WorldWideScience

Sample records for intermediate temperature solid

  1. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  2. Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation

    DEFF Research Database (Denmark)

    Ortiz-Vitoriano, N.; Bernuy-Lopez, Carlos; Ruiz de Larramendi, I.

    2013-01-01

    -priced raw material and cost-effective production techniques.In this work the perovskite-type La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) oxide has been used in order to optimize intermediate temperature SOFC cathode processing route. The advantages this material presents arise from the low temperature powder calcination......For Solid Oxide Fuel Cells (SOFCs) to become an economically attractive energy conversion technology suitable materials which allow operation at lower temperatures, while retaining cell performance, must be developed. At the same time, the cell components must be inexpensive - requiring both low...... (∼600°C) and electrode sintering (∼800°C) of LCFN electrodes, making them a cheaper alternative to conventional SOFC cathodes. An electrode polarization resistance as low as 0.10Ωcm2 at 800°C is reported, as determined by impedance spectroscopy studies of symmetrical cells sintered at a range...

  3. Microwave assisted sintering of gadolinium doped barium cerate electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arumugam Senthil, E-mail: senthu.ramp@gmail.com [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Balaji, Ramamoorthy [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Jayakumar, Srinivasalu [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamilnadu (India); Pradeep, Chandran [Department of Physics, Indian Institute of Technology, Madras, 600 036, Tamilnadu (India)

    2016-10-01

    In Solid Oxide Fuel Cell (SOFC), electrolyte plays a vital role to increase the energy conversion efficiency. The main hurdle of such electrolyte in fuel cell is its higher operating temperature (1000 °C) which results in design limitation and higher fabrication cost. In order to reduce the operating temperature of SOFC, a suitable electrolyte has been prepared through co-precipitation method followed by microwave sintering of solid ceramic. The calcination temperature for the as-prepared powder was identified using Differential Scanning Calorimetry. The crystal structure of the sample was found to exhibit its orthorhombic perovskite structure. The particle size was determined using High-Resolution Transmission Electron Microscope with uniform in shape and size, match with XRD results and confirmed from structural analysis. Thus, the sample prepared via co-precipitation method and the solid ceramic sintered through microwave can be a promising electrolyte for fuel cells operated at intermediate temperature. - Highlights: • To synthesis the composite electrolyte by chemical method and sinter using microwave. • To reduce the operating temperature of electrolyte for high ionic conductivity in SOFC's. • To study the phase purity and to develop nanocomposite at reduced temperature.

  4. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  6. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  7. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  8. Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A review

    Science.gov (United States)

    Shri Prakash, B.; Pavitra, R.; Senthil Kumar, S.; Aruna, S. T.

    2018-03-01

    Lowering of operation temperature has become one of the primary goals of solid oxide fuel (SOFC) research as reduced temperature improves the prospects for widespread commercialization of this energy system. Reduced operational temperature also mitigates the issues associated with high temperature SOFCs and paves way not only for the large scale stationary power generation but also makes SOFCs viable for portable and transport applications. However, there are issues with electrolyte and cathode materials at low temperatures, individually as well as in association with other components, which makes the performance of the SOFCs less satisfactory than expected at lowered temperatures. Bi-layering of electrolytes and impregnation of cathodes have emerged as two important strategies to overcome these issues and achieve higher performance at low temperatures. This review article provides the perspective on the strategy of bi-layering of electrolyte to achieve the desired high performance from SOFC at low to intermediate temperatures.

  9. Heat and mass transfer analysis intermediate temperature solid oxide fuel cells (IT-SOFC)

    International Nuclear Information System (INIS)

    Timurkutluk, B.; Mat, M. M.; Kaplan, Y.

    2007-01-01

    Solid oxide fuel cells (SOFCs) have been considered as next generation energy conversion system due to their high efficiency, clean and quite operation with fuel flexibility. To date, yittria stabilized zirconia (YSZ) electrolytes have been mainly used for SOFC applications at high temperatures around 1000 degree C because of their high ionic conductivity, chemical stability and good mechanical properties. However, such a high temperature is undesirable for fuel cell operations in the viewpoint of stability. Moreover, high operation temperature necessitates high cost interconnect and seal materials. Thus, the reduction in the operation temperature of SOFCs is one of the key issues in the aspects of the cost reduction and the long term operation without degradation as well as commercialization of the SOFC systems. With the reducing temperature, not only low cost stainless steels and glass materials can be used as interconnect and sealing materials respectively but the manufacturing technology will also extend. Therefore, the design of complex geometrical SOFC component will also be possible. One way to reduce the operation temperature of SOFC is use of an alternative electrolyte material to YSZ showing acceptable properties at intermediate temperatures (600-800 degree C). As being one of IT-SOFC electrolyte materials, gadolinium doped ceria (GDC) has been taken great deals. In this study, a mathematical model for mass and heat transfer for a single cell GDC electrolyte SOFC system was developed and numerical solutions were evaluated. In order to verify the mathematical model, set of experiments were performed by taking species from four different samples randomly and five various temperature measurements. The numerical results reasonably agree with experimental data

  10. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Science.gov (United States)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.

  11. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru [The Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-choume, Amagasaki, Hyogo 661-0974 (Japan); Akbay, Taner; Hosoi, Kei [Mitsubishi Materials Corporation, Corporate Technology and Development Division, 1002-14 Mukohyama, Naka, Ibaraki 311-0102 (Japan)

    2008-07-01

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system. (author)

  12. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  13. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  14. Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol

    Directory of Open Access Journals (Sweden)

    Fotini Tzorbatzoglou

    2012-10-01

    Full Text Available In the present work, an ethanol fed Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT system has been parametrically analyzed in terms of exergy and compared with a single SOFC system. The solid oxide fuel cell was fed with hydrogen produced from ethanol steam reforming. The hydrogen utilization factor values were kept between 0.7 and 1. The SOFC’s Current-Volt performance was considered in the range of 0.1–3 A/cm2 at 0.9–0.3 V, respectively, and at the intermediate operating temperatures of 550 and 600 °C, respectively. The curves used represent experimental results obtained from the available bibliography. Results indicated that for low current density values the single SOFC system prevails over the SOFC-GT hybrid system in terms of exergy efficiency, while at higher current density values the latter is more efficient. It was found that as the value of the utilization factor increases the SOFC system becomes more efficient than the SOFC-GT system over a wider range of current density values. It was also revealed that at high current density values the increase of SOFC operation temperature leads in both cases to higher system efficiency values.

  15. Advanced intermediate temperature sodium copper chloride battery

    Science.gov (United States)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  16. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  17. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  18. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Bryan M. [Redox Power Systems, LLC, College Park, MD (United States); Bishop, Sean [Redox Power Systems, LLC, College Park, MD (United States); Gore, Colin [Redox Power Systems, LLC, College Park, MD (United States); Wang, Lei [Redox Power Systems, LLC, College Park, MD (United States); Correa, Luis [Redox Power Systems, LLC, College Park, MD (United States); Langdo, Thomas [Redox Power Systems, LLC, College Park, MD (United States); Deaconu, Stelu [Redox Power Systems, LLC, College Park, MD (United States); Pan, Keji [Redox Power Systems, LLC, College Park, MD (United States)

    2018-02-15

    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and the lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large

  19. Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell

    International Nuclear Information System (INIS)

    Heidari, Dorna; Javadpour, Sirus; Chan, Siew Hwa

    2017-01-01

    Highlights: • Effect of BSCF-SDC composite air electrode on SOEC electrochemical performance. • Effects on performance of BSCF-SDC air electrode, fuel humidity and temperature. • Desired IT-SOEC performance by compositing the BSCF air electrode with SDC. - Abstract: Solid oxide electrolyzer cells (SOECs) are devises which recently have attracted lots of attention due to their advantages. Their high operating temperature leads to mechanical compatibility issues such as thermal expansion mismatch between layers of material in the cell. The aim of this study is to mitigate the issue of thermal expansion mismatch between Ba_0_._5Sr_0_._5Co_0_._8Fe_0_._2O_3_−_δ (BSCF) and samaria doped ceria, Sm_0_._2Ce_0_._8O_1_._9 (SDC), enhance the triple-phase boundaries and improve the adhesion of the electrode to the electrolytes, hence improve the cell performance. To make BSCF more thermo-mechanically compatible with the SDC electrolyte, the formation of a composite electrode by introducing SDC as the compositing material is proposed. In this study, 10 wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of commercial SDC powder was mixed with BSCF powder, prepared by sol-gel method, to make the composite air electrode. After successfully synthesizing the BSCF-SDC/YSZ-SDC/Ni-YSZ electrolyzer cell, the electrochemical performance was tested for the intermediate-temperature SOEC (IT-SOEC), over the temperature range of 650–800 °C. The microstructure of each sample was studied by field emission electron microscopy (FESEM, JEOL, JSM 6340F) for possible pin holes. The result of this study proves that the sample with 20% SDC-80% BSCF shows the highest performance among the investigated cells.

  20. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allan J. Jacobson

    2006-09-30

    the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity

  1. Characterization of porous stainless steel 430 for low and intermediate temperature solid oxide fuel cell substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rose, L. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; British Columbia Univ., Vancouver, BC (Canada). Dept. of Materials Engineering; Deces-Petit, C.; Sobolyeva, T.; Maric, R. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Materials Engineering; Kesler, O. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    In order to lower the cost of solid oxide fuel cells (SOFCs), the operating temperatures could be lowered below 1073 K to allow the use of robust and comparatively inexpensive stainless steels not only for interconnects but also for SOFC support structures. To facilitate gas flow towards the reactive sites in the electrodes, the metal supports must be adequately porous. Gas flow and electrical conductivity must remain adequate during any oxidation that occurs during operation. This paper discussed a series of gas permeation and surface profilometry experiments that were conducted to determine the permeability and surface roughness of porous steels having different pore structures. The purpose of the study was to identify microstructures most suitable for use as SOFC supports. The materials were also characterized by a variety of porosity measurement methods, each yielding complementary information on the three dimensional structures. The paper described the experimental methods as well as the results and discussion of results in terms of surface profilometry, porosity analyses, pore morphology and gas permeability. It was concluded that a material with more than 20 per cent total porosity that does not close during oxidation and with a surface roughness of less than 8 micrometres appears to be a good candidate structure for intermediate temperature SOFCs. 8 refs., 8 figs.

  2. Electrochemical performance of Nd1.8Ce0.2CuO4+δ:Ce0.9Gd0.1O2 composite cathode for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Khandale, A.P.; Bhoga, S.S.

    2012-01-01

    Intermediate temperature solid oxide fuel cells (IT-SOFCs) are viewed as a promising power generation systems with high efficiency and low pollution. Recently, mixed ionic-electronic conductors (MIECs), with K 2 NiF 4 - type structure, attracted much attention as cathode for IT-SOFC

  3. N-Acyliminium Intermediates in Solid-Phase Synthesis

    DEFF Research Database (Denmark)

    Quement, Sebastian Thordal le; Petersen, Rico; Meldal, M.

    2010-01-01

    N-Acyliminium ions are powerful intermediates in synthetic organic chemistry. Examples of their use are numerous in solution-phase synthesis, but there are unmerited few reports on these highly reactive electrophiles in solid-phase synthesis. The present review covers the literature to date and i...

  4. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shu-en [Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States)

    2010-01-01

    We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H{sub 2} as fuel. As cathode material, the perovskite Sr{sub 0.9}K{sub 0.1}FeO{sub 3-{delta}} (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-{mu}m thick pellet of the electrolyte La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 3-{delta}} (LSGM) with Sr{sub 2}MgMoO{sub 6} as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm{sup -2} at 800 C and 850 mW cm{sup -2} at 850 C, with pure H{sub 2} as fuel. The electronic conductivity shows a change of regime at T {approx} 350 C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC. (author)

  5. Treatment of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    1983-01-01

    One of the essential aims in the waste management is to reduce as much as possible the waste volumes to be stored or disposed of, and to concentrate and immobilize as much as possible the radioactivity contained in the waste. This document describes the treatment of low- and intermediate-level solid waste prior to its conditioning for storage and disposal. This report aims primarily at compiling the experience gained in treating low- and intermediate-active solid wastes, one of the major waste sources in nuclear technology. Apart from the description of existing facilities and demonstrated handling schemes, this report provides the reader with the basis for a judgement that facilitates the selection of appropriate solutions for a given solid-waste management problem. It thus aims at providing guidelines in the particular field and indicates new promising approaches that are actually under investigation and development

  6. Cobalt-free cathode material SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingjun [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); College of Science, Civil Aviation University of China, Tianjin 300300 (China); Zhang, Leilei; He, Tianmin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China)

    2010-02-15

    A cobalt-free cubic perovskite oxide, SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) for temperatures up to 1050 C. The electrical conductivity of SFN sample reached 34-70 S cm{sup -1} in the commonly operated temperatures of IT-SOFCs (600-800 C). The area specific resistance was 0.138 {omega} cm{sup 2} for SFN cathode on SDC electrolyte at 750 C. A maximum power density of 407 mW cm{sup -2} was obtained at 800 C for single-cell with 300 {mu}m thick SDC electrolyte and SFN cathode. (author)

  7. First Principles Studies of Perovskites for Intermediate Temperature Solid Oxide Fuel Cell Cathodes

    KAUST Repository

    Salawu, Omotayo Akande

    2017-05-15

    Fundamental advances in cathode materials are key to lowering the operating temperature of solid oxide fuel cells (SOFCs). Detailed understanding of the structural, electronic and defect formation characteristics are essential for rational design of cathode materials. In this thesis we employ first principles methods to study La(Mn/Co)O3 and LnBaCo2O5+δ (Ln = Pr, Gd; δ = 0.5, 1) as cathode for SOFCs. Specifically, factors affecting the O vacancy formation and migration are investigated. We demonstrate that for LaMnO3 the anisotropy effects often neglected at high operating temperatures become relevant when the temperature is lowered. We show that this fact has consequences for the material properties and can be further enhanced by strain and Sr doping. Tensile strain promotes both the O vacancy formation and migration in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation but not the migration. The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in LaCoO3 are studied. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure, but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state. For LnBaCo2O5+δ we compare the O vacancy formation in GdBaCo2O5.5 (Pmmm symmetry) and GdBaCo2O6 (P4/mmm symmetry), and the influence of Sr doping. The O vacancy formation energy is demonstrated to be smaller in the already O deficient compound. This relation is maintained under Sr doping. It turns out that Sr doping can be utilized to significantly enhance the O vacancy formation in both compounds. The observed trends are

  8. Development of Non-Platinum Catalysts for Intermediate Temperature Water Electrolysis

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Petrushina, Irina Michailovna; Bjerrum, Niels J.

    2014-01-01

    Water electrolysis is recognized as an efficient energy storage (in the form of hydrogen) supplement in renewable energy production. However, industrial alkaline water electrolyzers are rather ineffective and space requiring for a commercial use in connection with energy storage. The most effective...... modern water electrolyzers are based on polymeric proton-conducting membrane electrolytes (PEM), e.g. Nafion®, a perfluorocarbon-sulfonic acid polymer. These electrolyzers work at temperatures up to around 80 °C, and, in extreme cases, up to 130-140 °C. The most developed PEM electrolyzers...... as electrolytes for the intermediate temperature applications, such as CsHSO4, KHSO45. The most successful systems have been developed with CsH2PO4 (solid acid fuel cells (SAFCs) and Sn0.9In0.1P2O7 electrolytes6,7. While developing materials for the promising medium temperature electrolysis systems...

  9. Antimony doped barium strontium ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yihan, E-mail: lyhyy@mail.ustc.edu.cn [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Lu, Xiaoyong [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Niu, Jinan; Chen, Hui [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Ding, Yanzhi [China Anhui Key Laboratory of Low Temperature Co-fired Materials, Department of Chemistry, Huainan Normal University, Huainan, Anhui, 232001 (China); Ou, Xuemei [School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, 221116 (China); Zhao, Ling [Department of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 (China)

    2016-05-05

    Antimony was doped to barium strontium ferrite to produce ferrite-based perovskites with a composition of Ba{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Sb{sub x}O{sub 3−δ} (x = 0.0, 0.05, 0.1) as novel cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The perovskite properties including oxygen nonstoichiometry (δ), mean valence of B-site, tolerance factors, thermal expansion coefficient (TEC) and electrical conductivity (σ) are explored as a function of antimony content. By defect chemistry analysis, the TECs decrease since the variable oxygen vacancy concentration is decreased by Sb doping, and σ decreases with x due to the reduced charge concentration of Fe{sup 4+} content. Consequently, the electrochemical performance was substantially improved and the interfacial polarization resistance was reduced from 0.213 to 0.120 Ωcm{sup 2} at 700 °C with Sb doping. The perovskite with x = 1.0 is suggested as the most promising composition as SOFC cathode material. - Highlights: • Antimony is doped to barium strontium ferrite to produce novel cathodes. • δ, TECs and σ are evaluated as a function of antimony content. • The electrochemical performance is substantially improved with antimony doping.

  10. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  11. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  12. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  13. Composite cathode La0.15Bi0.85O1.5-Ag for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Gao Zhan; Mao Zongqiang; Huang Jianbing; Gao Ruifeng; Wang Cheng; Liu Zhixiang

    2008-01-01

    Composites consisting of silver and lanthanum stabilized bismuth oxide (La 0.15 Bi 0.85 O 1.5 ) were investigated as cathodes for intermediate-temperature solid oxide fuel cells with doped ceria as electrolyte. No stable phases were formed via reaction between La 0.15 Bi 0.85 O 1.5 and Ag. The microstructure of the interfaces between composite cathodes and Ce 0.8 Sm 0.2 O 1.5 electrolytes was studied by scanning electron microscopy after sintering at various temperatures. Impedance spectroscopy measurements revealed that the performance of cathode fired at 700 deg. C was the best. When the optimum fraction of Ag was 50 vol.%, polarization resistance values for the LSB-Ag50 cathode were as low as 0.14 Ω cm 2 at 700 deg. C and 0.18 Ω cm 2 at 650 deg. C. The steady-state polarization investigations on LSB and LSB-Ag50 cathodes were performed using typical three-electrode test cells in air. The results showed that the LSB-Ag50 composite cathode exhibited a lower overpotential and higher exchange current density than LSB, which indicated the electrochemical performance of LSB-Ag50 for the oxygen reduction reaction was superior to the LSB

  14. La{sub 0.84}Sr{sub 0.16}MnO{sub 3-{delta}} cathodes impregnated with Bi{sub 1.4}Er{sub 0.6}O{sub 3} for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junliang; Wang, Shaorong; Wang, Zhenrong; Liu, Renzhu; Wen, Tinglian; Wen, Zhaoyin [The Key Laboratory of Energy Conversion Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-12-01

    La{sub 0.84}Sr{sub 0.16}MnO{sub 3-{delta}}-Bi{sub 1.4}Er{sub 0.6}O{sub 3} (LSM-ESB) composite cathodes are fabricated by impregnating LSM electronic conducting matrix with the ion-conducting ESB for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The performance of LSM-ESB cathodes is investigated at temperatures below 750 C by AC impedance spectroscopy. The ion-impregnation of ESB significantly enhances the electrocatalytic activity of the LSM electrodes for the oxygen reduction reactions, and the ion-impregnated LSM-ESB composite cathodes show excellent performance. At 750 C, the value of the cathode polarization resistance (R{sub p}) is only 0.11 {omega} cm{sup 2} for an ion-impregnated LSM-ESB cathode, which also shows high stability during a period of 200 h. For the performance testing of single cells, the maximum power density is 0.74 W cm{sup -2} at 700 C for a cell with the LSM-ESB cathode. The results demonstrate the ion-impregnated LSM-ESB is one of the promising cathode materials for intermediate-temperature solid oxide fuel cells. (author)

  15. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour

    DEFF Research Database (Denmark)

    Enrico, Anna; Zhang, Wenjing (Angela); Traulsen, Marie Lund

    2018-01-01

    Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only...

  16. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  17. YSZ thin films deposited on NiO-CSZ anodes by pulsed injection MOCVD for intermediate temperature-SOFC applications

    International Nuclear Information System (INIS)

    Garcia, G.; Pardo, J.A.; Santiso, J.; Merino, R.I.; Orera, V.M.; Larrea, A.; Pena, J.I.; Laguna-Bercero, M.A.; Figueras, A.

    2004-01-01

    Yttria-stabilized zirconia (YSZ) films are prepared on NiO-CaSZ by PIMOCVD (pulsed injection metal organic chemical vapor deposition). High quality, 5 to 10 μm thick, totally dense YSZ layers are prepared by controlling the oxygen partial pressure during the deposition. YSZ solid electrolyte deposition onto Ni-YSZ eutectic substrate is found to be a promising combination with regard to intermediate-temperature solid-oxide fuel cell applications. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    Energy Technology Data Exchange (ETDEWEB)

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  19. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells

    KAUST Repository

    Stojmenović, M.

    2015-03-11

    The solid solutions of CeO2 with one or more rare-earth oxides among Yb2O3, Sm2O3, and Gd2O3 are synthesized by either modified glycine nitrate procedure (MGNP) or self-propagating reaction at room temperature (SPRT). The overall mole fraction of rare-earth oxide dopants was x = 0.2. The characterization was committed by XRPD, TEM, BET, and Raman Spectroscopy methods. According to XRPD and Raman spectroscopy, the obtained products presented the single-phase solid solutions with basic fluorite-type CeO2 structure, regardless on the number and the concentration of dopants. Both XRPD and TEM analysis evidenced the nanometer particle dimensions. The defect model was applied to calculate lattice parameters of single-, co-, and multi-doped solids. The sintering of the sample nanopowders was performed at 1550 °C, in air atmosphere. The sintered samples were characterized by XRPD, SEM, and complex impedance methods. The sintering did not affect the concentration ratios of the constituents. The highest conductivity at 700 °C amounting to 2.14 × 10−2 and 1.92 × 10−2 Ω−1 cm−1 was measured for the sample Ce0.8Sm0.08Gd0.12O2−δ, synthesized by SPRT and MGNP methods, respectively. The corresponding activation energies of conductivity, measured in the temperature range 500–700 °C, amounted to 0.24 and 0.23 eV.

  20. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells

    KAUST Repository

    Stojmenović, M.; Zunic, Milan; Gulicovski, J.; Bajuk-Bogdanović, D.; Holclajtner-Antunović, I.; Dodevski, V.; Mentus, S.

    2015-01-01

    The solid solutions of CeO2 with one or more rare-earth oxides among Yb2O3, Sm2O3, and Gd2O3 are synthesized by either modified glycine nitrate procedure (MGNP) or self-propagating reaction at room temperature (SPRT). The overall mole fraction of rare-earth oxide dopants was x = 0.2. The characterization was committed by XRPD, TEM, BET, and Raman Spectroscopy methods. According to XRPD and Raman spectroscopy, the obtained products presented the single-phase solid solutions with basic fluorite-type CeO2 structure, regardless on the number and the concentration of dopants. Both XRPD and TEM analysis evidenced the nanometer particle dimensions. The defect model was applied to calculate lattice parameters of single-, co-, and multi-doped solids. The sintering of the sample nanopowders was performed at 1550 °C, in air atmosphere. The sintered samples were characterized by XRPD, SEM, and complex impedance methods. The sintering did not affect the concentration ratios of the constituents. The highest conductivity at 700 °C amounting to 2.14 × 10−2 and 1.92 × 10−2 Ω−1 cm−1 was measured for the sample Ce0.8Sm0.08Gd0.12O2−δ, synthesized by SPRT and MGNP methods, respectively. The corresponding activation energies of conductivity, measured in the temperature range 500–700 °C, amounted to 0.24 and 0.23 eV.

  1. Synthesis of LaCoO{sub 3} nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia Siang; Zhang, Lan; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Zhang, Yu.Jun [Key Lab for Liquid Structure and Heredity of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan (China)

    2008-04-15

    LaCoO{sub 3} (LC) perovskite powders for intermediate temperature solid oxide fuel cells (IT-SOFCs) are synthesized by a simple and cost-effective aqueous gel-casting technique using metal nitrates as raw materials. Effect of the ratio of organic precursors (acrylamide (AM) monomer and N,N'-Methylenebisacrylamide (MBAM) crosslinker) to metal nitrates (lanthanum nitrate, cobalt nitrate) and the ratio of AM to MBAM on the particle size are investigated in detail. TEM results indicate that the particle size of LC nano-powders is in the range of 31-60 nm and decreases with increasing ratio of organic precursor to metal nitrates but is not affected by the ratio of AM to MBAM. Preliminary results show that the nano-structured electrode approach based on wet impregnation is effective to combine the high electrocatalytic activity of LC nano-powders and the structural stability of La{sub 0.72}Sr{sub 0.18}MnO{sub 3} {sub -} {sub {delta}} (LSM) electrodes for the development of IT-SOFC cathodes. (author)

  2. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  3. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  4. Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas

    International Nuclear Information System (INIS)

    De Lorenzo, G.; Corigliano, O.; Lo Faro, M.; Frontera, P.; Antonucci, P.; Zignani, S.C.; Trocino, S.; Mirandola, F.A.; Aricò, A.S.; Fragiacomo, P.

    2016-01-01

    Highlights: • Numerical Model (NM) of SOFC Cogenerative System (SCS) fed by dry biogas is set up. • NM simulates new Ni-Fe/CGO protective layer for direct CH_4 consumption at the anode. • NM simulates the anode carbonation phenomenon and is experimentally validated. • The performance parameters trends of SCS fed by three types of dry biogas are shown. • SEM images after 40 h of operation show that there is no anode carbon deposition. - Abstract: A properly manufactured intermediate temperature Solid Oxide Fuel Cell (SOFC) can be directly fed by dry biogas, considering also the electrochemical partial and total oxidation reactions of methane in the biogas at the anode. In this way the methane in the biogas is electrochemically consumed directly at the fuel cell without the need to mix the biogas with any reforming gas (steam, oxygen or carbon dioxide). In this article, a numerical model of an SOFC system with Ni-Fe/CGO electrocatalyst anode protective layer directly fed by dry biogas, in cogenerative arrangement and with anode exhaust gas recirculation is formulated. The influences of biogas composition, of fuel cell operating current density and of percentage of recirculated anode exhaust gas on the SOFC system performances were evaluated by calculation code. An SOFC test bench was set up to validate the calculation code results experimentally. Furthermore, the numerical model also considers the anode carbonation and evaluates the amount of carbon that can be formed in the anode at chemical equilibrium and quasi-equilibrium conditions associated with the specific anode protective layer used.

  5. Nanostructured LnBaCo2O6− (Ln = Sm, Gd with layered structure for intermediate temperature solid oxide fuel cell cathodes

    Directory of Open Access Journals (Sweden)

    Augusto E. Mejía Gómez

    2017-04-01

    Full Text Available In this work, we present the combination of two characteristics that are beneficial for solid oxide fuel cell (SOFC cathodic performance in one material. We developed and evaluated for the first time nanostructured layered perovskites of formulae LnBaCo2O6-d with Ln = Sm and Gd (SBCO and GBCO, respectively as SOFC cathodes, finding promising electrochemical properties in the intermediate temperature range. We obtained those nanostructures by using porous templates to confine the chemical reagents in regions of 200-800 nm. The performance of nanostructured SBCO and GBCO cathodes was analyzed by electrochemical impedance spectroscopy technique under different operating conditions using Gd2O3-doped CeO2 as electrolyte. We found that SBCO cathodes displayed lower area-specific resistance than GBCO ones, because bulk diffusion of oxide ions is enhanced in the former. We also found that cathodes synthesized using smaller template pores exhibited better performance.

  6. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Lue Shiquan; Long, Guohui; Ji Yuan; Meng Xiangwei; Zhao Hongyuan; Sun Cuicui

    2011-01-01

    Research highlights: → We synthesize a new kind of layered perovskite SmBaCoCuO 5+x (SBCCO) as a cathode material of a solid oxide fuel cell. → There are some reports on the performance of cathodes in proton-conducting SOFCs based on BaCe 0.8 Sm 0.2 O 3-δ electrolyte. → However, to the best of our knowledge, the performance of SBCCO cathodes in oxygen-ion conducting SOFCs has not been reported to date. → In this work, the ceramic powder SBCCO is examined as a cathode for IT-SOFCs based on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte. - Abstract: The performance of SmBaCoCuO 5+x (SBCCO) cathode has been investigated for their potential utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The powder X-ray diffraction (XRD), thermal expansion and electrochemical performance on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte are evaluated. XRD results show that there is no chemical reaction between SBCCO cathode and GDC electrolyte when the temperature is below 950 o C. The thermal expansion coefficient (TEC) value of SBCCO is 15.53 x 10 -6 K -1 , which is ∼23% lower than the TEC of the SmBaCo 2 O 5+x (SBCO) sample. The electrochemical impedance spectra reveals that SBCCO symmetrical half-cells by sintering at 950 deg. C has the best electrochemical performance and the area specific resistance (ASR) of SBCCO cathode is as low as 0.086 Ω cm 2 at 800 o C. An electrolyte-supported fuel cell generates good performance with the maximum power density of 517 mW cm -2 at 800 deg. C in H 2 . Preliminary results indicate that SBCCO is promising as a cathode for IT-SOFCs.

  7. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  8. Intermediate Temperature Fuel Cell Using Gypsum Based Electrolyte And Electrodes

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Nagai, Masayuki; Katagiri, Yuji

    2011-01-01

    The proton conductive electrolyte membrane and the electrodes for intermediate temperature fuel cell were made from the phosphoric acid treated gypsum as a proton conductor. The membrane and the electrodes were built into single cell and tested at intermediate temperature region. The power density of the fuel cell was 0.56 mW/cm -2 at 150 deg. C without any humidification and 1.38 mW/cm -2 at 150 deg. C, 5% relative humidity. The open circuit voltage of the cell was increased higher than 0.7 V when the electrodes were annealed at 150 deg. C, 5%R.H., however the reasons for this are still to be further investigated. The results show that the potential of the phosphoric acid treated gypsum for the intermediate temperature proton conductor.

  9. Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2012-01-01

    Several stainless steels, nickel-based alloys, Ta-coated stainless steel, niobium, nickel, platinum and gold were evaluated as possible materials for use in the intermediate temperature water electrolysers. The corrosion resistance was measured in molten KH2PO4 as simulated conditions corresponding...

  10. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  11. Energetics and dynamics of droplet evaporation in high temperature intermediate Reynolds number flows

    Science.gov (United States)

    Renksizbulut, M.

    Nusselt Numbers and drag coefficients of single-component liquid droplets and solid spheres in high temperature, intermediate Reynolds Number flows were investigated. The evaporation of suspended water, Methanol and n-Heptane droplets were followed in laminar air streams up to 1059 K in temperature using a steady-state measurement technique. It is found that the dynamic blowing effect of evaporation causes large reductions in heat transfer rates, and that the film conditions constitute an appropriate reference state for the evaluation of thermophysical properties. The numerical results indicate that the blowing effect of evaporation on momentum transfer is to reduce friction drag very significantly but at the same time increase pressure drag by almost an equal amount; the net effect on the total drag force being only a marginal reduction. In all cases, it is found that thermophysical property variations play a very dominant role in reducing the drag forces acting on cold particles. Results are analysed and a correlation for stagnation-point heat transfer is also presented.

  12. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    Science.gov (United States)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  13. Strategic review on management and disposal of low- and intermediate-level solid radwastes

    International Nuclear Information System (INIS)

    Li Xuequn

    1993-01-01

    An overview on the actual status of solid low- and intermediate-level wastes (L/ILW) management in China is described. Some of the main problems at present are analysed. The strategies on management and disposal of the wastes are discussed in light of systematology. A large amount of solid L/ILW and distilled residual solution to be solidified have been accumulated during the past 30 years development of nuclear industry in China. These wastes, containing fission products, activated products, and uranium and transuranium elements respectively, mainly come from nuclear reactors, spent fuel reprocessing plants, and nuclear fuel fabrication plants. In the century, solid L/ILW and solidified wastes are produced mainly by nuclear industry; but in the next century, solid wastes will be steadily produced mainly from nuclear power plants

  14. Enhanced oxygen diffusion in low barium-containing La0.2175Pr0.2175Ba0.145Sr0.4Fe0.8Co0.2O3−δ intermediate temperature solid oxide fuel cell cathodes

    KAUST Repository

    Vert, Vicente B.

    2012-09-01

    Isotopic tracer diffusion studies have been performed on the perovskite composition La 0.2175Pr 0.2175Ba 0.145Sr 0.4Fe 0.8Co 0.2O 3-δ to obtain the diffusion and surface exchange coefficients for oxygen. This material has been identified as a highly active electrocatalytic cathode for intermediate temperature solid oxide fuel cells. The oxygen diffusion coefficients obtained in the 450-650 °C temperature range are higher than the ones measured for most of the cathode materials reported in the literature and they agree with those calculated from electrochemical impedance spectroscopy measurements performed on symmetrical cells. © 2012 Elsevier B.V. All rights reserved.

  15. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  16. Intermediate Temperature Proton Conductors – Why and How

    OpenAIRE

    Li, Qingfeng; Aili, David; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2016-01-01

    The current technologies of fuel cells and electrolzers are based on ionic conducting electrolyte materials exclusively operational either in the low (20 - 200ºC) or high (600 - 1000ºC) temperature ranges. The intermediate temperature window, especially between 200 and 400 ºC, is still only represented by early fundamental material research for ionic electrolytes. Such materials, most likely based on proton conductors, are expected to bring a new generation of the technologies: fuel cells by ...

  17. Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Cai, Yixiao; Wang, Baoyuan; Wang, Yi; Xia, Chen; Qiao, Jinli; van Aken, Peter A.; Zhu, Bin; Lund, Peter

    2018-04-01

    YSZ as the electrolyte of choice has dominated the progressive development of solid oxide fuel cell (SOFC) technologies for many years. To enable SOFCs operating at intermediate temperatures of 600 °C or below, major technical advances were built on a foundation of a thin-film YSZ electrolyte, NiO anode, and perovskite cathode, e.g. La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF). Inspired by functionalities in engineered heterostructure interfaces, the present work uses the components from state-of-the-art SOFCs, i.e, the anode NiO-YSZ and the cathode LSCF-YSZ, or the convergence of all three components, i.e., NiO-YSZ-LSCF, to fabricate semiconductor-ionic membranes (SIMs) and devices. A series of proof-of-concept fuel cell devices are designed by using each of the above SIMs sandwiched between two semiconducting Ni0.8Co0.15Al0.05LiO2-δ (NCAL) layers. We systematically compare these novel designs at 600 °C with two reference fuel cells: a commercial product of anode-supported YSZ electrolyte thin-film cell, and a lab-assembled fuel cell with a conventional configuration of NiO-YSZ (anode)/YSZ (electrolyte)/LSCF-YSZ (cathode). In comparison to the reference cells, the SIM device in a configuration of NCAL/NiO-YSZ-LSCF/NCAL reaches more than 3-fold enhancement of the maximum power output. By using spherical aberration-corrected transmission electron microscopy and spectroscopy approaches, this work offers insight into the mechanisms underlying SIM-associated SOFC performance enhancement.

  18. Propane Oxidation at High Pressure and Intermediate Temperatures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    Propane oxidation at intermediate temperatures (500—900 K) and high pressure (100 bar) has been characterized by conducting experiments in a laminar flow reactor over a wide range of stoichiometries. The onset of fuel oxidation was found to be 600—725 K, depending on mixture stoichiometry...

  19. Geological factors of disposal site selection for low-and intermediate-level solid radwastes in China

    International Nuclear Information System (INIS)

    Chen Zhangru

    1993-01-01

    For disposal of low- and intermediate-level solid radioactive wastes, shallow-ground disposal can provide adequate isolation of waste from human for a fairly long period of time. The objective of disposal site selection is to ensure that the natural properties of the site together with the engineered barrier site shall provide adequate isolation of radionuclides from the human beings and environment, so the whole disposal system can keep the radiological impact within an acceptable level. Since the early 1980's, complying with the national standards and the expert's conception as well as the related IAEA Criteria, geological selection of disposal sites for low-and intermediate-level solid radwastes has been carried out in East China, South China, Northwest China and Southwest China separately. Finally, 5 candidate sites were recommended to the CNNC

  20. Development of solid electrolytes for water electrolysis at intermediate temperatures. Task 3 report; Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Anderson, R.; Kopitzke, R.W.

    1995-12-01

    This project is an attempt to synthesize and fabricate proton exchange membranes for hydrogen production via water electrolysis that can take advantage of the better kinetic and thermodynamic conditions that exist at higher temperatures. Current PEM technology is limited to the 125--150 C range. Based on previous work evaluating thermohydrolytic stability, some 5 families of polymers were chosen as viable candidates: polyether ketones, polyether sulfones, fluorinated polyimides, polybenzimidazoles, and polyphenyl quinoxalines. Several of these have been converted into ionomers via sulfonation and fashioned into membranes for evaluation. In particular, the sulfonated polyetheretherketone, or SPEEK, was tested for water uptake, thermo-conductimetric analysis, and performance as the solid electrolyte material in an electrolysis cell. Results comparable to commercial perfluorocarbon sulfonates were obtained.

  1. Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu

    2014-10-01

    La-doped strontium titanate (LST) is a promising, redox-stable perovskite material for direct hydrocarbon oxidation anodes in intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this study, nano-sized LST and Sm-doped ceria (SDC) powders are produced by the sol-gel and glycine-nitrate processes, respectively. The chemical compatibility between LST and electrolyte materials is studied. A LST-SDC composite anode is prepared by suspension plasma spraying (SPS). The effects of annealing conditions on the phase structure, microstructure, and chemical stability of the LST-SDC composite anode are investigated. The results indicate that the suspension plasma-sprayed LST-SDC anode has the same phase structure as the original powders. LST exhibits a good chemical compatibility with SDC and Mg/Sr-doped lanthanum gallate (LSGM). The anode has a porosity of ∼40% with a finely porous structure that provides high gas permeability and a long three-phase boundary for the anode reaction. Single cells assembled with the LST-SDC anode, La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte, and La0.8Sr0.2CoO3-SDC cathode show a good performance at 650-800 °C. The annealing reduces the impedances due to the enhancement in the bonding between the particles in the anode and interface of anode and LSGM electrolyte, thus improving the output performance of the cell.

  2. Electrical, thermal and electrochemical properties of SmBa_1_−_xSr_xCo_2O_5_+_δ cathode materials for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Subardi, Adi; Chen, Ching-Cheng; Cheng, Meng-Hsien; Chang, Wen-Ku; Fu, Yen-Pei

    2016-01-01

    The effects of Sr doping on the Ba-site of SmBaCo_2O_5_+_δ in term of structure characteristics, thermal expansion coefficients (TECs), electrical properties and electrochemical performance have been investigated as cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TECs of SBSC-based cathodes are calculated from 19.8 − 20.5 × 10"−"6 K"−"1 in the temperature range of 100–800 °C, and the TEC values decrease with increasing Sr content. The oxygen content and the average oxidation state of cobalt increase with increasing Sr content determined by the X-ray photoelectron spectroscopy (XPS) and Thermogravimetry analysis (TGA) results. At a given temperature, the electrical conductivity values are in the order as follows: SBSC55 > SBSC73 > SBSC91. This behavior might be due to the increase in electronic hole. The electrical conductivities of SBSC55 at 600 °C are distributed in the range of 660 S/cm of p(O_2) = 0.01 atm to 1168 S/cm of p(O_2) = 0.21 atm, indicating that the cathode can endure reducing atmosphere. SBSC55 with high electrical conductivity in p(O_2) = 0.01 atm is ascribed to SBSC55 with stable double-perovskite structure at such low oxygen partial pressure. The SBSC55 cathode showed the highest power density of 304 mW/cm"2 at operating temperature of 700 °C. Based on the electrochemical properties, SBSC55 is a potential cathode for IT-SOFCs.

  3. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Christelle, E-mail: christelle.herman@ulb.ac.b [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium); Leyssens, Tom [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1 Place Louis Pasteur, 1348 Louvain-La-Neuve (Belgium); Vermylen, Valerie [UCB Pharma, 60 Allee de la Recherche, 1070 Braine l' Alleud (Belgium); Halloin, Veronique; Haut, Benoit [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium)

    2011-05-15

    Research highlights: We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. The second method is an experimental study of the stability thermal range of each morph. We identify the nature of crystals in suspension at equilibrium through Raman analysis. The solid-solid transition temperature is found equal to 303.65 K {+-} 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T{sub tr}) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T{sub tr} as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T{sub tr} is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC while

  4. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    Research highlights: → We test two methods to obtain the solid-solid transition temperature of Etiracetam system, showing two enantiotropically related polymorphs. → The first method, based on a thermodynamic development, is sensitive to the correctness of the data required. → The second method is an experimental study of the stability thermal range of each morph. → We identify the nature of crystals in suspension at equilibrium through Raman analysis. → The solid-solid transition temperature is found equal to 303.65 K ± 0.5 K. - Abstract: This paper presents two distinct methods for the determination of the solid-solid transition temperature (T tr ) separating the temperature ranges of stability of two crystallographic forms, hereafter called morphs, of a same substance. The first method, based on thermodynamic calculations, consists in determining T tr as the temperature at which the Gibbs free energies of the two morphs are equal to each other. For this purpose, some thermodynamic characteristics of both morphs are required, such as the specific heat capacities, the melting temperatures and the melting enthalpies. These are obtained using the Differential Scanning Calorimetry (DSC). In the second method, T tr is determined directly by an experimental study of the temperature ranges of stability of each morph. The three main originalities of the method developed are (i) to prepare samples composed by an isomassic mixture of crystals of both morphs, (ii) to set them in a thermostated and agitated suspension, and (iii) to use an in situ Raman spectroscopic probe for the determination of the crystallographic form of the crystals in suspension at equilibrium. Both methods are applied to determine the solid-solid transition temperature of the enantiotropic system of Etiracetam, and both of its two crystallographic forms so far identified, named morph I and morph II. The first method is shown to be very sensitive to the experimental data obtained by DSC

  5. Preparation and characterization of La0,60Sr0,40Co0,20Fe0,80O3-δ powders for intermediate temperature solid oxide fuel cells (ITSOFC) cathode

    International Nuclear Information System (INIS)

    Vargas, R.A.; Chiba, R.; Bonturim, E.; Andreoli, M.; Seo, E.S.M.

    2009-01-01

    Nowadays a material that is studied as cathode in intermediate temperature solid oxide fuel cells (ITSOFC) is the mixing oxide La 0,60S r 0 , 40 Co 0 , 20 Fe 0 , 80 O 3-δ (LSCF), that possess pseudo-perovskite structure. The objective of this work is to present the physical, chemical and microstructural of LSCF powders characteristics, prepared by the citrate technique. The main analyses utilized were: X-ray diffraction, X-ray fluorescence spectroscopy, laser scattering granulometry, and scanning electron microscopy. The results show that the elimination of organic precursors is important for desired structure formation and that amount of this phase depends on cobalt content. Moreover, the chemical composition is next to stoichiometric calculated (x=0.40 and y=0.80) and the average sizes of particles are adjusted for ceramic suspensions preparation, contributing for the wet powder spraying step conformation. (author)

  6. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  7. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  8. Containers for packaging of solid and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    1993-01-01

    Low and intermediate level radioactive wastes are generated at all stages in the nuclear fuel cycle and also from the medical, industrial and research applications of radiation. These wastes can potentially present risks to health and the environment if they are not managed adequately. Their effective management will require the wastes to be safely stored, transported and ultimately disposed of. The waste container, which may be defined as any vessel, drum or box, made from metals, concrete, polymers or composite materials, in which the waste form is placed for interim storage, for transport and/or for final disposal, is an integral part of the whole package for the management of low and intermediate level wastes. It has key roles to play in several stages of the waste management process, starting from the storage of raw wastes and ending with the disposal of conditioned wastes. This report provides an overview of the various roles that a container may play and the factors that are important in each of these roles. This report has two main objectives. The first is to review the main requirements for the design of waste containers. The second is to provide advice on the design, fabrication and handling of different types of containers used in the management of low and intermediate level radioactive solid wastes. Recommendations for design and testing are given, based on the extensive experience available worldwide in waste management. This report is not intended to have any regulatory status or objectives. 56 refs, 16 figs, 10 tabs

  9. Corrosion behavior of construction materials for intermediate temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2013-01-01

    Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance w...

  10. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  11. Low temperature intermediate band metallic behavior in Ti implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Javier, E-mail: oleaariza@fis.ucm.es; Pastor, David; Garcia-Hemme, Eric; Garcia-Hernansanz, Rodrigo; Prado, Alvaro del; Martil, Ignacio; Gonzalez-Diaz, German

    2012-08-31

    Si samples implanted with very high Ti doses and subjected to Pulsed-Laser Melting (PLM) have been electrically analyzed in the scope of a two-layer model previously reported based on the Intermediate Band (IB) theory. Conductivity and Hall effect measurements using the van der Pauw technique suggest that the insulator-metal transition takes place for implantation doses in the 10{sup 14}-10{sup 16} cm{sup -2} range. Results of the sample implanted with the 10{sup 16} cm{sup -2} dose show a metallic behavior at low temperature that is explained by the formation of a p-type IB out of the Ti deep levels. This suggests that the IB would be semi-filled, which is essential for IB photovoltaic devices. - Highlights: Black-Right-Pointing-Pointer We fabricated high dose Ti implanted Si samples for intermediate band research. Black-Right-Pointing-Pointer We measured the electronic transport properties in the 7-300 K range. Black-Right-Pointing-Pointer We show an insulator to metallic transition when the intermediate band is formed. Black-Right-Pointing-Pointer The intermediate band is semi-filled and populated by holes. Black-Right-Pointing-Pointer We satisfactorily explain the electrical behavior by an intermediate band model.

  12. Synthesis and Characterization of Cu- and Co-Doped Bi4V2O11 for Intermediate-Temperature Solid Oxide Fuel Cell Electrolytes by Carbonate Coprecipitation

    Science.gov (United States)

    Lee, Jin Goo; Yoon, Hyon Hee

    2011-01-01

    Bi2MexV1-xO5.5-3x/2 (Me = Cu; 0≤x≤0.2) powders were prepared by the ammonium carbonate coprecipitation method. The starting salts were bismuth nitrate, copper nitrate, cobalt nitrate, and vanadium sulphate. The thermal decomposition of Bi2MexV1-xO5.5-3x/2 precursors was completed at about 500 °C. The crystallite structure, surface morphology, and ionic conductivity of the prepared powders and pellets were examined using X-ray diffractometry, field emission scanning electron microscopy, and an impedance analyzer, respectively. The average particle sizes of the Bi2Cu0.1V0.9O5.35 and Bi2Co0.1V0.9O5.35 powders were 10-50 nm. The tetragonal structure (γ-phase) appeared at sintering temperatures higher than 700 °C and the peak intensity increased at higher sintering temperatures. The ionic conductivities of the Bi2Cu0.1V0.9O5.35 and Bi2Co0.1V0.9O5.35 pellets sintered at 800 °C showed the highest values of 6.8×10-2 S cm-1 at 700 °C and 9.1×10-2 S cm-1 at 700 °C, respectively. The optimum concentration of the Cu and Co dopants in Bi2MexV1-xO5.5-3x/2 was determined to be 0.1. The results of this study demonstrated that the ammonium carbonate coprecipitation process could be used as an economical method for the preparation of Bi2MexV1-xO5.5-3x/2 electrolytes for intermediate-temperature solid oxide fuel cells.

  13. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  14. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  15. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries operating at intermediate temperature

    Science.gov (United States)

    Hwang, Jinkwang; Matsumoto, Kazuhiko; Orikasa, Yuki; Katayama, Misaki; Inada, Yasuhiro; Nohira, Toshiyuki; Hagiwara, Rika

    2018-02-01

    Maricite NaFePO4 (m-NaFePO4) was investigated as a positive electrode material for intermediate-temperature operation of sodium secondary batteries using ionic liquid electrolytes. Powdered m-NaFePO4 was prepared by a conventional solid-state method at 873 K and subsequently fabricated in two different conditions; one is ball-milled in acetone and the other is re-calcined at 873 K after the ball-milling. Electrochemical properties of the electrodes prepared with the as-synthesized m-NaFePO4, the ball-milled m-NaFePO4, and the re-calcined m-NaFePO4 were investigated in Na[FSA]-[C2C1im][FSA] (C2C1im+ = 1-ethyl-3-methylimidazolium, FSA- = bis(fluorosulfonyl)amide) ionic liquid electrolytes at 298 K and 363 K to assess the effects of temperature and particle size on their electrochemical properties. A reversible charge-discharge capacity of 107 mAh g-1 was achieved with a coulombic efficiency >98% from the 2nd cycle using the ball-milled m-NaFePO4 electrode at a C-rate of 0.1 C and 363 K. Electrochemical impedance spectroscopy using m-NaFePO4/m-NaFePO4 symmetric cells indicated that inactive m-NaFePO4 becomes an active material through ball-milling treatment and elevation of operating temperature. X-ray diffraction analysis of crystalline m-NaFePO4 confirmed the lattice contraction and expansion upon charging and discharging, respectively. These results indicate that the desodiation-sodiation process in m-NaFePO4 is reversible in the intermediate-temperature range.

  17. Effect of intermediate soil cover on municipal solid waste decomposition.

    Science.gov (United States)

    Márquez-Benavides, L; Watson-Craik, I

    2003-01-01

    A complex series of chemical and microbiological reactions is initiated with the burial of refuse in a sanitary landfill. At the end of each labour day, the municipal solid wastes (MSW) are covered with native soil (or an alternative material). To investigate interaction between the intermediate cover and the MSW, five sets of columns were set up, one packed with refuse only, and four with a soil-refuse mixture (a clay loam, an organic-rich peaty soil, a well limed sandy soil and a chalky soil). The anaerobic degradation over 6 months was followed in terms of leachate volatile fatty acids, chemical oxygen demand, pH and ammoniacal-N performance. Results suggest that the organic-rich peaty soil may accelerate the end of the acidogenic phase. Clay appeared not to have a significant effect on the anaerobic degradation process.

  18. Fabrication and Characterizations of Materials and Components for Intermediate Temperature Fuel Cells and Water Electrolysers

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Prag, Carsten Brorson; Li, Qingfeng

    The worldwide development of fuel cells and electrolysers has so far almost exclusively addressed either the low temperature window (20-200 °C) or the high temperature window (600-1000 °C). This work concerns the development of key materials and components of a new generation of fuel cells...... and electrolysers for operation in the intermediate temperature range from 200 to 400 °C. The intermediate temperature interval is of importance for the use of renewable fuels. Furthermore electrode kinetics is significantly enhanced compared to when operating at low temperature. Thus non-noble metal catalysts...... might be used. One of the key materials in the fuel cell and electrolyser systems is the electrolyte. Proton conducting materials such as cesium hydrogen phosphates, zirconium hydrogen phosphates and tin pyrophosphates have been investigated by others and have shown interesting potential....

  19. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  20. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  1. Estimation of the conditioning and storage costs of low- and intermediate-level solid radioactive wastes

    International Nuclear Information System (INIS)

    Lo Moro, A.; Panciatici, G.

    1977-01-01

    The conditioning and storage costs of low- and intermediate-level solid radioactive wastes are analyzed. The cost of direct labour is assumed as the reference cost for their computation and the storage cost is considered as resulting from the contract cost ''una tantum'' and from the leasing cost. As an example, the cost trends are reported, relevant to the solution adopted at CAMEN (conditioning in concrete containers and storage on concrete open-air bed)

  2. An analysis of system pressure and temperature distribution in self-pressurizer of SMART considering thermal stratification at intermediate cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yeon Moon; Lee, Doo Jeong; Yoon, Ju Hyun; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    Because the pressurizer is in reactor vessel, the heat transfer from primary water would increase the temperatures of fluids in pressurizer to same temperature of hotleg, if no cooling equipment were supplied. Thus, heat exchanger and thermal insulator are needed to minimize heat transferred from primary water and to remove heat in pressurizer. The temperatures in cavities of pressurizer for normal operation are 70 deg C and 74 deg C for intermediate and end cavity, respectively, which considers the solubility of nitrogen gas in water. Natural convection is the mechanism of heat balance in pressurizer of SMART. In SMART, the heat exchanger in pressurizer is placed in lower part of intermediate cavity, so the heat in upper part of intermediate cavity can't be removed adequately and it can cause thermal stratification. If thermal stratification occurred, it increases heat transfers to nitrogen gas and system pressure increases as the result. Thus, proper evaluation of those effects on system pressure and ways to mitigate thermal stratification should be established. This report estimates the system pressure and temperatures in cavities of pressurizer with considering thermal stratification in intermediate cavity. The system pressure and temperatures for each cavities considered size of wet thermal insulator, temperature of upper plate of reactor vessel, parameters of heat exchanger in intermediate cavity such as flow rate and temperature of cooling water, heat transfer area, effective tube height, and location of cooling tube. In addition to the consideration of thermal stratification thermal mixing of all water in intermediate cavity also considered and compared in this report. (author). 6 refs., 60 figs., 2 tabs.

  3. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  4. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  5. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’ as, Eman H.

    2015-01-01

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures

  6. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  7. Intermediate Temperature Steam Electrolysis with Phosphate-Based Electrolytes

    DEFF Research Database (Denmark)

    Prag, Carsten Brorson

    as the technological issues and challenges faced. A setup suitable for intermediate temperature electrolysis has been constructed in order to accommodate testing in the IT region. This included the evaluation of multiple generations of components such as end plates and flow plates. Chemical vapour deposition...... treatment step of the synthesis. It was found that initial heating of the synthesis precursors to 270 _C gave a high quality sample in a reproducible fashion. Investigations of two additional novel phosphates was attempted. These were phosphoric acid treated Nb5P7O30 and a mixture of Bi2P4O13, BiPO4 and 2...

  8. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Wang, Biao; Long, Guohui; Ji, Yuan; Pang, Mingjun; Meng, Xiangwei

    2014-01-01

    Highlights: • A single-phase layered-perovskite PrBa 0.5 Sr 0.5 CoCuO 5+δ (PBSCCu) is prepared by the EDTA–citrate complexing method. • PBSCCu cathode has a good chemical compatible with GDC electrolyte. • Partial substitution of Cu for Co can efficiently lower the thermal expansion coefficient. • Performances of PrBa 0.5 Sr 0.5 CoCuO 5+δ cathode based on Gd 0.1 Ce 0.9 O 1.95 electrolyte is reported firstly. - Abstract: Layered perovskite PrBa 0.5 Sr 0.5 CoCuO 5+δ (PBSCCo) oxide is synthesized by EDTA–citrate complexing method and investigated as a novel cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that PBSCCo is chemical compatible with Gd 0.1 Ce 0.9 O 1.95 (GDC) electrolyte below 950 °C. The thermal expansion coefficient of PBSCCo is 17.58 × 10 −6 K −1 between 30 °C and 900 °C. The maximum electrical conductivity of PBSCCo is 483 S cm −1 at 325 °C. The polarization resistance of PBSCCo cathode on GDC electrolyte is as low as 0.06 Ω cm 2 at 800 °C. The maximum power density of the electrolyte-supported single cell with PBSCCo cathode achieves 521 mW cm −2 at 800 °C. Preliminary results indicate that PBSCCo is a potential cathode material for application in IT-SOFCs

  9. AW-101 entrained solids - Solubility versus temperature

    International Nuclear Information System (INIS)

    GJ Lumetta; RC Lettau; GF Piepel

    2000-01-01

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan

  10. Method for calculating solid-solid phase transitions at high temperature: An application to N2O

    International Nuclear Information System (INIS)

    Kuchta, B.; Etters, R.D.

    1992-01-01

    Two similar techniques for calculating solid-solid phase transitions at high temperatures are developed, where the contribution of the entropy may be a decisive factor. They utilize an artificial reversible path from one phase to another by application of a control parameter. Thermodynamic averages are calculated using constant-volume and constant-pressure Monte Carlo techniques. An application to N 2 O at room temperature shows that the cubic Pa3 to orthorhombic Cmca transition occurs near 4.9-GPa pressure, very close to the value calculated at very low temperatures. These results support experimental evidence that the transition pressure is virtually independent of temperature

  11. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  12. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    Science.gov (United States)

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  13. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    Science.gov (United States)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  14. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-δ for electrolyte of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Enoki, Makiko; Ishihara, Tatsumi; Akiyama, Tomohiro

    2007-01-01

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm -1 and its maximum power density was a value of 245 mW cm -2 in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm 0.5 Sr 0.5 CoO 3 . The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application

  15. Formal treatment of some low-temperature properties of melting solid helium-3

    International Nuclear Information System (INIS)

    Goldstein, L.

    1979-01-01

    Recent observations of the low-field-strength paramagnetic susceptibility of melting solid 3 He indicate its Curie--Weiss-type behavior at temperatures T> or approx. =5 mK. These require an identical temperature behavior of the magnetic melting-pressure shift over the same temperature range. Melting-pressure-shift measurements should thus independently confirm the observed temperature behavior of the susceptibility and yield, in addition, the curie constant of melting solid 3 He. Using the theoretical value of this constant in the low- or moderate-field-strength melting-pressure-shift formula, the calculated shifts appear to be currently accessible to measurements with acceptable accuracy at T> or approx. =5 mK. The inverse problem of determination of the paramagnetic moment or magnetization of melting solid 3 He from melting-pressure shifts may be solved on the basis of a differential magnetothermodynamic relation without significant limitations on the applied external magnetic field strength or on the temperature range. Helium-3 melting-pressure and temperature measurements in the presence of a constant and uniform magnetic field of known strength should enable, within the above formalism, the determination of the magnetic phase diagram of solid 3 He at melting down to the lowest experimentally accessible temperatures. This approach may supplement other independent methods of magnetic phase-boundary-line determinations of solid 3 He

  16. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  17. Deviation from van’t Hoff Behavior of Solids at Low Temperature

    NARCIS (Netherlands)

    Sluyters, Jan H.; Sluyters-rehbach, Margaretha

    2017-01-01

    As a sequel to results obtained on the low-temperature behavior of liquids, a similar study is presented for solids. A molecule in a solid interacts with the other molecules of the crystal so that it is subjected to a specific multimolecular potential, kT0. At temperature T < T0, the molecules are

  18. Low temperature kinetics of In-Cd solid solution decomposition

    Czech Academy of Sciences Publication Activity Database

    Pal-Val, P.P.; Pal-Val, L.N.; Ostapovets, A.A.; Vaněk, Přemysl

    2008-01-01

    Roč. 137, - (2008), s. 35-42 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z10100520 Keywords : low temperatures * In-based alloys * solid solutions * isothermal structure instability * Young's modulus * electrical resistivity * phase diagrams Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.scientific.net/3-908451-53-1/35/

  19. Low temperature ozone oxidation of solid waste surrogates

    Science.gov (United States)

    Nabity, James A.; Lee, Jeffrey M.

    2015-09-01

    Solid waste management presents a significant challenge to human spaceflight and especially, long-term missions beyond Earth orbit. A six-month mission will generate over 300 kg of solid wastes per crewmember that must be dealt with to eliminate the need for storage and prevent it from becoming a biological hazard to the crew. There are several methods for the treatment of wastes that include oxidation via ozone, incineration, microbial oxidation or pyrolysis and physical methods such as microwave drying and compaction. In recent years, a low temperature oxidation process using ozonated water has been developed for the chemical conversion of organic wastes to CO2 and H2O. Experiments were conducted to evaluate the rate and effectiveness with which ozone oxidized several different waste materials. Increasing the surface area by chopping or shredding the solids into small pieces more than doubled the rate of oxidation. A greater flow of ozone and agitation of the ozonated water system also increased processing rates. Of the materials investigated, plastics have proven the most difficult to oxidize. The processing of plastics above the glass transition temperatures caused the plastics to clump together which reduced the exposed surface area, while processing at lower temperatures reduced surface reaction kinetics.

  20. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  1. A Low Temperature Detoxification Method for Treatment of Chrysotile-Containing Waste Roofing Slate

    Directory of Open Access Journals (Sweden)

    Hwanju Jo

    2017-08-01

    Full Text Available In this study, we evaluated a two-step process for detoxification of waste roofing slate, involving cement hydrate removal and low temperature detoxification using oxalic acid. These treatments were conducted on raw material and intermediate product, respectively. Cement hydrate removal effectively eliminated most Ca-containing cement hydrate components from the raw material under the following conditions: HCl to solid ratio: 0.456 g/g, reaction time: 2 h, and solid to liquid ratio: 0.124 g/mL. Following low temperature (~100 °C detoxification of intermediate product obtained after cement hydrate removal, chrysotile in waste roofing slate was effectively transformed to Mg-oxalate under conditions of oxalic acid to solid ratio of >0.67 g/g.

  2. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O{sub 3-{delta}} for electrolyte of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Hiroyuki [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan); Enoki, Makiko [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Akiyama, Tomohiro [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: takiyama@eng.hokudai.ac.jp

    2007-03-14

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm{sup -1} and its maximum power density was a value of 245 mW cm{sup -2} in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3}. The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application.

  3. New diffusion mechanism for high temperature diffusion in solids

    International Nuclear Information System (INIS)

    Doan, N.V.; Adda, Y.

    1986-09-01

    A new atomic transport mechanism in solids at high temperatures has been discovered by Molecular Dynamics computer simulation. It can be described as a ring sequence of atomic replacements induced by unstable Frenkel pairs. This transport process takes place without stable defects, the atomic migration occurring indeed by simultaneous creation and migration of unstable defects. Starting from the analysis of this mechanism in different solids at high temperature (CaF 2 , Na, Ar) and in irradiated copper by subthreshold collisions, we discuss the role of this mechanism on various diffusion controlled phenomena and also on the atomic processes of defect creation

  4. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  5. Synthesis, characterization and electrical properties of solid electrolyte for solid oxide fuel cell; Preparacao, caracterizacao e propriedades eletricas de eletrolito solido para celula a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Marco Antonio Coelho; Garcia, Carlos Mario; Matos, Jeferson Hrenechen [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: felsky@latec.org.br, garcia@latec.org.br, jeferson.h@latec.org.br

    2010-04-15

    Solid electrolytes of BaCe{sub 08}Gd{sub O29} were prepared by the polymeric precursor method. X-ray diffraction data shows a single phase with orthorhombic crystalline structure. The densification process was followed by scanning electronic microscopy and apparent density measurements. The apparent density was developed for different temperatures of sintering, reaching > 96% for sintered temperature of 1550 {sup 0}C deg . The electrochemical impedance analysis was development in the temperature of 400-700 deg C, in air atmosphere at 700 deg C a value of 30,6 mS.cm{sup -1} was obtained. The results of conductivity have confirmed the gadolinium doped barium cerate has a great potential for use as solid electrolyte for intermediate temperature solid oxide fuel cell, at experimental controlled conditions. (author)

  6. Developments in the management of low and intermediate activity solid wastes at the Cadarache Centre

    International Nuclear Information System (INIS)

    Barbreau, A.; Marcaillou, J.; Mery, J.; Pinto, D.; Rancon, D.

    1975-01-01

    The Cadarache Nuclear Studies Centre is located in a thinly populated region. Covering a total area of 1600 hectares, it has been able to accommodate numerous and important research facilities. In 1970, 11 reactors or critical assemblies were in operation. More than 164000 m 2 are devoted to laboratories, testing areas, installations for the inspection of irradiated fuel elements and plutonium technology workshops. Up to 1968 the low- and intermediate-activity solid wastes (categories 1, 2 and 30) collected at the Centre were divided into two classes for disposal purposes: (a) burnable wastes which, after sorting, were destroyed in an incinerator; (b) compressible wastes which were compacted in concrete containers after recovery of the packing, by means of a 250-ton press. The situation at Cadarache and the results obtained in hydrogeological studies have prompted the Centre to improve the processing of these wastes and reduce the cost. The treatment of solid wastes should, in effect, be regarded as a step towards their final elimination. The measure envisaged at Cadarache were thus aimed at permitting final storage on site, in order to reduce the volume of waste, contain the activity and keep the cost to a minimum. The management of solid wastes is at present based on the following methods: (a) storage in trenches with PVC packing for non-burnable solid wastes of categories 1 and 4, after monitoring of specific activities; (b) compacting and storage in leak-proof pools for solid wastes of categories 2 and 3, the most highly active undergoing a period of decay storage beforehand; (c) incineration of burnable solid wastes of categories 1 and 2 and also of contaminated oils and solvents. (author)

  7. Storage Stability and Improvement of Intermediate Moisture Foods, Phase 3

    Science.gov (United States)

    Labuza, T. P.

    1975-01-01

    Methods were determined for the improvement of shelf-life stability of intermediate moisture foods (IMF). Microbial challenge studies showed that protection against molds and Staphylococcus aureus could be achieved by a combination of antimicrobial agents, humectants and food acids. Potassium sorbate and propylene glycol gave the best results. It was also confirmed that the maximum in heat resistance shown by vegetative pathogens at intermediate water activities also occurred in a solid food. Glycols and sorbitol both achieve browning inhibition because of their action as a medium for reaction and effect on viscosity of the adsorbed phase. Chemical availability results showed rapid lysine loss before visual discoloration occurred. This is being confirmed with a biological test using Tetrahymena pyriformis W. Accelerated temperature tests show that effectiveness of food antioxidants against rancidity development can be predicted; however, the protection factor changes with temperature. BHA was found to be the best antioxidant for iron catalyzed oxidation.

  8. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chen Dengjie; Wang Fucun; Shi Huangang; Ran Ran; Shao Zongping

    2012-01-01

    Co-free oxides with a nominal composition of LnBaFe 2 O 5+δ , where Ln = La, Pr, Nd, Sm, Gd, and Y, were synthesized and phase structure, oxygen content, electronic conductivity, oxygen desorption, thermal expansion, microstructure and electrochemical performance were systematically investigated. Among the series of materials tested, LaBaFe 2 O 5+δ oxide showed the largest electronic conductivity and YBaFe 2 O 5+δ oxide had the smallest thermal expansion coefficient (TEC) of 14.6 × 10 −6 K −1 within a temperature range of 200–900 °C. All LnBaFe 2 O 5+δ oxides typically possess the TEC values smaller than 20 × 10 −6 K −1 . The oxygen content, electronic conductivity and TEC values are highly dependent on the cation size of the Ln 3+ dopant. The lowest electrode polarization resistance in air under open circuit voltage condition was obtained for SmBaFe 2 O 5+δ electrode and was approximately 0.043, 0.084, 0.196, 0.506 and 1.348 Ω cm 2 at 800, 750, 700, 650 and 600 °C, respectively. The SmBaFe 2 O 5+δ oxide also demonstrated the best performance after a cathodic polarization. A cell with a SmBaFe 2 O 5+δ cathode delivered peak power densities of 1026, 748, 462, 276 and 148 mW cm −2 at 800, 750, 700, 650 and 600 °C, respectively. The results suggest that certain LnBaFe 2 O 5+δ oxides have sufficient electrochemical performance to be promising candidates for cathodes in intermediate-temperature solid oxide fuel cells.

  9. Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3−δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    International Nuclear Information System (INIS)

    Vázquez, Santiago; Davyt, Sebastián; Basbus, Juan F.; Soldati, Analía L.; Amaya, Alejandro; Serquis, Adriana; Faccio, Ricardo; Suescun, Leopoldo

    2015-01-01

    Nanocrystalline La 0.6 Sr 0.4 Fe 0.8 Cu 0.2 O 3−δ (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH 4 NO 3 as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce 0.9 Gd 0.1 O 2−δ (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm −1 at 275 °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm −1 in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La 0.6 Sr 0.4 Fe 0.8 Cu 0.2 O 3−δ was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH 4 NO 3 . • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm −1 at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C

  10. Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids

    International Nuclear Information System (INIS)

    Hettige, Jeevapani J.; Kashyap, Hemant K.; Margulis, Claudio J.

    2014-01-01

    In a recent article by the Castner and Margulis groups [Faraday Discuss. 154, 133 (2012)], we described in detail the structure of the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid as a function of temperature using X-ray scattering, and theoretical partitions of the computationally derived structure function. Interestingly, and as opposed to the case in most other ionic-liquids, the first sharp diffraction peak or prepeak appears to increase in intensity as temperature is increased. This phenomenon is counter intuitive as one would expect that intermediate range order fades as temperature increases. This Communication shows that a loss of hydrophobic tail organization at higher temperatures is counterbalanced by better organization of polar components giving rise to the increase in intensity of the prepeak

  11. Southern Ocean Surface and Intermediate Water Temperature from Alkenones and Mg/Ca of Infaunal Foraminifera for the last 1.5 Ma

    Science.gov (United States)

    Elmore, Aurora; McClymont, Erin; Elderfield, Harry; Kender, Sev

    2014-05-01

    The reconstruction of past surface (SST), intermediate, and deep-water temperatures is critical to our understanding of feedbacks within the ocean-climate system. Intermediate water temperature (IWT) reconstruction is particularly important since intermediate waters, including Antarctic Intermediate Water (AAIW), are proposed to be an important driver in high-low latitude teleconnections, despite limited intermediate-depth records through the Pliocene and Pleistocene. Paleotemperature proxies have caveats, including the 'Carbonate Ion Effect' on the Magnesium to Calcium ratio (Mg/Ca) of benthic foraminifera. However, recent studies demonstrated that the infaunal species, Uvigerina peregrina, co-precipitates Mg independent of secondary effects, affording the use of U.peregrina Mg/Ca as a paleotemperature proxy (Elderfield et al., 2010). We present the first 1.5 Ma record of IWT from Mg/CaU.peregrina coupled with an alkenone- derived UK37' SST record from a sediment core in the Southwest Pacific (DSDP site 593; 1068m water depth), in the core of modern AAIW. Our new data reconstruct interglacial IWTs at ~7°C before and after the Mid-Pleistocene Transition (MPT), whereas values of ~5°C occur in the later Pleistocene. Glacial IWT remained fairly constant (~2°C) throughout the last 1 Ma. These results are in apparent disagreement with the typical idea that glacial-interglacial temperature fluctuations were smaller in the '41-kyr world' before the MPT, than during the '100-kyr world', after the MPT. At proximal ODP site 1123 (3290m water depth; Elderfield et al., 2012), interglacial deepwater temperatures increase by ~1°C after the MPT, with relatively constant glacial deepwater temperatures (~-2°C) over the last 1 Ma. New results from DSDP 593 therefore imply that the mechanisms that drive intermediate and deep water temperatures varied, suggesting that at least one of these watermasses has properties driven by something other than Northern Hemisphere glaciation

  12. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    Science.gov (United States)

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  13. Glycosylation intermediates studied using low temperature 1H- and 19F-DOSY NMR

    DEFF Research Database (Denmark)

    Qiao, Yan; Ge, Wenzhi; Jia, Lingyu

    2016-01-01

    Low temperature 1H- and 19F-DOSY have been used for analyzing reactive intermediates in glycosylation reactions, where a glycosyl trichloroacetimidate donor has been activated using different catalysts. The DOSY protocols have been optimized for low temperature experiments and provided new insight...

  14. Current-voltage characteristics of C70 solid near Meyer-Neldel temperature

    Science.gov (United States)

    Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru

    2017-06-01

    The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.

  15. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    International Nuclear Information System (INIS)

    Schlesinger, Daniel; Pettersson, Lars G. M.; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders

    2016-01-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  16. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Wikfeldt, K. Thor [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Science Institute, University of Iceland, VR-III, 107 Reykjavik (Iceland); Skinner, Lawrie B.; Benmore, Chris J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-08-28

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.

  17. Cobalt-free perovskite Pr_0_._5Sr_0_._5Fe_1_−_xCu_xO_3_−_δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Moura, Caroline G.; Grilo, João Paulo de F.; Macedo, Daniel A.; Cesário, Moisés R.; Fagg, Duncan Paul; Nascimento, Rubens M.

    2016-01-01

    PSFC (Pr_0_._5Sr_0_._5Fe_1_−_xCu_xO_3_−_δ) is a new perovskite-type oxide that has gained considerable attention as cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs), due to its high mixed ionic-electronic conductivity below 800 °C. In this work, PSFC (Pr_0_._5Sr_0_._5Fe_1_−_xCu_xO_3_−_δ, x = 0.2 and 0.4) powders were synthesized by the citrate method and structurally characterized by X-ray diffractometry. Screen-printed cathodes were sintered at 1050 °C and electrochemically characterized by impedance spectroscopy at 600–800 °C in pure oxygen. The area specific resistances (ASR) of the Pr_0_._5Sr_0_._5Fe_0_._8Cu_0_._2O_3_−_δ material are shown to be competitive with typical values reported for cobalt-based cathodes in the measured temperature range, while, importantly, offering a significantly lower activation energy, 0.62 eV. The thermal expansion coefficients of these Co-free cathodes are in the range of 13–15 × 10"−"6 °C"−"1, in a temperature range 200–650 °C, demonstrating a good thermal compatibility with gadolinia doped ceria (CGO) electrolytes. - Highlights: • Cobalt-free Pr_0_._5Sr_0_._5Fe_1_−_xCu_xO_3_−_δ (PSFC) cathodes successfully prepared by the citrate method. • PSFC cathodes are thermally compatible with CGO electrolytes. • Pr_0_._5Sr_0_._5Fe_0_._8Cu_0_._2O_3_−_δ presents competitive area specific resistances of low activation energy, 0.62 eV.

  18. (La{sub 0.74}Bi{sub 0.10}Sr{sub 0.16})MnO{sub 3-{delta}}-(Bi{sub 2}O{sub 3}){sub 0.7}(Er{sub 2}O{sub 3}){sub 0.} {sub 3} composite cathodes for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junliang; Wang, Shaorong; Wang, Zhengrong; Liu, Renzhu; Wen, Tinglian; Wen, Zhaoyin [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2008-05-01

    (La{sub 0.74}Bi{sub 0.10}Sr{sub 0.16})MnO{sub 3-{delta}} (LBSM)-(Bi{sub 2}O{sub 3}){sub 0.7}(Er{sub 2}O{sub 3}){sub 0.3}(ESB) composite cathodes were fabricated for intermediate-temperature solid oxide fuel cells with Sc-stabilized zirconia as the electrolyte. The performance of these cathodes was investigated at temperatures below 750 C by AC impedance spectroscopy and the results indicated that LBSM-ESB had a better performance than traditional composite electrodes such as LSM-GDC and LSM-YSZ. At 750 C, the lowest interfacial polarization resistance was only 0.11 {omega} cm{sup 2} for the LBSM-ESB cathode, 0.49 {omega} cm{sup 2} for the LSM-GDC cathode, and 1.31 {omega} cm{sup 2} for the LSM-YSZ cathode. The performance of the cathode was improved gradually by increasing the ESB content, and the performance was optimal when the amounts of LBSM and ESB were equal in composite cathodes. This study shows that the sintering temperature of the cathode affected performance, and the optimum sintering temperature for LBSM-ESB was 900 C. (author)

  19. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    Science.gov (United States)

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  20. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2015-01-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton

  1. Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaojing; Ren, Zhong; Kuk, Jane; Moffat, Keith (UC)

    2012-03-27

    Light is a fundamental signal that regulates important physiological processes such as development and circadian rhythm in living organisms. Phytochromes form a major family of photoreceptors responsible for red light perception in plants, fungi and bacteria. They undergo reversible photoconversion between red-absorbing (Pr) and far-red-absorbing (Pfr) states, thereby ultimately converting a light signal into a distinct biological signal that mediates subsequent cellular responses. Several structures of microbial phytochromes have been determined in their dark-adapted Pr or Pfr states. However, the structural nature of initial photochemical events has not been characterized by crystallography. Here we report the crystal structures of three intermediates in the photoreaction of Pseudomonas aeruginosa bacteriophytochrome (PaBphP). We used cryotrapping crystallography to capture intermediates, and followed structural changes by scanning the temperature at which the photoreaction proceeded. Light-induced conformational changes in PaBphP originate in ring D of the biliverdin (BV) chromophore, and E-to-Z isomerization about the C{sub 15} = C{sub 16} double bond between rings C and D is the initial photochemical event. As the chromophore relaxes, the twist of the C{sub 15} methine bridge about its two dihedral angles is reversed. Structural changes extend further to rings B and A, and to the surrounding protein regions. These data indicate that absorption of a photon by the Pfr state of PaBphP converts a light signal into a structural signal via twisting and untwisting of the methine bridges in the linear tetrapyrrole within the confined protein cavity.

  2. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    OpenAIRE

    Al Hajri, Mohammed; Malik, Anees U.; Meroufel, Abdelkader; Al-Muaili, Fahd

    2015-01-01

    Dissimilar metal weld (DMW) joint between alloyed steel (AS) and stainless steel (SS) failed at one of intermediate temperature superheater (ITSH) tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years) where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results o...

  3. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2016-09-17

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015, 119, 7361–7374] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450–1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  4. New aspects about reduced LCF-life time of spherical ductile cast iron due to dynamic strain aging at intermediate temperatures

    International Nuclear Information System (INIS)

    Mouri, Hayato; Wunderlich, Wilfried; Hayashi, Morihito

    2009-01-01

    Spherical ductile cast iron (FCD400) is widely used as container material in nuclear energy processing line due to its superior mechanical properties and low price. Fatigue properties in low cycle fatigue (LCF) can be described well by the Manson-Coffin-Basquin's rule. However, at intermediate temperature range between 453 and 723 K the elongation-temperature-diagram shows a significantly 20-10% reduced elongation and an increase in yield stress in tensile test experiments. These non-linear deviations and the phenomenon of less ductility at intermediate temperatures are known for a long time [K. Chijiiwa, M. Hayashi, Mechanical properties of ductile cast iron at temperature in the region of room temperature to liquid, Imono 51 (7) (2004) 395-400]. But the following explanation is presented for the first time. In the same temperature range as the reduced fatigue life time dynamic strain ageing (DSA) also known as Portevin-le-Chartelier effect with the formation of visible serrations occurs. Both phenomena are explained by interaction effects between carbon diffusion and dislocation velocity which have at this temperature the same order of magnitude. However, this phenomenon shows interesting behavior at intermediate temperature range. During the low cycle fatigue test, DSA phenomenon disappeared, but mechanical properties show clear evidence of DSA phenomenon. Therefore, the purpose of this paper is to study the correlation of DSA occurrence, LCF and mechanical properties.

  5. Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Antolin, E.; Marti, A.; Stanley, C.R.; Farmer, C.D.; Canovas, E.; Lopez, N.; Linares, P.G.; Luque, A.

    2008-01-01

    Conceived to exceed the conversion efficiency of conventional photovoltaic devices, the intermediate band solar cell bases its operation on exploiting, besides the usual band-to-band optical transitions, the absorption of two sub-bandgap photons. For the present, the only technology used to implement an intermediate band in real devices has been the growth of an InAs/GaAs quantum dot superlattice. In practice, the obtained material shows two limitations: the narrow energy gap between conduction and intermediate band and the appearance of growth defects due to the lattice stress. The consequences are the presence of non-radiative recombination mechanisms and the thermal escape of electrons from the intermediate to the conduction band, hindering the splitting of the quasi-Fermi levels associated with the intermediate and conduction bands and the observation of photocurrent associated with the two-photon absorption. By reducing the temperature at which the devices are characterised we have suppressed the parasitic thermal mechanisms and have succeeded in measuring the photocurrent caused by the absorption of two below bandgap photons. In this work, the characterization of this photocurrent at low temperature is presented and discussed

  6. Explanation od sudden temperature dependence of muon catalysis in solid deuterium

    CERN Document Server

    Gershtejn, S S

    2001-01-01

    It is indicated, that the elastic scattering of the d mu-meson atoms in the solid deuterium at sufficiently low temperatures (as well as of slow neutrons) occurs on the whole crystalline lattice practically without energy loss, and the inelastic collision with the phonon excitation is low.Therefore, the resonance formation of the dd mu-molecules in the solid deuterium takes place before the d mu mesoatoms thermalization and it explains practically observed independence of the dd mu-molecules formation rate and muon catalysis of the temperatures

  7. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  8. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    Science.gov (United States)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  9. Atomistic study of ternary oxides as high-temperature solid lubricants

    Science.gov (United States)

    Gao, Hongyu

    Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the

  10. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    Science.gov (United States)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  11. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  12. Synthesis, structure and low temperature study of electric transport ...

    Indian Academy of Sciences (India)

    1. Introduction. Layered perovskite oxides are a promising group of mixed- conducting materials with potential applications for oxygen- separation membranes, gas sensor devices and electrodes of intermediate-temperature solid oxide fuel cells (Moseley and. Williams 1989; Meixner and Lampe 1996; Skinner and Kil-.

  13. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  14. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  15. Electrochemical performance of Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas

    Science.gov (United States)

    Miyake, Michihiro; Iwami, Makoto; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu

    2018-06-01

    The electrochemical performance of layered Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 (GDC) cermet anodes is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs) at 600 °C using humidified (3% H2O) model syngas with a molar ratio of H2/CO = 3/2 as the fuel. From the results obtained, the electrochemical performance of the functionally graded multi-layered anodes is found to be superior to the mono-layered anodes. The test cell with a bi-layered anode consisting of 100 mass% Ni0.8Cu0.2/0 mass% GDC (10M/0E) and 70 mass% Ni0.8Cu0.2/30 mass% GDC (7M/3E) exhibits high power density. The test cell with a tri-layered anode consisting of 10M/0E, 7M/3E, and 50 mass% Ni0.8Cu0.2/50 mass% GDC (5M/5E) exhibits an even higher power density, suggesting that 10M/0E and 5M/5E layers contribute to the current collecting part and active part, respectively.

  16. Simultaneous Effects of Total Solids Content, Milk Base, Heat Treatment Temperature and Sample Temperature on the Rheological Properties of Plain Stirred Yogurt

    Directory of Open Access Journals (Sweden)

    Attilio Converti

    2006-01-01

    Full Text Available Response surface methodology was used to establish a relationship between total solids content, milk base, heat treatment temperature, and sample temperature, and consistency index, flow behaviour index, and apparent viscosity of plain stirred yogurts. Statistical treatments resulted in developments of mathematical models. All samples presented shear thinning fluid behaviour. The increase of the content of total solids (9.3–22.7 % and milk base heat treatment temperature (81.6–98.4 °C resulted in a significant increase in consistency index and a decrease in flow behaviour index. Increase in the sample temperature (1.6–18.4 °C caused a decrease in consistency index and increase in flow behaviour index. Apparent viscosity was directly related to the content of total solids. Rheological properties of yogurt were highly dependent on the content of total solids in milk.

  17. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2009-01-01

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce 0.9 Gd 0.1 O 1.95 ) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce 4+ and Ce 3+ states. Presence of Ce 3+ state was ascribed to the differential yield of oxygen atoms in the sputtering process

  18. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor

    KAUST Repository

    Tao, Tao; Sun, Wenyu; Hansen, Nils; Jasper, Ahren W.; Moshammer, Kai; Chen, Bingjie; Wang, Zhandong; Huang, Can; Dagaut, Philippe; Yang, Bin

    2018-01-01

    Acetaldehyde is an observed emission species and a key intermediate produced during the combustion and low-temperature oxidation of fossil and bio-derived fuels. Investigations into the low-temperature oxidation chemistry of acetaldehyde are essential to develop a better core mechanism and to better understand auto-ignition and cool flame phenomena. Here, the oxidation of acetaldehyde was studied at low-temperatures (528–946 K) in a jet-stirred reactor (JSR) with the corrected residence time of 2.7 s at 700 Torr. This work describes a detailed set of experimental results that capture the negative temperature coefficient (NTC) behavior in the low-temperature oxidation of acetaldehyde. The mole fractions of 28 species were measured as functions of the temperature by employing a vacuum ultra-violet photoionization molecular-beam mass spectrometer. To explain the observed NTC behavior, an updated mechanism was proposed, which well reproduces the concentration profiles of many observed peroxide intermediates. The kinetic analysis based on the updated mechanism reveals that the NTC behavior of acetaldehyde oxidation is caused by the competition between the O-addition to and the decomposition of the CHCO radical.

  19. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor

    KAUST Repository

    Tao, Tao

    2018-03-20

    Acetaldehyde is an observed emission species and a key intermediate produced during the combustion and low-temperature oxidation of fossil and bio-derived fuels. Investigations into the low-temperature oxidation chemistry of acetaldehyde are essential to develop a better core mechanism and to better understand auto-ignition and cool flame phenomena. Here, the oxidation of acetaldehyde was studied at low-temperatures (528–946 K) in a jet-stirred reactor (JSR) with the corrected residence time of 2.7 s at 700 Torr. This work describes a detailed set of experimental results that capture the negative temperature coefficient (NTC) behavior in the low-temperature oxidation of acetaldehyde. The mole fractions of 28 species were measured as functions of the temperature by employing a vacuum ultra-violet photoionization molecular-beam mass spectrometer. To explain the observed NTC behavior, an updated mechanism was proposed, which well reproduces the concentration profiles of many observed peroxide intermediates. The kinetic analysis based on the updated mechanism reveals that the NTC behavior of acetaldehyde oxidation is caused by the competition between the O-addition to and the decomposition of the CHCO radical.

  20. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  1. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton co...... are of high interest as potential proton conducting electrolytes for fuel cells operational in an intermediate temperature range....... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  2. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  3. Advanced Intermediate Heat Transport Loop Design Configurations for Hydrogen Production Using High Temperature Nuclear Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Rober Barner; Paul Pickard

    2005-01-01

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various

  4. Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser

    International Nuclear Information System (INIS)

    Li, Zhe; Li, Shisong; Tseng, Chung-Jen; Tao, Shanwen; Xie, Kui

    2017-01-01

    Highlights: • Redox reversible ferrite cathode is demonstrated for solid oxide electrolyser. • Promising electrical conductivity is obtained with Pr doping in hydrogen. • High performance of steam electrolysis is achieved with ferrite cathode. - Abstract: In this work, perovskite Sr 1−x Pr x FeO 3-δ (SPF) (x = 0.02, 0.04, 0.06, 0.08 and 0.10) are investigated and employed as solid oxide steam electrolyser cathode at 800 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM) analysis together indicate that the Sr 1−x Pr x FeO 3-δ is redox reversible with a phase transition from cubic to orthorhombic structure in redox cycles. The doping of Pr in A site has remarkably enhanced the electronic conduction to 1.0–1.2 S cm −1 at intermediate temperatures in reducing atmosphere. Electrochemical measurements demonstrate that the polarization resistance with Sr 0.96 Pr 0.04 FeO 3-δ electrode shows the lowest values of 0.25 Ω cm 2 in symmetric cells in reducing atmosphere at 800 °C. Direct steam electrolysis with Sr 0.96 Pr 0.04 FeO 3-δ cathode shows a current density of 1.64 A cm −2 at 2.0 V when fed with 5%H 2 O/Ar. The hydrogen production rate reaches 4.73, 6.68, 8.35 and 10.23 mL min −1 cm −2 at 1.4, 1.6, 1.8, 2.0 V, respectively, while the highest Faraday efficiency is as high as 97.16% at 1.8 V.

  5. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  6. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  7. Catalytic reduction of NH4NO3 by NO. Effects of solid acids and implications for low temperature DeNOx processes

    International Nuclear Information System (INIS)

    Savara, Aditya; Li, Mei-Jun; Sachtler, Wolfgang M.H.; Weitz, Eric

    2008-01-01

    Ammonium nitrate is thermally stable below 250 C and could potentially deactivate low temperature NO x reduction catalysts by blocking active sites. It is shown that NO reduces neat NH 4 NO 3 above its 170 C melting point, while acidic solids catalyze this reaction even at temperatures below 100 C. NO 2 , a product of the reduction, can dimerize and then dissociate in molten NH 4 NO 3 to NO + + NO 3 - , and may be stabilized within the melt as either an adduct or as HNO 2 formed from the hydrolysis of NO + or N 2 O 4 . The other product of reduction, NH 4 NO 2 , readily decomposes at ≤100 C to N 2 and H 2 O, the desired end products of DeNO x catalysis. A mechanism for the acid catalyzed reduction of NH 4 NO 3 by NO is proposed, with HNO 3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNO x systems could help mitigate catalyst deactivation at low operating temperatures (<150 C). (author)

  8. Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source

    International Nuclear Information System (INIS)

    Hao, Wenbin; He, Xiaojin; Mi, Yongli

    2014-01-01

    Highlights: • Bamboo fiber and waste paper were pyrolyzed to generate bamboo carbon and waste paper carbon as anode fuels of IT-DCFC. • Superior cell performance was achieved with the waste paper carbon. • The results suggested the high performance was due to the highest thermal reactivity and the catalytic inherent impurities. • Calcite and kaolinite as inherent impurities favored the thermal decomposition and the electrooxidation of carbon. - Abstract: Three kinds of carbon sources obtained from carbon black, bamboo fiber and waste paper were investigated as anode fuels in an intermediate temperature direct carbon fuel cell. The carbon sources were characterized with X-ray photoelectron spectroscopy, thermal gravimetric analysis, etc. The results indicated that the waste paper carbon was more abundant in calcite and kaolinite, and showed higher thermal reactivity in the intermediate temperature range compared with the other two carbon sources. The cell performance was tested at 650 °C in a hybrid single cell, using Sm 0.20 Ce 0.80 O 2−x as the electrolyte. As a result, the cell fed with waste paper carbon showed the highest performance among the three carbon sources, with a peak power density of 225 mW cm −2 . The results indicated that its inherent impurities, such as calcite and kaolinite, might favor the thermal gasification of renewable carbon sources, which resulted in the enhanced performance of the intermediate temperature direct carbon fuel cell

  9. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  10. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  11. Basic hydrolysis of 1, 3, 4, 6-tetra-O-acetyl-2-[18F] fluoro-D-glucose on solid phase extraction

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; He Yijie; Huan Dingcai; Liu Boli

    2003-01-01

    A new base hydrolysis method are used for 1, 3, 4, 6-tetra-O-acetyl-2-[ 18 F] fluoro-D-glucose on solid phase extraction. The labeled intermediate is trapped on an active C-18 solid phase extraction cartridge, and hydrolyzed in cartridge with 1 mL 2 mol/L NaOH at room temperature. The results show that there are over 99% of the labeled intermediate being turned into 18 F-FDG within 2 min. It is easy to get 18 F-FDG after neutralized with phosphate buffer, purified by C-18 and Alumina cartridge. The basic hydrolysis on solid extraction is a simple method for preparation of 18 F-FDG

  12. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. Experimental studies in solid state and low temperature physics. Progress report, 1975

    International Nuclear Information System (INIS)

    Goldman, A.M.; Weyhmann, W.V.; Zimmermann, W. Jr.

    1975-09-01

    Experimental investigations are being carried out in a broad area of low-temperature and solid-state physics which includes superconductivity, magnetism in metals and liquid and solid helium. The pair-field susceptibility of superconductors is being studied. A propagating mode in the phase of the superconducting order parameter has been found. Heat capacities of superconducting films in the vicinity of T/sub c/ are also being investigated. An investigation in the time-dependent high conductivity of dilute solid solutions of sodium in ammonia has been initiated. Nuclear orientation studies of the dilute magnetic impurity problem in metals in the 1 mK temperature region are being carried out. Refrigeration requirements for this work are being met using enhanced hyperfine nuclear cooling. Measurements of the differential osmotic pressure of 3 He/ 4 He liquid mixtures near the tricritical point have shown a peak in the ''concentration susceptibility'' at the lambda line. Data obey a simple tricritical scaling relation. The dynamics of superfluid flow through submicron pores are being studied in both pure 4 He and in 3 He/ 4 He mixtures in an apparatus provided with a 3 He refrigerator. The quantization of circulation in superfluid liquid 4 He is being investigated using the Vinen method. The low temperature heat capacity of bcc solid 3 He is being studied

  14. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    Science.gov (United States)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  15. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time....

  16. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  17. Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Li [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Ye, Xiangxi [University of Chinese Academy of Science, Beijing 100049 (China); Cui, Chuanyong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Huang, Hefei; Leng, Bin [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Zhijun, E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Xingtai [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-21

    Ni-26W-6Cr based superalloy is considered a potential structure material for the molten salt reactors due to its high strength and good compatibility with the fluoride salt. In the present work, the temperature dependence of the tensile behavior of the alloy was studied by tensile tests in the temperature range of 25–850 °C. This alloy exhibited a good ductility at RT and 450 °C, a ductility minimum from 650 to 750 °C and an intermediate ductility at 850 °C. TEM and EBSD characterization was performed on specimens tested at three typical temperature points (RT, 650 °C and 850 °C) to determine the deformation and fracture mechanisms accounting for the intermediate temperature embrittlement. At RT, the grain boundaries can accommodate enough dislocations to provide compatibility of the sliding between adjacent grains, then M{sub 6}C carbides act as crack origins and cause the fracture. In case of 650 °C, the grain boundaries cannot withstand the local stress even if only a small number of dislocation pile-ups exist. The premature cracks at grain boundaries impede the development of plastic deformation from single slips to multiple ones and cause the low ductility. If tested at 850 °C, the fracture process is retarded by the dynamic recovery and local dynamic recrystallization at crack tips.

  18. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ottaviano, Luisa; Zheng, Yi

    2018-01-01

    Integration of heterogeneous materials is crucial for many nanophotonic devices. The integration is often achieved by bonding using polymer adhesives or metals. A much better and cleaner option is direct wafer bonding, but the high annealing temperatures required make it a much less attractive...... atomic layer deposited Al2O3 an excellent choice for the intermediate layer. The authors have optimized the bonding process to achieve a high interface energy of 1.7 J/m2 for a low temperature annealing of 300 °C. The authors also demonstrate wafer bonding of InP to SiO2 on Si and GaAs to sapphire using...

  19. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  20. Tailorable Burning Behavior of Ti14 Alloy by Controlling Semi-Solid Forging Temperature.

    Science.gov (United States)

    Chen, Yongnan; Yang, Wenqing; Zhan, Haifei; Zhang, Fengying; Huo, Yazhou; Zhao, Yongqing; Song, Xuding; Gu, Yuantong

    2016-08-16

    Semi-solid processing (SSP) is a popular near-net-shape forming technology for metals, while its application is still limited in titanium alloy mainly due to its low formability. Recent works showed that SSP could effectively enhance the formability and mechanical properties of titanium alloys. The processing parameters such as temperature and forging rate/ratio, are directly correlated with the microstructure, which endow the alloy with different chemical and physical properties. Specifically, as a key structural material for the advanced aero-engine, the burn resistant performance is a crucial requirement for the burn resistant titanium alloy. Thus, this work aims to assess the burning behavior of Ti14, a kind of burn resistant alloy, as forged at different semi-solid forging temperatures. The burning characteristics of the alloy are analyzed by a series of burning tests with different burning durations, velocities, and microstructures of burned sample. The results showed that the burning process is highly dependent on the forging temperature, due to the fact that higher temperatures would result in more Ti₂Cu precipitate within grain and along grain boundaries. Such a microstructure hinders the transport of oxygen in the stable burning stage through the formation of a kind of oxygen isolation Cu-enriched layer under the burn product zone. This work suggests that the burning resistance of the alloy can be effectively tuned by controlling the temperature during the semi-solid forging process.

  1. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m......A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1......W cm–2 using oxygen and air, respectively, at 175 °C....

  2. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  3. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    Science.gov (United States)

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  4. Temperature control in a continuously mixed bioreactor for solid-state fermentation

    NARCIS (Netherlands)

    Nagel, F.J.J.I.; Tramper, J.; Bakker, M.S.N.; Rinzema, A.

    2001-01-01

    A continuously mixed, aseptic paddle mixer was used successfully for solid-state fermentation (SSF) with Aspergillus oryzae on whole wheat kernels. Continuous mixing improved temperature control and prevented inhomogeneities in the bed. Respiration rates found in this system were comparable to those

  5. High Temperature Degradation Behavior and its Mechanical Properties of Inconel 617 alloy for Intermediate Heat Exchanger of VHTR

    International Nuclear Information System (INIS)

    Jo, Tae Sun; Kim, Se Hoon; Kim, Young Do; Park, Ji Yeon

    2008-01-01

    Inconel 617 alloy is a candidate material of intermediate heat exchanger (IHX) and hot gas duct (HGD) for very high temperature reactor (VHTR) because of its excellent strength, creep-rupture strength, stability and oxidation resistance at high temperature. Among the alloying elements in Inconel 617, chromium (Cr) and aluminum (Al) can form dense oxide that act as a protective surface layer against degradation. This alloy supports severe operating conditions of pressure over 8 MPa and 950 .deg. C in He gas with some impurities. Thus, high temperature stability of Inconel 617 is very important. In this work, the oxidation behavior of Inconel 617 alloy was studied by exposure at high temperature and was discussed the high temperature degradation behavior with microstructural changes during the surface oxidation

  6. B-site substituted solid solutions on the base of sodium-bismuth titanate

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2016-12-01

    Full Text Available The paper presents results of studies of the formation of phases during the solid-state synthesis in the [(Na0.5Bi0.50.80Ba0.20](Ti1–yByO3 system of solid solutions with B-site substitutions. The substitutions by zirconium, tin and ion complexes (In0.5Nb0.5 and (Fe0.5Nb0.5 have been studied. It has been found that the synthesis is a multi-step process associated with the formation of a number of intermediate phases (depending on the compositions and calcination temperatures. Single-phase solid solutions have been produced at the calcination temperatures in the interval 1000–1100∘C. An increase in the substituting ions concentration leads to a linear increase of the crystal cell size. At the same time, the tolerance factor gets reduced boosting the stability of the antiferroelectric phase as compared to that of the ferroelectric phase.

  7. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  8. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube

    Directory of Open Access Journals (Sweden)

    Mohammed Al Hajri

    2015-04-01

    Full Text Available Dissimilar metal weld (DMW joint between alloyed steel (AS and stainless steel (SS failed at one of intermediate temperature superheater (ITSH tube in steam/power generation plant boiler. The premature failure was detected after a relatively short time of operation (8 years where the crack propagated circumferentially from AS side through the ITSH tube. Apart from physical examination, microstructural studies based on optical microscopy, SEM and EDX analysis were performed. The results of the investigation point out the limitation of Carbides precipitation at the alloyed steel/welding interface. This is synonym of creep stage I involvement in the failure of ITSH. Improper post-welding operation and bending moment are considered as root causes of the premature failure.

  9. Creep-Data Analysis of Alloy 617 for High Temperature Reactor Intermediate Heat Exchanger

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Kim, Yong Wan; Yin, Song Nan

    2006-01-01

    The design of the metallic components such as hot gas ducts, intermediate heat exchanger (IHX) tube, and steam reformer tubes of very high temperature reactor (VHTR) is principally determined by the creep properties, because an integrity of the components should be preserved during a design life over 30 year life at the maximum operating temperature up to 1000 .deg. C. For designing the time dependent creep of the components, a material database is needed, and an allowable design stress at temperature should be determined by using the material database. Alloy 617, a nicked based superalloy with chromium, molybdenum and cobalt additions, is considered as a prospective candidate material for the IHX because it has the highest design temperature. The alloy 617 is approved to 982 .deg. C (1800 .deg. F) and other alloys approved to 898 .deg. C (1650 .deg. C), such as alloy 556, alloy 230, alloy HX, alloy 800. Also, the alloy 617 exhibits the highest level of creep strength at high temperatures. Therefore, it is needed to collect the creep data for the alloy 617 and the creep-rupture life at the given conditions of temperature and stress should be predicted for the IHX construction. In this paper, the creep data for the alloy 617 was collected through literature survey. Using the collected data, the creep life for the alloy 617 was predicted based on the Larson-Miller parameter. Creep master curves with standard deviations were presented for a safety design, and failure probability for the alloy 617 was obtained with a time coefficient

  10. Synthesis and characterization of La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, Santiago; Davyt, Sebastián [Laboratorio de Cristalografía, Estado Sólido y Materiales, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay); Basbus, Juan F.; Soldati, Analía L. [Grupo Caracterización de Materiales, CAB-CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Amaya, Alejandro [Laboratorio de Fisicoquímica de Superficies, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay); Serquis, Adriana [Grupo Caracterización de Materiales, CAB-CNEA, Bustillo 9500, 8400 Bariloche (Argentina); Faccio, Ricardo [Laboratorio de Cristalografía, Estado Sólido y Materiales, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay); Suescun, Leopoldo, E-mail: leopoldo@fq.edu.uy [Laboratorio de Cristalografía, Estado Sólido y Materiales, DETEMA, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo (Uruguay)

    2015-08-15

    Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} (LSFCu) material was synthetized by combustion method using EDTA as fuel/chelating agent and NH{sub 4}NO{sub 3} as combustion promoter. Structural characterization using thermodiffraction data allowed to determine a reversible phase transition at 425 °C from a low temperature R-3c phase to a high temperature Pm-3m phase and to calculate the thermal expansion coefficient (TEC) of both phases. Important characteristics for cathode application as electronic conductivity and chemical compatibility with Ce{sub 0.9}Gd{sub 0.1}O{sub 2−δ} (CGO) electrolyte were evaluated. LSFCu presented a p-type conductor behavior with maximum conductivity of 135 S cm{sup −1} at 275 °C and showed a good stability with CGO electrolyte at high temperatures. This work confirmed that as prepared LSFCu has excellent microstructural characteristics and an electrical conductivity between 100 and 60 S cm{sup −1} in the 500–700 °C range which is sufficiently high to work as intermediate temperature Solid Oxide Fuel Cells (IT-SOFCs) cathode. However a change in the thermal expansion coefficient consistent with a small oxygen loss process may affect the electrode-electrolyte interface during fabrication and operation of a SOFC. - Graphical abstract: Nanocrystalline La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} was prepared by gel combustion and characterized by X-ray thermodiffraction and its conductivity was determined. The phase shows a reversible rhombohedral to cubic structural phase transition at 425 °C and a semiconductor to metallic phase transition at 275 °C. - Highlights: • LSFCu was prepared by gel combustion route using EDTA and NH{sub 4}NO{sub 3}. • LSFCu shows a reversible phase transition at 425 °C from R-3c to Pm-3m phase. • The sample has a maximum conductivity value of 135 S cm{sup −1} at 275 °C. • LSFCu shows a good chemical compatibility with CGO at 900 °C.

  11. Isostructural solid-solid transition of (colloidal) simple fluids

    International Nuclear Information System (INIS)

    Tejero, C.F.; Daanoun, A.; Lakkerkerker, H.N.W.; Baus, M.

    1995-01-01

    A variational approach based on the Gibbs-Bogoliubov inequality is used in order to evaluate the free energy of simple fluids described by a double-Yukawa pair potential. A hard-sphere reference fluid is used to describe the fluid phases, and an Einstein reference crystal to describe the solid phases. Apart from the usual type of phase diagram, typical of atomic simple fluids with long-ranged attractions, we find two types of phase diagrams, specific to colloidal systems with intermediate and short-ranged attractions. One of the latter phase diagrams exhibits an isostructural solid-solid transition, which has not yet been observed experimentally

  12. Disposal of low- and intermediate-level solid radioactive wastes in rock cavities

    International Nuclear Information System (INIS)

    1983-01-01

    This Guidebook summarizes the factors to be considered and the activities to be undertaken in the overall planning and development of a disposal system for solid or solidified low- and intermediate-level wastes in rock cavities. Aspects related to repository site selection, design, construction, operation, shutdown, surveillance, regulation and safety assessment are discussed here in general terms. They will be covered in greater technical detail in a separate document. This report considers the emplacement of wastes in categories II, III, IV and V, as defined in Table 3.1, in different kinds of cavities located at various depths from just below the surface to deep continental rock. The choice of the type of cavity and its depth and of the disposal site itself is related to the radiological protection requirements for the wastes concerned. The repositories considered include natural caves and abandoned mines as well as specially excavated cavities in various geological formations. Consideration is also given to hydrogeological, environmental and societal factors. The guidelines given in the report are made sufficiently general to cover a broad variety of different circumstances. Consequently, the practical application of these guidelines needs a case-by-case consideration which takes into account the local conditions, e.g. natural circumstances, the characteristics of the wastes and national and international regulations and practices

  13. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, M. F. S.; Moraes, L. P. R.; Monteiro, N. K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte and in composite electrodes operating at low and intermediate temperatures. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high...... resistance to carbon deposition when hydrocarbons are used as fuels. However, an inconvenience of ceria-based oxides is the high sintering temperature needed to obtain a fully dense ceramic body. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. The aqueous...

  14. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  15. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  16. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  17. Low temperature synthesis of non-crystaline solids of the system SrO-SiO2

    International Nuclear Information System (INIS)

    Yamane, M.; Kojima, T.

    1981-01-01

    Non-crystalline solids within the liquid-liquid immiscibility region in the system SrO-SiO 2 have been prepared from a gel obtained by the hydrolysis of silicon tetramethoxide with an aqueous solution of strontium nitrate. The gel which was porous and translucent at room temperature increased in transparency with heating due to the collapse of micropores until it became completely clear. The gel became opaque again due to the precipitation of α-quartz at higher temperatures. The critical temperatures below which clear solids were obtained fell on a line connecting the glass transition temperatures of vitreous silica and those of SrO-SiO 2 glass prepared by melting. The density and refractive index of the pore-free, clear glassy solid, changed continuously with the SrO content along lines connecting those of vitreous silica and SrO-SiO 2 glasses of high SrO content prepared by melting. The maximum amount of Sr 2+ which could be introduced using an aqueous solution as the starting material corresponded to a composition of 10 SrO x 90 SiO 2 by weight. (orig.)

  18. Carbonization plant for low temperature carbonization of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    1948-02-13

    A carbonization plant for the low-temperature carbonization of solid fuels, consists of a heat-treating retort including an outer vertical stationary tube, a second inner tube coaxial with the first tube, adapted to rotate round its axis and defining the first tube, and an annular gap where the solid fuel is treated. The inside of the inner tube is divided in two parts, the first fed with superheated steam which is introduced into the annular gap through vents provided in the wall of the inner tube, the second part communicating with the gap by means of vents provided in the wall of the inner tube through which gases and oil vapors evolved from the fuel are evacuated. A combustion furnace is provided in which the hot solid residues evacuated at the bottom of the annular gap are burned and from which hot fumes are evacuated, a conduit surrounding, in the form of a helical flue, outer cylinder of the retort, and in which flow hot fumes; a preliminary drier for the raw solid fuel heated by the whole or a part of the fumes evacuated from the combustion furnace. Means for bringing solid fuels from the outlet of the preliminary drier to the upper inlet of the gap of the retort a pipe line receiving steam and bringing it into the first inside part of the inner tube, this pipe line has portions located within the conduit for the fumes in order to superheat the steam, and an expansion chamber in which the gases and oil vapors are trapped at the bottom of the second inside part of the inner tube are included.

  19. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  20. A low temperature cryostat with a refrigerator for studying electron-irradiation effects on solids, 2

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Shono, Yoshihiko

    1978-01-01

    A convenient cryostat with a small cryogenic refrigerator for studying electron-irradiation effects on solids is reported. The lowest temperature at the sample room is about 10 K or less. In a temperature region below 80 K, the sample temperature can be controlled within 0.05 K. (auth.)

  1. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  2. Cobalt-free perovskite Pr{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Cu{sub x}O{sub 3−δ} (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Caroline G., E-mail: caroline.materiais@gmail.com [Materials Science and Engineering Postgraduate Program, UFRN, 59078-970, Natal (Brazil); Grilo, João Paulo de F. [Materials Science and Engineering Postgraduate Program, UFRN, 59078-970, Natal (Brazil); Macedo, Daniel A., E-mail: damaced@gmail.com [Materials Science and Engineering Postgraduate Program, UFPB, 58051-900, João Pessoa (Brazil); Cesário, Moisés R.; Fagg, Duncan Paul [Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro (Portugal); Nascimento, Rubens M. [Materials Science and Engineering Postgraduate Program, UFRN, 59078-970, Natal (Brazil)

    2016-09-01

    PSFC (Pr{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Cu{sub x}O{sub 3−δ}) is a new perovskite-type oxide that has gained considerable attention as cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs), due to its high mixed ionic-electronic conductivity below 800 °C. In this work, PSFC (Pr{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Cu{sub x}O{sub 3−δ}, x = 0.2 and 0.4) powders were synthesized by the citrate method and structurally characterized by X-ray diffractometry. Screen-printed cathodes were sintered at 1050 °C and electrochemically characterized by impedance spectroscopy at 600–800 °C in pure oxygen. The area specific resistances (ASR) of the Pr{sub 0.5}Sr{sub 0.5}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} material are shown to be competitive with typical values reported for cobalt-based cathodes in the measured temperature range, while, importantly, offering a significantly lower activation energy, 0.62 eV. The thermal expansion coefficients of these Co-free cathodes are in the range of 13–15 × 10{sup −6} °C{sup −1}, in a temperature range 200–650 °C, demonstrating a good thermal compatibility with gadolinia doped ceria (CGO) electrolytes. - Highlights: • Cobalt-free Pr{sub 0.5}Sr{sub 0.5}Fe{sub 1−x}Cu{sub x}O{sub 3−δ} (PSFC) cathodes successfully prepared by the citrate method. • PSFC cathodes are thermally compatible with CGO electrolytes. • Pr{sub 0.5}Sr{sub 0.5}Fe{sub 0.8}Cu{sub 0.2}O{sub 3−δ} presents competitive area specific resistances of low activation energy, 0.62 eV.

  3. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  4. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Science.gov (United States)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  5. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  6. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 0 C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. (topical review)

  7. Surface-Bound Intermediates in Low-Temperature Methanol Synthesis on Copper. Participants and Spectators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.; Mims, Charles A.

    2015-11-03

    The reactivity of surface adsorbed species present on copper catalysts during methanol synthesis at low temperatures was studied by simultaneous infrared spectroscopy (IR) and mass spectroscopy (MS) measurements during “titration” (transient surface reaction) experiments with isotopic tracing. The results show that adsorbed formate is a major bystander species present on the surface under steady-state methanol synthesis reaction conditions, but it cannot be converted to methanol by reaction with pure H2, nor with H2 plus added water. Formate-containing surface adlayers for these experiments were produced during steady state catalysis in (a) H2:CO2 (with substantial formate coverage) and (b) moist H2:CO (with no IR visible formate species). Both these reaction conditions produce methanol at steady state with relatively high rates. Adlayers containing formate were also produced by (c) formic acid adsorption. Various "titration" gases were used to probe these adlayers at modest temperatures (T = 410-450K) and 6 bar total pressure. Methanol gas (up to ~1% monolayer equivalent) was produced in "titration" from the H2:CO2 catalytic adlayers by H2 plus water, but not by dry hydrogen. The decay in the formate IR features accelerated in the presence of added water vapor. The H2:CO:H2O catalytic adlayer produced similar methanol titration yields in H2 plus water but showed no surface formate features in IR (less than 0.2% monolayer coverage). Finally, formate from formic acid chemisorption produced no methanol under any titration conditions. Even under (H2:CO2) catalytic reaction conditions, isotope tracing showed that pre-adsorbed formate from formic acid did not contribute to the methanol produced. Although non-formate intermediates exist during low temperature methanol synthesis on copper which can be converted to methanol gas

  8. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  9. NATO Advanced Research Workshop on Boron Rich Solids Sensors for Biological and Chemical Detection, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  10. Model of two temperatures of the laser evaporation of solid targets

    International Nuclear Information System (INIS)

    Tolentino E, P.; Gutierrez T, C.; Camps C, E.

    2007-01-01

    The energy transmission in the evaporation process of a solid target by a laser pulse by means of the model of two temperatures which consists on two equations of heat conduction coupled by means of an electron-phonon coupling factor that means the energy transfer rate between the electrons and the net is described. This electron-phonon coupling factor is calculated for the particular case of the graphite, the obtaining of the analytic solutions in a space dimension of the system of non linear partial differential equations is shown considering two forms of the laser pulse (gaussian and delta function) and the electron temperature distributions of temperature and of the net are analyzed. (Author)

  11. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    International Nuclear Information System (INIS)

    Chavez G, L.; Hinojosa R, M.; Medina L, B.; Ringuede, A.; Cassir, M.; Vannier, R. N.

    2017-01-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi_xCo_1_-_xO_3 (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi_0_._7Co_0_._3O_3, LaNi_0_._5Co_0_._5O_3 and LaNi_0_._3Co_0_._7O_3 structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi_xCo_1_-_xO_3/YSZ (Yttria-stabilized zirconia)/LaNi_xCo_1_-_xO_3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi_0_._5Co_0_._5O_3, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  12. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  13. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  14. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  15. (La{sub 0.74}Bi{sub 0.10}Sr{sub 0.16})MnO{sub 3-{delta}}-Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} cathodes fabricated by ion-impregnating method for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junliang; Wang, Shaorong; Wang, Zhenrong; Liu, Renzhu; Ye, Xiaofeng; Sun, Xiufu; Wen, Tinglian; Wen, Zhaoyin [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-03-15

    Porous composite cathodes were fabricated by impregnating (La{sub 0.74}Bi{sub 0.10}Sr{sub 0.16})MnO{sub 3-{delta}} (LBSM) electronic conducting structure with the ionic conducting Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (GDC) phase. The ion impregnation of the GDC phase significantly enhanced the electrocatalytic activity of the LBSM electrodes for the O{sub 2} reduction reactions, and the ion-impregnated LBSM-GDC composite cathodes showed excellent performance. At 700 C, the value of the cathode polarization resistance (Rc) was only 0.097 {omega} cm{sup 2} for an ion-impregnated LBSM-GDC cathode, and the performance was gradually improved by increasing the loading of the impregnated GDC. For the performance testing of single cells, the maximum power density was 1036 mW cm{sup -2} at 700 C for a cell with the LBSM-GDC cathode. The results demonstrated the unique combination of the LBSM electronic conducting structure with high ionic conducting GDC phase was a valid method to improve the electrode performance, and the ion-impregnated LBSM-GDC was a promising composite cathode material for the intermediate-temperature solid oxide fuel cells. (author)

  16. Radiological protection and the selection of management strategies for intermediate level wastes

    International Nuclear Information System (INIS)

    Hill, M.D.; Webb, G.A.M.

    1982-01-01

    This paper describes the steps involved in selecting management systems and an overall management strategy for intermediate level solid radioactive wastes. The radiological protection inputs to intermediate level waste management decisions are discussed, together with the results of preliminary radiological assessments of disposal options. Areas where further work is required are identified. (author)

  17. The separation of solid and liquid components of mixtures

    International Nuclear Information System (INIS)

    Hunter, W.M.

    1980-01-01

    An improved method of separating solid and liquid components of mixtures is described which is particularly suited for use in automated radioimmunoassay systems in the analysis of bound and free fractions. A second liquid, having a density intermediate between those of the solid and liquid components, is delivered to the solid/ liquid mixture to form a discrete layer below the mixture and the solid separates into this lower liquid layer assisted by centrifugal force. The second liquid of intermediate density is an aqueous solution of a highly hydrophilic and electrically non-polar solute, such as an aqueous sucrose solution. Further liquids of intermediate density and progressively higher density may be delivered to form further discrete layers below the initial layer of the second dense liquid. After separation of the solid and liquid components of the mixture, the supernatant liquid component of the original mixture is removed in a controlled and non-turbulent manner. The method is illustrated in radioimmunoassays for platelet β-thromboglobulin and human follicle stimulating hormone. (U.K.)

  18. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  19. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  20. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  1. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li Shuai; Li Zhicheng; Bergman, Bill

    2010-01-01

    The composite of doped lanthanum gallate (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 , LSGM) and doped ceria (Ce 0.8 Sm 0.2 O 1.9 , CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO 2 phase and a minority impurity phase, Sm 3 Ga 5 O 12 . The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 o C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  2. A new variable temperature solution-solid interface scanning tunneling microscope.

    Science.gov (United States)

    Jahanbekam, Abdolreza; Mazur, Ursula; Hipps, K W

    2014-10-01

    We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift. By incorporating an open solution reservoir in the chamber, solvent evaporation from the sample is minimized; allowing users to use volatile solvents for temperature dependent studies at high temperatures. The new design enables the user to image at the SS interface with some volatile solvents for long periods of time (>24 h). An increase in the nonlinearity of the piezoelectric scanner in the lateral direction as a function of temperature is addressed. A temperature dependent study of cobalt(II) octaethylporphyrin (CoOEP) at the toluene/Au(111) interface has been performed with this instrument. It is demonstrated that the lattice parameters remain constant within experimental error from 24 °C to 75 °C. Similar quality images were obtained over the entire temperature range. We report the unit cell of CoOEP at the toluene/Au(111) interface (based on two molecules per unit cell) to be A = (1.36 ± 0.04) nm, B = (2.51 ± 0.04) nm, and α = 97° ± 2°.

  3. Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2015-07-16

    In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF. © 2015 American Chemical Society.

  4. Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hjalmarsson, Per; Hansen, Martin Hangaard

    2014-01-01

    The effect of in-situ sintering temperature and time on the electronic conductivity, impedance and performance of IT-SOFC cathodes were studied. The studied cathodes were for comparison (La0.6Sr0.4)0.99CoO3 (LSC), (La0.6Sr0.4)0.99CoO3:Ce0.9Gd0.1O1.95 (LSC:CGO), La0.58Sr0.4Co0.2Fe0.8O3 (LSCF) and La......0.58Sr0.4Co0.2Fe0.8O3:Ce0.9Gd0.1O1.95 (LSCF:CGO). The LSCF-based cathodes showed poor sintering capabilities compared to the LSC-based cathodes in the studied temperature range of 650–950 °C. The poor necking between individual LSCF grains lower the electronic conductivity. Furthermore, poor cathode....../electrolyte adhesion was seen as an additional high frequency impedance arc, which gradually disappeared as the LSCF cathodes were sintered at increasing temperature. Effects on the impedance shape from poor cathode grain connectivity was shown through impedance simulations to result in a possible increase in the high...

  5. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  6. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  7. High temperature salt corrosion cracking of intermediate products of titanium alloys

    International Nuclear Information System (INIS)

    Sinyavskij, V.S.; Usova, V.V.; Lunina, S.I.; Kushakevich, S.A.; Makhmutova, E.A.; Khanina, Z.K.

    1982-01-01

    The high temperature salt corrosion cracking (HTSCC) of intermediate products from titanium base alloys in the form of hot rolled plates and rods has been studied. The investigated materials are as follows: VT20 pseudo-α-alloy, VT6 and VT14 α+β alloys; the comparison has been carried out with commercial titanium and low-alloyed OT4-1 α-alloy. The experiments have been held at 400 and 500 deg C, defining different stress levels: 0.4; 0.5; 0.75 and 0.9 tausub(0.2). The test basis - not less than 100 h. Standard tensile samples of circular cross section with NaCl (approximately 0.2-0.3 mg/cm 2 ) salt coatings, cut off from hot-rolled rods along the direction of rolling and hot-rolled plates along and across the direction of rolling have been tested. It has been extablished before hand that the notch doesn't affect the resistance of titanium alloys to HTSCC. The sensitivity of titanium alloy subproducts to HTSCC is estimated as to the time until the failure of the sample with salt coatings and without them. It is shown that salt coating practically doesn't affect the behaviour of titanium, that allows to consider it to be resistant to HTSCC. Titanium alloys alloying with β-isomorphous stabilizing additions increases it's HTSCC resistance. Vanadium alloying of the alloy (VT6 alloy of Ti-Al-V system) produces a favourable effect; intermediate products of VT14 (α+β) alloy (Ti-Al-V-Mo system), containing two β-stabilizing additions-vanadium and molybdenum, have satisfactory HTSCC resistance. It is shown that by changes is mechanical properties of alloys during HTSCC one can indirectly judge about their HTSCC sensitivity

  8. Residual thermal stresses in a solid sphere cast from a thermosetting material

    Science.gov (United States)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  9. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  10. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  11. Room-temperature solid phase ionic liquid (RTSPIL) coated Ω-transaminases: Development and application in organic solvents

    DEFF Research Database (Denmark)

    Grabner, B.; Nazario, M. A.; Gundersen, M. T.

    2018-01-01

    ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co‐lyophilization and ......ω-Transaminases ATA-40, ATA-47 and ATA-82P were coated with room-temperature solid phase ionic liquids (RTSPILs) by means of three methods, melt coating, precipitation coating, and co‐lyophilization, and showed increased stability in all of the five tested organic solvents. Co...

  12. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  13. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  14. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    were interpreted in terms of a detailed chemical kinetic model. The rate constant for the reaction of the important intermediate H2NO with O2 was determined from ab initio calculations to be 2.3 × 102 T2.994 exp (−9510 K/T) cm3 mol−1 s−1. The agreement between experimental results and model work...

  15. A phenomenological creep model for nickel-base single crystal superalloys at intermediate temperatures

    Science.gov (United States)

    Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander

    2018-07-01

    For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in \\{100\\} slip systems and \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.

  16. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez G, L.; Hinojosa R, M. [Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, San Nicolas de los Garza, 66450 Nuevo Leon (Mexico); Medina L, B.; Ringuede, A.; Cassir, M. [Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Vannier, R. N., E-mail: leonardo.chavezgr@uanl.edu.mx [Unite de Catalyse et de Chimie du Solide, UMR 8181 CNRS, 59655, Villeneuve d Ascq Cedex (France)

    2017-11-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi{sub x}Co{sub 1-x}O{sub 3} (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi{sub 0.7}Co{sub 0.3}O{sub 3}, LaNi{sub 0.5}Co{sub 0.5}O{sub 3} and LaNi{sub 0.3}Co{sub 0.7}O{sub 3} structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi{sub x}Co{sub 1-x}O{sub 3}/YSZ (Yttria-stabilized zirconia)/LaNi{sub x}Co{sub 1-x}O{sub 3} showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi{sub 0.5}Co{sub 0.5}O{sub 3}, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  17. Temperature dependence of broadline NMR spectra of water-soaked, epoxy-graphite composites

    Science.gov (United States)

    Lawing, David; Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1981-10-01

    Water-soaked, epoxy resin-graphite fiber composites show a waterline in their broadline proton NMR spectrum which indicates a state of intermediate mobility between the solid and free water liquid states. The line is still present at -42 °C, but shows a reversible decrease in amplitude with decreasing temperature. The line is isotropic upon rotation of the fiber axis with respect to the external magnetic field.

  18. Preparation and characterization of bismuth ruthenate pyrochlore via solid state reaction and sol-gel methods

    Directory of Open Access Journals (Sweden)

    Mayuree Sansernnivet

    2010-01-01

    Full Text Available Bismuth ruthenate pyrochlores, potential cathode materials for intermediate temperature solid oxide fuel cells(ITSOFCs, were prepared via solid-state and sol-gel method. Effects of the preparation routes and conditions on the phase and microstructures of the materials were investigated in this study using XRD and SEM. The study showed that the preparation method and the adding sequence of the starting meterials have a significant effect on the crystal phase and the particle size obtained. Sol-gel synthesis could yield a material with only pyrochlore structure, i.e. Bi2Ru2O7, while the solid state method yielded powder with a small amount of the secondary RuO2 phase. The sol-gel synthesis resulted in materialswith a finer particle size (~0.3-1.0 μm compared to powder synthesized via the solid state reaction method.

  19. Intermediate Temperature Fuel Cell Using CsH2PO4/ZrO2-Based Composite Electrolytes

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Li, Qingfeng; Christensen, Erik

    2014-01-01

    Proton conductors operating at intermediate temperatures are receiving significant attention due to their advantages over conventionally used materials in proton exchange membrane fuel cells. CsH2PO4 has proven to be proton conducting above 230°C, however within a narrow temperature range of the ...... to 280°C under low atmospheric humidification. Higher open circuit voltage and stability in the extended temperature range were achieved with composite electrolytes with a CsH2PO4 to ZrO2 molar ratio of 2....

  20. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  1. The influence of the disordered dipole subsystem on the thermal conductivity of the CO solid at low temperatures

    International Nuclear Information System (INIS)

    Sumarokov, V.; Jezowski, A.; Stachowiak, P.

    2009-01-01

    The thermal conductivity of solid CO is investigated in the temperature range 1-20 K. The experimental temperature dependence of thermal conductivity of solid CO is described using the time-relaxation method within the Debye model. The comparison of the experimental temperature dependences of the thermal conductivity of N 2 and CO shows that in the case of CO there is an additional large phonon scattering at temperatures near the maximum. Analysis of the experimental data indicates that this scattering is caused by the frozen disordered dipole subsystem, similar to a dipole glass. The scattering is described by resonant phonon scattering on tunneling states and on low-energy quasi-harmonic oscillations within the soft potential model

  2. Determination of the Fe-Cr-Ni and Fe-Cr-Mo Phase Diagrams at Intermediate Temperatures using a Novel Dual-Anneal Diffusion-Multiple Approach

    Science.gov (United States)

    Cao, Siwei

    Phase diagrams at intermediate temperatures are critical both for alloy design and for improving the reliability of thermodynamic databases. There is a significant shortage of experimental data for phase diagrams at the intermediate temperatures which are defined as around half of the homologous melting point (in Kelvin). The goal of this study is to test a novel dual-anneal diffusion multiple (DADM) methodology for efficient determination of intermediate temperature phase diagrams using both the Fe-Cr-Ni and Fe-Cr-Mo systems as the test beds since both are very useful for steel development. Four Fe-Cr-Ni-Mo-Co diffusion multiples were made and annealed at 1200 °C for 500 hrs. One sample was used directly for evaluating the isothermal sections at 1200 ° C. The other samples (and cut slices) were used to perform a subsequent dual annealing at 900 °C (500 hrs), 800 °C (1000 hrs), 700 °C (1000 hrs), and 600 °C (4500 hrs), respectively. The second annealing induced phase precipitation from the supersaturated solid solutions that were created during the first 1200 °C annealing. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were used to identify the phases and precipitation locations in order to obtain the compositions to construct the isothermal sections of both ternary systems at four different temperatures. The major results obtained from this study are isothermal sections of the Fe-Cr-Ni and Fe-Cr-Mo systems at 1200 °C, 900 °C, 800 °C, and 700 °C. For the Fe-Cr-Ni system, the results from DADMs agree with the majority of the literature results except for results at both 800 °C and 700 °C where the solubility of Cr in the fcc phase was found to be significantly higher than what was computed from thermodynamic calculations using the TCFE5 database. Overall, it seems that the Fe-Cr-Ni thermodynamic assessment only needs slight improvement to

  3. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuai, E-mail: shuail@kth.s [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden); Li Zhicheng [School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan (China); Bergman, Bill [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden)

    2010-03-04

    The composite of doped lanthanum gallate (La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85}, LSGM) and doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO{sub 2} phase and a minority impurity phase, Sm{sub 3}Ga{sub 5}O{sub 12}. The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 {sup o}C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  4. The influence of precipitation temperature on the properties of ceria–zirconia solid solution composites

    International Nuclear Information System (INIS)

    Cui, Yajuan; Fang, Ruimei; Shang, Hongyan; Shi, Zhonghua; Gong, Maochu; Chen, Yaoqiang

    2015-01-01

    Highlights: • The crystallite size of precipitate increases as the precipitation temperature rises. • The stack of large crystallite can form nanoparticles with big pore size. • Big pore sizes are advantageous to improve the thermal stability. • Phase segregation is restricted in CZ solid solution precipitated at 70 °C. • The reducibility and OSC of the solid solution precipitated at 70 °C are improved. - Abstract: The ceria–zirconia composites (CZ) with a Ce/Zr mass ratio of 1/1 were synthesized by a back-titration method, in which the influence of precipitation temperature on the properties of ceria–zirconia precipitates was investigated. The resulting precipitation and mixed oxides at different precipitation temperatures were then characterized by a range of techniques, including textural properties, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR) as well as oxygen storage capacity (OSC) measurement. The results revealed that ceria–zirconia composites were formed as solid solution and such structure is favored of thermostability and texture properties. In particular, the composite CZ-70 synthesized at 70 °C exhibited prominent thermostability with a surface area of 32 m 2 /g as well as a pore volume of 0.15 cc/g after aging treatment at 1000 °C for 5 h. And this was found to be associated with the wider pore size distribution which maybe owed to the formation of large crystal at the primary stage of precipitation. Additionally, the composite CZ-70 showed excellent reduction property and OSC benefiting from stable texture and structure

  5. Properties of municipal solid waste incineration ashes with respect to their separation temperature

    Czech Academy of Sciences Publication Activity Database

    Keppert, M.; Pavlík, Z.; Tydlitát, V.; Volfová, P.; Švarcová, Silvie; Šyc, Michal; Černý, R.

    2012-01-01

    Roč. 30, č. 10 (2012), s. 1041-1048 ISSN 0734-242X Institutional support: RVO:61388980 ; RVO:67985858 Keywords : bottom ash * fly ash * municipal solid waste incinerator * pozzolanic activity * hydration heat * separation temperature * building industry Subject RIV: CA - Inorganic Chemistry Impact factor: 1.047, year: 2012

  6. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, Peter M.; Whitis, Deborah H.; Mills, Michael J.

    2005-01-01

    Creep deformation substructures in superalloy Rene 88 DT have been investigated at two applied stress levels after small-strain (0.5%) creep at 650 deg. C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and substructures have been observed as a function of applied stress. It has been established that at intermediate temperatures microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress. At higher applied stress the mechanism changes to planar shearing of the matrix by 1/2 unit dislocations and Orowan looping of the precipitates. Detailed experimental evidences for these operating processes are shown and possible explanation is provided

  7. A new intermediate for the production of flexible stable polymers

    Science.gov (United States)

    Webster, J. A.

    1973-01-01

    Method of incorporating ether linkages into perfluoroalkylene segment of a dianydride intermediate yields intermediate that may be used in synthesis of flexible, stable polyimides for use as high-temperature, solvent-resistant sealants.

  8. Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2007-01-01

    Sr and Mg substituted LaGaO 3 is a solid electrolyte for intermediate temperature solid oxide fuel cell. Phase purity of this material is a concern for the researchers for a long time. In this contribution the secondary phases that are evolved during the synthesis of Sr and Mg doped LaGaO 3 are reported. For that purpose, a series of La 1-x Sr x Ga 1-y Mg y O 3-δ (LSGM) was prepared by solid state synthesis route. Scanning electron microscopic photographs showed secondary phases namely La 4 Ga 2 O 9 , LaSrGa 3 O 7 , LaSrGaO 4 along with the parent perovskite LSGM depending upon the amount of dopant. Amount of secondary phases was estimated from the peak positions of room temperature X-ray diffraction. It was observed that for a fixed amount of Mg dopant increasing the amount of Sr content also increased the amount of secondary phases whereas the reverse was found to be true when Sr content was fixed and Mg content was increased. This behaviour was attributed to the increase in solid solubility of Sr in presence of Mg

  9. Development of a new method for high temperature in-core characterisation of solid surfaces

    International Nuclear Information System (INIS)

    Yamawaki, M.; Suzuki, A.; Yokota, T.; Nan Luo, G.; Yamaguchi, K.; Hayashi, K.

    2000-01-01

    In order to develop a new method for establishing in situ characterizations and monitoring of solid surfaces under irradiation and in controlled atmospheres, the high temperature Kelvin probe has been applied and tested to measure work function changes under such conditions. In the case of Li 4 SiO 4 and Li 2 ZrO 3 , two steps of distinct change of work function were observed when the specimen was exposed to hydrogen gas and also when it was retrieved. These changes were attributed to the oxygen vacancies formation/annihilation and the adsorption/desorption of gas (H 2 ). While the work function measured on a gold specimen under proton beam irradiation showed a steep drop in the work function during the initial irradiation, it gradually recovered after the end of irradiation. The second irradiation gave rise to a smaller value of the work function decrease of gold. These results support a possibility of adopting the high temperature Kelvin probe for the purpose of monitoring/characterising solid surface under irradiation in nuclear reactors and other facilities so as to detect the formation of defects in the surface and near-surface region of solid specimens. (authors)

  10. Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Wu; He, Sailing

    2012-01-01

    We demonstrate a temperature compensated strain sensor with two cascaded Sagnac interferometers, that provide strain sensing and temperature compensation, respectively. The Sagnac interferometers use an all-solid hybrid photonic crystal fiber with stress-induced birefringence. The stress-induced ...

  11. The development of gaseous detectors with solid photocathodes for low temperature applications

    CERN Document Server

    Periale, L.; Iacobaeus, C.; Francke, T.; Lund-Jensen, B.; Pavlopoulos, N.; Picchi, P.; Pietropaolo, F.

    2004-01-01

    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.

  12. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  13. A low temperature cryostat with a refrigerator for studying electron irradiation effects on solids

    International Nuclear Information System (INIS)

    Oka, Takashi; Yoshida, Toshio; Kitagawa, Michiharu; Yanai, Masayoshi

    1976-01-01

    A low temperature cryostat with a small cryogenic refrigerator is described which is convenient for studying irradiation effects of the energetic electrons on solids. It allows a sample to be kept about 12 K without irradiation and 15 K under the irradiation at a heating rate of 1.5 w. The sample temperature can be changed up to room temperature by adjusting the power of an attached heater and the pressure of a compressor for the refrigerator. The optical and electrical properties of the sample can be measured under and after irradiation. (auth.)

  14. Development of electrolyte-supported intermediate-temperature single-chamber solid oxide fuel cells using Ln{sub 0.7}Sr{sub 0.3}Fe{sub 0.8}Co{sub 0.2}O{sub 3-{delta}} (Ln = Pr, La, Gd) cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz de Larramendi, I.; Ruiz de Larramendi, J.I.; Rojo, T. [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Apdo.644, 48080 Bilbao (Spain); Lamas, D.G.; Cabezas, M.D.; Walsoee de Reca, N.E. [CINSO, CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina)

    2009-09-05

    Iron-cobalt-based perovskite oxides with general formula Ln{sub 0.7}Sr{sub 0.3}Fe{sub 0.8}Co{sub 0.2}O{sub 3-{delta}} (where Ln = La, Pr and Gd) have been investigated for their application as intermediate-temperature cathodes in solid oxide fuel cells (SOFCs). Powdered samples of these materials were synthesized by a novel gel combustion process and then characterized by X-ray powder diffraction (XPD) and scanning electron microscopy (SEM). XPD patterns were satisfactorily indexed with an orthorhombic GdFeO{sub 3}-type structure and, for all samples, a mean particle size of less than 1 {mu}m was estimated from the SEM data. Experimental single-chamber SOFCs using with these materials as cathodes and NiO-SDC (samaria-doped ceria) and SDC as anode and electrolyte, respectively, were evaluated at 600 C in a methane/oxygen mixtures. Peak power densities of 65.4, 48.7 and 46.2 mW cm{sup -2} were obtained for Ag vertical stroke Ln{sub 0.7}Sr{sub 0.3}Fe{sub 0.8}Co{sub 0.2}O{sub 3-{delta}} vertical stroke SDC vertical stroke NiO-SDC vertical stroke Pt cells with Ln = Pr, La and Gd, respectively. The relatively high power density obtained for the Pr compound shows that it could be an interesting material for cathode of single-chamber SOFCs. (author)

  15. Disposal of low- and intermediate-level solid radioactive wastes in rock cavities. A guidebook

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This Guidebook summarizes the factors to be considered and the activities to be undertaken in the overall planning and development of a disposal system for solid or solidified low- and intermediate-level wastes in rock cavities. Aspects related to repository site selection, design, construction, operation, shutdown, surveillance, regulation and safety assessment are discussed here in general terms. They will be covered in greater technical detail in a separate document. This report considers the emplacement of wastes in categories II, III, IV and V, as defined in Table 3.1, in different kinds of cavities located at various depths from just below the surface to deep continental rock. The choice of the type of cavity and its depth and of the disposal site itself is related to the radiological protection requirements for the wastes concerned. The repositories considered include natural caves and abandoned mines as well as specially excavated cavities in various geological formations. Consideration is also given to hydrogeological, environmental and societal factors. The guidelines given in the report are made sufficiently general to cover a broad variety of different circumstances. Consequently, the practical application of these guidelines needs a case-by-case consideration which takes into account the local conditions, e.g. natural circumstances, the characteristics of the wastes and national and international regulations and practices.

  16. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  17. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  18. Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation

    NARCIS (Netherlands)

    Hamidi-Esfahani, Z.; Shojaosadati, S.A.; Rinzema, A.

    2004-01-01

    In the present work a two factorial design of experiments was applied to study the simultaneous effect of temperature and moisture on A. niger growth in the solid-state fermentation (SSF). The increase of water content to more than 55% at the temperatures 35 and 40degreesC decreases microorganism

  19. Trace elements in migrating high-temperature fluids: Effects of diffusive exchange with the adjoining solid

    Science.gov (United States)

    Kenyon, Patricia M.

    1993-01-01

    Trace element concentrations and isotopic ratios are frequently used to study the behavior of high-temperature fluids in both metamorphic and igneous systems. Many theoretical formulations of the effects of fluid migration on trace elements have assumed instantaneous reequilibration between the migrating fluid and the solid material through which it is passing. This paper investigates the additional effects which arise when equilibration is not instantaneous due to a limited rate of diffusion in the solid, using an analytical steady state solution to a set of partial differential equations describing the exchange of trace elements between the fluid and the solid during the migration of the fluid.

  20. The hydrolytic stage in high solids temperature phased anaerobic digestion improves the downstream methane production rate.

    Science.gov (United States)

    Buffière, P; Dooms, M; Hattou, S; Benbelkacem, H

    2018-07-01

    The role of the hydrolytic stage in high solids temperature phased anaerobic digestion was investigated with a mixture of cattle slurry and maize silage with variable ratios (100, 70 and 30% volatile solids coming from cattle slurry). It was incubated for 48 h at 37, 55, 65 and 72 °C. Soluble chemical oxygen demand and biochemical methane potential were measured at 0, 24 and 48 h. Higher temperatures improved the amount of solubilized COD, which confirmed previously reported results. Nevertheless, solubilization mostly took place during the first 24 h. The rate of methane production in post-hydrolysis BMPs increased after 48 h hydrolysis time, but not after 24 h. The first order kinetic constant rose by 40% on average. No correlation was observed between soluble COD and downstream methane production rate, indicating a possible modification of the physical structure of the particulate solids during the hydrolytic stage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Treatment of solid waste highly contaminated by alpha emitters: Low-temperature impact crushing, leaching and incineration

    International Nuclear Information System (INIS)

    Bertolotti, G.; Vigreux, B.; Caillol, A.; Koehly, G.

    1987-01-01

    Reprocessing plants, hot laboratories and fuel fabrication plants produce solid wastes containing residual amounts of plutonium and uranium in nitrate and oxide form at concentrations up to several tens of grams per m/sup 3/. Dismantling of nuclear facilities having handled these radioelements also generates large volumes of solid wastes highly contaminated with alpha emitters. It is desirable to process these alpha wastes to recover valuable fissile materials and/or permit surface storage. Solid waste treatment by low-temperature impact crushing and then leaching, after minimal sorting and classifying at the sites of production, meets the corresponding requirements for high volume reduction plus fissile material recovery or waste decontamination. Additional volume reduction of crushed wastes containing mainly combustible materials can be obtained by incineration. This is facilitated by the low fissile material content after low-temperature impact crushing and leaching. Sorted wastes can also be leached or incinerated directly after, in most cases, crushing by more conventional techniques

  2. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  3. About the structure of quantum intermediate state of superconductors

    International Nuclear Information System (INIS)

    Ledenev, O.P.

    2008-01-01

    The calculation of spatial structure of a quantum intermediate state in Type I superconductors is completed. Theoretical model of thermodynamics of considered state was proposed by Andreev. It is shown, that in a quantum case, the period of structure appears significantly smaller and has different dependence on both the magnetic field and temperature than in the classical intermediate Landau state. The decrease of thickness of normal layers results in increase of characteristic distance between the quantum Andreev levels of electronic excitations, and the transition to the quantum intermediate from classical state is realized at higher temperatures ∼1 K, than it was supposed in previous works. The comparison of calculation data with experimental results, for example using the sample of mono-crystal gallium, is conducted

  4. Metal Phosphates as Proton Conducting Materials for Intermediate Temperature Fuel Cell and Electrolyser Applications

    DEFF Research Database (Denmark)

    Anfimova, Tatiana

    The present thesis presents the results achieved during my ph.d. project on a subject of intermediate temperature proton conducting metal phosphates as electrolyte materials for fuel cells and electrolysers. Fuel cells and electrolysers are electrochemical devices with high energy conversion...... with a proton conductivity of above 10-2S cm-1. Chapter 1 of the thesis is an introduction to basics of fuel cell and electrolyser technologies as well as proton conducting materials. Extended discussion on the proton conducting materials, a particularly phosphates is made in Chapter 2. Three major types...... starts with synthesis and investigation of three rare earth metal phosphate hydrates, which is first presented in Chapter 5. Structural and surface water as well as its stability has been investigated using thermogravimetric and differential thermal analyses combined with structural modeling calculations...

  5. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    Science.gov (United States)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  6. Levitation of Liquid Microdroplets Above A Solid Surface Subcooled to the Leidenfrost Temperature

    Directory of Open Access Journals (Sweden)

    Kirichenko D. P.

    2016-01-01

    Full Text Available Evaporation of liquid microdroplets that fall on a solid surface with the temperature of below the Leidenfrost temperature is studied. It has been found out that sufficiently small liquid droplets of about 10 microns can suspend at some distance from the surface (levitate and do not reach the surface; at that, the rate of droplet evaporation is reduced by an order as compared to microdroplets, which touch the surface. It is determined that in contrast to microdroplets, which touch the surface, the specific evaporation rate of levitating droplets is constant in time.

  7. Analytical investigation on cell temperature control method of planar solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Y.; Ito, N.; Nakajima, T.; Urata, A. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi (Japan)

    2006-09-15

    The solid oxide fuel cell (SOFC) has a problem in durability of the ceramics used as its cell materials because its operating temperature is very high and the cell temperature fluctuation induces thermal stress in the ceramics. The cell temperature distribution in the SOFC, therefore, should be kept as constant as possible during variable load operation through control of the average current density in the cell. Considering this fact, the authors numerically optimize the operating parameters of air utilization and the inlet gas temperature of the planar SOFC by minimizing the cell temperature shift from its nominal value and propose a new cell temperature control method that adopts these optimum operating parameters for each average current density. The effectiveness of the proposed method is very high and the temperature variation is suppressed to a very low level without lowering the single cell voltage for both the co-flow and counter-flow type cells, indicating that the proposed cell temperature control method makes variable load operation of the planar SOFC possible. (author)

  8. Low-temperature solid-state synthesis and optical properties of ZnO/CdS nanocomposites

    International Nuclear Information System (INIS)

    Liu, Jinsong; Zhu, Kongjun; Sheng, Beibei; Li, Ziquan; Tai, Guoan; Qiu, Jinhao; Wang, Jing; Chen, Jiankang; You, Yuncheng; Gu, Qilin; Liu, Pengcheng

    2015-01-01

    Highlights: • Using a low-temperature solid-state method, ZnO/CdS nanocomposites were obtained • Grain growth kinetics of cubic CdS and hexagonal ZnO phase was described. • Sufficient grinding and heating treatment was a key for formation of composites. • Optical properties could be easily manipulated by reaction temperature and time. - Abstract: A simple low-temperature solid-state reaction in the presence of the surfactant PEG400 was developed to obtain ZnO/CdS nanocomposites. The effects of synthesis temperature and reaction time on crystal structure and optical properties of the nanocomposites were investigated by several technologies. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) characterizations showed that the products consisted of the nanoparticles, and the grain growth kinetics of the cubic CdS and the hexagonal ZnO phase in the nanocomposites was described. The mechanism analysis suggested that sufficient grinding and heating treatment was a key to form the ZnO/CdS nanocomposites, and the surfactant PEG400 was proved not to involve the reaction and prevent the nanoparticles from aggregating to larger in whole grinding and heat-treatment process. Ultraviolet–visible (UV–vis) spectra revealed that the band gaps of the nanocomposites could be tuned by the reaction temperature and reaction time. Photoluminescence (PL) spectra showed that the changing position and the intensity of the emission peaks resulted from the rate of electron transfer and recombination probability under the different conditions

  9. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  10. The temperature influence against conductivity of solid state electrolyte of (CuI)0,5(β-Al2O3)0,5

    International Nuclear Information System (INIS)

    Purwanto, -P; Kartini, -E; Purnama, Safei

    2004-01-01

    The solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 has been prepared by a solid state reaction, by mixing of CuI with β-Al 2 O 3 powders. The mixture was compacted and heated at the temperature 300 o C for 3 hours. The conductivity values of (CuI) 0,5 (β-Al 2 O 3 ) 0,5 increased with the temperature and frequency. The x ray diffraction peaks of the solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 are dominated by the peaks of CuI than the peaks of β-Al 2 O 3 . The activation energy of the solid electrolyte is relatively stable, with the range from 0.09 eV to 0.13 eV. The conductivities solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 at room temperature and at 300 o C are 1.48 x 10 -5 S/cm and 8.33 x 10 -4 S/cm, respectively

  11. A New Experimental Design to Study the Kinetics of Solid Dissolution into Liquids at Elevated Temperature

    Science.gov (United States)

    Wang, Huijun; White, Jesse F.; Sichen, Du

    2018-04-01

    A new method was developed to study the dissolution of a solid cylinder in a liquid under forced convection at elevated temperature. In the new design, a rotating cylinder was placed concentrically in a crucible fabricated by boring four holes into a blank material for creating an internal volume with a quatrefoil profile. A strong flow in the radial direction in the liquid was created, which was evidently shown by computational fluid dynamic (CFD) calculations and experiments at both room temperature and elevated temperature. The new setup was able to freeze the sample as it was at experimental temperature, particularly the interface between the solid and the liquid. This freezing was necessary to obtain reliable information for understanding the reaction mechanism. This was exemplified by the study of dissolution of a refractory in liquid slag. The absence of flow in the radial direction in the traditional setup using a symmetrical cylinder was also discussed. The differences in the findings by past investigators using the symmetrical cylinder are most likely due to the extent of misalignment of the cylinder in the containment vessel.

  12. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  13. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  14. All-solid-state potassium-selective electrode using graphene as the solid contact

    DEFF Research Database (Denmark)

    Li, Fenghua; Ye, Junjin; Zhou, Min

    2012-01-01

    Graphene sheets are used for the first time to fabricate a new type of solid-contact ion-selective electrode (SC-ISE) as the intermediate layer between an ionophore-doped solvent polymeric membrane and a glassy carbon electrode. The new transducing layer was characterized by transmission electron...

  15. Improvement in devices for carbonization at low temperature of solid combustibles

    Energy Technology Data Exchange (ETDEWEB)

    1947-07-07

    A complete device is described for the carbonization at low temperature of solid combustibles, characterized by the fact that the pyrogenation furnace proper is constructed in such a way as to permit pyrolysis by external heating in a thin layer with an ultra rapid evacuation of the gases and of the vapors of pyrolysis at the moment of their formation, and comprising means of mechaniccal agitation to promote the transmission of heat from the heating gases and the material to be pyrolized.

  16. Structural study of chlorine tri-fluoride and bromine penta-fluoride in liquid and solid phase

    International Nuclear Information System (INIS)

    Rousson, R.

    1973-01-01

    This research thesis reports the structural study of chlorine tri-fluoride and bromine penta-fluoride between 20 C and about -265 C. After some generalities on these compounds and a presentation of the experimental technique, the author reports and discusses results obtained with these both compounds: Raman spectrum for the liquid and for the solid phase, infrared spectrum for the solid phase, calorimetric measurements. In the case of chlorine tri-fluoride, the author studies the evolution of the liquid spectrum with temperature, shows the existence of an intermediate solid phase, and compares results obtained by Raman spectroscopy and nuclear magnetic resonance. He also applies to bromine penta-fluoride an analysis of normal coordinates of a XF 5 molecule: relationship between force constants and vibration frequencies, application of Wilson method, resolution of the molecular equation, determination of normal vibration modes [fr

  17. Le Chatelier's Principle: The Effect of Temperature on the Solubility of Solids in Liquids.

    Science.gov (United States)

    Brice, L. K.

    1983-01-01

    Provides a rigorous but straightforward thermodynamic treatment of the temperature dependence of the solubility of solids in liquids that is suitable for presentation to undergraduates, suggesting how to approach the qualitative aspects of the subject for freshmen. Considers unsolvated/solvated solutes and Le Chatelier's principle. (JN)

  18. The mechanical properties of T-111 at low to intermediate temperatures

    International Nuclear Information System (INIS)

    McCoy, H.E.; DiStefano, J.R.

    1997-01-01

    In the design of the 60-W Isotopic Heat Source (IHS), a tantalum alloy (T-111) strength member serves as the primary containment shell for the IHS during operation (He-gas internal environment and inert gas or vacuum external environment). An outer Hastelloy S clad is used to protect the T-111 from oxidation, and both the Hastelloy S clad and the T-111 strength member are sealed by automatic gas tungsten arc (GTA) welding. The expected life of the IHS is 5 years at about 650 C preceded by up to 5 years of storage at approximately 300 C. For this application, one important concern is failure of the T-111 strength member due to capsule pressurization arising from helium generation as a fuel decay product. To provide specific data on the mechanical behavior of base and solid metal T-111 under conditions appropriate to the IHS use conditions, a testing program was formulated and carried out. Three types of mechanical tests were conducted. Tensile properties were measured over the temperature range of 25 to 1100 C on T-111 base metal and samples with either longitudinal or transverse autogenous welds. Creep tests on base metal and samples with transverse welds were run to failure over the temperature range of 1100 to 850 C. Creep tests were also run on several transverse weld samples over the temperature range of 500 to 900 C at stresses where failure did not occur, and the creep rates were measured. Two prototypical capsules of the T-111 strength member were fabricated by EG and G Mound Applied Technologies (Mound Laboratories). To verify the mechanical properties design data developed above, these were tested to failure (leak) in a vacuum chamber with the inside of the capsule pressurized by either argon or helium

  19. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  20. Temperature dependence of the positron annihilation in liquid and solid bismuth and gallium

    International Nuclear Information System (INIS)

    Szymanski, C.; Chabik, S.; Pajak, J.; Rozenfeld, B.

    1980-01-01

    The annihilation rate is measured for liquid and solid Bi and Ga at the peak of angular correlation curve. Linear increase of this rate observed up to the melting point confirms the lack of positron trapping in solid Bi and Ga. At the melting point a nearly 20% increase of the counting rate is observed for Ga, while for Bi about 5% decrease is noticed. The anomalies found in the F(T) curve for the liquid phase are associated with the existence of cluster atoms and with the process of their structure rebuilding. With the exception of small momenta ranges there are no noticeable variations of the electron momentum distribution measured at different temperatures. (author)

  1. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method

    International Nuclear Information System (INIS)

    Li Fashen; Wang Haibo; Wang Li; Wang Jianbo

    2007-01-01

    ZnFe 2 O 4 nanoparticles with average grain size ranging from 40 to 60 nm behaving superparamagnetic at room temperature have been produced using a low-temperature solid-state reaction (LTSSR) method without ball-milling process. Abnormal magnetic properties such as S-shape hysteresis loops and non-zero magnetic moments were observed. ZnFe 2 O 4 nanoparticles were also synthesized using a NaOH coprecipitation method and a PVA sol-gel method to study the relationship between the preparation processes and the magnetic properties. Spin-glass behavior was observed in the low temperature solid-state reaction produced Zn ferrite in the zero-field cooled (ZFC) measurement. Our work proves that the various preparation methods will to some extent determine the properties of magnetic nanoparticles

  2. Solid Oxide Fuel Cell Based Upon Colloidal Deposition of Thin Films for Lower Temperature Operation (Preprint)

    National Research Council Canada - National Science Library

    Reitz, T. L; Xiao, H

    2006-01-01

    In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), anode-supported cells incorporating thin film electrolytes in conjunction with anode/electrolyte and cathode/electrolyte interlayers were studied...

  3. Morphology Control of the Electrode for Solid Oxide Fuel Cells by Using Nanoparticles

    International Nuclear Information System (INIS)

    Fukui, Takehisa; Ohara, Satoshi; Naito, Makio; Nogi, Kiyoshi

    2001-01-01

    LSM(La(Sr)MnO 3 )/YSZ(Y 2 O 3 stabilized ZrO 2 ) composite cathode for Solid Oxide Fuel Cells (SOFCs) was fabricated by using the composite particle consisting of well-dispersed nano-size grains of LSM and YSZ. The composite cathode had a porous structure as well as uniformly dispersed fine LSM and YSZ grains. Such unique morphology of the composite cathode led high electrochemical activity at 800 deg. C. It suggests that the intermediate temperature (less than 800 o C) operation of SOFCs will be achieved by using composite particles

  4. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  5. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  6. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  7. Measurement of solid-liquid interfacial energy in the In-Bi eutectic alloy at low melting temperature

    International Nuclear Information System (INIS)

    Marasli, N; Akbulut, S; Ocak, Y; Keslioglu, K; Boeyuek, U; Kaya, H; Cadirli, E

    2007-01-01

    The Gibbs-Thomson coefficient and solid-liquid interfacial energy of the solid In solution in equilibrium with In Bi eutectic liquid have been determined to be (1.46 ± 0.07) x 10 -7 K m and (40.4 ± 4.0) x 10 -3 J m -2 by observing the equilibrated grain boundary groove shapes. The grain boundary energy of the solid In solution phase has been calculated to be (79.0 ± 8.7) x 10 -3 J m -2 by considering force balance at the grain boundary grooves. The thermal conductivities of the In-12.4 at.% Bi eutectic liquid phase and the solid In solution phase and their ratio at the eutectic melting temperature (72 deg. C) have also been measured with radial heat flow apparatus and Bridgman-type growth apparatus

  8. A cobalt-free perovskite-type La{sub 0.6}Sr{sub 0.4}Fe{sub 0.9}Cr{sub 0.1}O{sub 3-{alpha}} cathode for proton-conducting intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zuolong; Yang, Zhijie; Zhao, Dongmei; Deng, Xuli [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Ma, Guilin, E-mail: 32uumagl@suda.edu.cn [Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer A cobalt-free cathode material LSFC10 for IT-SOFCs was prepared and studied in detail. Black-Right-Pointing-Pointer The conductivity of LSFC10 reached 138 S cm{sup -1} under oxygen at 550 Degree-Sign C. Black-Right-Pointing-Pointer An anode-supported BZCY electrolyte membrane was successfully fabricated by a simple spin coating process. Black-Right-Pointing-Pointer Power density of the ceramic membrane fuel cell using LSFC10 as cathode reached 412 mW cm{sup -2} at 700 Degree-Sign C. - Abstract: A cobalt-free perovskite-type cathode material La{sub 0.6}Sr{sub 0.4}Fe{sub 0.9}Cr{sub 0.1}O{sub 3-{alpha}} (LSFC10) was prepared by a citric acid-nitrate process and investigated as a potential cathode material for proton-conducting intermediate-temperature solid oxide fuel cells (IT-SOFCs). The maximum conductivity of LSFC10 reached 138 S cm{sup -1} under oxygen at 550 Degree-Sign C. A Ni-BZCY composite anode-supported proton-conducting BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{alpha}} (BZCY) electrolyte membrane was successfully fabricated by a simple, cost-effective spin coating process. The peak power densities of the H{sub 2}/O{sub 2} fuel cell using BZCY electrolyte membrane, Ni-BZCY composite anode and LSFC10 cathode reached 412 mW cm{sup -2}, and the interfacial polarization resistance for the fuel cell was as low as 0.19 {Omega} cm{sup 2} under open circuit conditions, at 700 Degree-Sign C. These results reveal LSFC10 is a suitable cathode material for proton-conducting IT-SOFCs.

  9. Medium-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; Kuriakose, A.K. [Natural Resources Canada, Ottawa, ON (Canada). Materials Technology Lab

    2000-07-01

    The Materials Technology Laboratory (MTL) of Natural Resources Canada has been conducting research on the development of a solid oxide fuel cell (SOFC) for the past decade. Fuel cells convert chemical energy directly into electric energy in an efficient and environmentally friendly manner. SOFCs are considered to be good stationary power sources for commercial and residential applications and will likely be commercialized in the near future. The research at MTL has focused on the development of new electrolytes for use in SOFCs. In the course of this research, monolithic planar single cell SOFCs based on doubly doped ceria and lanthanum gallate have been fabricated and tested at 700 degrees C. This paper compared the performance characteristics of both these systems. The data suggested the presence of a significant electronic conductivity in the SOFC incorporating doubly doped ceria, resulting in lower than expected voltage output. The stability of the SOFC, however, did not appear to be negatively affected. The lanthanum gallate based SOFC performed well. It was concluded that reducing the operating temperature of SOFCs would improve their reliability and enhance their operating life. First generation commercial SOFCs will use a zirconium oxide-based electrolytes while second generation units might possibly use ceria-based and/or lanthanum gallate electrolytes. 24 refs., 6 figs.

  10. Characterization of elevated temperature properties of heat exchanger and steam generator alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Cabet, C.; Lillo, T.M.; Benz, J.K.; Simpson, J.A.; Lloyd, W.R.; Chapman, J.A.; Wright, R.N.

    2012-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 °C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 °C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 °C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 and Alloy 800H has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep–fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep–fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  11. Evaluation and scale-up of intermediate temperature (700{sup o}C) solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.

    1999-10-01

    This 3-year development and evaluation of materials and fabrication processes for ITSOFC has resulted in a successful demonstration of the components developed. A 120 mm 5-cell stack was operated over 2000 hours at high fuel utilisation using steam reformed CH{sub 4} at temperatures between 630{sup o}C to 675{sup o}C. Cost effective materials were largely used resulting in a 45% reduction of costs compared to state of the art SOFC stacks. The demonstration of a large stack was, however, only partially successful due to the inherent thermomechanical weakness of the key component, the CGO electrolyte. (author)

  12. Performance of intermediate temperature (600-800 °C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    The solid electrolyte chosen for this investigation was La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800 °C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La 0.6Sr 0.4Co 0.8Fe 0.2O 3-La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSCF-LSGM) composite cathode and nickel-Ce 0.6La 0.4O 2 (Ni-LDC) composite anode having a barrier layer of Ce 0.6La 0.4O 2 (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800 °C.

  13. Galvanic high temperature cell with solid negative electrode and an electrolyte melt. Galvanische Hochtemperaturzelle mit fester negativer Elektrode und einem Schmelzelektrolyten

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W; Borger, W

    1987-01-08

    The purpose of the invention is to make an electrolyte melt available for high temperature cells (e.g. LiFeS cells), which guarantees ion transport and also acts as a separator. The invention starts from the fact that binary melts of the LiCl/KCl type are only liquid (i.e. without solid components) at a certain temperature at certain concentrations. With suitable mixing conditions, which apart from a eutectic composition, are mainly on the side of one of the two components, one can ensure that this component is present in the solid phase. In this way, a solid framework of LiCl, for example, is formed between the electrode plates in situ as a separator, in the pores of which the excess melt (e.g. LiCl/KCl) can carry out ion conduction. The volumetric ratio of the electrolyte melt in which liquid and solid phases are present at the working temperature of the cell should preferably be in the range of 2:1 to 1:2.

  14. Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications

    KAUST Repository

    Wang, Song

    2017-05-10

    Thermal diodes, or devices that transport thermal energy asymmetrically, analogous to electrical diodes, hold promise for thermal energy harvesting and conservation, as well as for phononics or information processing. The junction of a phase change material and phase invariant material can form a thermal diode; however, there are limited constituent materials available for a given target temperature, particularly near ambient. In this work, we demonstrate that a micro and nanoporous polystyrene foam can house a paraffin-based phase change material, fused to PMMA, to produce mechanically robust, solid-state thermal diodes capable of ambient operation with Young\\'s moduli larger than 11.5 MPa and 55.2 MPa above and below the melting transition point, respectively. Moreover, the composites show significant changes in thermal conductivity above and below the melting point of the constituent paraffin and rectification that is well-described by our previous theory and the Maxwell–Eucken model. Maximum thermal rectifications range from 1.18 to 1.34. We show that such devices perform reliably enough to operate in thermal diode bridges, dynamic thermal circuits capable of transforming oscillating temperature inputs into single polarity temperature differences – analogous to an electrical diode bridge with widespread implications for transient thermal energy harvesting and conservation. Overall, our approach yields mechanically robust, solid-state thermal diodes capable of engineering design from a mathematical model of phase change and thermal transport, with implications for energy harvesting.

  15. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junkai; Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn; Fan, Weiwei; Wang, Wendong; Wu, Kai; Cheng, Yonghong

    2017-03-15

    The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from the Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathode LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.

  16. Comments on intermediate-scale models

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.

    1987-01-01

    Some superstring-inspired models employ intermediate scales m I of gauge symmetry breaking. Such scales should exceed 10 16 GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above m I . However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O(m W ), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has not renormalizable interactions at scales below m I . We also comment on the danger of baryon and lepton number violation in the effective low-energy theory. (orig.)

  17. Utilization of heat of finely divided solids

    Energy Technology Data Exchange (ETDEWEB)

    1951-11-05

    A method pr preconditioning subdivided solids subjected to a high-temperature treatment in a high-temperature treating zone, comprises transferring a portion of the sensible heat of hot, subdivided, treated solids withdrawn from said treating zone, at a relatively high temperature level to said subdivided solids to be preconditioned, transferring another portion of said sensible heat at a relatively low temperature level to a material vaporizable at said low temperature level to generate a fluidizing medium and fluidizing said subdivided withdrawn solids by means of said fluidizing medium to improve the heat-transfer characteristics of said withdrawn solids.

  18. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  19. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’ as, Eman Husni; Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2017-01-01

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  20. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’as, Eman Husni

    2017-10-28

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  1. Magnetic properties of high temperature superconductors. AC susceptibility and magnetostriction studies

    Energy Technology Data Exchange (ETDEWEB)

    Heill, L K

    1995-05-01

    The author of this thesis has measured the ac magnetic response function {mu} = {mu}`+i{mu}`` in melt-powder-melt-growth YBa{sub 2}Cu{sub 3}O{sub 7} (Y123) with insulating Y{sub 2}BaCuO{sub 5} (Y211) and in single crystal YBa{sub 2}Cu{sub 3}O{sub 7} (SC) in applied dc fields up to 8 T, oriented both parallel and perpendicular to the crystalline c-axis. Both samples are cubes with sides of about 1 mm. The response of the two samples was mapped out as a function of temperature, excitation field amplitude and frequency, dc field and field orientation. It is found that for both samples the loss peak line (LPL) and hence the irreversibility line (IL) exists at higher temperatures and fields for perpendicular field orientation than for parallel. Strong frequency but weak amplitude dependence is observed for parallel orientation, vice versa for perpendicular orientation. The measured response is strongly non-linear for perpendicular orientation, and intermediate between linear (ohmic) and extremely non-linear (Bean critical state) for parallel orientation. The situation at parallel orientation is close to but above the transition into a vortex solid state, and a power law temperature dependence with exponent 1.5 is obtained for the vortex glass transition line. For perpendicular orientation the response is consistent with that expected in a vortex solid. Pinning barriers are found by means of thermal activation analysis. Anomalous loss peaks {mu}``(T) are observed for the SC sample for intermediate fields in perpendicular orientation. Large magnetostriction is found in a flat single crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} sample at low temperature and fields up to 6 T applied along the c-axis. 332 refs., 59 figs., 7 tabs.

  2. Scalable architecture for a room temperature solid-state quantum information processor.

    Science.gov (United States)

    Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D

    2012-04-24

    The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.

  3. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  4. AC susceptibility of thin Pb films in intermediate and mixed state

    Czech Academy of Sciences Publication Activity Database

    Janů, Zdeněk; Švindrych, Zdeněk; Truněček, O.; Kúš, P.; Plecenik, A.

    2011-01-01

    Roč. 471, 23-24 (2011), s. 1647-1650 ISSN 0921-4534 R&D Projects: GA MŠk(CZ) ME10069 Institutional research plan: CEZ:AV0Z10100520 Keywords : intermediate state * mixed state * AC susceptibility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2011

  5. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  6. Borylnitrenes: electrophilic reactive intermediates with high reactivity towards C-H bonds.

    Science.gov (United States)

    Bettinger, Holger F; Filthaus, Matthias

    2010-12-21

    Borylnitrenes (catBN 3a and pinBN 3b; cat = catecholato, pin = pinacolato) are reactive intermediates that show high tendency towards insertion into the C-H bonds of unactivated hydrocarbons. The present article summarizes the matrix isolation investigations that were aimed at identifying, characterizing and investigating the chemical behaviour of 3a by spectroscopic means, and of the experiments in solution and in the gas phase that were performed with 3b. Comparison with the reactivity reported for difluorovinylidene 1a in solid argon indicates that 3a shows by and large similar reactivity, but only after photochemical excitation. The derivative 3b inserts into the C-H bonds of hydrocarbon solvents in high yields and thus allows the formation of primary amines, secondary amines, or amides from "unreactive" hydrocarbons. It can also be used for generation of methylamine or methylamide from methane in the gas phase at room temperature. Remaining challenges in the chemistry of borylnitrenes are briefly summarized.

  7. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  8. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  9. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Rzyski, B.M.

    1989-01-01

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author) [pt

  10. A high performance cathode for proton conducting solid oxide fuel cells

    KAUST Repository

    Wang, Zhiquan

    2015-01-01

    Intermediate temperature solid-oxide fuel cells (IT-SOFCs)), as one of the energy conversion devices, have attracted worldwide interest for their great fuel efficiency, low air pollution, much reduced cost and excellent longtime stability. In the intermediate temperature range (500-700°C), SOFCs based on proton conducting electrolytes (PSOFCs) display unique advantages over those based on oxygen ion conducting electrolytes. A key obstacle to the practical operation of past P-SOFCs is the poor stability of the traditionally used composite cathode materials in the steam-containing atmosphere and their low contribution to proton conduction. Here we report the identification of a new Ruddlesden-Popper-type oxide Sr3Fe2O7-δ that meets the requirements for much improved long-term stability and shows a superior single-cell performance. With a Sr3Fe2O7-δ-5 wt% BaZr0.3Ce0.5Y0.2O3-δ cathode, the P-SOFC exhibits high power densities (683 and 583 mW cm-2 at 700°C and 650°C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. More importantly, no decay in discharging was observed within a 100 hour test. © The Royal Society of Chemistry 2015.

  11. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    Science.gov (United States)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  12. Avaliação das propriedades do Ba0,50Sr0,50Co0,80Fe0,20O3-d para células a combustível de óxido sólido de temperatura intermediária obtido pelo método citratos-EDTA Evaluation of the properties of Ba0,50Sr0.50Co0.80Fe0.20O3-d obtained by the citrate-EDTA method for intermediate temperature solid oxide fuel cell

    Directory of Open Access Journals (Sweden)

    E. Bonturim

    2013-03-01

    Full Text Available Ba0,50Sr0,50Co0,80Fe0,20O3-d (BSCF apresenta propriedades físicas, químicas e microestruturais adequadas para compor o cátodo de uma célula a combustível de óxido sólido de temperatura intermediária (ITSOFC. Este trabalho tem por objetivo a síntese e a caracterização do BSCF obtido pelo método dos citrados-EDTA. Os resultados obtidos por difração de raios X (DRX indicaram fases secundárias para o material calcinado a 700 e 800 ºC e fase única com estrutura cristalina do tipo perovskita para 900 ºC. As micrografias obtidas por microscopia eletrônica de varredura dos particulados evidenciou a formação de aglomerados de tamanho Ba0.50Sr0.50Co0.80Fe0.20O3-d (BSCF presents physical, chemical and microstructural properties suitable to form the cathode of Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC. This work aims the synthesis and characterization of BSCF, obtained by the citrate-EDTA method. The X-ray diffraction results indicate secondary phases for the material calcined at 700 and 800 °C and single phase with perovskite crystalline structure at 900 °C. The SEM-FEG particles micrographs show the formation of < 20 µm clusters. The dilatometric analysis of pellets indicates the sintering temperature at ~ 1050 °C. XRD results of the sintered samples show perovskite single phase. The SEM micrographs confirmed the formation of higher porosity in the samples sintered at 1000 °C/1 h using powders calcined at 900 °C.

  13. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    Science.gov (United States)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  14. A Simple Method to Measure the Thermal contraction Percentage of a Solid Between Room and Liquid Nitrogen Temperatures

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2000-01-01

    We described how to build a simple device for measuring, with a reasonable good accuracy, the thermal contraction of a flat sample between room and liquid nitrogen temperatures. The contraction percentage of the sample is determined by the dimensional comparison of two images taken through the bottom of a transparent quartz tray. Instead of a photo or video camera, a high-resolution flatbed scanner is utilized to avoid the correction of perspectives. The so-called Grueneisen approximation are applied to evaluate the contraction percentages for intermediate temperatures. (Author) 28 refs

  15. Comments on intermediate-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.

    1987-04-23

    Some superstring-inspired models employ intermediate scales m/sub I/ of gauge symmetry breaking. Such scales should exceed 10/sup 16/ GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above m/sub I/. However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O(m/sub W/), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has not renormalizable interactions at scales below m/sub I/. We also comment on the danger of baryon and lepton number violation in the effective low-energy theory.

  16. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  17. Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Benz, J.K.; Simpson, J.A.; Wright, R.N.; Lloyd, W.R.; Chapman, J.A.

    2010-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. In general dynamic strain aging is observed to begin at higher temperatures and serrated flow persists to higher temperatures in Alloy 617 compared to Alloy 800H. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. The role of dynamic strain aging in the creep-fatigue behavior of Alloy 617 at temperatures of 800 C and above has also been examined in detail. Serrated flow is found to persist in cyclic stress-strain curves up to nearly the cycle to failure in some temperature and strain regimes. Results of those experiments and implications for creep-fatigue testing protocols will be described.

  18. Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions

    Science.gov (United States)

    Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.

    2010-03-01

    Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.

  19. A Design of He-Molten Salt Intermediate Heat Exchanger for VHTR

    International Nuclear Information System (INIS)

    Jeong, Hui Seong; Bang, Kwang Hyun

    2010-01-01

    The Very High Temperature Reactor (VHTR), one of the most challenging next generation nuclear reactors, has recently drawn an international interest due to its higher efficiency and the operating conditions adequate for supplying process heat to the hydrogen production facilities. To make the design of VHTR complete and plausible, the designs of the Intermediate Heat Transport Loop (IHTL) as well as the Intermediate Heat Exchanger (IHX) are known to be one of the difficult engineering tasks due to its high temperature operating condition (up to 950 .deg. C). A type of compact heat exchangers such as printed circuit heat exchanger (PCHE) has been recommended for the IHX in the technical and economical respects. Selection of the heat transporting fluid for the intermediate heat transport loop is important in consideration of safety and economical aspects. Although helium is currently the primary interest for the intermediate loop fluid, several safety concerns of gas fluids have been expressed. If the pressure boundary of the intermediate loop fails, the blowdown of the gas may overcool the reactor core and then the heat sink is lost after the blowdown. Also the large inventory of gas in the intermediate loop may leak into the primary side. There is also a recommendation that the nuclear plant and the hydrogen production plant be separated by a certain distance to ensure the safety of the nuclear plant in case of accidental heavy gas release from the chemical plant. In this circumstance, the pumping power of gas fluid in the intermediate loop will be large enough to degrade the economics of nuclear hydrogen.An alternative candidate for the intermediate loop fluid in consideration of these safety and economical problems of gas fluid can be molten salts. The Flinak molten salt, a eutectic mixture of LiF, NaF and KF (46.5:11.5:42.0 mole %) is considered to be a potential candidate for the heat transporting fluid in the IHTL due to its chemical stability against the

  20. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    Thermo-mechanical properties of a silicate based glass and its potential use for sealing application in intermediate temperature solid oxide cell (SOC) are presented in this paper. Effects of thermal aging are discussed on structural and microstructural evolution, thermal expansion, viscosity......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  1. Classical model of intermediate statistics

    International Nuclear Information System (INIS)

    Kaniadakis, G.

    1994-01-01

    In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions

  2. Solid-Core Heat-Pipe Nuclear Batterly Type Reactor

    International Nuclear Information System (INIS)

    Ehud Greenspan

    2008-01-01

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP). Like the SAFE 400 space nuclear reactor core, the HPENHS core is comprised of fuel rods and HPs embedded in a solid structure arranged in a hexagonal lattice in a 3:1 ratio. The core is oriented horizontally and has a square rather cylindrical cross section for effective heat transfer. The HPs extend from the two axial reflectors in which the fission gas plena are embedded and transfer heat to an intermediate coolant that flows by natural-circulation. The HP-ENHS is designed to preserve many features of the ENHS including 20-year operation without refueling, very small excess reactivity throughout life, natural circulation cooling, walkaway passive safety, and robust proliferation resistance. The target power level and specific power of the HP-ENHS reactor are those of the reference ENHS reactor. Compared to previous ENHS reactor designs utilizing a lead or lead-bismuth alloy natural circulation cooling system, the HP-ENHS reactor offers a number of advantageous features including: (1) significantly enhanced passive decay heat removal capability; (2) no positive void reactivity coefficients; (3) relatively lower corrosion of the cladding (4) a core that is more robust for transportation; (5) higher temperature potentially offering higher efficiency and hydrogen production capability. This preliminary study focuses on five areas: material compatibility analysis, HP performance analysis, neutronic analysis, thermal-hydraulic analysis and safety analysis. Of the four high-temperature structural materials evaluated, Mo TZM alloy is the preferred choice; its upper estimated feasible operating temperature is 1350 K. HP performance is evaluated as a function of working fluid type, operating temperature, wick design and HP diameter and length. Sodium is the

  3. Molar volume dependence of the pressure of solid 3He at very low temperatures

    International Nuclear Information System (INIS)

    Mamiya, T.; Sawada, A.; Fukuyama, H.; Iwahashi, K.; Masuda, Y.

    1983-01-01

    The pressure of solid 3 He has been measured as a function of temperature T between 0.3 and 50 mK at molar volumes between 24.19 and 23.31 cm 3 . The entropy discontinuity obtained from the pressure jump at the ordering transition turned out to be almost independent of molar volumes, being about 0.40Rln2 in the studied range of molar volumes

  4. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  5. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  6. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  7. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  8. Solid particle effects on heat transfer in a multi-layered molten pool with gas injection

    International Nuclear Information System (INIS)

    Bilbao y Leon, Rosa Marina; Corradini, Michael L.

    2006-01-01

    In the very unlikely event of a severe reactor accident involving core melt and pressure vessel failure, it is important to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a stable coolable state. To achieve this, it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. In this situation the molten pool would become a three-phase mixture: e.g., a solid and liquid slurry formed by the molten pool as it cools to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward in this multi-layered configuration, considering the influence of the viscosity and the solid fraction in the pool, from test data obtained from intermediate scale experiments at the University of Wisconsin-Madison. These experimental results show heat transfer behavior for multi-layered pools for a range of viscosities and solid fractions. These results are compared to previous experimental studies and well known correlations and models

  9. Muonium localization in solid krypton

    International Nuclear Information System (INIS)

    Storchak, V.; Cox, S.F.J.; Brewer, J.H.; Morris, G.D.

    1995-06-01

    Muonium spin relaxation in zero, longitudinal and transverse magnetic fields has been studied in solid and liquid krypton in the temperature range from 2 K to 120 K. In the solid at low temperatures, the spin dynamics exhibit features characteristic of a magnetically dilute crystal, permitting measurements of exceptionally low muonium diffusion rates. At the lowest temperatures, a static Kubo-Toyabe relaxation function has been observed for the first time for the atomic muonium state, indicating strong interstitial localization in the Kr lattice at low temperatures; muonium is determined to be localized at the tetrahedral interstitial position. At high temperatures, muonium diffusion in solid Kr exhibits a non-classical behaviour. (author). 31 refs., 6 figs

  10. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    Science.gov (United States)

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    Science.gov (United States)

    Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  12. Shelf stable intermediate moisture fruit cubes using radiation technology

    International Nuclear Information System (INIS)

    Mishra, Bibhuti B.; Saxena, Sudhanshu; Gautam, Satyendra; Chander, Ramesh; Sharma, Arun

    2009-01-01

    A process has been developed to prepare shelf stable ready-to-eat (RTE) intermediate moisture pineapple slices and papaya cubes using radiation technology. The combination of hurdles including osmotic dehydration, blanching, infrared drying, and gamma radiation dose of 1 kGy successfully reduced the microbial load to below detectable limit. The shelf life of the intermediate moisture pineapple slices and papaya cubes was found to be 40 days at ambient temperature (28 ± 2 deg C). The control samples spoiled within 6 days. The RTE intermediate moisture fruit products were found to have good texture, colour and sensory acceptability during this 40 days storage. (author)

  13. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Solution and solid state NMR studies of the structure and dynamics of C60 and C70

    International Nuclear Information System (INIS)

    Johnson, R.D.; Yannoni, C.S.; Salem, J.; Meijer, G.; Bethune, D.S.

    1991-01-01

    This paper investigates the structure and dynamics of C 60 and C 70 with 13 C NMR spectroscopy. In solution, high-resolution spectra reveal that C 60 has a single resonance at 143 ppm, indicating a strained, aromatic system with high symmetry. This is strong evidence for a C 60 soccer ball geometry. A 2D NMR INADEQUATE experiment on 13 C-enriched C 70 reveals the bonding connectivity to be a linear string, in firm support of the proposed rugby ball structure with D 5h symmetry, and furnishes resonance assignments. Solid state NMR spectra of C 60 at ambient temperatures yield a narrow resonance, indicative of rapid molecular reorientation. Variable temperature T 1 measurements show that the rotational correlation time is ∼ 10 - 9 s at 230 K. At 77 K, this time increases to more than 1 ms, and the 13 C NMR spectrum of C 60 is a powder pattern due to chemical shift anisotropy (tensor components 220, 186, 40 ppm). At intermediate temperatures a narrow peak is superimposed on the powder pattern, suggesting a distribution of barriers to molecular motion in the sample, or the presence of an additional phase in the solid state. A Carr-Purcell dipolar experiment on C 60 in the solid state allows the first precise determination of the C 60 bond lengths: 1.45 and 1.40 Angstrom

  15. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  16. Implications of Changing Temperatures on the Growth, Fecundity and Survival of Intermediate Host Snails of Schistosomiasis: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Chester Kalinda

    2017-01-01

    Full Text Available Climate change has been predicted to increase the global mean temperature and to alter the ecological interactions among organisms. These changes may play critical roles in influencing the life history traits of the intermediate hosts (IHs. This review focused on studies and disease models that evaluate the potential effect of temperature rise on the ecology of IH snails and the development of parasites within them. The main focus was on IH snails of schistosome parasites that cause schistosomiasis in humans. A literature search was conducted on Google Scholar, EBSCOhost and PubMed databases using predefined medical subject heading terms, Boolean operators and truncation symbols in combinations with direct key words. The final synthesis included nineteen published articles. The studies reviewed indicated that temperature rise may alter the distribution, optimal conditions for breeding, growth and survival of IH snails which may eventually increase the spread and/or transmission of schistosomiasis. The literature also confirmed that the life history traits of IH snails and their interaction with the schistosome parasites are affected by temperature and hence a change in climate may have profound outcomes on the population size of snails, parasite density and disease epidemiology. We concluded that understanding the impact of temperature on the growth, fecundity and survival of IH snails may broaden the knowledge on the possible effects of climate change and hence inform schistosomiasis control programmes.

  17. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  18. Low and intermediate level radioactive waste in Mexico

    International Nuclear Information System (INIS)

    Paredes, L.C.; Ortiz, J.R.; Sanchez, S.

    2002-01-01

    Currently, it is necessary to establish, in a few years, a definitive repository for low and intermediate level radioactive waste in order to satisfy the necessities of Mexico for the next 50 years. Consequently, it is required to estimate the volumes of the radioactive waste generated annually, the stored volumes to-date and their projection to medium-term. On this subject, the annual average production of low and intermediate level radioactive waste from the electricity production by means of nuclear power reactors is 250 m 3 /y which consist of humid and dry solid waste from the 2 units of the Laguna Verde Nuclear Power plant having a re-use efficiency of effluents of 95%. On the other hand, the applications in medicine, industry and research generate 20 m 3 /y of solid waste, 280 m 3 /y of liquid waste and approximately 10 m 3 /y from 300 spent sealed radioactive sources. The estimation of the total volume of these waste to the year 2035 is 17500 m 3 corresponding to the 46% of the volume generated by the operation and maintenance of the 2 units of the Laguna Verde Nuclear Power plant, 34% to the decommissioning of these 2 units at the end of their useful life and 20% to the waste generated by applications in medicine, industry and research. (author)

  19. Project study for the final disposal of intermediate toxicity radioactive wastes (low- and intermediate-level radioactive wastes) in geological formations

    International Nuclear Information System (INIS)

    1980-08-01

    The present report aimed to show variations in the construction- and operation-technical feasibility of a final repository for low- and intermediate-level radioactive wastes. This report represents the summary of a project study given under contract by Nagra with a view to informing a broader public of the technical conception of a final repository. Particular stress was laid on the treatment of the individual system elements of a repository concept during the construction, operation and sealing phases. The essential basis for the project study is the origin, composition and quantity of the wastes to be disposed. The final repository described in this report is foreseen for the reception of the following low- and intermediate-level solid radioactive wastes: wastes from the nuclear power plant operation; secondary wastes from the reprocessing of nuclear fuels; wastes from the decommissioning of nuclear power plants; wastes from research, medicine and industry

  20. THE EFFECTS OF EXPERIMENTAL CONDITIONS ON THE REFRACTIVE INDEX AND DENSITY OF LOW-TEMPERATURE ICES: SOLID CARBON DIOXIDE

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A. [Astrochemistry Laboratory, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-08-20

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO{sub 2}) at 14–70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz–Lorenz approximation is valid for solid CO{sub 2} across the full 14–70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n {sub vis} and ρ are not measured in the same experimental setup where the IR spectral measurements are made.

  1. The Effects of Experimental Conditions on the Refractive Index and Density of Low-Temperature Ices: Solid Carbon Dioxide

    Science.gov (United States)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-01-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14-70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz-Lorenz approximation is valid for solid CO2 across the full 14-70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where nvis and ? are not measured in the same experimental setup where the IR spectral measurements are made.

  2. Temperature sensitive molecularly imprinted microspheres for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites

    International Nuclear Information System (INIS)

    Tan, Lei; Chen, Kuncai; He, Rong; Peng, Rongfei; Huang, Cong

    2016-01-01

    This article demonstrates the feasibility of an alternative strategy for producing temperature sensitive molecularly imprinted microspheres (MIMs) for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites. Thermo-sensitive MIMs can change their structure following temperature stimulation. This allows capture and release of target molecules to be controlled by temperature. The fabrication technique provides surface molecular imprinting in acetonitrile using vinyl modified silica microspheres as solid supports, methacrylic acid and N-isopropyl acrylamide as the functional monomers, ethyleneglycol dimethacrylate as the cross-linker, and malachite green as the template. After elution of the template, the MIMs can be used for fairly group-selective solid phase dispersion extraction of malachite green, crystal violet, leucomalachite green, and leucocrystal violet from homogenized fish samples at a certain temperature. Following centrifugal separation of the microspheres, the analytes were eluted with a 95:5 mixture of acetonitrile and formic acid, and then quantified by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with isotope internal calibration. The detection limits for malachite green, crystal violet and their metabolites typically are 30 ng·kg −1 . Positive samples were identified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. The method was applied to the determination of the dyes and the respective leuko dyes in fish samples, and accuracy and precision were validated by comparative analysis of the samples by using aluminum neutral columns. (author)

  3. Magnetic re-entrance in intermediate valence compounds

    International Nuclear Information System (INIS)

    Allub, R.; Machiavelli, O.; Balseiro, C.; Alascio, B.

    1980-01-01

    The possibility is explored of magnetic re-entrance in intermediate valence compounds. Using a simplified Anderson-Lattice model the pressure-temperature magnetic phase diagram is obtained. This diagram shows that for some value of the microscopic parameters the temperature induced two transitions (non-magnetic to magnetically ordered to paramagnetic). The magnetization and the average occupation number of the localized state are calculated. Estimations of the observability of the effect in systems like CeAl 2 are made. (author)

  4. Surface roughness statistics and temperature step stress effects for D-T solid layers equilibrated inside a 2 mm beryllium torus

    International Nuclear Information System (INIS)

    Sheliak, J.D.; Hoffer, J.K.

    1998-01-01

    Solid D-T layers are equilibrated inside a 2 mm diameter beryllium toroidal cell at temperatures ranging from 19.0 K to 19.6 K, using the beta-layering process. The experimental runs consists of multiple cycles of rapid- or slow-freezing of the initially liquid D-T charge, followed by a lengthy period of beta-layering equilibration, terminated by melting the layer. The temperature was changed in discrete steps at the end of some equilibration cycles in an attempt to simulate actual ICF target conditions. High-precision images of the D-T solid-vapor interface were analyzed to yield the surface roughness σ mns as a sum of modal contributions. Results show an overage σ mns of 1.3 ± 0.3 microm for layers equilibrated at 19.0 K and show an inverse dependence of σ mns on equilibration temperature up to 19.525 K. Inducing sudden temperature perturbations lowered σ mns to 1.0 ± 0.05 microm

  5. Interference scattering effects on intermediate resonance absorption at operating temperatures

    International Nuclear Information System (INIS)

    Goldstein, R.

    1975-01-01

    Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures

  6. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  7. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure

    DEFF Research Database (Denmark)

    Bruun, Sander; Harmer, Sarah L; Bekiaris, Georgios

    2017-01-01

    was produced at different temperatures from digestate solids. The primary species of P in digestate solids were simple calcium phosphates. However, a high co-occurrence of magnesium (Mg) and P, indicated that struvite or other magnesium phosphates may also be important species. At low temperatures, pyrolysis......, which gradually decreases because of oxidation of the biochar surfaces or changes in pH around the biochar particles....

  8. Performance of intermediate temperature (600-800{sup o}C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B. [Department of Manufacturing Engineering, Boston University, MA 02215 (United States)

    2006-09-29

    The solid electrolyte chosen for this investigation was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800{sup o}C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and nickel-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 2} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800{sup o}C. (author)

  9. Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction

    DEFF Research Database (Denmark)

    Karjalainen, Milja; Airaksinen, Sari; Rantanen, Jukka

    2005-01-01

    The aim of this study was to use variable temperature X-ray powder diffraction (VT-XRPD) to understand the solid-state changes in the pharmaceutical materials during heating. The model compounds studied were sulfathiazole, theophylline and nitrofurantoin. This study showed that the polymorph form...... of sulfathiazole SUTHAZ01 was very stable and SUTHAZ02 changed as a function of temperature to SUTHAZ01. Theophylline monohydrate changed via its metastable form to its anhydrous form during heating and nitrofurantoin monohydrate changed via amorphous form to its anhydrous form during heating. The crystallinity...... to the anhydrous form. The average crystallite size of sulfathiazole samples varied only a little during heating. The average crystallite size of both theophylline and nitrofurantoin monohydrate decreased during heating. However, the average crystallite size of nitrofurantoin monohydrate returned back to starting...

  10. Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C.C.Vidyasagar; Y.Arthoba Naik; T.G.Venkatesha; R.Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. Cu O is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting Cu O nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol400 as size controlling agent for the preparation of Cu O nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of Cu O nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  11. Intermediate length scale dynamics of polyisobutylene

    International Nuclear Information System (INIS)

    Farago, B.; Arbe, A.; Colmenero, J.; Faust, R.; Buchenau, U.; Richter, D.

    2002-01-01

    We report on a neutron spin echo investigation of the intermediate scale dynamics of polyisobutylene studying both the self-motion and the collective motion. The momentum transfer (Q) dependences of the self-correlation times are found to follow a Q -2/β law in agreement with the picture of Gaussian dynamics. In the full Q range of observation, their temperature dependence is weaker than the rheological shift factor. The same is true for the stress relaxation time as seen in sound wave absorption. The collective times show both temperature dependences; at the structure factor peak, they follow the temperature dependence of the viscosity, but below the peak, one finds the stress relaxation behavior

  12. Temperature dependence of the heat capacities in the solid state of 18 mono-, di-, and poly-saccharides

    International Nuclear Information System (INIS)

    Hernandez-Segura, Gerardo O.; Campos, Myriam; Costas, Miguel; Torres, Luis A.

    2009-01-01

    The temperature dependence of the heat capacities in solid state C p (T) of 18 mono-, di-, and poly-saccharides has been determined using a power-compensation differential scanning calorimeter. The saccharides were α-D-xylose, D-ribose, 2-deoxy-D-ribose, methyl-β-D-ribose, α-D-glucose, 2-deoxy-D-glucose, α-D-mannose, β-D-fructose, α-D-galactose, methyl-α-D-glucose, sucrose, maltose monohydrate, α-lactose monohydrate, cellobiose, maltotriose, N-acetyl-D-glucosamine, α-cyclodextrin, and β-cyclodextrin. The measurements were carried out at atmospheric pressure and from T = (288.15 to 358.15) K for 15 saccharides and from T = (288.15 to 328.15) K for D-ribose, 2-deoxy-D-ribose, and methyl-β-D-ribose. The present results are compared against literature values both at single temperatures, where most of the data are available, and throughout a range of temperatures, i.e., for C p (T). The predictions of a recently published correlation for organic solids are briefly discussed. By grouping saccharides in subsets, our present results can be used to compare amongst saccharide isomers and to assess the effect of different chemical groups and molecular size

  13. Solid-solid and gas-solid interactions induced during high-energy milling to produce PbTe nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: rojas_hugo@ittlahuac2.edu.mx [Instituto Tecnologico de Tlahuac - II (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM (Mexico); Garibay-Febles, V. [Instituto Mexicano del Petroleo, Laboratorio de Microscopia Electronica de Ultra Alta Resolucion (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN (Mexico)

    2013-05-15

    Transformations from precursors to nanoparticles by high-energy milling are promoted by two major driving forces, namely physical and/or chemical. While the former has been difficult to trace since stress, strain and recovery may occur almost simultaneously during milling, the latter has been sequentially followed as an evolution from precursors to intermediate phases and thereof to high purity nanocrystals. The specific objective of this work is to discern how solid-solid and partially solid-gas reactions manifest themselves correspondingly as a short-range diffusion through an interface or how vapor species, as a subliming phenomenon, grows as a different phase on an active local surface. These series of changes were traced by sub-cooling the as-milled powders extracted during a milling cycle. Through this experimental technique, samples were electron microscopically analyzed and where it was required, selected area electron diffraction images were obtained. High-resolution transmission electron microscopy results, unambiguously, confirm that nanocrystals in the last stage show a cubic morphology which average size distributions are around 17 nm.

  14. Biochar Preparation from Simulated Municipal Solid Waste Employing Low Temperature Carbonization Process

    Science.gov (United States)

    Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.

    2018-02-01

    This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.

  15. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    International Nuclear Information System (INIS)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo; Monge, Antonio

    2011-01-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  16. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  17. Low-temperature matrix effects on orientational motion of Methyl radical trapped in gas solids: Angular tunneling vs. libration

    Science.gov (United States)

    Dmitriev, Yurij A.; Zelenetckii, Ilia A.; Benetis, Nikolas P.

    2018-05-01

    EPR investigation of the lineshape of matrix -isolated methyl radical, CH3, spectra recorded in solid N2O and CO2 was carried out. Reversible temperature-dependent line width anisotropy was observed in both matrices. This effect is a fingerprint of the extra-slow radical rotation about the in-plane C2 axes. The rotation was found to be anisotropic and closely correlated to the orientational dynamics of the matrix molecules. It was suggested that a recently discovered "hoping precession" effect of matrix molecules in solid CO2 is a common feature of matrices of the linear molecules CO, N2O, and CO2. A new low-temperature matrix effect, referred to as "libration trap", was proposed which accounts for the changing CH3 reorientational motion about the radical C3-axis from rotation to libration. Temperature dependence of the intensity of the EPR satellites produced by these nonrotating-but librating methyls was presented. This allowed for a rough estimation of the rotation hindering potential due to correlation mismatch between the radical and the nearest matrix molecules' librations.

  18. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  19. Solids recycling in solvent extraction

    International Nuclear Information System (INIS)

    Robinson, L.F.

    1980-01-01

    In an extraction process for extracting values from a first stream into a substantially immiscible second stream using a multi-compartmental rotary contactor, unwanted solids formed in the contactor and discharged at least partly with the the first stream are separated and re-entered into the contactor intermediate the points at which the streams are discharged. (author)

  20. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  1. Projection to 2035 for the radioactive wastes of low and intermediate level in Mexico

    International Nuclear Information System (INIS)

    Paredes G, L.C.; Sanchez U, S.

    2004-01-01

    It is necessary to establish in few years a definitive warehouse for the radioactive waste of low and intermediate level, generated in the country and to satisfy the necessities of their confinement in the next ones 50 to 80 years. Therefore, it is required to be considered those volumes produced annually, those stored at the present and those estimated to medium and long term. The results of the simulation of 4 cases are presented, considering the operation from the 2 nuclear power reactors to 40 and 60 years, the use of the technology of current treatment and the use of super compaction of solids, as well as the importance in the taking of decision of the methodology for the dismantlement of each reactor to the finish of their useful life. At the moment the Nuclear Power Plant of Laguna Verde, produces an average of 250 m 3 /year of radioactive waste of low and intermediate level, constituted by solid dry wastes, humid solids and liquids. In the last 3 years, the power plant has reached an effectiveness of re utilization of effluents of 95%. On the other hand, in Mexico the non energetic applications of the radioisotopes, produce annually of the order of 20 m 3 /year of solid wastes, 280 m 3 /year of liquid wastes and 300 worn out radioactive sources. (Author)

  2. Low Temperature Solid-State Synthesis and Characterization of LaBO3

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun KIPÇAK

    2016-11-01

    Full Text Available Rare earth (lanthanide series borates, possess high vacuum ultraviolet (VUV transparency, large electronic band gaps, chemical and environmental stability and exceptionally large optical damage thresholds and used in the development of plasma display panels (PDPs. In this study the synthesis of lanthanum borates via solid-state method is studied. For this purpose, lanthanum oxide (La2O3 and boric acid (H3BO3 are used for as lanthanum and boron sources, respectively. Different elemental molar ratios of La to B (between 3:1 to 1:6 as La2O3:H3BO3 were reacted by solid-state method at the reaction temperatures between 500°C - 700°C with the constant reaction time of 4 h. Following the synthesis, characterizations of the synthesized products are conducted by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy and scanning electron microscope (SEM. From the results of the experiments, three types of lanthanum borates of; La3BO6, LaBO3 and La(BO23 were observed at different reaction parameters. Among these three types of lanthanum borates LaBO3 phase were obtained as a major phase.

  3. Identification of an Unfolding Intermediate for a DNA Lesion Bypass Polymerase

    Science.gov (United States)

    Sherrer, Shanen M.; Maxwell, Brian A.; Pack, Lindsey R.; Fiala, Kevin A.; Fowler, Jason D.; Zhang, Jun; Suo, Zucai

    2012-01-01

    Sulfolobus solfataricusDNA Polymerase IV (Dpo4), a prototype Y-family DNA polymerase, has been well characterized biochemically and biophysically at 37 °C or lower temperatures. However, the physiological temperature of the hyperthermophile S. solfataricus is approximately 80 °C. With such a large discrepancy in temperature, the in vivo relevance of these in vitro studies of Dpo4 has been questioned. Here, we employed circular dichroism spectroscopy and fluorescence-based thermal scanning to investigate the secondary structural changes of Dpo4 over a temperature range from 26 to 119 °C. Dpo4 was shown to display a high melting temperature characteristic of hyperthermophiles. Unexpectedly, the Little Finger domain of Dpo4, which is only found in the Y-family DNA polymerases, was shown to be more thermostable than the polymerase core. More interestingly, Dpo4 exhibited a three-state cooperative unfolding profile with an unfolding intermediate. The linker region between the Little Finger and Thumb domains of Dpo4 was found to be a source of structural instability. Through site-directed mutagenesis, the interactions between the residues in the linker region and the Palm domain were identified to play a critical role in the formation of the unfolding intermediate. Notably, the secondary structure of Dpo4 was not altered when the temperature was increased from 26 to 87.5 °C. Thus, in addition to providing structural insights into the thermal stability and an unfolding intermediate of Dpo4, our work also validated the relevance of the in vitro studies of Dpo4 performed at temperatures significantly lower than 80 °C. PMID:22667759

  4. ATR-IR spectroscopic cell for in situ studies at solid-liquid interface at elevated temperatures and pressures

    NARCIS (Netherlands)

    Koichumanova, Kamila; Visan, Aura; Geerdink, Bert; Lammertink, Rob G.H.; Mojet, Barbara; Seshan, Kulathuiyer; Lefferts, Leonardus

    2017-01-01

    An in situ ATR-IR spectroscopic cell suitable for studies at solid-liquid interface is described including the design and experimental details in continuous flow mode at elevated temperatures (230 °C) and pressures (30 bar). The design parameters considered include the cell geometry, the procedure

  5. Study on low temperature solid oxide fuel cells using Y Doped BaZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ikw Hang; Ji, Sang Hoon; Paek, Jun Yeol; Lee, Yoon Ho; Park, Tae Hyun; Cha, Suk Won [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2012-09-15

    In this study, we fabricate and investigate low temperature solid oxide fuel cells with a ceramic substrate/porous matal/ceramic/porous metal structure. To realize low temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss Yttrium doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350nm thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1{mu}m thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200nm thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806V, and the maximum power density is 11.9mW/cm'2' at 350 .deg. C. Even though a fully dense electrolyte is deposited via PLD, a cross sectional transmission electron microscopy (TEM) image reveals many voids and defects.

  6. Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials

    Science.gov (United States)

    Shevchenko, M.; Jak, E.

    2017-12-01

    The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.

  7. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  8. Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides

    KAUST Repository

    Bi, Lei

    2015-07-01

    Proton-conducting oxides offer a promising way of lowering the working temperature of solid oxide cells to the intermediate temperate range (500 to 700. °C) due to their better ionic conductivity. In addition, the application of proton-conducting oxides in both solid oxide fuel cells (SOFCs) and sold oxide electrolysis cells (SOECs) provides unique advantages compared with the use of conventional oxygen-ion conducting conductors, including the formation of water at the air electrode site. Since the discovery of proton conduction in some oxides about 30. years ago, the development of proton-conducting oxides in SOFCs and SOECs (the reverse mode of SOFCs) has gained increased attention. This paper briefly summarizes the development in the recent years of R-SOFCs with proton-conducting electrolytes, focusing on discussing the importance of adopting chemically stable materials in both fuel cell and electrolysis modes. The development of electrode materials for proton-conducting R-SOFCs is also discussed. © 2015 Elsevier B.V.

  9. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  10. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    Science.gov (United States)

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  11. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  12. Ion-beam mixing and solid-state reaction in Zr-Fe multilayers

    International Nuclear Information System (INIS)

    Paesano, A. Jr.; Motta, A.T.; Birtcher, R.C.; Ryan, E.A.; Teixeira, S.R.; Bruckmann, M.E.; Amaral, L.

    1997-01-01

    Vapor-deposited Zr-Fe multilayered thin films with various wavelengths and of overall composition either 50% Fe or Fe-rich up to 57% Fe were either irradiated with 300 keV Kr ions at temperatures from 25 K to 623 K to fluences up to 2 x 10 16 cm -2 , or simply annealed at 773 K in-situ in the Intermediate Voltage Electron microscope At Argonne National Laboratory. Under irradiation, the final reaction product is the amorphous phase in all cases studied, but the dose to amorphization depends on the temperature and on the wavelength. In the purely thermal case (annealing at 773 K), the 50-50 composition produces the amorphous phase but for the Fe-rich multilayers the reaction products depend on the multilayer wavelength. For small wavelength, the amorphous phase is still formed, but at large wavelength the Zr-Fe crystalline intermetallic compounds appear. These results are discussed in terms of existing models of irradiation kinetics and phase selection during solid state reaction

  13. AC susceptibility of thin Pb films in intermediate and mixed state

    Energy Technology Data Exchange (ETDEWEB)

    Janu, Zdenek, E-mail: janu@fzu.cz [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Svindrych, Zdenek [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Trunecek, Otakar [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague 2 (Czech Republic); Kus, Peter; Plecenik, Andrej [Komenius University in Bratislava, Faculty of Mathematics, Physics, and Informatics, Mlynska dolina, 842 48 Bratislava 4 (Slovakia)

    2011-12-15

    Thickness dependent transition in AC susceptibility between intermediate and mixed state in type-I superconducting films. The temperature induced crossover between reversible and irreversible behavior was observed in the thicker film. The temperature dependence of the AC susceptibility in mixed state follows prediction of model based on Bean critical state. The temperature dependence of the harmonics of the complex AC susceptibility in the intermediate state is explained. Thin films of type I superconductors of a thickness comparable or less than a flux penetration length behave like type II superconductors in a mixed state. With decreasing film thickness normal domains carrying a magnetic flux get smaller with smaller number of flux quanta per domain and finally transform into single quantum flux lines, i.e. quantum vortices similar to those found in type II superconductors. We give an evidence of this behavior from the measurements of the nonlinear response of a total magnetic moment to an applied AC magnetic field, directly from the temperature dependence of an AC susceptibility.

  14. Speciation of zinc in secondary fly ashes of municipal solid waste at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Meijuan; Chu, Wangsheng; Chen, Dongliang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Tian, Shulei [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering; Wang, Qi [Chinese Research Academy of Environmental Science, Beijing (China); Wu, Ziyu [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Univ. of Science and Technology of China, Hefei (China). National Synchrotron Radiation Lab.; Chinese Academy of Sciences, Beijing (China). Theoretical Physics Center for Science Facilities

    2009-07-15

    The evaporation aerosols produced during the vitrification process of municipal solid waste incinerators (MSWI) fly ash represent a potential environmental risk owing to their high content of heavy metals. In this research, high-temperature heating processes were carried out on fly ashes collected from bag houses in a Chinese MSWI plant and the secondary fly ashes (SFA) were separately collected at three high temperatures (1273 K, 1423 K and 1523 K) below the melting range. Elemental analysis showed that high contents of both zinc and chlorine were present in these SFA samples and, according to the standard of the heavy metals industrial grade of ore, SFAs can be re-used as metallurgical raw materials or rich ore. Moreover, as shown by XAS analysis and for different high temperatures, zinc environments in the three SFA samples were characterized by the same local structure of the zinc chloride. As a consequence, a zinc recycling procedure can be easily designed based on the configuration information. (orig.)

  15. Speciation of zinc in secondary fly ashes of municipal solid waste at high temperatures

    International Nuclear Information System (INIS)

    Yu, Meijuan; Chu, Wangsheng; Chen, Dongliang; Wu, Ziyu; Univ. of Science and Technology of China, Hefei; Chinese Academy of Sciences, Beijing

    2009-01-01

    The evaporation aerosols produced during the vitrification process of municipal solid waste incinerators (MSWI) fly ash represent a potential environmental risk owing to their high content of heavy metals. In this research, high-temperature heating processes were carried out on fly ashes collected from bag houses in a Chinese MSWI plant and the secondary fly ashes (SFA) were separately collected at three high temperatures (1273 K, 1423 K and 1523 K) below the melting range. Elemental analysis showed that high contents of both zinc and chlorine were present in these SFA samples and, according to the standard of the heavy metals industrial grade of ore, SFAs can be re-used as metallurgical raw materials or rich ore. Moreover, as shown by XAS analysis and for different high temperatures, zinc environments in the three SFA samples were characterized by the same local structure of the zinc chloride. As a consequence, a zinc recycling procedure can be easily designed based on the configuration information. (orig.)

  16. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))

    1989-04-01

    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  17. Design, construction and operation experience of the He-He intermediate heat exchanger

    International Nuclear Information System (INIS)

    Itoh, M.

    1980-01-01

    The conditions required for the primary helium, which is the cooling medium for the high temperature gas cooled reactor, are prescribed to be 1,000 0 C in temperature and 40 kgf/cm 2 in pressure at the outlet of the reactor, while the conditions required for the secondary helium at the outlet of the intermediate heat exchanger are prescribed to be 925 0 C in temperature and 45 kgf/cm 2 in pressure. This means that relatively high temperatures and high pressure are required for the system. The purpose of the present research and development project is to establish a design method, safety evaluation techniques, and safety-securing measures to be applied to an intermediate heat exchanger and to the overall heat exchanging system, which will satisfy those strict operating conditions as mentioned above. Research and development work on the high temperature heat exchanger has been and is being carried out

  18. High temperature series expansions with a multiple-exchange Hamiltonian for the bcc and hcp phases of solid 3He

    International Nuclear Information System (INIS)

    Roger, M.; Suaudeau, E.; Bernier, M.E.R.

    1987-08-01

    High temperature series expansions with a multiple-exchange Hamiltonian are performed to fourth order in arbitrary magnetic field for both phases of solid 3 He. The susceptibility series are analysed with Pade approximants and compared with recent experimental results. For the hcp phase we estimate the ferromagnetic ordering temperature from susceptibility series and discuss the influence of four-particle exchange in lowering the transition

  19. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  20. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.......Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent...

  1. Solid-phase thermolysis of hexachlororuthenates (4) of onium type

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, Yu N; Maslov, E I; Ryabkova, T P; Lobadyuk, V I [Leningradskij Tekhnologicheskij Inst. (USSR)

    1982-10-01

    Methods of thermogravimetry, infrared spectroscopy, electron absorption spectra and magnetic moment measurings were used to a study thermal solid-phase behaviour of onium hexachlororuthenates (4) of (AH)/sub 2/(RuCl/sub 6/) and (A'H/sub 2/)(RuCl/sub 6/) type, where A-benzimidazole (BAZ), pyridine (py), ammonia, A'-phenanthroline-ortho (o-phen), ethylenediamine (en). It was established that heating of solid (BAZH)/sub 2/(RuCl/sub 6/)x2H/sub 2/O and (o-phen H/sub 2/)(RuCl/sub 6/)xH/sub 2/O in 20-500 deg C range leads to separation of crystallization water and the following extraction of hydrogen chloride with formation of cis-(Ru(BAZ)/sub 2/Cl/sub 4/) and (Ru(o-phen)Cl/sub 4/). (pyH)/sub 2/(RuCl/sub 6/) heating causes initially the separation of two moles of hydrogen chloride with formation of cis-(Ru(py)/sub 2/Cl/sub 4/); further increase of temperature leads to reduction separation of chloride with formation of (Ru(py)/sub 2/Cl/sub 3/)/sub 2/ dimer. The mixture of ruthernium chlorides is prepared under conditions of isothermal heating of (NH/sub 4/)/sub 2/(RuCl/sub 6/) and (enH/sub 2/)(RuCl/sub 6/) compounds at temperatures close to the beginning of their decomposition. The separation of intermediate ruthenium compounds of diamine type with ammonia and ethylendiamine failed.

  2. Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Ebru Oender [KOSGEB Bursa Business Development Center, Besevler Kucuk Sanayi Sitesi 16149 Nilufer/Bursa (Turkey); Koparal, Ali Savas; Oeguetveren, Uelker Bakir [Anadolu University, Iki Eylul Campus, Applied Research Center for Environmental Problems 26555 Eskisehir (Turkey); Anadolu University, Iki Eylul Campus, Department of Environmental Engineering, 26555 Eskisehir (Turkey)

    2009-01-15

    The aim of this work is to investigate the feasibility of simultaneous hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte (SPE) in an electrochemical reactor. Titanium oxide coated with iridium oxide as anode and carbon fibre with Pt catalyst as cathode were used in the experiments. Effects of applied current density, flow rates and temperature of formic acid solution, concentration of supporting electrolyte and pH of the solution on performance of the process have been investigated. The effect of membrane thickness has also been examined. The results suggest that electrolysis using SPE is a promising method for the treatment of organic pollutants. Hydrogen with purity of 99.999% at ambient temperature by using carbon fibre cathode with Pt catalyst can be produced simultaneously and COD removal efficiency of 95% has been achieved not requiring any chemical addition and temperature increase. Also complete electrochemical oxidation of formic acid at the original pH to CO{sub 2} and H{sub 2}O without production of intermediate has been proved by HPLC analysis. (author)

  3. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    Science.gov (United States)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  4. Temperature/Humidity Conditions in Stacked Flexible Intermediate Bulk Containers for Shelled Peanuts

    Science.gov (United States)

    Shelled peanuts are loaded into flexible intermediate bulk containers, or totes. After loading, the 1000-kg totes are placed directly into cold storage at 3ºC and 65% relative humidity until shipment to the customer domestically in the United States or internationally requiring transport overseas. ...

  5. NiO-YSZ cermets supported low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Yick, Sing; Styles, Edward; Roller, Justin; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-10-20

    Solid oxide fuel cells with thin electrolyte of two types, Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) (15{mu}m) single-layer and 8mol% Yttria stabilized zirconia (YSZ) (5{mu}m)+SDC (15{mu}m) bi-layer on NiO-YSZ cermet substrates were fabricated by screen printing and co-firing. A Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} cathode was printed, and in situ sintered during a cell performance test. The SDC single-layer electrolyte cell showed high electrochemical performance at low temperature, with a 1180mWcm{sup -2} peak power density at 650{sup o}C. The YSZ+SDC bi-layer electrolyte cell generated 340mWcm{sup -2} peak power density at 650{sup o}C, and showed good performance at 700-800{sup o}C, with an open circuit voltage close to theoretical value. Many high Zr-content micro-islands were found on the SDC electrolyte surface prior to the cathode preparation. The influence of co-firing temperature and thin film preparation methods on the Zr-islands' appearance was investigated. (author)

  6. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  7. Synthesis and characterization of nano-crystalline Ce1-xGd xO2-x/2 (x = 0-0.30) solid solutions

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Jamale, A. P.

    2010-01-01

    glycine-nitrate process (GNP) has been presented. Evolution of structural and morphological properties of nano-powders as a function of heat treatment has also been studied. The prepared samples were characterized using TG-DTA, FT-IR, Raman spectroscopy, XRD, SEM, etc. In addition, the effect of Gd......In recent years, doped ceria is an established and promising candidate as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC). In this investigation, synthesis and characterizations of nano-crystalline Gd doped ceria, (Ce1-xGdxO2-x/2, where x = 0-0.3), prepared using...... of sintered samples was observed to hinder with an increase in Gd content....

  8. Immersion-scanning-tunneling-microscope for long-term variable-temperature experiments at liquid-solid interfaces

    Science.gov (United States)

    Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus

    2018-05-01

    Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.

  9. Properties of molecular solids and fluids at high pressures and temperatures. [Final report

    International Nuclear Information System (INIS)

    Etters, R.D.

    1985-01-01

    Equilibrium structures and orientations, lattice vibrational and librational model frequencies, intramolecular vibron mode frequencies, sound velocities, equations of state, compressibilities, and structural and orientational phase transitions in molecular solids are determined over a wide range of pressures and temperatures. In the high temperature fluid phase the equations of state, vibron frequencies, the melting transition, specific heats, compressibilities, second virial coefficients, viscosities and other transport properties, and the nature of orientational and magnetic correlations are determined. The techniques used include several strategies to optimize multi-dimensional functions as a means to determine equilibrium structures and orientations, self consistent phonon lattice dynamics methods, constant pressure and constant volume Monte-Carlo strategies with continuously deformable boundary conditions, mean field approximations, and classical perturbation methods. Systems studied include N 2 , O 2 , CO, CO 2 , F 2 , N 2 O, benzine, nitromethane, HCL, HBr, and H 2 . 50 refs., 4 figs

  10. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing.

    Science.gov (United States)

    Duan, Li; Zhang, Peng; Tang, Ming; Wang, Ruoxu; Zhao, Zhiyong; Fu, Songnian; Gan, Lin; Zhu, Benpeng; Tong, Weijun; Liu, Deming; Shum, Perry Ping

    2016-09-05

    A compact high temperature sensor utilizing a multipath Michelson interferometer (MI) structure based on weak coupling multicore fiber (MCF) is proposed and experimentally demonstrated. The device is fabricated by program-controlled tapering the spliced region between single mode fiber (SMF) and a segment of MCF. After that, a spherical reflective structure is formed by arc-fusion splicing the end face of MCF. Theoretical analysis has been implemented for this specific multipath MI structure; beam propagation method based simulation and corresponding experiments were performed to investigate the effect of taper and spherical end face on system's performance. Benefiting from the multipath interferences and heterogeneous structure between the center core and surrounding cores of the all-solid MCF, an enhanced temperature sensitivity of 165 pm/°C up to 900°C and a high-quality interference spectrum with 25 dB fringe visibility were achieved.

  11. A novel high performance composite anode with in situ growth of Fe-Ni alloy nanoparticles for intermediate solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li, Jingcheng; Yu, Yan; Yin, Yi-Mei; Zhou, Ning; Ma, Zi-Feng

    2017-01-01

    Highlights: • A composite anode with endogenous Fe-Ni alloy nanoparticles has been prepared. • The redox reversibility of the anode has been confirmed by XRD. • The E_a of H_2 oxidation at the anode is much smaller than that at Ni-YSZ anode. • A ScSZ supported cell achieves MPD of 0.71 Wcm"−"2 and R_p of 0.16 Ω cm"2 at 800 °C. • The single cell shows stable output during 105 h testing at 800 °C 0.7 V in wet H_2". - Abstract: A redox reversible composite anode with Fe-Ni alloy nanoparticles in situ growth on SrLaFeO_4-type and LaFeO_3-type oxide substrates has been prepared for intermediate temperature solid oxide fuel cell (IT-SOFC) by reducing perovskite precursor La_0_._4Sr_0_._6Fe_0_._7_5Ni_0_._1Nb_0_._1_5O_3_-_δ (LSFNNb) in wet H_2 at 900 °C for 1 h. The anode has shown an excellent electrochemical catalytic activity for oxidation of hydrogen with much smaller E_a (25.1 ∼ 68.9 kJ mol"−"1) than the value (>160 kJ mol"−"1) at Ni-YSZ anode. A scandium stabilized zirconia (ScSZ) electrolyte supported SOFC with the anode achieves maximum power densities of 0.71, 0.52, 0.35, and 0.21 W cm"−"2 at 800, 750, 700 and 650 °C, respectively in wet H_2 (3% H_2O), and the corresponding R_p of 0.16, 0.21, 0.35, and 0.60 Ω cm"2 under OCV. Moreover, the single cell shows stable power output during ∼105 h operation at 800 °C under 0.7 V in wet H_2 after a initial degradation, indicating that R-LSFNNb is an excellent candidate as anode of IT-SOFC.

  12. Physical nature of structural and phase transformations in Cu-Al α solid solutions upon low-temperature irradiation and subsequent annealing

    Science.gov (United States)

    Petrenko, P. V.; Kulish, N. P.; Mel'nikova, N. A.; Grabovskii, Yu. E.

    2013-12-01

    Methods of X-ray diffraction analysis and measurements of residual resistivity have been used to study effects of electron irradiation in the temperature range of 250-330 K on the structural and phase state of the Cu-15 at % Al solid solution. The results obtained are explained by the presence in the Cu-Al alloys of an inhomogeneous short-range order of two types, i.e., low-temperature, α2 type; and high-temperature, γ2 type.

  13. Structural and electrical properties of (1-x)(Na1/2Bi1/2)TiO3-xPb(Mg1/3Nb2/3)O3 solid solution

    International Nuclear Information System (INIS)

    Lee, J.-K.; Yi, J.Y.; Hong, K.S.

    2004-01-01

    Structural, dielectric and piezoelectric properties of (1-x)(Na 1/2 Bi 1/2 )TiO 3 -xPb(Mg 1/3 Nb 2/3 )O 3 (NBT-xPMN) solid solution have been investigated. An addition of PMN into NBT transformed the structure of sintered samples from rhombohedral to pseudocubic phase where x is larger than 0.1. In calcined powders, however, the intermediate structure were observed between rhombohedral and cubic phases near x=0.1. The formation of solid solution between NBT and PMN modified the dielectric and piezoelectric properties of NBT to be suitable for high temperature dielectric and piezoelectric material. With increasing the content of PMN, the temperature-stability of ε r (T) increased and the high temperature dielectric loss decreased. In addition, the piezoelectric property of NBT-xPMN was enhanced, for the decrease of coercive field and conductivity promoted the domain reversal under the high electric field of the poling process

  14. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

    Science.gov (United States)

    Fu, Weixin; Nimura, Masatsugu; Kasahara, Takashi; Mimatsu, Hayata; Okada, Akiko; Shoji, Shuichi; Ishizuka, Shugo; Mizuno, Jun

    2015-11-01

    The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

  15. A mathematical model for the municipal solid waste location-routing problem with intermediate transfer stations

    Directory of Open Access Journals (Sweden)

    Hossein Asefi

    2015-09-01

    Full Text Available Municipal solid waste management is one of the challenging issues in mega cities due to various interrelated factors such as operational costs and environmental concerns. Cost as one of the most significant constraints of municipal solid waste management can be effectively economized by efficient planning approaches. Considering diverse waste types in an integrated municipal solid waste system, a mathematical model of the location-routing problem is formulated and solved in this study in order to minimize the total cost of transportation and facility establishment.

  16. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    International Nuclear Information System (INIS)

    Attarian Shandiz, M.; Gauvin, R.

    2014-01-01

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  17. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Temperature and pH optima of enzyme activities produced by cellulolytic thermophilic fungi in batch and solid-state cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grajek, W

    1986-01-01

    The temperature and pH optima of cellulolytic activities produced by thermophilic fungi in liquid and solid-state cultures were established. Some differences in optimal conditions for enzyme activities, which depended on culture methods, were confirmed. 10 references.

  19. Critical Intermediate Structure That Directs the Crystalline Texture and Surface Morphology of Organo-Lead Trihalide Perovskite.

    Science.gov (United States)

    Chia, Hao-Chung; Sheu, Hwo-Shuenn; Hsiao, Yu-Yun; Li, Shao-Sian; Lan, Yi-Kang; Lin, Chung-Yao; Chang, Je-Wei; Kuo, Yen-Chien; Chen, Chia-Hao; Weng, Shih-Chang; Su, Chun-Jen; Su, An-Chung; Chen, Chun-Wei; Jeng, U-Ser

    2017-10-25

    We have identified an often observed yet unresolved intermediate structure in a popular processing with dimethylformamide solutions of lead chloride and methylammonium iodide for perovskite solar cells. With subsecond time-resolved grazing-incidence X-ray scattering and X-ray photoemission spectroscopy, supplemental with ab initio calculation, the resolved intermediate structure (CH 3 NH 3 ) 2 PbI 2 Cl 2 ·CH 3 NH 3 I features two-dimensional (2D) perovskite bilayers of zigzagged lead-halide octahedra and sandwiched CH 3 NH 3 I layers. Such intermediate structure reveals a hidden correlation between the intermediate phase and the composition of the processing solution. Most importantly, the 2D perovskite lattice of the intermediate phase is largely crystallographically aligned with the [110] planes of the three-dimensional perovskite cubic phase; consequently, with sublimation of Cl ions from the organo-lead octahedral terminal corners in prolonged annealing, the zigzagged octahedral layers of the intermediate phase can merge with the intercalated methylammonium iodide layers for templated growth of perovskite crystals. Regulated by annealing temperature and the activation energies of the intermediate and perovskite, deduced from analysis of temperature-dependent structural kinetics, the intermediate phase is found to selectively mature first and then melt along the layering direction for epitaxial conversion into perovskite crystals. The unveiled epitaxial conversion under growth kinetics controls might be general for solution-processed and intermediate-templated perovskite formation.

  20. K. S. Krishnan Memorial Lecture: The role of crystallography in solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Guinier, A [Paris-11 Univ., 91 - Orsay (France)

    1977-06-01

    The role of crystallography in solving problems in solid state physics, is explained. A few domains in solid state physics such as detection of localized defects, structure of metallic solid solutions, mechanism of phase transitions and the intermediate states between crystalline and amorphous states, have been investigated successfully by X-ray and neutron diffraction methods. The studies have helped a deeper understanding of solid state phenomena. Structures of CuBa, AlZn, ..beta..-alumina etc. are discussed.

  1. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    Science.gov (United States)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

  2. Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael

    2015-09-01

    During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.

  3. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    Science.gov (United States)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  4. Accurate solid solution range of BiMnxFe3-xO6 and low temperature magnetism

    Science.gov (United States)

    Jiang, Pengfei; Yue, Mufei; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2017-11-01

    BiMnxFe3-xO6 (x = 1) represents a new type of oxide structure containing Bi3+ and competing magnetic super-exchanges. In literature, multiple magnetic states were realized at low temperatures in BiMnFe2O6, and the hypothetical parent compounds (BiMn3O6, BiFe3O6) were predicted to be different in magnetism. Herein, we performed a careful study on the syntheses of BiMnxFe3-xO6 at ambient pressure, and the solid solution range was determined to be 0.9 ≤ x ≤ 1.3 by Rietveld refinements on high-quality powder X-ray diffraction data. Due to the very similar cationic size of Mn3+ and Fe3+, and possibly the structural rigidity, there was no significant structure change in the whole range of solid solution. The magnetic behavior of BiMnxFe3-xO6 (x = 1.2, 1.22, 1.26, 1.28 and 1.3) was generally similar to BiMnFe2O6, while the relative higher concentration of Mn3+ led to the decreasing of the antiferromagnetic ordering temperature.

  5. High-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution

    Directory of Open Access Journals (Sweden)

    J.-B. Vaney

    2016-10-01

    Full Text Available Bi2Te3-based compounds are a well-known class of outstanding thermoelectric materials. β-As2Te3, another member of this family, exhibits promising thermoelectric properties around 400 K when appropriately doped. Herein, we investigate the high-temperature thermoelectric properties of the β-As2−xBixTe3 solid solution. Powder X-ray diffraction and scanning electron microscopy experiments showed that a solid solution only exists up to x = 0.035. We found that substituting Bi for As has a beneficial influence on the thermopower, which, combined with extremely low thermal conductivity values, results in a maximum ZT value of 0.7 at 423 K for x = 0.017 perpendicular to the pressing direction.

  6. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

    Science.gov (United States)

    Cuglietta, Mark; Kesler, Olivera

    2012-06-01

    Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

  7. LOW-TEMPERATURE EQUATION OF STATE OF SOLID METHANE

    Directory of Open Access Journals (Sweden)

    L. N. Yakub

    2016-02-01

    Full Text Available The theoretical equation of state for solid methane, developed within the framework of perturbation theory, with the crystal consisting of spherical molecules as zero-order approximation, and octupole – octupole interaction of methane molecules as a perturbation, is proposed. Thermodynamic functions are computed on the sublimation line up to the triple point. The contribution of the octupole – octupole interaction to the thermodynamic properties of solid methane is estimated.

  8. High pressure and temperature structure of liquid and solid Cd: implications for the melting curve of Cd

    International Nuclear Information System (INIS)

    Raju, S V; Williams, Q; Geballe, Z M; Godwal, B K; Jeanloz, R; Kalkan, B

    2014-01-01

    The structure of cadmium was characterized in both the solid and liquid forms at pressures to 10 GPa using in situ x-ray diffraction measurements in a resistively heated diamond anvil cell. The distorted hexagonal structure of solid cadmium persists at high pressures and temperatures, with anomalously large c/a ratio of Cd becoming larger as the melting curve is approached. The measured structure factor S(Q) for the melt reveals that the cadmium atoms are spaced about 0.6 Angstroms apart. The melt structure remains notably constant with increasing pressure, with the first peak in the structure factor remaining mildly asymmetric, in accord with the persistence of an anisotropic bonding environment within the liquid. Evolution of powder diffraction patterns up to the temperature of melting revealed the stability of the ambient-pressure hcp structure up to a pressure of 10 GPa. The melting curve has a positive Clausius–Clapeyron slope, and its slope is in good agreement with data from other techniques. We find deviations in the melting curve from Lindemann law type behavior for pressures above 1 GPa. (paper)

  9. Cement-based processes for the immobilization of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Brown, D.J.; Lee, D.J.; Price, M.S.T.; Smith, D.L.G.

    1985-01-01

    Increasing attention is being paid to the use of cement-based materials for the immobilisation of intermediate level wastes. Various cementitious materials are surveyed and the use of blast furnace slag is shown to be advantageous. The properties of cemented wastes are surveyed both during processing and as solid products. The application of Winfrith Cementation Laboratory technology to plant and flowsheet development for Winfrith Reactor sludge immobilisation is described. (author)

  10. CuInSe2 nano-crystallite reaction kinetics using solid state reaction from Cu2Se and In2Se3 powders

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I; Lu, Li-Hsin; Chang, Yu-Lun; Ray, Dahtong; Yen, Fu-Su

    2011-01-01

    Highlights: → CuInSe 2 phase increased gradually accompanied with a decrease in γ-In 2 Se 3 and no intermediate phase during calcination. → CuInSe 2 formation from Cu 2 Se and In 2 Se 3 powders follows a one-dimensional diffusion-controlled reaction with apparent activation energy of about 122.5 kJ/mol. → The solid reaction kinetics may be dominated by the diffusion of In 3+ ions. - Abstract: The reaction mechanism and CuInSe 2 formation kinetics using a solid state reaction from Cu 2 Se and In 2 Se 3 powders synthesized using a heating up process were investigated using X-ray diffractomy (XRD) and transmission electron microscopy (TEM). It was observed that the CuInSe 2 phase increased gradually, accompanied with a decrease in γ-In 2 Se 3 with no intermediate phase as the calcination temperature and soaking time were increased. The reaction kinetics was analyzed using the Avrami and polynomial kinetic model, suggesting that CuInSe 2 formation from Cu 2 Se and In 2 Se 3 powders follows a diffusion-controlled reaction with an apparent activation energy of about 122.5-182.3 kJ/mol. Cu 2 Se and In 2 Se 3 phases react and directly transform into CIS without the occurrence of any intermediate phase and the size of the newly formed CuInSe 2 crystallites was close to that of the Cu 2 Se reactant particle based on the TEM results, which indicated that the solid reaction kinetics may be dominated by the diffusion of In 3+ ions.

  11. Interface stability in solid oxide fuel cells for intermediate temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Solak, N.

    2007-06-15

    This thesis aims to determine the phase equilibria and the thermodynamics of the relevant phases in the systems La-Sr-Ga-Mg-Ni-O, Ce-Gd-Sr-Ni-O, and Ce-Gd-La-Ni-O. Subsystems of these multi-component systems were thermodynamically modeled, based on the available literature and experimental data obtained from this work. The experimental and computational results were used to predict the compatibility/reactivity of IT-SOFC components under fabrication and/or operation conditions. Various experimental techniques were employed for determination of the phase equilibria such as Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD), Differential Scanning and Adiabatic Calorimetry, and Mass Spectrometry (MS). The CALPHAD-method (CALculation of PHAse Diagrams) and THERMOCALC software were used to obtain self-consistent sets of Gibbs energy functions. The following systems were investigated experimentally: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, La-Ga-Mg-Ni-O, La-Sr-Ga-Ni-O, La-Sr-Ga-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O, Gd-Sr-O, Ce-Gd-Ni-O, Ce-Gd-Sr-O, Ce-Sr-Ni-O, Gd-Sr-Ni-O, Ce-Gd-Sr-Ni-O and Ce-Gd-La-Ni-O. Using results from this experimental work and data from the literature, the following systems were thermodynamically modeled: La-Ni-O, La-Ga-Ni-O, La-Sr-Ni-O, La-Mg-Ni-O, Ce-Ni-O, Ce-Sr-O, Gd-Ni-O and Gd-Sr-O. It could be concluded that doped ceria-based materials are chemically compatible with NiO during conditions typical for both the fabrication and the operation of IT-SOFC's, whereas LSGM-type electrolytes react with NiO under the fuel cell fabrication conditions. Moreover, although La{sub 2}NiO{sub 4} is a high-performance cathode, it cannot be used in combination with LSGM- or CGO-type electrolytes, due to its reactivity with both of these materials under fabrication conditions. (orig.)

  12. Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell

    Science.gov (United States)

    Diethelm, Stefan; Van herle, Jan

    This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H 2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I- V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.

  13. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    Science.gov (United States)

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  14. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    Science.gov (United States)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  15. Advice concerning the advantages of a reference incinerator for low-level and intermediate-level radioactive waste processing

    International Nuclear Information System (INIS)

    Luyten, G.B.

    1985-05-01

    In this report, an inventory is presented of new incinerators and flue gas filters used in low and intermediate-level radioactive waste combustion. It is argued that a 'reference equipment' for the combustion of solid and liquid low- and intermediate-level wastes best meets existing Dutch radiation protection standards. A cost-benefit analysis of such an equipment is given including annual costs of investment, capital and exploration. A separate combustion process of organic liquids and carrions is considered finally. (G.J.P.)

  16. Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid-Solid Zone

    Science.gov (United States)

    Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.

    2018-04-01

    An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.

  17. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  18. Processing method for miscellaneous radioactive solid waste

    International Nuclear Information System (INIS)

    Matsuda, Masami; Komori, Itaru; Nishi, Takashi.

    1995-01-01

    Miscellaneous solid wastes are subjected to heat treatment at a temperature not lower than a carbonizing temperature of organic materials in the wastes and not higher than the melting temperature of inorganic materials in the wastes, for example, not lower than 200degC but not higher than 660degC, and then resultant miscellaneous solid wastes are solidified using a water hardening solidification material. With such procedures, the organic materials in the miscellaneous solids are decomposed into gases. Therefore, solid materials excellent in long term stability can be formed. In addition, since the heat treatment is conducted at a relatively low temperature such as not higher than 660degC, the generation amount of off gases is reduced to simplify an off gas processing system, and since molten materials are not formed, handing is facilitated. (T.M.)

  19. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  20. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  1. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    Science.gov (United States)

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  2. Fabrication and characterization of solid oxide cells for energy conversion and storage

    Science.gov (United States)

    Yang, Chenghao

    2011-12-01

    for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically

  3. Replicative intermediates in UV-irradiated Simian virus 40

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1984-01-01

    The authors have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m 2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [ 3 H]thymidine. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h by which time the size of the newly-synthesized DNA exceeded the interdimer distance. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strand contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from 0V-damaged SV40 replicative intermediates. (Auth.)

  4. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  5. Ammonia oxidation at high pressure and intermediate temperatures

    DEFF Research Database (Denmark)

    Song, Yu; Hashemi, Hamid; Christensen, Jakob Munkholt

    2016-01-01

    Ammonia oxidation experiments were conducted at high pressure (30 bar and 100 bar) under oxidizing and stoichiometric conditions, respectively, and temperatures ranging from 450 to 925 K. The oxidation of ammonia was slow under stoichiometric conditions in the temperature range investigated. Under...... oxidizing conditions the onset temperature for reaction was 850–875 K at 30 bar, while at 100 bar it was about 800 K, with complete consumption of NH3 at 875 K. The products of reaction were N2 and N2O, while NO and NO2 concentrations were below the detection limit even under oxidizing conditions. The data...... was satisfactory. The main oxidation path for NH3 at high pressure under oxidizing conditions is NH3⟶+OH NH2⟶+HO2,NO2 H2NO⟶+O2 HNO⟶+O2 NO ⟶+NH2 N2. The modeling predictions are most sensitive to the reactions NH2 + NO = NNH + OH and NH2 + HO2 = H2NO + OH, which promote the ammonia consumption by forming OH...

  6. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Mohamed, N.M. [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Shaharun, M.S. [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Naz, M.Y. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia)

    2016-06-15

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al{sub 2}O{sub 3} supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I{sub D}/I{sub G} ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  7. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N.M.; Shaharun, M.S.; Naz, M.Y.

    2016-01-01

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al_2O_3 supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I_D/I_G ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  8. Model of a liquid droplet impinging on a high-temperature solid surface

    International Nuclear Information System (INIS)

    Gulikov, A.V.; Berlin, I.I.; Karpyshev, A.V.

    2004-01-01

    The model of the collision of the liquid droplet, vertically falling on the heated solid surface, is presented. The wall temperature is predeterminated so that the droplet interaction with the wall proceeds through the gas interlayer (T≥400 Deg C). The droplet liquid is incompressible, nonviscous. The droplet surface is assigned as free one. The pressure is composed of two components. The first component is the surface tension. The record component is the steam pressure between the droplet and the wall. The liquid motion inside the droplet is assumed to be potential, axisymmetric. The calculation of the droplet collision are carried out with application of the above model. The obtained results are compared with the data of other authors [ru

  9. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins.

    Science.gov (United States)

    Anumalla, Bramhini; Prabhu, N Prakash

    2018-01-25

    When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two

  10. Development of high temperature mechanical rig for characterizing the viscoplastic properties of alloys used in solid oxide cells

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Greco, Fabio; Kwok, Kawai

    2018-01-01

    Analyzing the thermo-mechanical reliability of solid oxide cell (SOC) stack requires precise measurement of the mechanical properties of the different components in the stack at operating conditions of the SOC. It is challenging to precisely characterize the time dependent deformational properties...... temperature and in controlled atmosphere. The methodology uses a mechanical loading rig designed to apply variable as well as constant loads on samples within a gas-tight high temperature furnace. In addition, a unique remotely installed length measuring setup involving laser micrometer is used to monitor...... deformations in the sample. Application of the methodology is exemplified by measurement of stress relaxation, creep and constant strain rate behaviors of a high temperature alloy used in the construction of SOC metallic interconnects at different temperatures. Furthermore, measurements using the proposed...

  11. Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition.

    Science.gov (United States)

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2013-06-07

    Fungal species of the genus Aspergillus are filamentous ubiquitous saprophytes that play a major role in lignocellulosic biomass recycling and also are considered as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. Analysis of extracellular secreted biomass degrading enzymes using complex lignocellulosic biomass as a substrate by solid-state fermentation could be a more practical approach to evaluate application of the enzymes for lignocellulosic biorefinery. This study isolated a fungal strain from compost, identified as Aspergillus fumigatus, and further analyzed it for lignocellulolytic enzymes at different temperatures using label free quantitative proteomics. The profile of secretome composition discovered cellulases, hemicellulases, lignin degrading proteins, peptidases and proteases, and transport and hypothetical proteins; while protein abundances and further their hierarchical clustering analysis revealed temperature dependent expression of these enzymes during solid-state fermentation of sawdust. The enzyme activities and protein abundances as determined by exponentially modified protein abundance index (emPAI) indicated the maximum activities at the range of 40-50 °C, demonstrating the thermophilic nature of the isolate A. fumigatus LF9. Characterization of the thermostability of secretome suggested the potential of the isolated fungal strain in the production of thermophilic biomass degrading enzymes for industrial application.

  12. Intermediate treatments

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    Intermediate treatments are those applied after a new stand is successfully established and before the final harvest. These include not only intermediate cuttings - primarily thinning - but also fertilization, irrigation, and protection of the stand from damaging agents.

  13. Preparation and physical properties of (PVA0.7(NaBr0.3(H3PO4xM solid acid membrane for phosphoric acid – Fuel cells

    Directory of Open Access Journals (Sweden)

    F. Ahmad

    2013-03-01

    Full Text Available A solid acid membranes based on poly (vinyl alcohol (PVA, sodium bromide (NaBr and phosphoric acid (H3PO4 were prepared by a solution casting method. The morphological, IR, electrical and optical properties of the (PVA0.7(NaBr0.3(H3PO4xM solid acid membranes where x = 0.00, 0.85, 1.7, 3.4, 5.1 M were investigated. The variation of film morphology was examined by scanning electron microscopy (SEM studies. FTIR spectroscopy has been used to characterize the structure of polymer and confirms the complexation of phosphoric acid with host polymeric matrix. The temperature dependent nature of ionic conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The ionic conductivity at room temperature was found to be strongly depends on the H3PO4 concentration which it has been achieved to be of the order 4.3 × 10−3 S/cm at ambient temperature. Optical measurements showed a decrease in optical band gap and an increase in band tail width with the increase of phosphoric acid. The data shows that the (PVA0.7(NaBr0.3(H3PO4xM solid acid membrane is promising for intermediate temperature phosphoric acid fuel cell applications.

  14. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  15. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  16. Nanomodified Carbon/Carbon Composites for Intermediate Temperature

    Science.gov (United States)

    2007-08-31

    7] Properties Values Appearance Light yellow liquid (material is waxy at room temperature) Specific Gravity 1.245 Ionic Cl (ppm) ᝺ Ionic Na and K...and several types of nanoparticles: chemically modified montmorillonite (MMT) organoclays, polyhedral oligomeric silsesquioxanes (POSS®), carbon...montmorillonite (MMT) organoclays, carbon nanofibers, polyhedral oligomeric silsesquioxanes (POSS®), nanosilica, nano- silicon carbide (n-SiC), and

  17. Experimental studies in solid state and low temperature physics. Final report for 1966-1980

    International Nuclear Information System (INIS)

    Goldman, A.M.; Weyhmann, W.V.; Zimmermann, W. Jr.

    1980-06-01

    Experimental and theoretical investigations have been carried out in a broad area of low temperature and solid state physics which includes superconductivity, theory of quantum crystals (through 1973), magnetism in metals, and liquid helium. The work in superconductivity has involved investigations of the Josephson effect, studies of the pair-field susceptibility of superconductors and investigations of the thermodynamics of the superconducting phase transition. The competition between the metal-nonmetal transition and superconductivity has also been studied in random metal-rare gas systems. In the area of magnetism, magnetically ordered materials and dilute magnetic alloys have been investigated. Enhanced hyperfine nuclear magnetic ordering was discovered in PrCu 6 at about 2.5 mK. The research on liquid 4 He and 3 He/ 4 He mixtures has been directed at the quantum aspects of superfluid flow and rotation, the critical behavior near the lambda transition and the properties of the tricritical point. The theoretical program (through 1973) encompassed a broad spectrum of research on the properties of quantum liquids and solids with particular emphasis on crystalline 3 He

  18. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  19. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  20. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    Science.gov (United States)

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr 2 CuO 4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr 1.6 Sr 0.4 CuO 4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3-δ . Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  1. Storage facility for highly radioactive solid waste

    International Nuclear Information System (INIS)

    Kitano, Shozo

    1996-01-01

    A heat insulation plate is disposed at an intermediate portion between a ceiling wall of a storage chamber and an upper plate of a storage pit in parallel with them. A large number of highly radioactive solid wastes contained in canisters are contained in the storage pit. Cooling air is introduced from an air suction port, passes a channel on the upper side of the heat insulation plate formed by the ceiling of the storage chamber and the heat insulation plate, and flows from a flow channel on the side of the wall of the storage chamber to the lower portion of the storage pit. Afterheat is removed by the air flown from the lower portion to ventilation tubes at the outer side of container tubes. The air heated to a high temperature through the flow channel on the lower side of the heat insulation plate between the heat insulation plate and the upper plate of the storage pit, and is exhausted to an exhaustion port. Further, a portion of a heat insulation plate as a boundary between the cooling air and a high temperature air formed on the upper portion of the storage pit is formed as a heat transfer plate, so that the heat of the high temperature air is removed by the cooling air flowing the upper flow channel. This can prevent heating of the ceiling wall of the storage chamber. (I.N.)

  2. Effects of minor Si on microstructures and room temperature fracture toughness of niobium solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bin, E-mail: kongbin@buaa.edu.cn; Jia, Lina, E-mail: jialina@buaa.edu.cn; Su, Linfen, E-mail: sulinfen@mse.buaa.edu.cn; Guan, Kai, E-mail: guankai@mse.buaa.edu.cn; Weng, Junfei, E-mail: wengjf@mse.buaa.edu.cn; Zhang, Hu, E-mail: zhanghu@buaa.edu.cn

    2015-07-15

    Controlling the elements content in the niobium solid solution (Nb{sub SS}) is significant for the better comprehensive performance of Nb-silicide-based alloys. In this paper, the effects of minor Si on the microstructures and room temperature fracture toughness of Nb–(0/0.5/1/2)Si–27.63Ti–12.92Cr–2.07Al–1.12Hf (at%, unless stated otherwise) solid solution alloys were investigated. The alloys were processed by vacuum arc-casting (AC), and then heat treated (HT) at 1425 °C for 10 h. In HT alloys, Nb{sub SS} grains are refined gradually with the increase of Si content. Meanwhile, the volume fraction of Cr{sub 2}Nb and silicides phases precipitates increases. The fracture toughness of HT alloys decreases at first but then increases in the range of 0 to 2% Si, because it is a combinatorial process of positive and negative effects caused by the addition of Si. The refinement of Nb{sub SS} grains displays positive effect on fracture toughness, while the increase of solid solubility of Si in Nb{sub SS} and brittle Cr{sub 2}Nb and Nb-silicides precipitate phases display negative effect.

  3. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Winter, Martin; Passerini, Stefano

    2013-01-01

    Highlights: ► Solid-state electrolyte for lithium batteries. ► Polymer electrolyte with improved mechanical properties by cross-linking. ► Enhanced performance of polymer electrolytes using water- and air-stable ionic liquids as co-salts. ► Polymer electrolyte with high rate capability at moderate temperatures. - Abstract: An advanced electrochemical characterization of cross-linked ternary solid polymer electrolytes (SPEs), prepared by a solvent-free hot-pressing process, is reported. Ionic conductivity, electrochemical stability window and limiting current measurements were performed as a function of the temperature by using both potentiodynamic and galvanostatic techniques. Additionally, the lithium cycleability was evaluated with respect to its dependence on both the operating temperature and the current density by using a new multi-rate Li-stripping-plating procedure. The results clearly indicate the beneficial effect of higher operating temperatures on the rate-capability, without major degradation of the electrochemical stability of the SPE. All-solid-state lithium metal polymer batteries (LMPBs), comprising a lithium metal anode, the cross-linked ternary solid polymer electrolyte and a LiFePO 4 composite cathode, were manufactured and investigated in terms of the interdependencies of the delivered capacity, operating temperature and discharge rate. The results prove quite exceptional delivered capacities both at medium current densities at ambient temperatures and even more impressive capacities above 160 mAh g −1 at high discharge rates (1 C) and temperatures above 60 °C.

  4. The intermediate phase and low wave number phonon modes in antiferroelectric (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} ceramics discovered from temperature dependent Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaojuan; Guo, Shuang [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Zhigao, E-mail: zghu@ee.ecnu.edu.cn [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chen, Xuefeng; Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Dong, Xianlin; Chu, Junhao [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2016-05-15

    Optical phonons and phase transitions of (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} (PLZST 97/2/60/40-100y/100y) ceramics with different compositions have been investigated by x-ray diffraction and temperature dependent Raman spectra. From the temperature dependence of low wavenumber phonon modes, two phase transitions (antiferroelectric orthorhombic to intermediate phase and intermediate phase to paraelectric cubic phase) were detected. The intermediate phase could be the coexistence one of antiferroelectric orthorhombic and ferroelectric rhombohedral phase. In addition, two modes (a soft mode and an anharmonic hopping central mode) were found in the high temperature paraelectric cubic phase. On cooling, the anharmonic hopping central mode splits into two modes in the terahertz range. Moreover, the antiferrodistortive mode appears in the antiferroelectric orthorhombic phase. Based on the analysis, the phase diagram of PLZST ceramics can be well improved. - Highlights: • The evolution of phonon modes in antiferroelectric PLZST ceramics. • An intermediate phase was found between orthorhombic and cubic phase. • The phase diagram of PLZST ceramics can be well improved.

  5. Colossal change in thermopower with temperature-driven p-n-type conduction switching in La x Sr2-x TiFeO6 double perovskites

    Science.gov (United States)

    Roy, Pinku; Maiti, Tanmoy

    2018-02-01

    Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0  ⩽  x  ⩽  0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x  =  0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.

  6. Co-pyrolysis of coal with organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Straka, P.; Buchtele, J. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    The co-pyrolysis of high volatile A bituminous coal with solid organic materials (proteins, cellulose, polyisoprene, polystyrene, polyethylene-glycolterephtalate-PEGT) at a high temperature conditions was investigated. Aim of the work was to evaluate, firstly, the changes of the texture and of the porous system of solid phase after high temperature treatment in presence of different types of macromolecular solids, secondly, properties and composition of the tar and gas. Considered organic solids are important waste components. During their co-pyrolysis the high volatile bituminous coal acts as a hydrogen donor in the temperature rank 220-480{degrees}C. In the rank 500- 1000{degrees}C the solid phase is formed. The co-pyrolysis was carried out at heating rate 3 K/min. It was found that an amount of organic solid (5-10%) affects important changes in the optical texture forms of solid phase, in the pore distribution and in the internal surface area. Transport large pores volume decreases in presence of PEGT, polystyrene and cellulose and increases in presence of proteins and polyisoprene. (image analysis measurements show that the tendency of coal to create coarse pores during co-pyrolysis is very strong and increases with increasing amount of organic solid in blend). An addition of considered materials changes the sorption ability (methylene blue test, iodine adsorption test), moreover, the reactivity of the solid phase.

  7. Low-temperature (75 °C) solid-state reaction enhanced by less-crystallized nanoporous PbI2 films for efficient CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2017-01-01

    Highlights: • Efficient perovskite solar cells were prepared with solid-state reaction at 75 °C. • Ln-PbI 2 is superior to c-PbI 2 when applied in low-temperature solid-state reaction. • A higher champion PCE was obtained at 75 °C (13.8%) than that of 140 °C (11.8%). • Non-radiative defects increase significantly when annealed at high temperature. - Abstract: Organohalide perovskite films are usually prepared with the solid-state reaction at a high temperature ≥100 °C, which causes the increase of non-radiative defects and decomposition of perovskite films. Here, we demonstrate it’s feasible to prepare high-quality perovskite films with the solid-state reaction method even at a temperature of 75 °C, when enhanced by less-crystallized nanoporous PbI 2 (ln-PbI 2 ) films. The replacement of compact PbI 2 (c-PbI 2 ) by ln-PbI 2 , results in a significant improvement of crystallinity of perovskite films, besides the elimination of remnant PbI 2 . As a result, ln-PbI 2 based perovskite solar cells display much higher power conversion efficiency (PCE) and better stability. Moreover, annealing duration was found to be critical for high PCE and was optimized as 60 min. Finally, with the optimal process, the champion device displayed a PCE of 13.8% and the average PCE reached 10.1% with a satisfactory deviation. Furthermore, we found annealing at high temperature (140 °C) led to a lower PCE compared with that annealed at 75 °C, because non-radiative defects increased significantly during high-temperature annealing. This work may open up a promising avenue for preparing high-quality perovskite films with the low-temperature solid-state reaction method, which is desirable for real application.

  8. Kinetics and mechanism of the low-temperature yttrium-aluminium garnet synthesis

    International Nuclear Information System (INIS)

    Ivakin, Yu.D.; Danchevskaya, M.N.; Yanchenko, P.A.; Murav'eva, G.P.

    2000-01-01

    Kinetics and formation mechanism of finely crystalline yttrium-aluminium garnet (YAG) during hydrothermal and hot steam treatment of stoichiometric mixture of oxides in the range of temperature 200-400 Deg C and pressures of 1.5-26 MPa were studied. It is ascertained that formation of YAG occurs via intermediate stage of Y(OH) 3 structure formation, whereas the aluminia component is X-ray amorphous. Kinetics of YAG formation is described by the equation of solid phase transformation with the limiting stage of nucleation. The YAG formed contains 7-5 % of water, which corresponds to hydrogarnet structure. Unit cell parameters of the YAG samples synthesized are somewhat high and after heating up to 1200 Deg C they decrease [ru

  9. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  10. Characterizing millisecond intermediates in hemoproteins using rapid-freeze-quench resonance Raman spectroscopy.

    Science.gov (United States)

    Matsumura, Hirotoshi; Moënne-Loccoz, Pierre

    2014-01-01

    The combination of rapid freeze quenching (RFQ) with resonance Raman (RR) spectroscopy represents a unique tool with which to investigate the nature of short-lived intermediates formed during the enzymatic reactions of metalloproteins. Commercially available equipment allows trapping of intermediates within a millisecond to second time scale for low-temperature RR analysis resulting in the direct detection of metal-ligand vibrations and porphyrin skeletal vibrations in hemoproteins. This chapter briefly discusses RFQ-RR studies carried out previously in our laboratory and presents, as a practical example, protocols for the preparation of RFQ samples of the reaction of metmyoglobin with nitric oxide (NO) under anaerobic conditions. Also described are important controls and practical procedures for the analysis of these samples by low-temperature RR spectroscopy.

  11. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  12. Model predictive control of the solid oxide fuel cell stack temperature with models based on experimental data

    Science.gov (United States)

    Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari

    2015-03-01

    Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.

  13. Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit

    International Nuclear Information System (INIS)

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V.; Skyba, P.

    2006-01-01

    We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 μK. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to ∼200 μK. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid

  14. Direct numerical simulations of the ignition of a lean biodiesel/air mixture with temperature and composition inhomogeneities at high pressure and intermediate temperature

    KAUST Repository

    Luong, Minhbau

    2014-11-01

    The effects of the stratifications of temperature, T, and equivalence ratio, φ{symbol}, on the ignition characteristics of a lean homogeneous biodiesel/air mixture at high pressure and intermediate temperature are investigated using direct numerical simulations (DNSs). 2-D DNSs are performed at a constant volume with the variance of temperature and equivalence ratio (T′ and φ{symbol}′) together with a 2-D isotropic velocity spectrum superimposed on the initial scalar fields. In addition, three different T s(-) φ{symbol} correlations are investigated: (1) baseline cases with T′ only or φ{symbol}′ only, (2) uncorrelated T s(-) φ{symbol} distribution, and (3) negatively-correlated T s(-) φ{symbol} distribution. It is found that the overall combustion is more advanced and the mean heat release rate is more distributed over time with increasing T′ and/or φ{symbol}′ for the baseline and uncorrelated T s(-) φ{symbol} cases. However, the temporal advancement and distribution of the overall combustion caused by T′ or φ{symbol}′ only are nearly annihilated by the negatively-correlated T s(-) φ{symbol} fields. The chemical explosive mode and Damköhler number analyses verify that for the baseline and uncorrelated T s(-) φ{symbol} cases, the deflagration mode is predominant at the reaction fronts for large T′ and/or φ{symbol}′. On the contrary, the spontaneous ignition mode prevails for cases with small T′ or φ{symbol}′, especially for cases with negative T s(-) φ{symbol} correlations, and hence, simultaneous auto-ignition occurs throughout the entire domain, resulting in an excessive rate of heat release. It is also found that turbulence with large intensity, u′, and a short time scale can effectively smooth out initial thermal and compositional fluctuations such that the overall combustion is induced primarily by spontaneous ignition. Based on the present DNS results, the generalization of the effects of T′, φ{symbol}′, and u

  15. Determination of Intermediate Resonance Parameter with RMET21 for nTRACER

    International Nuclear Information System (INIS)

    Sohail, Muhammad; Kim, Myung Hyun

    2012-01-01

    Ray Tracing based code nTRACER is being developed in Seoul National University that has the capability of 3-dimensional whole core neutron transport calculation. As a part of development of multi-group neutron cross section library for nTRACER, the current work is intended to accurately determine intermediate resonance parameters. Beside the systematic calculation of subgroup parameters for resonance self shielding calculation, intermediate resonance parameters itself can be as important as the multi-group neutron cross section in the library and its overall accuracy. In this paper lambda factors were computed using RMET21 from ENDF/B-VII.1 for nTRACER to investigate its dependence on temperature and background cross section and replaced with lambda factors from HELIOS multi-group library. The procedure used for determining the intermediate resonance parameter for the isotope under study is introduced in the next section. Oxygen being one of the primary nuclide in PWR fuel has been selected for intermediate resonance parameters calculation

  16. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  17. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.

    Science.gov (United States)

    Chen, Liyan; Vadlani, Praveen V; Madl, Ronald L

    2014-01-15

    Phytic acid of soy meal (SM) could influence protein and important mineral digestion of monogastric animals. Aspergillus oryzae (ATCC 9362) solid-state fermentation was applied to degrade phytic acid in SM. Two-stage temperature fermentation protocol was investigated to increase the degradation rate. The first stage was to maximize phytase production and the second stage was to realize the maximum enzymatic degradation. In the first stage, a combination of 41% moisture, a temperature of 37 °C and inoculum size of 1.7 mL in 5 g substrate (dry matter basis) favored maximum phytase production, yielding phytase activity of 58.7 U, optimized via central composite design. By the end of second-stage fermentation, 57% phytic acid was degraded from SM fermented at 50 °C, compared with 39% of that fermented at 37 °C. The nutritional profile of fermented SM was also studied. Oligosaccharides were totally removed after fermentation and 67% of total non-reducing polysaccharides were decreased. Protein content increased by 9.5%. Two-stage temperature protocol achieved better phytic acid degradation during A. oryzae solid state fermentation. The fermented SM has lower antinutritional factors (phytic acid, oligosaccharides and non-reducing polysaccharides) and higher nutritional value for animal feed. © 2013 Society of Chemical Industry.

  18. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  19. Matrix-isolation and solid state low temperature FT-IR study of 2,3-butanedione (diacetyl)

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    2,3-Butanedione (diacetyl) was studied by matrix-isolation and low temperature solid state FT-IR spectroscopy, supported by molecular orbital calculations undertaken at the DFT(B3LYP) and MP2 levels of theory with the 6-311++G(d,p) basis set. Both in the crystalline phase and in the matrices, the compound exists in the C2h symmetry trans conformation (O=C-C=O dihedral angle of 180°). This form corresponds to the single conformational state predicted by the theoretical calculations for the com...

  20. Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell; Armando G. McDonald

    2014-01-01

    Torrefaction enhances physical properties of lignocellulosic biomass and improves its grindability. Energy densification, via fuel pellets production, is one of the most promising uses of torrefaction. Lignin contributes to self-bonding of wood particles during pelletization. In biomass thermal pretreatment, part oflignin (in the form of lignin liquid intermediates –...

  1. Low- and intermediate-level waste management practices in Canada

    International Nuclear Information System (INIS)

    Charlesworth, D.H.

    1982-05-01

    Low- and intermediate-level wastes arise in Canada from the operation of nuclear power stations, nuclear research establishments, nuclear fuel and radioisotope production facilities, as well as from many medical, research and industrial organizations. Essentially all of the solid radioactive wastas are stored in a retrievable fashion at five waste management areas from which a portion is expected to be transferred to future disposal facilities. Waste processing for volume reduction and stabilization is becoming an increasingly important part of low-level waste management because of the advantages it provides for both interim storage currently, and permanent disposal in the future

  2. Municipal solid waste management in Malaysia: Practices and challenges

    International Nuclear Information System (INIS)

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-01-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  3. Laboratory Studies of Solid CO2 Ices at Different Temperatures and Annealing Times in Support of Spitzer Space Telescope Observations

    Science.gov (United States)

    White, Douglas; Gerakines, P. A.

    2007-12-01

    The infrared absorption features of solid carbon dioxide have been detected by space observatories in nearly all lines of sight probing the dense interstellar medium (ISM). It has also been shown that the absorption feature of solid CO2 near 658 cm-1 (15.2 μm) should be a sensitive indicator of the physical conditions of the ice (e.g., temperature and composition). However, the profile structure of this feature is not well understood, and previous laboratory studies have concentrated on a limited range of temperatures and compositions for comparisons to observed spectra from both the Infrared Space Observatory and the Spitzer Space Telescope. In the laboratory study described here, the infrared spectra of ices bearing H2O, CH3OH, and CO2 have been measured with systematically varying compositions and temperatures that span the range of the values expected in the interstellar medium. The mid-infrared spectra (λ = 2.5-25 µm) were measured for 47 different ice compositions at temperatures ranging from 5 K to evaporation (at 5 K intervals). Additionally, annealing experiments of some of these ice compositions have been investigated. These data may be used to determine thermal histories of interstellar ices. This research was supported by NASA award NNG05GE44G under the Astronomy and Physics Research & Analysis Program (APRA).

  4. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.; Leeuw, Dago M. de, E-mail: deleeuw@mpip-mainz.mpg.de [Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Katsouras, Ilias [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Groen, Wilhelm A. [Holst Centre, High Tech Campus 31, 5656AE Eindhoven (Netherlands); Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1 2629 HS, Delft (Netherlands)

    2016-06-06

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O{sub 3}. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  5. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Science.gov (United States)

    Zhao, Dong; Katsouras, Ilias; Asadi, Kamal; Groen, Wilhelm A.; Blom, Paul W. M.; de Leeuw, Dago M.

    2016-06-01

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O3. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  6. FY 1975 Report on results of Sunshine Project. Development of techniques of digging high-temperature beds (Development of solid bits and air-friction bearings); 1975 nendo koon chiso kussaku gijutsu no kaihatsu. Solid bit oyobi air friction bearing no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    A combination of superhard alloy and diamond powder has been widely used as the solid type edge. The solid type with only a superhard alloy edge is no better than the traditional metal bit. It is ironical to admit that one of the most important items in the development of solid bits for digging high-temperature beds is not related to high temperature itself but development of highly efficient, long serviceable bits, growing out of the inefficient digging mechanisms for the conventional solid bits. It is considered that use of a superhard alloy edge is disadvantageous for digging hard rocks in the so-called scratching manner, for the two major reasons: (1) a superhard alloy is certainly resistant to wear, but nothing to that of diamond, and (2) it is homogeneous and lacks directional properties, such as the cleavage plane of diamond, which is effective for cutting. This project is aimed at development, on a trial basis, and eventual commercialization of new types of solid bits serviceable for extended periods by drastically improving suerhard alloys to provide them with new structures, e.g., those corresponding to the crystal axes of diamond, and also introducing a concept of crushing. (NEDO)

  7. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2015-01-01

    Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.

  8. Preparation and characterization of La{sub 0,60S}r{sub 0},{sub 40}Co{sub 0},{sub 20}Fe{sub 0},{sub 80}O{sub 3-{delta}} powders for intermediate temperature solid oxide fuel cells (ITSOFC) cathode; Preparacao e carcacterizacao de particulados de La{sub 0,60S}r{sub 0},{sub 40}Co{sub 0},{sub 20}Fe{sub 0},{sub 80}O{sub 3-{delta}} para catodos de IT-SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, R A; Chiba, R; Bonturim, E; Andreoli, M; Seo, E S.M., [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de Insumos e Componentes

    2009-07-01

    Nowadays a material that is studied as cathode in intermediate temperature solid oxide fuel cells (ITSOFC) is the mixing oxide La{sub 0,60S}r{sub 0},{sub 40}Co{sub 0},{sub 20}Fe{sub 0},{sub 80}O{sub 3-{delta}} (LSCF), that possess pseudo-perovskite structure. The objective of this work is to present the physical, chemical and microstructural of LSCF powders characteristics, prepared by the citrate technique. The main analyses utilized were: X-ray diffraction, X-ray fluorescence spectroscopy, laser scattering granulometry, and scanning electron microscopy. The results show that the elimination of organic precursors is important for desired structure formation and that amount of this phase depends on cobalt content. Moreover, the chemical composition is next to stoichiometric calculated (x=0.40 and y=0.80) and the average sizes of particles are adjusted for ceramic suspensions preparation, contributing for the wet powder spraying step conformation. (author)

  9. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  10. Kinetic advantage of controlled intermediate nuclear fusion

    International Nuclear Information System (INIS)

    Guo Xiaoming

    2012-01-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  11. Solid state protonic conductors II for fuel cells and sensors. Proceedings of the European workshop on solid state materials for low to medium temperature fuel cells and monitors, with special emphasis on proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, J B; Jensen, J; Kleitz, M [eds.

    1983-01-01

    Solid electrolytes for chemical sensing, energy storage and conversion have been actively researched and developed since the early sixties. The zirconia fuel-cell electrolyser, the sodium-sulphur rechargeable battery, the oxygen sensor and lithium batteries can all be cited as significant developments from the field. Although of great potential the solid protonic conductors have somehow been ignored by comparison to the great interest that has been shown in, e.g., the lithium conductors. The long absence of any good, stable protonic conductors could easily explain this. The presence of water in the protonic conductors eliminates the possibility of high-temperature preparation and hence of conventional ceramic processing. Since solid electrolytes are used as dense ceramic membranes, difficulties with the fabrication of protonic electrilytes has been a strong disincentive. However, techniques have been developed for fabricating dense composite membranes; these contain free, but immobilized water that is lost at relatively low temperatures. Framework hydrates hold their water to higher temperatures. Although low-temperature ion-exchange preparations are possible, they yield weak ceramics. Nevertheless, their support on strong substrates, as reported in this conference, may provide an alternate way forward. A second workshop was organised on this theme at Hindsgavl Castle, Denmark, 1982. The aim was to compare the progress made in laboratories in Denmark, France and U.K. and also to review present and and future applications of fuel cells in a broader sense. Thirty scientists and representatives from the Commission of the European Communities, European Space Agency and the Daish Ministry of Energy participated. The proceedings cover all the papers of the workshop and the main comments and suggestions proposed during the discussions.

  12. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  13. Treatment of low and intermediate level wastes

    International Nuclear Information System (INIS)

    Hoehlein, G.

    1978-05-01

    The methods described of low and intermediate level waste treatment are based exclusively on operating experience gathered with the KfK facilities for waste management, the Karlsruhe Reprocessing Plant (WAK), the ALKEM fuel element fabrication plant, the MZFR, KNK and FR 2 reactors as well as at the Karlsruhe Nuclear Research Center and at the state collecting depot of Baden-Wuerttemberg. The processing capacities and technical status are similar to that in 1976. With an annual throughput of 10000 m 3 of solid and liquid raw wastes, an aggregate activity of 85000 Ci, 500 kg of U and 2 kg of Pu, final waste in the amount of 500 m 3 was produced which was stored in the ASSE II salt mine. (orig.) [de

  14. Study of thermal-hydraulic characteristics in an LMFBR intermediate plenum

    International Nuclear Information System (INIS)

    Uotani, M.; Naohara, N.; Kinoshita, I.

    1985-01-01

    Experimental studies using water and liquid metal were conducted in order to investigate the thermal-hydraulic characteristics of an LMFBR intermediate plenum. The present study is an attempt to evaluate the effect of natural convection on the temperature field and to validate the prediction method of temperature profile in a thermally stratified cavity. The experimental results indicated that the effect of the natural convection on flow velocity and heat transfer in the cavity is reduced with increasing the modified stratification parameter. The calculation by FEM code and a simple 1-D model are effective to predict the temperature profile in the cavity

  15. Low-temperature solid-state synthesis and optical properties of CdS-ZnS and ZnS-CdS alloy nanoparticles

    International Nuclear Information System (INIS)

    Liu Jinsong; Zhao Chuanbao; Li Ziquan; Chen Jiankang; Zhou Hengzhi; Gu Shanqun; Zeng Youhong; Li Yongchan; Huang Yongbing

    2011-01-01

    Highlights: → Using a simple low-temperature solid-state synthetic method, ZnS-CdS and CdS-ZnS alloy nanoparticles were obtained, respectively. → The size of the nanoparticles increased with increasing reaction temperature, and reaction sequence had no effect on the size of the nanoparticles under the same temperature. → The particle diameters of the CdS-ZnS products decreased gradually with increasing Cd 2+ /Zn 2+ molar ratio, whereas those of the ZnS-CdS products increased gradually with increasing Zn 2+ /Cd 2+ molar ratio. → The study shows that sufficient grinding and crystalline water may be a key in forming the alloy nanoparticles. → Optical properties of the products depend on reaction temperature, reactant addition sequence, and reactant molar ratio. - Abstract: A simple low-temperature solid-state synthetic method was employed to obtain ZnS-CdS and CdS-ZnS alloy nanoparticles. The effects of reaction sequence, reactant molar ratios, and synthesis temperature on the products were investigated. The crystal structure and morphology of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared (FT-IR) spectroscopy. The results show that the products are alloy nanoparticles with a cubic phase structure. The formation mechanism of the alloy nanoparticles is briefly discussed. Sufficient grinding and crystalline water may be essential to form alloy nanoparticles. Ultraviolet-visible (UV-vis) spectra show that the edge absorptions of the CdS-ZnS and ZnS-CdS nanoparticles were located between those of ZnS and CdS bulks, and the absorbance at the peak maximum was practically dependent on reaction temperature, reaction sequence, and molar ratio. Extrinsic deep-level emission resulted in strong peaks in the photoluminescence (PL) spectra. The position and intensity of the emission peaks varied with the conditions during synthesis.

  16. Transport properties of silver telluride in the solid and liquid states; Etude des proprietes de transport dans le tellurure d'argent Ag{sub 2}Te aux hautes temperatures a l'etat solide et a l'etat liquide

    Energy Technology Data Exchange (ETDEWEB)

    Pham, N T [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-01-01

    Measurements of the electrical resistivity, Hall coefficient and thermoelectric power have been carried out for silver telluride over a large temperature range including both solid and liquid states. The analysis of the experimental data shows that in the solid state the transport properties are governed by an ambipolar process with an electron mobility much higher than the hole mobility ({mu}{sub n} = 10*{mu}{sub p}). It is found that the temperature dependence of the electron mobility can be represented by a T{sup -3} law. Deviations from the stoichiometric composition Ag{sub 2}Te have been studied. For all specimens, melting is accompanied by discontinuous variations in the transport properties. Above the melting point, the magnitude of the measured parameters and their temperature dependence show that liquid silver telluride behaves as a semiconductor. The contribution of Ag{sup +} ions to transport phenomena is suggested to account for the behaviour of the electrical properties. Experimental data have been analysed in terms of conventional theories. (author) [French] Les mesures de la resistivite electrique, du coefficient de Hall et du pouvoir thermoelectrique ont ete effectuees sur le tellurure d'argent dans un large domaine de temperature couvrant l'etat solide et l'etat liquide. L'analyse des resultats experimentaux obtenus a l'etat solide montre que les proprietes de transport sont gouvernees par le processus ambipolaire avec une mobilite des electrons beaucoup plus grande que celle des trous ({mu}{sub n} 10*{mu}{sub p}). On trouve que la mobilite des electrons varie avec la temperature suivant la loi T{sup -3}. Les ecarts de la composition stoechiometrique Ag{sub 2}Te ont ete etudies. Pour tous les echantillons, la fusion est caracterisee par des variations discontinues des proprietes de transport. Au dessus du point de fusion, la grandeur des parametres mesures ainsi que leur variation avec la temperature montrent que le tellurure d'argent liquide se

  17. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  18. Intermediate-Valence Tautomerism in Decamethylytterbocene Complexes of Methyl-Substituted Bipyridines

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Corwin H.; Kazhdan, Daniel; Werkema, Evan L.; Walter, Marc D.; Lukens, Wayne W.; Bauer, Eric D.; Hu, Yung-Jin; Maron, Laurent; Eisenstein, Odile; Head-Gordon, Martin; Andersen, Richard A.

    2011-01-25

    Multiconfigurational, intermediate valent ground states are established in several methyl-substituted bipyridine complexes of bispentamethylcyclopentadienylytterbium, Cp*{sub 2} Yb(Me{sub x}-bipy). In contrast to Cp*{sub 2} Yb(bipy) and other substituted-bipy complexes, the nature of both the ground state and the first excited state are altered by changing the position of the methyl or dimethyl substitutions on the bipyridine rings. In particular, certain substitutions result in multiconfigurational, intermediate valent open-shell singlet states in both the ground state and the first excited state. These conclusions are reached after consideration of single-crystal x-ray diffraction (XRD), the temperature dependence of x-ray absorption near-edge structure (XANES), extended x-ray absorption fine-structure (EXAFS), and magnetic susceptibility data, and are supported by CASSCF-MP2 calculations. These results place the various Cp*{sub 2}Yb(bipy) complexes in a new tautomeric class, that is, intermediate-valence tautomers.

  19. Radical intermediates of low temperature radiolysis of di-tert-butylcyclohexano-18-crown-6/1-octanol extractant

    International Nuclear Information System (INIS)

    Zakurdaeva, O.A.; Nesterov, S.V.; Moscow State Univ.; Feldman, V.I.

    2013-01-01

    Intermediates of low temperature (77 K) X-rays radiolysis of 1-octanol and di-tert-butylcyclohexano-18-crown-6 solutions in 1-octanol were studied by ESR spectroscopy. Hydroxyalkyl CH 3 (CH 2 ) 6 C circle HOH and interior-type alkyl R 1 C circle HR 2 OH radicals were found to be main paramagnetic products stabilized in 1-octanol irradiated at 77 K. In addition to abovementioned radicals, macrocyclic -O-CH 2 -C circle H- and acyclic -C circle H-C(H)=O radicals produced from crown ether were identified in irradiated 1.0 M DtBuCH18C6 solution in octanol. No deviation in radiation-chemical yield of the stabilized acyclic radicals from the value expected in accord with 'additive' rule was observed in the latter case. It was supposed that macrocycle cleavage in DtBuCH18C6 occurred at early stages of radiolysis rather than in secondary radical reactions between products of 1-octanol radiolysis and crown ether. Meanwhile, alkyl radicals formed from 1-octanol can react with crown ether, resulting in formation of macrocyclic products of radiolysis. (orig.)

  20. Radical intermediates of low temperature radiolysis of di-tert-butylcyclohexano-18-crown-6/1-octanol extractant

    Energy Technology Data Exchange (ETDEWEB)

    Zakurdaeva, O.A.; Nesterov, S.V. [Russian Academy of Sciences, Moscow (Russian Federation). Enikolopov Institute of Synthetic Polymer Materials; Moscow State Univ. (Russian Federation). Dept. of Chemistry; Feldman, V.I. [Moscow State Univ. (Russian Federation). Dept. of Chemistry

    2013-03-01

    Intermediates of low temperature (77 K) X-rays radiolysis of 1-octanol and di-tert-butylcyclohexano-18-crown-6 solutions in 1-octanol were studied by ESR spectroscopy. Hydroxyalkyl CH{sub 3}(CH{sub 2}){sub 6}C {sup circle} HOH and interior-type alkyl R{sub 1}C {sup circle} HR{sub 2}OH radicals were found to be main paramagnetic products stabilized in 1-octanol irradiated at 77 K. In addition to abovementioned radicals, macrocyclic -O-CH{sub 2}-C {sup circle} H- and acyclic -C {sup circle} H-C(H)=O radicals produced from crown ether were identified in irradiated 1.0 M DtBuCH18C6 solution in octanol. No deviation in radiation-chemical yield of the stabilized acyclic radicals from the value expected in accord with 'additive' rule was observed in the latter case. It was supposed that macrocycle cleavage in DtBuCH18C6 occurred at early stages of radiolysis rather than in secondary radical reactions between products of 1-octanol radiolysis and crown ether. Meanwhile, alkyl radicals formed from 1-octanol can react with crown ether, resulting in formation of macrocyclic products of radiolysis. (orig.)

  1. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  2. Determination of the vildagliptin intermediate enantiomer by chiralce-columns

    Directory of Open Access Journals (Sweden)

    Weina LI

    2017-06-01

    Full Text Available In order to establish a NP-HPLC method for the determination of enantiomer in vildagliptin intermediate, the determination is carried out on the column of ChiralpakAD-H(250 mm×4.6 mm, 5 μm, with the mobile phase of n-hexane, ethanol and methanol(volume ratio of 65∶25∶10)at flow rate of 0.8 mL/min. The sample volume is 10 μL, the wavelength is 210 nm and the column temperature is 35 ℃. The result shows that the vildagliptin intermediate and its enantiomer could be well separated and detected effectively; blank solvent doesn't interfere with the enantiomer assaying; the detection limit is 27 ng/mL and the quantification limit is 81 ng/mL; in repetitive test, the RSD of enantiomer assaying of samples are no more than 2.0%; in stability test, the RSD are no more than 2.0% in 12 h; the vildagliptin intermediate and its enantiomer could be well separated in the test of durability with all RSDs below 2.0%. The method is simple, reliable, accurate and durable, and can be used for determination of enantiomer in vildagliptin intermediate.

  3. Vibrational properties of complex solids

    International Nuclear Information System (INIS)

    Fagas, G.

    1999-11-01

    conductance of a wire acquires an intermediate tendency to saturate within the temperature range T ∼ (h/2π)ω 1 /k B . (author)

  4. Low-temperature solid-state FTIR study of glycine, sarcosine and N,N-dimethylglycine: observation of neutral forms of simple α-amino acids in the solid state

    OpenAIRE

    Gómez-Zavaglia, A.; Fausto, R.

    2003-01-01

    Neutral forms of glycine and their N-methylated derivatives, sarcosine (N-methylglycine) and N,N-dimethylglycine were, for the first time, observed in the solid state pure compounds. The substances were sublimated under high vacuum, quickly deposited onto a cold CsI substrate at 9 K and examined using FTIR spectroscopy within the temperature range 9–300 K. For all the compounds studied, the spectra obtained at 9 K after deposition revealed the presence of both the neutral and zwitterionic ami...

  5. Control of surface temperature of an aluminum alloy billet by air flow during a heating process at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young [KITECH, Cheonan (Korea, Republic of); Park, Joon Hong [Dong-A University, Busan (Korea, Republic of)

    2016-06-15

    The procedure of semi-solid forming is composed of heating a billet, forming, compression holding and ejecting step. There are several methods to heat a billet during semi-solid forming process such as electric heating and induction heating. Usually in semi-solid forming process, induction heating has been adopted to achieve more uniform temperature of semi-solid material. Although induction heating is better method than any others, however, there is still difference of temperature between internal part and surface part of semi-solid material. Worse yet, in case of high liquid fraction of semi-solid material, liquid of the billet will flow down though solid of the billet still remains, which is very difficult to handle. In the present study, induction heating of the billet during thixoforging process with forced surface cooling has been performed to obtain more uniform distribution of temperature, microstructure and shape of the billet. Distribution of temperature of the billets was measured and compared with that of conventional distribution of temperature. Microscopic and macroscopic aspects of the billets were discussed according to location of the measuring points. By this new induction heating method, not only temperature distributions over the whole billet become uniform, but also control of temperature distribution between inside and outside part of the billet is possible as user's experimental intentions,.

  6. Thermodynamic properties of solid H2 at intermediate orthohydrogen concentration

    International Nuclear Information System (INIS)

    Haase, D.G.; Perrell, L.R.

    1983-01-01

    The authors measured the specific heat of solid hydrogen samples grown under vapor pressure for orthohydrogen molar concentrations 0.65 < X < 0.2 and between 1 and 0.15 K. A thermal relaxation technique was used for the measurements to negate the heating effect of orthohydrogen conversion and to allow examination of long time heat release. The specific heat results showed no transitions or permanence which might be associated with a glass phase, with one exception. It was found that all relaxations were exponential with a single time constant regardless of sample thermal history. Measurements were made of samples isothermally converted at T = 0.3K from the ordered fcc phase to the hcp phase, in which case a gradual disorientation of the rotational moments is seen despite the relatively sharp fcc to hcp structural transition. 14 references, 5 figures

  7. Protonic Conductors for Intermediate Temperature Fuel Cell Electrolytes: Superprotonic CsH2PO4 Stabilization and in-Doped SnP2O7 Structure Study

    Science.gov (United States)

    Martinez Salinas, Heber Jair

    Proton conductor solid electrolytes CsH2PO4 and In-doped tin pyrophosphate have been investigated as candidates to fill a gap of suitable electrolytes for fuel cells at the intermediate temperature range due their unusually high conductivities between 200 and 300 °C. Unfortunately, in the case of CsH2PO4, complicated experimental conditions, like a humidified environment, or high pressure, are needed to preserve the sought high conducting phase. In the first stage of this work, X-ray diffraction on CsH2PO 4 samples performed in air, and under normal conditions of humidity and pressure, evidence of the cubic phase of CsH2PO4 was observed during short intervals of temperature and time, starting at 215 °C and disappearing completely at 265 °C into a dehydrated phase. An AC impedance spectroscopy experimental setup has been assembled and data has been successfully collected on undoped, and doped CsH2PO 4 samples to investigate the effects of chemical and environmental modifications. Measurements performed in the temperature range 200 - 260 °C, and using the frequency range 1 - 6 MHz, showed that the high conducting phase of undoped CsH2PO4 was present for a very short interval of temperature. Additionally, these measurements showed that nano-silica-doped CsH2PO4, and CsH2PO4 under a humidified environment achieve the highest values of conductivity, above 10-2 S cm-1 among the samples tested. In the second stage of this investigation, AC impedance spectroscopy measurements were successfully performed on CsH2PO4 samples in air, at temperatures from 200 - 260 °C, and in the frequency range 1 - 6 MHz, inside a hermetically sealed stainless-steel chamber, which was designed and assembled in-house. Results showed that the highly conducting phase of CsH2PO 4 was achieved at temperatures measured above 230 °C, reaching conductivity values up to 1.7 x10-2 S cm-1, and remaining stable for over 40 hours. Consequent X-ray diffraction analysis of such samples showed that a

  8. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  9. Mediterranean intermediate circulation estimated from Argo data in 2003–2010

    Directory of Open Access Journals (Sweden)

    M. Menna

    2010-03-01

    Full Text Available Data from 38 Argo profiling floats are used to describe the intermediate Mediterranean currents for the period October 2003–January 2010. These floats were programmed to execute 5-day cycles, to drift at a neutral parking depth of 350 m and measure temperature and salinity profiles from either 700 or 2000 m up to the surface. At the end of each cycle the floats remained at the sea surface for about 6 h, enough time to be localised and transmit the data to the Argos satellite system. The Argos positions were used to determine the float surface and intermediate displacements. At the surface, the float motion was approximated by a linear displacement and inertial motion. Intermediate velocities estimates were used to investigate the Mediterranean circulation at 350 m, to compute the pseudo-Eulerian statistics and to study the influence of bathymetry on the intermediate currents. Maximum speeds, as large as 33 cm/s, were found northeast of the Balearic Islands (western basin and in the Ierapetra eddy (eastern basin. Typical speeds in the main along-slope currents (Liguro-Provençal-Catalan, Algerian and Libyo-Egyptian Currents were ~20 cm/s. In the central and western part of Mediterranean basin, the pseudo-Eulerian statistics show typical intermediate circulation pathways which can be related to the motion of Levantine Intermediate Water. In general our results agree with the qualitative intermediate circulation schemes proposed in the literature, except in the southern Ionian where we found westward-flowing intermediate currents. Fluctuating currents appeared to be usually larger than the mean flow. Intermediate currents were found to be essentially parallel to the isobaths over most of the areas characterized by strong bathymetry gradients, in particular, in the vicinity of the continental slopes.

  10. Mechanical behaviour of substitutional body centered cubic Fe-Ti solid solutions at temperatures between 77 and 900 K; Plasticite des solutions solides cubiques centrees substitutionnelles fer-titane aux temperatures comprises entre 77 et 900 K

    Energy Technology Data Exchange (ETDEWEB)

    Dubots, Patrick

    1976-05-11

    Plastic behavior of body-centered cubic, interstitial free, Fe-Ti substitutional solid solutions has been characterised. We obtained the following results: at temperatures below 500 K, the thermal component τ* of the critical resolved shear stress τ greatly increases. Solute additions (c >0.12 wt pc) results in: softening at temperatures below 200 K, hardening at temperatures between 200 and 500 K. Results are discussed on Peierls mechanism. At temperatures below 200 K, screw dislocation motion is controlled.by the nucleation of dislocation pairs over the Peierls'hill. Substitutional solute favoring this process gives account of the softening. At temperatures above 200 K, edge dislocation motion controls the strain. The observed hardening is explained by the interaction occurring between edge-dislocations and foreign atoms. At temperatures between 500 and 800 K, a Portevin-Le Chatelier effect is observed. This effect is characterised by two types of serrations. The activation energy of the PLC effect has been determined (E = 1,4 eV). The origin of this phenomenon is the diffusion of solute towards dislocation by a vacancy-mechanism. Two maxima have been observed on the (σ{sub ε} - T) curves. These are due to superposition of overstraining (hardening) and creation of dislocations (softening). The athermal component τ{sub μ} is increased by titanium additions. This hardening has been explained by modulus and size effects. (author) [French] La caracterisation des mecanismes controlant la deformation plastique des solutions solides cubiques centrees substitutionnelles fer-titane, libres d'interstitiels pour les teneurs en solute superieures a 0,12pc pds, a donne les resultats suivants: aux temperatures inferieures a 500 K, la composante thermique τ* de la contrainte critique de cisaillement resolue τ augmente fortement. L'introduction du solute se traduit (pour c>0,12 pc pds): par un adoucissement pour θ < 200 K; par un durcissement pour 200 K< θ < 500 K. Le

  11. Analysis of cathode materials of perovskite structure for solid oxide fuel cells, sofc s; Analisis de materiales catodicos de estructura perovskita para celdas de combustible de oxido solido, sofcs

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado F, J.; Espino V, J.; Avalos R, L. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Quimica, Santiago Tapia 403, Morelia, Michoacan (Mexico)

    2015-07-01

    Fuel cells directly and efficiently convert the chemical energy of a fuel into electrical energy. Of the various types of fuel cells, the solid oxide (Sofc), combine the advantages in environmentally benign energy generation with fuel flexibility. However, the need for high operating temperatures (800 - 1000 grades C) has resulted in high costs and major challenges in relation to the compatibility the cathode materials. As a result, there have been significant efforts in the development of intermediate temperature Sofc (500 - 700 grades C). A key obstacle for operation in this temperature range is the limited activity of traditional cathode materials for electrochemical reduction oxygen. In this article, the progress of recent years is discussed in cathodes for Sofc perovskite structure (ABO{sub 3}), more efficient than the traditionally used La{sub 1-x}Sr{sub x}MnO{sub 3-δ} (LSM) or (La, Sr) CoO{sub 3}. Such is the case of mixed conductors (MIEC) double perovskite structure (A A B{sub 2}O{sub 5+δ}) using different doping elements as La, Sr, Fe, Ti, Cr, Sm, Co, Cu, Pr, Nd, Gd, dy, Mn, among others, which could improve the operational performance of existing cathode materials, promoting the development of optimized intermediate temperature Sofc designs. (Author)

  12. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.

    2015-07-17

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  13. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.; Bi, Lei; Boulfrad, S.; Traversa, Enrico

    2015-01-01

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  14. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  15. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  16. Electrochemical Behavior of TiO(x)C(y) as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders.

    Science.gov (United States)

    Calvillo, Laura; García, Gonzalo; Paduano, Andrea; Guillen-Villafuerte, Olmedo; Valero-Vidal, Carlos; Vittadini, Andrea; Bellini, Marco; Lavacchi, Alessandro; Agnoli, Stefano; Martucci, Alessandro; Kunze-Liebhäuser, Julia; Pastor, Elena; Granozzi, Gaetano

    2016-01-13

    To achieve complete oxidation of ethanol (EOR) to CO2, higher operating temperatures (often called intermediate-T, 150-200 °C) and appropriate catalysts are required. We examine here titanium oxycarbide (hereafter TiOxCy) as a possible alternative to standard carbon-based supports to enhance the stability of the catalyst/support assembly at intermediate-T. To test this material as electrocatalyst support, a systematic study of its behavior under electrochemical conditions was carried out. To have a clear description of the chemical changes of TiOxCy induced by electrochemical polarization of the material, a special setup that allows the combination of X-ray photoelectron spectroscopy and electrochemical measurements was used. Subsequently, an electrochemical study was carried out on TiOxCy powders, both at room temperature and at 150 °C. The present study has revealed that TiOxCy is a sufficiently conductive material whose surface is passivated by a TiO2 film under working conditions, which prevents the full oxidation of the TiOxCy and can thus be considered a stable electrode material for EOR working conditions. This result has also been confirmed through density functional theory (DFT) calculations on a simplified model system. Furthermore, it has been experimentally observed that ethanol molecules adsorb on the TiOxCy surface, inhibiting its oxidation. This result has been confirmed by using in situ Fourier transform infrared spectroscopy (FTIRS). The adsorption of ethanol is expected to favor the EOR in the presence of suitable catalyst nanoparticles supported on TiOxCy.

  17. Stochastic temperature modulation: A new technique in temperature-modulated DSC

    International Nuclear Information System (INIS)

    Schawe, J.E.K.; Huetter, T.; Heitz, C.; Alig, I.; Lellinger, D.

    2006-01-01

    A new temperature-modulated differential scanning calorimetry (TMDSC) technique is introduced. The technique is based on stochastic temperature modulation and has been developed as a consequence of a generalized theory of a temperature-modulated DSC. The quasi-static heat capacity and the frequency-dependent complex heat capacity can be determined over a wide frequency range in one single measurement without further calibration. Furthermore, the reversing and non-reversing heat flows are determined directly from the measured data. Examples show the frequency dependence of the glass transition, the isothermal curing of thermosets and a solid-solid transition

  18. Results of intermediate-scale hot isostatic press can experiments

    International Nuclear Information System (INIS)

    Nelson, L.O.; Vinjamuri, K.

    1995-05-01

    Radioactive high-level waste (HLW) has been managed at the Idaho Chemical Processing Plant (ICPP) for a number of years. Since 1963, liquid HLW has been solidified into a granular solid (calcine). Presently, over 3,800 m 3 of calcine is stored in partially-underground stainless steel bins. Four intermediate- scale HLW can tests (two 6-in OD x 12-in tall and two 4-in OD x 7-in tall) are described and compared to small-scale HIP can tests (1- to 3-in OD x 1- to 4.5-in tall). The intermediate-scale HIP cans were loaded with a 70/30 calcine/frit blend and HIPped at an off-site facility at 1050 degrees C; and 20 ksi. The dimensions of two cans (4-in OD x 7-in tall) were monitored during the HIP cycle with eddy-current sensors. The sensor measurements indicated that can deformation occurs rapidly at 700 degrees C; after which, there is little additional can shrinkage. HIP cans were subjected to a number of analyses including calculation of the overall packing efficiency (56 to 59%), measurement of glass-ceramic (3.0 to 3.2 g/cc), 14-day MCC-1 leach testing (total mass loss rates 2 day), and scanning electron microscopy (SEM). Based on these analyses, the glass-ceramic material produced in intermediate-scale cans is similar to material produced in small-scale cans. No major scale-up problems were indicated. Based on the packing efficiency observed in intermediate- and small-scale tests, the overall packing efficiency of production-scale (24-in OD x 36- to 190-in tall) cans would be approximately 64% for a pre-HIP right-circular cylinder geometry. An efficiency of 64% would represent a volume reduction factor of 2.5 over a candidate glass waste prepared at 33 wt% waste loading

  19. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  20. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  1. Structural and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ) at intermediate temperatures

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Marco de Lucas, M.C.

    2009-01-01

    The perovskite BaCe(0.9−x)ZrxY0.1O(3−δ) is prepared by solid-state reaction at 1400 °C and sintering at 1700 °C. It is characterised using X-ray diffraction, Raman spectroscopy and electrical measurements. A distortion from the cubic structure at room temperature is noticeable in the Raman spectr...

  2. A Comparative Study of Temperature Optimal Control in a Solid State Fermentation Process for Edible Mushroom Growing

    Directory of Open Access Journals (Sweden)

    K. J. Gurubel

    2017-04-01

    Full Text Available In this paper, optimal control strategies for temperature trajectory determination in order to maximize thermophilic bacteria in a fed-batch solid-state fermentation reactor are proposed. This process is modeled by nonlinear differential equations, which has been previously validated experimentally with scale reactor temperature profiles. The dynamic input aeration rate of the reactor is determined to increase microorganisms growth of a selective substrate for edible mushroom cultivation. In industrial practice, the process is comprised of three thermal stages with constant input air flow and three types of microorganisms in a 150-hour lapse. Scytalidium thermophilum and actinobacteria are desired in order to obtain a final biomass composition with acceptable microorganisms concentration. The Steepest Descent gradient algorithm in continuous time and the Gradient Projection algorithm in discrete-time are used for the process optimal control. A comparison of simulation results in the presence of disturbances is presented, where the resulting temperature trajectories exhibit similar tendencies as industrial data.

  3. Practices and developments in the management of low and intermediate level radioactive waste in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1983-06-01

    In the Swedish nuclear power program ten reactors are in operation and two more under construction. About 100000 m 3 of low and intermediate level radioactive waste will be produced from the operation of these reactors until the year 2010 and about 150000 m 3 from their decommissioning. All burnable radioactive wastes are sent to the Studsvik incineration plant for incineration. Spent resins are incorporated into cement or bitumen. The volume of non-combustible solid waste is reduced by compaction where possible. At the Studsvik research centre a substantial program for improved management of accumulated and future radioactive waste is at the beginning of its implementation. This includes advanced treatment and intermediate storage in a rock cavity. An R and D program on volume reduction of spent resins has reached the point of process verification and equipment design. All low and intermediate radioactive waste will be disposed in a rock cavity planned for commissioning by 1988. The paper reviews actual management experience and development efforts for low and intermediate level radioactive waste in Sweden. Contribution to the Seminar on the Management of Radioactive Waste, Taipei, Taiwan, 25-26 June, 1983. (Author)

  4. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  5. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  6. Environmental effects of disposal of intermediate-level wastes by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1978-01-01

    Shale fracturing is a process currently being used at the Oak Ridge National Laboratory for the permanent disposal of locally generated, intermediate-level waste solutions. In this process, the waste is mixed with a solids blend of cement and other additives; the resulting grout is then injected into an impermeable shale formation at a depth of 700 to 1000 ft. A few hours after completion of the injection, the grout sets and the radioactive waste are fixed in the shale formation. An analysis of environmental effects of normal operation and possible accident situations is discussed

  7. Analytical solutions for the temperature field in a 2D incompressible inviscid flow through a channel with walls of solid fuel

    Directory of Open Access Journals (Sweden)

    Sorin BERBENTE

    2011-12-01

    Full Text Available A gas (oxidizer flows between two parallel walls of solid fuel. A combustion is initiated: the solid fuel is vaporized and a diffusive flame occurs. The hot combustion products are submitted both to thermal diffusion and convection. Analytical solutions can be obtained both for the velocity and temperature distributions by considering an equivalent mean temperature where the density and the thermal conductivity are evaluated. The main effects of heat transfer are due to heat convection at the flame. Because the detailed mechanism of the diffusion flame is not introduced the reference chemical reaction is the combustion of premixed fuel with oxidizer in excess. In exchange the analytical solution is used to define an ideal quasi-uniform combustion that could be realized by an n adequate control. The given analytical closed solutions prove themselves flexible enough to adjust the main data of some existing experiments and to suggest new approaches to the problem.

  8. Solid state NMR studies for a new carbonization process with high temperature preheating

    Science.gov (United States)

    Saito, Koji; Hatakeyama, Moriaki; Komaki, Ikuo; Katoh, Kenji

    2002-01-01

    A new carbonization process with rapid preheating and coke discharging at medium temperature has been developed in Japan. The result of this process shows that even when no or slightly coking coal is by 50 wt% the coking property is improved and a coking coke with cold strength usable at blast furnace can be manufactured with the new carbonization process. The mechanism of the coking property improvement was examined by coal properties using mainly solid state NMR ( 1H CRAMPS and 13C SPE/MAS, CP/MAS) and NMR imaging (single point imaging, in-situ imaging). It has been clarified that the molecular structure of coal is relaxed by the rapid heating treatment and, in addition, there is a close relation between hydrogen bonding and relaxation of the molecular structure of coal.

  9. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  10. Ancient tombs in China and shallow ground burial of solid low-intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Huang Yawen; Gu Cunli

    1987-01-01

    Having reviewed the experiences with ancient tombs in China, particularly the experiences with tomb siting, configuration of tombs, backfilling materials, civil engineering techniques, sealing techniques, drainage system, antiseptic techniques, a comparison between the ancient tombs and the shallow ground burial of solid radioactive wastes is made. The authors believe that the brilliant achievements of ancient tombs in China in keeping ancient corpses and funeral objects are a historical evidence for safety of shallow ground burial of radioactive wastes, and that the main experiences with the ancient tombs may be useful to shallow ground burial of solid radioactive wastes

  11. Storage of long lived solid waste

    International Nuclear Information System (INIS)

    Ozarde, P.D.; Agarwal, K.; Gupta, R.K.; Gandhi, K.G.

    2009-01-01

    Long lived solid waste, generated during the fuel cycle mainly includes high level vitrified waste product, high level cladding hulls and low and intermediate level alpha wastes. These wastes require storage in specially designed engineered facilities before final disposal into deep geological repository. Since high-level vitrified waste contain heat generating radionuclides, the facility for their storage is designed for continuous cooling. High level cladding hulls undergo volume reduction by compaction and will be subsequently stored. (author)

  12. Structure refinement of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d} as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Nurhamidah, E-mail: nurhamidahzakaria@yahoo.com; Idris, Mohd Sobri, E-mail: sobri@unimap.edu.my [Centre of Excellence for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, Jejawi 02600, Arau, Perlis (Malaysia); Osman, Rozana A. M., E-mail: rozana@unimap.edu.my [School of Microelectronics Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra, 02600, Arau, Perlis (Malaysia)

    2016-07-19

    Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1) Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.

  13. Fatty acids polymorphism and solid-state miscibility

    Energy Technology Data Exchange (ETDEWEB)

    Gbabode, Gabin [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France)], E-mail: ggbabode@ulb.ac.be; Negrier, Philippe; Mondieig, Denise [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France); Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Angel [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, 08028 Barcelona (Spain)

    2009-02-05

    The pentadecanoic acid-hexadecanoic acid (C{sub 15}H{sub 29}OOH-C{sub 16}H{sub 31}OOH) binary system is dealt with in this article. The polymorphism of 20 mixed materials has been investigated combining calorimetric measurements, isothermal and versus temperature X-ray powder diffraction and also FTIR spectroscopy. In particular, the cell parameters of the stable forms, temperatures and heats of phase changes for the two constituents and a proposal of phase diagram are given in this article. Three solid forms are created by mixing in addition with the four solid forms of the pure components. All these solid forms are stabilized on narrow domains of composition, implying a reduced solid-state miscibility of the pentadecanoic and hexadecanoic acids.

  14. Thermal properties of paramagnetic solid helium 3

    International Nuclear Information System (INIS)

    Goldstein, L.

    1983-01-01

    It was shown in recent work that over a limited molar volume range and at asymptotically high temperatures the thermal modulations of the pressure along isochores of paramagnetic solid 3 He could be accounted for through the formalism of the Heisenberg model of an antiferromagnetically interacting localized spin- 1/2 system. The internal consistency of this formalism requires the characteristic exchange-interaction parameter of the model derived from pressure modulation data to be identical with that appearing in the other thermal properties of this quantum solid. In a restricted temperature region where the spin excitations are the dominant thermal excitations of the solid, heat capacity data yield exchange-interaction parameters in fair agreement with those derived from pressures along isochores of larger molar volume. At higher temperatures, within well-defined limitations, thermal excitations involve both spin and phononexcitations. Here, because of the opposite temperature variations of the spin and phonon heat capacity components, the ensuing heat capacity minimum determines exactly the exchange-energy parameter and the relevant limiting Debye temperature as a function of the measured temperature location and value of the heat capacity extremum along the experimentally explored isochore. The exchange-energy parameters so derived display larger deviations from their predicted pressure-based values than those resulting from the lower temperature but still asymptotic spin-only heat capacities. At the present time, ambiguities in the experimental determinations of the characteristic Weiss temperatures of the asymptotic paramagnetic susceptibilities prevent one from deriving exchange-energy parameters with them. The present work leads to the prediction, within the limitations of the model formalism, of thermal properties of magnetized solid 3 He

  15. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell ano...

  16. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental study on solid state reduction of chromite with rising temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kekkonen, M.; Syynimaa, A.; Holappa, L.

    1998-07-01

    The solid state reduction of preoxidized sintered chromite pellets, raw pellets, process pellets and lumpy ores have been studied with rising temperature 700-1520 deg C under CO-atmosphere in order to better simulate the conditions in the upper part of a real submerged arc furnace. According to the reduction degree curves the reduction behaviour of chromite pellets seems to be similar. The reduction rate was slow at the beginning but increased rapidly when the temperature reached about 1000 deg C. The final reduction degree was highest in the case of process pellets and lowest in the case of raw pellet. In the case of preoxidized pellets there was not much difference of the reduction rate and final reduction degree between different oxidation states. In the case of lumpy ores the reduction rate and the final reduction degree was much lower compared to the pellets. Optical photographs, phase and microanalysis show that the reduction has proceeded further in the surface of the samples and confirmed also that the reduction degree remained lower in the case of raw pellet and lumpy ores which was also seen from the reduction degree curves. According to the experiments in the case of preoxidized pellets the effect of oxidation state on the reduction rate was not observed due to small difference in the oxidation state of the samples. But when comparing the reduction of preoxidized pellets and unoxidised raw pellet we can say that preoxidation promotes the reduction. The final reduction degree of the raw pellet remained lower than in the case of preoxidized pellets. (orig.)

  18. Behaviour of rare gases in solids at high temperature; Comportement des gaz rares dans les solides a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blin, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In this article a number of simple results regarding the solubility and displacement of rare gases in solids have been assembled. These results were obtained from elementary considerations on highly compressed gases and on dislocations. They provide a better understanding of the now fairly numerous experiments dealing with the swelling of irradiated fuels, this swelling being due to the presence of a high proportion of gases in the fission products. Finally, the chances of success of the various methods which may be devised to diminish the swelling are examined. (author) [French] Nous avons rassemble dans ce texte un certain nombre de resultats simples relatifs a la solubilite et au deplacement des gaz rares dans les solides. Ces resultats ont ete obtenus par des considerations elementaires sur les gaz tres comprimes et sur les dislocations. Ils permettent de mieux comprendre les experiences, maintenant assez nombreuses, qui ont trait au gonflement des combustibles irradies; gonflement qui est du a la presence d'une forte proportion de gaz dans les produits de fission. On examine finalement les chances de succes des differents moyens que l'on peut imaginer pour attenuer le gonflement. (auteur)

  19. Reduction of the Curie temperature in the multiferroic Bi5Fe1+xTi3−xO15 solid solution

    International Nuclear Information System (INIS)

    Salazar-Kuri, U; Mendoza, M E; Silva, R; Siqueiros, J M; Gervacio-Arciniega, J J

    2014-01-01

    In this work, the phase diagram of the system Bi 4 Ti 3 O 12 -BiFeO 3 in the region of the solid solution Bi 5 Fe 1+x Ti 3−x O 15 was refined. The limit of solubility was determined to be at x = 0.1. The Curie temperature (T C ) of the ferroelectric phase transition was determined by dielectric permittivity measurements at 100 kHz for the phase Bi 5 FeTi 3 O 15 as well as for the solid solution. A decrease in T C from 750 °C to 742 °C (solid solution at x = 0.1) was found. These results can be explained in terms of the perturbation of the oxygen octahedral perovskite layers resulting from the substitution of Ti 4+ by Fe 3+ ions. (paper)

  20. Reactions and reaction intermediates on iron surfaces--1. Methanol, ethanol, and isopropanol on Fe(100). 2. Hydrocarbons and carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Benziger, J.B.; Madix, R.J.

    1980-09-01

    Temperature-programed desorption and ESCA showed that the alcohols formed alkoxy intermediates on Fe(100) surfaces at room temperature, but that the methoxy and ethoxy species were much more stable than the isopropoxy intermediate. The alkoxy species reacted above 400/sup 0/K by decomposing into carbon monoxide and hydrogen, hydrogenation to alcohol, and scission of C-C and C-O bonds with hydrogenation of the hydrocarbon fragments. Ethylene, acetylene, and cis-2-butene formed stable, unidentified surface species. Methyl chloride formed stable surface methyl groups which decomposed into hydrogen and surface carbide at 475/sup 0/K. Formic and acetic acids yielded stable carboxylate intermediates which decomposed above 490/sup 0/K to hydrogen, carbon monoxide, and carbon dioxide. The studies suggested that the alkoxy surface species may be important intermediates in the Fischer-Tropsch reaction on iron.