WorldWideScience

Sample records for intermediate water depths

  1. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    ’ involves only the significant wave height, zero crossing wave period and water depth, the spreading function based on ‘s 3 ’ can be used for practical appli- cation. In the model based on ‘s 3 ’ the mean wave direction is an input and this has...-linearity parameter can be recommended for practical use as it provides an averaged distribution. Acknowledgements The authors would like to thank the Department of Science and Technology, New Delhi, for funding the project titled “Directional wave modelling...

  2. Miocene isotope zones, paleotemperatures, and carbon maxima events at intermediate water-depth, Site 593, Southwest Pacific

    International Nuclear Information System (INIS)

    Cooke, P.J.; Nelson, C.S.; Crundwell, M.P.

    2008-01-01

    Oxygen and carbon isotopic stratigraphies are presented from both benthic and planktic foraminifera for the late early Miocene to earliest Pliocene interval (c. 19-5 Ma) of intermediate water-depth DSDP Site 593 in the southern Tasman Sea. The benthic values are interpreted as recording Miocene Southern Component Intermediate Water, while the planktic species record the Miocene mode and surface water signals. Comparisons are made between temperate Site 593 and the intermediate-depth polar Site 747 in the southern Indian Ocean. Glacial Mi zones Mi1b-Mi6, representing extreme glacial events, are evident in both the Site 593 intermediate and surface water records. Miocene Southern Component Intermediate Water δ 18 O values are generally lighter than the Holocene equivalent (Antarctic Intermediate Water), indicating slightly warmer intermediate waters and/ or less global ice volume. The benthic-planktic gradient is interpreted as indicating a less stratified Tasman Sea during the Miocene. The benthic δ 13 C record contains most of the global carbon maxima (CM) events, CM1-7 (CM1-6 = the Monterey Excursion). Like global deep-water records, the Tasman Sea intermediate water δ 13 C values indicate that most CM events correspond with Mi glacials, including Mi4 at Site 593, not reported previously. Intermediate waters play an important role in propagating climatic changes from the polar regions to the tropics, and the Site 593 dataset provides a full water column record of the structure of Miocene intermediate to surface watermasses prior to the modern situation. (author). 132 refs., 8 figs., 4 tabs

  3. Slab tears and intermediate-depth seismicity

    Science.gov (United States)

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  4. Intermediate depth burial of classified transuranic wastes in arid alluvium

    International Nuclear Information System (INIS)

    Cochran, J.R.; Crowe, B.M.; Di Sanza, F.

    1999-01-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE's Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency's (EPA's) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA's 40 CFR 191 requirements. This paper describes DOE's actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA's requirements, and are, therefore, protective of human health

  5. What controls intermediate depth seismicity in subduction zones?

    Science.gov (United States)

    Florez, M. A.; Prieto, G. A.

    2017-12-01

    Intermediate depth earthquakes seem to cluster in two distinct planes of seismicity along the subducting slab, known as Double Seismic Zones (DSZ). Precise double difference relocations in Tohoku, Japan and northern Chile confirm this pattern with striking accuracy. Furthermore, past studies have used statistical tests on the EHB global seismicity catalog to suggest that DSZs might be a dominant global feature. However, typical uncertainties associated with hypocentral depth prevent us from drawing meaningful conclusions about the detailed structure of intermediate depth seismicity and its relationship to the physical and chemical environment of most subduction zones. We have recently proposed a relative earthquake relocation algorithm based on the precise picking of the P and pP phase arrivals using array processing techniques [Florez and Prieto, 2017]. We use it to relocate seismicity in 24 carefully constructed slab segments that sample every subduction zone in the world. In all of the segments we are able to precisely delineate the structure of the double seismic zone. Our results indicate that whenever the lower plane of seismicity is active enough the width of the DSZ decreases in the down dip direction; the two planes merge at depths between 140 km and 300 km. We develop a method to unambiguously pick the depth of this merging point, the end of the DSZ, which appears to be correlated with the slab thermal parameter. We also confirm that the width of the DSZ increases with plate age. Finally, we estimate b-values for the upper and lower planes of seismicity and explore their relationships to the physical parameters that control slab subduction.

  6. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  7. Strong intermediate-depth Vreancea earthquakes: Damage capacity in Bulgaria

    International Nuclear Information System (INIS)

    Kouteva-Guentcheva, M.P.; Paskaleva, I.P.; Panza, G.F.

    2008-08-01

    The sustainable development of the society depends not only on a reasonable policy for economical growth but also on the reasonable management of natural risks. The regional earthquake danger due to the Vrancea intermediate-depth earthquakes dominates the hazard of NE Bulgaria. These quakes have particularly long-period and far-reaching effects, causing damages at large epicentral distances. Vrancea events energy attenuates considerably less rapidly than that of the wave field radiated by the seismically active zones in Bulgaria. The available strong motion records at Russe, NE Bulgaria, due to both Vrancea events - August 30, 1986 and May 30, 1990 show higher seismic response spectra amplitudes for periods up to 0.6 s for the horizontal components, compared to the values given in the Bulgarian Code and Eurocode 8. A neo-deterministic analytical procedure which models the wavefield generated by a realistic earthquake source, as it propagates through a laterally varying anelastic medium, is applied to obtain the seismic loading at Russe. After proper validation, using the few available data and parametric analyses, from the synthesized seismic signals damage capacity of selected scenario Vrancea quakes is estimated and compared with available capacity curves for some reinforced concrete and masonry structures, representative of the Balkan Region. The performed modelling has shown that the earthquake focal mechanisms control the seismic loading much more than the local geology, and that the site response should be analyzed by considering the whole thickness of sediments until the bedrock, and not only the topmost 30 m. (author)

  8. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    NARCIS (Netherlands)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver|info:eu-repo/dai/nl/37155960X; Nestola, Fabrizio

    2017-01-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks - the products of frictional

  9. Recent Intermediate Depth Earthquakes in El Salvador, Central Mexico, Cascadia and South-West Japan

    Science.gov (United States)

    Lemoine, A.; Gardi, A.; Gutscher, M.; Madariaga, R.

    2001-12-01

    We studied occurence and source parameters of several recent intermediate depth earthquakes. We concentrated on the Mw=7.7 salvadorian earthquake which took place on January 13, 2001. It was a good example of the high seismic risk associated to such kind of events which occur closer to the coast than the interplate thrust events. The Salvadorian earthquake was an intermediate depth downdip extensional event which occured inside the downgoing Cocos plate, next to the downdip flexure where the dip increases sharply before the slab sinks more steeply. This location corresponds closely to the position of the Mw=5.7 1996 and Mw=7.3 1982 downdip extensional events. Several recent intermediate depth earthquakes occured in subduction zones exhibiting a ``flat slab'' geometry with three distinct flexural bends where flexural stress may be enhanced. The Mw=6.7 Geiyo event showed a downdip extensional mechanism with N-S striking nodal planes. This trend was highly oblique to the trench (Nankai Trough), yet consistent with westward steepening at the SW lateral termination of the SW Japan flat slab. The Mw=6.8 Olympia earthquake in the Cascadia subduction zone occured at the downdip termination of the Juan de Fuca slab, where plate dip increases from about 5o to over 30o. The N-S orientation of the focal planes, parallel to the trench indicated downdip extension. The location at the downdip flexure corresponds closely to the estimated positions of the 1949 M7.1 Olympia and 1965 M6.5 Seattle-Tacoma events. Between 1994 and 1999, in Central Mexico, an unusually high intermediate depth seismicity occured where several authors proposed a flat geometry for the Cocos plate. Seven events of magnitude between Mw=5.9 and Mw=7.1 occured. Three of them were downdip compressional and four where down-dip extensional. We can explain these earthquakes by flexural stresses at down-dip and lateral terminations of the supposed flat segment. Even if intermediate depth earthquakes occurence could

  10. Imaging the 2017 MW 8.2 Tehuantepec intermediate-depth earthquake using Teleseismic P Waves

    Science.gov (United States)

    Brudzinski, M.; Zhang, H.; Koper, K. D.; Pankow, K. L.

    2017-12-01

    The September 8, 2017 MW 8.1 Tehuantepec, Mexico earthquakes in the middle American subduction zone is one of the largest intermediate-depth earthquake ever recorded and could provide an unprecedented opportunity for understanding the mechanism of intermediate-depth earthquakes. While the hypocenter and centroid depths for this earthquake are shallower than typically considered for intermediate depth earthquakes, the normal faulting mechanism consistent with down-dip extension and location within the subducting plate align with properties of intermediate depth earthquakes. Back-projection of high-frequency teleseismic P-waves from two regional arrays for this earthquake shows unilateral rupture on a southeast-northwest striking fault that extends north of the Tehuantepec fracture zone (TFZ), with an average horizontal rupture speed of 3.0 km/s and total duration of 60 s. Guided by these back-projection results, 47 globally distributed low-frequency P-waves were inverted for a finite-fault model (FFM) of slip for both nodal planes. The FFM shows a slip deficit in proximity to the extension of the TFZ, as well as the minor rupture beyond the TFZ (confirmed by the synthetic tests), which indicates that the TFZ acted as a barrier for this earthquake. Analysis of waveform misfit leads to the preference of a subvertical plane as the causative fault. The FFM shows that the majority of the rupture is above the focal depth and consists of two large slip patches: the first one is near the hypocenter ( 55 km depth) and the second larger one near 30 km depth. The distribution of the two patches spatially agrees with seismicity that defines the upper and lower zones of a double Benioff zone (DBZ). It appears there was single fault rupture across the two depth zones of the DBZ. This is uncommon because a stark aseismic zone is typically observed between the upper and lower zones of the DBZ. This finding indicates that the mechanism for intraslab earthquakes must allow for

  11. Structure of the subducted Cocos Plate from locations of intermediate-depth earthquakes

    Science.gov (United States)

    Lomnitz, C.; Rodríguez-Padilla, L. D.; Castaños, H.

    2013-05-01

    Locations of 3,000 earthquakes of 40 to 300 km depth are used to define the 3-D structure of the subducted Cocos Plate under central and southern Mexico. Discrepancies between deep-seated lineaments and surface tectonics are described. Features of particular interest include: (1) a belt of moderate activity at 40 to 80 km depth that parallels the southern boundary of the Mexican Volcanic Plateau; (2) an offset of 150 km across the Isthmus of Tehuantepec where all seismic activity is displaced toward the northeast; (3) three nests of frequent, deep-seated events (80 to 300 km depth) under southern Veracruz, Chiapas and the coast of Mexico-Guatemala. The active subduction process is sharply delimited along a NW-SE lineament from the Yucatan Peninsula, of insignificant earthquake activity. The focal distribution of intermediate-depth earthquakes in south-central Mexico provides evidence of stepwise deepening of the subduction angle along the Trench, starting at 15 degrees under Michoacan-Guerrero to 45 degrees under NW Guatemala. Historical evidence suggests that the hazard to Mexico City from large intermediate-depth earthquakes may have been underestimated.

  12. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    Science.gov (United States)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  13. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    Science.gov (United States)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  14. Increased Ice-age Influence of Antarctic Intermediate Water.

    Science.gov (United States)

    Muratli, J.; McManus, J.; Mix, A.; Chase, Z.

    2008-12-01

    A depth transect of three ODP sites collected along the central Chile Margin constrain Antarctic Intermediate Water (AAIW) distributions and regional export production over the last 30 ka. Reduced Re and Cd, and increased Mn are proxies for higher bottom water oxygenation; 230Th-normalized burial of opal is a proxy for productivity. Mn/Al is high during the glacial interval at all three sites, suggesting high oxygenation and the retreat of the oxygen minimum zone during this period. At Site 1233, within the core of modern AAIW, Re and Cd are unchanged from detrital values throughout the last 30 ky, implying continuously oxic conditions. In contrast, at the northern sites 1234 and 1235, which reside below and above AAIW respectively, Re and Cd rise rapidly from low glacial values at ~15ka, signifying lower oxygen concentrations at the sea floor during Holocene time relative to ice-age conditions. Local productivity, recorded in Th-normalized opal burial, is highest during the glacial interval at both sites 1233 and 1234, and varies independently from the redox proxies. We conclude that local productivity does not drive bottom water oxygenation here, and that ventilation of the shallow subsurface southeast Pacific increased during the last ice age, with an expanded depth range of AAIW relative to the present.

  15. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    CERN Document Server

    Kouteva, M; Paskaleva, I; Romanelli, F

    2003-01-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion.

  16. Deterministic ground motion modelling at Russe, NE Bulgaria, associated to the Vrancea intermediate-depth earthquakes

    International Nuclear Information System (INIS)

    Kouteva, M.; Paskaleva, I.; Panza, G.F.; Romanelli, F.

    2003-06-01

    An analytical deterministic technique, based on the detailed knowledge of the seismic source process and of the propagation of seismic waves, has been applied to generate synthetic seismic signals at Russe, NE Bulgaria, associated to the strongest intermediate-depth Vrancea earthquakes, which occurred during the last century (1940, 1977, 1986 and 1990). The obtained results show that all ground motion components contribute significantly to the seismic loading and that the seismic source parameters influence the shape and the amplitude of the seismic signal. The approach we used proves that realistic seismic input (also at remote distances) can be constructed via waveform modelling, considering all the possible factors influencing the ground motion. (author)

  17. Monitoring deep geodynamic processes within Vrancea intermediate-depth seismic zone by geodetic means

    Science.gov (United States)

    Besutiu, Lucian; Zlagnean, Luminita

    2015-04-01

    Background Located in the bending zone of East Carpathians, the so-called Vrancea zone is one of the most active seismic regions in Europe. Despite many years of international research, its intermediate-depth seismicity within full intra-continental environment still represents a challenge of the 21st century. Infrastructure In the attempt to join the above-mentioned efforts, the Solid Earth Dynamics Department (SEDD) in the Institute of Geodynamics of the Romanian Academy has developed a special research infrastructure, mainly devoted to gravity and space geodesy observations. A geodetic network covering the epicentre area of the intermediate-depth earthquakes has been designed and implemented for monitoring deep geodynamic processes and their surface echoes. Within each base-station of the above-mentioned network, a still-reinforced concrete pillar allows for high accuracy repeated gravity and GPS determinations. Results Starting from some results of the previously run CERGOP and UNIGRACE European programmes, to which additional SEDD repeated field campaigns were added, an unusual geodynamic behaviour has been revealed in the area. 1) Crust deformation: unlike the overall uprising of East Carpathians, as a result of denudation followed by erosion, their SE bending zone, with Vrancea epicentre area exhibits a slight subsidence. 2) Gravity change: more than 200 microgals non-tidal gravity decrease over a 20 years time-span has been noticed within the subsiding area. Extended observations showed the gravity lowering as a nowadays continuing process. Interpretation This strange combination of topography subsidence and gravity lowering has been interpreted in terms of crust stretching in the Vrancea epicentre zone due to the gravity pull created by densification of the lower crust as a result of phase-transform processes taking place in the lithospheric compartment sunken into the upper mantle. The occurrence of crust earthquakes with vertical-extension focal

  18. Latitudinal variations in intermediate depth ventilation and biological production over northeastern Pacific Oxygen Minimum Zones during the last 60 ka

    Science.gov (United States)

    Cartapanis, Olivier; Tachikawa, Kazuyo; Bard, Edouard

    2012-10-01

    Mechanisms affecting past variability in the Oxygen Minimum Zone (OMZ) in the Eastern Tropical North Pacific (ETNP) are poorly known. We analyzed core MD02-2524, obtained from the Nicaragua Margin in the present ETNP OMZ for major and minor elements (titanium (Ti), brome (Br), silicon (Si), potassium (K), and calcium (Ca)) using an X-ray Fluorescence (XRF) core scanner, and redox-sensitive trace elements (uranium (U), molybdenum (Mo), and nickel (Ni)) determined by ICP-MS. The U and Mo content was higher during the deglaciation than during the Holocene and the last glacial maximum, whereas enrichment was not observed for Ni, an element closely associated with organic matter. High-resolution XRF scanning indicated that the Ca-based carbonate content had millennial-scale variability inversely correlated with Br-based organic matter and Si/K-based opal content during the last glacial period. The available data suggest no clear regional trend in biological productivity during the last deglaciation, but significant local variability in the coastal eastern equatorial Pacific. The trace element enrichment and the lack of a concomitant increase in biogenic phases indicated that an enhanced ETNP OMZ, at least between 15°N and 12°N at a water depth of 500-900 m, was principally caused by a reduced oxygen supply driven by oceanic circulation to the Nicaragua Basin during the deglaciation. The observed patterns can be interpreted as the distinct changes in the oxygenation state of northern and southern water masses at intermediate depths. We also found evidence for a decoupling between local productivity and pore water oxygenation for several millennial-scale events during Marine Isotopic Stage 3, indicating that remote oxygen consumption and/or oceanic ventilation impacted OMZ intensity. Multi-millennial scale variations of the productivity at Papagayo upwelling cell displayed an opposite trend from productivity at the Costa Rica Dome, in relation with the latitudinal shift

  19. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  20. Facilitation of intermediate-depth earthquakes by eclogitization-related stresses and H2O

    Science.gov (United States)

    Nakajima, J.; Uchida, N.; Hasegawa, A.; Shiina, T.; Hacker, B. R.; Kirby, S. H.

    2012-12-01

    Generation of intermediate-depth earthquakes is an ongoing enigma because high lithostatic pressures render ordinary dry frictional failure unlikely. A popular hypothesis to solve this conundrum is fluid-related embrittlement (e.g., Kirby et al., 1996; Preston et al., 2003), which is known to work even for dehydration reactions with negative volume change (Jung et al., 2004). One consequence of reaction with the negative volume change is the formation of a paired stress field as a result of strain compatibility across the reaction front (Hacker, 1996; Kirby et al., 1996). Here we analyze waveforms of a tiny seismic cluster in the lower crust of the downgoing Pacific plate at a depth of 155 km and propose new evidence in favor of this mechanism: tensional earthquakes lying 1 km above compressional earthquakes, and earthquakes with highly similar waveforms lying on well-defined planes with complementary rupture areas. The tensional stress is interpreted to be caused by the dimensional mismatch between crust transformed to eclogite and underlying untransformed crust, and the earthquakes are interpreted to be facilitated by fluid produced by eclogitization. These observations provide seismic evidence for the dual roles of volume-change related stresses and fluid-related embrittlement as viable processes for nucleating earthquakes in downgoing oceanic lithosphere.

  1. Intermediate-depth earthquakes within young Cocos plate beneath Central Mexico: A hypothesis test for dehydration embrittlement and shear instability

    Science.gov (United States)

    Song, T.

    2010-12-01

    Subducting slab undergoes a series of dehydration reactions on their ways into the mantle and these processes are responsible for transporting water, recycling volatiles and chemical elements in arc magmas. It is generally accepted that the SOC is hydrated. However, it is not clear if subducting oceanic mantle (SOM) is hydrated and how deep the hydration is. Seismic refraction studies found that normal-fault type faulting can extend 12-20 km deep into the interior of the slab off Nicaragua, suggesting deep hydration of the SOM. Seismic refraction studies also found that the uppermost SOM is seismically slow and is partially serpentinized. The fluids released from dehydration inside the SOM can reduce the normal stress locally and facilitate the occurrences of intra-slab events through dehydration embrittlement and hydraulic fracture. It has been suggested that the dehydration of antigorite at about 600C is particularly important in facilitating the lower plane of the double seismic zone. To link the dehydration process to the occurrences of intra-slab events, it is critical to clarify where these events are located, either located at the dehydration boundary or in the neighborhood rocks. However, if the SOM is anhydrous, other mechanism, such as shear instabilities, has to be invoked to explain the occurrences of intermediate-depth intraslab earthquakes. Here I discuss locations of intermediate-depth intraslab earthquakes in Central Mexico subduction zone, where young Cocos plate subducts beneath North America plate. Recent studies involving local converted wave modeling and receiver function analysis indicate the presence of an ultra-slow velocity layer (USL) of about 3 km thick, likely an over-pressured upper oceanic crust. Most events display anomalously large converted SP waves that are 2-2.5 secs after direct P waves and finite difference modeling converge the location of these events about 9 km below the lower boundary USL. With a lower oceanic crust of about

  2. A depth-dependent formula for shallow water propagation

    NARCIS (Netherlands)

    Sertlek, H.O.; Ainslie, M.A.

    2014-01-01

    In shallow water propagation, the sound field depends on the proximity of the receiver to the sea surface, the seabed, the source depth, and the complementary source depth. While normal mode theory can predict this depth dependence, it can be computationally intensive. In this work, an analytical

  3. Arctic Intermediate Water in the Nordic Seas, 1991-2009

    Science.gov (United States)

    Jeansson, Emil; Olsen, Are; Jutterström, Sara

    2017-10-01

    The evolution of the different types of Arctic Intermediate Water (AIW) in the Nordic Seas is evaluated and compared utilising hydro-chemical data from 1991 to 2009. It has been suggested that these waters are important components of the Norwegian Sea Arctic Intermediate Water (NSAIW), and of the dense overflows to the North Atlantic. Thus, it is important to understand how their properties and distribution vary with time. The AIWs from the Greenland and Iceland Seas, show different degrees of variability during the studied period; however, only the Greenland Sea Arctic Intermediate Water (GSAIW) shows an increasing temperature and salinity throughout the 2000s, which considerably changed the properties of this water mass. Optimum multiparameter (OMP) analysis was conducted to assess the sources of the NSAIW. The analysis shows that the Iceland Sea Arctic Intermediate Water (ISAIW) and the GSAIW both contribute to NSAIW, at different densities corresponding to their respective density range. This illustrates that they flow largely isopycnally from their source regions to the Norwegian Sea. The main source of the NSAIW, however, is the upper Polar Deep Water, which explains the lower concentrations of oxygen and chlorofluorocarbons, and higher salinity and nutrient concentrations of the NSAIW layer compared with the ISAIW and GSAIW. This shows how vital it is to include chemical tracers in any water mass analysis to correctly assess the sources of the water mass being studied.

  4. The 2005 Tarapaca, Chile, Intermediate-depth Earthquake: Evidence of Heterogeneous Fluid Distribution Across the Plate?

    Science.gov (United States)

    Kuge, K.; Kase, Y.; Urata, Y.; Campos, J.; Perez, A.

    2008-12-01

    The physical mechanism of intermediate-depth earthquakes remains unsolved, and dehydration embrittlement in subducting plates is a candidate. An earthquake of Mw7.8 occurred at a depth of 115 km beneath Tarapaca, Chile. In this study, we suggest that the earthquake rupture can be attributed to heterogeneous fluid distribution across the subducting plate. The distribution of aftershocks suggests that the earthquake occurred on the subhorizontal fault plane. By modeling regional waveforms, we determined the spatiotemporal distribution of moment release on the fault plane, testing a different suite of velocity models and hypocenters. Two patches of high slip were robustly obtained, although their geometry tends to vary. We tested the results separately by computing the synthetic teleseismic P and pP waveforms. Observed P waveforms are generally modeled, whereas two pulses of observed pP require that the two patches are in the WNW-ESE direction. From the selected moment-release evolution, the dynamic rupture model was constructed by means of Mikumo et al. (1998). The model shows two patches of high dynamic stress drop. Notable is a region of negative stress drop between the two patches. This was required so that the region could lack wave radiation but propagate rupture from the first to the second patches. We found from teleseismic P that the radiation efficiency of the earthquake is relatively small, which can support the existence of negative stress drop during the rupture. The heterogeneous distribution of stress drop that we found can be caused by fluid. The T-P condition of dehydration explains the locations of double seismic zones (e.g. Hacker et al., 2003). The distance between the two patches of high stress drop agrees with the distance between the upper and lower layers of the double seismic zone observed in the south (Rietbrock and Waldhauser, 2004). The two patches can be parts of the double seismic zone, indicating the existence of fluid from dehydration

  5. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  6. Relocation of Intermediate-depth Seismicity in the Relic Alboran Slab: Clustering and Relationship to Tearing and Dehydration Embrittlement.

    Science.gov (United States)

    Sun, M.; Bezada, M.

    2017-12-01

    Intermediate-depth seismicity outside active subduction zones is rare. However, there is a well-known occurrence of such events in a N-S elongated volume between Spain and Morocco, within what most researchers consider to be the relic Alboran slab. Partial subduction of, and tearing from the adjoining continental lithosphere have been suggested in this area. We investigate whether dehydration embrittlement or shear instability is more consistent with the Alboran intermediate depth seismicity by considering their location relative to the expected thermal structure and expected areas of high strain rate associated with thinning or tearing of the slab. We use a dense temporary seismograph deployment in Spain and Morocco to relocate 65 intermediate-depth events occurring between 2010 and 2013 in this region. The relocation procedure is realized by a grid-search approach that minimizes the normalized misfit between the picked times and travel times calculated using a regional 3D velocity model. Results indicate that, compared with catalog results, hypocenters after relocation are more concentrated in space; they tend to shift southward and eastward while no systematic shift in depth is observed. Relocated hypocenters concentrate at a depth range between 50-100 km and along a narrow longitude range around 4.5W. Investigation of the earthquake density distribution indicates these earthquakes concentrate into several clusters. One such cluster sits above the spain-arm of the Alboran slab and beneath the Spain continental lithosphere, indicating that it is likely associated to the thinning process of the Alboran slab. The other four clusters all lie within the interior of the slab. Interestingly, two of them are near the middle of the subducted lithosphere and the other two lie near its base. This observation seems at odds with expectations based on the two leading hypotheses for enabling brittle failure at intermediate depths.

  7. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes

    Directory of Open Access Journals (Sweden)

    Yajun Xie

    2015-07-01

    Full Text Available Both water depth and litter quality are important factors influencing litter decomposition in wetlands, but the interactive role of these factors in regulating mass loss and nutrient dynamics is far from clear. The responses of mass loss and nutrient dynamics to simulated water depths and litter quality are investigated in leaves of Carex brevicuspis and leaves and stems of Miscanthus sacchariflorus from the Dongting Lake, China. Three litter types differing in litter quality were incubated for 210 days at three water depths (0 cm, 5 cm, and 80 cm, relative to the water surface in a pond near the Dongting Lake. The litter mass remaining, nitrogen (N, phosphorus (P, organic carbon (organic C, cellulose, and lignin contents were analyzed during the controlled decomposition experiment. Moreover, water properties (temperature, dissolved oxygen content, and conductivity and fungal biomass were also characterized. Initial N and P contents were highest in C. brevicuspis leaves, intermediate in M. sacchariflorus leaves and lowest in M. sacchariflorus stems, whereas the organic C, cellulose, and lignin contents exhibited an opposite trend. After a 210 days incubation, decomposition rate was highest in M. sacchariflorus leaves (0.0034–0.0090 g g-1 DW day-1, in exponential decay model, intermediate in C. brevicuspis leaves (0.0019–0.0041 g g-1 DW day-1, and lowest in M. sacchariflorus stems (0.0005–0.0011 g g-1DW day-1. Decomposition rate of C. brevicuspis leaves was highest at 5 cm water depth, intermediate at 80 cm, and lowest at 0 cm. Decomposition rate of M. sacchariflorus leaves was higher at 5 cm, and 80 cm than at 0 cm water depths. Water depth had no effect on decomposition of M. sacchariflorus stems. At the end of incubation, N and P mineralization was completely in leaf litters with increasing rates along with increasing water depth, while nutrients were accumulated in M. sacchariflorus stem. Organic C, cellulose, and lignin decayed quickly

  8. WATER DEPTH and Other Data (NCEI Accession 9400181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NIRO-MET data set containing water depth and other data in this accession was sent by Borris Trotsenko from Southern Scientific Research Institute of Marine...

  9. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Gnanadesikan, Anand [Johns Hopkins Univ., Baltimore, MD (United States); Sarmiento, Jorge L. [Princeton Univ., NJ (United States)

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  10. Paleoproductivity and intermediate-water ventilation in the subarctic Northwest Pacific during the last deglaciation

    Science.gov (United States)

    Khim, B.; Ikehara, K.; Sagawa, T.; Shibahara, A.; Yamamoto, M.

    2010-12-01

    Laminated sediments during the last deglaciation in the subarctic North Pacific indicate significant depletion of dissolved oxygen concentration at intermediate water depths. Such a strong oxygen minimum zone results primarily from a combination of high surface water productivity and poor ventilation of intermediate waters. We investigated a variety of paleoclimatic proxies using about 8-m long piston core sediment (GH02-1030; 42o13.770N, 144o12.530E; water depth, 1212 m) obtained from the continental slope off Tokachi (eastern Hokkaido Island), which is the main path of the southwestward Oyashio Current in the subarctic Northwest Pacific. Laminated sediments were identified at the two horizons in the core GH02-1030; the upper one at 11.4-12.2 cal.kyr BP and the lower one at 14.1-14.7 cal.kyr BP, corresponding to Bølling-Allerød (B/A) and Preboreal (PB), respectively. Between these laminated layers, Younger Dryas occurred. Both laminated sediment layers are characterized by Bolivina tumida, B. pacifica, and Buliminella tenuata, indicating dysoxic bottom water conditions. Increased Mg/Ca-derived intermediate-water temperature and δ18OW values at B/A and PB periods suggest the poor ventilation of intermediate water because of the surface water freshening (i.e., decrease of surface-water salinity). UK'37-derived temperature record also supports the increase of surface-water temperature during B/A and PB intervals. During the last deglaciation, short-chain C14-C18 n-fatty acids, derived mainly from marine organisms, showed higher concentrations, indicating the increased surface-water production, and at the same time, abundant lignin reflected more contribution of terrigenous organic matter, supporting increased freshwater discharge. Variation of CaCO3 contents show remarkable double peaks, corresponding to B/A and PB periods, respectively, leading to the increase of TOC contents. Opal contents also follow similar pattern to CaCO3 contents, but are much less than the

  11. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    Science.gov (United States)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for

  12. A holistic water depth simulation model for small ponds

    Science.gov (United States)

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  13. A view to the intermediate-depth Vrancea earthquake of May 30, 1990: Case study in NE Bulgaria

    International Nuclear Information System (INIS)

    Kouteva, M.; Paskaleva, I.; Panza, G.F.; Romanelli, F.

    2004-02-01

    A deterministic analytical procedure for ground motion modelling, combining both modal summation and mode coupling techniques has been implemented to obtain synthetic seismic signals at Russe, NE Bulgaria, due to one of the strongest Vrancea intermediate-depth earthquakes, which occurred during the last century, May 30, 1990. The frequency content of the synthetic signals in different frequency ranges, up to 1 and 2Hz, has been studied separately. The results of this study, i.e. time histories and related ground motions parameters, can be used for different earthquake engineering analyses, e.g. structural performance assessments. (author)

  14. Stochastic strong ground motion simulations for the intermediate-depth earthquakes of the south Aegean subduction zone

    Science.gov (United States)

    Kkallas, Harris; Papazachos, Konstantinos; Boore, David; Margaris, Vasilis

    2015-04-01

    We have employed the stochastic finite-fault modelling approach of Motazedian and Atkinson (2005), as described by Boore (2009), for the simulation of Fourier spectra of the Intermediate-depth earthquakes of the south Aegean subduction zone. The stochastic finite-fault method is a practical tool for simulating ground motions of future earthquakes which requires region-specific source, path and site characterizations as input model parameters. For this reason we have used data from both acceleration-sensor and broadband velocity-sensor instruments from intermediate-depth earthquakes with magnitude of M 4.5-6.7 that occurred in the south Aegean subduction zone. Source mechanisms for intermediate-depth events of north Aegean subduction zone are either collected from published information or are constrained using the main faulting types from Kkallas et al. (2013). The attenuation parameters for simulations were adopted from Skarladoudis et al. (2013) and are based on regression analysis of a response spectra database. The site amplification functions for each soil class were adopted from Klimis et al., (1999), while the kappa values were constrained from the analysis of the EGELADOS network data from Ventouzi et al., (2013). The investigation of stress-drop values was based on simulations performed with the EXSIM code for several ranges of stress drop values and by comparing the results with the available Fourier spectra of intermediate-depth earthquakes. Significant differences regarding the strong-motion duration, which is determined from Husid plots (Husid, 1969), have been identified between the for-arc and along-arc stations due to the effect of the low-velocity/low-Q mantle wedge on the seismic wave propagation. In order to estimate appropriate values for the duration of P-waves, we have automatically picked P-S durations on the available seismograms. For the S-wave durations we have used the part of the seismograms starting from the S-arrivals and ending at the

  15. The Antiproton Depth-Dose Curve in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Jäkel, Oliver

    2008-01-01

    We have measured the depth-dose curve of 126 MeV antiprotons in a water phantom using ionization chambers. Since the antiproton beam provided by CERN has a pulsed structure and possibly carries a high-LET component from the antiproton annihilation, it is necessary to correct the acquired charge...

  16. An analysis of depth dose characteristics of photon in water

    International Nuclear Information System (INIS)

    Buzdar, S.A.; Rao, M.A.; Nazir, A.

    2009-01-01

    Photon beam is most widely being used for radiation therapy. Biological effect of radiation is concerned with the evaluation of energy absorbed in the tissues. It was aimed to analyse the depth dose characteristics of x-ray beams of diverse energies to enhance the quality of radiotherapy treatment planning. Depth dose characteristics of different energy photon beams in water have been analysed. Photon beam is attenuated by the medium and the transmitted beam with less intensity causes lesser absorbed dose as depth increases. Relative attenuation on certain points on the beam axis and certain percentage of doses on different depths for available energies has been investigated. Photon beam depth dose characteristics do not show identical attributes as interaction of x-ray with matter is mainly governed by beam quality. Attenuation and penetration parameters of photon show variation with dosimetric parameters like field size due to scattering and Source to Surface Distance due to inverse square law, but the major parameter in photon interactions is its energy. Detailed analysis of photon Depth Dose characteristics helps to select appropriate beam for radiotherapy treatment when variety of beam energies available. Evaluation of this type of characteristics will help to establish theoretical relationships between dosimetric parameters to confirm measured values of dosimetric quantities, and hence to increase accuracy in radiotherapy treatment. (author)

  17. Electroacoustic Process Study of Plasma Sparker Under Different Water Depth

    KAUST Repository

    Huang, Yifan

    2015-01-05

    The plasma sparker has been applied in oceanic high-resolution seismic exploration for decades. Normally it is towed on the water surface. This is suitable for shallow water, but if the water depth is great, the resolution will decrease dramatically, especially in the horizontal direction. This paper proposes the concept of a deep-towed plasma sparker and presents an experimental study of plasma sparker performance in terms of electric parameters, bubble behavior, and acoustic characteristics. The results show that hydrostatic pressure at a source depth ranging from 1 to 2000 m has a negligible influence on the electric parameters but a strong influence on bubble behavior, wherein both the maximum bubble radius and oscillation period are decreased. The collapse pulse vanishes when the source depth reaches 1000 m or deeper, and no bubble oscillation can be distinguished. The source level (evaluated by the expansion pulse) is also decreased as the source depth increases; moreover, the greater the discharge energy, the smaller the source level loss. The discharge energy per electrode should be greater than 20 J for the deep-towed plasma sparker, which can make the source level loss induced by hydrostatic pressure smaller than the transmission loss. The fast Fourier transform (FFT) results show that the dominant energy is around 20 kHz, which is mainly induced by the expansion pulse and its oscillation. According to the simulation results, the fundamental frequency of the acoustic waveform increases with source depth in accord with a log linear trend, and also reaches tens of kilohertz in deep water. So, before the development of deep-towed plasma sparker, a new technical solution will need to be developed to solve this problem. © 1976-2012 IEEE.

  18. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

    Science.gov (United States)

    Sortor, R. N.; Lund, D. C.

    2010-12-01

    Reconstructions of Δ14C from the eastern tropical Pacific show that severe depletions in 14C occurred at intermediate depths during the last deglaciation (Marchitto et al. 2007; Stott et al. 2009). Marchitto et al. (2007) suggested that old radiocarbon from an isolated abyssal reservoir was injected via the Southern Ocean, and that this anomaly was then carried by Antarctic Intermediate Water (AAIW) to the tropical Pacific. However, a core from the southeastern Pacific Ocean near Chile, which is in the direct path of modern-day AAIW, does not exhibit the excursion and therefore casts doubts upon the AAIW mechanism (De Pol-Holz et al. 2010). Here we evaluate whether or not a deglacial 14C anomaly similar to that in the eastern tropical Pacific occurred at intermediate depths in the South Atlantic. We reconstructed Δ14C using planktonic and benthic foraminifera from core KNR159-5-36GGC on the Brazil Margin (27○31’S and 46○28’W, 1268 m depth). In the modern ocean, the hydrography near this core site is heavily influenced by AAIW (Oppo & Horowitz, 2000). Benthic Δ14C values were determined using raw benthic 14C ages and calendar-calibrated planktonic ages. The deglacial benthic Δ14C trend at this site is similar to the atmospheric Δ14C trend, and is consistent with U/Th-dated corals from intermediate depths on the Brazil Margin (Mangini et al. 2010). The amplitude and timing of Δ14C changes in the foraminiferal and coral records are especially congruous during the Mystery Interval. We find no evidence in the southwestern Atlantic of a ~300‰ decrease in intermediate water Δ14C beginning at 18 kyr BP. Changes in reservoir age of ~1000 years are required to create a Baja-like Δ14C anomaly off Brazil, an implausible increase for a subtropical gyre location. Furthermore, the resulting sedimentation rates would be up to ~145 cm/kyr during the deglaciation, an order of magnitude higher than the average sedimentation rate for 36GGC. When our results are

  19. Water activity reduction of intermediate moisture yellowstrip trevally (Selaroides leptolepis

    Directory of Open Access Journals (Sweden)

    Phomajun, P.

    2005-05-01

    Full Text Available Water activity reduction of intermediate moisture yellowstrip trevally was studied. The optimal time (8, 12, 16, 20 hrs. for curing marinade was investigated. The effects of different humectants (glycerol, sorbitol, lactitol, glucose syrup at 50% w/w of curing ingredients were compared. Results showed that moisture content and water activity of cured yellowstrip trevally decreased as curing time increased (p0.05. However, the hardness of intermediate moisture Yellowstrip trevally, determined by texture analyzer, decreased. Hardness, shear force, L a b value of sample added with various humectants were lower than those of the control (p0.05. The glycerol-added samples had the highest overall acceptability score and were higher than control, whereas the glucose syrup-added samples had the lowest score. Moisture content of the samples with the addition of various humectants was higher than that of the control (18.28 %. The samples added with glycerol retained the highest moisture (24.94%. The adsorption isotherm studies showed that the equilibrium moisture of sample added with glycerol was higher than that added with lactitol.

  20. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    depth for a container vessel. The results show that if the water depth is less than two times the draft of the vessel, the wave-induced bending moment becomes significant larger than in deep water with the same sea state description. The peak in the frequency response function for the wave bending......The wave-induced bending moment in ships is the most important sea load parameter for ships larger than 100m in length. Hence, any rational ship design procedure must include a reasonable accurate determination of this load and a large amount of various hydrodynamic formulations have been published......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...

  1. The Differences in Source Dynamics Between Intermediate-Depth and Deep EARTHQUAKES:A Comparative Study Between the 2014 Rat Islands Intermediate-Depth Earthquake and the 2015 Bonin Islands Deep Earthquake

    Science.gov (United States)

    Twardzik, C.; Ji, C.

    2015-12-01

    It has been proposed that the mechanisms for intermediate-depth and deep earthquakes might be different. While previous extensive seismological studies suggested that such potential differences do not significantly affect the scaling relationships of earthquake parameters, there has been only a few investigations regarding their dynamic characteristics, especially for fracture energy. In this work, the 2014 Mw7.9 Rat Islands intermediate-depth (105 km) earthquake and the 2015 Mw7.8 Bonin Islands deep (680 km) earthquake are studied from two different perspectives. First, their kinematic rupture models are constrained using teleseismic body waves. Our analysis reveals that the Rat Islands earthquake breaks the entire cold core of the subducting slab defined as the depth of the 650oC isotherm. The inverted stress drop is 4 MPa, compatible to that of intra-plate earthquakes at shallow depths. On the other hand, the kinematic rupture model of the Bonin Islands earthquake, which occurred in a region lacking of seismicity for the past forty years, according to the GCMT catalog, exhibits an energetic rupture within a 35 km by 30 km slip patch and a high stress drop of 24 MPa. It is of interest to note that although complex rupture patterns are allowed to match the observations, the inverted slip distributions of these two earthquakes are simple enough to be approximated as the summation of a few circular/elliptical slip patches. Thus, we investigate subsequently their dynamic rupture models. We use a simple modelling approach in which we assume that the dynamic rupture propagation obeys a slip-weakening friction law, and we describe the distribution of stress and friction on the fault as a set of elliptical patches. We will constrain the three dynamic parameters that are yield stress, background stress prior to the rupture and slip weakening distance, as well as the shape of the elliptical patches directly from teleseismic body waves observations. The study would help us

  2. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.

    1980-05-01

    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  3. Formation of Antarctic Intermediate Water during the Plio-Pleistocene

    Science.gov (United States)

    Karas, C.; Goldstein, S. L.; deMenocal, P. B.

    2017-12-01

    Antarctic Intermediate Water (AAIW) plays a fundamental role in modern climate change. It is an important sink for anthropogenic CO2, it represents an important source water in several (sub)tropical upwelling regions and it is the coldwater route from the Southern Hemisphere to the North Atlantic Ocean replacing North Atlantic Deep Water (NADW). During the last 4 million years, which marks the transition from the warm Pliocene climate towards icehouse conditions, the formation of this watermass is still largely unknown. We here present a multi-proxy approach using neodymium isotopes (ɛNd) on Fe-Mn encrusted foraminifera and coupled benthic Mg/Ca and stable isotopes from South Atlantic Site 516, within AAIW, to reconstruct its variability. Our data show that the modern formation of AAIW started about 3 million years ago, indicated by a distinct drop of ɛNd by 1.5, a cooling and freshening of benthic TMg/Ca by 8°C and a drop in benthic d13C values towards modern times. We interpret these changes as a reduced inflow of Pacific waters into the South Atlantic and the onset of modern deep vertical mixing at the source regions of AAIW near the polar front. These processes had significant effects on the CO2 storage of the ocean that supported global cooling and the intensification of the Northern Hemisphere Glaciation.

  4. Red Sea Intermediate Water at the Agulhas Current termination

    Science.gov (United States)

    Roman, R. E.; Lutjeharms, J. R. E.

    2007-08-01

    The inter-ocean exchange of water masses at the Agulhas Current termination comes about through the shedding of rings, and this process plays an important role in the global thermohaline circulation. Using several hydrographic sections collected during the ARC (Agulhas Retroflection Cruise), MARE (Mixing of Agulhas Rings Experiment) and WOCE (World Ocean Circulation Experiment), this investigation aims to establish the degree to which Red Sea Intermediate Water (RSIW) is involved in this exchange and at what level of purity. To this end a wide range of hydrographic parameters were used. Upstream from the Agulhas Current retroflection water with clear RSIW origin is shown to move downstream on both the landward and seaward sides of the Agulhas Current with the highest water sample purity or water-mass content exceeding 15%. The least mixed water was found close to the continental shelf. At the retroflection the RSIW purity shows considerable variability that ranges between 5% and 20%. This suggests that RSIW moves down the current in patches of considerably varying degrees of previous mixing. This pattern was also observed in a ring sampled during the ARC experiment. The MARE sections in turn indicate that at times RSIW may be entirely absent in the Agulhas Current. RSIW is therefore shown to travel down the current as discontinuous filaments, and this intermittency is reflected in its presence in Agulhas Rings. From the sections investigated it is therefore clear that any calculation of RSIW fluxes involved in inter-ocean exchange can only be done on the basis of event scales. RSIW not trapped in Agulhas Rings flows east with the Agulhas Return Current.

  5. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  6. Compact water depth sensor with LPFG using the photoelastic effect and heat-shrinkable tube

    Science.gov (United States)

    Takama, Shinya; Kudomi, Takamasa; Ohashi, Masaharu; Miyoshi, Yuji

    2011-12-01

    We propose a compact water depth sensor with a long period fiber grating (LPFG) using a heat-shrinkable tube. The pressure property of the LPFG is investigated experimentally to confirm the feasibility of the water depth sensor. Moreover, the water depth in the 2m long water-filled pipe is successfully estimated by the proposed water sensors.

  7. On the variability of sea drag in finite water depth

    Science.gov (United States)

    Toffoli, A.; Loffredo, L.; Le Roy, P.; LefèVre, J.-M.; Babanin, A. V.

    2012-11-01

    The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.

  8. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  9. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species

    Science.gov (United States)

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Maria E. Arce

    2009-01-01

    We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Leaf) hydraulic conductivity, wood density (Pw), rooting depth, and specific leaf...

  10. An innovative assessment of the seismic hazard from Vrancea intermediate-depth earthquakes: Case studies in Romania and Bulgaria

    International Nuclear Information System (INIS)

    Panza, G.F.; Cioflan, C.; Marmureanu, G.; Kouteva, M.; Paskaleva, I.; Romanelli, F.

    2002-02-01

    An advanced procedure for ground motion, capable of synthesizing the seismic ground motion from basic understanding of fault mechanism and seismic wave propagation, is applied to the case studies of Bucharest (Romania) and Russe, NE Bulgaria, exposed to the seismic hazard from Vrancea events. Synthetic seismic signals along representative geological cross sections in Bucharest and Russe and been computed and the energetic input spectra have been derived both from the synthetic signals and the few existing records. The theoretical signals are successfully compared with the available observations. The site response has been calculated for three recent, strong and intermediate-depth, Vrancea earthquakes: August 30, 1986 and May 30 and 31, 1990. The used approach differs significantly from today's engineering practice that relays upon rock-site hazard maps and applies the site correction at a later stage. The obtained results show that it is very useful to estimate the site effect via waveform modelling, considering simultaneously the geotechnical properties of the site, the position and geometry of the seismic source and the mechanical properties of the propagation medium. (author)

  11. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  12. Design of monopiles for multi-megawatt wind turbines at 50 m water depth

    DEFF Research Database (Denmark)

    Njomo Wandji, Wilfried; Natarajan, Anand; Dimitrov, Nikolay Krasimirov

    2015-01-01

    The design of a monopile substructure for wind turbines of 10 MW capacity installed at 50 m water depth is presented. The design process starts with the design of a monopile at a moderate water depth of 26 m and is then up scaled to a 50 m water depth. The baseline geometry is then modified...

  13. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period

    Science.gov (United States)

    Rella, Stephan F.; Tada, Ryuji; Nagashima, Kana; Ikehara, Minoru; Itaki, Takuya; Ohkushi, Ken'ichi; Sakamoto, Tatsuhiko; Harada, Naomi; Uchida, Masao

    2012-09-01

    Millennial-scale variability in the behavior of North Pacific Intermediate Water during the last glacial and deglacial period, and its association with Dansgaard-Oeschger (D-O) cycles and Heinrich events, are examined based on benthic foraminiferal oxygen and carbon isotopes (δ18Obf and δ13Cbf) and %CaCO3 using a sediment core recovered from the northeastern slope of the Bering Sea. A suite of positive δ18Obf excursions at intermediate depths of the Bering Sea, which seem at least in part associated with increases in the δ18Obf gradients between the Bering and Okhotsk Seas, suggest the Bering Sea as a proximate source of intermediate water during several severe stadial episodes in the last glacial and deglacial period. Absence of such δ18Obf gradients during periods of high surface productivity in the Bering and Okhotsk Seas, which we correlate to D-O interstadials, suggests a reduction in intermediate water production in the Bering Sea and subsequent introduction of nutrient-rich deep waters from the North Pacific into intermediate depths of the Bering Sea. We argue that a reorganization of atmospheric circulation in the high-latitude North Pacific during severe cold episodes in the last glacial and deglacial period created favorable conditions for brine rejection in the northeastern Bering Sea. The resulting salinity increase in the cold surface waters could have initiated intermediate (and deep) water formation that spread out to the North Pacific.

  14. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  15. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  16. Incidence of marine debris in seabirds feeding at different water depths.

    Science.gov (United States)

    Tavares, D C; de Moura, J F; Merico, A; Siciliano, S

    2017-06-30

    Marine debris such as plastic fragments and fishing gears are accumulating in the ocean at alarming rates. This study assesses the incidence of debris in the gastrointestinal tracts of seabirds feeding at different depths and found stranded along the Brazilian coast in the period 2010-2013. More than half (55%) of the species analysed, corresponding to 16% of the total number of individuals, presented plastic particles in their gastrointestinal tracts. The incidence of debris was higher in birds feeding predominantly at intermediate (3-6m) and deep (20-100m) waters than those feeding at surface (pollution has on marine life and highlight the ubiquitous and three-dimensional distribution of plastic in the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Intermediate-Depth Subduction Earthquakes Recorded by Pseudotachylyte in Dry Eclogite-Facies Oceanic Lithosphere from the Alps

    Science.gov (United States)

    Scambelluri, M.; Pennacchioni, G.; Gilio, M.; Bestmann, M.

    2016-12-01

    While geophysical studies and laboratory experiments provide much information on subduction earthquakes, field studies identifying the rock types for earthquake development and the deep seismogenic environments are still scarce. To date, fluid overpressure and volume decrease during hydrous mineral breakdown the widely favoured trigger of subduction earthquakes in serpentinized lithospheric mantle and hydrated low-velocity layers atop slabs. Here we document up to 40 cm-thick pseudotachylyte (PST) in Alpine oceanic gabbro and peridotite (2-2.5 GPa-550-620°C), the analogue of a modern cold subducting oceanic lithosphere. These rocks mostly remained unaltered dry systems; only very minor domains (<1%) record partial hydration and static eclogitic metamorphism. Meta-peridotite shows high-pressure olivine + antigorite (garnet + zoisite + chlorite after mantle plagioclase); meta-gabbro develops omphacite + zoisite + talc + chloritoid + garnet. Abundant syn-eclogitic pseudotachylyte cut the dry gabbro-peridotite and the eclogitized domains. In meta-peridotite, PST shows olivine, orthopyroxene, spinel microliths and clasts of high-pressure olivine + antigorite and garnet + zoisite + chlorite aggregates. In metagabbro, microfaults in damage zones near PST cut brecciated igneous pyroxene cemented by omphacite. In unaltered gabbro, glassy PST contains micron-scale garnet replacing plagioclase microliths during, or soon after, PST cooling. In the host rock, garnet coronas between igneous olivine and plagioclase only occur near PST and between closely spaced PST veins. Absence of garnet away from PST indicates that garnet growth was triggered by mineral seeds and by heat released by PST. The above evidence shows that pseudotachylyte formed at eclogite-facies conditions. In such setting, strong, dry, metastable gabbro-peridotite concentrate stress to generate large intermediate depth subduction earthquakes without much involvement of free fluid.

  18. Continental lithospheric subduction and intermediate-depth seismicity: Constraints from S-wave velocity structures in the Pamir and Hindu Kush

    Science.gov (United States)

    Li, Wei; Chen, Yun; Yuan, Xiaohui; Schurr, Bernd; Mechie, James; Oimahmadov, Ilhomjon; Fu, Bihong

    2018-01-01

    The Pamir has experienced more intense deformation and shortening than Tibet, although it has a similar history of terrane accretion. Subduction as a primary way to accommodate lithospheric shortening beneath the Pamir has induced the intermediate-depth seismicity, which is rare in Tibet. Here we construct a 3D S-wave velocity model of the lithosphere beneath the Pamir by surface wave tomography using data of the TIPAGE (Tien Shan-Pamir Geodynamic program) and other seismic networks in the area. We imaged a large-scale low velocity anomaly in the crust at 20-50 km depth in the Pamir overlain by a high velocity anomaly at a depth shallower than 15 km. The high velocity anomalies colocate with exposed gneiss domes, which may imply a similar history of crustal deformation, partial melting and exhumation in the hinterland, as has occurred in the Himalaya/Tibet system. At mantle depths, where the intermediate-depth earthquakes are located, a low velocity zone is clearly observed extending to about 180 km and 150 km depth in the Hindu Kush and eastern Pamir, respectively. Moreover, the geometry of the low-velocity anomaly suggests that lower crustal material has been pulled down into the mantle by the subducting Asian and Indian lithospheric mantle beneath the Pamir and Hindu Kush, respectively. Metamorphic processes in the subducting lower crust may cause the intermediate-depth seismicity down to 150-180 km depth beneath the Pamir and Hindu Kush. We inverted focal mechanisms in the seismic zone for the stress field. Differences in the stress field between the upper and lower parts of the Indian slab imply that subduction and detachment of the Indian lithosphere might cause intense seismicity associated with the thermal shear instability in the deep Hindu Kush.

  19. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    Science.gov (United States)

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (prunning immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (prunning immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  1. Similar mid-depth Atlantic water mass provenance during the Last Glacial Maximum and Heinrich Stadial 1

    Science.gov (United States)

    Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.

    2018-05-01

    The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.

  2. Southern Ocean Surface and Intermediate Water Temperature from Alkenones and Mg/Ca of Infaunal Foraminifera for the last 1.5 Ma

    Science.gov (United States)

    Elmore, Aurora; McClymont, Erin; Elderfield, Harry; Kender, Sev

    2014-05-01

    The reconstruction of past surface (SST), intermediate, and deep-water temperatures is critical to our understanding of feedbacks within the ocean-climate system. Intermediate water temperature (IWT) reconstruction is particularly important since intermediate waters, including Antarctic Intermediate Water (AAIW), are proposed to be an important driver in high-low latitude teleconnections, despite limited intermediate-depth records through the Pliocene and Pleistocene. Paleotemperature proxies have caveats, including the 'Carbonate Ion Effect' on the Magnesium to Calcium ratio (Mg/Ca) of benthic foraminifera. However, recent studies demonstrated that the infaunal species, Uvigerina peregrina, co-precipitates Mg independent of secondary effects, affording the use of U.peregrina Mg/Ca as a paleotemperature proxy (Elderfield et al., 2010). We present the first 1.5 Ma record of IWT from Mg/CaU.peregrina coupled with an alkenone- derived UK37' SST record from a sediment core in the Southwest Pacific (DSDP site 593; 1068m water depth), in the core of modern AAIW. Our new data reconstruct interglacial IWTs at ~7°C before and after the Mid-Pleistocene Transition (MPT), whereas values of ~5°C occur in the later Pleistocene. Glacial IWT remained fairly constant (~2°C) throughout the last 1 Ma. These results are in apparent disagreement with the typical idea that glacial-interglacial temperature fluctuations were smaller in the '41-kyr world' before the MPT, than during the '100-kyr world', after the MPT. At proximal ODP site 1123 (3290m water depth; Elderfield et al., 2012), interglacial deepwater temperatures increase by ~1°C after the MPT, with relatively constant glacial deepwater temperatures (~-2°C) over the last 1 Ma. New results from DSDP 593 therefore imply that the mechanisms that drive intermediate and deep water temperatures varied, suggesting that at least one of these watermasses has properties driven by something other than Northern Hemisphere glaciation

  3. WATER DEPTH and Other Data (NODC Accession 9400096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD); and bathythermograph (XBT) data were collected as part of Distribution/Abundance of Marine Mammals in Gulf of Mexico...

  4. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    Results of simulated WTDs at various combinations of drain depth and spacing indicated that in clay soil a WTD of 1.0 to 1.5 m from the soil surface can be achieved by installing drain pipes at drain spacing ranging from 25 to 40 m and drain depth between 1.4 and 1.8 m. On the other hand, in clay-loam soil, the same 1.0 to ...

  5. An innovative view to the seismic hazard from strong Vrancea intermediate-depth earthquakes: the case studies of Bucharest (Romania) and Russe (Bulgaria)

    International Nuclear Information System (INIS)

    Panza, G.F.; Cioflan, C.; Marmureanu, G.; Kouteva, M.; Paskaleva, I.; Romanelli, F.

    2003-04-01

    An advanced procedure for ground motion modelling, capable of synthesizing the seismic ground motion from basic understanding of fault mechanism and seismic wave propagation, is applied to compute seismic signals at Bucharest (Romania) and Russe, NE Bulgaria, due to the seismic hazard from intermediate-depth Vrancea earthquakes. The theoretically obtained signals are successfully compared with the available observations. For both case studies site response estimates along selected geological cross sections are provided for three recent, strong and intermediate-depth, Vrancea earthquakes: August 30, 1986 and May 30 and 31, 1990. The applied ground motion modelling technique has proved that it is possible to investigate the local effects, taking into account both the seismic source and the propagation path effects. The computation of realistic seismic input, utilising the huge amount of geological, geophysical and geotechnical data, already available, goes well beyond the conventional deterministic approach and gives an economically valid scientific tool for seismic microzonation. (author)

  6. Mixing and remineralization in waters detrained from the surface into Subantarctic Mode Water and Antarctic Intermediate Water in the southeastern Pacific

    Science.gov (United States)

    Carter, B. R.; Talley, L. D.; Dickson, A. G.

    2014-06-01

    A hydrographic data set collected in the region and season of Subantarctic Mode Water and Antarctic Intermediate Water (SAMW and AAIW) formation in the southeastern Pacific allows us to estimate the preformed properties of surface water detrained into these water masses from deep mixed layers north of the Subantarctic Front and Antarctic Surface Water south of the front. Using 10 measured seawater properties, we estimate: the fractions of SAMW/AAIW that originate as surface source waters, as well as fractions that mix into these water masses from subtropical thermocline water above and Upper Circumpolar Deep Water below the subducted SAMW/AAIW; ages associated with the detrained surface water; and remineralization and dissolution rates and ratios. The mixing patterns imply that cabbeling can account for ˜0.005-0.03 kg m-3 of additional density in AAIW, and ˜0-0.02 kg m-3 in SAMW. We estimate a shallow depth (˜300-700 m, above the aragonite saturation horizon) calcium carbonate dissolution rate of 0.4 ± 0.2 µmol CaCO3 kg-1 yr-1, a phosphate remineralization rate of 0.031 ± 0.009 µmol P kg-1 yr-1, and remineralization ratios of P:N:-O2:Corg of 1:(15.5 ± 0.6):(143 ± 10):(104 ± 22) for SAMW/AAIW. Our shallow depth calcium carbonate dissolution rate is comparable to previous estimates for our region. Our -O2:P ratio is smaller than many global averages. Our model suggests neglecting diapycnal mixing of preformed phosphate has likely biased previous estimates of -O2:P and Corg:P high, but that the Corg:P ratio bias may have been counteracted by a second bias in previous studies from neglecting anthropogenic carbon gradients.

  7. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    Science.gov (United States)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  8. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.

  9. Effect of water depth on wind-wave frequency spectrum I. Spectral form

    Science.gov (United States)

    Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo

    1996-06-01

    Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.

  10. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  11. The Role of Syllables in Intermediate-Depth Stress-Timed Languages: Masked Priming Evidence in European Portuguese

    Science.gov (United States)

    Campos, Ana Duarte; Mendes Oliveira, Helena; Soares, Ana Paula

    2018-01-01

    The role of syllables as a sublexical unit in visual word recognition and reading is well established in deep and shallow syllable-timed languages such as French and Spanish, respectively. However, its role in intermediate stress-timed languages remains unclear. This paper aims to overcome this gap by studying for the first time the role of…

  12. Intermediate report on the problems of warm water drainage

    International Nuclear Information System (INIS)

    1976-01-01

    The investigation into the solution of the problems of warm water drainage and its related matters was conducted, and the result was summarized by the warm water drainage sectional committee of the central public nuisance-prevention council entrusted by the Environment Agency. The first section of this report deals with the background of the warm water drainage problems. In December 1970, the environmental pollution prevention act was revised so as to include warm water drainage in the law. The second section deals with the progress of deliberation by the sectional committee. The third section deals with the actual conditions of warm water drainage. The temperature difference at the inlet and outlet of water was 5 to 11 0 C in power plants, 5 to 16 0 C in iron and steel works, 4 to 11 0 C in petroleum refineries, and 7 to 25 0 C in petrochemical plants. The amount of heat energy discharged from power plants was greater than that from the others. Other sections deal with its effects on the living things in water, the forecast of diffusion of warm drainage, the concept of the regulation of warm drainage, and the present countermeasure. Twelve points which require future investigation are listed. They are the change in the phases of living things affected by the change in temperature and flow of warm drainage, the effects on fishery resources, the estimation system for the environmental calorific capacity in the sea, the mechanism of diffusion and the forecasting method for the diffusion range. (Iwakiri, K.)

  13. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Dufour, Carolina [Princeton Univ., NJ (United States); Rodgers, Keith B. [Princeton Univ., NJ (United States)

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  14. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    Science.gov (United States)

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  15. Influence of water depth on energy expenditure during aquatic walking in people post stroke.

    Science.gov (United States)

    Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou

    2018-05-11

    This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  17. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  18. The path of the Levantine intermediate water to the Alboran sea

    Science.gov (United States)

    Font, Jordi

    1987-10-01

    The Levantine Intermediate Water (LIW) traditionally has been assumed to reach the Alboran Sea as a counter-current along the North African coast. Here data are presented that confirm the LIW flow through the sill that separates the Balearic Islands from the mainland, after contouring cyclonically the western Mediterranean along the continental slope. This seems to be a seasonal phenomenon related to the process of deep water formation in the northwestern Mediterranean and to fluctuations in the Ligurian Current. In winter the LIW can circulate across the Catalan Sea without remarkable dilution, while in summer the intermediate outflow has almost lost the LIW water mass characteristics.

  19. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  20. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  1. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  2. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  3. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  4. Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters

    Science.gov (United States)

    Ullgren, Jenny E.; Fer, Ilker; Darelius, Elin; Beaird, Nicholas

    2014-01-01

    The narrow and deep Faroe Bank Channel (FBC) is an important pathway for cold, dense waters from the Nordic Seas to flow across the Iceland-Scotland ridge into the North Atlantic. The swift, turbulent FBC overflow is associated with strong vertical mixing. Hydrographic profiles from a shipboard survey and two Slocum electric gliders deployed during a cruise in May-June 2012 show an intermediate water mass characterized by low salinity and low oxygen concentration between the upper waters of Atlantic origin and the dense overflow water. A weak low-salinity signal originating north-east of Iceland is discernible at the exit of the FBC, but smeared out by intense mixing. Further west (downstream) marked salinity and oxygen minima are found, which we hypothesize are indicators of a mixture of Labrador Sea Water and Intermediate Water from the Iceland Basin. Water mass characteristics vary strongly on short time scales. Low-salinity, low-oxygen water in the stratified interface above the overflow plume is shown to move along isopycnals toward the Iceland-Faroe Front as a result of eddy stirring and a secondary, transverse circulation in the plume interface. The interaction of low-salinity, low-oxygen intermediate waters with the overflow plume already at a short distance downstream of the sill, here reported for the first time, affects the final properties of the overflow waters through entrainment and mixing.

  5. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... were monitored in 1.7 m deep piezometers installed mid-way between two drains by using an electronic .... logical components in soils with shallow water tables. ..... dency of neither under-estimating nor over-estimating DDs,.

  6. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.

    Science.gov (United States)

    Ye, Bibi; Chu, Zhaosheng; Wu, Aiping; Hou, Zeying; Wang, Shengrui

    2018-01-01

    Macrophytes show a zonal distribution along the lake littoral zone because of their specific preferred water depths while the optimum growth water depths of dominant submersed macrophytes in natural lakes are not well known. We studied the seasonal biomass and frequency patterns of dominant and companion submersed macrophytes along the water depth gradient in Lake Erhai in 2013. The results showed that the species richness and community biomass showed hump-back shaped patterns along the water depth gradient both in polydominant and monodominant communities. Biomass percentage of Potamogenton maackianus showed a hump-back pattern while biomass percentages of Ceratophyllum demersum and Vallisneria natans appeared U-shaped patterns across the water depth gradient in polydominant communities whereas biomass percentage of V. natans increased with the water depth in monodominant communities. Dominant species demonstrated a broader distribution range of water depth than companion species. Frequency and biomass of companion species declined drastically with the water depth whereas those of dominant species showed non-linear patterns across the water depth gradient. Namely, along the water depth gradient, biomass of P. maackianus and V. natans showed hump-back patterns and biomasses of C. demersum displayed a U-shaped pattern in the polydominant communities but biomass of V. natans demonstrated a hump-back pattern in the monodominant communities; frequency of P. maackianus showed a hump-back pattern and C. demersum and V. natans maintained high frequencies in the two types of communities. We can speculate that in Lake Erhai the optimum growth water depths of P. maackianus and C. demersum in the polydominant communities are 2.5-4.5 m and 1-2 m or 5-6 m, respectively and that of V. natans is 3-5 m in the polydominant communities and 2.5-5 m in the monodominant communities. This is the first report that the optimum water depth ranges in the horizontal direction of three

  7. Neon-20 depth-dose relations in water

    Science.gov (United States)

    Wilson, J. W.; Townsend, L. W.; Bidasaria, H. B.; Schimmerling, W.; Wong, M.; Howard, J.

    1984-05-01

    The dose from heavy ion beams has been calculated using a one-dimensional transport theory and evaluated for 670 MeV/amu 20 Ne beams in water. The result is presented so as to be applicable to arbitrary ions for which the necessary interaction data are known. The present evaluation is based on thar Silberg-Tsao fragmentation parameters augmented with light fragment production from intranuclear cascades, recently calculated nuclear absorption cross sections, and evaluated stopping power data. Comparison with recent experimental data obtained at the Lawrence Berkeley Laboratory reveals the need for more accurate fragmentation data.

  8. Chemical composition of selected Kansas brines as an aid to interpreting change in water chemistry with depth

    Science.gov (United States)

    Dingman, R.J.; Angino, E.E.

    1969-01-01

    Chemical analyses of approximately 1,881 samples of water from selected Kansas brines define the variations of water chemistry with depth and aquifer age. The most concentrated brines are found in the Permian rocks which occupy the intermediate section of the geologic column of this area. Salinity decreases below the Permian until the Ordovician (Arbuckle) horizon is reached and then increases until the Precambrian basement rocks are reached. Chemically, the petroleum brines studied in this small area fit the generally accepted pattern of an increase in calcium, sodium and chloride content with increasing salinity. They do not fit the often-predicted trend of increases in the calcium to chloride ratio, calcium content and salinity with depth and geologic age. The calcium to chloride ratio tends to be asymptotic to about 0.2 with increasing chloride content. Sulfate tends to decrease with increasing calcium content. Bicarbonate content is relatively constant with depth. If many of the hypotheses concerning the chemistry of petroleum brines are valid, then the brines studied are anomolous. An alternative lies in accepting the thesis that exceptions to these hypotheses are rapidly becoming the rule and that indeed we still do not have a valid and general hypothesis to explain the origin and chemistry of petroleum brines. ?? 1969.

  9. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking.

    Science.gov (United States)

    Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos

    2018-01-16

    The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.

  10. Slab Geometry and Deformation in the Northern Nazca Subduction Zone Inferred From The Relocation and Focal mechanisms of Intermediate-Depth Earthquakes

    Science.gov (United States)

    Chang, Y.; Warren, L. M.; Prieto, G. A.

    2015-12-01

    In the northern Nazca subduction zone, the Nazca plate is subducting to the east beneath the South American Plate. At ~5.6ºN, the subducting plate has a 240-km east-west offset associated with a slab tear, called the Caldas tear, that separates the northern and southern segments. Our study seeks to better define the slab geometry and deformation in the southern segment, which has a high rate of intermediate-depth earthquakes (50-300 km) between 3.6ºN and 5.2ºN in the Cauca cluster. From Jan 2010 to Mar 2014, 228 intermediate-depth earthquakes in the Cauca cluster with local magnitude Ml 2.5-4.7 were recorded by 65 seismic stations of the Colombian National Seismic Network. We review and, if necessary, adjust the catalog P and S wave arrival picks. We use the travel times to relocate the earthquakes using a double difference relocation method. For earthquakes with Ml ≥3.8, we also use waveform modeling to compute moment tensors . The distribution of earthquake relocations shows an ~15-km-thick slab dipping to the SE. The dip angle increases from 20º at the northern edge of the cluster to 38º at the southern edge. Two concentrated groups of earthquakes extend ~40 km vertically above the general downdip trend, with a 20 km quiet gap between them at ~100 km depth. The earthquakes in the general downdip seismic zone have downdip compressional axes, while earthquakes close to the quiet gap and in the concentrated groups have an oblique component. The general decrease in slab dip angle to the north may be caused by mantle flow through the Caldas tear. The seismicity gap in the slab may be associated with an active deformation zone and the concentrated groups of earthquakes with oblique focal mechanisms could be due to a slab fold.

  11. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    NARCIS (Netherlands)

    Panassa, E.; Santana-Casiano, J.M.; González-Dávila, M.; Hoppema, M.; van Heuven, S.M.A.C.; Völker, C.; Wolf-Gladrow, D.; Hauck, J.

    2018-01-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients outof the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from fivehydrographic cruises between 1990 and 2014 to examine decadal

  12. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  13. Critical masses of bare homogeneous spherical UO2-water mixtures at intermediate enrichments

    International Nuclear Information System (INIS)

    Rendon, G.L.; Stratton, W.

    1999-01-01

    Critical masses of bare homogeneous spherical UO 2 -water mixtures at various intermediate fissile enrichments determined by multigroup, transport theory is presented. This work was performed to provide support for particular issues encountered by the nuclear industry when operating in the intermediate enrichment regime, namely, the validation of codes used to set criticality safety limits. Validation is normally performed with a comparison of computational results and applicable experiments. However, this may be difficult in some cases because of the lack of sufficient applicable experiments in the intermediate enrichment range. If a large extension of the area of applicability from an experiment to the desired application exists, then an alternative means for validation must be employed. Ideal interpretations of standard ANSI/ANS 8.1 Section 4.3 (1983) implies that perhaps an independent code and data system may be employed for validation purposes

  14. The impact of water depth on safety and environmental performance in offshore oil and gas production

    International Nuclear Information System (INIS)

    Muehlenbachs, Lucija; Cohen, Mark A.; Gerarden, Todd

    2013-01-01

    This paper reports on an empirical analysis of company-reported incidents on oil and gas production platforms in the Gulf of Mexico between 1996 and 2010. During these years, there was a dramatic increase in the water depths at which offshore oil and gas is extracted. Controlling for platform characteristics such as age, quantity of oil and gas produced, and number of producing wells, we find that incidents (such as blowouts, injuries, and oil spills) are positively correlated with deeper water. Controlling for these and other characteristics, for an average platform, each 100 feet of added depth increases the probability of a company-reported incident by 8.5%. While further research into the causal connections between water depth and platform risks is warranted, this study highlights the potential value of increased monitoring of deeper water platforms. - Highlights: ► Analysis of performance indicators for oil production platforms in Gulf of Mexico. ► In recent years there have been dramatic increases in the water depths at which offshore oil and gas is extracted. ► Self-reported incidents (e.g. blowouts, injuries, spills) increase with water depth

  15. Effect of growing media, sowing depth, and hot water treatment on ...

    African Journals Online (AJOL)

    To optimize seedling production for reforestation of degraded dryland with A. senegal seeds, a study was conducted on the effect of boiled water treatment, growing media, sowing depth on seed germination and seedling growth of A. senegal. Three different growing media (farm soil, forest soil and sand soil), boiled water ...

  16. Measurement of underground water-soil radioactivity at different depths in arsenic prone areas

    International Nuclear Information System (INIS)

    Ghosh, D.; Deb, A.; Patra, K.K.; Sengupta, R.; Nag, S.K.

    2007-01-01

    Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Measurement of radioactivity in arsenic contaminated drinking water has already been reported. To perform a detail study we have undertaken a programme to measure radioactivity in drinking water and soil samples in three different places of North 24 Parganas in West Bengal, India, where arsenic contamination is severe. A detail investigation on soil samples at different depths and soil-water samples at same depth have been made with CR-39 plates -a Solid State Nuclear Track Detector (SSNTD) -a commonly used detector for alpha radiation. The data indicates high alpha activity in soil than water and this ratio is different at different places varying from 1.22 to 2.63. The dependence of the alpha activity in soil on depth is also different at different sites. The data shows some interesting results. (author)

  17. Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Ting Rui Wen

    2018-03-01

    Full Text Available The applications of floating vertical-axis wind turbines (VAWTs in deep water have been proposed and studied by several researchers recently. However, the feasibility of deploying a floating VAWT at a moderate water depth has not yet been studied. In this paper, this feasibility is thoroughly addressed by comparing the dynamic responses of spar-type VAWTs in deep water and moderate water depth. A short spar VAWT supporting a 5 MW Darrieus rotor at moderate water depth is proposed by following the deep spar concept in deep water. A fully coupled simulation tool, SIMO-RIFLEX-DMS code, is utilized to carry out time domain simulations under turbulent wind and irregular waves. Dynamic responses of the short spar and deep spar VAWTs are analyzed and compared, including the natural periods, wind turbine performance, platform motions, tower base bending moments, and tension of mooring lines. The statistical characteristics of the thrust and power production for both spars are similar. The comparison of platform motions and tower base bending moments demonstrate a good agreement for both spars, but the short spar has better performance in surge/sway motions and side–side bending moments. The 2P response dominates the bending moment spectra for both spars. A significant variation in tension of Mooring Line 1 and a larger corresponding spectrum value are found in the short spar concept. The results indicate that the application of short spar VAWTs is feasible and could become an alternative concept at moderate water depth.

  18. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    Science.gov (United States)

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  19. Variation of the cold intermediate water in the Black Sea exit of the Strait of Istanbul (Bosphorus and its transfer through the strait

    Directory of Open Access Journals (Sweden)

    Huseyin Yuce

    2012-04-01

    Full Text Available The cold intermediate water (CIW, T < 8°C entering the Strait of Istanbul and its variation along the strait have been studied by using monthly conductivity-temperature-depth (CTDdata sets collected during the period from 1996 to 2000. In the northern exit of the strait, CIW is located between the seasonal thermocline and Mediterranean water originating from the lowerlayer of the Sea of Marmara. The thickness of CIW decreases fromApril to October. In the Strait of Istanbul, CIW is observedas a layer of temperature < 14$^{circ}$C. The thickness of thismodified cold intermediate water flowing southwards with the upper layer decreases, while its temperature increases along thestrait due to mixing with adjacent water. In the southern exit of the strait, the modified cold intermediate water is observed during the period from May to October. If CIW exists in the Black Sea exit region of the strait, modified cold water is found inthe Marmara exit region during the same period. The distribution of CIW in the Strait of Istanbul contributes to our understanding of the dynamics of the strait, especially in the summer months.

  20. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    OpenAIRE

    Yao, Wenjun; Shi, Jiuxin

    2016-01-01

    Basin-scaled freshening of Antarctic Intermediate Water (AAIW) is reported to have dominated South Atlantic Ocean during period from 2005 to 2014, as shown by the gridded monthly means Argo (Array for Real-time Geostrophic Oceanography) data. The relevant investigation was also revealed by two transatlantic occupations of repeated section along 30° S, from World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated by the opposing salinity increase o...

  1. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    OpenAIRE

    W. Yao; J. Shi; X. Zhao

    2017-01-01

    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity...

  2. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  3. Numerical Investigation on Effect of Immersed Blade Depth on the Performance of Undershot Water Turbines

    Directory of Open Access Journals (Sweden)

    Yah Nor Fadilah

    2016-01-01

    Full Text Available Energy, especially electricity, plays a vital role in global social and economic development. High annual rain rate in Malaysia seems a good potential for electricity generation especially through small hydro powers. Undershot water turbines are one of the hydropower turbines used for many years. However, the effect of blade depth immersed in the flowing water is not fully investigated. Therefore, the purpose of this paper is to study the effect of immersed blade depth for straight blade undershot water turbine in power generation by using Computational Fluid Dynamics (CFD method. ANSYS CFX 15.0 was used to perform three dimensional analysis under steady state, incompressible, and non-isothermal conditions. The water wheel with number of blades of 6 and four different immersed depth was applied for each simulation. There are four different immersed depth was applied to each simulation, which are 20 mm, 40 mm, 60 mm and 80 mm. From the simulation result, it was found that the optimum immersed depth is 40 mm where the torque load and power generated were 0.264 N.m and 1.318 Watt respectively.

  4. Nest survival of American Coots relative to grazing, burning, and water depths

    Science.gov (United States)

    Austin, Jane E.; Buhl, Deborah A.

    2011-01-01

    Water and emergent vegetation are key features influencing nest site selection and success for many marsh-nesting waterbirds. Wetland management practices such as grazing, burning, and water-level manipulations directly affect these features and can influence nest survival. We used model selection and before-after-control-impact approaches to evaluate the effects of water depth and four common land-management practices or treatments, i.e., summer grazing, fall grazing, fall burning, and idle (no active treatment) on nest survival of American coots (Fulica americana) nesting at Grays Lake, a large montane wetland in southeast Idaho. The best model included the variables year × treatment, and quadratic functions of date, water depth, and nest age; height of vegetation at the nest did not improve the best model. However, results from the before-after-control-impact analysis indicate that management practices affected nest success via vegetation and involved interactions of hydrology, residual vegetation, and habitat composition. Nest success in idled fields changed little between pre- and post-treatment periods, whereas nest success declined in fields that were grazed or burned, with the most dramatic declines the year following treatments. The importance of water depth may be amplified in this wetland system because of rapid water-level withdrawal during the nesting season. Water and land-use values for area ranchers, management for nesting waterbirds, and long-term wetland function are important considerations in management of water levels and vegetation.

  5. Nest Survival of American Coots Relative to Grazing, Burning, and Water Depths

    Directory of Open Access Journals (Sweden)

    Jane E. Austin

    2011-12-01

    Full Text Available Water and emergent vegetation are key features influencing nest site selection and success for many marsh-nesting waterbirds. Wetland management practices such as grazing, burning, and water-level manipulations directly affect these features and can influence nest survival. We used model selection and before-after-control-impact approaches to evaluate the effects of water depth and four common land-management practices or treatments, i.e., summer grazing, fall grazing, fall burning, and idle (no active treatment on nest survival of American coots (Fulica americana nesting at Grays Lake, a large montane wetland in southeast Idaho. The best model included the variables year × treatment, and quadratic functions of date, water depth, and nest age; height of vegetation at the nest did not improve the best model. However, results from the before-after-control-impact analysis indicate that management practices affected nest success via vegetation and involved interactions of hydrology, residual vegetation, and habitat composition. Nest success in idled fields changed little between pre- and post-treatment periods, whereas nest success declined in fields that were grazed or burned, with the most dramatic declines the year following treatments. The importance of water depth may be amplified in this wetland system because of rapid water-level withdrawal during the nesting season. Water and land-use values for area ranchers, management for nesting waterbirds, and long-term wetland function are important considerations in management of water levels and vegetation.

  6. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    Science.gov (United States)

    Panassa, Essowè; Santana-Casiano, J. Magdalena; González-Dávila, Melchor; Hoppema, Mario; van Heuven, Steven M. A. C.; Völker, Christoph; Wolf-Gladrow, Dieter; Hauck, Judith

    2018-03-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.

  7. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ZhongPing; Carder, K.; Steward, R. [Univ. of South Florida, St. Petersburg, FL (United States)] [and others

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform for the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.

  8. Source of the Vrancea, Romania intermediate-depth earthquakes: variability test of the source time function using a small-aperture array

    International Nuclear Information System (INIS)

    Popescu, E.; Radulian, M.; Popa, M.; Placinta, A.O.; Cioflan, C. O.; Grecu, B.

    2005-01-01

    The main purpose of the present work is to investigate the possibility to detect and calibrate the source parameters of the Vrancea intermediate-depth earthquakes using a small-aperture array, Bucovina Seismic Array (BURAR). BURAR array was installed in 1999 in joint cooperation between Romania and USA. The array is situated in the northern part of Romania, in Eastern Carpathians, at about 250 km distance from the Vrancea epicentral area. The array consists of 10 stations (nine short period and one broad band instruments installed in boreholes). For our study we selected 30 earthquakes (3.8 iU MD iU 6.0) occurred between 2002 and 2004, including two recent Vrancea events, which are the best ever recorded earthquakes on the Romanian territory: September 27, 2004 (45.70 angle N, 26.45 angle E, h = 166 km, M w = 4.7) and October 27, 2004 (45.84 angle N, 26.63 angle E, h = 105 km, M w 6.0). Empirical Green function deconvolution and spectral ratio methods are applied for pairs of collocated events with similar focal mechanism. Stability tests are performed for the retrieved source time function using the array elements. Empirical scaling and calibration relationships are also determined. Possible variation with depth along the subducting slab, in agreement with assumed differences in the seismic and tectonic regime between the upper (h = 60 -110 km) and lower (h = 110 - 180 km) lithospheric seismic active segments, and variation in the attenuation of the seismic waves propagating toward BURAR site, are also investigated. (authors)

  9. Accuracy of spatio-temporal RARX model predictions of water table depths

    NARCIS (Netherlands)

    Knotters, M.; Bierkens, M.F.P.

    2002-01-01

    Time series of water table depths (Ht) are predicted in space using a regionalised autoregressive exogenous variable (RARX) model with precipitation surplus (Pt) as input variable. Because of their physical basis, RARX model parameters can be guessed from auxiliary information such as a digital

  10. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  11. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  12. Executive Functions of Divers Are Selectively Impaired at 20-Meter Water Depth

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2017-06-01

    Full Text Available Moving and acting underwater within recreational or occupational activities require intact executive functions, since they subserve higher cognitive functions such as successful self-regulation, coping with novel situations, and decision making; all of which could be influenced by nitrogen narcosis due to elevated partial pressure under water. However, specific executive functions that could provide a differentiated view on humans’ cognitive performance ability have not yet been systematically analyzed in full-water immersion, which is a research gap addressed within this approach to contribute to a better understanding of nitrogen narcosis. In this study, 20 young, healthy, and certified recreational divers participated and performed three different executive-function tests: the Stroop test (Inhibition, the Number/Letter test (Task switching, the 2-back test (Updating/Working memory, and a simple reaction time test (Psychomotor performance. These tests were performed once on land, at 5-meter (m water depth, and at 20-meter (m water depth of an indoor diving facility in standardized test conditions (26°C in all water depths. A water-proofed and fully operational tablet computer was used to present visual stimuli and to register reaction times. Performance of the simple reaction time test was not different between underwater and land testing, suggesting that reaction times were not biased by the utilization of the tablet in water immersion. Executive functions were not affected by the shallow water immersion of 5-m water depth. However, performance scores in 20-m water depth revealed a decreased performance in the incongruent test condition (i.e., an index of inhibitory control ability of the Stroop test, while all other tests were unaffected. Even though only one out of the three tested cognitive domains was affected, the impairment of inhibitory control ability even in relatively shallow water of 20-m is a critical component that should be

  13. Executive Functions of Divers Are Selectively Impaired at 20-Meter Water Depth.

    Science.gov (United States)

    Steinberg, Fabian; Doppelmayr, Michael

    2017-01-01

    Moving and acting underwater within recreational or occupational activities require intact executive functions, since they subserve higher cognitive functions such as successful self-regulation, coping with novel situations, and decision making; all of which could be influenced by nitrogen narcosis due to elevated partial pressure under water. However, specific executive functions that could provide a differentiated view on humans' cognitive performance ability have not yet been systematically analyzed in full-water immersion, which is a research gap addressed within this approach to contribute to a better understanding of nitrogen narcosis. In this study, 20 young, healthy, and certified recreational divers participated and performed three different executive-function tests: the Stroop test (Inhibition), the Number/Letter test (Task switching), the 2-back test (Updating/Working memory), and a simple reaction time test (Psychomotor performance). These tests were performed once on land, at 5-meter (m) water depth, and at 20-meter (m) water depth of an indoor diving facility in standardized test conditions (26°C in all water depths). A water-proofed and fully operational tablet computer was used to present visual stimuli and to register reaction times. Performance of the simple reaction time test was not different between underwater and land testing, suggesting that reaction times were not biased by the utilization of the tablet in water immersion. Executive functions were not affected by the shallow water immersion of 5-m water depth. However, performance scores in 20-m water depth revealed a decreased performance in the incongruent test condition (i.e., an index of inhibitory control ability) of the Stroop test, while all other tests were unaffected. Even though only one out of the three tested cognitive domains was affected, the impairment of inhibitory control ability even in relatively shallow water of 20-m is a critical component that should be considered for

  14. Process design of a new injection method of liquid CO2 at the intermediate depths in the ocean using a static mixer

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2005-01-01

    Process design for a new injection method of liquid CO 2 using a static mixer was conducted based on laboratory experimental results on the formation process of liquid CO 2 drops covered with hydrate film by a Kenics-type static mixer, and numerical simulation of the liquid CO 2 drops at 500 and 1500 m. The Sauter Mean Diameter (SMD) of the liquid CO 2 drops covered with hydrate film was dramatically decreased with the use of the static mixer; empirical equations were obtained for the SMD, and also the maximum and minimum diameters of the liquid CO 2 drops for a given flow velocity (Weber number, We). The ascending and dissolving behavior of a liquid CO 2 drop with hydrate released in the ocean at an intermediate depth was numerically simulated, and the maximum drop diameter to avoid evaporation of the drop before complete dissolution was estimated. Based on these results, scaling up of the static mixer was conducted by assuming a disposal process of CO 2 emitted from a 100-MW thermal power plant, and the mixer diameter was determined as a function of the given SMD. Moreover, the power consumption of the static mixer was evaluated and found to be almost negligible. (author)

  15. Photocatalytic degradation trichloroethylene: influence of type of TiO/sub 2/ and water depth

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.

    2005-01-01

    Wastewater is frequently released untreated into the rivers and streams in developing countries, contaminating the major sources of freshwater. There is a need to find an economical solution to clean these essential water supplies. This paper describes the photo catalytic degradation of trichloroethylene (TCE) using three types of TiO/sub 2/. The performance of scientific grade (P25) and commercial grade TiO/sub 2/ was compared. The powder TiO/sub 2/ was found more effective than the sand TiO/sub 2/ for decomposing TCE. The effect of sand TiO/sub 2/ as photo catalyst was investigated at various water depths. It was observed that up to 45 mm water depth, sand TiO/sub 2/ showed photodegradation of TCE. The degradation rates of sand decreased. (author)

  16. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  17. Study the Effect of Intermittent and Continuous Ponding Depths by Using Different Heads to Leach Water

    OpenAIRE

    Nesrin J. AL-Mansori

    2018-01-01

    As results of using water for irrigated lands in a random manner in a time of shortage main water resources, Experimental work carried out to study the effect of continuous and intermittent ponding depth on the leaching processes. Sandy soil used, sourced from Hilla / Al-Jameeya, at Hilla city. Sieve analysis and hydrometer testing used to identify the properties of the soil. A model used with dimensions of 30, 30 and, 70 cm, with two different heads of water. Shatt-Al-Hilla River samples use...

  18. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  19. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    Science.gov (United States)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  20. A new perspective on origin of the East Sea Intermediate Water: Observations of Argo floats

    Science.gov (United States)

    Park, JongJin; Lim, Byunghwan

    2018-01-01

    The East Sea Intermediate Water (ESIW), defined as the salinity minimum in the East Sea (hereafter ES) (Sea of Japan), is examined with respect to its overall characteristics and its low salinity origin using historical Argo float data from 1999 to 2015. Our findings suggest that the ESIW is formed in the western Japan Basin (40-42°N, 130-133°E), especially west of the North Korean front in North Korean waters, where strong negative surface wind stress curl resides in wintertime. The core ESIW near the formation site has temperatures of 3-4 °C and less than 33.98 psu salinity, warmer and fresher than that in the southern part of the ES. In order to trace the origin of the warmer and fresher water at the sea surface in winter, we analyzed the data in three different ways: (1) spatial distribution of surface water properties using monthly climatology from the Argo float data, (2) seasonal variation of heat and salt contents at the formation site, and (3) backtracking of surface drifter trajectories. Based on these analyses, it is likely that the warmer and fresher surface water properties found in the ESIW formation site are attributed to the low-salinity surface water advected from the southern part of the ES in autumn.

  1. Origin and pathways of Winter Intermediate Water in the Northwestern Mediterranean Sea using observations and numerical simulation

    Science.gov (United States)

    Juza, Mélanie; Renault, Lionel; Ruiz, Simon; Tintoré, Joaquin

    2013-12-01

    The study of water masses worldwide (their formation, spreading, mixing, and impact on general circulation) is essential for a better understanding of the ocean circulation and variability. In this paper, the formation and main pathways of Winter Intermediate Water (WIW) in the Northwestern Mediterranean Sea (NWMED) are investigated during the winter-spring 2011 using observations and numerical simulation. The main results show that the WIW, formed along the continental shelves of the Gulf of Lion and Balearic Sea, circulates southward following five preferential pathways depending on the WIW formation site location and the oceanic conditions. WIW joins the northeastern part of the Balearic Sea, or flows along the continental shelves until joining the Balearic Current (maximum of 0.33 Sv in early-April) or further south until the Ibiza Channel entrance. Two additional trajectories, contributing to water mass exchanges with the southern part of the Western Mediterranean Sea, bring the WIW through the Ibiza and Mallorca Channels (maxima of 0.26 Sv in late-March and 0.1 Sv in early-April, respectively). The circulation of WIW over the NWMED at 50-200 m depth, its mixing and spreading over the Western Mediterranean Sea (reaching the south of the Balearic Islands, the Algero-Provencal basin, the Ligurian and the Alboran Seas) suggest that the WIW may have an impact on the ocean circulation by eddy blocking effect, exchange of water masses between north and south subbasins of Western Mediterranean Sea through the Ibiza Channel or modification of the ocean stratification.

  2. Bacterial diversity and biogeochemistry of different chemosynthetic habitats of the REGAB cold seep (West African margin, 3160 m water depth

    Directory of Open Access Journals (Sweden)

    P. Pop Ristova

    2012-12-01

    Full Text Available The giant pockmark REGAB (West African margin, 3160 m water depth is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining pore water geochemistry, in situ quantification of fluxes and consumption of methane, as well as bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption rates and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.

  3. Develop guidelines for the design of pillar systems for shallow and intermediate depth, tabular, hard rock mines and provide a methodology for assessing hangingwall stability and support requirements for the panels between pillars

    CSIR Research Space (South Africa)

    York, G

    1998-12-01

    Full Text Available The design of hard rock pillars, in shallow to intermediate depth hard rock mines, has been redefined as the determination of the pillar system load bearing capacity. This entails the ability to design each of the components of the pillar system...

  4. First results from the new K2-network in Romania: Source- and site-parameters of the April 28, 1999 intermediate depth Vrancea earthquake

    International Nuclear Information System (INIS)

    Bonjer, K.-P.; Oncescu, L.; Rizescu, M.; Enescu, D.; Radulian, M.; Ionescu, C.; Moldoveanu, T.; Lungu, D.; Stempniewski, L.

    2002-01-01

    In the past five years the Collaborative Research Center 461 'Strong Earthquakes' of Karlsruhe University and the National Institute for Earth Physics, Bucharest-Magurele have installed jointly a network of 36 free-field stations in Romania. The stations are equipped with Kinemetrics K2-dataloggers, three-component episensors and GPS timing system. Most stations have velocity transducers in addition. The network is centered around the Vrancea focal zone and covers an area with a diameter of up to 500 km. Nine stations of the net are deployed in the Romanian capital Bucharest in nearly free-field conditions. Furthermore, at the Building Research Institute (INCERC) a test building and a borehole is instrumented with K2-systems. So far the top floor of a typical 10-story building is instrumented as well. The Vrancea earthquake of April 28, 1999 has been recorded by 28 stations of the new strong motion network. Although the moment magnitude was M w =5.3, no damage occurred, due to the great focal depth of 159 km. The fault-plane solution shows a nearly pure thrust mechanism (strike=171 angle, dip=53 angle, rake=106 angle), which is typical for most of the Vrancea intermediate-depth earthquakes. The strike of the B-axis is within the range of those of the background seismicity but rotated counterclockwise by about 50 angle in comparison to those of the big events. Due to the relatively dense station distribution, the lateral variation of the pattern of the peak ground motion could be well constrained. The PGA is very low (less than 5 cm/s 2 ) in Transylvania and in the mountainous areas of the Carpathians as well as in the eastern part of the Dobrogea/coastal range of the Black Sea, whereas values of around 40 cm/s 2 are found in a stripe of 80 km width, located in the outer part of the Carpathians arc and ranging from Bucharest to about 200 km towards NE. Details of the distribution in Bucharest will be discussed. (authors)

  5. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    Science.gov (United States)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  6. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  7. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  8. Changes in late-winter snowpack depth, water equivalent, and density in Maine, 1926-2004

    Science.gov (United States)

    Hodgkins, Glenn A.; Dudley, Robert W.

    2006-03-01

    Twenty-three snow-course sites in and near Maine, USA, with records spanning at least 50 years through to 2004 were tested for changes over time in snowpack depth, water equivalent, and density in March and April. Of the 23 sites, 18 had a significant decrease (Mann-Kendall test, p 1950s and 1960s, and densities peaked in the most recent decade. Previous studies in western North America also found a water-equivalent peak in the third quarter of the 20th century. Published in 2006 by John Wiley & Sons, Ltd.Received: 14 June 2005; Accepted: 7 October 2005

  9. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    Science.gov (United States)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  10. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  11. Hydrogeochemistry of karst underground waters at shallow depth in Guiyang City, Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    DONG Zhifen; ZHU Lijun; WU Pan; SHEN Zheng; FENG Zhiyong

    2005-01-01

    The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca 2+ and Mg 2+ are the dominant cations, accounting for 81%- 99.7% of the total, and HCO -3 and SO 2- 4 are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeochemistry of underground waters in the region studied.

  12. Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models

    NARCIS (Netherlands)

    Engels, S.; Cwynar, L.C.; Rees, A.B.H.; Shuman, B.N.

    2012-01-01

    Water depth is an important environmental variable that explains a significant portion of the variation in the chironomid fauna of shallow lakes. We developed site-specific and local chironomid water-depth inference models using 26 and 104 surface-sediment samples, respectively, from seven

  13. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  14. The calculation of relative output factor and depth dose for irregular electron fields in water

    International Nuclear Information System (INIS)

    Dunscombe, Peter; McGhee, Peter; Chu, Terence

    1996-01-01

    Purpose: A technique, based on sector integration and interpolation, has been developed for the computation of both relative output factor and depth dose of irregular electron fields in water. The purpose of this study was to determine the minimum experimental data set required for the technique to yield results within accepted dosimetric tolerances. Materials and Methods: PC based software has been written to perform the calculations necessary to dosimetrically characterize irregular shaped electron fields. The field outline is entered via digitiser and the SSD and energy via the keyboard. The irregular field is segmented into sectors of specified angle (2 deg. was used for this study) and the radius of each sector computed. The central ray depth dose is reconstructed by summing the contributions from each sector deduced from calibration depth doses measured for circular fields. Relative output factors and depth doses at SSDs at which calibrations were not performed are found by interpolation. Calibration data were measured for circular fields from 2 to 9 cm diameter at 100, 105, 110, and 115 cm SSD. A clinical cut out can be characterized in less than 2 minutes including entry of the outline using this software. The performance of the technique was evaluated by comparing calculated relative output factors, surface dose and the locations of d 80 , d 50 and d 20 with experimental measurements on a variety of cut out shapes at 9 and 18 MeV. The calibration data set (derived from circular cut outs) was systematically reduced to identify the minimum required to yield an accuracy consistent with current recommendations. Results: The figure illustrates the ability of the technique to calculate the depth dose for an irregular field (shown in the insert). It was found that to achieve an accuracy of 2% in relative output factor and 2% or 2 mm (our criterion) in percentage depth dose, calibration data from five circular fields at the four SSDs spanning the range 100-115 cm

  15. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  16. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    The real-time Everglades Depth Estimation Network (EDEN) has been established to support a variety of scientific and water management purposes. The expansiveness of the Everglades, limited number of gaging stations, and extreme sensitivity of the ecosystem to small changes in water depth have created a need for accurate water-level and water-depth maps. The EDEN water-surface elevation model uses data from approximately 240 gages in the Everglades to create daily continuous interpolations of the water-surface elevation and water depth for the freshwater portion of the Everglades from 2000 to the present (2014). These maps provide hydrologic data previously unavailable for assessing biological and ecological studies.

  17. The lower body muscle activation of intermediate to experienced kayakers when navigating white water.

    Science.gov (United States)

    Murtagh, Misha; Brooks, Darrell; Sinclair, Jonathan; Atkins, Stephen

    2016-11-01

    In white-water kayaking, the legs play a vital part in turning, stabilising and bracing actions. To date, there has been no reported information on neuromuscular activation of the legs in an authentic white-water environment. The aim of the current study was to identify lower body muscle activation, using 'in-boat' electromyography (EMG), whilst navigating a white-water run. Ten experienced male kayakers (age 31.5 ± 12.5 yr, intermediate to advanced experience) completed three successful runs of an international standard white-water course (grade 3 rapids), targeting right and left sides of the course, in a zigzag formation. Surface EMG (sEMG) outputs were generated, bilaterally, for the rectus femoris (RF), vastus lateralis, biceps femoris and gastrocnemius, expressed as a percentage of a dynamic maximal voluntary contraction (dMVC). Only RF showed significantly higher activation than any muscle on the left side of the body, and only on the left side of the course (P = .004; ETA(2) = 0.56). Other results showed no significant difference between muscle activation in the right and left legs during each run, nor when assessed at either the right or left side of the course (P > .05). These findings indicate that contralateral symmetry in lower limb muscle activation is evident during white-water kayaking. This symmetry may provide a stable base to allow more asymmetrical upper body and trunk movements to be fully optimised. Lower body symmetry development should be considered useful in targeted training programmes for white-water kayakers.

  18. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  19. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective

    Science.gov (United States)

    Heine, Jörn; Wurm, Christian A.; Keller-Findeisen, Jan; Schönle, Andreas; Harke, Benjamin; Reuss, Matthias; Winter, Franziska R.; Donnert, Gerald

    2018-05-01

    Modern fluorescence superresolution microscopes are capable of imaging living cells on the nanometer scale. One of those techniques is stimulated emission depletion (STED) which increases the microscope's resolution many times in the lateral and the axial directions. To achieve these high resolutions not only close to the coverslip but also at greater depths, the choice of objective becomes crucial. Oil immersion objectives have frequently been used for STED imaging since their high numerical aperture (NA) leads to high spatial resolutions. But during live-cell imaging, especially at great penetration depths, these objectives have a distinct disadvantage. The refractive index mismatch between the immersion oil and the usually aqueous embedding media of living specimens results in unwanted spherical aberrations. These aberrations distort the point spread functions (PSFs). Notably, during z- and 3D-STED imaging, the resolution increase along the optical axis is majorly hampered if at all possible. To overcome this limitation, we here use a water immersion objective in combination with a spatial light modulator for z-STED measurements of living samples at great depths. This compact design allows for switching between objectives without having to adapt the STED beam path and enables on the fly alterations of the STED PSF to correct for aberrations. Furthermore, we derive the influence of the NA on the axial STED resolution theoretically and experimentally. We show under live-cell imaging conditions that a water immersion objective leads to far superior results than an oil immersion objective at penetration depths of 5-180 μm.

  20. Effect of pond water depth on snail populations and fish-borne zoonotic trematode transmission in juvenile giant gourami (Osphronemus goramy) aquaculture nurseries

    DEFF Research Database (Denmark)

    Thien, P. C.; Madsen, Henry; Nga, H. T. N.

    2015-01-01

    . Here we report results from a cross-sectional study to look at the association between pond depth and infection with FZT in giant gourami nursery ponds. Density of intermediate host snails was positively associated with pond depth (count ratio associated with a 1m increase in pond depth was 10.4 (95% C...

  1. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  2. Reuse of drainage water model : calculation method of drainage water and watertable depth

    NARCIS (Netherlands)

    Roest, C.W.J.; Rijtema, P.E.; Abdel Khalik, M.A.

    1986-01-01

    The main objective of the project is to assist the Ministry of Irrigation in Egypt in the planning of future watermanagement strategies incorporating reuse of drainage water practices. In order to achieve this main objective a comprehensive measurement programme has been initiated and a mathematical

  3. Investigation of Flooding Water Depth Management on Yield and Quality Indices of Rice Production

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salemi

    2017-03-01

    Full Text Available Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB. Rice appears to be the far-most profitable crop but at the same time it has a major impact on basin scale water resources, especially affecting downstream farmers. In the study area (ShahidFozveh Research Station, the water resources for agricultural production face heightened competition from other sectors like industry and domestic use. This necessitates considering different crops, altered agricultural systems and innovative methods that can reduce the water requirements for the irrigation of rice. The Alternative Wetting and Drying (AWD seems to be an effective method reducing water use for rice crops and possibly save the water for downstream users. There have been no qualitative evaluations of rice production under deficit irrigation practices in Isfahan area. This study sought to determine, under study area conditions, the quantities of water irrigation used with AWD practices, the resulting water productivity (WP and the effects of alternative irrigation management on yield, quality indices and rice production performance. Materials and Methods: The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Qahderijan region of Isfahan province, which is located in the central part of the ZRB. The ShahidFozveh Agricultural Research Station (32°, 36’ N, 51°, 36’ E is located at the altitude of 1612 m above the sea level. In order to improve WP and illustration of the impact of various levels of flooding depth on grain yield and quality indices at rice production, a field experiment (3000 m2 was conducted at ShahidFozveh Research Station for 2 years arranged in a split plot design with three replications. It will be necessary to use different scenario of water flooding depth management to

  4. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  5. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    The extreme summer drought and heat waves that occurred in South-Europe in 2003 and 2012 have led to the loss of more than 50% of winery production in the Classic Karst (NE Italy). The irrigation of vineyards in this area is not appropriately developed and, when used, it does not consider the actual water status and needs of plants, posing risks of inappropriate or useless usage of large water volumes. The predicted future increase in frequency and severity of extreme climate events poses at serious risk the local agriculture based on wine business. We monitored seasonal trends of pre-dawn (Ψpd) and minimum (Ψmin) leaf water potential, and stomatal conductance (gL) of 'Malvasia' grapevine in one mature (MV, both in 2015 and 2016) and one young vineyard (YV, in 2016). Moreover, we extracted xylem sap form plant stems and soil water from samples collected in nearby caves, by cryo-vacuum distillation. We also collected precipitation and irrigation water in different months. Oxygen isotope composition (δ18O) of atmospheric, plant, soil and irrigation water was analyzed to get information about rooting depth. In 2015, at the peak of summer aridity, two irrigation treatments were applied according to traditional management practices. The treatments were performed in a sub-area of the MV, followed by physiological analysis and yield measurements at grape harvest. In 2016, the soil water potential (Ψsoil) at 50 cm depth was also monitored throughout the season. Under harsh environmental conditions the apparently deep root system ensured relatively favorable plant water status in both MV and YV and during both growing seasons. The Ψsoil at 50 cm depth gradually decreased as drought progressed, reaching a minimum value of about -1.7 MPa, far more negative than Ψpd recorded in plants (about -0.5 MPa). In July, significant stomatal closure was observed, but Ψmin never surpassed the critical threshold of -1.3 MPa, indicating that irrigation was not needed. The xylem sap

  6. The South-to-North Water Diversion Project: effect of the water diversion pattern on transmission of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in China.

    Science.gov (United States)

    Liang, You-Sheng; Wang, Wei; Li, Hong-Jun; Shen, Xue-Hui; Xu, Yong-Liang; Dai, Jian-Rong

    2012-03-20

    The South-to-North Water Diversion Project (SNWDP) is the largest national water conservancy project in China. However, the Eastern Route Project (ERP) of SNWDP will refer to the habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum. The present study was aimed at investigating the effects of some factors relating to the water diversion pattern on the spread north of O. hupensis and transmission of S. japonicum. Marked snails were attached to the floating debris, and then placed on the water surface, the passage of snails through water pumps was observed. Some marked living adult snails were placed under water in the 5 spots, 15, 30, 60, 90 and 120 days later, their survival and transfer under water were investigated. 2, 4, 8, 16, 32, 64 and 128 juvenile snails, with a male: female ratio of about 1, were caged, 1 year later, their reproductions were calculated. The snails attached on the floating debris at 100-, 50- and 20-cm-distance from the inlet pipe of the big pump (with a diameter of 80 cm), could be absorbed into the pumps, with passing rates of 2.45%, 3.93% and 43.46%, respectively, compared with 72.07% and 91.00% for the snails at 20 cm and 10 cm-distance from the inlet pipe of the small pump (with a diameter of 20 cm). A total of 36,600 marked living snails were put into 5 ponds and ditches, with the water depths of 1-1.6 m, 15-120 days later, no marked ones were found along the ponds and ditches or in the straw packages. The juvenile snails did not reproduce until their density reached up to 8 snails (ratio of male: female of 1)/0.16 m2. During the construction of ERP of SNWDP, the risk of northward spread of schistosomiasis japonica will be decreased or eliminated as long as long-term reliable interventions for snail control are implemented.

  7. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  8. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  9. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  10. Evaluation of the depth-integration method of measuring water discharge in large rivers

    Science.gov (United States)

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural

  11. Study the Effect of Intermittent and Continuous Ponding Depths by Using Different Heads to Leach Water

    Directory of Open Access Journals (Sweden)

    Nesrin J. AL-Mansori

    2018-03-01

    Full Text Available As results of using water for irrigated lands in a random manner in a time of shortage main water resources, Experimental work carried out to study the effect of continuous and intermittent ponding depth on the leaching processes. Sandy soil used, sourced from Hilla / Al-Jameeya, at Hilla city. Sieve analysis and hydrometer testing used to identify the properties of the soil. A model used with dimensions of 30, 30 and, 70 cm, with two different heads of water. Shatt-Al-Hilla River samples used in the leaching process.   Chemical tests carried out before the leaching process to identify changes in the proprieties in both water and soil. Leachate collected from two soil columns drained into boxes and tests carried out every 30 minutes. After the leaching process was complete, the soil was re-tested. Chemical tests on soil samples and the collected water applied after leaching for 47.5 cm and 52.5cm heads. From the results،, it can be notice that electrical conductivity for the outlet discharge from soil samples decreased faster with time, then slowing down until the end of leaching process.  The same pattern can be seen for all soil properties. In continuous leaching, a large quantity of water is required over a short leaching period, the inverse true for intermittent leaching. All parameters reduce with time in continuous leaching in comparison to intermittent leaching but when the water level in the soil column compared, it can inferred that increasing the head will reduce all the parameters for soil.

  12. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  13. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  14. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    Science.gov (United States)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water

  15. Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates

    International Nuclear Information System (INIS)

    Staehelin, J.; Buehler, R.E.; Hoigne, J.

    1984-01-01

    Ozone decomposition in pure water involves a chain mechanism, initiated by the reaction OH - +O 3 and propogated by O 2 - and OH. In the present studies this chain is initiated by pulse radiolysis of aqueous solutions of ozone. The chain propogation steps were studied in two parts. By computer simulation of the rate curves, it is shown that from OH + O 3 and intermediate HO 4 must be formed, most likely a charge-transfer complex (HO.O 3 ), which eventually decays into HO 2 . The derived rate constants for the formation of the various species are included. The spectrum of HO 4 is derived. It is similar to the one of ozone, but the absorption coefficients are about 50% larger. In the presence of high ozone concentration, the dominant chain termination reactions are HO 4 + HO 4 and HO 4 + HO 3 . The effect on chain length, dose, overall rate, and pH and of added scavengers is described. The implications for the natural ozone decay mechanism are discussed

  16. Fish communities associated with cold-water corals vary with depth and substratum type

    Science.gov (United States)

    Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.

    2016-08-01

    Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.

  17. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna.

    Science.gov (United States)

    Hagihara, Rie; Jones, Rhondda E; Sobtzick, Susan; Cleguer, Christophe; Garrigue, Claire; Marsh, Helene

    2018-01-01

    The probability of an aquatic animal being available for detection is typically probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon) is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs) at three sites with distinct seagrass depth distributions: 1) open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015); 2) a protected bay (average water depth 6.8 m) with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012); and 3) a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013). The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of coastal megafauna including surveys using Unmanned

  18. Rapid shift and millennial-scale variations in Holocene North Pacific Intermediate Water ventilation.

    Science.gov (United States)

    Lembke-Jene, Lester; Tiedemann, Ralf; Nürnberg, Dirk; Gong, Xun; Lohmann, Gerrit

    2018-05-22

    The Pacific hosts the largest oxygen minimum zones (OMZs) in the world ocean, which are thought to intensify and expand under future climate change, with significant consequences for marine ecosystems, biogeochemical cycles, and fisheries. At present, no deep ventilation occurs in the North Pacific due to a persistent halocline, but relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development in lower latitudes. Over the past decades, instrumental data show decreasing oxygenation in NPIW; however, long-term variations in middepth ventilation are potentially large, obscuring anthropogenic influences against millennial-scale natural background shifts. Here, we use paleoceanographic proxy evidence from the Okhotsk Sea, the foremost North Pacific ventilation region, to show that its modern oxygenated pattern is a relatively recent feature, with little to no ventilation before six thousand years ago, constituting an apparent Early-Middle Holocene (EMH) threshold or "tipping point." Complementary paleomodeling results likewise indicate a warmer, saltier EMH NPIW, different from its modern conditions. During the EMH, the Okhotsk Sea switched from a modern oxygenation source to a sink, through a combination of sea ice loss, higher water temperatures, and remineralization rates, inhibiting ventilation. We estimate a strongly decreased EMH NPIW oxygenation of ∼30 to 50%, and increased middepth Pacific nutrient concentrations and carbon storage. Our results ( i ) imply that under past or future warmer-than-present conditions, oceanic biogeochemical feedback mechanisms may change or even switch direction, and ( ii ) provide constraints on the high-latitude North Pacific's influence on mesopelagic ventilation dynamics, with consequences for large oceanic regions. Copyright © 2018 the Author(s). Published by PNAS.

  19. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    Directory of Open Access Journals (Sweden)

    W. Yao

    2017-07-01

    Full Text Available Basin-scale freshening of Antarctic Intermediate Water (AAIW is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL, which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer. The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea–air model simulations.

  20. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005-2014

    Science.gov (United States)

    Yao, Wenjun; Shi, Jiuxin; Zhao, Xiaolong

    2017-07-01

    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL), which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer). The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea-air model simulations.

  1. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    Science.gov (United States)

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  2. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin

    2017-09-01

    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  3. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    International Nuclear Information System (INIS)

    Wass, Eva

    2011-07-01

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  4. Monitoring Forsmark. Snow depth, snow water content and ice cover during the winter 2010/2011

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Eva (Geosigma AB (Sweden))

    2011-07-15

    Snow depth and ice cover have been measured and observed during the winter 2010/2011. This type of measurements started in the winter 2002/2003 and has been ongoing since then. In addition to these parameters, the water content of the snow was calculated at each measurement occasion from the weight of a snow sample. Measurements and observations were conducted on a regular basis from the beginning of November 2010 until the middle of April 2011. A persistent snow cover was established in the end of November 2010 and remained until the beginning of April 2011 at the station with longest snow cover duration. The period of ice cover was 160 days in Lake Eckarfjaerden, whereas the sea bay at SFR was ice covered for 135 days

  5. Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow......Forcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder...... at the back of the cylinder following the passage of the wave crest. The numerical computations were further analysed in the frequency domain. For a representative example, the secondary load cycle was found to be associated with frequencies above the fifth- and sixth-harmonic force component. For the third...

  6. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    Science.gov (United States)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and

  7. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  8. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    Science.gov (United States)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas

  9. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    Science.gov (United States)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  10. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    Science.gov (United States)

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  11. [Effects of submarine topography and water depth on distribution of pelagic fish community in minnan-taiwan bank fishing ground].

    Science.gov (United States)

    Fang, Shuimei; Yang, Shengyun; Zhang, Chengmao; Zhu, Jinfu

    2002-11-01

    According to the fishing record of the light-seine information vessel in Minnan-Taiwan bank ground during 1989 to 1999, the effects of submarine topography and water depth on distribution of pelagic fish community in Minnan-Taiwan bank fishing ground was studied. The results showed that the pelagic fish distributed concentratively, while the submarine topography and water depth varied widely, but in different fishing regions, the distribution of pelagic fishes was uneven. The distribution of fishing yield increased from north to south, and closed up from sides of the bank to south or north in the regions. Pelagic fish distributed mainly in mixed water in the southern Taiwan Strait, and in warm water in the Taiwan Strait. The central fishing grounds were at high salt regions. Close gathering regions of pelagic fish or central fishing ground would be varied with the seasonal variation of mixed water in the southern Taiwan Strait and warm water in the Taiwan Strait. Central fishing ground was not only related to submarine topography and water depth, but also related to wind direction, wind-power and various water systems. In the fishing ground, the gathering depth of pelagic fish was 30-60 m in spring and summer, and 40-80 m in autumn and winter.

  12. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  13. Modelling contrasting responses of wetland productivity to changes in water table depth

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2012-11-01

    Full Text Available Responses of wetland productivity to changes in water table depth (WTD are controlled by complex interactions among several soil and plant processes, and hence are site-specific rather than general in nature. Hydrological controls on wetland productivity were studied by representing these interactions in connected hummock and hollow sites in the ecosystem model ecosys, and by testing CO2 and energy fluxes from the model with those measured by eddy covariance (EC during years with contrasting WTD in a shrub fen at Lost Creek, WI. Modelled interactions among coupled processes for O2 transfer, O2 uptake, C oxidation, N mineralization, N uptake and C fixation by diverse microbial, root and mycorrhizal populations enabled the model to simulate complex responses of CO2 exchange to changes in WTD that depended on the WTD at which change was occurring. At the site scale, greater WTD caused the model to simulate greater CO2 influxes and effluxes over hummocks vs. hollows, as has been found at field sites. At the landscape scale, greater WTD caused the model to simulate greater diurnal CO2 influxes and effluxes under cooler weather when water tables were shallow, but also smaller diurnal CO2 influxes and effluxes under warmer weather when water tables were deeper, as was also apparent in the EC flux measurements. At an annual time scale, these diurnal responses to WTD in the model caused lower net primary productivity (NPP and heterotrophic respiration (Rh, but higher net ecosystem productivity (NEP = NPP − Rh, to be simulated in a cooler year with a shallower water table than in a warmer year with a deeper one. This difference in NEP was consistent with those estimated from gap-filled EC fluxes in years with different water tables at Lost Creek and at similar boreal fens elsewhere. In sensitivity tests of the model, annual NEP

  14. New Observations of the Gulf of Aden Intermediate Water Intrusion into the Red Sea.

    Science.gov (United States)

    Bower, A.; Abualnaja, Y.

    2012-04-01

    The three-layer exchange flow between the Red Sea and the Indian Ocean during summer is characterized by a thick, northward intrusion of relatively cold, low-salinity and low in dissolved oxygen (Water (GAIW), sandwiched between two thin layers of outflow water. The flux of GAIW into the Red Sea is important in the heat, freshwater and nutrient budgets of the Red Sea, but the structure and pathways of the intrusion are not well-known due to a paucity of hydrographic and direct velocity observations. A research cruise was executed at the eastern side of the Red Sea during September-October 2011 to conduct the first large-scale survey of the intrusion. This mission is part of a series of expeditions in the Red Sea designed to investigate the seasonal Red Sea circulation. Surprisingly, the GAIW intrusion was observed to stretch nearly the entire length of the Red Sea (~1500 km) as a narrow eastern boundary current with subsurface velocity maximum of 0.1-0.3 m/s in the depth range 50-100 m. The intruding layer is weakly stratified compared to the background, possibly an indication of strong vertical mixing as it flows through the strait. Some GAIW was observed to enter deep channels in a coral reef bank (Farasan Banks) located in the southeastern Red Sea, and to enter the Red Sea interior, the latter possibly due to interactions between the boundary current and mesoscale eddies. The pathways and erosion of the GAIW intrusion will likely have major implications for the spatial distribution of biological productivity.

  15. Regression analysis of growth responses to water depth in three wetland plant species

    DEFF Research Database (Denmark)

    Sorrell, Brian K; Tanner, Chris C; Brix, Hans

    2012-01-01

    depths from 0 – 0.5 m. Morphological and growth responses to depth were followed for 54 days before harvest, and then analysed by repeated measures analysis of covariance, and non-linear and quantile regression analysis (QRA), to compare flooding tolerances. Principal results Growth responses to depth...

  16. Impact of repository depth on residence times for leaking radionuclides in land-based surface water

    Science.gov (United States)

    Wörman, Anders; Marklund, Lars; Xu, Shulan; Dverstorp, Björn

    2007-03-01

    The multiple scales of landscape topography produce a wide distribution of groundwater circulation cells that control the hydro-geological environments surrounding geological repositories for nuclear waste. The largest circulation cells tend to discharge water into major river reaches, large freshwater systems or the nearby Baltic Sea. We investigated numerically the release of radionuclides from repositories placed in bedrock with depths between 100 to 2000 meters in a Swedish coastal area and found that leakage from the deeper positions emerges primarily in the major aquatic systems. In effect, radionuclides from the deeper repositories are more rapidly transported towards the Sea by the stream system compared to leakage from more shallow repositories. The release from the shallower repositories is significantly retained in the initial stage of the transport in the (superficial) landscape because the discharge occurs in or near low-order streams with high retention characteristics. This retention and residence time for radioactivity in the landscape control radiological doses to biota and can, thus, be expected to constitute an essential part of an associated risk evaluation.

  17. Satellite-Derived Bathymetry: Accuracy Assessment on Depths Derivation Algorithm for Shallow Water Area

    Science.gov (United States)

    Said, N. M.; Mahmud, M. R.; Hasan, R. C.

    2017-10-01

    Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.

  18. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    Science.gov (United States)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  19. Non-invasive detection of soil water content at intermediate field scale using natural neutrons from cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Sascha; Rivera Villarreyes, Carlos; Baroni, Gabriele [Universitaet Potsdam, Institut fuer Erd und Umweltwissenschaften (Germany)

    2011-07-01

    The amount of water in the subsurface is a key factor influencing soil hydrology, run-off, evapotranspiration and plant development. A new measurement method is the so called cosmic ray method, recently introduced for soil moisture measurements by Zreda and coworkers. Secondary neutron fluxes, product of the interaction of primary cosmic-rays at the land surface, are strongly moderated by the presence of water in or above soil (soil moisture, snow and biomass water). Neutron counts at the ground/air interface represent a valuable observation at intermediate spatial scale which can be used to quantify stored water while distinguishing different water holding compartments at the land surface. We have performed such measurements in an agricultural field, in comparison with classical soil moisture measurement at a number of point locations. We discuss how to extract soil moisture values from the neutron counts, drawbacks of the method, but also that the results show a temporal development supported by the accompanying data.

  20. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  1. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  2. Response of spatial point pattern of halostachys caspica population to ground water depth

    International Nuclear Information System (INIS)

    Niu, P.; Wang, M.; Jiang, P.; Li, M.; Chu, G.

    2017-01-01

    We subjected Halostachys caspica populations to three groundwater depths: shallow ( 4.5 m) in the sample plots, at the diluvial fan of the South Junggar Basin. Both the spatial pattern and spatial association of the population among all three groundwater depths and four growth stages were studied to investigate the impact of groundwater depth on the formation and persistence mechanism of the spatial pattern of Halostachys caspica populations. In this study, Ripley's K function was utilized to characterize spatial patterns and intraspecific associations of H. caspica in three 1-ha plots, as well as to study their relationship with groundwater depth. The seedling supplement severely decreased with increasing groundwater depth, and the population structure changed noticeably due to increased amount of dead standing plants. Different growth stages of the H. caspica population all had aggregated distributions at small scale in the three groundwater depth areas. With increasing scales, the aggregation intensity weakened in all growth stages. Distribution was aggregated at 50 m scales in both the shallow and middle groundwater depth areas, while the deep groundwater depth area followed a random distribution. (author)

  3. Determination of electron depth-dose curves for water, ICRU tissue, and PMMA and their application to radiation protection dosimetry

    International Nuclear Information System (INIS)

    Grosswendt, B.

    1994-01-01

    For monoenergetic electrons in the energy range between 60 keV and 10 MeV, normally incident on water, 4-element ICRU tissue and PMMA phantoms, depth-dose curves have been calculated using the Monte Carlo method. The phantoms' shape was that of a rectangular solid with a square front face of 30 cm x 30 cm and a thickness of 15 cm; it corresponds to that recommended by the ICRU for use in the procedure of calibrating radiation protection dosemeters. The depth-dose curves have been used to determine practical ranges, half-value depths, electron fluence to maximum absorbed dose conversion factors, and conversion factors between electron fluence and absorbed dose at depths d corresponding to 0.007 g.cm -2 , 0.3 g.cm -2 , and 1.0 g.cm -2 . The latter data can be used as fluence to dose equivalent conversion factors for extended parallel electron beams. (Author)

  4. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia

    Science.gov (United States)

    González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.

    2018-03-01

    The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.

  6. Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    NARCIS (Netherlands)

    Huijts, K.M.H.|info:eu-repo/dai/nl/304831867; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schramkowski, G.P.; Schuttelaars, H.M.

    2011-01-01

    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak

  7. Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis

    DEFF Research Database (Denmark)

    Kotwa, Ewelina Katarzyna; Lacorte, Silvia; Duarte, Carlos

    2014-01-01

    In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity–temperature–depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 174...

  8. Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters

    NARCIS (Netherlands)

    Visser, PM; Poos, JJ; Scheper, BB; Boelen, P; van Duyl, FC

    2002-01-01

    In this study, diurnal changes in bacterial production and DNA damage in bacterio-plankton (measured as cyclobutane pyrimidine dimers, CPDs) incubated in bags at different depths in tropical coastal waters were investigated. The DNA damage and inhibition of the bacterial production was highest at

  9. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth

    Czech Academy of Sciences Publication Activity Database

    Juszczak, R.; Humphreys, E.; Acosta, Manuel; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, Janusz

    2013-01-01

    Roč. 366, 1-2 (2013), s. 505-520 ISSN 0032-079X Institutional support: RVO:67179843 Keywords : Ecosystem respiration * Geogenous peatland * Chamber measurements * CO2 fluxes * Water table depth Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  10. Variation of Pressure with Depth of Water: Working with High-Tech and Low-Cost Materials

    Science.gov (United States)

    Ornek, Funda; Zziwa, Byansi Jude; Taganahan, Teresita D.

    2013-01-01

    When you dive underwater, you feel the pressure on your ears and, as you dive deeper, more pressure is felt. This article presents an activity that teachers might find useful for demonstrating the relationship between water depth and pressure. (Contains 5 figures and 1 table.)

  11. Depth dose distribution in the water for clinical applicators of 90Sr + 90Y, with a extrapolation mini chamber

    International Nuclear Information System (INIS)

    Antonio, Patricia de Lara; Caldas, Linda V.E.; Oliveira, Mercia L.

    2009-01-01

    This work determines the depth dose in the water for clinical applicators of 90 Sr + 90 Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  12. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous...

  13. Water relations and foliar isotopic composition of Prosopis tamarugo Phil. an endemic tree of the Atacama Desert growing under three levels of water table depth.

    Directory of Open Access Journals (Sweden)

    Marco eGarrido

    2016-03-01

    Full Text Available Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the Pampa del Tamarugal, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m and 7.1 ± 0.1 m, (the last GWD being our reference were selected and groups of 4 individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and midday water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behaviour and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P

  14. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    Science.gov (United States)

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after

  15. Fabrication and Characterizations of Materials and Components for Intermediate Temperature Fuel Cells and Water Electrolysers

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Prag, Carsten Brorson; Li, Qingfeng

    The worldwide development of fuel cells and electrolysers has so far almost exclusively addressed either the low temperature window (20-200 °C) or the high temperature window (600-1000 °C). This work concerns the development of key materials and components of a new generation of fuel cells...... and electrolysers for operation in the intermediate temperature range from 200 to 400 °C. The intermediate temperature interval is of importance for the use of renewable fuels. Furthermore electrode kinetics is significantly enhanced compared to when operating at low temperature. Thus non-noble metal catalysts...... might be used. One of the key materials in the fuel cell and electrolyser systems is the electrolyte. Proton conducting materials such as cesium hydrogen phosphates, zirconium hydrogen phosphates and tin pyrophosphates have been investigated by others and have shown interesting potential....

  16. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  17. Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean.

    Directory of Open Access Journals (Sweden)

    Claudia Färber

    Full Text Available The effects of water depth, seasonal exposure, and substrate orientation on microbioerosion were studied by means of a settlement experiment deployed in 15, 50, 100, and 250 m water depth south-west of the Peloponnese Peninsula (Greece. At each depth, an experimental platform was exposed for a summer period, a winter period, and about an entire year. On the up- and down-facing side of each platform, substrates were fixed to document the succession of bioerosion traces, and to measure variations in bioerosion and accretion rates. In total, 29 different bioerosion traces were recorded revealing a dominance of microborings produced by phototrophic and organotrophic microendoliths, complemented by few macroborings, attachment scars, and grazing traces. The highest bioerosion activity was recorded in 15 m up-facing substrates in the shallow euphotic zone, largely driven by phototrophic cyanobacteria. Towards the chlorophyte-dominated deep euphotic to dysphotic zones and the organotroph-dominated aphotic zone the intensity of bioerosion and the diversity of bioerosion traces strongly decreased. During summer the activity of phototrophs was higher than during winter, which was likely stimulated by enhanced light availability due to more hours of daylight and increased irradiance angles. Stable water column stratification and a resulting nutrient depletion in shallow water led to lower turbidity levels and caused a shift in the photic zonation that was reflected by more phototrophs being active at greater depth. With respect to the subordinate bioerosion activity of organotrophs, fluctuations in temperature and the trophic regime were assumed to be the main seasonal controls. The observed patterns in overall bioeroder distribution and abundance were mirrored by the calculated carbonate budget with bioerosion rates exceeding carbonate accretion rates in shallow water and distinctly higher bioerosion rates at all depths during summer. These findings

  18. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  19. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    Science.gov (United States)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  20. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    Science.gov (United States)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  1. Experimental study on depth of paraffin wax over floating absorber plate in built-in storage solar water heater

    Directory of Open Access Journals (Sweden)

    R Sivakumar

    2015-11-01

    Full Text Available The aim of this article is to study the effect of depth of phase change material over the absorber surface of an integrated collector-storage type flat plate solar water heater. Flat plate solar water heaters are extensively used all over the world to utilize the natural source of solar energy. In order to utilize the solar energy during off-sunshine hours, it is inevitable to store and retain solar thermal energy as long as possible. Here, phase change material is not used for heat storage, but to minimize losses during day and night time only. The depth of phase change material over a fixed depth of water in a solar thermal collector is an important geometric parameter that influences the maximum temperature rise during peak solar irradiation and hence the losses. From the results of the studies for different masses of paraffin wax phase change material layers, the optimum depth corresponding to the maximum heat gain till evening is found to be 2 mm, and the heat retention till the next day morning is found to be 4 mm.

  2. Acid and base recovery from brine solution using PVP intermediate-based bipolar membrane through water splitting technology

    Science.gov (United States)

    Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha

    2017-07-01

    Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.

  3. Benthic Habitat Mapping by Combining Lyzenga’s Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi

    Science.gov (United States)

    Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.

    2017-12-01

    Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in

  4. Cumulative soil water evaporation as a function of depth and time

    Science.gov (United States)

    Soil water evaporation is an important component of the surface water balance and the surface energy balance. Accurate and dynamic measurements of soil water evaporation enhance the understanding of water and energy partitioning at the land-atmosphere interface. The objective of this study is to mea...

  5. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  6. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  7. Experimental Study of the Effect for Water Depth on the Mass Transfer of Passive Solar Still Chemical Solutions

    Directory of Open Access Journals (Sweden)

    Fayadh M. Abed

    2018-01-01

    Full Text Available An experimental study on a passive solar distiller in the Tikrit city on (latitude line"34 36o north, longitude line "45 43o east, and purpose of that study to raise the efficiency and productivity of the solar distiller. And then design the monoclinic solar distiller and add reflector plate and a solar concentrate. The Practical tests were conducted at a rate of every half-hour from the beginning of February to the beginning of the month of June. The study began by comparing the solar distiller that contain the concentrates and without contain it. Then study the influence of adding coal and chemical solutions, like blue Thymol solution and blue bromophenol solution to see the additions effect on the productivity and efficiency of distiller, and also The study was conducted to see the effect of the water depth on the productivity of distiller with take four water depths within the basin are (2,1.5,1,0.5 cm of water. The tests were conducted in weather conditions close. and the results of the study, That distilled added his concentrates improved its productivity by 46% and efficiency increases 43% with non-use of concentrates, and coal increased efficiency by 36% and productivity improved up to 38%, the addition of  blue Thymol solution increases the efficiency by 19% and productivity by 16%, as well as bromophenol solution  increase productivity by 23% and improve efficiency by 25%, when comparing the additions found that the best one is coal. Through the study of the depth of the water show that increases productivity and efficiency by reducing the depth of the water in the basin distiller. DOI: http://dx.doi.org/10.25130/tjes.24.2017.13

  8. Effects of water depth and substrate color on the growth and body color of the red sea cucumber, Apostichopus japonicus

    Science.gov (United States)

    Jiang, Senhao; Dong, Shuanglin; Gao, Qinfeng; Ren, Yichao; Wang, Fang

    2015-05-01

    Three color variants of the sea cucumber, Apostichopus japonicus are recognized, the red one is highly valued in the market. When the red variant is cultured in ponds in China, its body color changes from red to celadon in 3-6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths (20, 50, 100, 150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers ( R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color, however the red body color was much more intense in sea cucumbers cultured at shallower depths, while animals suspended in deeper layers became pale. In a separate trial, A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate, followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color, although the red was most intense (highest R value) in animals cultured on a blue substrate and pale (lowest R value) for animals cultured on a green substrate.

  9. Implementation of defence in depth for next generation light water reactors

    International Nuclear Information System (INIS)

    1997-12-01

    The publication of this IAEA technical document represents the conclusion of a task, initiated in 1995, devoted to defence in depth in future reactors. It focuses mainly on the next generation of LWRs, although many general considerations may also apply to other types of reactors

  10. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  11. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    OpenAIRE

    Gu, Wenbin; Wang, Zhenxiong; Liu, Jianqing; Xu, Jinglin; Liu, Xin; Cao, Tao

    2017-01-01

    Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthou...

  12. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.

    Science.gov (United States)

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-09-30

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA

  13. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  14. Effect of Surface-mantle Water Exchange Parameterizations on Exoplanet Ocean Depths

    Science.gov (United States)

    Komacek, Thaddeus D.; Abbot, Dorian S.

    2016-11-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a “waterworld.” On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ∼ 2 {Gyr}. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳ 0.3 % of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

  15. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  16. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  17. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  18. Feasibility study on vitrification of low- and intermediate-level radioactive waste from pressurized water reactors

    International Nuclear Information System (INIS)

    Park, J.K.; Song, M.J.

    1998-01-01

    In order to obtain annual generation volume and composition data for low- and intermediate-level radioactive waste (LILW), characteristics and generation trends for each waste which was produced at nuclear power plants (NPPs) in Korea were investigated. Of the three different types of melters, the platinum crucible was found to be most suitable for the performance of vitrification experiments and hence, was used to help better understand the optimal waste contents in borosilicate glass waste forms with respect to waste types. After the performance of vitrification experiments, compressive strength tests showed that the final waste glass product, containing up to 40 vol% of ashy pyrolyzed/oxidized at 400--800 C, showed good mechanical stability and homogeneity in the glass matrix. Economical assessment was performed with some considerations given for equipment having already been adopted for LILW treatment in Korea for four treatment strategies with melters selected from a technical assessment. For each strategy, the capital and the operation cost were estimated, and the disposal volume was calculated with reasonably estimated volume reduction factors with regard to waste type and treatment concept

  19. Estimating space-time mean concentrations of nutrients in surface waters of variable depth

    NARCIS (Netherlands)

    Knotters, M.; Brus, D.J.

    2010-01-01

    A monitoring scheme has been designed to test whether the space-time mean concentration total Nitrogen (N-total) in the surface water in the Northern Frisian Woodlands (NFW, The Netherlands) complies with standards of the European Water Framework directive. Since in statistical testing for

  20. Trophic-functional patterns of biofilm-dwelling ciliates at different water depths in coastal waters of the Yellow Sea, northern China.

    Science.gov (United States)

    Abdullah Al, Mamun; Gao, Yangyang; Xu, Guangjian; Wang, Zheng; Warren, Alan; Xu, Henglong

    2018-04-01

    Vertical variations in trophic-functional patterns of biofilm-dwelling ciliates were studied in coastal waters of the Yellow Sea, northern China. A total of 50 species were identified and assigned to four trophic-functional groups (TFgrs): algivores (A), bacterivorous (B), non-selective (N) and raptors (R). The trophic-functional structures of the ciliate communities showed significant variability among different water depths: (1) with increasing water depth, relative species numbers and relative abundances of groups A and R decreased sharply whereas those of groups B and N increased gradually; (2) in terms of the frequency of occurrences, group A dominated at depths of 1-3.5 m whereas group B dominated at 5 m, while in terms of the probability density function of the trophic-functional spectrum, group A was the highest contributor at 1 m and group B was highest at the other three depths; (3) distance-based redundancy analyses revealed significant differences in trophic-functional patterns among the four depths, except between 2 and 3.5 m (P > 0.05); and (4) the trophic-functional trait diversity increased from 1 to 3.5 m and decreased sharply at 5 m. Our results suggest that the biofilm-dwelling ciliates maintain a stable trophic-functional pattern and high biodiversity at depths of 1-3.5 m. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Ocean Color Patterns Help to Predict Depth of Optical Layers in Coastal Marine Waters

    Science.gov (United States)

    2012-02-09

    Space Center, NASA, MS 39529, USA 3Institut des Sciences de la Mer, Universite du Quebec a Rimouski, Canada, *E-mail: martin_montes@uqar. qc. ca...depth was derived from CTD variables (i.e., temperature and conductivity without pressure correction) and using the standard UNESCO polynomial equation... la y *,es^ S Si es ti m at ed nt er re y B a n an d up ), th e up pe r te d in w h i 5112 ^ "a :*J ? tf?^ •a Mis a a •S M ^ « a fo

  2. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    Science.gov (United States)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  3. Young Scientists Explore the World of Water. Book 9--Intermediate Level. A Good Apple Activity Book.

    Science.gov (United States)

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of water. Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for each student. A…

  4. Transfers of Colloidal Silica from Water into Organic Solvents of Intermediate Polarities

    Science.gov (United States)

    Kasseh; Keh

    1998-01-15

    Dispersions of discrete metal-oxide submicroparticles in organic solvents of medium polarities are uneasy to generate and weakly documented. We address this topic along two general methods focusing on silica. Successive transfers of colloidal particles from water into n-propanol and then into 1,2-dichloroethane by azeotropic distillation yield a stable organosol. The particles are found to be propanol-coated by surface esterification to the extent of 0.40 nm2 per molecule. Alternatively, centrifugation-redispersion cycles make it possible to obtain stable suspensions of unaltered silica in methanol and acetonitrile starting from an aqueous silicasol. Particles are characterized by various methods including nitrogen adsorption, transmission electron microscopy, dynamic light scattering, and electrophoresis. The stabilities of these suspensions in various organic solvents are investigated with special concern for the role of residual water. Stabilization of silica in methanol is inconspicuously related to solvent permittivity and prominently dependent on the presence of adsorbed water. In contrast, the acetonitrile silicasol, which is unaffected by residual water, displays electrophoretic behavior compatible with electrostatic stabilization. Copyright 1998 Academic Press. Copyright 1998Academic Press

  5. REMEDIATION OF MTBE - CONTAMINATED WATER: STUDIES ON THE DEGRADATION OF MTBE INTERMEDIATES USING THE FENTON'S REAGENT

    Science.gov (United States)

    The recent findings of unusual oncentrations of MTBE in groundwater aquifers and surface waters [1] originated most probably from the leaking of underground storage gasoline tanks [2[ has led to a series of judicial and legislative actions, especially in the state of California w...

  6. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China.

    Science.gov (United States)

    Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong

    2016-09-01

    Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.

  7. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    Science.gov (United States)

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  8. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  9. Electron beam absorption in solid and in water phantoms: depth scaling and energy-range relations

    International Nuclear Information System (INIS)

    Grosswendt, B.; Roos, M.

    1989-01-01

    In electron dosimetry energy parameters are used with values evaluated from ranges in water. The electron ranges in water may be deduced from ranges measured in solid phantoms. Several procedures recommended by national and international organisations differ both in the scaling of the ranges and in the energy-range relations for water. Using the Monte Carlo method the application of different procedures for electron energies below 10 MeV is studied for different phantom materials. It is shown that deviations in the range scaling and in the energy-range relations for water may accumulate to give energy errors of several per cent. In consequence energy-range relations are deduced for several solid phantom materials which enable a single-step energy determination. (author)

  10. Plant Water Use in Owens Valley, CA: Understanding the Influence of Climate and Depth to Groundwater

    OpenAIRE

    Pataki, Diane E

    2008-01-01

    There is a long-standing controversy in Owens Valley, California about the potential impacts of water exports on the local ecosystem. It is currently extremely difficult to attribute changes in plant cover and community composition to hydrologic change, as the interactions between ecological and hydrologic processes are relatively poorly understood. Underlying predictions about losses of grasslands and expansion of shrublands in response to declining water tables in Owens Valley are assumptio...

  11. Development of solid electrolytes for water electrolysis at intermediate temperatures. Task 3 report; Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Anderson, R.; Kopitzke, R.W.

    1995-12-01

    This project is an attempt to synthesize and fabricate proton exchange membranes for hydrogen production via water electrolysis that can take advantage of the better kinetic and thermodynamic conditions that exist at higher temperatures. Current PEM technology is limited to the 125--150 C range. Based on previous work evaluating thermohydrolytic stability, some 5 families of polymers were chosen as viable candidates: polyether ketones, polyether sulfones, fluorinated polyimides, polybenzimidazoles, and polyphenyl quinoxalines. Several of these have been converted into ionomers via sulfonation and fashioned into membranes for evaluation. In particular, the sulfonated polyetheretherketone, or SPEEK, was tested for water uptake, thermo-conductimetric analysis, and performance as the solid electrolyte material in an electrolysis cell. Results comparable to commercial perfluorocarbon sulfonates were obtained.

  12. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    Science.gov (United States)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can

  13. Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans

    Science.gov (United States)

    Bostock, H. C.; Mikaloff Fletcher, S. E.; Williams, M. J. M.

    2013-10-01

    Using ocean carbon data from global datasets, we have developed several multiple linear regression (MLR) algorithms to estimate alkalinity and dissolved inorganic carbon (DIC) in the intermediate and deep waters of the Southern Hemisphere (south of 25° S) from only hydrographic data (temperature, salinity and dissolved oxygen). A Monte Carlo experiment was used to identify a potential density (σθ) of 27.5 as an optimal break point between the two regimes with different MLR algorithms. The algorithms provide a good estimate of DIC (R2=0.98) and alkalinity (R2=0.91), and excellent agreement for aragonite and calcite saturation states (R2=0.99). Combining the algorithms with the CSIRO Atlas of Regional Seas (CARS), we have mapped the calcite saturation horizon (CSH) and aragonite saturation horizon (ASH) for the Southern Ocean at a spatial resolution of 0.5°. These maps are more detailed and more consistent with the oceanography than the previously gridded GLODAP data. The high-resolution ASH map reveals a dramatic circumpolar shoaling at the polar front. North of 40° S the CSH is deepest in the Atlantic (~ 4000 m) and shallower in the Pacific Ocean (~ 2750 m), while the CSH sits between 3200 and 3400 m in the Indian Ocean. The uptake of anthropogenic carbon by the ocean will alter the relationships between DIC and hydrographic data in the intermediate and deep waters over time. Thus continued sampling will be required, and the MLR algorithms will need to be adjusted in the future to account for these changes.

  14. Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans

    Directory of Open Access Journals (Sweden)

    H. C. Bostock

    2013-10-01

    Full Text Available Using ocean carbon data from global datasets, we have developed several multiple linear regression (MLR algorithms to estimate alkalinity and dissolved inorganic carbon (DIC in the intermediate and deep waters of the Southern Hemisphere (south of 25° S from only hydrographic data (temperature, salinity and dissolved oxygen. A Monte Carlo experiment was used to identify a potential density (σθ of 27.5 as an optimal break point between the two regimes with different MLR algorithms. The algorithms provide a good estimate of DIC (R2=0.98 and alkalinity (R2=0.91, and excellent agreement for aragonite and calcite saturation states (R2=0.99. Combining the algorithms with the CSIRO Atlas of Regional Seas (CARS, we have mapped the calcite saturation horizon (CSH and aragonite saturation horizon (ASH for the Southern Ocean at a spatial resolution of 0.5°. These maps are more detailed and more consistent with the oceanography than the previously gridded GLODAP data. The high-resolution ASH map reveals a dramatic circumpolar shoaling at the polar front. North of 40° S the CSH is deepest in the Atlantic (~ 4000 m and shallower in the Pacific Ocean (~ 2750 m, while the CSH sits between 3200 and 3400 m in the Indian Ocean. The uptake of anthropogenic carbon by the ocean will alter the relationships between DIC and hydrographic data in the intermediate and deep waters over time. Thus continued sampling will be required, and the MLR algorithms will need to be adjusted in the future to account for these changes.

  15. Intermediate treatments

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    Intermediate treatments are those applied after a new stand is successfully established and before the final harvest. These include not only intermediate cuttings - primarily thinning - but also fertilization, irrigation, and protection of the stand from damaging agents.

  16. Application of an intermediate LWR for electricity production and hot-water district heating

    International Nuclear Information System (INIS)

    1983-05-01

    The objective of the study is to evaluate the technical and economic feasibility of a 400 MWe Consolidated Nuclear Steam System (CNSS) for supplying district heat to the Minneapolis/St. Paul area. A total of three CNSS reactor sites, located various distances from the Minneapolis-St. Paul area load center, are evaluated. The distance from the load center is determined by the credited safety features of the plant design. Each site is also evaluated for three different hot water supply/return temperatures providing a total of nine CNSS study cases. The cost of district heat delivered to the load center is determined for each case

  17. The effect of ratio between rigid plant height and water depth on the manning’s coefficient in open channel

    Science.gov (United States)

    Rizalihadi, M.; Ziana; Shaskia, Nina; Asharly, H.

    2018-05-01

    One of the important factors in channel dimension is the Manning’s coefficient ( n ). This coefficient is influenced not only by the channel roughness but also by the presence of plants in the channel. The aim of the study is to see the effect of the ratio between the height of the rigid plant and water depth on the Manning’s coefficient (n) in open channel. The study was conducted in open channel with 15.5 m long, 0.5 m wide and 1.0 m high, in which at the center of the channel is planted with the rigid plants with a density of 42 plants/m2. The flow was run with a discharge of 0.013 m3/s at 6 ratios of Hplants/Hwater, namely: 0; 0.2; 0.6; 0.8; 1,0 and 1,2, to obtain the velocity and water profiles. Then the value of n is analyzed using Manning’s equation. The results showed that the mean velocity becomes decrease 17.81-34.01% as increase the ratio of Hplants/Hwater. This results in increasing n value to become 1.22-1.52 times compared to the unplanted channel ( no =0.038). So, it can be concluded that the ratio between the rigid plant’s height and water depth in the open channel can affect the value of Manning coefficient.

  18. Remote sensing of euphotic depth in shallow tropical inland waters of Lake Naivasha using MERIS data

    CSIR Research Space (South Africa)

    Majozi, NP

    2014-05-01

    Full Text Available radiometric and limnological data collection was undertaken at Lake Naivasha. Atmospheric correction was done on the MERIS images using MERIS Neural Network algorithms, Case 2 Waters (C2R) and Eutrophic Lakes processors and the bright pixel atmospheric...

  19. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  20. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    International Nuclear Information System (INIS)

    Hernandez-Walls, R; Martín-Atienza, B; Salinas-Matus, M; Castillo, J

    2017-01-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations. (paper)

  1. Reduction of fatigue loads on jacket substructure through blade design optimization for multimegawatt wind turbines at 50 m water depths

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried; Pavese, Christian; Natarajan, Anand

    2016-01-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind...... conditions of onshore sites. The blade geometry and structure is optimized to yield a design that minimizes tower base fatigue loads without significant loss of power production compared to that of the reference setup. The resulting blade design is then mounted on a turbine supported by a jacket and placed...

  2. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    Science.gov (United States)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  3. A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

    Science.gov (United States)

    Magyari, E. K.; Buczkó, K.; Braun, M.; Jakab, G.

    2009-04-01

    This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes. Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of Carpinus betulus on the crater slope (1), and the replacement of the lakeshore Picea abies forest by Fagus sylvatica (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus cf. S. brasiliensis. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of Picea abies on the lakeshore and consequent acidification of the lake-water. On the whole, these data

  4. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  5. Role of the interaction processes in the depth-dose distribution of proton beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; De Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2012-01-01

    We use a simulation code, based on Molecular Dynamics and Monte Carlo, to investigate the depth-dose profile and lateral radial spreading of swift proton beams in liquid water. The stochastic nature of the projectile-target interaction is accounted for in a detailed manner by including in a consistent way fluctuations in both the energy loss due to inelastic collisions and the angular deflection from multiple elastic scattering. Depth-variation of the projectile charge-state as it slows down into the target, due to electron capture and loss processes, is also considered. By selectively switching on/off these stochastic processes in the simulation, we evaluate the contribution of each one of them to the Bragg curve. Our simulations show that the inclusion of the energy-loss straggling sizeably affects the width of the Bragg peak, whose position is mainly determined by the stopping power. The lateral spread of the beam as a function of the depth in the target is also examined.

  6. 临界水深计算方法的研究%Research on calculation method for critical water depth

    Institute of Scientific and Technical Information of China (English)

    王功

    2011-01-01

    总结了渠道临界水深常见的计算方法,分析了过水断面比能曲线的特性,根据渠道临界水深的定义,利用计算机软件编程技术可以解决大量繁琐计算的特点,求解了明渠临界水深,并且分析与总结了用定义法解决工程计算的意义.%Firstly, common calculation methods for the channel critical depth has been summarized, and the characteristics of specific energy curve of flow cross-section have been analyzed in this paper.By using computer software programming technology that can solve the massive trival calculation, based on the definition of the channel critical depth, the critical water depth was solved.And the significance of using the definition method to solve engineering calculation has been analysed and summarized.

  7. Review of Global Ocean Intermediate Water Masses: 1.Part A,the Neutral Density Surface (the 'McDougall Surface') as a Study Frame for Water-Mass Analysis

    Institute of Scientific and Technical Information of China (English)

    Yuzhu You

    2006-01-01

    This review article commences with a comprehensive historical review of the evolution and application of various density surfaces in atmospheric and oceanic studies.The background provides a basis for the birth of the neutral density idea.Attention is paid to the development of the neutral density surface concept from the nonlinearity of the equation of state of seawater.The definition and properties of neutral density surface are described in detail as developed from the equations of state of seawater and the buoyancy frequency when the squared buoyancy frequency N2 is zero, a neutral state of stability.In order to apply the neutral density surface to intermediate water-mass analysis, this review also describes in detail its practical oceanographic application.The mapping technique is focused for the first time on applying regularly gridded data in this review.It is reviewed how a backbone and ribs framework was designed to flesh out from a reference cast and first mapped the global neutral surfaces in the world's oceans.Several mapped neutral density surfaces are presented as examples for each world ocean.The water-mass property is analyzed in each ocean at mid-depth.The characteristics of neutral density surfaces are compared with those of potential density surfaces.

  8. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms.

    Science.gov (United States)

    Dreano, Denis; Raitsos, Dionysios E; Gittings, John; Krokos, George; Hoteit, Ibrahim

    2016-01-01

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin's shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.

  9. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms

    KAUST Repository

    Dreano, Denis; Raitsos, Dionysios E.; Gittings, John; Krokos, George; Hoteit, Ibrahim

    2017-01-01

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin's shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.

  10. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms

    KAUST Repository

    Dreano, Denis

    2017-01-09

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin\\'s shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.

  11. Chemical composition, water vapor permeability, and mechanical properties of yuba film influenced by soymilk depth and concentration.

    Science.gov (United States)

    Zhang, Siran; Lee, Jaesang; Kim, Yookyung

    2018-03-01

    Yuba is a soy protein-lipid film formed during heating of soymilk. This study described yuba as an edible film by analyzing its chemical composition, water vapor permeability (WVP), and mechanical properties. Three yuba films were prepared by using different concentrations and depths of soymilk: HS (86 g kg -1 and 2.3 cm), LS (70 g kg -1 and 2.3 cm), and LD (70 g kg -1 and 3.0 cm). As yuba was successively skimmed, the protein, lipid, and SH content decreased, but carbohydrate and SS content increased. Though both the initial concentration and the depth of soymilk affect the properties of the films, the depth of soymilk influences WVP and tensile strength (TS) more. The WVP of the HS and LS changed the least (13-17 g mm kPa -1 m -2 day 1 ), while that of the LD changed the most (13-35 g mm kPa -1 m -2 day -1 ). There were no differences (P > 0.05) in the TS between the HS and LS. LD had the greatest decrease of TS and the lowest TS among the groups. The earlier the yuba films were collected, the greater the elongation of the films was: 129% (HS), 113% (LS), and 155% (LD). The initial concentration and the depth of soymilk changed the chemical composition and structure of the yuba films. The LS yuba produced more uniform edible films with good mechanical properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Study on of Seepage Flow Velocity in Sand Layer Profile as Affected by Water Depth and Slope Gradience

    Science.gov (United States)

    Han, Z.; Chen, X.

    2017-12-01

    BACKGROUND: The subsurface water flow velocity is of great significance in understanding the hydrodynamic characteristics of soil seepage and the influence of interaction between seepage flow and surface runoff on the soil erosion and sediment transport process. OBJECTIVE: To propose a visualized method and equipment for determining the seepage flow velocity and measuring the actual flow velocity and Darcy velocity as well as the relationship between them.METHOD: A transparent organic glass tank is used as the test soil tank, the white river sand is used as the seepage test material and the fluorescent dye is used as the indicator for tracing water flow, so as to determine the thickness and velocity of water flow in a visualized way. Water is supplied at the same flow rate (0.84 L h-1) to the three parts with an interval of 1m at the bottom of the soil tank and the pore water velocity and the thickness of each water layer are determined under four gradient conditions. The Darcy velocity of each layer is calculated according to the water supply flow and the discharge section area. The effective discharge flow pore is estimated according to the moisture content and porosity and then the relationship between Darcy velocity and the measured velocity is calculated based on the water supply flow and the water layer thickness, and finally the correctness of the calculation results is verified. RESULTS: According to the velocity calculation results, Darcy velocity increases significantly with the increase of gradient; in the sand layer profile, the flow velocity of pore water at different depths increases with the increase of gradient; under the condition of the same gradient, the lower sand layer has the maximum flow velocity of pore water. The air-filled porosity of sand layer determines the proportional relationship between Darcy velocity and pore flow velocity. CONCLUSIONS: The actual flow velocity and Darcy velocity can be measured by a visualized method and the

  13. Wind-forced modulations in crossing sea states over infinite depth water

    Science.gov (United States)

    Debsarma, Suma; Senapati, Sudipta; Das, K. P.

    2014-09-01

    The present work is motivated by the work of Leblanc ["Amplification of nonlinear surface waves by wind," Phys. Fluids 19, 101705 (2007)] which showed that Stokes waves grow super exponentially under fair wind as a result of modulational instability. Here, we have studied the effect of wind in a situation of crossing sea states characterized by two obliquely propagating wave systems in deep water. It is found that the wind-forced uniform wave solution in crossing seas grows explosively with a super-exponential growth rate even under a steady horizontal wind flow. This is an important piece of information in the context of the formation of freak waves.

  14. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    Science.gov (United States)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  15. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  16. Sites of infection by pythium species in rice seedlings and effects of plant age and water depth on disease development.

    Science.gov (United States)

    Chun, S C; Schneider, R W

    1998-12-01

    ABSTRACT Seedling disease, caused primarily by several species of Pythium, is one of the major constraints to water-seeded rice production in Louisiana. The disease, also known as water-mold disease, seed rot, and seedling damping-off, causes stand reductions and growth abnormalities. In severe cases, fields must be replanted, which may result in delayed harvests and reduced yields. To develop more effective disease management tactics including biological control, this study was conducted primarily to determine sites of infection in seeds and seedlings; effect of plant age on susceptibility to P. arrhenomanes, P. myriotylum, and P. dissotocum; and minimum exposure times required for infection and seedling death. In addition, the effect of water depth on seedling disease was investigated. Infection rates of seed embryos were significantly higher than those of endosperms for all three Pythium spp. The development of roots from dry-seeded seedlings was significantly reduced by P. arrhenomanes and P. myriotylum at 5 days after planting compared with that of roots from noninoculated controls. Susceptibility of rice to all three species was sharply reduced within 2 to 6 days after planting, and seedlings were completely resistant at 8 days after planting. There was a steep reduction in emergence through the flood water, relative to the noninoculated control, following 2 to 3 days of exposure to inoculum of P. arrhenomanes and P. myriotylum. In contrast, P. dissotocum was much less virulent and required longer exposure times to cause irreversible seedling damage. Disease incidence was higher when seeds were planted into deeper water, implying that seedlings become resistant after they emerge through the flood water. These results suggest that disease control tactics including flood water management need to be employed for a very short period of time after planting. Also, given that the embryo is the primary site of infection and it is susceptible for only a few days, the

  17. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  18. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    Science.gov (United States)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  19. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago in 2013 (NCEI Accession 0161327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  20. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  1. Temperature profile and water depth data collected from HARRIOT LANE in the NW Atlantic (limit-40 W) from 20 February 1987 to 22 February 1987 (NODC Accession 8700096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the HARRIOT LANE in the Northwest Atlantic Ocean and TOGA Area - Atlantic Ocean. Data...

  2. Temperature profile and water depth data collected from HARRIOT LANE in the NW Atlantic (limit-40 W) from 29 December 1986 to 31 December 1986 (NODC Accession 8700074)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XTB casts in the NW Atlantic Ocean from the HARRIOT LANE. Data were collected from 29 December...

  3. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  4. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  5. Temperature profile and water depth data collected from TOWERS in the NE Atlantic (limit-180 W) from 06 June 1986 to 29 August 1986 (NODC Accession 8600378)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the TOWERS in the Northeast Atlantic Ocean, South China Sea, Philippine Sea, and...

  6. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  7. Temperature profile and water depth data collected from USS THACH using BT and XBT casts in the Persian Sea for 1987-11-21 (NODC Accession 8800016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS THACH in the Persian Sea. Data were collected from 21 November 1987 to 21...

  8. Temperature profile and water depth data collected from COCHRANE in the South China Sea and other seas from 09 January 1987 to 22 February 1987 (NODC Accession 8700095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the COCHRANE in the South China and other seas. Data were collected from 09 January...

  9. 1000 meters water depth rigid TLP riser; Riser rigido de plataforma de pernas atirantadas para lamina d'agua de 1000 metros

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Mauro Jacinto Pastor

    1990-07-01

    A procedure to estimate the fatigue life of a TLP riser in 1000 meters water depth based on a hydro-elastic analysis of an integrated riser-TLP model in the time domain is presented . The computational architecture is shown that makes it feasible to process and store the great amount of data involved. The procedure is applied to a 1000 meters water depth TLP with a set of 40 risers 8 inches in diameter equipped with a floatation layer. (author)

  10. Characterizing the Breadth and Depth of Volunteer Water Monitoring Programs in the United States

    Science.gov (United States)

    Stepenuck, Kristine F.; Genskow, Kenneth D.

    2018-01-01

    A survey of 345 volunteer water monitoring programs in the United States was conducted to document their characteristics, and perceived level of support for data to inform natural resource management or policy decisions. The response rate of 86% provided information from 46 states. Programs represented a range of ages, budgets, objectives, scopes, and level of quality assurance, which influenced data uses and perceived support by sponsoring agency administrators and external decision makers. Most programs focused on rivers, streams, and lakes. Programs had not made substantial progress to develop EPA or state-approved quality assurance plans since 1998, with only 48% reporting such plans. Program coordinators reported feeling slightly more support for data to be used for management as compared to policy decisions. Programs with smaller budgets may be at particular risk of being perceived to lack credibility due to failure to develop quality assurance plans. Over half of programs identified as collaborative, in that volunteers assisted scientists in program design, data analysis and/or dissemination of results. Just under a third were contributory, in which volunteers primarily collected data in a scientist-defined program. Recommendations to improve perceived data credibility, and to augment limited budgets include developing quality assurance plans and gaining agency approval, and developing partnerships with other organizations conducting monitoring in the area to share resources and knowledge. Funding agencies should support development of quality assurance plans to help ensure data credibility. Service providers can aid in plan development by providing training to program staff over time to address high staff turnover rates.

  11. Map showing minimum depth to water in shallow aquifers (1963-72) in the Sugar House quadrangle, Salt Lake County, Utah

    Science.gov (United States)

    Mower, R.W.; Van Horn, Richard

    1973-01-01

    The depth to ground water in shallow aquifers in the Sugar Horse quadrangle ranges from zero in areas of springs and seeps to more than 10 feet beneath most of the area shown on the map. The depth to water differs from place to place because of irregular topography, and the varying capability of different rock materials to transmit water. Ground water also occurs under unconfined and confined conditions in deep aquifers beneath the Sugar Horse quadrangle, as shown by the block diagram and as described by Hely, Mower, and Harr (1971a, p. 17-111).

  12. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    Science.gov (United States)

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  13. Effects of different depth of grain colour on antioxidant capacity during water imbibition in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Shin, Oon Ha; Kim, Dae Yeon; Seo, Yong Weon

    2017-07-01

    The importance of the effect of phytochemical accumulation in wheat grain on grain physiology has been recognised. In this study, we tracked phytochemical concentration in the seed coat of purple wheat during the water-imbibition phase and also hypothesised that the speed of germination was only relevant to its initial phytochemical concentration. The results indicate that the speed of germination was significantly reduced in the darker grain groups within the purple wheat. Total phenol content was slightly increased in all groups compared to their initial state, but the levels of other phytochemicals varied among groups. It is revealed that anthocyanin was significantly degraded during the water imbibition stage. Also, the activities of peroxidase, ascorbate peroxidase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase in each grain colour group did not correlated with germination speed. Overall antioxidant activity was reduced as imbibition progressed in each group. Generally, darker grain groups showed higher total antioxidant activities than did lighter grain groups. These findings suggested that the reduced activity of reactive oxygen species, as controlled by internal antioxidant enzymes and phytochemicals, related with germination speed during the water imbibition stage in grains with greater depth of purple colouring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous......-flow lab-scale assay. NH4 + removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4 + removal...... rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4 + removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times...

  15. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth: Effects of LWP and Biomass on VOD

    Energy Technology Data Exchange (ETDEWEB)

    Momen, Mostafa [Department of Earth System Science, Stanford University, Stanford CA USA; Wood, Jeffrey D. [School of Natural Resources, University of Missouri, Columbia MO USA; Novick, Kimberly A. [School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington IN USA; Pangle, Robert [Department of Biology, University of New Mexico, Albuquerque NM USA; Pockman, William T. [Department of Biology, University of New Mexico, Albuquerque NM USA; McDowell, Nate G. [Pacific Northwest National Laboratory, Richland WA USA; Konings, Alexandra G. [Department of Earth System Science, Stanford University, Stanford CA USA

    2017-11-01

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.

  16. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data

    Science.gov (United States)

    Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.

    2014-05-01

    This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.

  17. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water.

    Science.gov (United States)

    Beaver, Joshua E; Peacor, Brendan C; Bain, Julianne V; James, Lindsey I; Waters, Marcey L

    2015-03-21

    Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.

  18. Water Pressure in Depth

    Science.gov (United States)

    Lynch, Mary Jean; Zenchak, John

    2011-01-01

    How can a science concept be taught in a way that generates interest, gives students the opportunity to consider other possibilities, does not lock them into one way of doing or seeing things, and gives them some ownership of their learning? These authors searched high and low for the perfect activity to illustrate a key concept for their partner…

  19. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    Science.gov (United States)

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated

  20. Empirical water depth predictions in Dublin Bay based on satellite EO multispectral imagery and multibeam data using spatially weighted geographical analysis

    Science.gov (United States)

    Monteys, Xavier; Harris, Paul; Caloca, Silvia

    2014-05-01

    The coastal shallow water zone can be a challenging and expensive environment within which to acquire bathymetry and other oceanographic data using traditional survey methods. Dangers and limited swath coverage make some of these areas unfeasible to survey using ship borne systems, and turbidity can preclude marine LIDAR. As a result, an extensive part of the coastline worldwide remains completely unmapped. Satellite EO multispectral data, after processing, allows timely, cost efficient and quality controlled information to be used for planning, monitoring, and regulating coastal environments. It has the potential to deliver repetitive derivation of medium resolution bathymetry, coastal water properties and seafloor characteristics in shallow waters. Over the last 30 years satellite passive imaging methods for bathymetry extraction, implementing analytical or empirical methods, have had a limited success predicting water depths. Different wavelengths of the solar light penetrate the water column to varying depths. They can provide acceptable results up to 20 m but become less accurate in deeper waters. The study area is located in the inner part of Dublin Bay, on the East coast of Ireland. The region investigated is a C-shaped inlet covering an area of 10 km long and 5 km wide with water depths ranging from 0 to 10 m. The methodology employed on this research uses a ratio of reflectance from SPOT 5 satellite bands, differing to standard linear transform algorithms. High accuracy water depths were derived using multibeam data. The final empirical model uses spatially weighted geographical tools to retrieve predicted depths. The results of this paper confirm that SPOT satellite scenes are suitable to predict depths using empirical models in very shallow embayments. Spatial regression models show better adjustments in the predictions over non-spatial models. The spatial regression equation used provides realistic results down to 6 m below the water surface, with

  1. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan, Indonesia

    Science.gov (United States)

    Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.

    2018-03-01

    As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.

  2. Aromatic Side Chain Water-to-Lipid Transfer Free Energies Show a Depth Dependence across the Membrane Normal.

    Science.gov (United States)

    McDonald, Sarah K; Fleming, Karen G

    2016-06-29

    Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.

  3. The reconstruction of late Holocene depth-to-water-table based on testate amoebae in an eastern Australian mire

    Science.gov (United States)

    Zheng, X.; Money, S.; Hope, G.

    2017-12-01

    There are relatively few quantitative palaeo-hydrological records available in eastern Australia, and those that are available, for example from dendroclimatology and the reconstruction of lake level, are often relatively short or have a relatively coarse temporal resolution (e.g. Wilkins et al. 2013; Palmer et al. 2015). Testate amoebae, a widely used hydrological proxy in the Northern Hemisphere, were used here to reconstruct depth to water table (DWT) at Snowy Flat, which is a Sphagnum-Richea-Empodismahigh altitude (1618 m asl) shrub bog in the Australian Capital Territory, Australia. Testate amoebae were quantified in a Snowy Flat core representing 4,200 cal Y BP and the community composition was used to reconstruct DWT based on our recently established transfer functions. Results from three different types of transfer functions (Fig. 1) consistently show there was a decreasing DWT (wetter) period centred on about 3350 cal Y BP, a trend towards increased dryness from about 3300 to 2200 cal Y BP and a distinctly drier period 850 to 700 cal Y BP which was immediately followed by a wetter period from 700 to 500 cal Y BP. We discuss these episodes and trends in relation to the drivers of climatic variability in this region and in particular, by comparing our results with other south-eastern Australia records, comment on the history of the southern annular mode.

  4. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    Science.gov (United States)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  5. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry L.; Ho, Cheng

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  6. Last Glacial to Holocene changes of deep and intermediate water carbonate ion concentrations in the Southern Ocean: constraints from foraminiferal Boron/Calcium ratios

    OpenAIRE

    Kersten, Franziska

    2013-01-01

    In this thesis, the first records of intermediate and deep water carbonate ion concentrations in the South Pacific were generated in order to study carbon cycle dynamics throughout the past 30,000 years. Benthic foraminiferal B/Ca, an indicator of past seawater carbonate ion saturation is the main paleoceanographic proxy that was used in this study. Down-core proxy studies carried out within the scope of this thesis were used to address currently unresolved questions about the origin, mechani...

  7. Spatio-temporal distribution of Diaphanosoma brachyurum (Cladocera: Sididae in freshwater reservoir ecosystems: importance of maximum water depth and macrophyte beds for avoidance of fish predation

    Directory of Open Access Journals (Sweden)

    Jong-Yun Choi

    2014-10-01

    Full Text Available In empirical studies, Cladocera is commonly utilized as a primary food source for predators such as fish, thus, predator avoidance are important strategies to sustain their population in freshwater ecosystems. In this study, we tested the hypothesis that water depth is an important factor in determining the spatial distribution of Diaphanosoma brachyurum Liévin, 1848 in response to fish predation. Quarterly monitoring was implemented at three water layers (i.e., water surface and middle and bottom layers in 21 reservoirs located in the southeastern part of South Korea. D. brachyurum individuals were frequently observed at the study sites and exhibited different spatial patterns of distribution in accordance with the maximum depth of the reservoirs. In the reservoirs with a maximum depth of more than 6 m, high densities of D. brachyurum were observed in the bottom layers; however, in the shallower reservoirs (maximum depth <6 m, D. brachyurum were concentrated in the surface layer. Moreover, during additional surveys, we observed a trend in which D. brachyurum densities increased as the maximum depth or macrophyte biomass increased. Gut contents analysis revealed that predatory fishes in each reservoir frequently consumed D. brachyurum; however, the consumption rate abruptly decreased in reservoirs where the maximum depth was more than 11 m or in the shallow reservoirs supporting a macrophyte bed. Interestingly, the reservoirs more than 11-m depth supported high densities of D. brachyurum in the bottom layer and in the surface macrophyte bed. Based on these results, reservoirs with a maximum depth of more than 11 m or those with a macrophyte bed may provide a refuge for D. brachyurum to avoid fish predation. Compared with other cladoceran species, D. brachyurum readily exploits various types of refugia (in this study, the deep layer or surface macrophyte bed, which may help explain why this species is abundant in various types of reservoirs.

  8. Intermediate Fragment

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This text and its connected exhibition are aiming to reflect both on the thoughts, the processes and the outcome of the design and production of the artefact ‘Intermediate Fragment’ and making as a contemporary architectural tool in general. Intermediate Fragment was made for the exhibition ‘Enga...... of realising an exhibition object was conceived, but expanded, refined and concretised through this process. The context of the work shown here is an interest in a tighter, deeper connection between experimentally obtained material knowledge and architectural design....

  9. The Incredible Shrinking Cup Lab: An Investigation of the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    This activity familiarizes students with the effects of increased depth on pressure and volume. Students will determine the volume of polystyrene cups before and after they are submerged to differing depths in the ocean and the Laurentian Great Lakes. Students will also calculate...

  10. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  11. Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014

    Science.gov (United States)

    Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard

    2018-02-01

    We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.

  12. Ventilatory mechanics and the effects of water depth on breathing pattern in the aquatic caecilian Typhlonectes natans.

    Science.gov (United States)

    Prabha, K C; Bernard, D G; Gardner, M; Smatresk, N J

    2000-01-01

    The breathing pattern in the aquatic caecilian Typhlonectes natans was investigated by recording airflow via a pneumotachograph under unrestrained normal physiological conditions. Ventilatory mechanics were assessed using airflow and pressure measurements from the buccal cavity and trachea. The breathing pattern consisted of an expiratory phase followed by a series of 10-15 small buccal pumps to inflate the lung, succeeded by a long non-ventilatory period. T. natans separate the expiratory and inspiratory gases in the buccal cavity and take several inspiratory pumps, distinguishing their breathing pattern from that of sarcopterygians. Hydrostatic pressure assisted exhalation. The tracheal pressure was greater than the water pressure at that depth, suggesting that pleuroperitoneal pressure as well as axial or pulmonary smooth muscles may have contributed to the process of exhalation. The frequency of lung ventilation was 6.33+/-0.84 breaths h(-)(1), and ventilation occurred via the nares. Compared with other amphibians, this low ventilatory frequency suggests that T. natans may have acquired very efficient pulmonary respiration as an adaptation for survival in their seasonally fluctuating natural habitat. Their respiratory pathway is quite unique, with the trachea separated into anterior, central and posterior regions. The anterior region serves as an air channel, the central region is attached to the tracheal lung, and the posterior region consists of a bifurcated air channel leading to the left and right posterior lungs. The lungs are narrow, elongated, profusely vascularized and compartmentalized. The posterior lungs extend to approximately two-thirds of the body length. On the basis of their breathing pattern, it appears that caecilians are phylogenetically derived from two-stroke breathers.

  13. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    Science.gov (United States)

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  14. Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Science.gov (United States)

    Guerreiro, Catarina V.; Baumann, Karl-Heinz; Brummer, Geert-Jan A.; Fischer, Gerhard; Korte, Laura F.; Merkel, Ute; Sá, Carolina; de Stigter, Henko; Stuut, Jan-Berend W.

    2017-10-01

    Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12° N, 49° W and M2 at 14° N, 37° W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241×107 ± 76×107 coccoliths m-2 d-1 at station M4 compared to only 66×107 ± 31×107 coccoliths m-2 d-1 at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also

  15. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas

    Science.gov (United States)

    Chen, Jiali; Hu, Pengju; Li, Xing; Yang, Yang; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Lü, Xiaoxia

    2018-03-01

    The TEX 86 H paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of TEX 86 H paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (Δ T) between TEX 86 H derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that TEX 86 H was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.

  16. Plastic and non-plastic variation in growth of newly established clones of Scirpus (Bolboschoenus) maritimus L. grown at different water depths

    NARCIS (Netherlands)

    Clevering, O.A.; Hundscheid, M.P.J.

    1998-01-01

    The importance of plastic responses to water depth as compared to non-plastic (developmental) changes in ramet (consisting of a culm e.g., stem with leaves, rhizome spacers and - tuber, and roots) characteristics of newly established clones of the emergent macrophyte Scirpus maritimus L. was

  17. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    Science.gov (United States)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Résumé Une estimation précise de la profondeur de l'interface théorique entre l'eau douce et l'eau salée est un élément critique dans les estimations de rendement des puits dans les aquifères insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilisée pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'épaisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'écoulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considération les gradients verticaux de charge et l'éventuelle anisotropie de l'aquifère. Cet article propose une méthode de calcul des

  18. Removal of Intermediate Aromatic Halogenated DBPs by Activated Carbon Adsorption: A New Approach to Controlling Halogenated DBPs in Chlorinated Drinking Water.

    Science.gov (United States)

    Jiang, Jingyi; Zhang, Xiangru; Zhu, Xiaohu; Li, Yu

    2017-03-21

    During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids. In this work, we proposed a new approach to controlling drinking water halogenated DBPs by GAC adsorption of intermediate aromatic halogenated DBPs during chlorination, rather than by GAC adsorption of NOM prior to chlorination (i.e., traditional approach). Rapid small-scale column tests were used to simulate GAC adsorption in the new and traditional approaches. Significant reductions of aromatic halogenated DBPs were observed in the effluents with the new approach; the removals of total organic halogen, trihalomethanes, and haloacetic acids by the new approach always exceeded those by the traditional approach; and the effluents with the new approach were considerably less developmentally toxic than those with the traditional approach. Our findings indicate that the new approach is substantially more effective in controlling halogenated DBPs than the traditional approach.

  19. Calibrating water depths of Ordovician communities: lithological and ecological controls on depositional gradients in Upper Ordovician strata of southern Ohio and north-central Kentucky, USA

    Directory of Open Access Journals (Sweden)

    Carlton E. Brett

    2015-02-01

    Full Text Available Limestone and shale facies of the Upper Ordovician Grant Lake Formation (Katian: Cincinnatian, Maysvillian are well exposed in the Cincinnati Arch region of southern Ohio and north-central Kentucky, USA. These rocks record a gradual change in lithofacies and biofacies along a gently northward-sloping ramp. This gradient spans very shallow, olive-gray, platy, laminated dolostones with sparse ostracodes in the south to offshore, nodular, phosphatic, brachiopod-rich limestones and marls in the north. This study uses facies analysis in outcrop to determine paleoenvironmental parameters, particularly those related to water depth (e.g., position of the photic zone and shoreline, relative degree of environmental energy. Within a tightly correlated stratigraphic interval (the Mount Auburn and Straight Creek members of the Grant Lake Formation and the Terrill Member of the Ashlock Formation, we document the occurrence of paleoenvironmental indicators, including desiccation cracks and light-depth indicators, such as red and green algal fossils and oncolites. This permitted recognition of a ramp with an average gradient of 10–20 cm water depth per horizontal kilometer. Thus, shallow subtidal (“lagoonal” deposits in the upramp portion fall within the 1.5–6 m depth range, cross-bedded grainstones representing shoal-type environments fall within the 6–18 m depth range and subtidal, shell-rich deposits in the downramp portion fall within the 20–30 m depth range. These estimates match interpretations of depth independently derived from faunal and sedimentologic evidence that previously suggested a gentle ramp gradient and contribute to ongoing and future high-resolution paleontologic and stratigraphic studies of the Cincinnati Arch region.

  20. Tracer signals of the intermediate layer of the Arabian Sea

    Science.gov (United States)

    Rhein, Monika; Stramma, Lothar; Plähn, Olaf

    In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian Sea. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by air-sea gas exchange. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red Sea outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red Sea which were isolated from the surface for some time. The tracer contributions to the Arabian Sea for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian Sea, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red Sea Water into the Arabian Sea.

  1. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  2. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  3. Experimental effects of immersion time and water temperature on body condition, burying depth and timing of spawning of the tellinid bivalve Macoma balthica

    Science.gov (United States)

    de Goeij, Petra; Honkoop, Pieter J.

    2003-03-01

    The burying depth of many bivalve molluscs on intertidal mudflats varies throughout the year and differs between places. Many factors are known to influence burying depth on a seasonal or spatial scale, with temperature and tidal regime probably being very important. Burying depth, body condition and gonadal development of Macoma balthica were followed throughout winter and spring in an experiment in which water temperature and immersion time were manipulated. Unexpectedly, relative water temperature, in contrast to the prediction, did not generally affect body condition or burying depth. This was probably a consequence of the exceptionally overall low water temperatures during the experimental winter. Differences in temperature did, however, result in different timing of spawning: M. balthica spawned earlier at higher spring temperatures. Longer immersion times led to higher body condition only late in spring, but led to deeper burying throughout almost the whole period. There was no effect of immersion time on the timing of spawning. We conclude that a longer immersion time leads to deeper burying, independent of body condition. We also conclude that burying behaviour of M. balthica is not determined by the moment of spawning.

  4. Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust

    Directory of Open Access Journals (Sweden)

    C. V. Guerreiro

    2017-10-01

    Full Text Available Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12° N, 49° W and M2 at 14° N, 37° W collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ taxa (Florisphaera profunda, Gladiolithus flabellatus but also included upper photic zone (UPZ taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.. The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241×107 ± 76×107 coccoliths m−2 d−1 at station M4 compared to only 66×107 ± 31×107 coccoliths m−2 d−1 at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October–November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust

  5. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan

    2017-08-04

    Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.

  6. Using Water Depth Sensors and High-resolution Topographic Mapping to Inform Wetland Management at a Globally Important Stopover Site for Migratory Shorebirds

    Science.gov (United States)

    Schaffer-Smith, D.; Swenson, J. J.; Reiter, M. E.; Isola, J. E.

    2017-12-01

    Over 50% of western hemisphere shorebird species are in decline due to ongoing habitat loss and habitat degradation. Wetland dependent shorebirds prefer shallowly flooded habitats (water depth managed to optimize shallow areas. In-situ water depth measurements and microtopography data coupled with satellite image analysis can assist in understanding habitat suitability patterns at broad spatial scales. We generated detailed bathymetry, and estimated spatial daily water depths, the proportion of wetland area providing flooded habitat within the optimal depth range, and the volume of water present in 23 managed wetlands in the Sacramento Valley of California, a globally important shorebird stopover site. Using 30 years of satellite imagery, we estimated suitable habitat extent across the landscape under a range of climate conditions. While spring shorebird abundance has historically peaked in early April, we found that maximum optimal habitat extent occurred after mid-April. More than 50% of monitored wetlands provided limited optimal habitat (fleeting; only 4 wetlands provided at least 10 consecutive days with >5% optimal habitat during the peak of migration. Wetlands with a higher percent clay content and lower topographic variability were more likely to provide a greater extent and duration of suitable habitat. We estimated that even in a relatively wet El-Nino year as little as 0.01%, to 10.72% of managed herbaceous wetlands in the Sacramento Valley provided optimal habitat for shorebirds at the peak of migration in early April. In an extreme drought year, optimal habitat decreased by 80% compared to a wet year Changes in the timing of wetland irrigation and drawdown schedules and the design of future wetland restoration projects could increase the extent and duration of optimal flooded habitat for migratory shorebirds, without significant increases in overall water use requirements.

  7. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    Science.gov (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  8. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Directory of Open Access Journals (Sweden)

    E. E. Stigter

    2017-07-01

    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  9. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    Science.gov (United States)

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.

    2010-10-01

    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  10. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources

    Directory of Open Access Journals (Sweden)

    Izaias M Fernandes

    Full Text Available The influence of habitat, biomass of herbaceous vegetation, depth and distance from permanent water bodies on the structure of fish assemblages of a seasonal floodplain was evaluated using data collected along 22 transects in an area of 25 km² in the floodplain of Cuiabá River, Pantanal, Brazil. Each transect was sampled for fish using throw traps and gillnets during the flood period of 2006. Multivariate multiple regression analysis and multivariate analysis of covariance indicated that depth was the only variable that affected the structure of the fish assemblage, both for quantitative data (abundance and qualitative data (presence-absence. Species such as Neofundulus parvipinnis and Laetacara dorsigera were more abundant in shallower sites (below 25 cm, while Serrasalmus maculatus and Metynnis mola were found mostly in the deepest areas (over 55 cm. However, species such as Hoplias malabaricus and Hoplerythrinus unitaeniatus occurred at all sampled depths. Although the distribution of most species was restricted to a few sites, there was a positive relationship between species richness and depth of the water body. Surprisingly, the replacement of native vegetation by exotic pasture did not affect the fish assemblage in the area, at the probability level considered.

  11. Intermediate uveitis

    Directory of Open Access Journals (Sweden)

    Babu B

    2010-01-01

    Full Text Available Intermediate uveitis (IU is described as inflammation in the anterior vitreous, ciliary body and the peripheral retina. In the Standardization of Uveitis Nomenclature (SUN working group′s international workshop for reporting clinical data the consensus reached was that the term IU should be used for that subset of uveitis where the vitreous is the major site of the inflammation and if there is an associated infection (for example, Lyme disease or systemic disease (for example, sarcoidosis. The diagnostic term pars planitis should be used only for that subset of IU where there is snow bank or snowball formation occurring in the absence of an associated infection or systemic disease (that is, "idiopathic". This article discusses the clinical features, etiology, pathogenesis, investigations and treatment of IU.

  12. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  13. Photochemical transformation of phenylurea herbicides in surface waters: a model assessment of persistence, and implications for the possible generation of hazardous intermediates.

    Science.gov (United States)

    Fabbri, Debora; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-01-01

    This work models the phototransformation kinetics in surface waters of five phenylurea herbicides (diuron, fenuron, isoproturon, metoxuron and chlortoluron), for which important photochemical parameters are available in the literature (direct photolysis quantum yields and reaction rate constants with ·OH, CO3(-·) and the triplet states of chromophoric dissolved organic matter, (3)CDOM*). Model calculations suggest that isoproturon and metoxuron would be the least photochemically persistent and diuron the most persistent compound. Reactions with ·OH and (3)CDOM* would be the main phototransformation pathways for all compounds in the majority of environmental conditions. Reaction with CO3(-) could be important in waters with low dissolved organic carbon (DOC), while direct photolysis would be negligible for fenuron, quite important for chlortoluron, and somewhat significant for the other compounds. The direct photolysis of metoxuron and diuron is known to increase toxicity, and such a photoreaction pathway would be enhanced at intermediate DOC values (1-4 mg C L(1)). The reaction between phenylureas and ·OH is known to produce toxic intermediates, differently from (3)CDOM*. Therefore, the shift of reactivity from ·OH to (3)CDOM* with increasing DOC could reduce the environmental impact of photochemical transformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterization of biodegradation intermediates of nonionic surfactants by MALDI-MS. 2. Oxidative biodegradation profiles of uniform octylphenol polyethoxylate in 18O-labeled water.

    Science.gov (United States)

    Sato, Hiroaki; Shibata, Atsushi; Wang, Yang; Yoshikawa, Hiromichi; Tamura, Hiroto

    2003-01-01

    This paper reports the characterization of the biodegradation intermediates of octylphenol octaethoxylate (OP(8)EO) by means of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The biodegradation test study was carried out in a pure culture (Pseudomonas putida S-5) under aerobic conditions using OP(8)EO as the sole carbon source and (18)O-labeled water as an incubation medium. In the MALDI-MS spectra of biodegraded samples, a series of OP(n)EO molecules with n = 2-8 EO units and their corresponding carboxylic acid products (OP(n)EC) were observed. The use of purified OP(8)EO enabled one to distinguish the shortened OPEO molecules as biodegradation intermediates. Furthermore, the formation of OP(8)EC (the oxidized product of OP(8)EO) supported the notion that terminal oxidation is a step in the biodegradation process. When biodegradation study was carried out in (18)O-labeled water, incorporation of (18)O atoms into the carboxyl group was observed for OPEC, while no incorporation was observed for the shortened OPEO products. These results could provide some rationale to the biodegradation mechanism of alkylphenol polyethoxylates.

  15. Modeling water flow, depth and inundation extent over the rivers of the Contiguous US within a Catchment-based Land Surface Modeling Framework

    Science.gov (United States)

    Liu, Z.; David, C. H.; Famiglietti, J. S.

    2013-12-01

    With population growth and increasing demand of water supply, the need for integrated continental and global scale surface water dynamics simulation systems relying on both observations and models is ever increasing. In this study we characterize how accurately we can estimate river discharge, river depth and the corresponding inundation extent over the contiguous U.S. by combining observations and models. We present a continental-scale implementation of the Catchment-based Hydrological And Routing Modeling System (CHARMS) that includes an explicit representation of the river networks from a Geographic Information System (GIS) dataset. The river networks and contributing catchment boundaries of the Contiguous U.S are upscaled from the NHDPlus dataset. The average upscaled catchment size is 2773 km2 and the unique main river channel contained in each catchment consists of several river reaches of average length 1.6 km. We derive 18 sets of empirical relationship between channel dimension (bankfull depth and bankfull width) and drainage area based on USGS gauge observations to describe river dynamics for the 18 water resource regions of the NHDPlus representation of the United States. These relationships are used to separate the main river channel and floodplain. Modeled monthly and daily streamflow show reasonable agreement with gauge observations and initial results show that basins with fewer anthropogenic modifications are more accurately simulated. Modeled monthly and daily river depth and floodplain extent associated with each river reach are also explicitly estimated over the U.S., although such simulations are more challenging to validate. Our results have implications for capturing the seasonal-to-interannual dynamics of surface water in climate models. Such a continental-scale modeling framework development would, by design, facilitate the use of existing in situ observations and be suitable for integrating the upcoming NASA Surface Water and Ocean

  16. Relations among water levels, specific conductance, and depths of bedrock fractures in four road-salt-contaminated wells in Maine, 2007–9

    Science.gov (United States)

    Schalk, Charles W.; Stasulis, Nicholas W.

    2012-01-01

    Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in

  17. Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas

    2018-03-01

    Since the first report of very-high density amorphous ice (VHDA) in 2001 [T. Loerting et al., Phys. Chem. Chem. Phys. 3, 5355-5357 (2001)], the status of VHDA as a distinct amorphous ice has been debated. We here study VHDA and its relation to expanded high density amorphous ice (eHDA) on the basis of isobaric heating experiments. VHDA was heated at 0.1 ≤ p ≤ 0.7 GPa, and eHDA was heated at 1.1 ≤ p ≤ 1.6 GPa to achieve interconversion. The behavior upon heating is monitored using in situ volumetry as well as ex situ X-ray diffraction and differential scanning calorimetry. We do not observe a sharp transition for any of the isobaric experiments. Instead, a continuous expansion (VHDA) or densification (eHDA) marks the interconversion. This suggests that a continuum of states exists between VHDA and HDA, at least in the temperature range studied here. This further suggests that VHDA is the most relaxed amorphous ice at high pressures and eHDA is the most relaxed amorphous ice at intermediate pressures. It remains unclear whether or not HDA and VHDA experience a sharp transition upon isothermal compression/decompression at low temperature.

  18. Investigation of potential water inflow into a ventilated tunnel of the proposed low/intermediate-level waste repository in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Eugster, S.M. [Swiss Federal Institute of Technology, Zurich (Switzerland); Senger, R.K. [INTERA Inc., Austin, TX (United States)

    1995-03-01

    Design calculations of two-phase flow phenomena associated with the construction and ventilation of a tunnel were investigated to estimate the potential water inflow through discrete water-conducting features (WCFs) into the tunnel. The physical processes that were considered in numerical simulations include the transient propagation of the pressure decline into the formation (Valanginian Marl, initially fully saturated, no dissolved gas) as a result of the tunnel construction. Ventilation of the tunnel results in a reduction in relative humidity of the tunnel air which, in turn, causes evaporation of water at the tunnel wall and the potential development of an unsaturated zone into the formation. The objective of this study is to investigate under what conditions the tunnel wall appears wet or dry, i.e. whether WCFs can be identified in a ventilated tunnel by mapping water inflow patterns. The simulation results indicate that inflow to the tunnel decreases with time approaching steady state flow rates under single-phase flow conditions, which is lower than the evaporation rate. The water inflow rate decreased more rapidly for a first model scenario (WCF parallel to the tunnel axis), caused by linear flow through the WCF, than for a second model scenario (WCF perpendicular to the tunnel axis), characterized by radial flow toward the tunnel. Similarly, the desaturation zone extends farther into the WCF under linear flow than under radial flow.

  19. The German Final Repository Konrad for Low and Intermediate Level Waste with Negligible Heat Generation - Water Law Issues

    International Nuclear Information System (INIS)

    Boetsch, W.; Grundler, D.; Kugel, K.; Brennecke, P.; Steyer, S.

    2009-01-01

    A survey on the conceptual realization of the requirements due to water law aspects within the license the KONRAD repository for radioactive waste with negligible heat generation in Germany is given [1]. The regulatory decision for the implementation and operation of the repository KONRAD includes, among other things, water law issues. In particular, the KONRAD license includes waste requirements concerning non-radioactive hazardous material (waste package constituents) which have to be considered producing KONRAD waste packages. The intended philosophy of waste acceptance and waste package quality assurance measures to be considered by the KONRAD site operator as well as by the waste producer will be presented. It will demonstrate the selected procedure of the waste declaration and acceptance and describe the structure and logic of tools and aids to comply with the legal requirements of the license and its collateral clause issued under water law. (authors)

  20. The effect of UV-C stimulation of potato tubers and soaking of potato strips in water on density differences of intermediates for French-fry production

    Directory of Open Access Journals (Sweden)

    Sobol Zygmunt

    2018-01-01

    Full Text Available The paper describes the effect of UV-C stimulation of potato tubers and immersing of potato strips in water on differences in density of intermediate products for French-fry production. The density difference used for description of the experiment was defined as a relationship between the post-treatment density and pre-treatment density. The study was conducted on tubers of the Innovator variety. The studies of density changes induced by absorption of water involved measurements of the mass of potato strips in air and in water. Potato strips measured 10 × 10 mm and 60 mm in length. The strips were cut lengthwise along the longest tuber axis set between the proximal and distal tuber end. Water absorption was investigated by immersing strips in water (1 at a temperature of 20°C for 15 min and (2 at 40°C for 20 min. In addition, the study included the group (3 where strips were blanched at a temperature of 90°C for 2 min and a control group (0 which was not immersed in water. Potato tubers were irradiated by UV-C in the following ways: (1 irradiation on one side for 30 min, (2 irradiation on both sides for 15 min each, (0 control group (no irradiation. The studies were conducted at two dates: (0 after harvest and (1 after 3-month storage. Laboratory and storage experiments were conducted in 2016-2017. The density difference was statistically significantly influenced by storage time, UV-C stimulation and immersion conditions of potato strips. The density difference increased with the increase in storage duration of tubers, immersion duration of strips, water temperature (up to starch gelification temperature and UV-C stimulation.

  1. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  2. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    Science.gov (United States)

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with Texas Tech University, constructed a dataset of selected reservoir storage (daily and instantaneous values), reservoir elevation (daily and instantaneous values), and water-quality data from 59 reservoirs throughout Texas. The period of record for the data is as large as January 1965-January 2010. Data were acquired from existing databases, spreadsheets, delimited text files, and hard-copy reports. The goal was to obtain as much data as possible; therefore, no data acquisition restrictions specifying a particular time window were used. Primary data sources include the USGS National Water Information System, the Texas Commission on Environmental Quality Surface Water-Quality Management Information System, and the Texas Water Development Board monthly Texas Water Condition Reports. Additional water-quality data for six reservoirs were obtained from USGS Texas Annual Water Data Reports. Data were combined from the multiple sources to create as complete a set of properties and constituents as the disparate databases allowed. By devising a unique per-reservoir short name to represent all sites on a reservoir regardless of their source, all sampling sites at a reservoir were spatially pooled by reservoir and temporally combined by date. Reservoir selection was based on various criteria including the availability of water-quality properties and constituents that might affect the trophic status of the reservoir and could also be important for understanding possible effects of climate change in the future. Other considerations in the selection of reservoirs included the general reservoir-specific period of record, the availability of concurrent reservoir storage or elevation data to match with water-quality data, and the availability of sample depth measurements. Additional separate selection criteria included historic information pertaining to blooms of golden algae. Physical properties and constituents were water

  3. Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell

    2015-01-01

    The objective of this research was to investigate the effects of the conditions of hot water extraction (HWE) on abundance, properties, and structure of lignin depolymerization products. HWE of extracted softwood (ponderosa pine) was conducted using temperatures from 140 to 320°C for 90 min. HWE materials were then subjected to a soxhlet...

  4. Studying the Effect of Tunnel Depth Variation on the Specific Energy of TBM, Case Study: Karaj–Tehran (Iran Water Conveyance Tunnel

    Directory of Open Access Journals (Sweden)

    Majid Mirahmadi

    2016-09-01

    Full Text Available The tunnel-boring machine (TBM is a common piece of equipment used in tunneling projects. For planning a mechanical excavation project, prediction of TBM performance and the specification of design elements such as required forces are critical. The specific energy of excavation (SE, i.e. drilling energy consumption per unit volume of rock mass, is a crucial parameter for performance prediction of a TBM. In this study, the effect of variation of tunnel depth on SE by considering the post-failure behavior of rock mass was investigated. Several new relations between SE and tunnel depth are proposed according to the statistical analysis obtained from Karaj – Tehran Water Conveyance Tunnel real data. The results showed that there is a direct relation between both parameters and. Polynomial equations are proposed as the best expression of the correlation between these parameters.

  5. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  6. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China.

    Science.gov (United States)

    Yao, Linlin; Wang, Yanxin; Tong, Lei; Deng, Yamin; Li, Yonggang; Gan, Yiqun; Guo, Wei; Dong, Chuangju; Duan, Yanhua; Zhao, Ke

    2017-01-01

    The occurrence of 14 antibiotics (fluoroquinolones, tetracyclines, macrolides and sulfonamides) in groundwater and surface water at Jianghan Plain was investigated during three seasons. The total concentrations of target compounds in the water samples were higher in spring than those in summer and winter. Erythromycin was the predominant antibiotic in surface water samples with an average value of 1.60μg/L, 0.772μg/L and 0.546μg/L respectively in spring, summer and winter. In groundwater samples, fluoroquinolones and tetracyclines accounted for the dominant proportion of total antibiotic residues. The vertical distributions of total antibiotics in groundwater samples from three different depths boreholes (10m, 25m, and 50m) exhibited irregular fluctuations. Consistently decreasing of antibiotic residues with increasing of depth was observed in four (G01, G02, G03 and G05) groundwater sampling sites over three seasons. However, at the sampling sites G07 and G08, the pronounced high concentrations of total antibiotic residues were detected in water samples from 50m deep boreholes instead of those at upper aquifer in winter sampling campaign, with the total concentrations of 0.201μg/L and 0.100μg/L respectively. The environmental risks posed by the 14 antibiotics were assessed by using the methods of risk quotient and mixture risk quotient for algae, daphnids and fish in surface water and groundwater. The results suggested that algae might be the aquatic organism most sensitive to the antibiotics, with the highest risk levels posed by erythromycin in surface water and by ciprofloxacin in groundwater among the 14 antibiotics. In addition, the comparison between detected antibiotics in groundwater samples and the reported effective concentrations of antibiotics on denitrification by denitrifying bacteria, indicating this biogeochemical process driven by microorganisms won't be inhibitory influenced by the antibiotic residues in groundwater. Copyright © 2016

  7. Advantages of paramagnetic chemical exchange saturation transfer (CEST) complexes having slow to intermediate water exchange properties as responsive MRI agents.

    Science.gov (United States)

    Soesbe, Todd C; Wu, Yunkou; Dean Sherry, A

    2013-07-01

    Paramagnetic chemical exchange saturation transfer (PARACEST) complexes are exogenous contrast agents that have great potential to further extend the functional and molecular imaging capabilities of magnetic resonance. As a result of the presence of a central paramagnetic lanthanide ion (Ln(3+) ≠ La(3+) , Gd(3+) , Lu(3+) ) within the chelate, the resonance frequencies of exchangeable protons bound to the PARACEST agent are shifted far away from the bulk water frequency. This large chemical shift, combined with an extreme sensitivity to the chemical exchange rate, make PARACEST agents ideally suited for the reporting of significant biological metrics, such as temperature, pH and the presence of metabolites. In addition, the ability to turn PARACEST agents 'off' and 'on' using a frequency-selective saturation pulse gives them a distinct advantage over Gd(3+) -based contrast agents. A current challenge for PARACEST research is the translation of the promising in vitro results into in vivo systems. This short review article first describes the basic theory behind PARACEST contrast agents, their benefits over other contrast agents and their applications to MRI. It then describes some of the recent PARACEST research results: specifically, pH measurements using water molecule exchange rate modulation, T2 exchange contrast caused by water molecule exchange, the use of ultrashort TEs (TE < 10 µs) to overcome T2 exchange line broadening and the potential application of T2 exchange as a new contrast mechanism for MRI. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Differential effects of exposure to parasites and bacteria on stress response in turbot Scophthalmus maximus simultaneously stressed by low water depth.

    Science.gov (United States)

    Rodríguez-Quiroga, J J; Otero-Rodiño, C; Suárez, P; Nieto, T P; García Estévez, J M; San Juan, F; Soengas, J L

    2017-07-01

    The stress response of turbot Scophthalmus maximus was evaluated in fish maintained 8 days under different water depths, normal (NWD, 30 cm depth, total water volume 40 l) or low (LWD, 5 cm depth, total water volume 10 l), in the additional presence of infection-infestation of two pathogens of this species. This was caused by intraperitoneal injection of sublethal doses of the bacterium Aeromonas salmonicida subsp. salmonicida or the parasite Philasterides dicentrarchi (Ciliophora:Scuticociliatida). The LWD conditions were stressful for fish, causing increased levels of cortisol in plasma, decreased levels of glycogen in liver and nicotinamide adenine dinucleotide phosphate (NADP) and increased activities of G6Pase and GSase. The presence of bacteria or parasites in fish under NWD resulted in increased cortisol levels in plasma whereas in liver, changes were of minor importance including decreased levels of lactate and GSase activity. The simultaneous presence of bacteria and parasites in fish under NWD resulted a sharp increase in the levels of cortisol in plasma and decreased levels of glucose. Decreased levels of glycogen and lactate and activities of GSase and glutathione reductase (GR), as well as increased activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and levels of nicotinamide adenine dinucleotide phosphate (NADPH) occurred in the same fish in liver. Finally, the presence of pathogens in S. maximus under stressful conditions elicited by LWD resulted in synergistic actions of both type of stressors in cortisol levels. In liver, the presence of bacteria or parasites induced a synergistic action on several variables such as decreased activities of G6Pase and GSase as well as increased levels of NADP and NADPH and increased activities of GPase, G6PDH and 6PGDH. © 2017 The Fisheries Society of the British Isles.

  9. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Molina Bueno, Laura [Univ. of Granada (Spain)

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  10. Sustainability of the use of natural capital in a city: Measuring the size and depth of urban ecological and water footprints.

    Science.gov (United States)

    Fang, Kai; Zhang, Qifeng; Yu, Huajun; Wang, Yutao; Dong, Liang; Shi, Lei

    2018-08-01

    The Sustainable Development Goals (SDGs) are limited in their ability to measure progress towards environmental sustainability especially at the city level. The aim of this paper is to provide insights into an integrated assessment of urban sustainability, with emphasis on the significance of the maintenance of natural capital stocks. The use of water and land as critical natural capital in Guiyang, a southeast city in China was investigated by bringing together the ecological footprint (EF), water footprint (WF) and corresponding capacity indicators into an improved three-dimensional (i3D) model. Results showed that Guiyang has long been operating in a state of overshoot due to shortage of annual natural capital flows and accumulated depletion of stocks. This is particularly true for land use, whose stocks maintained a relatively stable level of depletion between 2000 and 2014. As of 2014, an EF depth of 6.45 was accumulated. With respect to water use, a shift in the city's role from creditor to debtor was observed in 2004. Industrial use of natural capital has more than tripled over the past 15 years and replaced agriculture to be the main driver of water unsustainability. Overall, Guiyang's economic growth did not show signs of decoupling from the EF and WF. These findings highlight the need for effective policies that would help Guiyang reduce dependency on the use of critical natural capital. Finally, this paper provided an in-depth discussion of the methodological strengths and limitations of the i3D model and concluded that it is able to track the structural and characteristic dynamics of both flows and stocks while avoiding burden shifting across various components within single forms of natural capital from a strong sustainability perspective. Our study enhances understanding of the critical role of natural capital in ensuring urban sustainability and improving human welfare in connection with SDGs. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. ERS-1 SAR monitoring of ice growth on shallow lakes to determine water depth and availability in north west Alaska

    Science.gov (United States)

    Jeffries, Martin; Morris, Kim; Liston, Glen

    1996-01-01

    Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.

  12. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  13. Development of the North Pacific Ocean model for the assessment of the distribution of the radioactive materials. Improvement for formation of the North Pacific intermediate water

    International Nuclear Information System (INIS)

    Tsubono, Takaki; Misumi, Kazuhiro; Tsumune, Daisuke; Bryan, Frank

    2014-01-01

    The radioactive materials such as 137 Cs were released to the North Pacific Ocean (NP) through the major pathway; direct release from the accident site and atmospheric deposition, after the accidents at the Fukushima Dai-ichi Nuclear Power Plant following the earthquake and tsunami. The behavior of the materials in the NP has been paid great attention after the accident. The North Pacific Model for the calculation of the distribution of radionuclides has been developed using Regional Ocean Modeling System (ROMS). The model domain is NP with an eddy-resolving grid. A series of numerical experiments conducted by models suggests that the computational diffusivity caused by the advection scheme and the topography roughness are critical in representing the separation of Kuroshio, the Kuroshio Extension, the mixed-water region between Kuroshio Extension and Oyashio front and the formation of the North Pacific Intermediate Water (NPIW). The model requires the forth order scheme in the tracer advection and the smoothing of topography for these problems. Moreover the tidal mixing process around the straits in the North Pacific Ocean and the sea ice play important roles to reproduce the formation of lon salinity around the NPIW as well as the isopycnal mixing process represented by an eddy-resolving model. (author)

  14. Mudpuppy (Necturus maculosus maculosus ) spatial distribution, breeding water depth, and use of artificial spawning habitat in the Detroit River

    Science.gov (United States)

    Craig, Jaquelyn M.; Mifsud, David A.; Briggs, Andrew S.; Boase, James C.; Kennedy, Gregory W.

    2015-01-01

    Mudpuppy (Necturus maculosus maculosus) populations have been declining in the Great Lakes region of North America. However, during fisheries assessments in the Detroit River, we documented Mudpuppy reproduction when we collected all life stages from egg through adult as by-catch in fisheries assessments. Ten years of fisheries sampling resulted in two occurrences of Mudpuppy egg collection and 411 Mudpuppies ranging in size from 37–392 mm Total Length, collected from water 3.5–15.1 m deep. Different types of fisheries gear collected specific life stages; spawning females used cement structures for egg deposition, larval Mudpuppies found refuge in eggmats, and we caught adults with baited setlines and minnow traps. Based on logistic regression models for setlines and minnow traps, there was a higher probability of catching adult Mudpuppies at lower temperatures and in shallower water with reduced clarity. In addition to documenting the presence of all life stages of this sensitive species in a deep and fast-flowing connecting channel, we were also able to show that standard fisheries research equipment can be used for Mudpuppy research in areas not typically sampled in herpetological studies. Our observations show that typical fisheries assessments and gear can play an important role in data collection for Mudpuppy population and spawning assessments.

  15. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Northwestern Hawaiian Islands from 2015-07-31 to 2015-08-19 (NCEI Accession 0161170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  16. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago from 2016-09-01 to 2016-09-27 (NCEI Accession 0161171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  17. Temperature profile and water depth data collected from ANGO and other platforms using XBT casts in the TOGA Area - Atlantic from 14 February 1992 to 13 April 1993 (NODC Accession 9400047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using XBT casts from the ANGO and other platforms in the TOGA - Atlantic Ocean. Data were collected from 14...

  18. Temperature profile and water depth collected from XIANG YANG HONG 05 in the South China Sea using BT and XBT casts from 16 November 1986 to 03 December 1986 (NODC Accession 8700009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth were collected using BT and XBT casts from the XIANG YANG HONG 05 in the South China Sea. Data were collected from 16 November...

  19. Temperature profile and water depth data collected from SAXON STAR and other platforms in a World wide distribution from 09 March 1983 to 12 November 1986 (NODC Accession 8700035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the SAXON STAR and other platforms in a World wide distribution. Data were collected...

  20. Temperature profile and water depth data collected from BROOKE using BT and XBT casts in the North Pacific Ocean from 03 October 1975 to 18 November 1977 (NODC Accession 8900225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the BROOKE in the North Pacific Ocean and TOGA Area - Pacific Ocean. Data were...

  1. Temperature profile and water depth data collected from DALE and other platforms using BT and XBT casts in the North / South Pacific Ocean from 09 November 1979 to 25 November 1985 (NODC Accession 8900063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the DALE and other platforms in the North / South Pacific Ocean. Data were...

  2. Temperature profile and water depth collected from ZAMBEZE and other platforms using BT and XBT casts in the Atlantic Ocean from 21 July 1981 to 02 December 1985 (NODC Accession 8600293)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the ZAMBEZE and other platforms in the Northeast / Southwest Atlantic Ocean. Data...

  3. Temperature profile and water depth data collected from AMERICAN VIKING using BT and XBT casts in the Northeast Pacific Ocean from 23 September 1986 to 17 September 1987 (NODC Accession 8800048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the AMERICAN VIKING in the Northeast Pacific Ocean. Data were collected from 23...

  4. Temperature profile and water depth data collected from IOWA using BT and XBT casts in the North Pacific Ocean from 31 May 1985 to 23 March 1990 (NODC Accession 9000092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected using two dozen different ships through a grant to Dr. Douglas C. Biggs MMS # 14-35-0001-30501. The data was...

  5. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the Northwest Atlantic Ocean from 01 December 1987 to 05 January 1988 (NODC Accession 8800015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HARRIOT LANE in the Northwest Atlantic Ocean. Data were collected from...

  6. Temperature profile and water depth data collected from USCGC HARRIET LANE using BT and XBT casts in the Northwest Atlantic Ocean from 21 July 1988 to 18 August 1988 (NODC Accession 8800256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HARRIET LANE in the Northwest Atlantic Ocean. Data were collected from...

  7. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the Northwest Atlantic Ocean and Caribbean Sea from 30 April 1988 to 31 May 1988 (NODC Accession 8800173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC HARRIOT LANE in the Northwest Atlantic Ocean and Caribbean Sea. Data...

  8. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the NW Atlantic Ocean for 1987-05-31 (NODC Accession 8700225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC Harriot Lane in the Northwest Atlantic Ocean and TOGA Area - Atlantic...

  9. Temperature profile and water depth data collected from USCGC HARRIOT LANE using BT and XBT casts in the Northwest Atlantic Ocean from 09 March 1988 to 10 March 1988 (NODC Accession 8800094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC Harriot Lane in the Northwest Atlantic Ocean. Data were collected from...

  10. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago from 2014-03-24 to 2014-05-05 (NCEI Accession 0161168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  11. Temperature profile and water depth data collected from SEDCO / BP 471 using BT and XBT casts in the East Indian Archipelago and TOGA Area - Pacific Ocean from 14 November 1988 to 20 December 1988 (NODC Accession 8900043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the SEDCO / BP 471 in the East Indian Archipelago. and TOGA Area - Pacific Ocean....

  12. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian ocean and other seas from 07 January 1989 to 31 January 1989 (NODC Accession 8900034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, South China Sea, Burma Sea, and Malacca of...

  13. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas from 2015-01-26 to 2015-04-28 (NCEI Accession 0162247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  14. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across Wake Island from 2014-03-16 to 2014-03-19 (NCEI Accession 0162248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  15. Temperature profile and water depth data collected from AUSTRALIA STAR and other platforms using XBT casts in the TOGA Area - Atlantic and Pacific Ocean from 05 October 1989 to 21 December 1992 (NODC Accession 9400035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using XBT casts from the AUSTRALIA STAR and other platforms in the TOGA Area - Atlantic and Pacific Ocean,...

  16. Temperature profile and water depth data collected from USS Merrill using BT and XBT casts in the Indian Ocean and other seas from 1988-03-01 to 1988-03-29 (NODC Accession 8800110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Arabian Sea, Gulf of Oman, and Indian Ocean. Data were...

  17. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the TOGA Area - Pacific Ocean and other areas from 03 November 1988 to 01 December 1988 (NODC Accession 8800327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the TOGA Area - Pacific Ocean, Bay of Bengal, Indian Ocean,...

  18. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Indian Ocean and other seas from 05 April 1988 to 11 April 1988 (NODC Accession 8800140)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in the Indian Ocean, Arabian Sea, and Gulf of Oman. Data were...

  19. Temperature profile and water depth data collected from USS MERRILL using BT and XBT casts in the Indian Ocean and other seas from 17 May 1988 to 01 June 1988 (NODC Accession 8800181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MERRILL in Arabian Sea, Indian Ocean, Gulf of Oman, Laccadive Sea, and...

  20. Temperature profile and water depth data collected from USS HENRY B. WILSON using BT and XBT casts in the Indian Ocean and other seas from 22 October 1986 to 26 November 1986 (NODC Accession 8800183)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS HENRY B. WILSON in the Indian Ocean, Gulf of Oman, Gulf of Iran, and...

  1. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian Ocean and other seas from 02 December 1988 to 28 December 1988 (NODC Accession 8900015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, Arabian Sea, Gulf of Oman, Gulf of Iran, and...

  2. Temperature profile and water depth data collected from USS ROBERT G. BRADLEY using BT and XBT casts in the NE/NW Atlantic Ocean and other seas from 03 May 1988 to 31 May 1988 (NODC Accession 8800213)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS ROBERT G. BRADLEY in the Northwest / Northeast Atlantic Ocean, Arabian...

  3. Temperature profile and water depth data collected from USS THACH using BT and XBT casts in the Persian Sea from 04 December 1987 to 08 December 1987 (NODC Accession 8800030)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS THACH in the Persian Sea. Data were collected from 04 December 1987 to 08...

  4. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across Jarvis Island from 2016-05-19 to 2016-05-23 (NCEI Accession 0162245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  5. Temperature profile and water depth data collected from RATHBURNE in the NW Pacific (limit-180 W) and other areas from 02 February 1986 to 28 February 1986 (NODC Accession 8600093)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the RATHBURNE in the Northwest Pacific Ocean and other areas. Data were collected from...

  6. Temperature profile and water depth data from BT and XBT casts in the Atlantic Ocean from USCGC POLAR SEA from 14 December 1983 to 06 May 1984 (NODC Accession 8600108)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USCGC POLAR SEA in the Atlantic Ocean. Data were collected from 14 December...

  7. Temperature profile and water depth data collected from USS JOHN RODGERS using BT and XBT casts in the NE/NW Atlantic Ocean and other seas from 03 August 1988 to 03 October 1988 (NODC Accession 8900041)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS JOHN RODGERS in the Northeast / Northwest Atlantic Ocean, Ionian Sea,...

  8. Temperature profile and water depth collected from BT and XBT casts in the Northwest Atlantic Ocean from SEDCO BP 471 from 03 November 1985 to 23 December 1985 (NODC Accession 8600138)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the SEDCO BP 471 in the Northwest Atlantic Ocean. Data were collected from 03...

  9. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa from 2015-02-15 to 2015-03-28 (NCEI Accession 0161169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  10. Partitioning of water between surface and mantle on terrestrial exoplanets: effect of surface-mantle water exchange parameterizations on ocean depth

    Science.gov (United States)

    Komacek, T. D.; Abbot, D. S.

    2016-12-01

    Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to their volatile delivery rate via planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld". The habitable zone for waterworlds is likely smaller than that for planets with partial land coverage because waterworlds lack the stabilizing silicate-weathering feedback. On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. We have explored how the incorporation of different mechanisms for the outgassing and regassing of water changes the volatile evolution of a planet. Specifically, we have examined three models for volatile cycling: a model with degassing and regassing both determined by the seafloor pressure, one with mantle temperature-dependent degassing and regassing rates, and a hybrid model that has the degassing rate driven by seafloor pressure and the regassing rate determined by the mantle temperature. We find that the volatile cycling in all three of these scenarios reaches a steady-state after a few billion years. Using these steady-states, we can make predictions from each model for how much water is needed to flood the surface and make a waterworld. We find that if volatile cycling is either solely temperature-dependent or pressure-dependent, exoplanets require a high abundance (more than 0.3% by mass) of water to have fully inundated surfaces. This is because the waterworld boundary for these models is regulated by how much water can be stuffed into the mantle. However, if degassing is more dependent on the seafloor pressure and regassing mainly dependent on mantle temperature, super-Earth mass planets with a total water fraction similar to that of the Earth (approximately 0.05% by mass) can become waterworlds. As a result, further understanding of the

  11. The Northern Gulf of Mexico During OAE2 and the Relationship Between Water Depth and Black Shale Development

    Science.gov (United States)

    Lowery, Christopher M.; Cunningham, Robert; Barrie, Craig D.; Bralower, Timothy; Snedden, John W.

    2017-12-01

    Despite their name, Oceanic Anoxic Events (OAEs) are not periods of uniform anoxia and black shale deposition in ancient oceans. Shelf environments account for the majority of productivity and organic carbon burial in the modern ocean, and this was likely true in the Cretaceous as well. However, it is unlikely that the mechanisms for such an increase were uniform across all shelf environments. Some, like the northwest margin of Africa, were characterized by strong upwelling, but what might drive enhanced productivity on shelves not geographically suited for upwelling? To address this, we use micropaleontology, carbon isotopes, and sedimentology to present the first record of Oceanic Anoxic Event 2 (OAE2) from the northern Gulf of Mexico shelf. Here OAE2 occurred during the deposition of the well-oxygenated, inner neritic/lower estuarine Lower Tuscaloosa Sandstone. The overlying organic-rich oxygen-poor Marine Tuscaloosa Shale is entirely Turonian in age. We trace organic matter enrichment from the Spinks Core into the deepwater Gulf of Mexico, where wireline log calculations and public geochemical data indicate organic enrichment and anoxia throughout the Cenomanian-Turonian boundary interval. Redox change and organic matter preservation across the Gulf of Mexico shelf were driven by sea level rise prior to the early Turonian highstand, which caused the advection of nutrient-rich, oxygen-poor waters onto the shelf. This results in organic matter mass accumulation rates 1-2 orders of magnitude lower than upwelling sites like the NW African margin, but it likely occurred over a much larger geographic area, suggesting that sea level rise was an important component of the overall increase in carbon burial during OAE2.

  12. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    Science.gov (United States)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  13. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir

    International Nuclear Information System (INIS)

    Berger, T.; Hajek, M.; Schoener, W.; Fugger, M.; Vana, N.; Akatov, Y.; Shurshakov, V.; Arkhangelsky, V.; Kartashov, D.

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems, Moscow, Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities, Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LET ( ) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body. (author)

  14. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    Science.gov (United States)

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. NW Pacific mid-depth ventilation changes during the Holocene

    Science.gov (United States)

    Rella, S.; Uchida, M.

    2010-12-01

    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  16. Intermediate-depth earthquakes facilitated by eclogitization-related stresses

    Science.gov (United States)

    Nakajima, Junichi; Uchida, Naoki; Shiina, Takahiro; Hasegawa, Akira; Hacker, Bradley R.; Kirby, Stephen H.

    2013-01-01

    Eclogitization of the basaltic and gabbroic layer in the oceanic crust involves a volume reduction of 10%–15%. One consequence of the negative volume change is the formation of a paired stress field as a result of strain compatibility across the reaction front. Here we use waveform analysis of a tiny seismic cluster in the lower crust of the downgoing Pacific plate and reveal new evidence in favor of this mechanism: tensional earthquakes lying 1 km above compressional earthquakes, and earthquakes with highly similar waveforms lying on well-defined planes with complementary rupture areas. The tensional stress is interpreted to be caused by the dimensional mismatch between crust transformed to eclogite and underlying untransformed crust, and the earthquakes are probably facilitated by reactivation of fossil faults extant in the subducting plate. These observations provide seismic evidence for the role of volume change–related stresses and, possibly, fluid-related embrittlement as viable processes for nucleating earthquakes in downgoing oceanic lithosphere.

  17. Wave directional spreading at shallow and intermediate depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.

    . The spectrum computed from measured data shows that Scott spectrum approximates the observations in a fairly satisfactory way. A comparative study was carried out based on the directional spectrum estimated from Fourier coefficients and the model directional...

  18. The Association of Arsenic With Redox Conditions, Depth, and Ground-Water Age in the Glacial Aquifer System of the Northern United States

    Science.gov (United States)

    Thomas, Mary Ann

    2007-01-01

    More than 800 wells in the glacial aquifer system of the Northern United States were sampled for arsenic as part of U.S. Geological Survey National Water-Quality Assessment (NAWQA) studies during 1991-2003. Elevated arsenic concentrations (greater than or equal to 10 micrograms per liter) were detected in 9 percent of samples. Elevated arsenic concentrations were associated with strongly reducing conditions. Of the samples classified as iron reducing or sulfate reducing, arsenic concentrations were elevated in 19 percent. Of the methanogenic samples, arsenic concentrations were elevated in 45 percent. In contrast, concentrations of arsenic were elevated in only 1 percent of oxic samples. Arsenic concentrations were also related to ground-water age. Elevated arsenic concentrations were detected in 34 percent of old waters (recharged before 1953) as compared to 4 percent of young waters (recharged since 1953). For samples classified as both old and methanogenic, elevated arsenic concentrations were detected in 62 percent of samples, as compared to 1 percent for samples classified as young and oxic. Arsenic concentrations were also correlated with well depth and concentrations of several chemical constituents, including (1) constituents linked to redox processes and (2) anions or oxyanions that sorb to iron oxides. Observations from the glacial aquifer system are consistent with the idea that the predominant source of arsenic is iron oxides and the predominant mechanism for releasing arsenic to the ground water is reductive desorption or reductive dissolution. Arsenic is also released from iron oxides under oxic conditions, but on a more limited basis and at lower concentrations. Logistic regression was used to investigate the relative significance of redox, ground-water age, depth, and other water-quality constituents as indicators of elevated arsenic concentrations in the glacial aquifer system. The single variable that explained the greatest amount of variation in

  19. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    Directory of Open Access Journals (Sweden)

    Wenhua Wu

    2016-11-01

    Full Text Available Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms.

  20. Spatial Autocorrelation, Source Water and the Distribution of Total and Viable Microbial Abundances within a Crystalline Formation to a Depth of 800 m

    Directory of Open Access Journals (Sweden)

    E. D. Beaton

    2017-09-01

    Full Text Available Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3 modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada. We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present. The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate – used as a proxy for modern recharge – and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran’s eigenvector map (MEM coefficients were correlated with

  1. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150–170 m Water Depth, Crimea Margin)

    Science.gov (United States)

    Jessen, Gerdhard L.; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150–170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km2 on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25–55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  2. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150-170 m Water Depth, Crimea Margin).

    Science.gov (United States)

    Jessen, Gerdhard L; Lichtschlag, Anna; Struck, Ulrich; Boetius, Antje

    2016-01-01

    At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150-170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km(2) on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25-55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria

  3. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    Science.gov (United States)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  4. Water temperature, conductivity, and others collected from moorings in the North Atlantic Ocean from 2010-08-18 to 2012-06-30 (NCEI Accession 0164585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A set of eight moorings were set up across the Charlie Gibbs Fracture Zone to measure the intermediate and deep water variability for a two-year period, from a depth...

  5. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  6. The deterioration of intermediate moisture foods

    Science.gov (United States)

    Labruza, T. P.

    1971-01-01

    Deteriorative reactions are low and food quality high if intermediate moisture content of a food is held at a water activity of 0.6 to 0.75. Information is of interest to food processing and packaging industry.

  7. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  8. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  9. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  10. Mediterranean intermediate circulation estimated from Argo data in 2003–2010

    Directory of Open Access Journals (Sweden)

    M. Menna

    2010-03-01

    Full Text Available Data from 38 Argo profiling floats are used to describe the intermediate Mediterranean currents for the period October 2003–January 2010. These floats were programmed to execute 5-day cycles, to drift at a neutral parking depth of 350 m and measure temperature and salinity profiles from either 700 or 2000 m up to the surface. At the end of each cycle the floats remained at the sea surface for about 6 h, enough time to be localised and transmit the data to the Argos satellite system. The Argos positions were used to determine the float surface and intermediate displacements. At the surface, the float motion was approximated by a linear displacement and inertial motion. Intermediate velocities estimates were used to investigate the Mediterranean circulation at 350 m, to compute the pseudo-Eulerian statistics and to study the influence of bathymetry on the intermediate currents. Maximum speeds, as large as 33 cm/s, were found northeast of the Balearic Islands (western basin and in the Ierapetra eddy (eastern basin. Typical speeds in the main along-slope currents (Liguro-Provençal-Catalan, Algerian and Libyo-Egyptian Currents were ~20 cm/s. In the central and western part of Mediterranean basin, the pseudo-Eulerian statistics show typical intermediate circulation pathways which can be related to the motion of Levantine Intermediate Water. In general our results agree with the qualitative intermediate circulation schemes proposed in the literature, except in the southern Ionian where we found westward-flowing intermediate currents. Fluctuating currents appeared to be usually larger than the mean flow. Intermediate currents were found to be essentially parallel to the isobaths over most of the areas characterized by strong bathymetry gradients, in particular, in the vicinity of the continental slopes.

  11. DISCOVERING OPTIMUM METHOD TO EXTRACT DEPTH INFORMATION FOR NEARSHORE COASTAL WATERS FROM SENTINEL-2A IMAGERY- CASE STUDY: NAYBAND BAY, IRAN

    Directory of Open Access Journals (Sweden)

    K. Kabiri

    2017-09-01

    Full Text Available The capabilities of Sentinel-2A imagery to determine bathymetric information in shallow coastal waters were examined. In this regard, two Sentinel-2A images (acquired on February and March 2016 in calm weather and relatively low turbidity were selected from Nayband Bay, located in the northern Persian Gulf. In addition, a precise and accurate bathymetric map for the study area were obtained and used for both calibrating the models and validating the results. Traditional linear and ratio transform techniques, as well as a novel integrated method, were employed to determine depth values. All possible combinations of the three bands (Band 2: blue (458-523 nm, Band 3: green (543-578 nm, and Band 4: red (650-680 nm, spatial resolution: 10 m have been considered (11 options using the traditional linear and ratio transform techniques, together with 10 model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The correlation coefficients (R2, and root mean square errors (RMSE for validation points were calculated for all models and for two satellite images. When compared with the linear transform method, the method employing ratio transformation with a combination of all three bands yielded more accurate results (R2Mac = 0.795, R2Feb = 0.777, RMSEMac = 1.889 m, and RMSEFeb =2.039 m. Although most of the integrated transform methods (specifically the method including all bands and band ratios have yielded the highest accuracy, these increments were not significant, hence the ratio transformation has selected as optimum method.

  12. Intermediality and media change

    OpenAIRE

    2012-01-01

    This book is about intermediality as an approach to analysing and understanding media change. Intermediality and Media Change is critical of technological determinism that characterises 'new media discourse' about the ongoing digitalization, framed as a revolution and creating sharp contrasts between old and new media. Intermediality instead emphasises paying attention to continuities between media of all types and privileges a comparative perspective on technological changes in media over ti...

  13. Temperature profile and water depth data collected from USS McInerney from expendable bathythermographs (XBT) in the Red Sea from 07 December 1992 to 28 December 1992 (NODC Accession 9300017)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS McInerney in the Red Sea. Data were collected from 07 December 1992 to 28...

  14. Conductivity, temperature, depth, water quality and pigment data from R/V Bellows cruise BE-1311, 2012-12-12 to 2012-12-14 (NCEI Accession 0159411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains conductivity, temperature, and depth data collected during R/V Bellows cruise BE-1311 of the offshore shelf of the Florida Panhandle Bight at...

  15. an intermediate moisture meat

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... traditional SM muscle without compromising quality. ... technique is intermediate moisture food processing. ... Traditionally, most tsire suya producers use ..... quality of Chinese purebred and European X Chinese crossbred ...

  16. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  17. Mapping Intermediality in Performance

    NARCIS (Netherlands)

    2010-01-01

    Mapping Intermediality in Performance benadert het vraagstuk van intermedialiteit met betrekking tot performance (vooral theater) vanuit vijf verschillende invalshoeken: performativiteit en lichaam; tijd en ruimte; digitale cultuur en posthumanisme; netwerken; pedagogiek en praxis. In deze boeiende

  18. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  19. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    NARCIS (Netherlands)

    Stigter, Emmy E.; Wanders, Niko; Saloranta, Tuomo M.; Shea, Joseph M.; Bierkens, M.F.P.; Immerzeel, W.W.

    2017-01-01

    Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water

  20. Water oxidation by photosystem II: H(2)O-D(2)O exchange and the influence of pH support formation of an intermediate by removal of a proton before dioxygen creation.

    Science.gov (United States)

    Gerencsér, László; Dau, Holger

    2010-11-30

    Understanding the chemistry of photosynthetic water oxidation requires deeper insight into the interrelation between electron transfer (ET) and proton relocations. In photosystem II membrane particles, the redox transitions of the water-oxidizing Mn complex were initiated by nanosecond laser flashes and monitored by absorption spectroscopy at 360 nm (A(360)). In the oxygen evolution transition (S(3) + hν → S(0) + O(2)), an exponential decrease in A(360) (τ(O(2)) = 1.6 ms) can be assigned to Mn reduction and O(2) formation. The corresponding rate-determining step is the ET from the Mn complex to a tyrosine radical (Y(Z)(ox)). We find that this A(360) decrease is preceded by a lag phase with a duration of 170 ± 40 μs (τ(lag) at pH 6.2), indicating formation of an intermediate before ET and O-O bond formation and corroborating results obtained by time-resolved X-ray spectroscopy. Whereas τ(O(2)) exhibits a minor kinetic isotope effect and negligible pH dependence, formation of the intermediate is slowed significantly both in D(2)O (τ(lag) increase of ∼140% in D(2)O) and at low pH (τ(lag) of 30 ± 20 μs at pH 7.0 vs τ(lag) of 470 ± 80 μs at pH 5.5). These findings support the fact that in the oxygen evolution transition an intermediate is created by deprotonation and removal of a proton from the Mn complex, after Y(Z)(ox) formation but before the onset of electron transfer and O-O bond formation.

  1. Depth and temporal variations in water quality of the Snake River Plain aquifer in well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1997-03-01

    In-situ measurements of the specific conductance and temperature of ground water in the Snake River Plain aquifer were collected in observation well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. These parameters were monitored at various depths in the aquifer from October 1994 to August 1995. The specific conductance of ground water in well USGS-59, as measured in the borehole, ranged from about 450 to 900 microS/cm at standard temperature (25 C). The pumping cycle of the production wells at the Idaho Chemical Processing Plant causes changes in borehole circulation patterns, and as a result the specific conductance of ground water at some depths in the well varies by up to 50% over a period of about 14 hours. However, these variations were not observed at all depths, or during each pumping cycle. The temperature of ground water in the well was typically between 12.8 and 13.8 C. The results of this study indicate that temporal variations in specific conductance of the ground water at this location are caused by an external stress on the aquifer--pumping of a production well approximately 4,000 feet away. These variations are believed to result from vertical stratification of water quality in the aquifer and a subsequent change in intrawell flow related to pumping. When sampling techniques that do not induce a stress on the aquifer (i.e., thief sampling) are used, knowledge of external stresses on the system at the time of sampling may aid in the interpretation of geochemical data

  2. Sinclair and Dyes Inlets Toxicity Study: An Assessment of Copper Bioavailability and Toxicity in Surface Waters Adjacent to the Puget Sound Naval Shipyard and Intermediate Maintenance Facility

    Science.gov (United States)

    2009-12-01

    biblio /92109.html WEF 2004a. “Proposed Research for Developing the Biotic Ligand Model for Establishing Water Quality Criteria. Water Environment...Systems Center, Bremerton, WA. August 2006. Ecology Publication Number 06-10-54 http://www.ecy.wa.gov/ biblio /0610054.html Eriksen, R.S., Mackey

  3. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin; cross-sectional and depth variation of water-quality constituents and properties in the Upper Illinois River basin, 1987-88

    Science.gov (United States)

    Marron, Donna C.; Blanchard, Stephen F.

    1995-01-01

    Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.

  4. Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure -volume relationship.

    Science.gov (United States)

    Nguyen, Hoa T; Meir, Patrick; Wolfe, Joe; Mencuccini, Maurizio; Ball, Marilyn C

    2017-07-01

    A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m -2 s -1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport. © 2016 John Wiley & Sons Ltd.

  5. A depth semi-averaged model for coastal dynamics

    Science.gov (United States)

    Antuono, M.; Colicchio, G.; Lugni, C.; Greco, M.; Brocchini, M.

    2017-05-01

    The present work extends the semi-integrated method proposed by Antuono and Brocchini ["Beyond Boussinesq-type equations: Semi-integrated models for coastal dynamics," Phys. Fluids 25(1), 016603 (2013)], which comprises a subset of depth-averaged equations (similar to Boussinesq-like models) and a Poisson equation that accounts for vertical dynamics. Here, the subset of depth-averaged equations has been reshaped in a conservative-like form and both the Poisson equation formulations proposed by Antuono and Brocchini ["Beyond Boussinesq-type equations: Semi-integrated models for coastal dynamics," Phys. Fluids 25(1), 016603 (2013)] are investigated: the former uses the vertical velocity component (formulation A) and the latter a specific depth semi-averaged variable, ϒ (formulation B). Our analyses reveal that formulation A is prone to instabilities as wave nonlinearity increases. On the contrary, formulation B allows an accurate, robust numerical implementation. Test cases derived from the scientific literature on Boussinesq-type models—i.e., solitary and Stokes wave analytical solutions for linear dispersion and nonlinear evolution and experimental data for shoaling properties—are used to assess the proposed solution strategy. It is found that the present method gives reliable predictions of wave propagation in shallow to intermediate waters, in terms of both semi-averaged variables and conservation properties.

  6. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    Science.gov (United States)

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Therapy of intermediate uveitis].

    Science.gov (United States)

    Doycheva, D; Deuter, C; Zierhut, M

    2014-12-01

    Intermediate uveitis is a form of intraocular inflammation in which the vitreous body is the major site of inflammation. Intermediate uveitis is primarily treated medicinally and systemic corticosteroids are the mainstay of therapy. When recurrence of uveitis or side effects occur during corticosteroid therapy an immunosuppressive treatment is required. Cyclosporine A is the only immunosuppressive agent that is approved for therapy of uveitis in Germany; however, other immunosuppressive drugs have also been shown to be effective and well-tolerated in patients with intermediate uveitis. In severe therapy-refractory cases when conventional immunosuppressive therapy has failed, biologics can be used. In patients with unilateral uveitis or when the systemic therapy is contraindicated because of side effects, an intravitreal steroid treatment can be carried out. In certain cases a vitrectomy may be used.

  8. Mobile communication and intermediality

    DEFF Research Database (Denmark)

    Helles, Rasmus

    2013-01-01

    communicative affordances of mobile devices in order to understand how people choose between them for different purposes. It is argued that mobile communication makes intermediality especially central, as the choice of medium is detached from the location of stationary media and begins to follow the user across......The article argues the importance of intermediality as a concept for research in mobile communication and media. The constant availability of several, partially overlapping channels for communication (texting, calls, email, Facebook, etc.) requires that we adopt an integrated view of the various...

  9. Money distribution with intermediation

    OpenAIRE

    Teles, Caio Augusto Colnago

    2013-01-01

    This pap er analyzes the distribution of money holdings in a commo dity money search-based mo del with intermediation. Intro ducing heterogeneity of costs to the Kiyotaki e Wright ( 1989 ) mo del, Cavalcanti e Puzzello ( 2010) gives rise to a non-degenerated distribution of money. We extend further this mo del intro ducing intermediation in the trading pro cess. We show that the distribution of money matters for savings decisions. This gives rises to a xed p oint problem for the ...

  10. Weighted halfspace depth

    Czech Academy of Sciences Publication Activity Database

    Kotík, Lukáš; Hlubinka, D.; Vencálek, O.

    Vol. 46, č. 1 (2010), s. 125-148 ISSN 0023-5954 Institutional research plan: CEZ:AV0Z10750506 Keywords : data depth * nonparametric multivariate analysis * strong consistency of depth * mixture of distributions Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/kotik-weighted halfspace depth.pdf

  11. Small field depth dose profile of 6 MV photon beam in a simple air-water heterogeneity combination: A comparison between anisotropic analytical algorithm dose estimation with thermoluminescent dosimeter dose measurement.

    Science.gov (United States)

    Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin

    2017-01-01

    To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.

  12. The influence of adsorption of alcohol and water vapors on currents of a mis structure with an intermediate layer of porous silicon

    International Nuclear Information System (INIS)

    Skryshevsky, V.A.; Gavrilchenko, I.V.; Kuznetsov, G.V.; Dyachenko, S.A.

    2006-01-01

    We report the results of studying the influence of the adsorption of water and alcohol vapors on the I-V characteristics of Al-Ps-p-Si-Ni structures and the possibilities of producing moisture sensors and alcohol meters on their basis

  13. Aspectos quantitativos e qualitativos do grão de trigo influenciados por nitrogênio e lâminas de água Quantitative and qualitative aspects of wheat grains influenced by nitrogen and water depth

    Directory of Open Access Journals (Sweden)

    Ana P. M. Boschini

    2011-05-01

    Full Text Available Com o objetivo de avaliar o efeito de diferentes lâminas de água e doses de nitrogênio e a interação dos dois fatores sobre a produtividade e qualidade de grãos do trigo BRS 254 instalou-se, em 2009, um experimento em Latossolo Vermelho-Amarelo. O delineamento experimental foi o de blocos ao acaso com parcelas subdivididas e quatro repetições. Nas parcelas foram estabelecidas cinco doses de nitrogênio (N: 20, 50, 100, 200 e 400 kg ha-1 e nas subparcelas as lâminas de água: 120; 264; 342 e 392 mm. A produtividade média e a maioria de seus componentes diferiram significativamente em função da lâmina de água e da dose de N; a exceção foi o número de espiguetas por espiga, não influenciado por nitrogênio. A produtividade mínima e máxima observada foi de 1.136 e 5.209 kg ha-1, respectivamente, para 120 mm e 50 kg ha-1 de N e 392 mm e 200 kg ha-1 de N. O teor de proteína bruta foi influenciado significativamente pela interação lâmina de água e dose de nitrogênio. A massa do hectolitro, a energia de deformação da massa e o número de queda, foram influenciados significativamente apenas por lâmina de água. Lâminas menores que 365 mm proporcionaram massa do hectolitro abaixo de 78 kg hL-1. Por outro lado, lâminas de água maiores que 340 mm proporcionaram número de queda abaixo de 250 s, sugerindo cautela no manejo da água em agrossistemas de trigo.A field experiment was carried out in a Red-Yellow Latosol in 2009 in order to assess the effects of different doses of nitrogen fertilization and water depth and their interaction on the grain yield and quality of wheat BRS 254. The experimental design was a completely randomized block with split plot on water level and four replications. Nitrogen doses in the plot were: 20, 50, 100, 200, and 400 kg ha-1. In the split plot water depths were: 120, 264, 342 and 392 mm. Mean yield and the majority of its components differed significantly with water depth and nitrogen dose

  14. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour

    DEFF Research Database (Denmark)

    Enrico, Anna; Zhang, Wenjing (Angela); Traulsen, Marie Lund

    2018-01-01

    Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only...

  15. In-Depth Investigation of Statistical and Physicochemical Properties on the Field Study of the Intermittent Filling of Large Water Tanks

    Directory of Open Access Journals (Sweden)

    Do-Hwan Kim

    2017-01-01

    Full Text Available Large-demand customers, generally high-density dwellings and buildings, have dedicated ground or elevated water tanks to consistently supply drinking water to residents. Online field measurement for Nonsan-2 district meter area demonstrated that intermittent replenishment from large-demand customers could disrupt the normal operation of a water distribution system by taking large quantities of water in short times when filling the tanks from distribution mains. Based on the previous results of field measurement for hydraulic and water quality parameters, statistical analysis is performed for measured data in terms of autocorrelation, power spectral density, and cross-correlation. The statistical results show that the intermittent filling interval of 6.7 h and diurnal demand pattern of 23.3 h are detected through autocorrelation analyses, the similarities of the flow-pressure and the turbidity-particle count data are confirmed as a function of frequency through power spectral density analyses, and a strong cross-correlation is observed in the flow-pressure and turbidity-particle count analyses. In addition, physicochemical results show that the intermittent refill of storage tank from large-demand customers induces abnormal flow and pressure fluctuations and results in transient-induced turbid flow mainly composed of fine particles ranging within 2–4 μm and constituting Fe, Si, and Al.

  16. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  17. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  18. Chemical mechanisms of /sup 60/Co transport in ground water from intermediate-level liquid waste trench 7: progress report for period ending June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Means, J.L.; Crerar, D.A.; Duguid, J.O.

    1976-11-01

    A seep approximately 50 meters east of trench 7 within the ORNL restricted area contains /sup 60/Co in concentrations of 10/sup 4/ to 10/sup 6/ dpm/g in the soil and 10/sup 3/ dpm/ml in the water. Traces of /sup 125/Sb and various transuranics have also been detected in the soil. However, because the volume of water discharge from the seep is small, the total radionuclide contribution from the trench 7 area to White Oak Creek and the Clinch River is insignificant. The /sup 60/Co is transported in the ground-water from the trench to the seep as organic complexes and is absorbed by manganese oxides and to a lesser extent by iron sesquioxides in the shale and soil. In the absence of these organic complexing agents, /sup 60/Co mobilization would be negligible because the sediment absorption capacity for inorganic forms of /sup 60/Co is extremely high. The primary objective of this study has been to investigate /sup 60/Co transport and absorption mechanisms as observed in the study area. Because the organic complexing characteristics of transition metals and transuranics are similar, the mechanisms of /sup 60/Co transport determined in this study may also apply to plutonium and other alpha-emitters. Also the experimental and analytical methods employed in this study apply to the identification of other migrating radionuclide complexes from other disposal trenches and pits at ORNL. The increased knowledge of transport and adsorption mechanisms will provide insight into methods of controlling the movement of radionuclides from these and future disposal areas.

  19. Chemical mechanisms of 60Co transport in ground water from intermediate-level liquid waste trench 7: progress report for period ending June 30, 1975

    International Nuclear Information System (INIS)

    Means, J.L.; Crerar, D.A.; Duguid, J.O.

    1976-11-01

    A seep approximately 50 meters east of trench 7 within the ORNL restricted area contains 60 Co in concentrations of 10 4 to 10 6 dpm/g in the soil and 10 3 dpm/ml in the water. Traces of 125 Sb and various transuranics have also been detected in the soil. However, because the volume of water discharge from the seep is small, the total radionuclide contribution from the trench 7 area to White Oak Creek and the Clinch River is insignificant. The 60 Co is transported in the ground-water from the trench to the seep as organic complexes and is absorbed by manganese oxides and to a lesser extent by iron sesquioxides in the shale and soil. In the absence of these organic complexing agents, 60 Co mobilization would be negligible because the sediment absorption capacity for inorganic forms of 60 Co is extremely high. The primary objective of this study has been to investigate 60 Co transport and absorption mechanisms as observed in the study area. Because the organic complexing characteristics of transition metals and transuranics are similar, the mechanisms of 60 Co transport determined in this study may also apply to plutonium and other alpha-emitters. Also the experimental and analytical methods employed in this study apply to the identification of other migrating radionuclide complexes from other disposal trenches and pits at ORNL. The increased knowledge of transport and adsorption mechanisms will provide insight into methods of controlling the movement of radionuclides from these and future disposal areas

  20. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Aceña, J; Perez, S; Petrović, M; Zapata, A; Barceló, D; Malato, S; Fatta-Kassinos, D

    2013-09-01

    This work investigated the application of a solar driven advanced oxidation process (solar Fenton), for the degradation of the antibiotic ofloxacin (OFX) in various environmental matrices at a pilot-scale. All experiments were carried out in a compound parabolic collector pilot plant in the presence of doses of H2O2 (2.5 mg L(-1)) and at an initial Fe(2+) concentration of 2 mg L(-1). The water matrices used for the solar Fenton experiments were: demineralized water (DW), simulated natural freshwater (SW), simulated effluent from municipal wastewater treatment plant (SWW) and pre-treated real effluent from municipal wastewater treatment plant (RE) to which OFX had been spiked at 10 mg L(-1). Dissolved organic carbon removal was found to be dependent on the chemical composition of the water matrix. OFX mineralization was higher in DW (78.1%) than in SW (58.3%) at 12 mg L(-1) of H2O2 consumption, implying the complexation of iron or the scavenging of hydroxyl radicals by the inorganic ions present in SW. On the other hand, the presence of dissolved organic matter (DOM) in SWW and RE, led to lower mineralization per dose of H2O2 compared to DW and SW. The major transformation products (TPs) formed during the solar Fenton treatment of OFX, were elucidated using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS). The transformation of OFX proceeded through a defluorination reaction, accompanied by some degree of piperazine and quinolone substituent transformation while a hydroxylation mechanism occurred by attack of the hydroxyl radicals generated during the process leading to the formation of TPs in all the water matrices, seven of which were tentatively identified. The results obtained from the toxicity bioassays indicated that the toxicity originates from the DOM present in RE and its oxidation products formed during the photocatalytic treatment and not from the TPs resulted from the oxidation of OFX. Copyright © 2013 The Authors. Published by

  1. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  2. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  3. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  4. Efeito da profundidade de soldagem no hidrogênio difusível de soldas molhadas Effect of water depth on diffusible hydrogen on wet welds

    Directory of Open Access Journals (Sweden)

    Weslley Carlos Dias da Silva

    2012-12-01

    Full Text Available Em soldagem subaquática molhada, a ocorrência de poros e trincas a frio pode ter um efeito bastante prejudicial nas propriedades mecânicas da junta soldada. O hidrogênio contribui diretamente para o aparecimento destas duas descontinuidades. A quantidade de hidrogênio difusível (Hdif no metal de solda pode ser influenciada por diversos fatores. Todavia, pouco se sabe sobre a influência da profundidade de soldagem (pressão sobre a quantidade de Hdif no metal de solda. Neste trabalho, diversas medições de hidrogênio difusível foram feitas nas profundidades de 0,30 m, 10 m e 20 m e 30 m em soldagem molhada. O consumível utilizado foi o eletrodo comercial E6013 envernizado. As medições de hidrogênio difusível foram feitas através do método da cromatografia. Para medição de porosidade foi utilizado o método macrográfico e um programa analisador de imagem. O hidrogênio residual também foi medido. Os resultados mostraram que o hidrogênio difusível reduziu significativamente com o aumento da pressão hidrostática ao contrário da porosidade, que aumentou com o aumento da pressão hidrostática. Não se observou alterações apreciáveis no hidrogênio residual do metal de solda. Desta forma, é possível concluir que a profundidade de soldagem afeta diversos aspectos da soldagem subaquática molhada, em especial, o hidrogênio difusível e porosidade, conforme foi observado neste trabalho.In underwater wet welding, cold cracking and pores might have a deleterious effect in the mechanical properties of welded joint. The hydrogen might act in the occurrence of theses discontinuities. The amount of diffusible hydrogen in the weld metal can be influenced by several factors. However, not yet known whether the depth of welding (pressure affects the amount of diffusible hydrogen in weld metal. In this work, several measurements of diffusible hydrogen were made at following depth: 0.30 m, 10 m, 20 m and 30 m atwet welding. The

  5. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef.

    Science.gov (United States)

    Mueller, Benjamin; Meesters, Erik H; van Duyl, Fleur C

    2017-01-01

    Photosynthates released by benthic primary producers (BPP), such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC) production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light), DOC concentrations near Dictyota sp. were elevated by 15 µmol C L -1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively), or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type, light

  6. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Benjamin Mueller

    2017-06-01

    Full Text Available Photosynthates released by benthic primary producers (BPP, such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light, DOC concentrations near Dictyota sp. were elevated by 15 µmol C L−1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively, or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type

  7. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  8. Motivation with Depth.

    Science.gov (United States)

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  9. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Self-consistent approach to the solution of the light transfer problem for irradiances in marine waters with arbitrary turbidity, depth, and surface illumination. I. Case of absorption and elastic scattering.

    Science.gov (United States)

    Haltrin, V I

    1998-06-20

    A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.

  11. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests.

    Science.gov (United States)

    Barbeta, Adrià; Peñuelas, Josep

    2017-12-01

    Tree populations at the low-altitudinal or -latitudinal limits of species' distributional ranges are predicted to retreat toward higher altitudes and latitudes to track the ongoing changes in climate. Studies have focused on the climatic sensitivity of the retreating species, whereas little is known about the potential replacements. Competition between tree species in forest ecotones will likely be strongly influenced by the ecophysiological responses to heat and drought. We used tree-ring widths and δ 13 C and δ 18 O chronologies to compare the growth rates and long-term ecophysiological responses to climate in the temperate-Mediterranean ecotone formed by the deciduous Fagus sylvatica and the evergreen Quercus ilex at the low altitudinal and southern latitudinal limit of F. sylvatica (NE Iberian Peninsula). F. sylvatica growth rates were similar to those of other southern populations and were surprisingly not higher than those of Q. ilex, which were an order of magnitude higher than those in nearby drier sites. Higher Q. ilex growth rates were associated with high temperatures, which have increased carbon discrimination rates in the last 25 years. In contrast, stomatal regulation in F. sylvatica was proportional to the increase in atmospheric CO 2 . Tree-ring δ 18 O for both species were mostly correlated with δ 18 O in the source water. In contrast to many previous studies, relative humidity was not negatively correlated with tree-ring δ 18 O but had a positive effect on Q. ilex tree-ring δ 18 O. Furthermore, tree-ring δ 18 O decreased in Q. ilex over time. The sensitivity of Q. ilex to climate likely reflects the uptake of deep water that allowed it to benefit from the effect of CO 2 fertilization, in contrast to the water-limited F. sylvatica. Consequently, Q. ilex is a strong competitor at sites currently dominated by F. sylvatica and could be favored by increasingly warmer conditions. © 2017 John Wiley & Sons Ltd.

  12. The intermediate state in Patd

    African Journals Online (AJOL)

    ) Jesus had assumed. (concerning the 'intermediate state') as existing, anything which does not exist. Three basic things about the intermediate state emerge from the parable: (a) Jesus recognizes that at the moment of death, in ipso articulo.

  13. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  14. Prestack depth migration

    International Nuclear Information System (INIS)

    Postma, R.W.

    1991-01-01

    Two lines form the southern North Sea, with known velocity inhomogeneities in the overburden, have been pre-stack depth migrated. The pre-stack depth migrations are compared with conventional processing, one with severe distortions and one with subtle distortions on the conventionally processed sections. The line with subtle distortions is also compared with post-stack depth migration. The results on both lines were very successful. Both have already influenced drilling decisions, and have caused a modification of structural interpretation in the respective areas. Wells have been drilled on each of the lines, and well tops confirm the results. In fact, conventional processing led to incorrect locations for the wells, both of which were dry holes. The depth migrated sections indicate the incorrect placement, and on one line reveals a much better drilling location. This paper reports that even though processing costs are high for pre-stack depth migration, appropriate use can save millions of dollars in dry-hole expense

  15. Hydrologic regulation of plant rooting depth.

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  16. Hydrologic regulation of plant rooting depth

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  17. Hydroelastic responses of pontoon type very large floating offshore structures. 2nd Report. Effect of the water depth and the drift forces; Pontoon gata choogata futaishiki kaiyo kozobutsu no harochu chosei oto ni kansuru kenkyu. 2. Senkai eikyo to hyoryuryoku

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H; Miyajima, S [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K; Ikoma, T [Nihon University, Tokyo (Japan). College of Science and Technology

    1997-12-31

    Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.

  18. Hydroelastic responses of pontoon type very large floating offshore structures. 2nd Report. Effect of the water depth and the drift forces; Pontoon gata choogata futaishiki kaiyo kozobutsu no harochu chosei oto ni kansuru kenkyu. 2. Senkai eikyo to hyoryuryoku

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, H.; Miyajima, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Masuda, K.; Ikoma, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-12-31

    Steady-state drift force in regular waves is theoretically analyzed. It is also studied under combined external force experimentally using a two-dimensional water tank. The fluid forces are analyzed by the pressure distribution method based on the potential theory, in which the effects of water depth are taken into account to discuss the effects of elastic deformation of the floating structure on the drift characteristics of steady-state waves. The tests were carried out using a wave-making circulating water tank equipped with a wind duct to create wind, waves and tidal flow. Drift force under a combined external force by wind, wave and/or tidal flow cannot be accurately predicted by arithmetically adding these components. For predicting drift force by tidal flow, it is necessary to take into account drag force in current at the floating structure bottom as well as that in wind at the front face. Drift force by tidal flow is affected by shallowness of water, which should be taken into account for drag forces. The floating structure will be deformed along the wave face as its stiffness decreases, basically decreasing steady-state drift force. 9 refs., 14 figs.

  19. Radon depth migration

    International Nuclear Information System (INIS)

    Hildebrand, S.T.; Carroll, R.J.

    1993-01-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation

  20. Measuring depth in boreholes

    International Nuclear Information System (INIS)

    Hodson, G.M.

    1979-01-01

    This invention relates to a method of determining the depth of rock strata and other features of a borehole. It may be employed with particular advantage when access to the top of the borehole is difficult, for example in underwater operations. A radioactive marker, such as a source of gamma rays, is positioned near the top of the riser of a sub-sea wellhead structure. A radiation detector is lowered between the marker and a radioactive stratum and the length of line supplied is measured on the floating platform. This enables the depth of the stratum to be measured irrespective of tidal variations of the height of the platform. (U.K.)

  1. Development of hot water utilizing power plants in fiscal 1999. Development of technology to collect geothermal resources in great depths/Development of technology to excavate geothermal resources in great depths (Designing whole development); 1999 nendo nessui riyo hatsuden plant nado kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu (zentai kaihatsu sekkei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Technological development has been made on excavation of geothermal wells, which are dense, hard, and high in temperature and pressure, in developing geothermal resources in great depths. This paper summarizes the achievements in fiscal 1999. This fiscal year has performed the excavation test using an actual well to verify the reliability in practical use of the developed heat-resistant and durable bit. The test was executed by using a bit with a diameter of 8-1/2 inches in a ground bet having a maximum temperature of 300 degrees C in the Yamakawa geothermal field. As a result, good site evaluation was obtained that the wear and tear after lift-up showed no problems, and sufficient performance was verified in the drilling rate and durability. In addition, the low specific gravity cement for high temperature use that has been newly developed was given a cement mixing test to identify its workability at site and hardening properties, at a test well with a temperature of about 40 degrees C in the Okiri geothermal field. The actual well test was performed in a large-scale lost water occurred in a return well during an excavation by Nittestu-Kagoshima Geothermal Company. Effects were recognized in measures to prevent water loss. (NEDO)

  2. Gaspe hole sets depth record

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-09

    The deepest diamond-cored hole in the Western Hemisphere, Gulf Sunnybank No. 1 on the Gaspe Peninsula of Quebec, has been completed at a depth of 11,600 ft. This is the deepest cored hole to be drilled anywhere in search of oil and gas production, and the deepest to be drilled using a wire-line core recovery technique. The well was completed in 183 days, and was cored continuously below the surface casing which was set and cemented at 1,004 ft. After underreaming a portion of the bottom of the hole, intermediate casing was set and cemented at 8,000 ft as a safety precaution against possible high oil or gas-fluid pressure. Actual coring time, after deducting time for underreaming and casing operations, was 152 days. Because of the cost of transporting a conventional oil-drilling rig to the E. location, the 89-ft mining rig was modified for the project. The contractor was Heath and Sherwood Drilling (Western) Ltd.

  3. Why bother about depth?

    DEFF Research Database (Denmark)

    Stæhr, Peter A.; Obrador, Biel; Christensen, Jesper Philip

    We present results from a newly developed method to determine depth specific rates of GPP, NEP and R using frequent automated profiles of DO and temperature. Metabolic rate calculations were made for three lakes of different trophic status using a diel DO methodology that integrates rates across...

  4. Defining depth of anesthesia.

    Science.gov (United States)

    Shafer, S L; Stanski, D R

    2008-01-01

    In this chapter, drawn largely from the synthesis of material that we first presented in the sixth edition of Miller's Anesthesia, Chap 31 (Stanski and Shafer 2005; used by permission of the publisher), we have defined anesthetic depth as the probability of non-response to stimulation, calibrated against the strength of the stimulus, the difficulty of suppressing the response, and the drug-induced probability of non-responsiveness at defined effect site concentrations. This definition requires measurement of multiple different stimuli and responses at well-defined drug concentrations. There is no one stimulus and response measurement that will capture depth of anesthesia in a clinically or scientifically meaningful manner. The "clinical art" of anesthesia requires calibration of these observations of stimuli and responses (verbal responses, movement, tachycardia) against the dose and concentration of anesthetic drugs used to reduce the probability of response, constantly adjusting the administered dose to achieve the desired anesthetic depth. In our definition of "depth of anesthesia" we define the need for two components to create the anesthetic state: hypnosis created with drugs such as propofol or the inhalational anesthetics and analgesia created with the opioids or nitrous oxide. We demonstrate the scientific evidence that profound degrees of hypnosis in the absence of analgesia will not prevent the hemodynamic responses to profoundly noxious stimuli. Also, profound degrees of analgesia do not guarantee unconsciousness. However, the combination of hypnosis and analgesia suppresses hemodynamic response to noxious stimuli and guarantees unconsciousness.

  5. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B

    2008-08-15

    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  6. Computations Of Critical Depth In Rivers With Flood Plains | Okoli ...

    African Journals Online (AJOL)

    Critical flows may occur at more than one depth in rivers with flood plains. The possibility of multiple critical depths affects the water-surface profile calculations. Presently available algorithms determine only one of the critical depths which may lead to large errors. It is the purpose of this paper to present an analytical ...

  7. Discourses and Models of Intermediality

    OpenAIRE

    Schröter, Jens

    2011-01-01

    In his article "Discourses and Models of Intermediality" Jens Schröter discusses the question as to what relations do different discourses pose between different "media." Schröter identifies four models of discourse: 1) synthetic intermediality: a "fusion" of different media to super-media, a model with roots in the Wagnerian concept of Gesamtkunstwerk with political connotations, 2) formal (or transmedial) intermediality: a concept based on formal structures not "specific" to one medium but ...

  8. Information acquisition and financial intermediation

    OpenAIRE

    Boyarchenko, Nina

    2012-01-01

    This paper considers the problem of information acquisition in an intermediated market, where the specialists have access to superior technology for acquiring information. These informational advantages of specialists relative to households lead to disagreement between the two groups, changing the shape of the intermediation-constrained region of the economy and increasing the frequency of periods when the intermediation constraint binds. Acquiring the additional information is, however, cost...

  9. Numerical and experimental results on the spectral wave transfer in finite depth

    Science.gov (United States)

    Benassai, Guido

    2016-04-01

    Determination of the form of the one-dimensional surface gravity wave spectrum in water of finite depth is important for many scientific and engineering applications. Spectral parameters of deep water and intermediate depth waves serve as input data for the design of all coastal structures and for the description of many coastal processes. Moreover, the wave spectra are given as an input for the response and seakeeping calculations of high speed vessels in extreme sea conditions and for reliable calculations of the amount of energy to be extracted by wave energy converters (WEC). Available data on finite depth spectral form is generally extrapolated from parametric forms applicable in deep water (e.g., JONSWAP) [Hasselmann et al., 1973; Mitsuyasu et al., 1980; Kahma, 1981; Donelan et al., 1992; Zakharov, 2005). The present paper gives a contribution in this field through the validation of the offshore energy spectra transfer from given spectral forms through the measurement of inshore wave heights and spectra. The wave spectra on deep water were recorded offshore Ponza by the Wave Measurement Network (Piscopia et al.,2002). The field regressions between the spectral parameters, fp and the nondimensional energy with the fetch length were evaluated for fetch-limited sea conditions. These regressions gave the values of the spectral parameters for the site of interest. The offshore wave spectra were transfered from the measurement station offshore Ponza to a site located offshore the Gulf of Salerno. The offshore local wave spectra so obtained were transfered on the coastline with the TMA model (Bouws et al., 1985). Finally the numerical results, in terms of significant wave heights, were compared with the wave data recorded by a meteo-oceanographic station owned by Naples Hydrographic Office on the coastline of Salerno in 9m depth. Some considerations about the wave energy to be potentially extracted by Wave Energy Converters were done and the results were discussed.

  10. Depth dependent stress revealed by aftershocks

    Science.gov (United States)

    Narteau, C.; Shebalin, P.

    2017-12-01

    Aftershocks occur in response to perturbations of the state of stress induced either by earthquakes or human activities. Along major strike-slip fault segments of the San Andreas fault system, the time-delay before the onset of the power-law aftershock decay rate (the c-value) varies by three orders of magnitude in the first twenty kilometers below the surface. Despite the influence of the lithostatic stress, there is no continuous change in c-value with respect to depth. Instead, two decay phases are separated by an abrupt increase at an intermediate depth range of 2 to 5 km. This transitional regime is the only one observed in fluid-injection-induced seismic areas. This provides strong evidence for the role of fluid and a porosity reduction mechanism at depth of few kilometers in active fault zones. Aftershock statistics can then be used to predict the evolution the differential shear stress with depth until the brittle-ductile transition is reached.

  11. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  12. Ship Springing Response in Finite Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2012-01-01

    Second-order forces and moments are derived for the pressure integration and the momentum conservation methods. They are implemented in the time-domain boundary element code AEGIR. Both Neumann-Kelvin and double-body flow linearization are used. Good agreement is found between AEGIR’s results...

  13. Intermediate valence spectroscopy

    International Nuclear Information System (INIS)

    Gunnarsson, O.; Schoenhammer, K.

    1987-01-01

    Spectroscopic properties of intermediate valence compounds are studied using the Anderson model. Due to the large orbital and spin degeneracy N/sub f/ of the 4f-level, 1/N/sub f/ can be treated as a small parameter. This approach provides exact T = 0 results for the Anderson impurity model in the limit N/sub f/ → ∞, and by adding 1/N/sub f/ corrections some properties can be calculated accurately even for N/sub f/ = 1 or 2. In particular valence photoemission and resonance photoemission spectroscopies are studied. A comparison of theoretical and experimental spectra provides an estimate of the parameters in the model. Core level photoemission spectra provide estimates of the coupling between the f-level and the conduction states and of the f-level occupancy. With these parameters the model gives a fair description of other electron spectroscopies. For typical parameters the model predicts two structures in the f-spectrum, namely one structure at the f-level and one at the Fermi energy. The resonance photoemission calculation gives a photon energy dependence for these two peaks in fair agreement with experiment. The peak at the Fermi energy is partly due to a narrow Kondo resonance, resulting from many-body effects and the presence of a continuous, partly filled conduction band. This resonance is related to a large density of low-lying excitations, which explains the large susceptibility and specific heat observed for these systems at low temperatures. 38 references, 11 figures, 2 tables

  14. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  15. Intermediate structure and threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2004-01-01

    The Intermediate Structure, evidenced through microstructures of the neutron strength function, is reflected in open reaction channels as fluctuations in excitation function of nuclear threshold effects. The intermediate state supporting both neutron strength function and nuclear threshold effect is a micro-giant neutron threshold state. (author)

  16. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants.

    Science.gov (United States)

    Park, S D; Kim, J S; Han, S H; Ha, Y K; Song, K S; Jee, K Y

    2009-09-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of (129)I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The (129)I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67+/-3% and 5.43+/-0.53 g, 70+/-7% and 10.40+/-1.60 g, respectively. And the minimum detectable activity (MDA) of (129)I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, (129)I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher (129)I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  17. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants

    International Nuclear Information System (INIS)

    Park, S.D.; Kim, J.S.; Han, S.H.; Ha, Y.K.; Song, K.S.; Jee, K.Y.

    2009-01-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of 129 I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The 129 I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67±3% and 5.43±0.53 g, 70±7% and 10.40±1.60 g, respectively. And the minimum detectable activity (MDA) of 129 I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, 129 I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher 129 I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  18. Fish depth distributions in the Lower Mississippi River

    Science.gov (United States)

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  19. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  20. Shave-off depth profiling: Depth profiling with an absolute depth scale

    International Nuclear Information System (INIS)

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  1. Effects of tailwater depth on spillway aeration

    African Journals Online (AJOL)

    2011-04-15

    Apr 15, 2011 ... Hydraulic structures such as spillways or weirs with their water-air controlling mechanisms are not only important for their structural properties but also for their effects on downstream ecology. Tailwater depth is an important factor affecting dissolved oxygen transfer and aeration rates of spillways. In this ...

  2. Verifying optimal depth settings for LFAS

    NARCIS (Netherlands)

    Lam, F.P.A.; Beerens, S.P.; Ainslie, M.A.

    2006-01-01

    Naval operations in coastal waters are challenging the modelling support in several disciplines. An important instrument for undersea defence in the littoral is the LFAS sonar. To adapt to the local acoustic environment, LFAS sonars can adjust their operation depth to increase the coverage of the

  3. Formation rate of water masses in the Japan Sea

    International Nuclear Information System (INIS)

    Kawamura, Hideyuki; Ito, Toshimichi; Yoon, Jong-Hwan

    2007-01-01

    Water masses in the subsurface and the intermediate layer are actively formed due to strong winter convection in the Japan Sea. It is probable that some fraction of pollution is carried into the layer below the sea surface together with these water masses, so it is important to estimate the formation rate and turnover time of water masses to study the fate of pollutants. The present study estimates the annual formation rate and the turnover time of water masses using a three-dimensional ocean circulation model and a particle chasing method. The total annual formation rate of water masses below the sea surface amounted to about 3.53±0.55 Sv in the Japan Sea. Regarding representative intermediate water masses, the annual formation rate of the Upper portion of the Japan Sea Proper Water (UJSPW) and the Japan Sea Intermediate Water (JSIW) were estimated to be about 0.38±0.11 and 1.43±0.16 Sv, respectively, although there was little evidence of the formation of deeper water masses below a depth of about 1500 m in a numerical experiment. An estimate of turnover time shows that the UJSPW and the JSIW circulate in the intermediate layer of the Japan Sea with timescales of about 22.1 and 2.2 years, respectively. (author)

  4. Institutional Strength in Depth

    International Nuclear Information System (INIS)

    Weightman, M.

    2016-01-01

    Much work has been undertaken in order to identify, learn and implement the lessons from the TEPCO Fukushima Daiichi nuclear accident. These have mainly targeted on engineering or operational lessons. Less attention has been paid to the institutional lessons, although there have been some measures to improve individual peer reviews, particularly by the World Association of Nuclear Operators, and the authoritative IAEA report published in 2015 brought forward several important lessons for regulators and advocated a system approach. The report noted that one of the contributing factors the accident was the tendency of stakeholders not to challenge. Additionally, it reported deficiencies in the regulatory authority and system. Earlier, the root cause of the accident was identified by a Japanese independent parliamentary report as being cultural and institutional. The sum total of the institutions, the safety system, was ineffective. While it is important to address the many technical and operational lessons these may not necessary address this more fundamental lesson, and may not serve to provide robust defences against human or institutional failings over a wide variety of possible events and combinations. The overall lesson is that we can have rigorous and comprehensive safety standards and other tools in place to deliver high levels of safety, but ultimately what is important is the ability of the nuclear safety system to ensure that the relevant institutions diligently and effectively apply those standards and tools — to be robust and resilient. This has led to the consideration of applying the principles of the strength in depth philosophy to a nuclear safety system as a way of providing a framework for developing, assessing, reviewing and improving the system. At an IAEA conference in October 2013, a model was presented for a robust national nuclear safety system based on strength in depth philosophy. The model highlighted three main layers: industry, the

  5. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  6. Intermediate Levels of Visual Processing

    National Research Council Canada - National Science Library

    Nakayama, Ken

    1998-01-01

    ...) surface representation, here we have shown that there is an intermediate level of visual processing, between the analysis of the image and higher order representations related to specific objects; (2...

  7. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  8. Reactivity of Criegee Intermediates toward Carbon Dioxide.

    Science.gov (United States)

    Lin, Yen-Hsiu; Takahashi, Kaito; Lin, Jim Jr-Min

    2018-01-04

    Recent theoretical work by Kumar and Francisco suggested that the high reactivity of Criegee intermediates (CIs) could be utilized for designing efficient carbon capture technologies. Because the anti-CH 3 CHOO + CO 2 reaction has the lowest barrier in their study, we chose to investigate it experimentally. We probed anti-CH 3 CHOO with its strong UV absorption at 365 nm and measured the rate coefficient to be ≤2 × 10 -17 cm 3 molecule -1 s -1 at 298 K, which is consistent with our theoretical value of 2.1 × 10 -17 cm 3  molecule -1 s -1 at the QCISD(T)/CBS//B3LYP/6-311+G(2d,2p) level but inconsistent with their results obtained at the M06-2X/aug-cc-pVTZ level, which tends to underestimate the barrier heights. The experimental result indicates that the reaction of a Criegee intermediate with atmospheric CO 2 (400 ppmv) would be inefficient (k eff < 0.2 s -1 ) and cannot compete with other decay processes of Criegee intermediates like reactions with water vapor (∼10 3 s -1 ) or thermal decomposition (∼10 2 s -1 ).

  9. Transmissivity interpolation using Fluid Flow Log data at different depth level in Liwa Aquifer, UAE.

    Science.gov (United States)

    Gülşen, Esra; Kurtulus, Bedri; Necati Yaylim, Tolga; Avsar, Ozgur

    2017-04-01

    In groundwater studies, quantification and detection of fluid flows in borehole is an important part of assessment aquifer characteristic at different depths. Monitoring wells disturbs the natural flow field and this disturbance creates different flow paths to an aquifer. Vertical flow fluid analyses are one of the important techniques to deal with the detection and quantification of these vertical flows in borehole/monitoring wells. Liwa region is located about 146 km to the south west of Abu Dhabi city and about 36 km southwest of Madinat Zayed. SWSR (Strategic Water Storage & Recovery Project) comprises three Schemes (A, B and C) and each scheme contains an infiltration basin in the center, 105 recovery wells, 10 clusters and each cluster comprises 3 monitoring wells with different depths; shallow ( 50 m), intermediate ( 75 m) and deep ( 100 m). The scope of this study is to calculate the transmissivity values at different depth and evaluate the Fluid Flow Log (FFL) data for Scheme A (105 recovery wells) in order to understand the aquifer characteristic at different depths. The transmissivity values at different depth levels are calculated using Razack and Huntley (1991) equation for vertical flow rates of 30 m3 /h, 60 m3 /h, 90 m3 /h, 120 m3 /h and then Empirical Bayesian Kriging is used for interpolation in Scheme A using ArcGIS 10.2 software. FFL are drawn by GeODin software. Derivative analysis of fluid flow data are done by Microsoft Office: Excel software. All statistical analyses are calculated by IBMSPSS software. The interpolation results show that the transmissivity values are higher at the top of the aquifer. In other word, the aquifer is found more productive at the upper part of the Liwa aquifer. We are very grateful for financial support and providing us the data to ZETAS Dubai Inc.

  10. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.

    Science.gov (United States)

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek

    2017-07-01

    Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is transpiration is likely to increase significantly at the three shallowest DGW sites. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Temporal and Spatial Scales of Labrador Sea Water Formation

    Science.gov (United States)

    Clarke, R. A.

    1984-01-01

    Labrador Sea Water is an intermediate water found at the same density and depth range in the North Atlantic as the Mediterranean water. It is formed by convection from the sea surface to depths greather than 2 km in winter in the Western Labrador Sea. The processes leading to deep convection begin with the formation of a 200 km scale cyclonic circulation about denser than average upper layer water in the Western Labrador Sea. This circulation pattern is hypothesized to be driven by an ocean/atmosphere heat exchange that has its maximum in this region. By early March, if deep convection is taking place, one sees that this body of denser upper waters penetrates to the top of the deep temperature/salinity maximum marking the core of the North Atlantic Deep Water. We note that the horizontal scale of this body is still 100-200 km normal to the coastline.

  12. Mechanisms of deterioration of intermediate moisture food systems

    Science.gov (United States)

    Labuza, T. P.

    1972-01-01

    A study of shelf stability in intermediate moisture foods was made. Major efforts were made to control lipid oxidation and nonenzymatic browning. In order to determine means of preventing these reactions, model systems were developed having the same water activity content relationship of intermediate moisture foods. Models were based on a cellulose-lipid and protein-lipid system with glycerol added as the humectant. Experiments with both systems indicate that lipid oxidation is promoted significantly in the intermediate moisture range. The effect appeared to be related to increased mobility of either reactants or catalysts, since when the amount of water in the system reached a level where capillary condensation occurred and thus free water was present, the rates of oxidation increased. With added glycerol, which is water soluble and thus increases the amount of mobile phase, the increase in oxidation rate occurs at a lower relative humidity. The rates of oxidation were maximized at 61% RH and decreased again at 75% RH probably due to dilution. No significant non-enzymatic browning occurred in the protein-lipid systems. Prevention of oxidation by the use of metal chelating agents was enhanced in the cellulose system, whereas, with protein present, the lipid soluble chain terminating antioxidants (such as BHA) worked equally as well. Preliminary studies of foods adjusted to the intermediate moisture range bear out the results of oxidation in model systems. It can be concluded that for most fat containing intermediate moisture foods, rancidity will be the reaction most limiting stability.

  13. In situ experimentation at the water/sediment interface in the deep sea: 2. Biotransformation of dissolved organic substrates by microbial communities at 2000m depth in the Bay of Biscay

    Science.gov (United States)

    Cahet, Guy; Daumas, Raoul; Sibuet, Myriam

    Few attempts have been made to quantify the utilization of organic matter by the bacteria of the superficial layers of deep sea sediment. During two BIOCYAN cruises (August 1986 and June 1987) we used the submersible Cyana, to incubate sediment samples in situ in a specially designed box core in presence of 14C-glutamic acid and 3H leucine. These experiments were conducted at 2000m depth in the Bay of Biscay. Bacterial activity was stopped by the injection of formaldehyde. Samples were retrieved with the research submersible Cyana and its accompanying free vehicle shuttle. Sediment organic matter was fractioned into four components: 1) 14CO 2; 2) nucleic components and polysacharids; 3) labile proteins; and 4) condensed hydrolysable polymers. To evaluate the barotolerance of deep-sea bacteria, undisturbed superficial layer samples were also incubated with the same labelled substrates at 4°C at the atmospheric pressure. In both cases, and except for glucose, our results show that distributions of radioactivity in the different components of the organic material were almost similar. However, the rate of incorporation was usually higher for in situ experiments than for decompressed samples. Bacterial utilization of both 14C glutamic acid and 14C glucose were higher in June than in August. Such differences may result from changes in the food supply arriving as sinking particles and deriving from the photosynthetically productive surface waters. Food input was probably more important in June than in August leading to corresponding increases in: 1) the abundance of derived bacteria, and 2) deep-sea bacterial activities.

  14. Reactions of stabilized Criegee Intermediates

    Science.gov (United States)

    Vereecken, Luc; Harder, Hartwig; Novelli, Anna

    2014-05-01

    Carbonyl oxides (Criegee intermediates) were proposed as key intermediates in the gas phase ozonolysis of alkenes in 1975 by Rudolf Criegee. Despite the importance of ozonolysis in atmospheric chemistry, direct observation of these intermediates remained elusive, with only indirect experimental evidence for their role in the oxidation of hydrocarbons, e.g. through scavenging experiments. Direct experimental observation of stabilized CI has only been achieved since 2008. Since then, a concerted effort using experimental and theoretical means is in motion to characterize the chemistry and kinetics of these reactive intermediates. We present the results of theoretical investigations of the chemistry of Criegee intermediates with a series of coreactants which may be of importance in the atmosphere, in experimental setups, or both. This includes the CI+CI cross-reaction, which proceeds with a rate coefficient near the collision limit and can be important in experimental conditions. The CI + alkene reactions show strong dependence of the rate coefficient depending on the coreactants, but is generally found to be rather slow. The CI + ozone reaction is sufficiently fast to occur both in experiment and the free troposphere, and acts as a sink for CI. The reaction of CI with hydroperoxides, ROOH, is complex, and leads both to the formation of oligomers, as to the formation of reactive etheroxides, with a moderately fast rate coefficient. The importance of these reactions is placed in the context of the reaction conditions in different atmospheric environments ranging from unpolluted to highly polluted.

  15. Defence in depth perspectives

    International Nuclear Information System (INIS)

    Veneau, Tania; Ferrier, Agnes; Barbaud, Jean

    2017-01-01

    The Defence in Depth (DiD) concept was introduced to the field of nuclear safety in the sixties and early seventies. Even though it was not well developed at the beginning, the principles rapidly became close to those currently used. The concept was then composed of 3 levels, and was already associated with operating conditions. These principles have progressed over time and now there are five levels, including progressively situations issued from design extension conditions, to cope with severe accidents and dealing with accident management off-site. Indeed, human and organizational features are considered as a part of the safety provisions at all levels in an integrated approach that is not just related to reactor design. That's the current vision from IAEA, addressed first in INSAG 3 then in INSAG 10, and in the IAEA standards requirements currently addressed by SSR-2/1 superseding NS-R-1). These five levels of DiD are also referred to in other texts including WENRA documents in Europe, but also in the national requirements from different countries. Thus, the application of DiD principle has become a recognized international practice. The 2011 Fukushima Daiichi accidents, even if they raised many questions on nuclear safety issues, confirmed the merits of the DiD concept. Indeed, lessons learned from the accidents have reinforced the use of the DiD concept to ensure adequate safety. The discussions focused more on the implementation of the concept (how it has been or can be used in practice) than the concept itself, and in particular on the following subjects: the notion of level robustness, generally addressed separately from the levels definition, but playing an important role for the efficiency of the concept; the notion of levels independence and the need for strengthening them; the role of diversity to achieve levels independence. However, a prescription of additional diversity and independence across all safety levels could result in inappropriately

  16. The ocean depths: Elf's target for 1997

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Elf has long since been aware of the potential of sedimentary basins in the ocean depths. For this reason, the group has been preparing to descend to these depths for many years. Today, it is setting itself the target of being ready to optimise as from 1997 a discovery made in the depth between 400 and 1500 m of water in Africa. In the Gulf of Guinea, most of the neighbouring countries have opened up their deep sea offshore areas, in order to try to renew their reserves on the verge of the third millennium. Indeed a great similarity can be seen between the West African and the Brazilian ocean depths. In the African offshore areas, Elf has acquired or renewed eight blocks, four of which are in Nigeria, one in the Congo, one in Gabon and two in Angola. The group is also interested in the ocean depths which are now accessible in the North Sea, whether in the Norwegian (Voring and More) of British (Western Shetlands) areas. (author). 1 fig

  17. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates

    International Nuclear Information System (INIS)

    Lee, Yuan-Pern

    2015-01-01

    The Criegee intermediates, carbonyl oxides proposed by Criegee in 1949 as key intermediates in the ozonolysis of alkenes, play important roles in many aspects of atmospheric chemistry. Because direct detection of these gaseous intermediates was unavailable until recently, previous understanding of their reactions, derived from indirect experimental evidence, had great uncertainties. Recent laboratory detection of the simplest Criegee intermediate CH 2 OO and some larger members, produced from ultraviolet irradiation of corresponding diiodoalkanes in O 2 , with various methods such as photoionization, ultraviolet absorption, infrared absorption, and microwave spectroscopy opens a new door to improved understanding of the roles of these Criegee intermediates. Their structures and spectral parameters have been characterized; their significant zwitterionic nature is hence confirmed. CH 2 OO, along with other products, has also been detected directly with microwave spectroscopy in gaseous ozonolysis reactions of ethene. The detailed kinetics of the source reaction, CH 2 I + O 2 , which is critical to laboratory studies of CH 2 OO, are now understood satisfactorily. The kinetic investigations using direct detection identified some important atmospheric reactions, including reactions with NO 2 , SO 2 , water dimer, carboxylic acids, and carbonyl compounds. Efforts toward the characterization of larger Criegee intermediates and the investigation of related reactions are in progress. Some reactions of CH 3 CHOO are found to depend on conformation. This perspective examines progress toward the direct spectral characterization of Criegee intermediates and investigations of the associated reaction kinetics, and indicates some unresolved problems and prospective challenges for this exciting field of research

  18. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Cline, D.B.; Rubbia, C.; van der Meer, S.

    1982-01-01

    Over the past 15 years a new class of unified theories has been developed to describe the forces acting between elementary particles. The most successful of the new theories establishes a link between electromagnetism and the weak force. A crucial prediction of this unified electroweak theory is the existence of three massive particles called intermediate vector bosons. If these intermediate vector bosons exist and if they have properties attributed to them by electroweak theory, they should soon be detected, as the world's first particle accelerator with enough energy to create such particles has recently been completed at the European Organization for Nuclear Research (CERN) in Geneva. The accelerator has been converted to a colliding beam machine in which protons and antiprotons collide head on. According to electroweak theory, intermediate vector bosons can be created in proton-antiproton collisions. (SC)

  19. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Klajn, D.B.; Rubbia, K.; Meer, S.

    1983-01-01

    Problem of registration and search for intermediate vector bosons is discussed. According to weak-current theory there are three intermediate vector bosons with +1(W + )-1(W - ) and zero (Z 0 ) electric charges. It was suggested to conduct the investigation into particles in 1976 by cline, Rubbia and Makintair using proton-antiproton beams. Major difficulties of the experiment are related to the necessity of formation of sufficient amount of antiparticles and the method of antiproton beam ''cooling'' for the purpose of reduction of its random movements. The stochastic method was suggested by van der Meer in 1968 as one of possible cooling methods. Several large detectors were designed for searching intermediate vector bosons

  20. Gravity with Intermediate Goods Trade

    Directory of Open Access Journals (Sweden)

    Sujin Jang

    2017-12-01

    Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.

  1. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    Directory of Open Access Journals (Sweden)

    Karen J Miller

    Full Text Available Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS, the mitochondrial ribosomal subunit (16S and mitochondrial control region (MtC to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow 1500 m even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  2. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    Science.gov (United States)

    Miller, Karen J; Rowden, Ashley A; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow 1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  3. Altura da lâmina, tempo e volume de enchimento de um equipamento de irrigação por pavio e determinação da uniformidade de distribuição de água em substratos Water depth, filling time and volume of wick irrigation equipment and determination of water distribution uniformity in substrates

    Directory of Open Access Journals (Sweden)

    Rhuanito Soranz Ferrarezi

    2012-01-01

    Full Text Available Os objetivos deste experimento foram realizar a avaliação da altura da lâmina de água, do tempo e volume de enchimento de um equipamento de irrigação por pavio usando calhas autocompensadoras e determinar a uniformidade de distribuição de água (UDA nesse equipamento utilizando substratos orgânicos comerciais (casca de pinus/CP e fibra de coco/FC. Dois módulos experimentais foram montados em delineamento experimental inteiramente casualizado com cinco repetições. Verificou-se grande variação das medidas de altura da lâmina de água (1,6 a 4,0 cm, mesmo com o equipamento nivelado. O tempo médio de enchimento foi de 6h22min para o Módulo 1 com CP e de 3h45min para o Módulo 2 com FC. O volume de enchimento foi variável, observando-se que as calhas das extremidades (n.° 1 e 5 apresentaram os menores volumes no Módulo 1, e as calhas do início (n.° 1 e 2 no Módulo 2. No Módulo 1, a umidade volumétrica (θ variou de 42% a 94%, e no Módulo 2, de 24% a 72%, com pontos isolados de secamento e/ou encharcamento. A altura da lâmina de água, o tempo e o volume de enchimento das calhas foram desuniformes nos dois módulos experimentais e nas cinco calhas autocompensadoras, indicando imperfeições no equipamento. A distribuição de água foi variável nos substratos em razão de suas características físico-hídricas e também da altura da lâmina de água nas calhas, apresentando maior umidade e uniformidade de distribuição de água na casca de pinus do que na fibra de coco.The aims of this study were to evaluate the water depth, filling time and volume in a wick irrigation equipment using auto compensating gutters and to determine the water distribution uniformity (WDU in these equipments filled with organic commercial substrates (pine bark/PB and coconut coir/CC. We assembled two experimental modules in a completely randomized design with five replications. There was variation in water depth measurements (1.6 to 4.0 cm, even

  4. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal; Schott, Mathias; Bonneau, Georges-Pierre; Hansen, Charles D.

    2013-01-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  5. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  6. Methodologies of time to depth conversions in a Campos basin offshore deep water; Metodologias de conversao sismica tempo profundidade em campo gigante de aguas profundas da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Nier M.; Gomes, Jose A.T.; Camarao, Luciano F.; Oliveira, Rildo M. de; Steagall, Daniel E.; Carvalho, Marimonica R.J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    With the aim to drill a horizontal well in the fault shadow zone, various techniques of time to depth conversion were used in a study to minimize the uncertainties. After removing some wells close to the fault and doing a conversion only based on VELAN (Velocities from Seismic Processing) the result had a considerable difference comparing to a conversion based on VELAN and wells. After this exercise, the confidence on the seismic cube was lost, especially for new projects close to the fault. To drill new wells in that region, a geologic model without the seismic was done to predict the depth values of the top of the reservoir. In addition, a new seismic in depth using the technique PSDM (Pre Stack Depth Migration) will be generated being taken into account that geological model. (author)

  7. WATER DEPTH - AVERAGE and Reflectance- Intensity collected from LADS Mk II Airborne System in Caribbean Sea and Puerto Rico from 2006-04-07 to 2006-05-15 (NCEI Accession 0153360)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These images represent LiDAR (Light Detection & Ranging) data collected by NOAA from the shoreline of southwestern Puerto Rico to about 50 meters in depth....

  8. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: The effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids

    DEFF Research Database (Denmark)

    Vermeulen, A.; Nielsen, Cecilie Lykke Marvig; Daelman, J.

    2015-01-01

    Intermediate moisture foods (IMF) are in general microbiologically stable products. However, due to health concerns consumer demands are increasingly forcing producers to lower the fat, sugar and preservatives content, which impede the stability of the IMF products. One of the strategies to count......Intermediate moisture foods (IMF) are in general microbiologically stable products. However, due to health concerns consumer demands are increasingly forcing producers to lower the fat, sugar and preservatives content, which impede the stability of the IMF products. One of the strategies......, acetic acid had only an additive effect to ethanol and aw at low pH, whereas sorbic acid had also an additive effect at the higher pH values. For incubation periods longer than 30 days the growth/no growth boundary remained stable but enlarged gradually between day 60 and 90, except for the lower...

  9. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  10. Intermediate statistics in quantum maps

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, Olivier [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Marklof, Jens [School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom); O' Keefe, Stephen [School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom)

    2004-07-16

    We present a one-parameter family of quantum maps whose spectral statistics are of the same intermediate type as observed in polygonal quantum billiards. Our central result is the evaluation of the spectral two-point correlation form factor at small argument, which in turn yields the asymptotic level compressibility for macroscopic correlation lengths. (letter to the editor)

  11. Intermediality and the Child Performer

    Science.gov (United States)

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  12. Material Voices: Intermediality and Autism

    Science.gov (United States)

    Trimingham, Melissa; Shaughnessy, Nicola

    2016-01-01

    Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…

  13. DEPTH - OBSERVATION and Other Data (NODC Accession 9700138)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity and other data were collected in the North Sea and other locations. Data include water depths, temperatures, salinities, and oxygen...

  14. Classical model of intermediate statistics

    International Nuclear Information System (INIS)