increasing Al content was established. Because of solidification of non-equilibrium phases in wire alloy structures, differential scanning calorimetry (DSC) experiments revealed delayed, non-equilibrium melting at high temperatures related to quenched-in Cu-Al phases; a final liquidus of 960-1200°C was recorded. During cooling from 1200°C, the DSC samples had the solidification behavior expected from thermodynamic equilibrium calculations. Solidification of the ternary alloys commenced with formation of ternary β and Cu-Al δ phases at 450-550°C; this was followed by β-Sn, and, finally, Cu6Sn5 and Cu-Al γ1. Because of the presence of the retained, high-temperature phases in the alloys, particle size and volume fraction of the room temperature Cu-Al IMC phases were observed to increase when the alloy casting temperature was reduced from 1200°C to 800°C, even though both temperatures are above the calculated liquidus temperature of the alloys. Preliminary electron backscatter diffraction results seemed to show Sn grain refinement in the SAC + Al BGA alloy.

  6. Mechanical properties and grindability of experimental Ti-Au alloys.

    Science.gov (United States)

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  7. Structural and functional intermetallics - an overview

    International Nuclear Information System (INIS)

    Varin, R.A.

    2000-01-01

    This overview presents the current status of the research and development of both structural and functional intermetallics. On the one hand, the discussion is focused on commercialization and existing industrial applications of intermetallics. Within this frame the applications of titanium aluminides (TiAl) for turbocharger rotors and exhaust valves in automotive industry are being discussed. Advances in the applications of TiAl alloys for the next generation of turbine blades in aerospace/aircraft segment are also presented. The entire spectrum of nickel and iron aluminide alloys developed commercially by the Oak Ridge national Laboratory (USA) and the examples of their application in various segments of industry are thoroughly discussed. Some inroads made in the application of directionally solidified (DS) multiphase niobium silicides (Nb 3 Si+Nb 5 Si 3 ) in situ intermetallic composites with the goal of pushing the service temperature envelope of turbine blades to ∼ 1200-1300 o C are also discussed. On the other hand, various topics in basic or curiosity driven research of titanium aluminides and trialuminides, iron aluminides and high temperature structural silicides are discussed. Some very recent findings on the improvements in fracture toughness and strength of titanium trialuminides and magnetic behaviour of unconventionally cold - worked iron aluminides are highlighted. The topic of functional intermetallics is limited to the systems must suitable for hydrogen storage applications. A perspective on the directions of future research and development of intermetallics is also provided. (author)

  8. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  9. The Transverse Rupture Strength in Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Lai Pang-Hsin

    2015-01-01

    Full Text Available The objective of this study was to investigate the transverse rupture strength and apparent hardness of selective laser melted Ti-6Al-4V alloys manufactured in the vertical (V and horizontal (H directions. The microstructure and the distribution of alloy elements were examined by optical microscope and electron probe microanalysis, respectively. The results show that the columnar α′ grains are formed along the building direction, and the elemental distributions of Ti, Al, and V are homogeneous in the alloy. The building direction does not sufficiently affect the density and apparent hardness. However, the transverse rupture strengths (TRS are obviously dominated by the building directions investigated in this study. The TRS of an H specimen is significantly superior to that of a V specimen by 48%. This phenomenon can be mainly attributed to the presence of disc-shaped pores.

  10. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions

    International Nuclear Information System (INIS)

    Rao, K.P.; Prasad, Y.V.R.K.

    2010-01-01

    Research highlights: Mechanical alloying of Ti and Al with small additions of Si and C was used to synthesize metastable phases, which were incorporated in Ti-Al matrices using powder metallurgy techniques. These metastable phases (or also called as precursors), at higher temperatures, transformed in situ into very fine hard reinforcements that develop coherent interface with the surrounding matrix. Typically, Ti5Si3 and TiC are the end products after the synthesis of composite. In this study, hot working behavior of such composites has been studied using the concepts of processing maps to identify the safe and best processing conditions that should be adopted while forming this composite. Also, kinetic analysis of hot deformation has been performed to identify the dominant deformation mechanism. The results are compared with that of base TiAl matrix. The powder metallurgy route offers the advantage of working the material at much lower temperatures compared to the traditional cast and forge route. - Abstract: A titanium aluminide alloy composite with in situ carbide and silicide dispersions has been synthesized by mixing 90% of matrix with elemental composition of 46Ti-46Al-4Nb-2Cr-2Mn and 10% precursor with composition 55Ti-27Al-12Si-6C prepared by mechanical alloying. The powder mixture was blended for 2 h followed by hot isostatic pressing (HIP) at 1150 deg. C for 4 h under a pressure of 150 MPa. In addition to TiAl alloy matrix, the microstructure of the HIP'ed billet showed a small volume fraction of Nb-rich intermetallic phase along with carbide and silicide dispersions formed in situ during HIP'ing. Cylindrical specimens from the HIP'ed billets were compressed at temperatures and strain rates in the ranges of 800-1050 deg. C and 0.0001-1 s -1 . The flow curves exhibited flow softening leading to a steady-state flow at strain rates lower than 0.01 s -1 while fracture occurred at higher strain rates. The processing map developed on the basis of flow stress at

  11. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  12. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  13. Intermetallic matrix composites; Proceedings of the MRS Symposium, San Francisco, CA, Apr. 18-20, 1990

    International Nuclear Information System (INIS)

    Anton, D.L.; Martin, P.L.; Miracle, D.B.; Mcmeeking, R.

    1990-01-01

    The present volume on intermetallic matrix composites discusses the modeling, processing, microstructure/property relationships, and compatibility of intermetallic matrix composites. Attention is given to models for the strength of ductile matrix composites, innovative processing techniques for intermetallic matrix composites, ductile phase toughening of brittle intermetallics, and reactive synthesis of NbAl3 matrix composites. Topics addressed include solidification processing of NbCr2 alloys, Ta and Nb reinforced MoSi2, the microstructure and mechanical behavior of Ni3Al-matrix composites, and ductile-phase toughening of Cr3Si with chromium. Also discussed are dislocation morphologies in TiB2/NiAl, the development of highly impact resistant NiAl matrix composites, the effect of notches on the fatigue life of the SCS-6Ti3Al composite, and the chemical stability of fiber-metal matrix composites

  14. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  15. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  16. Structural, electronic, magnetic and optical properties of Ni,Ti/Al-based Heusler alloys. A first-principles approach

    Energy Technology Data Exchange (ETDEWEB)

    Adebambo, Paul O. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; McPherson Univ., Abeokuta (Nigeria). Dept. of Physical and Computer Sciences; Adetunji, Bamidele I. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Bells Univ. of Technology, Oto (Nigeria). Dept. of Mathematics; Olowofela, Joseph A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Oguntuase, James A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Mathematics; Adebayo, Gboyega A. [Univ. of Agriculture. Abeokuta (Nigeria). Dept. of Physics; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2016-05-01

    In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1{sub b} with space group F anti 43m (216) NiTiAl alloys is predicted and that of Ni{sub 2}TiAl is in close agreement with available results. The band dispersion along the high symmetry points W→L→Γ→X→W→K in Ni{sub 2}TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni{sub 2}TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni{sub 3}Al binary systems.

  17. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  18. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  19. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  20. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  1. Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy

    Institute of Scientific and Technical Information of China (English)

    王振卿; 刘相法; 柳延辉; 张均燕; 于丽娜; 边秀房

    2003-01-01

    Heredity of microstructure in AlTiC master alloy, grain refiners, was analyzed. It is found that, for morphologies and distributions of TiC particles, there are visible heredity which originates from raw materials or processing methods of Al melt, and will ultimately be transferred to the solid state structure through the melt stage, and this phenomenon can cause hereditary influences on refinement: formation of chain-like TiC morphology results in rapid refinement fading behavior; distribution of TiC along grain boundaries greatly reduces refinement efficiency. Controlling of structural heredity through proper selections of raw materials and processing parameters is of great importance in obtaining ideal microstructures and improving refinement behaviors of AlTiC master alloys.

  2. On the Young's moduli of Ti-6Al-4V alloys

    International Nuclear Information System (INIS)

    Fan, Zhongyun

    1993-01-01

    In this paper, the authors will present an iterative approach to Young's modulus of multi-phase composites developed by Fan et al. The iterative approach will then be applied to Ti-6Al-4V alloys to predict their effective Young's moduli. It is hoped that the theoretical predictions will offer a quantitative explanation to the peculiar shape of the E c -f β curve and will shed some light on controlling the Young's moduli of Ti-6Al-4V alloys by choosing the proper heat treatment procedure

  3. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  4. On the mechanical behavior of a cryomilled Al-Ti-Cu alloy

    International Nuclear Information System (INIS)

    Han, Bing Q.; Lavernia, Enrique J.; Mohamed, Farghalli A.

    2003-01-01

    The mechanical behavior of a cryomilled Al10Ti2Cu that was later extruded was investigated in compression. The data obtained show that the strength of the extruded alloy parallel to the extrusion axis is higher than that normal to the axis. Also, a comparison between the compression behavior of the alloy and its tensile behavior reveals that there is a small asymmetry of yield strength with respect to deformation mode. Examination of the microstructure of the cryomilled alloy by means of transmission electron microscopy (TEM) indicates the presence of two phases: approximately 90% nanostructured Al(Cu) phase containing a dispersion of Al 3 Ti and 10% coarse-grained Al(Cu) phase. TEM observations indicate that as a result of the extrusion process, the larger (softer) grains of the Al(Cu) phase experience severe deformation, resulting in the development of mechanical fibering. It is suggested that the presence of coarse-grained Al(Cu) 'islands' in the matrix of the nanostructured phase and their change during extrusion into elongated bands may be responsible for the anisotropy of the mechanical properties of the extruded cryomilled Al10Ti2Cu

  5. Effects of Ce Addition and Isothermal Aging on the Elevated Temperature Tensile Properties of Mechanically Alloyed Al-Ti Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)

    1997-05-01

    The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.

  6. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi

    2016-01-01

    Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788

  7. Corrosion Behavior and Strength of Dissimilar Bonding Material between Ti and Mg Alloys Fabricated by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Patchara Pripanapong

    2016-08-01

    Full Text Available Ti and solution treated Mg alloys such as AZ31B (ST, AZ61 (ST, AZ80 (ST and AZ91 (ST were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST, in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST dissimilar materials is discussed in this work.

  8. Processing and characterization of AlCoFeNiXTi0,5 (X = Mn, V) high entropy alloys

    International Nuclear Information System (INIS)

    Triveno Rios, C.; Kiminami, C.S.

    2014-01-01

    The microstructure of high entropy alloys consists of solid solution phases with FC and BCC simple structures, contrary to classical metallurgy where they form complex structures of intermetallic compounds. Because of this they have several attractive properties for engineering applications. In this work the AlCoFeNiMnTi 0,5 and AlCoFeNiVTi 0,5 alloys were processed by melting arc. Since the main objective was the microstructural and mechanical characterization of ingots as-cast. The alloys were characterized by scanning electron microscopy, X-ray diffraction, microhardness and cold compression test. The results showed that the microstructure consists mainly of dendrites and interdendritic regions consisting of metastable crystalline phases. It was also observed that the AlCoFeNiVTi 0,5 alloy showed better mechanical properties than the AlCoFeNiMnTi 0,5 alloy. This may be associated with differences in the parameters of formation of simple solid solution phases between the two alloys. (author)

  9. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  10. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Anatoly I., E-mail: a_kovalev@sprg.ru; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    Highlights: • We investigated Al grain boundaries segregations in ordered pure and La-doped NiAl. • Structural segregation of Al decreases critical strain for brittle cracks nucleation. • La alloying sharply improves plasticity of NiAl intermetallic. • Metallicity of interatomic bonds on grain boundaries increases at La alloying. • We have experimentally measured by EELFS that La atoms are located in Al sublattice. - Abstract: The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (E{sub F}) position and electrons density (n{sub eff}) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  11. Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling

    International Nuclear Information System (INIS)

    Espinoza, Rodrigo A.; Palma, Rodrigo H.; Sepulveda, Aquiles O.; Fuenzalida, Victor; Solorzano, Guillermo; Craievich, Aldo; Smith, David J.; Fujita, Takeshi; Lopez, Marta

    2007-01-01

    The microstructure, electrical conductivity and hot softening resistance of two alloys (G-10 and H-20), projected to attain Cu-2.5 vol.% TiC-2.5 vol.% Al 2 O 3 nominal composition, and prepared by reaction milling and hot extrusion, were studied. The alloys were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and several chemical analysis techniques. The first alloy, G-10, showed the formation of Al 2 O 3 nanodispersoids and the presence of particles from non-reacted raw materials (graphite, Ti and Al). A second alloy, H-20, was prepared employing different fabrication conditions. This alloy exhibited a homogeneous distribution of Al 2 O 3 and Ti-Al-Fe nanoparticles, with the microstructure being stable after annealing and hot compression tests. These nanoparticles acted as effective pinning sites for dislocation slip and grain growth. The room-temperature hardness of the H-20 consolidated material (330 HV) was approximately maintained after annealing for 1 h at 1173 K; the electrical conductivity was 60% IACS (International Annealing Copper Standard)

  12. Microstructural evolution during hot pressing of the blended elemental Ti-6%Al-7%Nb alloy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Sandim, H.R.Z.; Coelho, G.C.; Silva, C.R.M. da

    2003-01-01

    The Ti-6%Al-7%Nb (wt.%) α-β alloy was developed aiming the replacement of the traditional Ti-6%Al-4%V alloy in surgical implants owing to its larger biocompatibility. Samples of this alloy were obtained using the blended elemental (BE) technique. The isochronal hot pressing of the compacts was carried out in the range 700-1500 deg. C with a compaction pressure of 20 MPa and a heating rate of 20 deg. C min -1 . In this work, the behavior of the elementary powders during the hot pressing and the corresponding microstructural evolution were investigated. The alloy was characterized by means of scanning electron microscopy (SEM) in the backscattered mode (BSE), X-ray diffraction (XRD), and density measurements. The results indicate that the homogenization of the alloy is diffusion-controlled and Ti.Al intermediary compounds (TiAl and Ti 3 Al) are formed at lower temperatures. With increasing temperature, homogenization of the alloy takes place and a coarse plate-like α+intergranular β structure is found throughout the microstructure in temperatures above 1300 deg. C. The process variables were defined aiming to minimize interstitial pick-up (C, O, and N) and avoiding intensive grain growth

  13. Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Shi Shihong; Guo Jian; Fu Geyan; Wang Mingdi

    2009-01-01

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF 2 in the preparation of precursor NiCr-Cr 3 C 2 -CaF 2 mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al 4 C 3 carbides reinforcement as well as fine isolated spherical CaF 2 solid lubrication particles uniformly dispersed in the NiCrAlTi (γ) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF 2 and the increasing of it's wettability with the NiCrAlTi (γ) matrix during the laser cladding process

  14. Corrosion behavior of Fe3Al intermetallics with addition of lithium, cerium and nickel in 2.5 % SO2+N2 at 900 °C

    Directory of Open Access Journals (Sweden)

    González-Rodríguez, J. G.

    2012-12-01

    Full Text Available The corrosion behavior of Fe3Al-type intermetallic alloys with addition of 1 at. % cerium, lithium and nickel at high temperature has been studied. The various alloys were exposed to an environment composed of 2.5 % SO2+N2 at 900 °C for 48 h. For all the intermetallic tested, the corrosion kinetics showed a parabolic behavior. The alloy, which showed less corrosion rate, was the Fe3AlNi alloy, being Fe3AlCeLi the alloy with the highest corrosion rate. For the various alloys, energy dispersive X-ray spectroscopy analysis, EDS, on the developed scale only detected aluminum, oxygen, and traces of iron and cerium, suggesting the formation of alumina as main component. The intermetallic alloys showed oxide cracking and spalling. The intermetallic chemical composition played an important role in defining the oxide scale morphology and the extent of damage.Se estudió el comportamiento a la corrosión a alta temperatura de intermetálicos tipo Fe3Al con adición de 1at. % de cerio, litio y níquel. Las diferentes aleaciones fueron expuestas bajo un ambiente compuesto de 2,5 % SO2+N2 a 900 °C durante 48 h. Para todos los intermetálicos ensayados, la cinética de corrosión presentó un comportamiento parabólico. La aleación que mostró la menor velocidad de corrosión fue el intermetálico Fe3AlNi, siendo el intermetálico Fe3AlCeLi el de mayor velocidad de corrosión. Los análisis mediante espectroscopía de dispersión de rayos X, EDS, sobre la costra formada identificaron únicamente aluminio, oxígeno y trazas de hierro y cerio, lo que sugiere la formación de alúmina como el componente principal. Los intermetálicos mostraron agrietamiento y desprendimiento de la costra de óxido. La composición química de los intermetálicos tuvo un papel importante en la definición de la morfología del óxido formado y el grado de daño.

  15. Influence of the ion implantation on the nanoscale intermetallic phases formation in Ni-Ti system

    International Nuclear Information System (INIS)

    Kalashnikov, M.P.; Kurzina, I.A.; Bozhko, I.A.; Kozlov, E.V.; Fortuna, S.V.; Sivin, D.O.; Stepanov, I.B.; Sharkeev, Yu.P.

    2005-01-01

    Full text: The ion implantation at a high intensity mode is an effective method for modification of the surface properties of metals and alloys. Improvement of mechanical and tribological properties of irradiated materials using the high intensity implantation is connected with an element composition and microstructure modification of the surface and subsurface layers. One shows a great interest in intermetallic phase's synthesis by ion implantation, because of unique physical-mechanical properties of the intermetallic compounds. The influence of the irradiation conditions on the structural state and surface properties of implanted materials is not clear enough. The study of the factors influencing on the formation of the surface ion - alloyed layers of metal targets having the high tribological and mechanical properties by high intensity ion implantation is actual. The aim of the present work is a study of the microstructure, phase composition, physical and mechanical properties of the ion-alloyed Ni surfaces formed at high intensity implantation of Ti ions. The implantation Ti ions into Ni samples at high intensity mode was realized using ion source 'Raduga - 5'. The implantation Ti ions into Ni was carried out at accelerating voltage 20 kV for 2 h. The regimes were differed in the samples temperature (580 - 700 K), the distance from the ion implanted samples to the ion source (0.43-0.93 m) and the dose of irradiated ions (0.3·10 18 -2.9·10 18 ion/cm -2 ). The element composition of the implanted samples was analyzed by the electron spectroscopy. The structural-phase state of the Ni ion-modified layers was investigated by the transmission electron microscopy and X-ray diffraction methods. Additionally, the investigation of mechanical and tribological properties of the implanted Ni samples was carried out. It was established that the maximum thickness of the ion-alloyed nickel layers at high intensity mode allows forming the nanoscale intermetallic phases (NiTi

  16. High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy

    Directory of Open Access Journals (Sweden)

    DONG Chengli

    2018-02-01

    Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.

  17. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  18. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  19. Phase constituents and microstructure of laser cladding Al{sub 2}O{sub 3}/Ti{sub 3}Al reinforced ceramic layer on titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Lin Zhaoqing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM - Department of Physics, Siena University, Siena 53100 (Italy)

    2011-04-07

    Research highlights: > In this study, Fe{sub 3}Al has been chosen as cladding powder due to its excellent properties of wear resistance and high strength, etc. > Laser cladding of Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy substrate can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can increase wear resistance of substrate. > In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of Ti{sub 3}Al and B. > This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser-cladded coating. - Abstract: Laser cladding of the Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} pre-placed alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer, which can greatly increase wear resistance of titanium alloy. In this study, the Ti{sub 3}Al/Fe{sub 3}Al + TiB{sub 2}/Al{sub 2}O{sub 3} ceramic layer has been researched by means of electron probe, X-ray diffraction, scanning electron microscope and micro-analyzer. In cladding process, Al{sub 2}O{sub 3} can react with TiB{sub 2} leading to formation of amount of Ti{sub 3}Al and B. This principle can be used to improve the Fe{sub 3}Al + TiB{sub 2} laser cladded coating, it was found that with addition of Al{sub 2}O{sub 3}, the microstructure performance and micro-hardness of the coating was obviously improved due to the action of the Al-Ti-B system and hard phases.

  20. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    Science.gov (United States)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  1. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    International Nuclear Information System (INIS)

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  2. Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Mu, Ming; Zhou, Xinjian; Xiao, Qian; Liang, Jun; Huo, Xiaodi

    2012-01-01

    Highlights: ► A TiO 2 /graphite composite coating is produced on Ti alloy by one-step PEO process. ► The TiO 2 /graphite composite coating exhibits excellent self-lubricating behavior. ► The self-lubricating composite coating improves the wear resistance by comparison to the conventional PEO coating. - Abstract: One-step plasma electrolytic oxidation (PEO) process in a graphite-dispersed phosphate electrolyte was used to prepare a graphite-containing oxide composite coating on Ti6Al4V alloy. The composition and microstructure of the oxide coatings produced in the phosphate electrolytes with and without addition of graphite were analyzed by X-ray diffractometer (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The tribological properties of the uncoated Ti6Al4V alloy and oxide coatings were evaluated using a reciprocating ball-on-disk tribometer. Results showed that the graphite-containing oxide composite coating can be successfully produced on Ti6Al4V alloy in the graphite-dispersed phosphate electrolyte using PEO process. The graphite-containing oxide composite coating registered much lower friction coefficient and wear rate than the uncoated Ti6Al4V alloy and the oxide coating without graphite under dry sliding condition, exhibiting excellent self-lubricating property.

  3. Effect of Inoculant Alloy Selection and Particle Size on Efficiency of Isomorphic Inoculation of Ti-Al.

    Science.gov (United States)

    Kennedy, J R; Rouat, B; Daloz, D; Bouzy, E; Zollinger, J

    2018-04-25

    The process of isomorphic inoculation relies on precise selection of inoculant alloys for a given system. Three alloys, Ti-10Al-25Nb, Ti-25Al-10Ta, and Ti-47Ta (at %) were selected as potential isomorphic inoculants for a Ti-46Al alloy. The binary Ti-Ta alloy selected was found to be ineffective as an inoculant due to its large density difference with the melt, causing the particles to settle. Both ternary alloys were successfully implemented as isomorphic inoculants that decreased the equiaxed grain size and increased the equiaxed fraction in their ingots. The degree of grain refinement obtained was found to be dependent on the number of particles introduced to the melt. Also, more new grains were formed than particles added to the melt. The grains/particle efficiency varied from greater than one to nearly twenty as the size of the particle increased. This is attributed to the breaking up of particles into smaller particles by dissolution in the melt. For a given particle size, Ti-Al-Ta and Ti-Al-Nb particles were found to have a roughly similar grain/particle efficiency.

  4. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  5. Research on investment casting of TiAl alloy agitator treated by HIP and HT

    Directory of Open Access Journals (Sweden)

    LI Zhen-xi

    2007-05-01

    Full Text Available Using TiAl alloy to substitute superalloy is a hot topic in aeroengine industry because of its low density,high elevated temperature strength, and anti-oxidization ability. In this research, Ti-47.5AL-2Cr-2Nb-0.2B alloy was used as the test material. By applying a combination process of ceramic shell mold and core making, vacuum arc melting and centrifugal pouring, and heat isostatic pressing (HIP and heat treatment (HT etc., the TiAl vortex agitator casting for aeroengine was successfully made. This paper introduced key techniques in making the TiAl vortex agitator with investment casting process, provided some experimental results including mechanical properties and machinability, and explained some concerns that could affect applications of TiAl castings.

  6. Electric field gradient at the Nb3M(M = Al, In, Si, Ge, Sn) and T3Al (T = Ti, Zr, Hf, V, Nb, Ta) alloys by perturbed angular correlation method

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    1999-01-01

    The electric field gradient (efg) at the Nb site in the intermetallic compounds Nb 3 M (M = Al, Si, Ge, Sn) and at the T site in the intermetallic compounds T 3 Al (T = Ti, Zr, Hf, V, Nb, Ta) was measured by Perturbed Angular Correlation (PAC) method using the well known gamma-gamma cascade of 133-482 keV in 181 Ta from the β - decay of 181 Hf. The compounds were prepared by arc melting the constituent elements under argon atmosphere along with radioactive 181 Hf substituting approximately 0.1 atomic percent of Nb and T elements. The PAC measurements were carried out at 295 K for all compounds and the efg was obtained for each alloy. The results for the efg in the T 3 Al compounds showed a strong correlation with the number of conduction electrons, while for the Nbs M compounds the efg behavior is influenced mainly by the p electrons of the M elements. The so-called universal correlation between the electronic and lattice contribution for the efg in metals was not verified in this work for all studied compounds. Measurements of the quadrupole frequency in the range of 100 to 1210 K for the Nb 3 Al compound showed a linear behaviour with the temperature. Superconducting properties of this alloys may probably be related with this observed behaviour. The efg results are compared to those reported for other binary alloys and discussed with the help of ab-initio methods. (author)

  7. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    Science.gov (United States)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  8. Surface hardening of Ti-6Al-4V alloy by hydrogenation

    International Nuclear Information System (INIS)

    Wu, T.I.; Wu, J.K.

    1991-01-01

    Thermochemical processing is an advanced method to enhance the fabricability and mechanical properties of titanium alloys. In this process hydrogen is added to the titanium alloy as a temporary alloying element. Hydrogen addition lowers the β transus temperature of titanium alloy and stabilizes the β phase. The increased amount of β phase in hydrogen-modified titanium alloys reduces the grain growth rate during eutectoid β → α + hydride reaction. Hydrogen was added to the titanium alloy by holding it at a relatively high temperature in a hydrogen gaseous environment in previous studies. Pattinato reported that Ti-6Al-4V alloy can react with hydrogen gas at ambient temperature and cause a serious hydrogen embrittlement problem. The hydrogen must be removed to a low allowable concentration in a vacuum system after the hydrogenation process. The present study utilized an electrochemical technique to dissolve hydrogen into titanium alloy to replace the hydrogen environment in thermochemical processing. In this paper microstructures and hardnesses of this new processed Ti-6Al-4V alloy are reported

  9. Relative effects of chromium and niobium on microstructure and mechanical properties as a function of oxygen content in TiAl alloys

    International Nuclear Information System (INIS)

    Lamirand, M.; Bonnentien, J.-L.; Ferriere, G.; Guerin, S.; Chevalier, J.-P.

    2007-01-01

    The effects of 2 at.% chromium and niobium on microstructure and mechanical properties of Ti-48Al-x(Cr, Nb) have been investigated for alloys with different oxygen content, ranging from ultra-high purity to doped alloys. Chromium and niobium additions have significant effects for the high purity alloys, whereas for alloys containing oxygen, no significant modification is observed due to the strong stabilizing effect of oxygen on the lamellar microstructure

  10. Short range order and phase separation in Ti-rich Ti-Al alloys

    International Nuclear Information System (INIS)

    Liew, H.J.

    1999-01-01

    Many metals and alloys are used in service under conditions in which they are metastable or unstable with respect to phase separation or transformation. Analytical and numerical models exist for relatively simple decomposition processes, such as nucleation and growth mechanisms and spinodal decomposition. In reality, however, more complex phase transformations may occur which are less well understood. For example, reactions involving coupled ordering and phase separation, such as the 'conditional spinodal mechanism', have been predicted. A 'conditional spinodal' is defined as a reaction in which compositional phase separation is thermodynamically possible only after a prior process, such as ordering at the parent composition. There is some debate regarding which real alloy systems exhibit such complex behaviour. Previous atom probe field ion microscopy work on titanium-rich titanium-aluminium based alloys has led to the suggestion that formation of the α 2 phase in this system may occur by a complex phase separation process. As well as being of interest from the point of view of fundamental materials science, this has potential engineering significance as the Ti-Al system forms the basis of the current generation of high-temperature Ti-based alloys for compressor applications in jet engines. This thesis describes an investigation into the phase decomposition process taking place in a titanium-rich Ti-Al alloy lying in the two-phase α+α 2 region. Experimentally, a binary alloy containing 15at% aluminium was heat-treated and examined using electron microscopy, X-ray diffraction, atom probe field ion microscopy and mechanical testing methods. Neutron diffraction experiments were also completed on this system for the first time. In addition, fully three-dimensional atomistic simulations were conducted using a Monte Carlo computer model based on first principles thermodynamic stability calculations of the Ti-Al system. The results provide an insight into many aspects

  11. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  12. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  13. Key improvements in machining of Ti6al4v alloy: A review

    Science.gov (United States)

    Katta, Sivakoteswararao; Chaitanya, G.

    2017-07-01

    Now a days the use of ti-6al-4v alloy is high in demand in many industries like aero space, bio medical automobile, space, military etc. the production rates in the industries are not sufficient because the machiniability of ti-6al-4v is the main problem, there are several cutting tools available for metal cutting operations still there is a gap in finding the proper cutting tool material for machining of ti-6al-4v. because the properties of titanium like high heat resistant, low thermal conductivity, low weight ratio, less corrosiveness, and more many properties attracting the industrialists to use titanium as their material for their products, many researchers done the research on machininbility of ti-6al-4v by using different tool materials. but as for my literature survey there is still lot of scope is available, to find better cutting tool with techniques for machining ti-6al-4v. in this paper iam discussing the work done by various researchers on ti-6al-4v alloy with different techniques.

  14. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  15. Phase evolution in Al-Ni-(Ti, Nb, Zr) powder blends by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, A. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India); Manna, I. [Metallurgical and Materials Engineering Department, I.I.T., Kharagpur 721302 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur (India)], E-mail: c.partha@mailcity.com

    2007-08-25

    Mechanical alloying of Al-rich Al-Ni-ETM (ETM = Ti, Nb, Zr) elemental powder blends by planetary ball milling yielded amorphous and/or nanocrystalline products after ball milling for suitable duration. Powder samples collected at different stages of ball milling have been examined by X-ray diffraction, differential scanning caloremetry and high-resolution transmission electron microscopy to examine the solid-state phase evolution. Powder blends having nominal composition of Al{sub 80}Ni{sub 10}Ti{sub 10} and Al{sub 80}Ni{sub 10}Nb{sub 10} yielded predominantly amorphous products, while the other alloys formed composite microstructures comprising nanaocrystalline and amorphous solid solutions. The amorphous Al{sub 80}Ni{sub 10}Ti{sub 10} alloy was mixed with different amounts of Al powder, and subjected to warm rolling after consolidation within the Al-cans with or without intermediate annealing for 10 min at 500 K to obtain sheet of 2.5 mm thickness. Notable improvement in mechanical properties has been achieved for the composite sheets in comparison to the pure Al.

  16. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.X.; Wu, H.R.; Shan, X.L.; Lin, N.M.; He, Z.Y., E-mail: tyuthzy@126.com; Liu, X.P.

    2016-12-01

    Graphical abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of Ni modified layer was measured by nano indenter. The results showed that Ni modified layers exhibited triple layers structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni{sub 3}Ti, NiTi, Ti{sub 2}Ni, AlNi{sub 3} and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surface of the untreated and treated Ti6Al4V sample using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different value, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of Ni modified layer was also discussed. - Highlights: • The Ni modified layers were prepared by the plasma surface alloying technique. • Triple layers structure was prepared. • Using Micro-slurry-jet Erosion method. • The erosion rate of Ni modified layer experienced the process of descending first and then ascending. • Improvement of erosion resistance performance of Ni-rich alloying layer was prominent. The wear mechanism of Ni modified layer showed micro-cutting wearing. - Abstract: The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition

  17. Intermetallic alloys: Deformation, mechanical and fracture behaviour

    International Nuclear Information System (INIS)

    Dogan, B.

    1988-01-01

    The state of the art in intermetallic alloys development with particular emphasis on deformation, mechanical and fracture behaviour is documented. This review paper is prepared to lay the ground stones for a future work on mechanical property characterization and fracture behaviour of intermetallic alloys at GKSS. (orig.)

  18. Tailoring ultrafine grained and dispersion-strengthened Ti 2 AlC/TiAl ...

    Indian Academy of Sciences (India)

    In situ Ti 2 AlC/TiAl composite was fabricated by hot-pressing method via the reaction system of Ti 3 AlC 2 and Ti-Al pre-alloyed powders at low temperature of 1150 ∘ C. The composite mainly consisted of TiAl, Ti 3 Al and Ti 2 AlC phases. Fine Ti 2 AlC particles were homogeneously distributed and dispersed in the matrix.

  19. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  20. Progress in atomizing high melting intermetallic titanium based alloys by means of a novel plasma melting induction guiding gas atomization facility (PIGA)

    Energy Technology Data Exchange (ETDEWEB)

    Gerling, R.; Schimansky, F.P.; Wagner, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1994-12-31

    For the production of intermetallic titanium based alloy powders a novel gas atomization facility has been put into operation: By means of a plasma torch the alloy is melted in a water cooled copper crucible in skull melting technique. To the tap hole of the crucible, a novel transfer system is mounted which forms a thin melt stream and guides it into the gas nozzle. This transfer system consists of a ceramic free induction heated water cooled copper funnel. Gas atomization of {gamma}-TiAl (melting temperature 1400 C) and Ti{sub 5}Si{sub 3} (2130 C) proved the possibility to produce ceramic free pre-alloyed powders with this novel facility. The TiAl powder particles are spherical; about 20 wt.% are smaller than 45 {mu}m. The oxygen and copper pick up during atomization do not exceed 250 and 35 {mu}g/g respectively. The Ti{sub 5}Si{sub 3} powder particles are almost spherical. Only about 10 wt.% are <45 {mu}m whereas the O{sub 2} and Cu contamination is also kept at a very low level (250 and 20 {mu}g/g respectively). (orig.)

  1. Microstructural characterization and phase transformation of ternary alloys near at Al3Ti compound

    International Nuclear Information System (INIS)

    Angeles Ch, C.

    1999-01-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10 3 -10 4 K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al 3 Ti and others phases of L1 2 type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO 22 to the cubic phases L1 2 . The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1 2 phase tends to increase to hardness depending of the content of this phase

  2. Microstructure and tribological properties of TiAg intermetallic compound coating

    International Nuclear Information System (INIS)

    Guo Chun; Chen Jianmin; Zhou Jiansong; Zhao Jierong; Wang Linqian; Yu Youjun; Zhou Huidi

    2011-01-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  3. Microstructure and tribological properties of TiAg intermetallic compound coating

    Energy Technology Data Exchange (ETDEWEB)

    Guo Chun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Chen Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao Jierong; Wang Linqian; Yu Youjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-01

    TiAg intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding using Ag powder as the precursor. It has been found that the prepared coating mainly comprised TiAg and Ti phases. The high resolution transmission electron microscopy results further conform the existence of TiAg intermetallic compound in the prepared coating. The magnified high resolution transmission electron microscopy images shown that the laser cladding coating contains TiAg nanocrystalline with the size of about 4 nm. Tribological properties of the prepared TiAg intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiAg intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiAg intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate increased as the normal load increased.

  4. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  5. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Yu, Zhiguo; Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Qu, Wentao; Yuan, Bifei [School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Wang, Zhenguo [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China)

    2017-01-02

    The microstructures, phase transformations, mechanical properties and shape memory effect of Ti-20Zr-10Nb-xAl (x=1, 2, 3, 4 at%) alloys were investigated. The X-ray diffraction results show that the alloys are composed of a single martensitic α″-phase and that the corresponding unit cell volume decreases with increasing Al content. The reverse martensitic transformation start temperature (A{sub s}) of the Ti-20Zr-10Nb-Al alloy is 534 K and decreases with increasing Al content. The addition of Al results in solid solution strengthening and grain refinement strengthening, thus improving the mechanical properties and the shape memory effect of the Ti-20Zr-10 Nb-xAl alloys. The Ti-20Zr-10Nb-3Al alloy shows the greatest shape memory strain (3.2%) and the largest tensile strain (17.6%) as well as a very high tensile strength (886 MPa).

  6. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wu, Yuyu; Wang, Hui; Liu, Jiangwen; Fang, Fang; Sun, Dalin; Zhang, Qingan; Zhu, Min

    2015-01-01

    Highlights: • Mg 85 In 5 Al 5 Ti 5 alloy catalyzed with in-situ formed MgF 2 was prepared by P-milling. • Reaction mechanism of Mg 85 In 5 Al 5 Ti 5 alloy was presented. • Further destabilization of Mg was realized (65.2 kJ/mol H 2 ). • Dual tuning of the thermodynamic and kinetic properties of MgH 2 was realized. - Abstract: The dehydrogenation enthalpy change of MgH 2 by reversibly forming an Mg 0.95 In 0.05 solid solution offers a new method for tuning the thermodynamics of Mg-based alloys. In order to further lower the stability of MgH 2 , Al has been introduced into Mg(In) solid solution. At the same time, to solve the problem of sluggish kinetic properties of Mg–In solid–solution systems and to lower the dehydrogenation activation energy, Ti has also been added. It has been demonstrated that the Mg 85 In 5 Al 5 Ti 5 alloy synthesized by plasma milling (P-milling) shows both enhanced dehydriding thermodynamics and kinetics. This technique could be used to synthesize Mg(In, Al) ternary solid solution incorporating the Ti catalyst in only one step, making it much more efficient than the two-step method. Compared with Mg-based solid solutions, the addition of Ti and in-situ synthesized MgF 2 improved the kinetics and the introduction of In as well as Al imparted enhanced thermodynamics to the Mg 85 In 5 Al 5 Ti 5 system. The dehydrogenation enthalpy change and activation energy were lowered to 65.2 kJ/(mol H 2 ) and 125.2 kJ/mol, respectively, for the Mg 85 In 5 Al 5 Ti 5 alloy

  7. Comparison between PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Silva, M.M.; Ueda, M.; Oliveira, V.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76 x 10 -3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance. (author)

  8. Structure of as cast L12 compounds in Al3Zr-base alloys containing Cu and Mn

    International Nuclear Information System (INIS)

    Virk, I.S.; Varin, R.A.

    1991-01-01

    It was first shown that the low symmetry, tetragonal DO 23 crystal structure of Al 3 Zr intermetallic can be changed to the related cubic L1 2 crystal structure by alloying with Ni (Al 5 NiZr 2 ) and Cu(Al 5 CuZr 2 ). It has been reported that previous work has successfully modified Al 3 Zr with Fe, Cu, Cr and Ni obtaining nearly single phase materials with L1 2 structure. However, they only studied the microstructure and mechanical properties of Fe - modified intermetallic (Al-6at% Fe-25at% Zr). The purpose of the paper is to describe and interpret experimental observations on the microstructure of Al 5 CuZr 2 and Al 66 Mn 9 Zr 25 (at.%) modifications of base Al 3 Zr intermetallic. The one modified with Mn has not been reported in literature although its Al 3 Ti - base counterpart has recently been successfully produced (3, 4)

  9. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  10. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  11. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  12. Method of preparing an Al-Ti-B grain refiner for aluminium-comprising products, and a method of casting aluminium products

    NARCIS (Netherlands)

    Brinkman, H.J.; Duszczyk, J.; Katgerman, L.

    1999-01-01

    The invention relates to a method of preparing an Al-Ti-B grain refiner for cast aluminium-comprising products. According to the invention the preparation is realized by mixing powders selected from the group comprising aluminium, titanium, boron, and alloys and intermetallic compounds thereof,

  13. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  14. The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3(Fe diecasting alloy

    Directory of Open Access Journals (Sweden)

    Vončina M.

    2017-01-01

    Full Text Available The microstructure features and hardness of AlSi9Cu3(Fe die casting alloy was investigated in the presence of Zr addition. The cast alloys were undergone the solutionizing treatment 2 h at 500°C followed by artificial aging at 180°C for 5 h. Optical microscopy and electron micro-analyzer were used to study the formation of different intermetallic phases. The hardness was tested for all samples at 25°C. The results revealed that the intermetallic phase, based on (Al,Si(Zr,Ti, forms when Zr is added in the investigated alloy, while the T6 heat treatment does not influence on the formation of Zr-bearing phase. Results also indicate that the hardness slightly increases in the AlSi9Cu3 alloy in as-cast state when Zr is added, while after T6 heat treatment increases by 50% in the alloy without Zr and by 61% in the alloy with Zr addition.

  15. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  16. The effect of high-temperature treatment on the formation of nanoscale intermetallic compounds of transition metals in Al-Cu-Mn-Zr alloy

    Science.gov (United States)

    Monastyrska, Tetiana O.; Berezina, Alla L.; Labur, Tetiana M.; Molebny, Oleh A.; Kotko, Andrii V.

    2018-02-01

    The precipitation of intermetallic compounds of transition metals during aging of the Al-5.8%Cu-0.3%Mn-0.1%Zr alloy has been studied using DSC, resistometry, X-ray and transmission electron microscopy. In these age hardenable alloys, the nanoscale metastable Θ″ and Θ' phases of the Al2Cu compound are the main strengthening phases, which are formed at low temperature aging of T stresses, etc.) on the aging with the precipitation of strengthening phases has been investigated.

  17. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  18. Processing and application properties of silicon-doped titanium aluminides; Formgebungs- und Anwendungseigenschaften silizidhaltiger TiAl-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Fanta, G. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2001-07-01

    Submicrocrystalline intermetallic/ceramic composites based on the system Ti-Al-Si are prepared by mechanical alloying and subsequent powder consolidation. Finely dispersed silicides prevent coarsening of the {gamma}-TiAl matrix during hot-forming. Therefore, the deformation temperatures can be reduced by about 200 C compared to conventional titanium aluminides. After a subsequent coarsening heat treatment, creep properties comparable to those of conventional TiAl based alloys (1.10{sup -9} s{sup -1} at 700 C) are achieved. This study demonstrates that microstructure design allows for favorable processing properties without compromises regarding the desired application properties. (orig.) [German] Zur Untersuchung des technischen Anwendungspotenzials submikrokristalliner Werkstoffe werden silizidhaltige {gamma}-TiAl-Basislegierungen durch Hochenergiemahlen und heissisostatisches Pressen hergestellt. Bei der industriellen Formgebung ermoeglicht die durch Silizide stabilisierte feine Mikrostruktur eine deutliche Temperaturabsenkung von 200 C im Vergleich zu den fuer Titanaluminide ueblichen Prozesstemperaturen. Nach einer anschliessend durchgefuehrten Gefuegeumwandlung werden Kriechgeschwindigkeiten gemessen, die mit 1.10{sup -9} s{sup -1} bei 700 C im Bereich der Werte schmelzmetallurgisch hergestellter TiAl-Legierungen liegen. Eine gezielte Mikrostrukturgestaltung ermoeglicht somit eine deutliche Verbesserung der Umformeigenschaften unter Beibehaltung der guenstigen Eigenschaften fuer Hochtemperaturanwendungen. (orig.)

  19. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    Science.gov (United States)

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Generation of AlmFe in Dilute Aluminium Alloys with Different Grain Refining Additions

    Science.gov (United States)

    Meredith, M. W.; Greer, A. L.; Evans, P. V.; Hamerton, R. G.

    Al13Fe4, Al6Fe and AlmFe are common intermetallics in commercial AA1XXX series Al alloys. Grain-refining additions (based on either Al-Ti-B or Al-Ti-C) are usually added to such alloys during solidification processing to aid the grain structure development. They also influence the favoured intermetallic and, hence, can affect the materials' properties. This work simulates commercial casting practices in an attempt to determine the mechanisms by which one intermetallic phase is favoured over another by the introduction of grain-refining additions. Directional solidification experiments on Al-0.3wt.%Fe-0.15wt.%Si with and without grain refiner are conducted using Bridgman apparatus. The type, amount and effectiveness of the grain-refining additions are altered and the resulting intermetallic phase selection followed. The materials are characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. AlmFe is seen to form when Al-Ti-B grain-refiner is introduced but only when the refinement is successful; reducing the effectiveness of the refiner led to Al6Fe forming under all conditions. Al-Ti-C refiners are seen to promote AlmFe at lower solidification velocities than when Al-Ti-B was used even though the grain structure was not as refined. These trends can be explained within existing eutectic theory, by considering growth undercooling.

  1. Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al-Mg-Si alloy

    OpenAIRE

    Kumar, S.; O'Reilly, K.A.Q.

    2016-01-01

    207 mm diameter direct chill (DC) cast billets of 6063 aluminium-magnesium-silicon (Al-Mg-Si) alloy were produced with various different primary aluminium (α-Al) grain structures including feathery-dendrites, equiaxed-dendrites and equiaxed-globular morphologies. To control the α-Al grain structure (grain morphology and grain size) an intensive shearing melt conditioning technique and Al-5Ti-1B grain refiner were used. For the first time, due to the variety of controlled microstructures produ...

  2. The influence of the surface distribution of Al6(MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions

    International Nuclear Information System (INIS)

    Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Perez, J.; Rodriguez, M.A.; Marcos, M.

    1998-01-01

    In this paper the behaviour against pitting corrosion of different samples of AA5083 aluminium alloy has been studied. A correlation between the microstructure of the samples and their susceptibility to pitting has been established. Metallographic analysis combined with SEM and EDS techniques have allowed us to detect three intermetallic compounds in the samples. The particle size distribution and surface density of each intermetallic phase have been evaluated for the three AA5083 alloy samples coming from different suppliers. Significant differences in the microstructure of the three samples have been found. Full immersion test carried out in 3.5% aerated aqueous solutions showed that pitting starts at the locations of the Al 6 (MnFe) intermetallic particles. As a consequence of this, the samples with higher Al 6 (MnFe) content showed a higher pit density on its surface. The results of cyclic polarisation tests showed also a good correlation with the microstructural parameters. (orig.)

  3. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.D., E-mail: renxd@mail.ujs.edu.cn [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Zhou, W.F.; Liu, F.F.; Ren, Y.P. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Yuan, S.Q. [Research Center of Fluid Machinery Engineering and Technical, Jiangsu University, Zhenjiang, 212013 (China); Ren, N.F.; Xu, S.D.; Yang, T. [Department of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-02-15

    Graphical abstract: The grain refinement process of Ti-6Al-4V alloy under LSP: (a) LDD in original grains; (b) Dislocations in β phase; (c) DTIs in α phase; (d) DTs transform into DCs; (e) DWs develop into sub-GBs; (f) GR accomplishes. - Highlights: • LSP could repair the surface defects and reduce the surface roughness. • Microstructure evolution of α phase in Ti-6Al-4V alloy processed by LSP is distinct from β phase. • Multidirectional twin intersections and subgrain boundaries are the main mechanism of grain refinement of Ti-6Al-4V alloy. • Grain refinement process of the Ti-6Al-4V alloy was illustrated. - Abstract: Microstructure evolution and grain refinement of Ti-6Al-4V alloy after laser shock processing (LSP) are systematically investigated in this paper. Laser shock waves were induced by a Q-switched Nd:YAG laser system operated with a wave-length of 1064 nm and 10 ns pulse width. The microstructures of LSP samples were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Present results indicate that the surface hardness of samples subjected to LSP impacts has significantly improved. Multidirectional twin intersections and dislocation movements lead to grain subdivision in α phase with ultra-high plastic deformation. High-density dislocations are found in β phase. Multidirectional twin intersections and division of sub-grain boundaries play an important role in the grain refinement of Ti-6Al-4V alloy under LSP loading conditions.

  4. As-cast microstructures of Ti-11 Al- xC alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the investigation of as-cast microstructures of high temperature α + α2 titanium alloys matrix composites reinforced by particles and fabricated using a reaction synthesis method by XRD, OM and SEM which reveals that the matrix transformed into single phase α2 from two phases α + α2 and reinforcing phases become Ti3A1C and TiC from single phase TiC as C content increases to a critical value, and Ti3AlC precipitates during solidification processing and points out that the norphologies of TiC and Ti3AlC are of short-lath shape and near spherical shape, respectively, and lattice parameters of matrix α2 increase with the increasing of C content, but the lattice parameter of reinforcing phase TiC is lower than standard lattice parameter of TiC due to the C defection in TiC.

  5. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  6. Synthesis and mechanical properties of silicon-doped TiAl-alloys with grain sizes in the submicron range; Herstellung und mechanische Eigenschaften silizidhaltiger TiAl-Werkstoffe mit Korngroessen im Submikronbereich

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    The objective of this study is to provide a comprehensive insight into the mechanical properties of nano- and submicron-grained intermetallics, containing ceramic particles as a second phase. The investigations are focussed on {gamma}-TiAl-based alloys with a fine dispersion of titanium silicides. The samples are prepared by high energy milling and subsequent hot isostatic pressing. The mechanical properties are mainly dominated by the grain size as the most important structural feature. At room temperature, the grain size dependence of hardness and yield strength can be described by the well-known Hall-Petch relationship. Contrary to the behavior of conventional alloys, the ductility of submicron-grained alloys drops if the grain size is further reduced. This may be attributed to the insignificance of diffusional creep at room temperature and to arising difficulties evolving for dislocation-based deformation mechanisms. In the high temperature range, the flow stress is strongly reduced. Superplastic deformation becomes feasible already at 800 C. The silicide particles impede grain growth, but they also promote cavitation during tensile straining. The mechanisms of deformation are similar to those established for coarse-grained materials at higher temperatures ({>=}1000 C). (orig.)

  7. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  8. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, N.Yu. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Stepanov, N.D., E-mail: stepanov@bsu.edu.ru [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Shaysultanov, D.G. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation); Tikhonovsky, M.A. [National Science Center “Kharkov Institute of Physics and Technology”, NAS of Ukraine, Kharkov, 61108 (Ukraine); Salishchev, G.A. [Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015 (Russian Federation)

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The density of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.

  10. Wear characteristics of TiO[sub 2] coating and silicon carbide alloyed layer on Ti-6Al-4V material

    Energy Technology Data Exchange (ETDEWEB)

    Karamis, M.B. (Dept. of Mechanical Engineering, Erciyes Univ., Kayseri (Turkey))

    1992-08-14

    Wear properties of Ti-6Al-4V material (IMI-318) TiO[sub 2] coated and electron beam alloyed with silicon carbide were tested. Thickness of oxide coating, alloying conditions and properties of the alloyed layer such as hardness, layer thickness and microstructure are described. Wear tests were carried out on a general-purpose wear machine by using a disc-disc sample configuration under lubricated conditions. Counterface materials to oxide-coated and to surface-alloyed specimens were plasma-nitrided AISI 51100 and hardened AISI 4140 respectively. The resulting weight loss and wear resistance were monitored as a function of sliding distance and applied load. Although the electron beam alloying improved the wear resistance of Ti-6Al-4V material, the oxide coatings on the material were not resistant to wear. (orig.).

  11. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  12. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  13. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    International Nuclear Information System (INIS)

    Ezawa, Hirokazu; Miyata, Masahiro; Tatsumi, Kohei

    2014-01-01

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices

  14. Microstructure and mechanical properties of cast Ti-47Al-2Cr-2Nb alloy melted in various crucibles

    Directory of Open Access Journals (Sweden)

    Wang Ligang

    2012-02-01

    Full Text Available The main factors limiting the mass production of TiAl-based components are the high reactivity of TiAl-based alloys with the crucible or mould at high temperature. In this work, various crucibles (e.g. CaO, Y2O3 ceramic crucibles and water-cooled copper crucible were used to fabricate the Ti-47Al-2Cr-2Nb alloy in a vacuum induction furnace. The effects of crucible materials and melting parameters on the microstructure and mechanical properties of the alloy were analyzed by means of microstructure observation, chemical analysis, tensile test and fracture surface observation. The possibilities of melting TiAl alloys in crucibles made of CaO and Y2O3 refractory materials were also discussed.

  15. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming

    International Nuclear Information System (INIS)

    Ren, Y.M.; Lin, X.; Fu, X.; Tan, H.; Chen, J.; Huang, W.D.

    2017-01-01

    This work investigated the microstructure and tensile deformation behavior of Ti-6Al-4V alloy fabricated using a high-power laser solid forming (LSF) additive manufacturing. The results show that the post-fabricated heat-treated microstructure consists of coarse columnar prior-β grains (630–1000 μm wide) and α-laths (5–9 μm) under different scanning velocities (900 and 1500 mm/min), which caused large elongation (∼18%) superior to the conventional laser additive manufacturing Ti-6Al-4V alloy. The deformation behavior of the LSF Ti-6Al-4V alloy was investigated using in situ tensile test scanning electron microscopy. The results show that shear-bands appeared along the α/β interface and slip-bands occurred within the α-laths, which lead to cracks decaying in a zigzag-pattern in the LSF Ti-6Al-4V alloy with basket-weave microstructure. These results demonstrate that the small columnar prior-β grains and fine basket-weave microstructure exhibiting more α/β interfaces and α-laths can disperse the load and resist the deformation in the LSF Ti-6Al-4V components. In addition, a modified microstructure selection map of the LSF Ti-6Al-4V alloy was established, which can reasonably predict the microstructure evolution and relative grain size in the LSF process.

  16. First-principle Calculations of Mechanical Properties of Al2Cu, Al2CuMg and MgZn2 Intermetallics in High Strength Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    LIAO Fei

    2016-12-01

    Full Text Available Structural stabilities, mechanical properties and electronic structures of Al2Cu, Al2CuMg and MgZn2 intermetallics in Al-Zn-Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh decreases in the order MgZn2 > Al2CuMg > Al2Cu, whereas the formation enthalpy (ΔH decreases in the order MgZn2 > Al2Cu > Al2CuMg. Al2Cu can act as a strengthening phase for its ductile and high Young's modulus. The Al2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al2Cu, Al2CuMg and MgZn2, and that improves the structural stability. In order to improve the alloys' performance further, the generation of MgZn2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly.

  17. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  18. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  19. The influence of AlCrN coating on the high-temperature corrosion resistance of Ti-46Al-7Nb alloy in an atmosphere containing 9% O{sub 2} + 0.2% HCl + 0.08% SO{sub 2} + N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Malecka, Joanna [Opole Univ. of Technology (Poland). Faculty of Mechanical Engineering

    2013-09-15

    The results of investigation of the isothermal oxidation wear mechanism of Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni intermetallic alloy with AlCrN coating are presented. Tests in 9% O{sub 2} + 0.2% HCl + 0.08% SO{sub 2} + N{sub 2} atmosphere were performed at a temperature of 700 C. The structure of the specimen and chemical composition of the oxidation products were analysed using scanning electron microscopy and energy dispersive X-ray analysis. In addition, mass changes were investigated.

  20. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    International Nuclear Information System (INIS)

    Sun, Ting; Wu, Xiaozhi; Wang, Rui; Li, Weiguo

    2015-01-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the 〈110〉 direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces. (paper)

  1. Orientation of Al3Ti platelets in Al-Al3Ti functionally graded material manufactured by centrifugal method

    International Nuclear Information System (INIS)

    Watanabe, Y.; Fukui, Y.

    1997-01-01

    Al-Al 3 Ti functionally graded materials (FGMs) were manufactured by the centrifugal method with a commercial ingot of Al-5 mass% Ti master alloy. The alloy was melted at a liquid/solid coexisting temperature, at which Al 3 Ti remains as a solid, and then it was cast into a thick-walled ring. It was found that the Al-Al 3 Ti functionally graded material can be successfully fabricated by the centrifugal method. It was also found that the volume fraction of the Al 3 Ti can be increased by repetition of the centrifugal method. Since the shape of Al 3 Ti particles in a commercial alloy ingot is that of a platelet, the Al 3 Ti particles are arranged with their platelet planes nearly perpendicular to the radial direction. The orientation effects become stronger when the G number becomes larger. Although the final centrifugal casting was conducted under a very large centrifugal force for the specimen cast three times, the orientation effects were weaker than those in the specimen cast one time. From these observations, it is concluded that the origin of orientation of Al 3 Ti platelets can be attributed to the angular velocity gradient of the melt along the radial direction produced by the difference in the viscosity. (orig.)

  2. A Stochastic Reliability Model for Application in a Multidisciplinary Optimization of a Low Pressure Turbine Blade Made of Titanium Aluminide

    OpenAIRE

    Dresbach,Christian; Becker,Thomas; Reh,Stefan; Wischek,Janine; Zur,Sascha; Buske,Clemens; Schmidt,Thomas; Tiefers,Ruediger

    2016-01-01

    Abstract Currently, there are a lot of research activities dealing with gamma titanium aluminide (γ-TiAl) alloys as new materials for low pressure turbine (LPT) blades. Even though the scatter in mechanical properties of such intermetallic alloys is more distinctive as in conventional metallic alloys, stochastic investigations on γ -TiAl alloys are very rare. For this reason, we analyzed the scatter in static and dynamic mechanical properties of the cast alloy Ti-48Al-2Cr-2Nb. It wa...

  3. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  4. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C [Instituto Nacional de Investigaciones Nucleares. Depto.de Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)

    1999-07-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  5. Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni-Al system

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Aamir; Zadorozhnyy, Vladislav Yu.; Pavlov, Mikhail D.; Semenov, Dmitri V.; Kaloshkin, Sergey D. [National Univ. of Science and Technology (MISIS), Moscow (Russian Federation)

    2018-01-15

    NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni-Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec{sup -1}), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni-Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.

  6. Uniform distribution of TiCp in TiCp/Zn-Al composites prepared by XDTM

    Institute of Scientific and Technical Information of China (English)

    王香; 马旭梁; 李庆芬; 曾松岩

    2002-01-01

    The prefabricated Al/TiC alloy with high TiC particle content was prepared by XDTM process. The uniform distribution process of TiC particles in the stationary zinc melt was studied and analyzed using self-made experimental equipment, and the model of the uniform distribution process was built. The results show that zinc diffuses into the prepared Al/TiC alloy after it is placed in the zinc melt at temperatures below the melting point of aluminum, which leads to the decrease of the liquidus temperature of Al-Zn alloy in the surface layer of Al/TiC alloy. When the liquidus temperature of Al-Zn alloy is equal to or below the temperature of zinc melt, Al-Zn alloy melts and TiC particles drop with it from the Al/TiC alloy and then transfer into the zinc melt and finally distribute uniformly in it.

  7. Thermodynamic analysis of (Ni, Fe)3Al formation by mechanical alloying

    International Nuclear Information System (INIS)

    Adabavazeh, Z.; Karimzadeh, F.; Enayati, M.H.

    2012-01-01

    Highlights: ► (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying. ► We use a thermodynamic analysis to predict the more stable phase. ► We calculate the Gibbs free-energy changes by using extended Miedema model. ► The results of MA compared with thermodynamic analysis and showed a good agreement with it. - Abstract: (Ni, Fe) 3 Al intermetallic compound was synthesized by mechanical alloying (MA) of Ni, Fe and Al elemental powder mixtures of composition Ni 50 Fe 25 Al 25 . Phase transformation and microstructure characteristics of the alloy powders were investigated by X-ray diffraction (XRD). The results show that mechanical alloying resulted in a Ni (Al, Fe) solid solution. By continued milling, this structure transformed to the disordered (Ni, Fe) 3 Al intermetallic compound. A thermodynamic model developed on the basis of extended theory of Miedema is used to calculate the Gibbs free-energy changes. Final product of MA is a phase having minimal Gibbs free energy compared with other competing phases in Ni–Fe–Al system. However in Ni–Fe–Al system, the most stable phase at all compositions is intermetallic compound (not amorphous phase or solid solution). The results of MA were compared with thermodynamic analysis and revealed the leading role of thermodynamic on the formation of MA product prediction.

  8. Studies on the sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners

    Energy Technology Data Exchange (ETDEWEB)

    Gazanion, F.; Chen, X.G.; Dupuis, C. [Alcan International Ltd., Jonquiere, PQ (Canada). Arvida Research and Development Centre

    2002-07-01

    The sedimentation and agglomeration behavior of Al-Ti-B and Al-Ti-C grain refiners in liquid aluminum has been investigated using the LiMCA and PoDFA analysis techniques in combination with metallographic examination. The widely used Al-5%Ti-1%B and Al-3%Ti-0.15%C master alloys were chosen. Two aluminum alloys, an AAlxxx (commercially pure metal) and an AA5182 (Al-4.5%Mg) alloy, were prepared with different additions of grain refiners. The difference in particle behavior in liquid aluminum for both refiners is described and briefly analyzed in terms of sensitivity to agglomeration and grain refiner performance. Experimental results indicate that, in comparison with the Al-Ti-B refiner, the Al-Ti-C refiner is detrimentally affected by long holding periods due to the decomposition of TiC particles within the melt. (orig.)

  9. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  10. Combined effects of ultrasonic vibration and manganese on Fe-containing inter-metallic compounds and mechanical properties of Al-17Si alloy with 3wt.%Fe

    Directory of Open Access Journals (Sweden)

    Lin Chong

    2013-05-01

    Full Text Available The research studied the combined effects of ultrasonic vibration (USV and manganese on the Fe-containing inter-metallic compounds and mechanical properties of Al-17Si-3Fe-2Cu-1Ni (wt.% alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-Al4(Fe,MnSi2 phase and long needle-like β-Al5(Fe,MnSi phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-Al5(Fe,MnSi phase decrease and the plate-like δ-Al4(Fe,MnSi2 phase becomes much coarser. After USV treatment, the Fe-containing compounds in the alloys are refined and exist mainly as δ-Al4(Fe,MnSi2 particles with an average grain size of about 20 μm, and only a small amount of β-Al5(Fe,MnSi phase remains. With USV treatment, the ultimate tensile strengths (UTS of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 °C are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.

  11. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    Science.gov (United States)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  12. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  13. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    International Nuclear Information System (INIS)

    Xu Jiang; Liu Wenjin; Kan Yide; Zhong Minlin

    2006-01-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB 2 and Ti 3 B 4 peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO 2 laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB 2 , Ti 3 B 4 , Al 3 Ti, Al 3 Fe and α-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB 2 and Ti 3 B 4 peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB 2 and Ti 3 B 4 peritectic improve wear resistance when compared with the as-received Al substrate

  14. The effect of aluminum content on phase constitution and heat treatment behavior of Ti-Cr-Al alloys for healthcare application

    International Nuclear Information System (INIS)

    Sugano, Daisuke; Ikeda, Masahiko

    2005-01-01

    As life expectancy steadily increases, developing reliable functional materials for healthcare applications gains importance. Titanium and its alloys, while attractive for such applications, are expensive. The present investigation suggests that it may be possible to reduce costs by using new, low-cost beta Ti alloys. To assess their reliability, the heat treatment behavior of beta Ti alloys, Ti-7 mass% Cr with varying Al content (0%, 1.5%, 3.0% and 4.5%), was investigated through electrical resistivity and Vickers hardness measurements. In the Ti-7Cr-0Al alloy quenched from 1173 K, only the beta phase was identified by X-ray diffraction (XRD). In Ti-7Cr-1.5 to 4.5 Al alloys, XRD detected both beta and orthorhombic martensite. On isochronal heat treatment behavior of Ti-7Cr-3.0, 4.5 Al alloys, resistivity at liquid nitrogen temperature and resistivity ratio increased between 423 and 523 K.These increases are due to reverse transformation of orthorhombic martensite to the metastable beta phase

  15. Stabilization effect of Zr and Ti additions on the ageing characteristics of Al-1 wt% Si alloy through a creep study

    Energy Technology Data Exchange (ETDEWEB)

    Deaf, G.H.; Beshai, M.H.N.; Abd El Khalek, A.M.; Graiss, G. [Ain Shams Univ., Cairo (Egypt). Dept. of Physics; Kenawy, M.A. [Ain Shams Univ., Cairo (Egypt). Womens Coll.

    1997-12-31

    Al-1 wt% Si and Al-1 wt% Si-0.1 wt% Zr-0.1 wt% Ti alloys were used to trace the effect of Zr and Ti additions on the behaviour of the steady state creep. After solid solution treatment specimens of both alloys were aged at 623, 673, 723 and 773 K and creep tests were performed at room temperature by applying stresses of 60.0, 62.4, 64.7 and 67.1 MPa. The results showed a sound stabilization effect of Zr and Ti on the ageing characteristics of binary Al-1 wt% Si alloy. Values of the applied stress sensitivity parameter, m, obtained were in the range of (20-34) for Al-Si alloy and (14-19) for Al-Si-Zr-Ti alloy. Time to rupture was found to be strongly increased by Zr and Ti additions. The activation energies of the precipitation process involved were found to be 81.9 kJ/mole and 33.7 kJ/mole of the Al-Si and Al-Si-Zr-Ti alloys respectively. (orig.) 17 refs.

  16. Diffusion Brazing of Ti-6Al-4V and Stainless Steel 316L Using AgCuZn Filler Metal

    Directory of Open Access Journals (Sweden)

    R. Soltani Tashi

    2013-09-01

    Full Text Available In the present study, vacuum brazing was applied to join Ti-6Al-4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness. It has been shown that shear strength decreased with increasing the brazing temperature and time. The wettability of the filler alloy was increased by enhancing the wetting test temperature. By increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe-Cu-Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for different brazing temperatures.

  17. Microstructure and wear behavior of {gamma}/Al{sub 4}C{sub 3}/TiC/CaF{sub 2} composite coating on {gamma}-TiAl intermetallic alloy prepared by Nd:YAG laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiubo [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)], E-mail: liubobo0828@yahoo.com.cn; Shi Shihong [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China); Guo Jian [School of Materials and Chemical Engineering, Zhongyuan Institute of Technology, 41 Zhongyuan West Road, Zhengzhou 450007 (China); Fu Geyan; Wang Mingdi [School of Mechanical and Electronic Engineering, 178 Ganjiang East Road, Soochow University, Suzhou 215021 (China)

    2009-03-15

    As a further step in obtaining high performance elevated temperature self-lubrication anti-wear composite coatings on TiAl alloy, a novel Ni-P electroless plating method was adopted to encapsulate the as-received CaF{sub 2} in the preparation of precursor NiCr-Cr{sub 3}C{sub 2}-CaF{sub 2} mixed powders with an aim to decrease its mass loss and increase its compatibility with the metal matrix during a Nd:YAG laser cladding. The microstructure of the coating was examined using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) and the friction and wear behavior of the composite coatings sliding against the hardened 0.45% C steel ring was evaluated using a block-on-ring wear tester at room temperature. It was found that the coating had a unique microstructure consisting of primary dendrites TiC and block Al{sub 4}C{sub 3} carbides reinforcement as well as fine isolated spherical CaF{sub 2} solid lubrication particles uniformly dispersed in the NiCrAlTi ({gamma}) matrix. The good friction-reducing and anti-wear abilities of the laser clad composite coating was suggested to the Ni-P electroless plating and the attendant reduction of mass loss of CaF{sub 2} and the increasing of it's wettability with the NiCrAlTi ({gamma}) matrix during the laser cladding process.

  18. Electron beam melting of high niobium containing TiAl alloy: feasibility investigation

    Energy Technology Data Exchange (ETDEWEB)

    Terner, Mathieu; Biamino, Sara; Epicoco, Paolo; Fino, Paolo; Pavese, Matteo; Badini, Claudio [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino (Italy); Penna, Andrea; Gennaro, Paolo [AvioProp, Novara (Italy); Hedin, Oscar; Ackelid, Ulf [Arcam AB, Molndal (Sweden); Sabbadini, Silvia; Pelissero, Federica [Avio SpA, Torino (Italy)

    2012-08-15

    Third generation {gamma}-TiAl alloys with a high niobium content, Ti-(47-48)Al-2Cr-8Nb, were processed by electron beam melting (EBM). This near-net-shape additive manufacturing process produces complex parts according to a CAD design. The starting powder is deposited layer by layer on the building table and selectively melted to progressively form the massive part. The EBM parameters such as layer thickness, melting temperature, scanning speed, or building strategy were set up to minimize porosity. The chemical composition of the built material is similar to the composition of the base powder despite a slight evaporation of aluminum and reveals a neglectable oxygen pick-up. The very fine equiaxed microstructure resulting after EBM can be then set up by heat treatment (HT). According to the HT temperature in particular, an equiaxed microstructure, a duplex microstructure with different lamellar ratio and a fully lamellar microstructure is obtained. Not only test bars have been produced but also complex parts such as demo low pressure turbine blades. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    OpenAIRE

    ZHU Langping; LU Xin; LIU Chengcheng; LI Jianchong; NAN Hai

    2017-01-01

    A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickl...

  20. Strain ageing and yield plateau phenomena in γ-TiAl based alloys containing boron

    International Nuclear Information System (INIS)

    Cheng, T.T.; Bate, P.S.; Botten, R.R.; Lipsitt, H.A.

    1999-01-01

    There has been considerable interest over the past few years in γ-TiAl based alloys since they offer a combination of low density and useful mechanical properties at temperatures higher than those possible with conventional titanium alloys. However, there are still serious limitations to their use in engineering components due to their limited ductility and fracture toughness. Much of the recent work has been focused on improving the room temperature ductility of these materials, and a significant part of the work has been involved with studying the effects of thermo-mechanical processing (TMP) and alloying. One of the alloying additions which has received much attention is boron. Addition of boron (≥0.5 at.%) leads to refined as-cast grain structures and can increase the strength and ductility of these alloys. If boron does segregate to grain boundaries, it would be expected that segregation would also occur at dislocations, which can result in solute locking and yield point phenomena. Nakano and Umakoshi's results show some signs of this, with regions of distinct upward curvature in stress-strain curves for boron-containing material, although the flow stress was always increasing with strain. Evidence of strain ageing in TiAl alloys containing boron has also been reported by Wheeler et al., and the work reported here also suggests that boron can act to produce solute locking of glide dislocations in a different class of near γ-TiAl alloys

  1. Castability of Ti-6Al-7Nb alloy for dental casting

    OpenAIRE

    Wang, Tie Jun; 小林, 郁夫; 土居, 壽; 米山, 隆之

    1999-01-01

    Castability of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy was examined for mesh type and plate type specimens. The casting was carried out with a pressure type casting machine and commercial molding material. The castability of the mesh type specimen was evaluated in terms of the number of cast segments (castability index), and that of the plate type was evaluated by the area of the speci­men (casting rate). X-ray images processed by a digital imaging technique were used to identify the casting...

  2. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  3. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  4. Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb Alloys for Total Hip Prosthesis

    Directory of Open Access Journals (Sweden)

    Mamoun Fellah

    2014-01-01

    Full Text Available The aim of the study is to evaluate the friction and wear behavior of high-strength alloys Ti-6Al-7Nb used in femoral stem and compare it with a Ti-6Al-4V alloy cylindrical bar corresponding to ISO 5832-3 part 3/01-07-199 standard. The tribological behavior was investigated by wear tests, using ball-on-disc and pin-on-disc tribometers. These tests consisted of measuring the weight loss and the friction coefficient of samples. The oscillating friction and wear tests have been carried out in ambient with oscillating tribotester in accordance with standards ISO 7148, ASTM G99-95a, and ASTM G133-95 under different conditions of normal loads (3, 6, and 10 N and sliding speeds (1, 15, and 25 mm·s−1. As counter pairs, a 100Cr6 steel ball with 10 mm in diameter was used. Results show that the two alloys had similar friction and wear performance, although their grain structures and compositions are different. Occurrence of large frictional occurred, is probably caused by formation and periodic, localized fracture of a transfer layer. Higher friction with larger fluctuation and higher wear rate was observed at the higher siding speed. The Ti-6Al-4V wear mechanism transforms from ploughing and peeling off wear at low sliding speed to plastic deformation and adhesive wear.

  5. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    Science.gov (United States)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  6. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    International Nuclear Information System (INIS)

    Jaradeh, M M R; Carlberg, T

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al 6 (Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  7. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    Science.gov (United States)

    Jaradeh, M. M. R.; Carlberg, T.

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al6(Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  8. Effects of Heat-treatment on the Tensile Properties of Ti-Al-Zr Alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Choi, Byoung Kwon; Jeong, Yong Hwan

    2006-01-01

    Ti-Al-Zr, titanium alloy, has been well known material as one of the candidates for heat-exchange tubes in steam generators in SMART (System integrated Modular Advanced ReacTor). But the primary circuit with the primary coolant is much different from that of commercial PWRs, i.e., an ammonia is used as a pH raising agent and the heat-exchange tubes are exposed to the primary coolant water at high temperatures and in high-pressure environments. Thus, excellent mechanical properties and corrosion resistance are required for the safe operation during the lifetime. A lot of tests were done to examine the mechanical properties of the Ti-Al-Zr alloy in the room temperature. But the test of this work is done in the more realistic condition from the viewpoint of the system characteristics for SMART design concept. Therefore, the purpose of this study is to evaluate the effects of annealing and cooling rate on the tensile properties of Ti-Al-Zr alloy at the operation temperature

  9. The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys

    International Nuclear Information System (INIS)

    Chen, C.-L.; Thomson, R.C.

    2010-01-01

    Multicomponent Al-Si based casting alloys are used for a variety of engineering applications, including for example, piston alloys. Properties include good castability, high strength, light weight, good wear resistance and low thermal expansion. In order for such alloys to continue operation to increasingly higher temperatures, alloy element modifications are continually being made to further enhance the properties. Improved mechanical and physical properties are strongly dependent upon the morphologies, type and distribution of the second phases, which are in turn a function of alloy composition and cooling rate. The presence of additional elements in the Al-Si alloy system allows many complex intermetallic phases to form, which make characterisation non-trivial. These include, for example, CuAl 2 , Al 3 Ni 2 , Al 7 Cu 4 Ni, Al 9 FeNi and Al 5 Cu 2 Mg 8 Si 6 phases, all of which may have some solubility for additional elements. Identification is often non-trivial due to the fact that some of the phases have either similar crystal structures or only subtle changes in their chemistries. A combination of electron backscatter diffraction (EBSD) and energy dispersive X-ray analysis (EDX) has therefore been used for the identification of the various phases. This paper will present comparisons of phase identification methodologies using EBSD alone, and in combination with chemical information, either directly or through post processing.

  10. Investigation of alloying effects in aluminum dispersion strengthened with Al2O3

    International Nuclear Information System (INIS)

    Copeland, G.L.

    1975-10-01

    Two types of alloying elements were investigated to determine if the room-temperature strength could be improved and if, through lowering the oxide content, the high-temperature ductility could be improved. Mg was investigated for its solid solution strengthening in one type alloy. The other type alloy involved further dispersion strengthening through adding Fe, Mo, Zr, Cr, V, and Ti which form highly stable intermetallic compounds with Al. Fabrication techniques were developed which produced uniform and reproducible rods for testing. Prealloyed powders were produced by atomizing the molten alloys and collecting the powders in water. This procedure produced uniform powders with a very fine distribution of the intermetallic compounds. Fabrication into rods then included ball-milling, vacuum hot pressing, vacuum heat treating, and hot extrusion. Mg additions improved strengths up to 200 0 C with little effect above that temperature. Room-temperature tensile strengths up to 77,000 psi were obtained which are comparable to the strengths obtained in conventional aluminum alloys. The additional dispersion strengthening of the intermetallic compounds is additive to that of the oxide from room temperature to 450 0 C. No significant improvements in ductility are obtained by reducing the oxide content since even at very low ball-milling times (i.e., low oxide contents) the uniform elongation at 450 0 C is typically 0.5 percent. Good combinations of strength and ductility at 450 0 C were obtained in some of the alloys containing intermetallic compounds with no ball-milling. Typical properties at this temperature were tensile strengths of 7,000 psi, uniform elongation of 3 percent, and total elongation of 35 percent. (21 tables, 33 fig, 43 references) (auth)

  11. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  12. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Science.gov (United States)

    Ochonogor, O. F.; Meacock, C.; Abdulwahab, M.; Pityana, S.; Popoola, A. P. I.

    2012-12-01

    Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV0.1for the substrate reaching a peak as high as 922.2 HV0.1 for 60%Ti + 40%TiC and the least 665.3 HV0.1 for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  13. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    International Nuclear Information System (INIS)

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-01-01

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  14. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  15. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)]. E-mail: xujiang73@sina.com.cn; Liu Wenjin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Kan Yide [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China); Zhong Minlin [Laser Processing Research Center, Mechanical Engineering Department, Tsinghua University, Beijing 10084 (China)

    2006-07-01

    In order to improve wear resistance of aluminum alloy, the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate reinforced metal matrix composite formed on the 2024 aluminum alloy by laser cladding with a powder mixture of Fe coated Boron, Ti and Al was successfully achieved using 3 kW CW CO{sub 2} laser. The laser cladding coating present excellent bonding with aluminum alloy substrate. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM and XRD. The typical microstructure of composite coating is composed of TiB{sub 2}, Ti{sub 3}B{sub 4}, Al{sub 3}Ti, Al{sub 3}Fe and {alpha}-Al. The surface hardness of cladding coating is increased with the amount of added Fe coated B and Ti powder which determines the amount of TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic composite particulate, and obviously higher than that of substrate. The wear tests were carried out using a FALEX-6 type pin-on-disc machine. The test results show that the composite coatings with the in situ synthesized TiB{sub 2} and Ti{sub 3}B{sub 4} peritectic improve wear resistance when compared with the as-received Al substrate.

  16. Heat resistance of Fe-Al intermetallics in the context of selected heat-resistant and hihg-temperature creep resistant steels

    Directory of Open Access Journals (Sweden)

    P. Baranowski

    2009-04-01

    Full Text Available Results are hereby presented of heat-resistance tests of two Fe3Al and FeAl intermetallic phase-based alloys in the context of St41k-typeboiler steel and 50H21G9N4 high-temperature creep resistant steel. It has been ascertained that heat resistance of the 50H21G9N4 steeland of the Fe3Al and FeAl intermetallic phase-based alloys significantly exceeds that of the boiler steel tested in the air atmosphere and the atmosphere of a flue gas with CO, CO2, SiO2 content alike. Improvement of these properties depends of exposure conditions. The largest differences have been observed when the tests were carried out in temperature 1023 K and in the flue gas atmosphere. The differences have been more and more noticeable as the exposition duration extended. A tendency has been also recorded of smaller mass decrements of the Fe3Al and FeAl intermetallic phase-based alloys as compared to the 50H21G9N4 steel.

  17. Effects of La and Ce Addition on the Modification of Al-Si Based Alloys

    Directory of Open Access Journals (Sweden)

    Emad M. Elgallad

    2016-01-01

    Full Text Available This study focuses on the effects of the addition of rare earth metals (mainly lanthanum and cerium on the eutectic Si characteristics in Al-Si based alloys. Based on the solidification curves and microstructural examination of the corresponding alloys, it was found that addition of La or Ce increases the alloy melting temperature and the Al-Si eutectic temperature, with an Al-Si recalescence of 2-3°C, and the appearance of post-α-Al peaks attributed to precipitation of rare earth intermetallics. Addition of La or Ce to Al-(7–13% Si causes only partial modification of the eutectic Si particles. Lanthanum has a high affinity to react with Sr, which weakens the modification efficiency of the latter. Cerium, however, has a high affinity for Ti, forming a large amount of sludge. Due to the large difference in the length of the eutectic Si particles in the same sample, the normal use of standard deviation in this case is meaningless.

  18. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  19. The corrosion Characteristics and Behaviors of the Ti-2.19Al-2.35Zr alloy

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Kang, Chang Sun; Baek, Jong Hyuk; Kim, Hyun Gil; Choi, Byoung Kwon; Jeong, Yong Hwan

    2007-01-01

    Ti-2.19Al-2.35Zr alloy is being considered as a steam generator tube material for the advanced pressurized water reactor (PWR) which is being developed by KAERI for the purpose of seawater desalination as well as a small scale electricity production. The main operational environment of SMART differs somewhat from that of a commercial PWR. That is, a heat-exchange tube is always exposed to a high temperature/pressure condition and an ammonia water chemistry is designed as a pH controlling agent without an addition of boric acid. The excellent mechanical and corrosion resistance properties are required for the steam generator tube material in SMART. Thus Ti-2.19Al-2.35Zr alloy was studied to investigate of the corrosion characteristics and behaviors of the Ti- 2.19Al-2.35Zr alloy in a simulated-SMART loop

  20. Interface-related deformation phenomena in intermetallic γ-titanium aluminides

    International Nuclear Information System (INIS)

    Appel, F.; Wagner, R.

    1993-01-01

    The development of titanium aluminides towards higher ductility concentrates on Ti-rich alloys which are composed of the intermetallic phases γ(TiAl) and α 2 (Ti 3 Al). The two phases form a lamellar microstructure with various types of interfaces. The deformation behaviour of these materials was investigated by compression tests, which were performed for different orientations of the interfacial boundaries with respect to the sample axis. With regard to the mechanical properties the structure of the interfaces and the micromechanisms of deformation were studied by conventional and high resolution electron microscopy. Accordingly, the interfacial boundaries impede the propagation of slip across the lamellae, leading to an athermal contribution to the flow stress. (orig.)

  1. Interface-related deformation phenomena in intermetallic γ-titanium aluminides

    Science.gov (United States)

    Appel, F.; Wagner, R.

    1993-01-01

    The development of titanium aluminides towards higher ductility concentrates on Ti-rich alloys which are composed of the intermetallic phases γ(TiAl) and α2(Ti3Al). The two phases form a lamellar microstructure with various types of interfaces. The deformation behaviour of these materials was investigated by compression tests, which were performed for different orientations of the interfacial boundaries with respect to the sample axis. With regard to the mechanical properties the structure of the interfaces and the micromechanisms of deformation were studied by conventional and high resolution electron microscopy. Accordingly, the interfacial boundaries impede the propagation of slip across the lamellae, leading to an athermal contribution to the flow stress.

  2. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Science.gov (United States)

    Wang, Yaping; Lou, Jin; Zeng, Lilan; Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin; Zhao, Ying; Zhang, Rongfa

    2017-08-01

    In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP2O7 as well as some OH- groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  3. Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Chen, Zhen; Wen, Haiming; Lavernia, Enrique J.

    2014-01-01

    The influence of Ti addition and sintering method on the microstructure and mechanical behavior of a medium-entropy alloy, Al 0.6 CoNiFe alloy, was studied in detail. Alloying behavior, microstructure, phase evolution and mechanical properties of Al 0.6 CoNiFe and Ti 0.4 Al 0.6 CoNiFe alloys were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as by mechanical testing. During the mechanical alloying (MA) process, a supersaturated solid solution consisting of both BCC and FCC phases was formed in the Al 0.6 CoNiFe alloy. With Ti addition, the Ti 0.4 Al 0.6 CoNiFe alloy exhibited a supersaturated solid solution with a single FCC phase. Following hot pressing (HP), the HP sintered (HP’ed) Al 0.6 CoNiFe bulk alloy was composed of a major BCC phase and a minor FCC phase. The HP’ed Ti 0.4 Al 0.6 CoNiFe alloy exhibited a FCC phase, two BCC phases and a trace unidentified phase. Nanoscale twins were present in the HP’ed Ti 0.4 Al 0.6 CoNiFe alloy, where deformation twins were observed in the FCC phase. Our results suggest that the addition of Ti facilitated the formation of nanoscale twins. The compressive strength and Vickers hardness of HP’ed Ti 0.4 Al 0.6 CoNiFe alloy were slightly lower than the corresponding values of the HP’ed Al 0.6 CoNiFe alloy. In contrast with HP’ed Al 0.6 CoNiFe alloy, spark plasma sintered (SPS’ed) Al 0.6 CoNiFe alloy exhibited a major FCC phase and a minor BCC phase. Moreover, the SPS’ed Al 0.6 CoNiFe alloy exhibited a lower compressive strength and Vickers hardness, but singificantly higher plasticity, as compared to those of the HP’ed counterpart material

  4. Tribocorrosion Study of Ordinary and Laser-Melted Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Danillo P. Silva

    2016-10-01

    Full Text Available Titanium alloys are used in biomedical implants, as well as in other applications, due to the excellent combination of corrosion resistance and mechanical properties. However, the tribocorrosion resistance of titanium alloy is normally not satisfactory. Therefore, surface modification is a way to improve this specific performance. In the present paper, laser surface-modified samples were tested in corrosion and pin-on-disk tribocorrosion testing in 0.90% NaCl under an average Hertzian pressure of 410 MPa against an alumina sphere. Laser-modified samples of Ti6Al4V were compared with ordinary Ti6Al4V alloy. Electrochemical impedance showed higher modulus for laser-treated samples than for ordinary Ti6Al4V ones. Moreover, atomic force microscopy revealed that laser-treated surfaces presented less wear than ordinary alloy for the initial exposure. For a further exposure to wear, i.e., when the wear depth is beyond the initial laser-affected layer, both materials showed similar corrosion behavior. Microstructure analysis and finite element method simulations revealed that the different behavior between the initial and the extensive rubbing was related to a fine martensite-rich external layer developed on the irradiated surface of the fusion zone.

  5. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    Energy Technology Data Exchange (ETDEWEB)

    Wojtaszek, Marek, E-mail: mwojtasz@metal.agh.edu.pl; Śleboda, Tomasz

    2014-12-05

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography.

  6. Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging

    International Nuclear Information System (INIS)

    Wojtaszek, Marek; Śleboda, Tomasz

    2014-01-01

    Highlights: • Thermomechanical parameters of P/M Ti6Al4V alloy processing were determined. • The use of the mixture of elemental powders allows reducing manufacturing costs. • Numerical modelling allowed to elaborate favourable parameters of forging. • The industrial trials of hot forging of P/M Ti6Al4V alloy were successful. - Abstract: This work is focused on the design of technology of forging high-quality Ti6Al4V alloy by means of powder metallurgy methods. A mixture of elemental powders, with the chemical composition of that of Ti6Al4V alloy, was used as a starting material for the investigation. Powder mixtures were fully densified by hot compaction under precisely controlled conditions. The mechanical properties of the obtained compacts were examined. The mechanical behaviour of the investigated alloy powder compacts was evaluated by compression test under various thermomechanical conditions using Gleeble simulator. The microstructure of powder compacts as well as P/M alloy samples deformed in compression tests was examined. All data obtained from the experimental tests were applied as boundary conditions for numerical simulation of forging of selected forgings. Basing on the results of both plastometric tests and simulations, thermomechanical parameters of the investigated alloy forging were determined. Designed parameters of forging technology were verified by forging trials performed in industrial conditions. The quality of the obtained forgings was examined by means of computed tomography

  7. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Study of microstructure evolution and strengthening mechanisms in novel TiZrAlB alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.G.; Feng, Z.H.; Xia, C.Q.; Zhang, Z.G.; Zhang, X.; Zhang, X.Y., E-mail: xyzhang@ysu.edu.cn; Ma, M.Z.; Liu, R.P., E-mail: riping@ysu.edu.cn

    2017-04-24

    In this paper, the microstructural evolution and mechanical properties of the as-cast Ti-χZr-4Al-0.005B (TχZAB and χ=0, 10, 20, 30, 40 wt%) alloys were systematically investigated. Only the α phase was detected from the X-ray diffraction patterns of the as-cast TχZAB quaternary alloy series. As the Zr content increased, the average size and length-diameter ratio of the α grains were decreased from 69.8 μm to 17.1 µm and 37.5 to 8.4, respectively. The analysis of the results from the tensile and microhardness tests demonstrated that both the strength and hardness increased significantly as the Zr content increased (from 0 wt% to 40 wt%). Nevertheless, the ductility exhibited an opposite trend. The fracture mode of the ductile-brittle transfer was consistent with the ductility alteration. The as-cast Ti-40Zr-4Al-0.005B alloys demonstrated the highest tensile strength (σ{sub b}=1134 MPa), which increased by 53% compared to the Ti-4Al-0.005B alloys, whereas the lowest elongation-to-failure was of 6.77%. The mechanical properties of the TχZAB alloy series were discussed based on the microstructural evolution and the solid solution strengthening mechanisms.

  9. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  10. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  11. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  12. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    International Nuclear Information System (INIS)

    Gorny, Anton; Manickaraj, Jeyakumar; Cai, Zhonghou; Shankar, Sumanth

    2013-01-01

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al 13 Fe 4 , τ 5 -Al 8 Fe 2 Si and τ 6 -Al 9 Fe 2 Si 2 phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s −1 . Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ 5 -Al 8 SiFe 2 and τ 6 -Al 9 Fe 2 Si 2 . The τ 5 -Al 8 SiFe 2 phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ 6 -Al 9 Fe 2 Si 2 through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al 13 Fe 4 binary phase precludes the evolution of the τ 5 during solidification and subsequently transforms into the τ 6 phase during solidification. These observations are anomalous to the publications as prior art and simulation predictions of thermodynamic phase diagrams of these alloys, wherein, only one intermetallic phases in the

  13. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    Science.gov (United States)

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  14. Development of melting and casting process for Nb-Al intermetallic compounds and mechanical properties

    International Nuclear Information System (INIS)

    Kamata, Kinya; Degawa, Toru; Nagashima, Yoshinori

    1993-01-01

    The shaping methods of Nb-Al intermetallic compounds, especially melting and casting, have considerably different characteristics as compared with those for other metals and alloys. The authors have investigated melting and casting processes for Nb-Al compounds to develop precision casting processes for these intermetallics. Fundamental properties of Nb-Al compound castings have been also investigated for high temperature structural use in this work. An advanced Induction Skull Melting (ISM) furnace has been developed and the advantages of ISM have been recognized as a result of this study. The mechanical properties, such as hardness and compression strength, are dependent upon the Al content in Nb-Al binary compounds

  15. Determination of displacement threshold energies in pure Ti and in γ-TiAl alloys by electron irradiation

    International Nuclear Information System (INIS)

    Sattonnay, G.; Dimitrov, O.

    1999-01-01

    Resistivity damage rates, determined during low-temperature electron irradiations in the energy range 0.3-2.5 MeV, were used for evaluating displacement threshold energies of titanium in high purity hcp titanium, and of titanium and aluminium in γ-TiAl intermetallic compounds. These parameters were deduced from a comparison of experimental displacement cross-section variations as a function of electron energy, with theoretical curves based on a displacement model for diatomic materials. The displacement energy of titanium in hcp titanium appears to depend on the electron energy. A threshold value of 21±1 eV was obtained in the range 0.3-0.5 MeV, and a larger value of 30±2 eV is determined in the range 0.5-2.5 MeV. In γ-TiAl, aluminium atoms are displaced first, with a threshold displacement energy (34±2 eV) larger than the one of titanium atoms, and much higher than the value in pure aluminium. The displacement energy of Ti atoms is 28±2 eV, close to the one obtained in pure titanium under similar conditions. These results were used for re-evaluating the Frenkel-pair resistivity of the stoichiometric TiAl compound. (orig.)

  16. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  17. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  18. Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6

    International Nuclear Information System (INIS)

    Birol, Yuecel

    2008-01-01

    It is very desirable to replace the KBF 4 salt in the popular 'halide salt' process to reduce the volume of fluoride salts to be added to molten aluminium in the production of Al-Ti-B grain refiners. Being over 2 times richer in B, Na 2 B 4 O 7 is a promising replacement for KBF 4 , and is used in the present work to produce Al-Ti-B grain refiner master alloys. A fraction of the aluminide particles were entrapped in the spent salt giving a relatively lower Ti recovery when KBF 4 was replaced by Na 2 B 4 O 7 . The grain refining performance of the Al-Ti-B grain refiner alloy thus produced was nevertheless acceptable. The spent salt became too viscous with the oxides, aluminides and borides to be removed by decanting when Na 2 B 4 O 7 .5H 2 O was used to supply boron. The viscous spent salt, entrained in the grain refiner alloy, did not only impair its performance, but also hurt the fluidity of the molten alloy and made pouring difficult

  19. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.

  20. Osteogenic potential of a novel microarc oxidized coating formed on Ti6Al4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaping [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Lou, Jin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zeng, Lilan [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Xiang, Junhuai; Zhang, Shufang; Wang, Jun; Xiong, Fucheng; Li, Chenglin [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China); Zhao, Ying, E-mail: ying.zhao@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Zhang, Rongfa, E-mail: rfzhang-10@163.com [School of Materials and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330038 (China)

    2017-08-01

    Highlights: • Phytic acid is used as the MAO electrolyte of titanium alloys. • MAO coatings are composed of rutile, anatase, TiP{sub 2}O{sub 7} and some OH{sup −} groups. • The MAO samples present excellent in vitro cytocompatibility. - Abstract: In order to improve the biocompatibility, Ti6Al4V alloys are processed by micro arc oxidation (MAO) in a novel electrolyte of phytic acid, a natural organic phosphorus-containing matter. The MAO coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). The cytocompatibility of Ti6A14V alloys before and after MAO were comprehensively evaluated. The results showed that the fabricated MAO coatings were composed of rutile, anatase, TiP{sub 2}O{sub 7} as well as some OH{sup −} groups, exhibiting the excellent hydrophilicity and a porous structure with small micro pores. No cytotoxicity towards MC3T3-E1cells was observed in this study. In particular, MAO treated Ti6Al4V alloys presented comparable cell adhesion and proliferation as well as significantly enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization and collagen secretion in comparison with the untreated control. The results suggest that the Ti6Al4V alloys treated by MAO in phytic acid can be used as implants for orthopaedic applications, providing a simple and practical method to widen clinical acceptance of titanium alloys.

  1. Hydrogen storage properties of the Zintl phase alloy SrAl{sub 2} doped with TiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yunfeng, E-mail: yfzhu@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhang Wei; Liu Zhibing; Li Liquan [College of Materials Science and Engineering, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China)

    2010-03-04

    In this paper, the structural and hydrogenation characteristics of TiF{sub 3}-doped Zintl phase alloy SrAl{sub 2} were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and hydrogenation measurements. The results show that the hydrogenation kinetics of the Zintl phase alloy SrAl{sub 2} is improved greatly after doping with TiF{sub 3}. By adjusting the doping amount and ball milling time, the optimal doping conditions were obtained. The catalytic mechanism of TiF{sub 3} for the hydrogenation of SrAl{sub 2} was also investigated. SrAl{sub 2} does not react with TiF{sub 3} during the ball milling process. However, it reacts with TiF{sub 3} to form SrAl{sub 2}H{sub 2}, SrF{sub 2}, SrAl{sub 4} and Ti during the hydrogenation process, among which Ti plays an important role in the hydrogenation kinetics of SrAl{sub 2}.

  2. Comparison between pulsed Nd:YAG laser superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Reis, A.G.; Reis, D.A.P.; Moura Neto, C.; Oliveira, H.S.; Couto, A.A.

    2009-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190 deg C by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In the Nd:YAG pulsed laser treatment was used an environment of 40 % N and 60 % Ar, with 2.1 W of power and 10 m/s of speed. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the laser treatment on Ti-6Al-4V alloy improved its creep resistance. (author)

  3. Low elastic modulus Ti-Ta alloys for load-bearing permanent implants: enhancing the biodegradation resistance by electrochemical surface engineering.

    Science.gov (United States)

    Kesteven, Jazmin; Kannan, M Bobby; Walter, Rhys; Khakbaz, Hadis; Choe, Han-Choel

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium-tantalum (Ti-Ta) alloys (10-30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium-aluminium-vanadium (Ti6Al4V) alloy. Among the three Ti-Ta alloys studied, the Ti20Ta (6.3×10(-4) mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2×10(-3) mm/y) and Ti10Ta (1.4×10(-3) mm/y). All the Ti-Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8×10(-3) mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1×10(-4) mm/y), the degradation rate of Ti20Ta alloy was lower by ~22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ~48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8×10(-3) mm/y) showed ~53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Science.gov (United States)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  5. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  6. Ni3Al intermetallide-based alloy: a promising material for turbine blades

    International Nuclear Information System (INIS)

    Kablov, E.N.; Lomberg, B.S.; Buntushkin, V.P.; Golubovskij, E.R.; Muboyadzhyan, S.A.

    2002-01-01

    A consideration is given to properties and structure of a cast intermetallic alloy grade VKNA-4U-mono- with monocrystalline structure in the temperature range of 20-1250 deg C. The influence of long-term heating at 1200 deg C on the stability of alloy mechanical properties is investigated. The advantages of a cast alloy on the basis of alloyed intermetallic compound Ni 3 Al are demonstrated, the processing and physical properties of the alloy are presented [ru

  7. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  8. Electronic structure and phase stability during martensitic transformation in Al-doped ZrCu intermetallics

    International Nuclear Information System (INIS)

    Qiu Feng; Shen Ping; Liu Tao; Lin Qiaoli; Jiang Qichuan

    2010-01-01

    Martensitic transformation, phase stability and electronic structure of Al-doped ZrCu intermetallics were investigated by experiments and first-principles calculations using the pseudopotentials plane wave method. The formation energy calculations indicate that the stability of the ZrCu phase increases with the increasing Al content. Al plays a decisive role in controlling the formation and microstructures of the martensite phases in Zr-Cu-Al alloys. The total energy difference between ZrCu (B2) austenite and ZrCu martensite plays an important role in the martensitic transformation. The phase stability is dependent on its electronic structure. The densities of states (DOS) of the intermetallics were discussed in detail.

  9. Low Temperature Diffusion Transformations in Fe-Ni-Ti Alloys During Deformation and Irradiation

    Science.gov (United States)

    Sagaradze, Victor; Shabashov, Valery; Kataeva, Natalya; Kozlov, Kirill; Arbuzov, Vadim; Danilov, Sergey; Ustyugov, Yury

    2018-03-01

    The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe-36Ni-3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77-173 K. The existence of interstitial atoms in the Fe-36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.

  10. The role of intermetallic precipitates in Ti-62222S

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D J [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Broderick, T F [US Air Force Mater. Directorate Wright Lab., Wright Patterson AFB, OH (United States); Woodhouse, J B [UES Inc, Dayton, OH (United States); Hoenigman, J R [Wright State Univ., Dayton, OH (United States). Research Inst.

    1996-08-15

    Samples of Ti-62222-0.23wt.%Si were heat treated and aged at temperatures ranging from 1150 F to 1500 F with the view of effecting selective precipitation of {alpha}{sub 2} precipitates and silicides (i.e. Ti{sub x}Zr{sub 5-x}Si{sub 3}). The effect of these intermetallic precipitates on the mechanical properties and fracture morphology was assessed via three separate microstructural conditions: Ti-62222S with {alpha}{sub 2} precipitates, Ti-62222S with {alpha}{sub 2} and silicide precipitates, and Ti-62222S with silicide precipitates. Both types of intermetallic precipitate appear to lower the fracture toughness, however {alpha}{sub 2} promotes intergranular fracture while silicides lead to transgranular failure and dimpling. The combined presence of the {alpha}{sub 2} and silicides leads to mixed mode failure. Further, since {alpha}{sub 2} is present in the {alpha} phase and silicides precipitate out in the {beta} phase, it appears that the effect of each of these intermetallics in Ti-62222S is additive rather than synergistic. (orig.)

  11. A study of atomic distribution in the intermetallic compound by AP-FIM

    International Nuclear Information System (INIS)

    Ren, D.G.

    1993-01-01

    This paper reports a study of the atomic distributions in the intermetallic compound by field ion microscope and atom probe (AP-FIM). The samples used in this work had nearly stoichiometry composition of Ni 3 Al with boron and without boron. The samples of TiAl also had nearly stoichiometry composition and adding Zr and Mn. The field ion image of Ni 3 Al without boron displays essentially the ordered f.c.c. crystal structure (Ll 2 ) with the center of (001) face. The field ion image of B-doped Ni 3 Al shows that the extent of ordering is reduced by addition of boron. The results of AP analysis show that the distribution of boron atom in Ni 3 Al is approximately homogeneous for the low boron contents. The atomic arrangements of Ni and Al in Ni 3 Al crystal lattice were changed by addition of boron. It is shown in the probability of consecutive evaporative sequence Al-Al and Ni-Ni is increased with B-doping. The field ion image of TiAl shows two regions with ordered f.c.t crystal structure (r-TiAl) and disordered. The distributions of Ti and Al atoms in the TiAl alloy show that the structure of a lamellar mixture were confirmed by AP profiles. The results of AP analysis show that distributions of Ti, Al, Mn and Zr in the alloy essentially is homogeneous. The results of AP analysis also exhibit that the interface of an oxide exists in the alloys. These interfaces of oxides consist of TiO and AlO in the TiAl, NiO in the Ni 3 Al. The broadness of the oxides interface were estimated about 8-10nm

  12. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  13. Solid solution limits and selected mechanical properties of the quaternary L12 trialuminide Al-Ti-Mn-Mo

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1994-01-01

    Intermetallics based on the trialuminide Al 3 Ti, or on Al 11 Ti 5 , have been extensively researched in recent years. Alloying with approximately 10 at.% of first-row transition elements, such as Cr or Mn, converts the DO 22 structure of Al 3 Ti to L1 2 . Although this transition to the L1 2 structure increases the number of independent slip systems to five and causes substantial softening, room-temperature tensile ductilities and fracture toughnesses remain low. Typical values for the room-temperature ductilities of Al-25Ti-8Cr and Al-25Ti-9Mn are 0.2% and room-temperature fracture toughnesses of trialuminides range from 2 to 5 MPa m 1/2 . Reasons for the low fracture toughness of trialuminides have been discussed by Turner et al. and George et al. On a phenomenological basis, it appears that fracture toughnesses might improve, if either Poisson's ratio or the ratio of the bulk and shear moduli can be increased. In principle, this might be achieved by macroalloying ternary L1 2 trialuminides, while at the same time maintaining the L1 2 crystal structure. Focusing on first-row transition elements, Kumar and Brown investigated a range of such quaternary compounds. They did not observe any improvement in ductility, as compared to the ternary compounds. In the present work, it was decided to focus on a second-row transition element, namely, 2 molybdenum. As compared to Cr and Mn, which are only slightly soluble in Al 3 Ti, up to 20 at. % Mo dissolves in Al 3 Ti at 1,198 K. This raises the question whether substantial amounts of Mo also dissolve in the cubic ternary trialuminides such as Al-Ti-Mn. In order to verify this possibility, the extent of the single-phase region of cubic Al-Ti-Mn-Mo intermetallic was mapped out at 1,473 K. In addition, a limited characterization of room-temperature mechanical properties was carried out

  14. Anatomy-performance correlation in Ti-based contact metallizations on AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Mohammed, Fitih M.; Wang, Liang; Koo, Hyung Joon; Adesida, Ilesanmi

    2007-01-01

    A comprehensive study of the electrical and surface microstructural characteristics of Ti/Au, Ti/Al/Au, Ti/Mo/Au, and Ti/Al/metal/Au schemes, where metal is Ir, Mo, Nb, Pt, Ni, Ta, and Ti, has been carried out to determine the role of constituent components of multilayer contact metallizations on Ohmic contact formation on AlGaN/GaN heterostructures. Attempts have been made to elucidate the anatomy (composition-structure) performance correlation in these schemes. Evidences have been obtained for the necessity of the Al and metal barrier layer as well as an optimal amount of Ti for achieving low-resistance Ohmic contact formation. A strong dependence of electrical properties and intermetallic interactions on the type of metal barrier layer used was found. Scanning electron microscopy characterization, coupled with energy dispersive x-ray spectroscopy, has shown evidence for alloy aggregation, metal layer fragmentation, Al-Au solid solution formation, and possible Au and/or Al reaction with metal layer. Results from the present study provide insights on the active and the necessary role various components of a multilayer contact metallization play for obtaining excellent Ohmic contact formation in the fabrication of AlGaN/GaN high electron mobility transistors

  15. Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy

    Science.gov (United States)

    Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping

    2015-04-01

    Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.

  16. Production of nanograined intermetallics using high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: horita@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  17. Microstructures and mechanical properties of grain refined Al-Li-Mg casting alloy by containing Zr and Ti

    International Nuclear Information System (INIS)

    Saikawa, Seiji; Nakai, Kiyoshi; Sugiura, Yasuo; Kamio, Akihiko.

    1995-01-01

    Mechanical properties and microstructures of various Al-Li-Mg alloy castings containing small amount of Zr and/or Ti were investigated. The δ(AlLi) phase was observed to crystallize in the dendrite-cell gaps as well as on the grain boundaries. Microsegregation of Mg also occurred in the solidified castings. The β(Al 3 Zr) or Al-Zr-Ti compounds crystallize during solidification and remain even after solid solution treatment at 803 K for 36 ks. The grain sizes of Al-2.5%Li-2%Mg alloy castings become finer by the addition of 0.15%Zr and 0.12%Ti compared with each addition of 0.15%Zr or 0.12%Ti. The age hardening is accelerated by the addition of 0.15%Zr. In an Al-2.5%Li-2%Mg-0.15%Zr-0.12%Ti alloy casting poured into a metallic mold and aged at 453 K for 36 ks, ultimate tensile strength, Young's modulus and density were 417 MPa, 80 GPa and was 2.52 g/cm 3 , respectively. Its specific strength and modulus are higher by 50.3 and 13.9% than those of the conventional AC4C-T6 casting. (author)

  18. Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru [National Research Tomsk State University (Russian Federation); Hu, Q. M.; Yang, R. [Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Institute of Metal Research (China)

    2016-12-15

    Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentration increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.

  19. Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Anton; Manickaraj, Jeyakumar [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4L7 (Canada)

    2013-11-15

    Highlights: •Anomalous evolution of Fe based intermetallic phases in Al–Si–Fe alloys. •XRF coupled with nano-diffraction to confirm the nano-size Fe intermetallic phases. •Crystallography of the θ-Al{sub 13}Fe{sub 4}, τ{sub 5}-Al{sub 8}Fe{sub 2}Si and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} phases. •Peritectic reactions involving the Fe intermetallic phases in Al–Si–Fe alloys. -- Abstract: Al–Si–Fe hypoeutectic cast alloy system is very complex and reported to produce numerous Fe based intermetallic phases in conjunction with Al and Si. This publication will address the anomalies of phase evolution in the Al–Si–Fe hypoeutectic casting alloy system; the anomaly lies in the peculiarities in the evolution and nature of the intermetallic phases when compared to the thermodynamic phase diagram predictions and past publications of the same. The influence of the following parameters, in various combinations, on the evolution and nature of the intermetallic phases were analyzed and reported: concentration of Si between 2 and 12.6 wt%, Fe between 0.05 and 0.5 wt% and solidification rates of 0.1, 1, 5 and 50 K s{sup −1}. Two intermetallic phases are observed to evolve in these alloys under these solidification conditions: the τ{sub 5}-Al{sub 8}SiFe{sub 2} and τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2}. The τ{sub 5}-Al{sub 8}SiFe{sub 2} phase evolves at all levels of the parameters during solidification and subsequently transforms into the τ{sub 6}-Al{sub 9}Fe{sub 2}Si{sub 2} through a peritectic reaction when promoted by certain combinations of solidification parameters such as higher Fe level, lower Si level and slower solidification rates. Further, it is also hypothesized from experimental evidences that the θ-Al{sub 13}Fe{sub 4} binary phase precludes the evolution of the τ{sub 5} during solidification and subsequently transforms into the τ{sub 6} phase during solidification. These observations are anomalous to the publications as prior art and

  20. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  1. Effect of Iron and Magnesium on Alloy AL9M Structure and Properties

    Science.gov (United States)

    Bazhenov, V. E.; Koltygin, A. V.; Belov, V. D.

    2017-09-01

    The effect of iron impurity on the structure and properties of aluminum alloy AL9M, especially its action on magnesium distribution within the structure, is studied. The microstructure of a cast component of this alloy broken during operation is analyzed. It is shown that iron impurity has an unfavorable effect on structure and mechanical properties of a casting due to appearance of Al9Fe2Si and Al18Fe2Mg7Si10 intermetallics. Formation of these intermetallics consumes a considerable amount of magnesium and lowers the content of the Q(Al5Cu2Mg8Si6) strengthening phase in the alloy structure.

  2. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  3. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er

    Energy Technology Data Exchange (ETDEWEB)

    Bush, R.W., E-mail: ralph.bush@usafa.edu [Department of Engineering Mechanics, 2354 Fairchild Dr., U.S. Air Force Academy, USAF Academy, CO 80840 (United States); Brice, C.A. [Lockheed Martin Aeronautics Co., Fort Worth, TX (United States)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Electron beam freeform fabrication process. Black-Right-Pointing-Pointer Ti-6Al-4V and rare-earth dispersion Ti alloy. Black-Right-Pointing-Pointer Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. Black-Right-Pointing-Pointer Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti-8Al-1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti-8Al-1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti-6Al-4V and Ti-8Al-1Er were measured and compared to those of laser beam additive manufactured Ti-8Al-1Er and wrought Ti-6Al-4V. Elevated temperature tensile properties were measured between 93 Degree-Sign and 538 Degree-Sign C. Creep tests were performed between 425 Degree-Sign and 455 Degree-Sign C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti-8Al-1Er are comparable to those of Ti-6Al-4V in percentage of room

  4. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  5. Effect of Al on Grain Refinement and Mechanical Properties of Mg-3Nd Casting Alloy

    Science.gov (United States)

    Wang, Lei; Feng, Yicheng; Wang, Liping; Chen, Yanhong; Guo, Erjun

    2018-05-01

    The effect of Al on the grain refinement and mechanical properties of as-cast Mg-3Nd alloy was investigated systematically by a series of microstructural analysis, solidification analysis and tensile tests. The results show that Al has an obvious refining effect on the as-cast Mg-3Nd alloy. With increasing Al content, the grain size of the as-cast Mg-3Nd alloy decreases firstly, then increases slightly after the Al content reaching 3 wt.%, and the minimum grain size of the Mg-3Nd alloy is 48 ± 4.0 μm. The refining mechanism can be attributed to the formation of Al2Nd particles, which play an important role in the heterogeneous nucleation. The strength and elongation of the Mg-3Nd alloy refined by Al also increase with increasing Al content and slightly decrease when the Al content is more than 3 wt.%, and the strengthening mechanism is attributed to the grain refinement as well as dispersed intermetallic particles. Furthermore, the microstructural thermal stability of the Mg-3Nd-3Al alloy is higher than that of the Mg-3Nd-0.5Zr alloy. Overall, the Mg-3Nd alloy with Al addition is a novel alloy with wide and potential application prospects.

  6. The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    Directory of Open Access Journals (Sweden)

    Ivan A. Shulepov

    2017-11-01

    Full Text Available Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES, X-ray diffraction (XRD, transmission electron microscopy (TEM and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220 direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220 reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

  7. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  8. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  9. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel

    International Nuclear Information System (INIS)

    Nazari, K.A.; Shabestari, S.G.

    2009-01-01

    The morphology and growth kinetics of intermetallic compounds that are formed in the interface of H13 tool steel and A380 molten aluminum has been investigated through immersion experiments. The effect of addition of micro alloying elements to the melt on the formation and thickness of intermetallic layer was also studied. Microstructural investigation showed that three intermetallic layers formed through the liquid-solid reaction during immersion of steel samples in the liquid aluminum at a temperature of 680 deg. C for the duration time of 2 min to 2.5 h. These intermetallic compounds are Al 8 Fe 2 Si, Al 5 FeSi and Al 12 Fe 5 Si. The effect of nitride coating of the surface of H13 steel on the growth of intermetallic phases has also been studied. Micro alloying elements such as strontium and titanium have been used in the melt and their effects on the morphology of intermetallic compound and their growth rate have been investigated by the immersion experiments at the temperature of 680 deg. C for the time of 0.5-2.5 h. The results showed that two layers of Al 8 Fe 2 Si and Al 5 FeSi formed at the interface and Al 12 Fe 5 Si layer was not observed. Nitride coating decreased the overall thickness of the intermetallic layer about 50% after immersion time of 0.5 h. Addition of micro alloying elements such as Sr (0.05 wt%) and Ti (0.2 wt%) to the melt decreased the total thickness of the intermetallic layer about 31% after immersion of steel for 0.5 h in the melt. Both nitride coating and addition of strontium (0.05 wt%) and titanium (0.2 wt%) micro alloying elements to the melt had the most influence on decreasing the overall thickness of the intermetallic layer. The thickness of the intermetallic layer decreased about 60% after immersion of steel for 2.5 h in the aluminum melt. The experimental results clearly indicate the beneficial effect of strontium on the kinetics of the formation and growth of the intermetallic layers.

  10. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    Directory of Open Access Journals (Sweden)

    ZHU Langping

    2017-06-01

    Full Text Available A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickly. The motion trajectory of particles with different sizes in the lower end of the cooling tube is different obviously, small particles tend to enter the air outlet,while the larger particles are easy to fall down to the bottom of the cooling tube to be collected. Increasing air flow rate can improve the velocity of air flow in the spheroidizing system, causing larger particles to be taken away by the air, resulting in yield reduction. The simulation results of TiAl alloy powder spheroidization are close to the experimental results refer to parameters such as powder size distribution, average particle size and powder yield, and the model is in good accordance with the actual process of the spheroidization.

  11. Parameter optimization for selective laser melting of TiAl6V4 alloy by CO2 laser

    Science.gov (United States)

    Baitimerov, R. M.; Lykov, P. A.; Radionova, L. V.; Safonov, E. V.

    2017-10-01

    TiAl6V4 alloy is one of the widely used materials in powder bed fusion additive manufacturing technologies. In recent years selective laser melting (SLM) of TiAl6V4 alloy by fiber laser has been well studied, but SLM by CO2-lasers has not. SLM of TiAl6V4 powder by CO2-laser was studied in this paper. Nine 10×10×10 mm cubic specimens were fabricated using different SLM process parameters. All of the fabricated specimens have a good dense structure and a good surface finish quality without dimensional distortion. The lowest porosity that was achieved was about 0.5%.

  12. Effect of iron content on the structure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25} and (AlTi){sub 60-x}Ni{sub 20}Cu{sub 20}Fe{sub x} (x=15, 20) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazakas, É., E-mail: eva.fazakas@bayzoltan.hu [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525, P.O.B. 49 (Hungary); Bay Zoltán Nonprofit Ltd., For Applied Research H-1116 Budapest, Fehérvári út 130 (Hungary); Zadorozhnyy, V. [National University of Science and Technology «MISIS», Leninsky prosp., 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2015-12-15

    Highlights: • Three new refractory alloys namely: Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20}, were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}C{sub u25} Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys are relatively hard and ductile. Being heat treated at 973 K the Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  13. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    Science.gov (United States)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  14. The core structures of transformation dislocations at TiAl/Ti3Al interfaces

    International Nuclear Information System (INIS)

    Penisson, J.M.; Loubradou, M.; Derder, C.; Bonnet, R.

    1993-01-01

    A Ti-40%Al alloy is investigated using High Resolution Electron Microscopy. The alloy structure consists mainly of alternate lamellae of γ(TiAl, L1 0 structure) and α 2 (Ti 3 Al, DO 19 structure) phases. These lamellae are parallel to each other and the interfaces between them are flat and parallel to the densest planes of the crystals. It is found that, among the variety of interfacial dislocations relieving the misfit, some have cores involving four (111) planes in height. The elastic displacement fields around these interfacial ledges, compared with the experimental atomic positions determined from HREM images, are in agreement with Burgers vector contents 1/6 left angle 112 right angle . (orig.)

  15. Grain Refinement and Enhancement of Mechanical Properties of Hot Extruded Rare-Earth Containing Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Bita Pourbahari

    2017-12-01

    Full Text Available The effects of rare earth addition and hot extrusion process on the grain refinement of magnesium alloy were studied. The as-cast Mg-6Al-1Zn (AZ61 alloy had the average grain size of ~ 64 µm and its microstructure consisted of α-Mg and Mg17Al12 phase. By partial substitution of Al with Gd to reach Mg-4.8Gd-1.2Al-1Zn alloy, it was observed that the Mg17Al12 phase disappeared and two new intermetallic phases, i.e. (Mg,Al3Gd and Al2Gd, were identified. The extrusion process showed significant effects on the shape and size of intermetallics and grain size of the matrix. The grain size of the extruded Mg-6Al-1Zn alloy was refined from 64 µm to 13.4 µm as a result of recrystallization. Regarding the Mg-4.8Gd-1.2Al-1Zn alloy, the grain refinement was much more pronounced, where the extruded grain size has been refined from 698 µm to 2.4 µm (extruded at 385 °C and 1.3 µm (extruded at 320 °C. This was related to the presence of fine and widely dispersed intermetallic phases. Tensile strength and total elongation of extruded alloys were much higher than their as-cast counterparts and the extruded Mg-6Zn-1Al alloy showed magnificent mechanical properties. The latter was related to the absence of intermetallic particles, which act as stress risers.

  16. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    Directory of Open Access Journals (Sweden)

    Pawel Jozwik

    2015-05-01

    Full Text Available The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS or Microtechnology-based Energy and Chemical Systems (MECS; as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  17. Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study

    Directory of Open Access Journals (Sweden)

    H.L. Chen

    2015-09-01

    Full Text Available Electronic structure and elastic properties of Al2Y, Al3Y, Al2Gd and Al3Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT. The ground state energy and elastic constants of each phase were calculated, the formation enthalpy (ΔH, bulk modulus (B, shear modulus (G, Young's modulus (E, Poisson's ratio (ν and anisotropic coefficient (A were derived. The formation enthalpy shows that Al2RE is more stable than Al3RE, and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics. The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases, it may lead to the similar performance when deforming due to their similar elastic constants. The total and partial electron density of states (DOS, Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases. Finally, phonon calculation was conducted, and the thermodynamic properties were obtained and further discussed.

  18. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles

    International Nuclear Information System (INIS)

    Yu Peng; Mei Zhi; Tjong, S.C.

    2005-01-01

    We report herein the structure and characterization of in situ Al-based metal matrix composites (MMCs) prepared from the Al-10 wt.% TiO 2 and Al-10 wt.% TiO 2 -1.5 wt.% C systems via hot isostatic pressing (HIP) at 1000 deg C and 100 MPa. The structure, morphology and thermal behavior of HIPed samples were studied by means of the X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicated that fined Al 2 O 3 particles and large intermetallic Al 3 Ti plates were in situ formed in the Al-10 wt.% TiO 2 sample during HIPing. However, the introduction of C to the Al-TiO 2 system was beneficial to eliminate large intermetallic Al 3 Ti plates. In this case, Al 2 O 3 and TiC submicron particles were in situ formed in the Al-10 wt.% TiO 2 -1.5 wt.% C sample. Three-point-bending test showed that the strength and the strain-at-break of the HIPed Al-10 wt.% TiO 2 -1.5 wt.% C sample were significantly higher than those of its Al-10 wt.% TiO 2 counterpart. The improvement was derived from the elimination of bulk Al 3 Ti intermetallic plates and from the formation of TiC submicron particles. DSC measurements and thermodynamic analyses were carried out to reveal the reaction formation mechanisms of in situ reinforcing phases. The DSC results generally correlated well with the theoretical predictions. Finally, the correlation between the structure-property relationships of in situ composites is discussed

  19. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    Energy Technology Data Exchange (ETDEWEB)

    Demchishin, A.V., E-mail: ademch@meta.ua [Institute of Problems in Material Science, NASU, Kiev (Ukraine); Gnilitskyi, I., E-mail: iaroslav.gnilitskyi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Orazi, L., E-mail: leonardo.orazi@unimore.it [DISMI – Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Reggio Emilia (Italy); Ascari, A., E-mail: a.ascari@unibo.it [DIN – Department of Industrial Engineering, University of Bologna, Bologna (Italy)

    2015-07-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics.

  20. Structure, phase composition and microhardness of vacuum-arc multilayered Ti/Al, Ti/Cu, Ti/Fe, Ti/Zr nano-structures with different periods

    International Nuclear Information System (INIS)

    Demchishin, A.V.; Gnilitskyi, I.; Orazi, L.; Ascari, A.

    2015-01-01

    Highlights: • Multilayer coatings of Ti/Fe, Ti/Al, Ti/Cu and Ti/Zr are generated. • Microstructure and morphology of the different systems are investigated. • XR diffraction analysis was performed to investigate phases composition. • Effects of inter metallic phases on microhardess are investigated. • Correlations between parameters and layer thickness are outlined. - Abstract: The microstructure, phase composition and microhardness of multilayered Ti/Al, Ti/Cu, Ti/Fe and Ti/Zr condensates produced on stainless steel substrates via vacuum-arc evaporation of pure metals were studied. The sublayer periods (Λ) were regulated in the range 80–850 nm by varying the vacuum discharge current and the duration of the successive depositions of metallic plasma onto the substrates while maintaining the total deposition time constant. The regularity of the obtained nanostructures was investigated by scanning and transmission electron microscopy while phase compositions were identified with X-ray diffraction (XRD) analysis in order to evidence the presence of interdiffusion and the amount of intermetallics. Condensates cross sections were mechanically characterized by means of microhardness tests. Measurements were correlated to the periods and to the presence of intermetallics

  1. Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys

    Science.gov (United States)

    Hecht, Ulrike; Witusiewicz, Victor T.

    2017-12-01

    Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.

  2. In situ observations of solidification processes in γ-TiAl alloys by synchrotron radiation

    International Nuclear Information System (INIS)

    Shuleshova, Olga; Holland-Moritz, Dirk; Loeser, Wolfgang; Voss, Andrea; Hartmann, Helena; Hecht, Ulrike; Witusiewicz, Victor T.; Herlach, Dieter M.; Buechner, Bernd

    2010-01-01

    In situ observations of phase transformations involving melts are performed using energy-dispersive diffraction of synchrotron X-rays on electromagnetically levitated γ-TiAl alloys containing Nb. The determined primary solidification modes, confirmed by microstructure analysis, delivered new reliable data about the boundary of the α(Ti) solidification domain, which differs in the various Ti-Al-Nb phase diagram descriptions. These data have been used for a reassessment of the thermodynamic database of the ternary Ti-Al-Nb system. The new description realistically reflects the experimental findings. Liquidus and solidus temperatures determined by the pyrometric method agree fairly well with the calculated values. Direct experimental information on the nature of the reactions along the univariant lines is provided.

  3. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6Al4V/SUS321 joints

    International Nuclear Information System (INIS)

    Li, Peng; Li, Jinglong; Salman, Muhammad; Liang, Li; Xiong, Jiangtao; Zhang, Fusheng

    2014-01-01

    Highlights: • The effect of friction time on the microstructure and joint strength was studied. • The fit of burn-off lengths at different times yields a simple equation. • The longer friction time leads to oversized flash in Ti6Al4V side and overgrown IMCs. • An IMZ with width less than 3 μm is beneficial to make a strong metallurgical bond. • The average strength of 560 MPa is obtained and higher than ever reported results. - Abstract: Dissimilar joint of Ti6Al4V titanium alloy and SUS321 stainless steel was fabricated by continuous drive friction welding. The effect of friction time on the mechanical properties was evaluated by hardness measurement and tensile test, while the interfacial microstructure and fracture morphologies were analyzed by scanning electron microscope, energy dispersive spectroscope and X-ray Diffraction. The results show that the tensile strength increases with friction time under the experimental conditions. And the maximum average strength 560 MPa, which is 90.3% of the SUS321 base metal, is achieved at a friction time of 4 s. For all samples, studied fracture occurred along the joint interface, where intermetallic compounds like FeTi, Fe 2 Ti, Ni 3 (Al, Ti) and Fe 3 Ti 3 O and many other phases were formed among elements from the two base metals. The width of intermetallic compounds zone increases with friction time up to 3 μm, below which it is beneficial to make a strong metallurgical bond. However, the longer friction time leads to oversized flash on the Ti6Al4V side and overgrown intermetallic compounds. Finally the optimized friction time was discussed to be in the range of 2–4 s, under which the sound joint with good reproducibility can be expected

  4. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  5. Density of thermal vacancies in γ-Ti-Al-M, M = Si, Cr, Nb, Mo, Ta or W

    International Nuclear Information System (INIS)

    Woodward, C.; Kajihara, S.

    1999-01-01

    Modifications to alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials. Models of creep in intermetallic alloys must account for the influence of chemistry on the available intrinsic creep mechanisms. As in simple metals the presence of vacancies strongly influences bulk diffusion processes in these materials. Limiting the density of constitutional and thermal vacancies by alloying may produce materials with enhanced creep properties. The energy of intrinsic and substitutional point defects in L1 0 TiAl is calculated within a first principles, local density functional theory framework. Relaxed structures and energies for vacancies, antisites and solid solutions are calculated using a plane-wave-pseudopotential method. Calculated defect energies are used within a canonical ensemble formalism to estimate the point defect densities as a function of temperature and composition. The density of vacancies is found to be sensitive to the underlying stoichiometry of TiAl. The dependence of the vacancy concentration for solid solutions of Si, Cr, Nb, Mo, Ta and W is also predicted

  6. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    Science.gov (United States)

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2017-03-01

    Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of hot rolling on the microstructure and mechanical properties of Ti3Al based dual phase alloys

    International Nuclear Information System (INIS)

    Wu, J.; Zhang, L.; Hua, W.; Qiu, G.

    1999-01-01

    Development of α 2 -Ti 3 Al based dual phase alloys have shown some promising potentials in property improvement by introducing Ti 5 Si 3 silicide phase into the matrix via Si alloying. However, the presence of coarse network of Ti 5 Si 3 phase formed by eutectic reaction in the as-cast state also embrittles the alloy. Both hot rolling and powder metallurgy are considered to be the possible ways to refine the Ti 5 Si 3 phase in the matrix. Two Ti-Al-Si-Nb alloys whose Si contents are 2 and 5 at.% respectively were arc melted into ingots and then hot rolled to sheets in this investigation. Optical metallographic examination correlates the microstructures of the as-cast and as-rolled alloys with the different rolling amounts, showing that the coarse silicide network is broken into small particles after hot rolling. Mechanical property testing from room temperature to 800 C indicates that the strength and plastic elongation of the hot-rolled alloys are much higher than those of the as-cast ones. The data obtained in this investigation are comparable with those obtained in the P/M processed specimens. Fracture surfaces of the alloys are also examined

  8. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Science.gov (United States)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  9. Aeronautical Cast Ti Alloy and Forming Technology Development

    OpenAIRE

    ZHANG Meijuan; NAN Hai; JU Zhongqiang; GAO Fuhui; QIE Xiwang; ZHU Langping

    2016-01-01

    The application and feature of Ti alloy and TiAl alloy for aviation at home and abroad were briefly introduced. According to the patent application status in Ti alloy field, the development of Ti alloy casting technology was analyzed in the recent thirty years, especially the transformation in aviation. Along with the development of aeronautional manufacturing technology and demand of high performance aircraft, Ti alloy casting is changing towards to be large, integral and complicated, and th...

  10. Characteristics of Resistance Spot Welded Ti6Al4V Titanium Alloy Sheets

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-10-01

    Full Text Available Ti6Al4V titanium alloy is applied extensively in the aviation, aerospace, jet engine, and marine industries owing to its strength-to-weight ratio, excellent high-temperature properties and corrosion resistance. In order to extend the application range, investigations on welding characteristics of Ti6Al4V alloy using more welding methods are required. In the present study, Ti6Al4V alloy sheets were joined using resistance spot welding, and the weld nugget formation, mechanical properties (including tensile strength and hardness, and microstructure features of the resistance spot-welded joints were analyzed and evaluated. The visible indentations on the weld nugget surfaces caused by the electrode force and the surface expulsion were severe due to the high welding current. The weld nugget width at the sheets’ faying surface was mainly affected by the welding current and welding time, and the welded joint height at weld nugget center was chiefly associated with electrode force. The maximum tensile load of welded joint was up to 14.3 kN in the pullout failure mode. The hardness of the weld nugget was the highest because of the coarse acicular α′ structure, and the hardness of the heat-affected zone increased in comparison to the base metal due to the transformation of the β phase to some fine acicular α′ phase.

  11. Adhesive and tribocorrosive behavior of TiAlPtN/TiAlN/TiAl multilayers sputtered coatings over CoCrMo

    Science.gov (United States)

    Canto, C. E.; Andrade, E.; Rocha, M. F.; Alemón, B.; Flores, M.

    2017-09-01

    The tribocorrosion resistance and adherence of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by PVD reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt in order to enhance the tribocorrosion resistance of a biomedical alloy of CoCrMo. Tribocorrosion tests were performed using Simulated Body Fluid (SBF) at typical body temperature with a tribometer in a pin on disk test. The elemental composition and thickness of the coating which behave better at the tribocorrosion tests were evaluated by means of RBS (Rutherford Backscattering Spectroscopy) IBA (Ion Beam Analysis) technique, using an alpha particles beam of 1.8 MeV, before and after the reciprocating motion in the tribocorrosion test. In order to simulate the elemental profile of the samples, the SIMNRA simulation computer code was used. Measurements of the adhesion of the coatings to the substrate were carried on by means of a scratch test using a tribometer. By taking micrographs of the produced tracks, the critical loads at which the coatings are fully separated from the substrate were determined. From these tests it was observed that a coating with 10 min of TiAlPtN in a TiAlPtN/TiAl period of 30 min in multilayers of 10 periods and with an average thickness of 145 nm for the TiAlPtN nanolayers had the best tribocorrosion resistance behavior, compared to that of the CoCrMo alloy. The RBS experiments showed a reduction of the thickness of the films along with some loss of the multilayer structure after the reciprocating motion. The adhesion tests indicated that the multilayer with the average TiAlPtN thickness of 145 nm displayed the highest critical load. These results indicate a high correlation between the adherence and the tribocorrosion behavior.

  12. Microstructure and mechanical properties of spray deposited hypoeutectic Al-Si alloy

    International Nuclear Information System (INIS)

    Ferrarini, C.F.; Bolfarini, C.; Kiminami, C.S.; Botta F, W.J.

    2004-01-01

    The microstructure and the tensile properties of an Al-8.9 wt.% Si-3.2 wt.% Cu-0.9 wt.% Fe-0.8% Zn alloy processed by spray forming was investigated. The alloy was gas atomized with argon and deposited onto a copper substrate. The microstructure was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Small faceted dispersoids observed surrounding equiaxial α-Al matrix were identified by SEM-EDS as silicon particles. Sand cast samples with the same composition showed a columnar dendritic α-Al matrix, Al-Si eutectic, polyhedric α-AlFeSi and needle-like β-AlFeSi intermetallics. In the spray formed material the formation of the Al-Si eutetic was suppressed, and the formation of the α-AlFeSi and β-AlFeSi intermetallics was strongly reduced. The fine and homogeneous microstructure showed an aluminium matrix with grain size ranging from 30 to 40 μm, and particle size of the silicon dispersoids having a mean size of 12 μm. Room temperature tensile tests of the spray formed alloy showed relative increasing of strength and elongation when compared with the values observed for the conventionally cast counterparts. These results can be ascribed to the refined microstructure and the scarce presence of intermetallics of the spray formed material

  13. Elimination of Iron Based Particles in Al-Si Alloy

    Directory of Open Access Journals (Sweden)

    Bolibruchová D.

    2015-03-01

    Full Text Available This paper deals with influence on segregation of iron based phases on the secondary alloy AlSi7Mg0.3 microstructure by chrome. Iron is the most common and harmful impurity in aluminum casting alloys and has long been associated with an increase of casting defects. In generally, iron is associated with the formation of Fe-rich phases. It is impossible to remove iron from melt by standard operations, but it is possible to eliminate its negative influence by addition some other elements that affect the segregation of intermetallics in less harmful type. Realization of experiments and results of analysis show new view on solubility of iron based phases during melt preparation with higher iron content and influence of chrome as iron corrector of iron based phases. By experimental work were used three different amounts of AlCr20 master alloy a three different temperature of chill mold. Our experimental work confirmed that chrome can be used as an iron corrector in Al-Si alloy, due to the change of intermetallic phases and shortening their length.

  14. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    International Nuclear Information System (INIS)

    Cao, J.; Song, X.G.; Wu, L.Z.; Qi, J.L.; Feng, J.C.

    2012-01-01

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni 3 (AlTi) layer, a Ni 2 AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi 3 layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al 3 Ni and Al 3 Ni 2 phases. The reaction sequence of the Al/Ni multilayers was Al 3 Ni → Al 3 Ni 2 → AlNi → AlNi 3 and the final products were AlNi and AlNi 3 phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: ► Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. ► The reaction sequence of the Al/Ni multilayers was Al 3 Ni → Al 3 Ni 2 → AlNi → AlNi 3 . ► The interfacial microstructure of the joint was clarified. ► The application of Al/Ni multilayers improved the joining quality.

  15. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    International Nuclear Information System (INIS)

    Roth, M; Biermann, H

    2010-01-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400 0 C to 800 0 C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P SWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750 0 C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P SWT cannot be applied for the live prediction.

  16. Corrosion behaviour of amorphous Ti 48 Cu 52 , Ti 50 Cu 50 and Ti ...

    Indian Academy of Sciences (India)

    ... Ti60Ni40 in 0.5 M HNO3, 0.5 M H2SO4 and 0.5 M NaOH aqueous media at room temperature. ... maximum for Ti48Cu52 alloy in all the three aqueous media as compared to the remaining two alloys. ... Bulletin of Materials Science | News.

  17. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Fan; Kou, Hongchao; Li, Jinshan

    2017-02-15

    The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging at 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.

  18. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  19. High-temperature phase transformation in Cr added TiAl base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E.; Niinobe, K.; Nobuki, M.; Nakamura, M.; Tsujimoto, T.

    1999-07-01

    The authors have investigated a microstructure evolution of a Ti-48Al-3.5Cr (in at.%) alloy at high-temperatures ({gt} 1,473K). In the alloy annealed at 1673K for 1.8ks, followed by air-cooling, a characteristic microstructure with a feathery fashion was uniformly formed. From a cooling-rate-controlling study, it was found that formation of the feathery structure is accomplished during continuous cooling from 1673K to 1573K, within the {alpha} + {gamma} two-phase region. Transmission electron microscopy revealed that the feathery structure is composed of lamellar colonies (5--10{micro}m) which are crystallographically tilted slightly (a few degree) with their neighbors. A surprising fact is that lamellae in each colony are mostly the {gamma} phase with few {alpha}{sub 2} phase less than 5% in volume. This suggests that the feathery structure is a metastable product and has not resulted from the {alpha} {r{underscore}arrow} {alpha} + {gamma} transformation above 1,573 K. Instead, the feathery structure formation should be attributed to the non-equilibrium {alpha} {r{underscore}arrow} {gamma} transformation which occurs at high-temperatures with a small degree of supercooling. The authors discuss this interesting phase transformation in terms of the {alpha} {r{underscore}arrow} {gamma} massive transformation, based on the continuous-cooling-transformation (CCT) diagram constructed for the present alloy.

  20. Stress-assisted discontinuous precipitation during creep of Ti3Al-Nb alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Hall, E.L.

    1991-01-01

    Stress-assisted discontinuous precipitation was observed during creep of Ti-25Al-12.5Nb at. pct and associated with microstructures in which large primary creep strains were observed earlier. It was found that a large shift between the equilibrium beta(0) (B2) phase composition at the heat treatment temperature and disordered beta (bcc) phase at the creep temperature provided a driving force for discontinuous precipitation of disordered beta phase. Applied stress accelerated the growth of discontinuous beta phase at grain boundaries perpendicular to the principal stress axis, but did not produce a significant shift in composition. The difference between beta and ordered beta phase boundaries in the Ti-Al-Nb system at 650 C and 1040 C suggests that discontinuous precipitation or related dissolution should occur in all Ti3Al-Nb alloys. 11 refs

  1. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    International Nuclear Information System (INIS)

    Wang Junsheng; Lee, Peter D.; Li Mei; Allison, John

    2010-01-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  2. Effect of TiC addition on fracture toughness of Al6061 alloy

    Science.gov (United States)

    Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.

    2018-04-01

    Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.

  3. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  4. Effect of TiC nano-particles on the mechanical properties of an Al-5Cu alloy after various heat treatments

    Science.gov (United States)

    Zhang, Qingquan; Zhang, Wei; Tian, Weisi; Zhao, Qinglong

    2017-12-01

    In this paper, the effects of TiC nano-particles on the mechanical properties of Al-5Cu alloy were investigated. Adding TiC nano-particles can effectively refine grain size and secondary dendritic arm. The ultimate tensile strength, yield strength and elongation of the Al-5Cu alloy in each of the three states (i.e. as-cast, solid-solution state and T6 state) were also improved by adding TiC nano-particles. Moreover, the elastic-plastic plane-strain fracture toughness (K J) and work of fracture ( wof) of Al-5Cu containing TiC were significantly higher than those of Al-5Cu without TiC after aging for 10 h. The addition of TiC nano-particles also led to finer and denser ‧ precipitates.

  5. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Lai, Pang-Hsin

    2016-03-21

    Selective laser melting (SLM) is a versatile additive manufacturing process for fabricating solid or porous metallic materials with complicated three-dimensional shapes. SLM Ti alloys, particularly Ti-6Al-4V, and other alloys have been manufactured and analyzed in numerous studies. However, the high anisotropy of the microstructures and inconsistent mechanical properties of SLM materials have been extensively reported, and these disadvantages could prohibit its widespread use. To clarify how to alleviate the anisotropic behaviors of SLM materials, the main objective of this study was to evaluate the influences of hot isostatic pressing (HIP) on the microstructure, densification, bending strength, impact toughness, and fracture behavior of the as-built Ti-6Al-4V alloy. The results showed that the vertical and horizontal building directions obviously affect the bending and impact properties of as-built alloys. The transverse rupture strength (TRS) and impact energy of the horizontally-built alloy were respectively found to be 48% and 100% higher than those of the vertically-built one. In the vertically-built alloy, disc-shaped building defects, identified by X-ray computed tomography (CT) and microscopy, obviously reduce the effective load-bearing cross-section and deteriorate the bending and impact performances. After HIP at 1000 °C/150 MPa, the α′-martensite structure in the as-built alloy is transformed into an α+β lamellar one, and the disc-shaped building defects are evidently eliminated. As a result, the impact energies of as-built vertical and horizontal specimens are improved by 28 J (560%) and 19 J (190%), respectively, and the TRS of the as-built vertical alloy is raised by 550 MPa (37%). Consequently, the discrepancies in TRS and impact energy between the HIPed vertical and horizontal specimens are merely 3% and 14%, respectively, and the anisotropic behaviors of the SLM Ti-6Al-4V alloy are thus substantially lessened.

  6. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Wu, Ming-Wei; Lai, Pang-Hsin

    2016-01-01

    Selective laser melting (SLM) is a versatile additive manufacturing process for fabricating solid or porous metallic materials with complicated three-dimensional shapes. SLM Ti alloys, particularly Ti-6Al-4V, and other alloys have been manufactured and analyzed in numerous studies. However, the high anisotropy of the microstructures and inconsistent mechanical properties of SLM materials have been extensively reported, and these disadvantages could prohibit its widespread use. To clarify how to alleviate the anisotropic behaviors of SLM materials, the main objective of this study was to evaluate the influences of hot isostatic pressing (HIP) on the microstructure, densification, bending strength, impact toughness, and fracture behavior of the as-built Ti-6Al-4V alloy. The results showed that the vertical and horizontal building directions obviously affect the bending and impact properties of as-built alloys. The transverse rupture strength (TRS) and impact energy of the horizontally-built alloy were respectively found to be 48% and 100% higher than those of the vertically-built one. In the vertically-built alloy, disc-shaped building defects, identified by X-ray computed tomography (CT) and microscopy, obviously reduce the effective load-bearing cross-section and deteriorate the bending and impact performances. After HIP at 1000 °C/150 MPa, the α′-martensite structure in the as-built alloy is transformed into an α+β lamellar one, and the disc-shaped building defects are evidently eliminated. As a result, the impact energies of as-built vertical and horizontal specimens are improved by 28 J (560%) and 19 J (190%), respectively, and the TRS of the as-built vertical alloy is raised by 550 MPa (37%). Consequently, the discrepancies in TRS and impact energy between the HIPed vertical and horizontal specimens are merely 3% and 14%, respectively, and the anisotropic behaviors of the SLM Ti-6Al-4V alloy are thus substantially lessened.

  7. Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys

    International Nuclear Information System (INIS)

    Lu, L.; Dahle, A.K.

    2006-01-01

    Strontium is the most widely used and a very effective element for modifying the morphology of eutectic silicon, while Ti and B are commonly present in the commercial grain refiners used for Al-Si alloys. Systematic studies on the effects of combined additions of Sr and different AlTiB grain refiners on the Al + Si eutectic and primary aluminium solidification have been performed. While slight coarsening of both eutectic Si and primary aluminium grains occurs during holding, no obvious interactions are observed between Sr and AlTiB grain refiners when the addition level of grain refiners is low. As a result, a well-modified and grain refined structure was obtained. However, strong negative interactions between Sr and Al1.5Ti1.5B were observed as the addition level of the grain refiner increases. It was found that these interactions have a much more profound impact on the eutectic solidification than the primary Al solidification. The melt treated with combined additions of Sr and Al1.5Ti1.5B still shows good grain refinement efficiency even after losing its modification completely. The mechanism responsible for such negative interactions is further discussed

  8. Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [CSIRO Minerals, P.O. Box 883, Kenmore, Qld. 4069 (Australia)]. E-mail: Liming.Lu@csiro.au; Dahle, A.K. [CRC for Cast Metals Manufacturing, Division of Materials, School of Engineering, University of Queensland, Brisbane, Qld. 4072 (Australia)

    2006-11-05

    Strontium is the most widely used and a very effective element for modifying the morphology of eutectic silicon, while Ti and B are commonly present in the commercial grain refiners used for Al-Si alloys. Systematic studies on the effects of combined additions of Sr and different AlTiB grain refiners on the Al + Si eutectic and primary aluminium solidification have been performed. While slight coarsening of both eutectic Si and primary aluminium grains occurs during holding, no obvious interactions are observed between Sr and AlTiB grain refiners when the addition level of grain refiners is low. As a result, a well-modified and grain refined structure was obtained. However, strong negative interactions between Sr and Al1.5Ti1.5B were observed as the addition level of the grain refiner increases. It was found that these interactions have a much more profound impact on the eutectic solidification than the primary Al solidification. The melt treated with combined additions of Sr and Al1.5Ti1.5B still shows good grain refinement efficiency even after losing its modification completely. The mechanism responsible for such negative interactions is further discussed.

  9. Coarsening behaviours of coherent γ' and γ precipitates in elastically constrained Ni-Al-Ti alloys

    International Nuclear Information System (INIS)

    Maebashi, T.; Doi, M.

    2004-01-01

    The coarsening behaviours of γ' and γ precipitates in elastically constrained Ni-Al-Ti alloys were investigated by means of transmission electron microscopy. When the Ni-8 at.% Al-6 at.% Ti alloy is aged at 1023 K, coherent γ' particles having L1 2 structure appear and coarsen in the γ matrix having disordered A1 structure. At first the mean particle size increases in proportion to the cube root of ageing time t ( ∝ t 1/3 ), and then the coarsening remarkably decelerates. The shape of γ' precipitate changes from the sphere to the cube as the coarsening progresses. When the Ni-13 at.% Al-9 at.% Ti alloy is aged at 973 K, coherent γ particles appear and coarsen in the γ' matrix. At first the relation of ∝ t 1/3 holds good, and then the coarsening accelerates, so that the increases in proportion to the square root of t ( ∝ t 1/2 ). The shape of γ precipitate changes to the plate having {1 0 0} planes as the coarsening progresses. Such coarsening behaviours of γ' and γ precipitates are good examples of the elasticity effects in elastically constrained systems

  10. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    Science.gov (United States)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  11. SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS

    OpenAIRE

    PENG LIU; WEI GUO; DAKUI HU; HUI LUO; YUANBIN ZHANG

    2012-01-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was obser...

  12. Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications

    Science.gov (United States)

    Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.

    2018-03-01

    Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.

  13. STUDY OF THERMAL BEHAVIOUR ON TITANIUM ALLOYS (TI-6AL-4V

    Directory of Open Access Journals (Sweden)

    VASUDEVAN D

    2017-08-01

    Full Text Available Titanium is recognized for its strategic importance as a unique lightweight, high strength alloyed structurally efficient metal for critical, high-performance aircraft, such as jet engine and airframe components. Titanium is called as the "space age metal" and is recognized for its high strength-to-weight ratio. Today, titanium alloys are common, readily available engineered metals that compete directly with stainless steel and Specialty steels, copper alloys, nickel based alloys and composites. Titanium alloys are needed to be heat treated in order to reduce residual stress developed during fabrication and to increase the strength. Titanium (Ti-6Al-4V alloy is an alpha, beta alloy which is solution treated at a temperature of 950 ºC to attain beta phase. This beta phase is maintained by quenching and subsequent aging to increase strength. Thermal cycling process was carried out for Ti-6Al-4V specimens using forced air cooling. Heat treated titanium alloy specimen was used to carry out various tests before and after thermal cycling, The test, like tensile properties, co-efficient of thermal expansion, Microstructure, Compression test, Vickers Hardness was examined by the following test. Coefficient of Thermal expansion was measured using Dilatometer. Tensile test was carried out at room temperature using an Instron type machine. Vickers's hardness measurement was done on the same specimen as used for the microstructural observation from near the surface to the inside specimen. Compression test was carried out at room temperature using an Instron type machine. Ti‐6Al‐4V alloy is a workhorse of titanium industry; it accounts for about 60 percent of the total titanium alloy production. The high cost of titanium makes net shape manufacturing routes very attractive. Casting is a near net shape manufacturing route that offers significant cost advantages over forgings or complicated machined parts.

  14. Surface characterization of alloy Ti-6Al-7Nb treated plasma

    International Nuclear Information System (INIS)

    Moura, J.K.L.; Macedo, H.R.A.; Brito, E.M.; Brandim, A.S.

    2014-01-01

    Plasma surface modifications are subject of numerous studies to improve the quality of a given material. Titanium and its alloys are widely used in biomedical applications and plasma treatment technique is increasingly used to improve the surface properties thereof. The research have a objective in the comparative analysis of the change in microstructure of Ti-6Al-7Nb alloys after treatment of plasma nitriding. The technical are: nitriding with cathode cage (NGC) and planar discharge. The characterization was obtained by MEV (Scanning Electronic Microscope) and hardness. The results was compared about the better surface modification that meets future prospects of the biocompatibility of the alloy.(author)

  15. Investigation of structural transformations in the Nb-Ti-Al alloy system

    International Nuclear Information System (INIS)

    Vergasova, L.L.; Volin, Eh.M.; Chizhov, I.N.; Lokshina, A.E.

    1975-01-01

    There are given the results of investigating the effect of thermal treatment conditions upon the structure, the phase composition and the mechanical characteristic of VN7 alloy from Nb-Ti-Al system. VN7 alloy was investigated in cast, forged, pressed and rolled state to study the β-α-conversion processes at slow cooling from high temperature. It was found out that slow cooling lowers considerably the plastic characteristic and the impact ductility without changing practically the tensile strength values. Higher plastic characteristic of VN7 alloy can be obtained through hastening the cooling process of the intermediate products after annealing at 950-1050 0 C

  16. The corrosion behavior of the T1 (Al2CuLi) intermetallic compound in aqueous environments

    Science.gov (United States)

    Buchheit, R. G.; Stoner, G. E.

    1989-01-01

    The intermetallic compound T1 (Al2CuLi) is suspected to play an important role in the localized corrosion at subgrain boundaries in Al-Li-Cu alloys. The intermetallic was synthesized for characterization of its corrosion behavior. Experiments performed included open circuit potential measurements, potentiodynamic polarization, and corrosion rate vs. pH in solutions whose pH was varied over the range of 3 to 11. Subgrain boundary pitting and continuous subgrain boundary corrosion are discussed in terms of the data obtained. Evidence suggesting the dealloying of copper from this compound is also presented.

  17. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  18. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  19. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling

    International Nuclear Information System (INIS)

    Amore, S.; Brillo, J.; Egry, I.; Novakovic, R.

    2011-01-01

    The surface tension of liquid Cu-Ti alloys has been measured by using the containerless technique of electromagnetic levitation and theoretically calculated in the framework of the compound formation model. Measurements have been carried out on alloys covering the entire range of composition and over the temperature range 1275-2050 K. For all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope. Due to the presence of different intermetallic compounds in the solid state the surface properties of liquid Cu-Ti alloys are satisfactory described by the compound formation model.

  20. A study on the microstructural property and thermal property of Ti-alloys without Al as biomaterials

    International Nuclear Information System (INIS)

    Ban, Jae Sam; Lee, Kyung Won; Cho, Kyu Zong; Kim, Sun Jin

    2008-01-01

    Ti-10Ta-10Nb alloys were designed for surgical implants, dental and orthopedic materials without V and Al. Specimens of the Ti-10Ta-10Nb alloy were remelted three times through the consumable VAR process and were made into small rods. Homogenization heat treatment was carried out for 24 hours under a vacuum of 10 -3 torr and at constant temperature of 1050 .deg. C and then the specimens were cooled in water. After that, we observed the microstructure of the alloy by using an SEM. Rockwell (B) hardness, thermal expansion coefficient and specific heat of the Ti-10Ta-10Nb alloy were measured in order to examine the material properties. It was found that the mechanical property of the specimen was altered by the heat treatment, and thermal expansion coefficient and specific heat of the Ti-10Ta-10Nb alloy would be useful data for engineering processing design

  1. Comparison of the two relaxation peaks in the Ti50Ni48Fe2 alloy

    International Nuclear Information System (INIS)

    Fan Genlian; Zhou Yumei; Otsuka, Kazuhiro; Ren Xiaobing; Suzuki, Tetsuro; Yin Fuxing

    2009-01-01

    The internal friction (tan δ) and storage modulus of Ti 50 Ni 48 Fe 2 alloy were studied by dynamic mechanical analysis (DMA). On cooling, a broad relaxation peak with tan δ value as high as 0.2 was detected in R-phase. On heating, another relaxation peak with tan δ value of 0.06 was found in B19' martensite. Both relaxation peaks disappeared when the alloy was dehydrogenated in a dynamic vacuum furnace. Thus, the origin of both relaxation peaks was attributed to the interaction between twin boundaries and hydrogen atoms, as recently proved in Ti-Ni-Cu alloy. The direct comparison of these two relaxation peaks in the same sample indicates that the height of relaxation peaks increases with the decreasing of twinning shear.

  2. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  3. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    Science.gov (United States)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  4. Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    Gloria Basile

    2018-01-01

    Full Text Available In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at % alloy part was produced by Electron Beam Melting (EBM. This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  5. Phase stability in wear-induced supersaturated Al-Ti solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y.; Yokoyama, K. [Dept. of Functional Machinery Mechanics Shinshu Univ., Ueda (Japan); Hosoda, H. [Precision and Intelligence Lab., Tokyo Inst. of Tech., Nagatsuta, Midori-ku, Yokohama (Japan)

    2002-07-01

    Al-Ti supersaturated solid solutions were introduced by wear testing and the rapid quenching of an Al/Al{sub 3}Ti composite (part of an Al/Al{sub 3}Ti functionally graded material) that was fabricated using the centrifugal method. The phase stability of the supersaturated solid solution was studied through systematic annealing of the supersaturated solid solution. It was found that the Al-Ti supersaturated solid solution decomposed into Al and Al{sub 3}Ti intermetallic compound phases during the heat treatment. The Al-Ti supersaturated solid solutions fabricated were, therefore, not an equilibrium phase, and thus decomposed into the equilibrium phases during heat treatment. It was also found that heat treatment leads to a significant hardness increase for the Al-Ti supersaturated solid solution. Finally, it was concluded that formation of the wear-induced supersaturated solid solution layer was a result of severe plastic deformation. (orig.)

  6. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Fang, Sicong; Zhang, Dayue; Xiao, Huaqiang; Zhu, Dezhi

    2013-01-01

    Highlights: ► CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been synthesized via MA and SPS. ► Deformation twinning possibly occurred during MA or SPS. ► This alloy exhibits excellent mechanical properties. ► The fracture mechanism of this alloy is intergranular fracture and plastic fracture. -- Abstract: Inequi-atomic CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy has been designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). Alloying behavior, microstructure, phase evolution and mechanical properties of CoNiFeCrAl 0.6 Ti 0.4 alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), as well as by an Instron testing system. During MA, a supersaturated solid solution consisting of a FCC phase and a metastable BCC phase was formed. Two FCC phases (named FCC1 and FCC2) and a new BCC phase were observed after SPS. During SPS, the metastable BCC phase transformed into the FCC2 phase and the new BCC phase. Meanwhile, the FCC1 phase was the initial FCC phase which was formed during MA. Moreover, nanoscale twins obviously presented only in partial FCC1 phase after SPS. Deformation twinning may be occurred during MA or SPS. The sintered alloy with a high relative density of 98.83% exhibits excellent comprehensive mechanical properties. The yield stress, compressive strength, compression ratio and Vickers hardness of the alloy are 2.08, 2.52 GPa, 11.5% and 573 H V , respectively. The fracture mechanism of CoNiFeCrAl 0.6 Ti 0.4 high entropy alloy is mainly performed at intergranular fracture and plastic fracture mode

  7. Study of Tool Wear Mechanisms and Mathematical Modeling of Flank Wear During Machining of Ti Alloy (Ti6Al4V)

    Science.gov (United States)

    Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.

    2015-07-01

    Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.

  8. Orientation and temperature dependence of yield stress and slip geometry of Ti3Al and Ti3Al-V single crystals

    International Nuclear Information System (INIS)

    Umakoshi, Y.; Nakano, T.; Takenaka, T.; Sumimoto, K.; Yamane, T.

    1993-01-01

    Single crystals of binary Ti 3 Al and ternary Ti 3 Al-V alloys with the D0 19 structure were deformed in compression at 20-900 C. Slip systems of the (10 bar 10) -type and the (11 bar 21) -type were observed in these alloys throughout the entire temperature range depending on orientation, but the (11 bar 21) -slip was limited to orientations near [0001]. The basal (0001) -slip was also activated in quenched Ti 3 Al. The CRSS for the (10 bar 10) -slip in the binary and ternary alloys decreases monotonically with increasing temperature. In the ternary alloy the CRSS for the (10 bar 10) -slip shows a violation of Schmid's law, while the binary alloy obeys the CRSS law. When Ti 3 Al is deformed by (11 bar 21) -slip the CRSS for the slip exhibits an anomalous peak in the temperature-CRSS curve but the addition of vanadium suppresses the extent of the anomalous strengthening

  9. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  10. Wear behaviour of nitrogen-implanted and nitrided Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Martinella, R.; Giovanardi, S.; Chevallard, G.; Villani, M.; Molinari, A.; Tosello, C.

    1985-01-01

    The comparison between the wear behaviour of nitrogen-implanted Ti-6Al-4V alloy and that of nitrided Ti-6Al-4V alloy is reported. Both treatments were carried out at temperatures from 573 to 973 K on lapped surfaces; in order to compare roughness effects, nitriding was also carried out on rougher samples. An improvement in wear resistance for lapped surfaces was noted after implantation at 573 K or higher temperatures and after nitriding at temperatures over 773 K only; however, at 873 K, nitriding was more effective than implantation. Rough nitrided surfaces showed better wear resistance than lapped nitrided surfaces or lapped implanted surfaces. Most probably the improvement in wear resistance on implanted samples is due to a reduction in friction induced by chemical modification of the surface as a result of oxide and TiN. Scanning electron microscopy observations which show subsurface voids and coalescence are in good agreement with a wear model previously reported. As implantation preserves the surface finish, a possible application is suggested. (Auth.)

  11. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    Science.gov (United States)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  12. Effects of homogenization on microstructures and properties of a new type Al-Mg-Mn-Zr-Ti-Er alloy

    International Nuclear Information System (INIS)

    He, L.Z.; Li, X.H.; Liu, X.T.; Wang, X.J.; Zhang, H.T.; Cui, J.Z.

    2010-01-01

    Research highlights: These new type alloys are very potential for increased use in aerospace and automobile industries. However, most of published reports have focused on the effects of Cu, Sc, Zr, Ag, rare metals and Si additions, Portevin-LeChatelier effect, corrosion properties, friction stir welding and superplasticity in 5000-series aluminum alloy, few investigated on Er and stepped homogenization on the precipitation of dispersoids in Al-Mg-Mn alloy. The purpose of this work was to study the effects of Er and homogenization treatment on mechanical properties and microstructural evolution in new type Al-Mg-Mn-Er alloy. - Abstract: Microstructural evolutions and mechanical properties of Al-Mg-Mn-Zr-Ti-Er alloy after homogenization were investigated in detail by optical microscope (OM), scanning electronic microscope (SEM), transmission electronic microscope (TEM), energy dispersive spectrum (EDS) and tensile test. A maximum tensile strength is obtained when the alloy homogenized at 510 deg. C for 16 h. With increasing preheating temperature (200-400 deg. C), the strength of the alloy finial homogenized at 490 deg. C for 16 h increases. When the preheating temperature is ≥300 deg. C, the strengths of the two-step homogenized alloys are higher than those of the single homogenized alloys. The preheating stage plays an important role in the microstructures and properties of the final homogenized alloy. Many fine (Mn,Fe)Al 6 precipitates when the preheating temperature is 400 deg. C. ErAl 3 phase cannot be observed during preheating stage. Plenty of fine (Mn,Fe)Al 6 and ErAl 3 precipitate in finial homogenized alloy when the preheating temperature is ≥300 deg. C. The Al-Mg-Mn-Zr-Ti-Er alloy is effectively strengthened by substructure and dispersoids of (Mn,Fe)Al 6 and ErAl 3 .

  13. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    OpenAIRE

    Steinbach, Sonja; Ratke, Lorenz; Zimmermann, Gerhard; Budenkova, Olga

    2016-01-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al 5 SiFe in the dendritic microstructure was investigated, to study the influence ...

  14. Effects of Ti and TiC ceramic powder on laser-cladded Ti-6Al-4V in situ intermetallic composite

    Energy Technology Data Exchange (ETDEWEB)

    Ochonogor, O.F. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Meacock, C. [Council for Scientific and Industrial Research, National Laser Centre, Pretoria (South Africa); Abdulwahab, M. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Pityana, S. [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa); Council for Scientific and Industrial Research, National Laser Centre, Pretoria (South Africa); Popoola, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, X680 0001 (South Africa)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The wear resistance of the laser clad surfaces was enhanced significantly with fifteen-folds wear rate reduction. Black-Right-Pointing-Pointer Micro-hardness of the clad zones indicated a significant improvement of over two-folds greater than the substrate. Black-Right-Pointing-Pointer Microstructures showed fine crystal grains distribution of ceramic particles that formed interstitial carbides in the titanium matrix composites. - Abstract: Titanium metal matrix composite (MMCs) was developed on titanium alloy (Ti-6Al-4V) substrate with the aim of improving the hardness and wear properties by laser cladding technique using a Rofin Sinar 4 kW Nd: YAG laser. Wear investigations were carried out with the aid of three body abrasion tester. The resultant microstructure show homogeneous distribution of TiC particles free from cracks and pores. Multiple track deposited systems with 50% overlap revealed micro-hardness increase from 357.3 HV{sub 0.1}for the substrate reaching a peak as high as 922.2 HV{sub 0.1} for 60%Ti + 40%TiC and the least 665.3 HV{sub 0.1} for 80%Ti + 20%TiC MMCs. The wear resistance of the materials improved significantly, indicating a fifteen-fold wear rate reduction due to the proper distribution of ceramic particles thereby forming interstitial carbides as revealed by the X-ray diffraction spectrum.

  15. Precipitation kinetics of lamellar (γ) laths in a TiAl-base alloy

    International Nuclear Information System (INIS)

    Zhang, W.J.; Francesconi, L.; Evangelista, E.

    1997-01-01

    Titanium aluminide is a candidate material for high temperature applications. Although different types of microstructure have been produced in TiAl-base alloys, the fully-lamellar structure is currently regarded as the most attractive. This kind of microstructure can be characterized by the factors, namely, colony size, lamellar interspacing, the existence of Widmanstatten (secondary) laths, and the type of grain boundaries (smooth or interlocking). The objective of this paper is to examine the nucleation and growth kinetics of γ lamellar laths during continuous and isothermal cooling. These data are expected to benefit the understanding of the transformation mechanism and the design of lamellar TiAl microstructure for industrial application

  16. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  17. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  18. Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.

    Science.gov (United States)

    Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail

    2018-01-30

    In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.

  19. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    Science.gov (United States)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  20. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  1. Laminated Ti-Al composites: Processing, structure and strength

    DEFF Research Database (Denmark)

    Du, Yan; Fan, Guohua; Yu, Tianbo

    2016-01-01

    Laminated Ti-Al composite sheets with different layer thickness ratios have been fabricated through hot pressing followed by multi-pass hot rolling at 500 °C.The laminated sheets show strong bonding with intermetallic interface layers of nanoscale thickness between the layers of Ti and Al....... The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more...

  2. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  3. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    Science.gov (United States)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  4. Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hanchen; Yang, Jingjing; Yin, Jie; Wang, Zemin, E-mail: zmwang@hust.edu.cn; Zeng, Xiaoyan

    2017-05-17

    Near-fully dense Ti-6Al-4V and 304 stainless steel samples have been produced applying selective laser melting (SLM) in the present work. The microstructures, textures and microhardnesses on horizontal and vertical cross sections, as well as the tensile properties of horizontally and vertically SLMed samples are investigated. It is found that the microstructures of the two SLMed alloys are mainly composed of hexagonal close-packed (HCP) martensitic phase or face-centered cubic (FCC) austenitic phase within columnar structures in Ti-6Al-4V alloy and 304 stainless steel, respectively. For both SLMed alloys, the tensile properties and microhardnesses show anisotropic though the textures are weak. Especially, the Ti-6Al-4V samples show even stronger anisotropic mechanical properties compared with 304 stainless steel. The higher length-width ratios of the columnar structures, rather than the weaker textures or the less symmetry of HCP crystal structure in SLMed Ti-6Al-4V are believed to be responsible for the stronger mechanical anisotropies. As expected, heat treatment is an effective method to eliminate columnar structures and leads to nearly isotropic mechanical properties.

  5. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  6. Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove

    International Nuclear Information System (INIS)

    Song, Zhihua; Nakata, Kazuhiro; Wu, Aiping; Liao, Jinsun

    2013-01-01

    Laser brazing of Ti6Al4V and A6061-T6 alloys with 2 mm thickness was conducted by focusing laser beam on aluminum alloy side, and the effect of laser offset distance on microstructure and mechanical properties of the dissimilar butt joint was investigated. Laser offset has a great influence on the thickness of interfacial intermetallic compound (IMC) layer and the mechanical property of joint. The thickness of interfacial IMC layer is less than 500 nm, and the average tensile strength of the joint reaches 64% of aluminum base material strength, when suitable welding conditions are used. The interfacial IMC is TiAl 3 . The formation of interfacial IMC layer and its effect on mechanical property of the joint are discussed in the present study.

  7. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  8. MICROSTRUCTURE AND TENSILE PROPERTIES OF Fe3Al-BASED ALLOYS WITH VC AND TiC ADDITIONS

    Institute of Scientific and Technical Information of China (English)

    W.L.Xu; Y.S.Sun; S.S.Ding

    2001-01-01

    Microstructure and tensile properties of Fe3Al-based alloys with additions of TiC andVC particles have been investigated.Results show that the formation of TiC particlesresults in the refinement of the macrostructure of as-cast ingots.Although the additionof VC particles does not cause significant change of the as-cast microstructure,themicrostructure of the alloy after hot-working and recrystallization has been found tobe refined.The formation of both VC and TiC particles results in the increase of yieldstrength,especially at high temperature of 600℃.

  9. Causes and mechanisms of thermal embrittlement and corrosion cracking of complex α-titanium alloys

    International Nuclear Information System (INIS)

    Ushkov, S.S.; Rybin, V.V.; Razuvaeva, I.N.; Nesterova, E.V.; Gunbina, O.A.

    1995-01-01

    Effect of aging under 500 deg C on mechanical and corrosion-mechanical properties of Ti-6Al base titanium α-alloys with zirconium and carbon additions is studied. Using electron microscopy one determines the reasons of reduction of plasticity and of corrosion-mechanical strength of alloys after aging. It is determined that in the given alloys there are two different processes with occurrence different kinetics: the first one-formation of grain-boundary precipitations of Ti 2 (Fe, Ni) intermetallic compound responsible for plasticity reduction; and the second one-homogeneous decomposition of Ti-Al solid solution responsible for reduction of corrosion-mechanical properties. 14 refs., 6 figs

  10. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  11. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  12. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    Science.gov (United States)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  13. Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature

    Science.gov (United States)

    Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang

    2018-01-01

    The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.

  14. Carbon fiber reinforced magnesium alloy in a Ti-6Al-4V shell

    Directory of Open Access Journals (Sweden)

    Astanin Vasily

    2017-01-01

    Full Text Available Continuous carbon fiber reinforced magnesium alloy pieces in SMC Ti-6Al-4V shell have been fabricated using pressure infiltration. Similar temperatures (~700°C for superplastic formation of the shell and melting of the alloy allow this to be done in one step. The quality of infiltration of the molten alloys is found to be proportional to load. A limiting parameter in increasing the infiltration pressure is the strength of the welded bonds. Structure, fracture parameters and mechanical properties are discussed.

  15. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [now at IAV GmbH, Kauffahrtei 25, D-09120 Chemnitz (Germany); Biermann, H, E-mail: marcel.roth@iav.d [TU Bergakademie Freiberg, Institute for Materials Engineering, Gustav-Zeuner-Strasse 5, D-09599 Freiberg (Germany)

    2010-07-01

    The cyclic deformation and fatigue behavior of the {gamma}-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400{sup 0}C to 800{sup 0}C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper P{sub SWT} is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750{sup 0}C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter P{sub SWT} cannot be applied for the live prediction.

  16. Data on a new beta titanium alloy system reinforced with superlattice intermetallic precipitates

    Directory of Open Access Journals (Sweden)

    Alexander J. Knowles

    2018-04-01

    Full Text Available The data presented in this article are related to the research article entitled “a new beta titanium alloy system reinforced with superlattice intermetallic precipitates” (Knowles et al., 2018 [1]. This includes data from the as-cast alloy obtained using scanning electron microscopy (SEM and x-ray diffraction (XRD as well as SEM data in the solution heat treated condition. Transmission electron microscopy (TEM selected area diffraction patterns (SADPs are included from the alloy in the solution heat treated condition, as well as the aged condition that contained < 100 nm B2 TiFe precipitates [1], the latter of which was found to exhibit double diffraction owing to the precipitate and matrix channels being of a similar width to the foil thickness (Williams and Carter, 2009 [2]. Further details are provided on the macroscopic compression testing of small scale cylinders. Of the micropillar deformation experiment performed in [1], SEM micrographs of focused ion beam (FIB prepared 2 µm micropillars are presented alongside those obtained at the end of the in-situ SEM deformation as well as videos of the in-situ deformation. Further, a table is included that lists the Schmidt factors of all the possible slip systems given the crystal orientations and loading axis of the deformed micropillars in the solution heat treated and aged conditions.

  17. Characterization of Al/Ni multilayers and their application in diffusion bonding of TiAl to TiC cermet

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J., E-mail: cao_jian@hit.edu.cn [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Song, X.G. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China); Wu, L.Z. [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001 (China); Qi, J.L.; Feng, J.C. [State Key Lab of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin, 150001 (China)

    2012-02-29

    The Al/Ni multilayers were characterized and diffusion bonding of TiAl intermetallics to TiC cermets was carried out using the multilayers. The microstructure of Al/Ni multilayers and TiAl/TiC cermet joint was investigated. The layered structures consisting of a Ni{sub 3}(AlTi) layer, a Ni{sub 2}AlTi layer, a (Ni,Al,Ti) layer and a Ni diffusion layer were observed from the interlayer to the TiAl substrate. Only one AlNi{sub 3} layer formed at the multilayer/TiC cermet interface. The reaction behaviour of Al/Ni multilayers was characterized by means of differential scanning calorimeter (DSC) and X-ray diffraction. The initial exothermic peak of the DSC curve was formed due to the formation of Al{sub 3}Ni and Al{sub 3}Ni{sub 2} phases. The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3} and the final products were AlNi and AlNi{sub 3} phases. The shear strength of the joint was tested and the experimental results suggested that the application of Al/Ni multilayers improved the joining quality. - Highlights: Black-Right-Pointing-Pointer Diffusion bonding of TiAl to TiC cermet was realized using Al/Ni multilayer. Black-Right-Pointing-Pointer The reaction sequence of the Al/Ni multilayers was Al{sub 3}Ni {yields} Al{sub 3}Ni{sub 2} {yields} AlNi {yields} AlNi{sub 3}. Black-Right-Pointing-Pointer The interfacial microstructure of the joint was clarified. Black-Right-Pointing-Pointer The application of Al/Ni multilayers improved the joining quality.

  18. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    nanoscale interpenetrating microstructure was discovered to form via a conditional spinodal reaction pathway involving a congruent ordering transformation preceding spinodal decomposition. In order to gain a comprehensive understanding of the true morphology of these phases and obtain a novel perspective of 3D elemental segregation in the HEA, STEM-high angle annular darkfield (HAADF) micrographs and XEDS spectral images were utilized in the tomographic reconstruction of the microstructure, which was inherently difficult to observe through conventional characterization techniques. The microstructure of the alloy was ultimately refined by incremental variations to the base alloy composition in an effort to remove deleterious intermetallic phases adversely affecting ductility. Despite the excellent compressive strength across a wide range of temperatures and the ability to tailor the microstructure by compositional modifications, microstructural and phase transformations in the desired operating temperature range indicate that the AlMo0.5NbTa0.5TiZr alloy may not be a suitable material for high temperature aerospace structural components.

  19. The effect of tungsten on mechanical properties of the Ti-9% Al-3% Zr alloy

    International Nuclear Information System (INIS)

    Nartova, T.T.; Grigor'ev, I.P.; Stepanov, Yu.N.; Tarasova, O.B.

    1979-01-01

    The effect of tungsten (from 0 to 10 %) on mechanical properties of the ternary Ti-9 %, Al-3 % Zr alloy, has been studied. The microstructure, tensile properties at 20 and 600 deg C and Vickers hardness in as-forged and as-annealed states have been studied. The experiments have shown that the ultimate strength increases with tungsten content. Titanium alloys with 9 % Al and 3 % Zr in the case of varying tungsten content at 20 deg C fracture by brittle mechanism. The dUctility of the annealed alloy does not rise at 20 deg C, but at the test temperature of 600 deg C the alloy becomes ductile

  20. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates

    International Nuclear Information System (INIS)

    Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Wang, W.; Yang, K.; Bliznuk, V.; Kestens, L.A.I.; Zwaag, S. van der

    2010-01-01

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles, and coupled with a genetic optimization scheme, is presented. The method is applied to the design of new ultra-high-strength maraging stainless steels strengthened by Ni 3 Ti intermetallics. In the first design round, the alloy composition is optimized on the basis of precipitate formation at a fixed ageing temperature without considering other steps in the heat treatment. In the second round, the alloy is redesigned, applying an integrated model which allows for the simultaneous optimization of alloy composition and the ageing temperature as well as the prior austenitization temperature. The experimental characterizations of prototype alloys clearly demonstrate that alloys designed by the proposed approach achieve the desired microstructures.