WorldWideScience

Sample records for intermediate mass protostar

  1. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    International Nuclear Information System (INIS)

    Van Kempen, T. A.; Longmore, S. N.; Johnstone, D.; Pillai, T.; Fuente, A.

    2012-01-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of ∼200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M ☉ , is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., ☉ . No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  2. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Van Kempen, T. A. [Joint ALMA Offices, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Longmore, S. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Johnstone, D. [National Research Council Canada, Herzberg Institute for Astronomy, 5071 West Saanich Road, Victoria, BC (Canada); Pillai, T. [Caltech, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Fuente, A., E-mail: tkempen@alma.cl [Observatorio Astronomico Nacional (OAN), Apdo. 112, E-28803 Alcala de Henares, Madrid (Spain)

    2012-06-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of {approx}200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M{sub Sun }, is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., <0.5 M{sub Sun }. No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  3. Constraining the disk masses of the class I binary protostar GV Tau

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A., E-mail: psheehan@email.arizona.edu [Steward Observatory, University of Arizona 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  4. Heavy water stratification in a low-mass protostar

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims. The key program Chemical HErschel Surveys of Star

  5. The Herschel/HIFI unbiased spectral survey of the solar-mass protostar IRAS16293

    Science.gov (United States)

    Bottinelli, S.; Caux, E.; Cecarelli, C.; Kahane, C.

    2012-03-01

    Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high-mass protostars, very little data exist on low-mass protostars, with only one such ground-based survey carried out towards this kind of object. However, since low-mass protostars are believed to resemble our own Sun's progenitor, the information provided by spectral surveys is crucial in order to uncover the birth mechanisms of low-mass stars and hence of our Sun. To help fill up this gap in our understanding, we carried out an almost complete spectral survey towards the solar-type protostar IRAS16293-2422 with the HIFI instrument onboard Herschel. The observations covered a range of about 700 GHz, in which a few hundreds lines were detected with more than 3σ confidence interval certainty and identified. All the detected lines which were free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Contrarily to what is observed in the millimeter range, no lines from complex organic molecules have been observed. In this work, we characterize the different components of IRAS16293-2422 (a known binary at least) by analyzing the numerous emission and absorption lines identified.

  6. Origin of the hot gas in low-mass protostars

    DEFF Research Database (Denmark)

    Van Kempen, T. A.; Kristensen, L. E.; Herczeg, G. J.

    2010-01-01

    Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. Methods. The low-mass protostar HH 46 was observed with the Photodetector Ar...

  7. CO outflows from high-mass Class 0 protostars in Cygnus-X

    Science.gov (United States)

    Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.

    2013-10-01

    Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a

  8. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  9. LOW-METALLICITY PROTOSTARS AND THE MAXIMUM STELLAR MASS RESULTING FROM RADIATIVE FEEDBACK: SPHERICALLY SYMMETRIC CALCULATIONS

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki

    2009-01-01

    The final mass of a newborn star is set at the epoch when the mass accretion onto the star is terminated. We study the evolution of accreting protostars and the limits of accretion in low-metallicity environments under spherical symmetry. Accretion rates onto protostars are estimated via the temperature evolution of prestellar cores with different metallicities. The derived rates increase with decreasing metallicity, from M-dot≅10 -6 M odot yr -1 at Z = Z sun to 10 -3 M sun yr -1 at Z = 0. With the derived accretion rates, the protostellar evolution is numerically calculated. We find that, at lower metallicity, the protostar has a larger radius and reaches the zero-age main sequence (ZAMS) at higher stellar mass. Using this protostellar evolution, we evaluate the upper stellar mass limit where the mass accretion is hindered by radiative feedback. We consider the effects of radiation pressure exerted on the accreting envelope, and expansion of an H II region. The mass accretion is finally terminated by radiation pressure on dust grains in the envelope for Z ∼> 10 -3 Z sun and by the expanding H II region for lower metallicity. The mass limit from these effects increases with decreasing metallicity from M * ≅ 10 M sun at Z = Z sun to ≅300 M sun at Z = 10 -6 Z sun . The termination of accretion occurs after the central star arrives at the ZAMS at all metallicities, which allows us to neglect protostellar evolution effects in discussing the upper mass limit by stellar feedback. The fragmentation induced by line cooling in low-metallicity clouds yields prestellar cores with masses large enough that the final stellar mass is set by the feedback effects. Although relaxing the assumption of spherical symmetry will alter feedback effects, our results will be a benchmark for more realistic evolution to be explored in future studies.

  10. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    Science.gov (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  11. Infrared emission from protostars

    International Nuclear Information System (INIS)

    Adams, F.C.; Shu, F.H.

    1985-01-01

    The emergent spectral energy distribution at infrared to radio wavelengths is calculated for the simplest theoretical construct of a low-mass protostar. It is shown that the emergent spectrum in the infrared is insensitive to the details assumed for the temperature profile as long as allowance is made for a transition from optically thick to optically thin conditions and luminosity conservation isenforced at the inner and outer shells. The radiation in the far infrared and submillimeter wavelengths depends on the exact assumptions made for grain opacities at low frequencies. An atlas of emergent spectral energy distributions is presented for a grid of values of the instantaneous mass of the protostar and the mass infall rate. The attenuated contribution of the accretion shock to the near-infrared radiation is considered. 50 references

  12. A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY

    International Nuclear Information System (INIS)

    Jørgensen, Jes K.; Brinch, Christian; Lindberg, Johan E.; Bisschop, Suzanne E.; Visser, Ruud; Bergin, Edwin A.; Sakai, Nami; Yamamoto, Satoshi; Harsono, Daniel; Van Dishoeck, Ewine F.; Persson, Magnus V.

    2013-01-01

    Low-mass protostars have been suggested to show highly variable accretion rates throughout their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C 17 O, H 13 CO + , CH 3 OH, C 34 S and C 2 H toward the low-mass protostar IRAS 15398-3359 on 0.''5 (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array at 340 GHz. The resolved images show that the emission from H 13 CO + is only present in a ring-like structure with a radius of about 1-1.''5 (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO + is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 yr increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH 3 OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars

  13. Study of deuterated water in the low-mass protostar IRAS16293-2422

    Science.gov (United States)

    Coutens, A.; Vastel, C.; Caux, E.; Ceccarelli, C.; Herschel Chess Team

    2011-05-01

    Observations of deuterated water are an important complement for studies of H2O, since they give strong constraints on the formation processes: grain surfaces versus gas-phase chemistry through energetic process as shocks. The CHESS (Chemical HErschel Surveys of Star forming regions) Key Program has allowed to detect a lot of transitions of HDO (8) and H2O (16) as well as its isotopes H_218O and H_217O towards the low-mass protostar IRAS16293-2422 thanks to the unbiaised spectral survey carried out with the HIFI instrument on board the Herschel Space Observatory. Complementary data of HDO from the ground-based telescopes IRAM and JCMT are also available, allowing a precise determination of the abundance of deuterated water through the protostar envelope. In order to reproduce the observed line profiles, we have performed a modeling of HDO from the hot corino through the envelope using the physical structure of the protostar (Crimier et al. 2010) and the spherical Monte Carlo radiative transfer code RATRAN, which takes also into account radiative pumping by continuum emission from dust. We have used new HDO collision rates with H_2, recently computed by Wiesenfeld, Scribano and Faure (2011, PCCP). The same method has been applied to model H_2O and its isotopes H_218O and H_217O. We will present the results of this analysis and discuss the determined abundances.

  14. Complex molecules in the hot core of the low-mass protostar NGC 1333 IRAS 4A

    NARCIS (Netherlands)

    Bottinelli, S; Ceccarelli, C; Lefloch, B; Williams, JP; Castets, A; Caux, E; Cazaux, S; Maret, S; Parise, B; Tielens, AGGM

    2004-01-01

    We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in which such complex molecules have been searched for and reported, the other source being IRAS

  15. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H2CO and CCH

    International Nuclear Information System (INIS)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; Van Dishoeck, Ewine F.

    2014-01-01

    Subarcsecond (0.''5) images of H 2 CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M ☉ . Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H 2 CO emission associated with the protostar.

  16. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15

    DEFF Research Database (Denmark)

    Kristensen, Lars Egstrøm; Van Dishoeck, E. F.; Mottram, J. C.

    2017-01-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still...... in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects....... not understood. Aims. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods. Observations are presented of the highly excited CO...

  17. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K. [Center for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Østeer Voldgade 5-7, DK-1350 Copenhagen K. (Denmark); Van Dishoeck, Ewine F., E-mail: nami@taurus.phys.s.u-tokyo.ac.jp [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden, The Netherland (Netherlands)

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.

  18. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  19. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  20. SOFIA/FORCAST AND SPITZER/IRAC IMAGING OF THE ULTRACOMPACT H II REGION W3(OH) AND ASSOCIATED PROTOSTARS IN W3

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Lea; Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin [Department of Astronomy, Cornell University, 105 Space Sciences Building, Ithaca, NY 14853 (United States); Hora, Joseph L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516 (United States); De Buizer, James M.; Vacca, William [SOFIA-University Space Research Association, NASA Ames Reseach Center, Mail Stop N211-3, Moffett Field, CA 94035 (United States); Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Mailstop 111, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Keller, Luke D. [Ithaca College, Physics Department, 264 Center for Natural Sciences, Ithaca, NY 14850 (United States)

    2012-10-01

    We present infrared observations of the ultracompact H II region W3(OH) made by the FORCAST instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) and by the Spitzer/Infrared Array Camera. We contribute new wavelength data to the spectral energy distribution (SED), which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius {approx}600 AU, irradiated by a central star of type O9 and temperature {approx}31, 000 K. The total luminosity of this system is 7.1 Multiplication-Sign 10{sup 4} L{sub Sun }. An observed excess of 2.2-4.5 {mu}m emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H{sub 2}O) at 31.4 and 37.1 {mu}m using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7-37.1 {mu}m. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity ({approx}236-432 L{sub Sun }) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3 Multiplication-Sign 10{sup 3} L{sub Sun} or a less massive young star with a substantial circumstellar disk but depleted envelope; and the other (2MASS J02270743+6152281) is an intermediate-luminosity ({approx}768 L{sub Sun }) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.

  1. Protostar formation in the early universe.

    Science.gov (United States)

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.

  2. CONSTRAINING THE ABUNDANCES OF COMPLEX ORGANICS IN THE INNER REGIONS OF SOLAR-TYPE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney; Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); López-Sepulcre, Ana; Ceccarelli, Cecilia; Kahane, Claudine [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Neri, Roberto, E-mail: taquet@strw.leidenuniv.nl [Institut de Radioastronomie Millimétrique, Grenoble (France)

    2015-05-10

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  3. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.

    2012-01-01

    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eu/k = 4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces...... the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C...

  4. A HERSCHEL AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Amelia M.; Robitaille, Thomas; Henning, Thomas; Krause, Oliver [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Megeath, S. Thomas; Fischer, William J. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Ali, Babar; Furlan, Elise [NHSC/IPAC/Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Di Francesco, James [National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hartmann, Lee [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); Wilson, Thomas L. [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Allen, Lori [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Manoj, P., E-mail: stutz@mpia.de [Department of Physics and Astronomy, 500 Wilson Boulevard, University of Rochester, Rochester, NY 14627 (United States)

    2013-04-10

    We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 {mu}m and 160 {mu}m that are either too faint (m{sub 24} > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 {mu}m band. We find that the 11 reddest protostar candidates with log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 {mu}m fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65; we name these sources 'PACS Bright Red sources', or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T{sub bol} < 45 K) and large values of sub-millimeter fluxes (L{sub smm}/L{sub bol} > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2 M{sub Sun} and luminosities of 0.7-10 L{sub Sun }. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

  5. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Girart, J. M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Curiel, S.; Fonfría, J. P. [Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-264, 04510 México, DF (Mexico); Zapata, L. A. [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72, Morelia, Michoacán 58089 (Mexico); Qiu, K., E-mail: manferna@illinois.edu, E-mail: girart@ieec.cat [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  6. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    Science.gov (United States)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  7. Late stages of solar type protostars

    International Nuclear Information System (INIS)

    Winkler, K.H.A.

    1978-05-01

    A consistent hydrodynamical and radiative transfer calculation in spherical symmetry for a 1 M protostar is presented. The calculation starts with Larson's initial conditions and continues until almost all the material has fallen onto a hydrostatic core with a large outer convection zone. The innermost percent of the mass is partially degenerate. Due to the numerical technique used, the radius of the hydrostatic core is determined with a high degree of accuracy. (orig.) [de

  8. The Herschel-PACS Legacy of Low-mass Protostars: The Properties of Warm and Hot Gas Components and Their Origin in Far-UV Illuminated Shocks

    Science.gov (United States)

    Karska, Agata; Kaufman, Michael J.; Kristensen, Lars E.; van Dishoeck, Ewine F.; Herczeg, Gregory J.; Mottram, Joseph C.; Tychoniec, Łukasz; Lindberg, Johan E.; Evans, Neal J., II; Green, Joel D.; Yang, Yao-Lun; Gusdorf, Antoine; Itrich, Dominika; Siódmiak, Natasza

    2018-04-01

    Recent observations from Herschel allow the identification of important mechanisms responsible both for the heating of the gas that surrounds low-mass protostars and for its subsequent cooling in the far-infrared. Shocks are routinely invoked to reproduce some properties of the far-IR spectra, but standard models fail to reproduce the emission from key molecules, e.g., H2O. Here, we present the Herschel Photodetector Array Camera and Spectrometer (PACS) far-IR spectroscopy of 90 embedded low-mass protostars (Class 0/I). The Herschel-PACS spectral maps, covering ∼55–210 μm with a field of view of ∼50″, are used to quantify the gas excitation conditions and spatial extent using rotational transitions of H2O, high-J CO, and OH, as well as [O I] and [C II]. We confirm that a warm (∼300 K) CO reservoir is ubiquitous and that a hotter component (760 ± 170 K) is frequently detected around protostars. The line emission is extended beyond ∼1000 au spatial scales in 40/90 objects, typically in molecular tracers in Class 0 and atomic tracers in Class I objects. High-velocity emission (≳90 km s‑1) is detected in only 10 sources in the [O I] line, suggesting that the bulk of [O I] arises from gas that is moving slower than typical jets. Line flux ratios show an excellent agreement with models of C-shocks illuminated by ultraviolet (UV) photons for pre-shock densities of ∼105 cm‑3 and UV fields 0.1–10 times the interstellar value. The far-IR molecular and atomic lines are a unique diagnostic of feedback from UV emission and shocks in envelopes of deeply embedded protostars.

  9. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    DEFF Research Database (Denmark)

    Van Borm, C.; Bovino, S.; Latif, M. A.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims. We explore the formation of a protostar resulting from the collapse of primordial gas...

  10. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NARCIS (Netherlands)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in

  11. The protostar OMC-2 FIR 4: Results from the CHESS Herschel/HIFI spectral survey

    Science.gov (United States)

    Kama, Mihkel; Lopez-Sepulcre, Ana; Ceccarelli, Cecilia; Dominik, Carsten; Caux, Emmanuel; Fuente, Asuncion

    2013-07-01

    The intermediate-mass protostar OMC-2 FIR 4 in Orion is the focus of several ongoing studies, including a CHESS key programme Herschel/HIFI spectral survey. In this poster, we review recent CHESS results on this source, including the properties of the central hot core, the presence of a compact outflow, the spatial variation of the chemical composition, and the discovery of a tenuous foreground cloud. The HIFI spectrum of FIR 4 contains 719 lines from 40 species and isotopologs. Cooling by lines detectable with our sensitivity contributes 2% of the total in the 480 to 1900 GHz range. The total line flux is dominated by CO, followed by H2O and CH3OH. Initial comparisons with spectral surveys of other sources will also be presented.

  12. CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS

    International Nuclear Information System (INIS)

    Tobin, John J.; Stutz, Amelia M.; Henning, Thomas; Ragan, Sarah E.; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-01

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ∼5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ ∝ R –2.5 . Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved

  13. Protostar Evolution in the Orion Nebula Cluster (ONC)

    Science.gov (United States)

    Sanchez, Michael Allan

    2018-01-01

    We present our preliminary analysis of the protostars within the Orion Nebula Cluster (ONC). We developed a pipeline to identify protostars in the ONC using the IRAC instrument aboard Spitzer. We verified our photometric measurements with the catalog provided by Megeath et al. (2012). We then classified the protostar evolution stages (0/I, Flatt, II, and III) based on their spectral slope.

  14. Intermediate-Mass Black Holes

    Science.gov (United States)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  15. THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Fischer, W. J. [Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Ali, B. [Space Science Institute, 4750 Walnut Street, Boulder, CO 80301 (United States); Stutz, A. M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Stanke, T. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Megeath, S. T.; Booker, J. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Osorio, M. [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Hartmann, L.; Calvet, N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Poteet, C. A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Allen, L., E-mail: furlan@ipac.caltech.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-05-01

    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel , and submillimeter photometry from APEX, our SEDs cover 1.2–870 μ m and sample the peak of the protostellar envelope emission at ∼100 μ m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  16. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  17. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    not resemble so-called hot corinos or warm carbon-chain chemistry sources (the previously known types of low-mass Class 0 objects as defined by their chemistry). The absence of complex organic molecules in combination with high abundances of radicals such as cyanide (CN) and hydroxyl (OH) suggest...... that the chemistry is dominated by radiation from R CrA. In the high-resolution interferometry data we also detect signs of a 100 AU Keplerian disc around the Class 0/I object IRS7B. The disc may be responsible for the lack of detections of complex organic molecules on the smaller scales as it may have flattened......) and chemistry (such as molecular abundances) in low-mass protostellar envelopes is studied. The work studies the nearby low-mass star-forming region Corona Australis, in which a large proportion of the youngest low-mass protostars (so-called Class 0 and Class I objects) are located in a dense cloud situated...

  18. A Detached Protostellar Disk around a ˜0.2 M ⊙ Protostar in a Possible Site of a Multiple Star Formation in a Dynamical Environment in Taurus

    Science.gov (United States)

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Hosokawa, Takashi; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Kunitomo, Masanobu; Kawamura, Akiko; Fukui, Yasuo; Tachihara, Kengo

    2017-11-01

    We report ALMA observations in 0.87 mm continuum and 12CO (J = 3-2) toward a very low-luminosity (<0.1 L ⊙) protostar, which is deeply embedded in one of the densest cores, MC27/L1521F, in Taurus with an indication of multiple star formation in a highly dynamical environment. The beam size corresponds to ˜20 au, and we have clearly detected blueshifted/redshifted gas in 12CO associated with the protostar. The spatial/velocity distributions of the gas show there is a rotating disk with a size scale of ˜10 au, a disk mass of ˜10-4 M ⊙, and a central stellar mass of ˜0.2 M ⊙. The observed disk seems to be detached from the surrounding dense gas, although it is still embedded at the center of the core whose density is ˜106 cm-3. The current low-outflow activity and the very low luminosity indicate that the mass accretion rate onto the protostar is extremely low in spite of a very early stage of star formation. We may be witnessing the final stage of the formation of ˜0.2 M ⊙ protostar. However, we cannot explain the observed low luminosity with the standard pre-main-sequence evolutionary track unless we assume cold accretion with an extremely small initial radius of the protostar (˜0.65 {R}⊙ ). These facts may challenge our current understanding of the low mass star formation, in particular the mass accretion process onto the protostar and the circumstellar disk.

  19. Shockingly low water abundances in Herschel/PACS observations of low-mass protostars in Perseus

    DEFF Research Database (Denmark)

    Karska, A.; Kristensen, L. E.; Dishoeck, E. F. van

    2014-01-01

    Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low...

  20. The Complex Chemistry of Embedded Protostars

    DEFF Research Database (Denmark)

    Lykke, Julie Maria

    - or molecular astrophysics - has evolved fast in recent years, due to major technological advancements for radio telescopes. But some of the most central questions still remain unanswered: how, where and when are complex organic molecules formed around young stars? How complex can these molecules become......? Is there a difference in the chemistry for high- and low-mass protostars? The work in this thesis aim to provide answer for these questions by searching for molecules where they have not been detected before and by comparing the relative abundance of different molecules to models and laboratory work as well as between......- and low-mass sources. Modified models and laboratory work as well as more observations are therefore needed to further develop our understanding of the chemistry occurring in star-forming regions....

  1. CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Sadavoy, S. I.; Di Francesco, J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC, V8W 3P6 (Canada); André, Ph.; Maury, A.; Men' shchikov, A.; Motte, F.; Hennemann, M.; Könyves, V.; Louvet, F.; Roy, A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service dAstrophysique, Saclay, F-91191 Gif-sur-Yvette (France); Pezzuto, S.; Benedettini, M.; Elia, D. [Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Bernard, J.-P. [CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Nguyên-Lu' o' ng, Q. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); Schneider, N.; Bontemps, S. [Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud 11, Bâtiment 121, F-91400 Orsay (France); Hill, T. [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago (Chile); Peretto, N., E-mail: sadavoy@mpia.de [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); and others

    2014-06-01

    We use PACS and SPIRE continuum data at 160 μm, 250 μm, 350 μm, and 500 μm from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC 348, L1448, L1455, and NGC 1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 μm as well as archival Spitzer catalogs and SCUBA 850 μm photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.

  2. Opacity Limit for Supermassive Protostars

    Science.gov (United States)

    Becerra, Fernando; Marinacci, Federico; Inayoshi, Kohei; Bromm, Volker; Hernquist, Lars E.

    2018-04-01

    We present a model for the evolution of supermassive protostars from their formation at {M}\\star ≃ 0.1 {M}ȯ until their growth to {M}\\star ≃ {10}5 {M}ȯ . To calculate the initial properties of the object in the optically thick regime, we follow two approaches: one based on idealized thermodynamic considerations, and another based on a more detailed one-zone model. Both methods derive a similar value of {n}{{F}}≃ 2× {10}17 {cm}}-3 for the density of the object when opacity becomes important, i.e., the opacity limit. The subsequent evolution of the growing protostar is determined by the accretion of gas onto the object and can be described by a mass–radius relation of the form {R}\\star \\propto {M}\\star 1/3 during the early stages, and of the form {R}\\star \\propto {M}\\star 1/2 when internal luminosity becomes important. For the case of a supermassive protostar, this implies that the radius of the star grows from {R}\\star ≃ 0.65 {au} to {R}\\star ≃ 250 {au} during its evolution. Finally, we use this model to construct a subgrid recipe for accreting sink particles in numerical simulations. A prime ingredient thereof is a physically motivated prescription for the accretion radius and the effective temperature of the growing protostar embedded inside it. From the latter, we can conclude that photoionization feedback can be neglected until very late in the assembly process of the supermassive object.

  3. Intermediate mass distribution of the dual resonance pomeron

    International Nuclear Information System (INIS)

    Chiu, C.B.; Matsuda, S.

    1978-01-01

    The intermediate mass distribution of the dual resonance pomeron is determined at the one-loop level and it is shown that the mass distribution obtained is remarkably similar to a suitably defined mass distribution in the dual multiperipheral model. Thus it is suggestive to identify the intermediate states of the dual resonance pomeron with multiperipheral processes. (Auth.)

  4. Feedback from deeply embedded low- and high-mass protostars. Surveying hot molecular gas with Herschel

    NARCIS (Netherlands)

    Karska, Agata

    2014-01-01

    Protostars interact violently with their natal cocoons within dense molecular clouds. Characterizing this feedback is key to understanding the efficiency of the star formation process and the chemical processing of material that will be available for planet formation. In this thesis, the imprints

  5. Neutrino mass as the probe of intermediate mass scales

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double β decay, where observation would provide a crucial test of the model, and rare muon decays such as μ → eγ and μ → ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures

  6. Neutrino mass as the probe of intermediate mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.

  7. Star Formation Under the Outflow: The Discovery of a Non-thermal Jet from OMC-2 FIR 3 and Its Relationship to the Deeply Embedded FIR 4 Protostar

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Mayra; Díaz-Rodríguez, Ana K.; Anglada, Guillem; Gómez, José F. [Instituto de Astrofísica de Andalucía (CSIC) Glorieta de la Astronomía s/n E-18008 Granada (Spain); Megeath, S. Thomas [Ritter Astrophysical Research Center, Department of Physics and Astronomy University of Toledo 2801 West Bancroft Street Toledo, OH 43606 (United States); Rodríguez, Luis F.; Loinard, Laurent; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy University of Oklahoma, Norman, OK 73019 (United States); Stutz, Amelia M. [Department of Astronomy, University of Concepción Concepción (Chile); Furlan, Elise [IPAC, Mail Code 314-6, Caltech 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Fischer, William J. [Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD 21218 (United States); Manoj, P. [Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400 005 (India); González-García, Beatriz; Vavrek, Roland [European Space Astronomy Center, ESA P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Stanke, Thomas [European Southern Observatory Garching bei München (Germany); Watson, Dan M., E-mail: osorio@iaa.es [Department of Physics and Astronomy, University of Rochester Rochester, NY 14627 (United States)

    2017-05-01

    We carried out multiwavelength (0.7–5 cm), multi-epoch (1994–2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free–free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet features several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ∼7500–12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ∼100 km s{sup −1}. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario in which the formation of HOPS 108 is triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 has a large proper motion velocity of ∼30 km s{sup −1}, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and/or opacity effects.

  8. Star Formation Under the Outflow: The Discovery of a Non-thermal Jet from OMC-2 FIR 3 and Its Relationship to the Deeply Embedded FIR 4 Protostar

    International Nuclear Information System (INIS)

    Osorio, Mayra; Díaz-Rodríguez, Ana K.; Anglada, Guillem; Gómez, José F.; Megeath, S. Thomas; Rodríguez, Luis F.; Loinard, Laurent; Carrasco-González, Carlos; Tobin, John J.; Stutz, Amelia M.; Furlan, Elise; Fischer, William J.; Manoj, P.; González-García, Beatriz; Vavrek, Roland; Stanke, Thomas; Watson, Dan M.

    2017-01-01

    We carried out multiwavelength (0.7–5 cm), multi-epoch (1994–2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free–free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet features several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ∼7500–12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ∼100 km s −1 . The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario in which the formation of HOPS 108 is triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 has a large proper motion velocity of ∼30 km s −1 , similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and/or opacity effects.

  9. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    Science.gov (United States)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  10. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221

    International Nuclear Information System (INIS)

    Young, Chadwick H.; Young, Kaisa E.; Popa, Victor; Bourke, Tyler L.; Dunham, Michael M.; Evans, Neal J.; Joergensen, Jes K.; Shirley, Yancy L.; De Vries, Christopher; Claussen, Mark J.

    2009-01-01

    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars toward L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modeling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and a larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.

  11. Starless Clumps and the Earliest Phases of High-mass Star Formation in the Milky Way

    Science.gov (United States)

    Svoboda, Brian

    2018-01-01

    High-mass stars are key to regulating the interstellar medium, star formation activity, and overall evolution of galaxies, but their formation remains an open problem in astrophysics. In order to understand the physical conditions during the earliest phases of high-mass star formation, I report on observational studies of dense starless clump candidates (SCCs) that show no signatures of star formation activity. I identify 2223 SCCs from the 1.1 mm Bolocam Galactic Plane Survey, systematically analyze their physical properties, and show that the starless phase is not represented by a single timescale, but evolves more rapidly with increasing clump mass. To investigate the sub-structure in SCCs at high spatial resolution, I study the 12 most high-mass SCCs within 5 kpc using ALMA. I report previously undetected low-luminosity protostars in 11 out of 12 SCCs, fragmentation equal to the thermal Jeans length of the clump, and no starless cores exceeding 30 solar masses. While uncertainties remain concerning the star formation effeciency in this sample, these observational facts are consistent with models where high-mass stars form from intially low- to intermediate-mass protostars that accrete most of their mass from the surrounding clump.

  12. Molecular outflows driven by low-mass protostars. I. Correcting for underestimates when measuring outflow masses and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Williams, Jonathan P., E-mail: mdunham@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-03-01

    We present a survey of 28 molecular outflows driven by low-mass protostars, all of which are sufficiently isolated spatially and/or kinematically to fully separate into individual outflows. Using a combination of new and archival data from several single-dish telescopes, 17 outflows are mapped in {sup 12}CO (2-1) and 17 are mapped in {sup 12}CO (3-2), with 6 mapped in both transitions. For each outflow, we calculate and tabulate the mass (M {sub flow}), momentum (P {sub flow}), kinetic energy (E {sub flow}), mechanical luminosity (L {sub flow}), and force (F {sub flow}) assuming optically thin emission in LTE at an excitation temperature, T {sub ex}, of 50 K. We show that all of the calculated properties are underestimated when calculated under these assumptions. Taken together, the effects of opacity, outflow emission at low velocities confused with ambient cloud emission, and emission below the sensitivities of the observations increase outflow masses and dynamical properties by an order of magnitude, on average, and factors of 50-90 in the most extreme cases. Different (and non-uniform) excitation temperatures, inclination effects, and dissociation of molecular gas will all work to further increase outflow properties. Molecular outflows are thus almost certainly more massive and energetic than commonly reported. Additionally, outflow properties are lower, on average, by almost an order of magnitude when calculated from the {sup 12}CO (3-2) maps compared to the {sup 12}CO (2-1) maps, even after accounting for different opacities, map sensitivities, and possible excitation temperature variations. It has recently been argued in the literature that the {sup 12}CO (3-2) line is subthermally excited in outflows, and our results support this finding.

  13. Evolution of the outflow activity of protostars

    International Nuclear Information System (INIS)

    Bontemps, Sylvain

    1996-01-01

    After a first part describing the formation of low-mass stars (sites of stellar formation, protostellar evolution) and matter outflows from young objects (molecular flows and their origin, optical and radio jets, outflow mechanisms), this research thesis discusses the evolution of molecular flows by reprinting a published article (Evolution of outflow activity around low-mass embedded young stellar objects), and by outlining some remaining issues (differences between clouds of stellar formation, morphological evolution of molecular flows). The author then discusses the continuous radio centimetre emission: origin, systematic search for Class 0 objects by using the VLA (Very Large Array radio interferometer), presentation of a new Class 0 protostar (HH24MMS). The author reports the study of H_2 emission in the infrared: generalities on protostellar shocks, infrared jet by HH24MMS, H_2 emission at 10 microns by using the ISOCAM camera [fr

  14. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  15. Production of intermediate-mass dileptons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Kvasnikova, Ioulia; Gale, Charles; Kumar Srivastava, Dinesh

    2002-01-01

    The production of intermediate-mass dileptons in ultrarelativistic nuclear collisions at SPS energies is studied. The acceptance and detector resolution inherent to measurements by the NA50 experimental collaboration are accurately modeled. The measured centrality dependence of the intermediate mass lepton pair excess is also addressed

  16. The HDO/H2O Ratio in Gas in the Inner Regions of a Low-mass Protostar

    DEFF Research Database (Denmark)

    Jørgensen, Jes Kristian; van Dishoeck, Ewine F.

    2010-01-01

    The HDO/H2O abundance ratio is thought to be a key diagnostic for the evolution of water during the star and planet formation process and thus for its origin on Earth. We here present millimeter-wavelength high angular resolution observations of the deeply embedded protostar NGC 1333-IRAS4B from...

  17. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    International Nuclear Information System (INIS)

    Kuiper, R.; Yorke, H. W.

    2013-01-01

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t ≤ 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates

  18. Evolution of Deeply Embedded Protostars

    DEFF Research Database (Denmark)

    Frimann, Søren

    consequences for the evolution of protostellar systems. The sublimation of CO-ice from dust grains in the surrounding envelope can be used to trace accretion variability in protostars, because the increased heating during an accretion burst will cause the CO-ice to sublimate into the gas-phase where the excess...

  19. The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7

    Science.gov (United States)

    Tobin, John J.; Bos, Steven P.; Dunham, Michael M.; Bourke, Tyler L.; van der Marel, Nienke

    2018-04-01

    We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L ⊙. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO (J=2\\to 1), C18O (J=2\\to 1), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R ‑1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M ⊙.

  20. Restrictions on the masses and coupling constants of excited intermediate bosons

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Nogteva, A.V.

    1985-01-01

    The properties of the intermediate bosons are discussed in the framework of composite models which include not only the W +- and Z 0 bosons but also their excited states with large masses. The influence of the excited states on the values of the masses of the W +- and Z 0 bosons is investigated. Restrictions on the masses and coupling constants of the excited intermediate bosons are obtained

  1. Low-energy consequences of superstring-inspired models with intermediate-mass scales

    International Nuclear Information System (INIS)

    Gabbiani, F.

    1987-01-01

    The phenomenological consequences of implementing intermediate-mass scales in E 6 superstring-inspired models are discussed. Starting from a suitable Calabi-Yau compactification with b 1,1 >1, one gets, after Hosotani breaking, the rank r=5 gauge group SU(3) C x SU(2) L x U(1) Y x U(1) E , that is broken at an intermediate-mass scale down to the standard-model group. The analysis of both the intermediate and the electroweak breaking is performed in the two cases Λ c = M x and Λ c x , where Λ c is the scale at which the hidden sector gauginos condensate. It is performed quantitatively the minimization of the low-energy effective potential and the renormalization group analysis, yielding a viable set of mass spectra and confirming the reliability of the intermediate-breaking scheme

  2. SMA observations of Class 0 Protostars

    DEFF Research Database (Denmark)

    Chen, Xuepeng; Arce, Héctor G.; Zhang, Qizhou

    2013-01-01

    We present high angular resolution 1.3 mm and 850 μm dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance <500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in...

  3. HOPS 136: An edge-on orion protostar near the end of envelope infall

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Hartmann, Lee; Kounkel, Marina [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Poteet, Charles A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY (United States); Ali, Babar [NHSC/IPAC/Caltech, Pasadena, CA (United States); Osorio, Mayra [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai (India); Remming, Ian [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL (United States); Stanke, Thomas [ESO, Garching bei München (Germany); Watson, Dan M., E-mail: wjfischer@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States)

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  4. Discovery of a protostar in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Gatley, I.; Becklin, E.E.; Hyland, A.R.; Jones, T.J.

    1981-01-01

    A near infrared search of the H II region/molecular cloud complex N 159 in the Large Magellanic Cloud has revealed a very red (H-K = 2.1, K-L' = 2.7) compact object. The location, brightness, colour and 2.1 to 2.4 μm spectrum of this source suggest that it is very young, and similar to the galactic infrared 'protostars'. This is the first identification of an infrared protostar in an external galaxy. Its discovery provides direct evidence of current star formation in the Large Magellanic Cloud, and suggests that regions of star formation in external galaxies will appear similar to those in the Milky Way. (author)

  5. Peering to the Heart of Massive Star Birth

    Science.gov (United States)

    Tan, Jonathan

    2015-10-01

    We propose a small survey of massive/intermediate-mass protostars with WFC3/IR to probe J and H band continuum emission, the Pa-beta and the [FeII] emission. The protostar sample is already the subject of approved SOFIA-FORCAST observations from 10-40 microns. Combined with sophisticated radiative transfer models, these observations are providing the most detailed constraints on the nature of massive protostars, their luminosities, outflow cavity structures and orientations, and distribution of surrounding dense core gas and dust. Recently, we were also awarded ALMA Cycle 3 time to study these sources at up to 0.14 resolution. The proposed HST observations, with very similar resolution, have three main goals: 1) Detect and characterize J and H band continuum emission from the massive/intermediate-mass protostars, which is expected to arise from jet and outflow knot features and from scattered light emerging from the outflow cavities; 2) Detect and characterize Pa-beta and [FeII] line emission tracing ionized and FUV-illuminated regions around the massive protostars, important diagnostics of the protostellar source and its outflow structure; 3) Search for lower-mass protostars that may be clustered around the forming massive protostar. All of these objectives will help test massive star formation theories. The high sensitivity and angular resolution of WFC3/IR enables these observations to be carried out efficiently in a timely fashion. Mid-Cycle observations are critical for near contemporaneous observation with ALMA, since jet/outflow knots may have large proper motions, and to maximize the potential time baseline for a future HST study of jet/outflow proper motions.

  6. The complete far-infrared and submillimeter spectrum of the Class 0 protostar Serpens SMM1 obtained with Herschel

    DEFF Research Database (Denmark)

    R. Goicoechea, Javier; Cernicharo, J.; Karska, A.

    2012-01-01

    We present the first complete 55-671 um spectral scan of a low-mass Class 0 protostar (Serpens SMM1) taken with the PACS and SPIRE spectrometers on board Herschel. More than 145 lines have been detected, most of them rotationally excited lines of 12CO (full ladder from J=4-3 to 42-41), H2O, OH, 13...

  7. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Arce, Héctor G.; Allen, Lori E.; Evans II, Neal J.; Harvey, Paul M.; Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Chapman, Nicholas L.; Cieza, Lucas A.; Gutermuth, Robert A.; Hatchell, Jennifer; Huard, Tracy L.; Miller, Jennifer F.; Kirk, Jason M.; Merín, Bruno; Peterson, Dawn E.; Spezzi, Loredana

    2013-01-01

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L bol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L ☉ to 69 L ☉ , and has a mean and median of 4.3 L ☉ and 1.3 L ☉ , respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L bol ∼ ☉ ) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 μm bol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  8. SUBARCSECOND ANALYSIS OF THE INFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Aikawa, Yuri [Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Kahane, Claudine [Universite de Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, Emmanuel; Vastel, Charlotte [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling–rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling–rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  9. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J.; Harris, Robert J. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Chandler, Claire J.; Perez, Laura [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 78, Cambridge, MA 02138 (United States); Sadavoy, Sarah I. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Kratter, Kaitlin, E-mail: tobin@strw.leidenuniv.nl [University of Arizona, Steward Observatory, Tucson, AZ 85721 (United States)

    2016-02-10

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L{sub ⊙} and ∼33 L{sub ⊙}, with a median of 0.7 L{sub ⊙}. This multiplicity study is based on the Ka-band data, having a best resolution of ∼0.″065 (15 au) and separations out to ∼43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ∼75 au and another peak at ∼3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50–400 au) structures and may be candidates for ongoing disk fragmentation.

  10. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M.; Arce, Hector G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Evans II, Neal J.; Harvey, Paul M. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Herzberg Institute, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Hatchell, Jennifer [Astrophysics Group, Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kirk, Jason M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Merin, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Spezzi, Loredana, E-mail: michael.dunham@yale.edu [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany)

    2013-04-15

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L{sub bol} for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L{sub Sun} to 69 L{sub Sun }, and has a mean and median of 4.3 L{sub Sun} and 1.3 L{sub Sun }, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L{sub bol} {approx}< 0.5 L{sub Sun }) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 {mu}m <{lambda} < 850 {mu}m) and have L{sub bol} underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  11. Constraining the Population of Small Close-in Planets Around Evolved Intermediate Mass Stars

    Science.gov (United States)

    Medina, Amber; Johnson, John Asher

    2018-01-01

    Intermediate mass stars ( > 1.3 M_Sun) have high occurrence rates of Jupiter mass planets in predominately long period orbits (~1.0 AU). There is a prominent planet gap, known as the ‘Planet Desert’, for low mass planets (Super-Earth, Neptune) < 0.5 AU from subgiants, the evolved counterpart to intermediate mass stars. Thus far, using current radial velocity methods, we have not been able to detect short period planets around subgiants due to noise from p-mode oscillations perhaps mimicking radial velocity signals (~5 m/s) in this planetary regime. Here we present techniques and preliminary results with regards to finding low mass, short period planets around subgiants and its implications for the Planet Desert.

  12. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.

    Science.gov (United States)

    Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham

    2017-02-08

    Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.

  13. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    Science.gov (United States)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  14. Radio variability survey of very low luminosity protostars

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  15. HIERARCHICAL FRAGMENTATION AND JET-LIKE OUTFLOWS IN IRDC G28.34+0.06: A GROWING MASSIVE PROTOSTAR CLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou

    2011-01-01

    We present Submillimeter Array (SMA) λ = 0.88 mm observations of an infrared dark cloud G28.34+0.06. Located in the quiescent southern part of the G28.34 cloud, the region of interest is a massive (>10 3 M sun ) molecular clump P1 with a luminosity of ∼10 3 L sun , where our previous SMA observations at 1.3 mm have revealed a string of five dust cores of 22-64 M sun along the 1 pc IR-dark filament. The cores are well aligned at a position angle (P.A.) of 48 deg. and regularly spaced at an average projected separation of 0.16 pc. The new high-resolution, high-sensitivity 0.88 mm image further resolves the five cores into 10 compact condensations of 1.4-10.6 M sun , with sizes of a few thousand AU. The spatial structure at clump (∼1 pc) and core (∼0.1 pc) scales indicates a hierarchical fragmentation. While the clump fragmentation is consistent with a cylindrical collapse, the observed fragment masses are much larger than the expected thermal Jeans masses. All the cores are driving CO (3-2) outflows up to 38 km s -1 , the majority of which are bipolar, jet-like outflows. The moderate luminosity of the P1 clump sets a limit on the mass of protostars of 3-7 M sun . Because of the large reservoir of dense molecular gas in the immediate medium and ongoing accretion as evident by the jet-like outflows, we speculate that P1 will grow and eventually form a massive star cluster. This study provides a first glimpse of massive, clustered star formation that currently undergoes through an intermediate-mass stage.

  16. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  17. OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS

    DEFF Research Database (Denmark)

    Wampfler, Susanne Franziska; Bruderer, S.; Karska, A.

    2013-01-01

    fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density...... are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong...

  18. The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift

    Science.gov (United States)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-01-01

    We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.

  19. Deeply inelastic collisions as a source of intermediate mass fragments at E/A = 27 MeV

    International Nuclear Information System (INIS)

    Borderie, B.; Montoya, M.; Rivet, M.F.; Jouan, D.; Cabot, C.; Fuchs, H.; Gardes, D.; Gauvin, H.; Jacquet, D.; Monnet, F.

    1988-01-01

    Intermediate-mass fragments detected in coincidence with heavy residues were measured in 40 Ar induced reactions on Ag at E/A = 27 MeV. From the observed characteristics, it is inferred that intermediate-mass fragments associated with the so-called intermediate-velocity source come mainly from deeply inelastic collisions occurring after or at the same time as preequilibrium particle emission. (orig.)

  20. Formation of protostars in collapsing, rotating, turbulent clouds

    International Nuclear Information System (INIS)

    Regev, O.; Shaviv, G.

    1981-01-01

    Collapse and star formation processes in rotating turbulent interstellar gas clouds have been studied. For this purpose numerical collapse calculations have been performed for a number of representative cases. These calculations have been carried out by a two-dimensional hydrodynamical computer code, which solves the equations of hydrodynamics explicitly, coupled to the Poisson equation. The computer code has been written especially for this work and has been thoroughly tested. The calculations in this work have been performed with an effort to obtain physically reliable results (by repeating the same calculations with different numerical spatial resolutions). A physical mechanism for angular momentum transport by turbulent viscosity has been proposed and incorporated in new collapse calculations. The main results can be summerized as follows: When there is no physical mechanism for angular momentum transport, the result of the collaps is a ringlike structure. The turbulent viscosity affects the nature of the collaps. For the two cases studied, the mass of the central object is a major fraction (30%) of the total mass of the system. The exact form of the central object and its ultimate fate depend on the parameters, especially rotational energy/gravitational energy and Re. The present calculations cannot predict the future evolution of the central object. In the new theoretical model proposed, a central protostar forms as a result of the collaps of a protostellar rotating cloud

  1. DETECTION OF FORMAMIDE, THE SIMPLEST BUT CRUCIAL AMIDE, IN A SOLAR-TYPE PROTOSTAR

    International Nuclear Information System (INIS)

    Kahane, C.; Ceccarelli, C.; Faure, A.; Caux, E.

    2013-01-01

    Formamide (NH 2 CHO), the simplest possible amide, has recently been suggested to be a central species in the synthesis of metabolic and genetic molecules, the chemical basis of life. In this Letter, we report the first detection of formamide in a protostar, IRAS 16293–2422, which may be similar to the Sun and solar system progenitor. The data combine spectra from the millimeter and submillimeter TIMASSS survey with recent, more sensitive observations at the IRAM 30 m telescope. With an abundance relative to H 2 of ∼10 –10 , formamide appears as abundant in this solar-type protostar as in the two high-mass star-forming regions, Orion-KL and SgrB2, where this species has previously been detected. Given the largely different UV-illuminated environments of the three sources, the relevance of UV photolysis of interstellar ices in the synthesis of formamide is therefore questionable. Assuming that this species is formed in the gas phase via the neutral-neutral reaction between the radical NH 2 and H 2 CO, we predict an abundance in good agreement with the value derived from our observations. The comparison of the relative abundance [NH 2 CHO]/[H 2 O] in IRAS 16293–2422 and in the coma of the comet Hale-Bopp supports the similarity between interstellar and cometary chemistry. Our results thus suggest that the abundance of some cometary organic volatiles could reflect gas phase rather than grain-surface interstellar chemistry.

  2. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    Science.gov (United States)

    Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.

  3. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    Science.gov (United States)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  4. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  5. Black holes evaporation and big mass particle (maximon, intermediate boson) creation in nonstationary universe

    International Nuclear Information System (INIS)

    Man'ko, V.I.; Markov, M.A.

    1984-01-01

    This chapter considers the process of creation of particles with maximally big masses (maximons, intermediate bosons) in the nonstationary Universe within the framework of neutral and charged scalar field theory. The conclusions of the matter creation model for real particles (resonances) and hypothetical particles (maximons, friedmons, intermediate bosons) are analyzed. It is determined that if the mechanism of maximon's creation exists, then these particles must be stable. The maximons could be the final states of decaying black holes. A possible mechanism of cosmic ray creation as a result of ''vacuum'' generation of known unstable particles is discussed. The limits upon the mass and the life time of intermediate bosons are calculated. It is demonstrated that the creation of masses greater than 10 GeV, and with life times less than 10- 24 sec and quantity of elementary particles greater than 100 are in contradiction with the particle creation mechanism and the experimental mass density in the Universe. The formalism of the examined method and its vacuum properties are discussed in an appendix

  6. Tidal disruption of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Bode T.

    2012-12-01

    Full Text Available Modeling ultra-close encounters between a white dwarf and a spinning, intermediate mass black hole requires a full general relativistic treatment of gravity. This paper summarizes results from such a study. Our results show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. On the other hand, the late-time accretion onto the black hole follows the same decay, Ṁ ∝  t−5/3, estimated from Newtonian gravity disruption studies. The spectrum of the fallback material peaks in the soft X-rays and sustains Eddington luminosity for 1–3 yrs after the disruption. The orientation of the black hole spin has also a profound effect on how the outflowing debris obscures the central region. The disruption produces a burst of gravitational radiation with characteristic frequencies of ∼3.2 Hz and strain amplitudes of ∼10−18 for galactic intermediate mass black holes.

  7. Neutrino masses in the SO(10) model with intermediate stage of the symmetry breaking

    International Nuclear Information System (INIS)

    Svetovoj, V.B.

    1982-01-01

    An effect for the neutrino masses of an intermediate stage in the symmetry spontaneous breaking, different from SU(5), is investigated in some detail for the SO(1O) model. There are two possibilities depending on the composition of the Higgs sector: i) msub(ν) approximately msub(f)(Msub(W)/Msub(1)); ii) msub(ν) approximately msub(f)sub(b)/Msub(1))(M/Msub(1)), where M, M 1 and Msub) are the scales of the breaking of the original SO(10) simmetry, the intermediate symmetry, and the standard SUsub(c)(3)xSUsub(L)(2)xU(1) symmetry, respectively, and msub(f) is a typical fermion mass. It as shown that a Majorana mass of the right neutrino (νsub(R)) of a purely loop origin would result in a too large mass of the usual neutrinos, so a tree-graph contribution to the mass of νsub(R) is necessary. Numerical estimates for the neutrino masses are discussed [ru

  8. Coincidence measurements of intermediate mass fragments produced in /sup 32/S-induced reactions on Ag at E/A = 22.5 MeV

    International Nuclear Information System (INIS)

    Fields, D.J.; Lynch, W.G.; Nayak, T.K.

    1986-01-01

    Single- and two-particle inclusive cross sections for the production of light nuclei and intermediate mass fragments, 3< or =Z< or =24, were measured at angles well beyond the grazing angle for /sup 32/S-induced reactions on Ag at 720 MeV. Information about fragment multiplicities and reaction dynamics was extracted from measurements of light particles, intermediate mass fragments, and targetlike residues in coincidence with intermediate mass fragments. Incomplete linear momentum transfer and non-compound-particle emission are important features of collisions producing intermediate mass fragments. About half of the incident kinetic energy in these collisions is converted into internal excitation. The mean multiplicity of intermediate mass fragments is of the order of 1. Particle correlations are strongly enhanced in the plane which contains the intermediate mass fragment and the beam axis

  9. HOPS 383: AN OUTBURSTING CLASS 0 PROTOSTAR IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Safron, Emily J.; Megeath, S. Thomas; Booker, Joseph [Ritter Astrophysical Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Fischer, William J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Furlan, Elise; Rebull, Luisa M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Stanke, Thomas [European Southern Observatory, Garching bei München (Germany); Billot, Nicolas [Instituto de Radio Astronomía Milimétrica, Granada (Spain); Tobin, John J. [Leiden Observatory, Leiden (Netherlands); Ali, Babar [Space Science Institute, Boulder, CO (United States); Allen, Lori E. [National Optical Astronomy Observatory, Tucson, AZ (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Wilson, T. L., E-mail: wjfischer@gmail.com [Naval Research Laboratory, Washington, DC (United States)

    2015-02-10

    We report the dramatic mid-infrared brightening between 2004 and 2006 of Herschel Orion Protostar Survey (HOPS) 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 μm with a brightness increase also apparent at 4.5 μm. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K{sub s} imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L{sub ⊙}. Post-outburst time-series mid- and far-infrared photometry show no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a 6 year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.

  10. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    International Nuclear Information System (INIS)

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-01-01

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  11. The evolution of protostellar envelopes of masses 3 Msub(sun) and 10 Msub(sun)

    International Nuclear Information System (INIS)

    Yorke, H.W.

    1979-10-01

    The results of numerical calculations solving the coupled equations of hydrodynamics and radiation transfer are presented in a sequence of papers describing the structure, evolution and appearance of protostellar clouds of intermediate mass (3 Msub(sun) 10 Msub(sun). These numerical calculations begin at the time of initial gravitational collapse and continue through the birth of a central protostar, until the infall of material onto the central object has been reversed. For the 10 M case the formation and evolution of a compact HII region is crudely followed after the gas density in the envelope had decreased sufficiently to allow an ionization front to propagate outwards. For all cases calculated spherical symmetry was assumed. Solar abundances were used. (orig.) 891 WL/orig. 892 RDG

  12. Searching for intermediate-mass black holes via optical variability

    Science.gov (United States)

    Adler-Levine, Ryan; Moran, Edward C.; Kay, Laura

    2018-01-01

    A handful of nearby dwarf galaxies with intermediate-mass black holes (IMBHs) in their nuclei display significant optical variability on short timescales. To investigate whether dwarf galaxy AGNs as a class exhibit similar variability, we have monitored a sample of low-mass galaxies that possess spectroscopically confirmed type 1 AGNs. However, because of the variations in seeing, focus, and guiding errors that occur in images taken at different epochs, analyses based on aperture photometry are ineffective. We have thus developed a new method for matching point-spread functions in images that permits use of image subtraction photometry techniques. Applying this method to our photometric data, we have confirmed that several galaxies with IMBHs are indeed variable, which suggests that variability can be used to search for IMBHs in low-mass galaxies whose emission-line properties are ambiguous.

  13. Fragment mass distribution of proton-induced spallation reaction with intermediate energy

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    The test of part benchmark of SHIELD code is finished. The fragment cross section and mass distribution and excitation function of the residual nuclei from proton-induced spallation reaction on thin Pb target with intermediate energy have been calculated by SHIELD code. And the results are in good agreement with measured data. The fragment mass distribution of the residual nuclei from proton-induced spallation reaction on thick Pb target with incident energy 1.6 GeV have been simulated

  14. The gas/solid methane abundance ratio toward deeply embedded protostars

    NARCIS (Netherlands)

    Boogert, ACA; Helmich, EP; van Dishoeck, EF; Schutte, WA

    1998-01-01

    We present the detection of re-vibrational absorption lines of the deformation mode of gaseous CH4 toward the massive protostars W 33A, and NGC 7538 : IRS9, using the SWS spectrometer an board of the Infrared Space Observatory. The observed lines indicate that the CH4 gas is warm (T similar to N 90

  15. Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission

    Science.gov (United States)

    Imai, Hiroshi; Iwata, Takahiro; Miyoshi, Makoto

    1999-08-01

    We made VLBI observations of the water maser emission associated with a protostar, IRAS 16293-2422, using the Kashima-Nobeyama Interferometer (KNIFE) and the Japanese domestic VLBI network (J-Net).\\footnote[2]. These distributions of water maser features showed the blue-shifted and red-shifted components separated in the north-south direction among three epochs spanning three years. The direction of the separation was perpendicular to the molecular outflow and parallel to the elongation of the molecular disk. These steady distributions were successfully modeled by a rotating-infalling disk with an outer radius of 100 AU around a central object with a mass of 0.3 MO . The local specific angular momentum of the disk was calculated to be 0.2-1.0times 10-3 km s-1 pc at a radius of 20-100 AU. This value is roughly equal to that of the disk of IRAS 00338+6312 in L1287 and those of the molecular disks around the protostars in the Taurus molecular cloud. The relatively large disk radius of about 100 AU traced by water maser emission suggests that impinging clumps onto the disk should be hotter than 200 K to excite the water maser emission. Mizusawa, Nobeyama, and Kagoshima stations are operated by staff members of National Astronomical Observatory of the Ministry of Education, Science, Sports and Culture. Kashima station is operated by staff members of Communications Research Laboratory of the Ministry of Posts and Telecomunications. The recent status of J-Net is seen in the WWW home page: http://www.nro.nao.ac.jp/\\ \\ miyaji/Jnet.

  16. A PRECISE MASS MEASUREMENT OF THE INTERMEDIATE-MASS BINARY PULSAR PSR J1802 - 2124

    International Nuclear Information System (INIS)

    Ferdman, R. D.; Cognard, I.; Desvignes, G.; Theureau, G.; Stairs, I. H.; Kramer, M.; McLaughlin, M. A.; Lorimer, D. R.; Nice, D. J.; Manchester, R. N.; Hobbs, G.; Lyne, A. G.; Faulkner, A.; Camilo, F.; Possenti, A.; Demorest, P. B.; Backer, D. C.

    2010-01-01

    PSR J1802 - 2124 is a 12.6 ms pulsar in a 16.8 hr binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and WD mass measurements of 1.24 ± 0.11 M sun and 0.78 ± 0.04 M sun (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.

  17. Neutrino masses in an SO(10) model with an intermediate stage of symmetry breaking

    International Nuclear Information System (INIS)

    Svetovoi, V.B.

    1982-01-01

    The effect on neutrino masses of an intermediate stage in symmetry breaking different from SU(5) is investigated in detail for the SO(10) model. There are two possibilities depending on the contents of the Higgs sector: i) m/sub ν/approx.m/sub f/(M/sub W//M 1 ); ii) m/sub ν/approx.m/sub f/(M/sub W//M 1 )(M/M 1 ), where M, M 1 and M/sub W/ are the scales of the breaking of the original SO(10) symmetry, the intermediate symmetry, and the standard SU/sub c/(3) x SU/sub L/(2) x U(1) symmetry, respectively, and m/sub f/ is a typical fermion mass. It is shown that a Majorana mass of the right-handed-neutrino (ν/sub R/) of a purely loop origin would result in too large a mass of the usual neutrinos, so a tree-graph contribution to the mass of ν/sub R/ is necessary. Numerical estimates for the neutrino masses are discussed

  18. Hydrogen-antihydrogen oscillations: Signature of intermediate mass scales in GUTs

    Directory of Open Access Journals (Sweden)

    Uptal Sarkar

    1983-01-01

    Full Text Available Hydrogen-antihydrogen oscillations and the double nucleon decay (pp, np and nn into two antileptons are discussed in the context of SO(10, E(6 and SU(16 GUTs. It is shown that the intermediate mass scales of the GUTs concerned govern the amplitude of these processes which are found to compete with the other baryon nonconserving processes in SU(16 GUT.

  19. WATER ABSORPTION FROM GAS VERY NEAR THE MASSIVE PROTOSTAR AFGL 2136 IRS 1

    International Nuclear Information System (INIS)

    Indriolo, Nick; Neufeld, D. A.; Seifahrt, A.; Richter, M. J.

    2013-01-01

    We present ground-based observations of the ν 1 and ν 3 fundamental bands of H 2 O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 μm and 2.561 μm. Analysis of these features indicates the absorption arises in warm (T = 506 ± 25 K), very dense (n(H 2 ) > 5 × 10 9 cm –3 ) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H 2 O) = (1.02 ± 0.02) × 10 19 cm –2 , giving a relative abundance of N(H 2 O)/N(H 2 ) ≈ 10 –4 . Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters

  20. Measurement of mass distribution of U-235 fission products in the intermediate neutron region

    International Nuclear Information System (INIS)

    Nakagomi, Yoshihiro; Kobayashi, Shohei; Yamamoto, Shuji; Kanno, Ikuo; Wakabayashi, Hiroaki.

    1982-01-01

    The mass distribution and the momentum distribution of U-235 fission products in the intermediate neutron region were measured by using a combination system of the Yayoi intermediate neutron column and an electron linear accelerator. The double energy measurement method was applied. A fission chamber, which consists of an enriched uranium target and two Si surface barrier detectors, was used for the measurement of the neutrons with energy above 1.3 eV. The linear accelerator was operated at the repetition rate of 100 Hz and the pulse width of 10 ns. The data obtained by the two-dimensional pulse height analysis were analyzed by the Schmitt's method. The preliminary results of the mass distribution and the momentum distribution of fission fragments were obtained. (Kato, T.)

  1. ORPHANED PROTOSTARS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Connelley, Michael; Mikkola, Seppo; Valtonen, Mauri

    2010-01-01

    We explore the origin of a population of distant companions (∼1000-5000 AU) to Class I protostellar sources recently found by Connelley and coworkers, who noted that the companion fraction diminished as the sources evolved. Here, we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes as the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as ∼0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.

  2. Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region

    DEFF Research Database (Denmark)

    Yildiz, U. A.; van Dishoeck, E. F.; Kristensen, L. E.

    2010-01-01

    Herschel/HIFI observations of high-J lines (up to Ju = 10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved......Herschel/HIFI observations of high-J lines (up to Ju = 10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally....... Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia...... and with important participation from NASA.Appendices and acknowledgements (pages 5 to 7) are only available in electronic form at http://www.aanda.org...

  3. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  4. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosvick, J. M. [Department of Physical Sciences, Thompson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8 (Canada); Majaess, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada)

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (∼2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  5. SIMULATING THE FORMATION OF MASSIVE PROTOSTARS. I. RADIATIVE FEEDBACK AND ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany); Peters, Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Banerjee, Robi, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2016-05-20

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M {sub ⊙}. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M {sub ⊙} simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M {sub ⊙} simulation shows a star with a mass of 5.48 M {sub ⊙} and a disk of mass 3.3 M {sub ⊙}, while our 100 M {sub ⊙} simulation forms a 28.8 M {sub ⊙} mass star with a 15.8 M {sub ⊙} disk over the course of 41.6 kyr, and our 200 M {sub ⊙} simulation forms a 43.7 M {sub ⊙} star with an 18 M {sub ⊙} disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  6. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    DEFF Research Database (Denmark)

    Coutens, Audrey; Persson, M. V.; Jørgensen, J. K.

    2015-01-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic mole...

  7. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    Science.gov (United States)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-06-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type (proto)stars. Aims: In order to establish whether disc-mediated accretion is the formation mechanism for the most massive stars, we have searched for circumstellar, rotating discs around a limited sample of six luminous (>105L⊙) young stellar objects. These objects were selected on the basis of their IR and radio properties in order to maximize the likelihood of association with disc+jet systems. Methods: We used ALMA with 0.̋2 resolution to observe a large number of molecular lines typical of hot molecular cores. In this paper we limit our analysis to two disc tracers (methyl cyanide, CH3CN, and its isotopologue, 13CH3CN), and an outflow tracer (silicon monoxide, SiO). Results: We reveal many cores, although their number depends dramatically on the target. We focus on the cores that present prominent molecular line emission. In six of these a velocity gradient is seen across the core,three of which show evidence of Keplerian-like rotation. The SiO data reveal clear but poorly collimated bipolar outflow signatures towards two objects only. This can be explained if real jets are rare (perhaps short-lived) in very massive objects and/or if stellar multiplicity significantly affects the outflow structure.For all cores with velocity gradients, the velocity field is analysed through position-velocity plots to establish whether the gas is undergoing rotation with νrot ∝ R- α, as expected for Keplerian-like discs. Conclusions: Our results suggest that in three objects we are observing rotation in circumstellar discs, with three more tentative cases, and one core where no evidence for rotation is found. In all cases but one, we find that the gas mass is less than the mass of

  8. Critical masses of bare homogeneous spherical UO2-water mixtures at intermediate enrichments

    International Nuclear Information System (INIS)

    Rendon, G.L.; Stratton, W.

    1999-01-01

    Critical masses of bare homogeneous spherical UO 2 -water mixtures at various intermediate fissile enrichments determined by multigroup, transport theory is presented. This work was performed to provide support for particular issues encountered by the nuclear industry when operating in the intermediate enrichment regime, namely, the validation of codes used to set criticality safety limits. Validation is normally performed with a comparison of computational results and applicable experiments. However, this may be difficult in some cases because of the lack of sufficient applicable experiments in the intermediate enrichment range. If a large extension of the area of applicability from an experiment to the desired application exists, then an alternative means for validation must be employed. Ideal interpretations of standard ANSI/ANS 8.1 Section 4.3 (1983) implies that perhaps an independent code and data system may be employed for validation purposes

  9. A MULTIPLICITY CENSUS OF INTERMEDIATE-MASS STARS IN SCORPIUS-CENTAURUS

    International Nuclear Information System (INIS)

    Janson, Markus; Lafrenière, David; Jayawardhana, Ray; Bonavita, Mariangela; Girard, Julien H.; Brandeker, Alexis; Gizis, John E.

    2013-01-01

    Stellar multiplicity properties have been studied for the lowest and the highest stellar masses, but intermediate-mass stars from F-type to late A-type have received relatively little attention. Here, we report on a Gemini/NICI snapshot imaging survey of 138 such stars in the young Scorpius-Centaurus (Sco-Cen) region, for the purpose of studying multiplicity with sensitivity down to planetary masses at wide separations. In addition to two brown dwarfs and a companion straddling the hydrogen-burning limit which we reported previously, here we present 26 new stellar companions and determine a multiplicity fraction within 0.''1-5.''0 of 21% ± 4%. Depending on the adopted semimajor axis distribution, our results imply a total multiplicity in the range of ∼60%-80%, which further supports the known trend of a smooth continuous increase in the multiplicity fraction as a function of primary stellar mass. A surprising feature in the sample is a distinct lack of nearly equal-mass binaries, for which we discuss possible reasons. The survey yielded no additional companions below or near the deuterium-burning limit, implying that their frequency at >200 AU separations is not quite as high as might be inferred from previous detections of such objects within the Sco-Cen region

  10. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  11. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    Science.gov (United States)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  12. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    International Nuclear Information System (INIS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2014-01-01

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function

  13. The ALMA-PILS survey: the sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Drozdovskaya, Maria N.; van Dishoeck, Ewine F.; Jørgensen, Jes K.; Calmonte, Ursina; van der Wiel, Matthijs H. D.; Coutens, Audrey; Calcutt, Hannah; Müller, Holger S. P.; Bjerkeli, Per; Persson, Magnus V.; Wampfler, Susanne F.; Altwegg, Kathrin

    2018-06-01

    The evolutionary past of our Solar system can be pieced together by comparing analogous low-mass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey are used to search for S-bearing molecules in the outer disc-like structure, ˜60 au from IRAS 16293-2422 B, and are compared with data on 67P/Churyumov-Gerasimenko (67P/C-G) stemming from the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard Rosetta. Species such as SO2, SO, OCS, CS, H2CS, H2S, and CH3SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC33S towards this source and a tentative first-time detection of C36S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H2S in comparison to 67P/C-G; meanwhile, the SO/SO2 ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH3SH/H2CS ratio in range of that of our Solar system (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H2S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar system may jointly explain the variations between the two low-mass systems.

  14. VLA and CARMA observations of protostars in the Cepheus clouds: Sub-arcsecond proto-binaries formed via disk fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J.; Looney, Leslie W. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Chandler, Claire J. [National Radio Astronomy Observatory, Socorro, NM (United States); Wilner, David J.; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Loinard, Laurent; D' Alessio, Paola [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Chiang, Hsin-Fang [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Kwon, Woojin, E-mail: jtobin@nrao.edu [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands)

    2013-12-20

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ∼0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ∼0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ∼3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ∼0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ∼20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  15. Hot water in the Inner 100 AU of the Class 0 protostar NGC 1333 IRAS2A

    DEFF Research Database (Denmark)

    Visser, Ruud; Jørgensen, Jes Kristian; Kristensen, Lars E.

    2013-01-01

    -303 lines of H_2^{16}O and H_2^{18}O (1097 GHz, E u/k = 249 K) in the low-mass Class 0 protostar NGC 1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H_2^{18}O 313-220 line (203 GHz, E u....../k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C18O J = 9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2 × 10-5, consistent with the theoretical predictions...... of ~10-4. The revised HDO/H2O abundance ratio is 1 × 10-3, an order of magnitude lower than previously estimated. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA....

  16. Symplectic no-core shell-model approach to intermediate-mass nuclei

    Science.gov (United States)

    Tobin, G. K.; Ferriss, M. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Dreyfuss, A. C.; Bahri, C.

    2014-03-01

    We present a microscopic description of nuclei in the intermediate-mass region, including the proximity to the proton drip line, based on a no-core shell model with a schematic many-nucleon long-range interaction with no parameter adjustments. The outcome confirms the essential role played by the symplectic symmetry to inform the interaction and the winnowing of shell-model spaces. We show that it is imperative that model spaces be expanded well beyond the current limits up through 15 major shells to accommodate particle excitations, which appear critical to highly deformed spatial structures and the convergence of associated observables.

  17. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kuhn, Michael A. [Millennium Institute of Astrophysics, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Povich, Matthew S., E-mail: edf@astro.psu.edu [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Ave., Pomona, CA 91768 (United States)

    2016-12-20

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  18. First detection of cyanamide (NH2CN) towards solar-type protostars

    Science.gov (United States)

    Coutens, A.; Willis, E. R.; Garrod, R. T.; Müller, H. S. P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Ligterink, N. F. W.; Persson, M. V.; Stéphan, G.; van der Wiel, M. H. D.; van Dishoeck, E. F.; Wampfler, S. F.

    2018-05-01

    Searches for the prebiotically relevant cyanamide (NH2CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13C isotopologs of NH2CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide ( 1.7%) is similar to that of formamide (NH2CHO), which may suggest that these two molecules share NH2 as a common precursor. The NH2CN/NH2CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH2CN on grains through the NH2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH2CN with the correct choice of physical parameters.

  19. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    International Nuclear Information System (INIS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-01-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  20. UNVEILING THE EVOLUTIONARY SEQUENCE FROM INFALLING ENVELOPES TO KEPLERIAN DISKS AROUND LOW-MASS PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hsi-Wei [Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Takakuwa, Shigehisa; Ohashi, Nagayoshi; Ho, Paul T. P., E-mail: hwyen@asiaa.sinica.edu.tw [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2013-07-20

    We performed Submillimeter Array observations in the C{sup 18}O (2-1) emission line toward six Class 0 and I protostars to study rotational motions of their surrounding envelopes and circumstellar material on 100-1000 AU scales. C{sup 18}O (2-1) emission with intensity peaks located at the protostellar positions is detected toward all six sources. The rotational velocities of the protostellar envelopes as a function of radius were measured from the position-velocity diagrams perpendicular to the outflow directions passing through the protostellar positions. Two Class 0 sources, B335 and NGC 1333 IRAS 4B, show no detectable rotational motion, while L1527 IRS (Class 0/I) and L1448-mm (Class 0) exhibit rotational motions with radial profiles of V{sub rot}{proportional_to}r {sup -1.0{+-}0.2} and {proportional_to}r {sup -1.0{+-}0.1}, respectively. The other Class I sources, TMC-1A and L1489 IRS, exhibit the fastest rotational motions among the sample, and their rotational motions have flatter radial profiles of V{sub rot}{proportional_to}r {sup -0.6{+-}0.1} and {proportional_to}r {sup -0.5{+-}0.1}, respectively. The rotational motions with the radial dependence of {approx}r {sup -1} can be interpreted as rotation with a conserved angular momentum in a dynamically infalling envelope, while those with the radial dependence of {approx}r {sup -0.5} can be interpreted as Keplerian rotation. These observational results demonstrate categorization of rotational motions from infalling envelopes to Keplerian-disk formation. Models of the inside-out collapse where the angular momentum is conserved are discussed and compared with our observational results.

  1. Coronal mass ejection shock fronts containing the two types of intermediate shocks

    International Nuclear Information System (INIS)

    Steinolfson, R.S.; Hundhausen, A.J.

    1990-01-01

    Numerical solutions of the time-dependent, magnetohydrodynamic (MHD) equations in two dimensions are used to demonstrate the formation of both types of intermediate shocks in a single shock front for physical conditions that are an idealization of those expected to occur in some observed coronal mass ejections. The key to producing such a shock configuration in the simulations is the use of an initial atmosphere containing a magnetic field representative of that in a coronal streamer with open field lines overlying a region of closed field lines. Previous attempts using just open field lines (perpendicular to the surface) produced shock configurations containing just one of the two intermediate shock types. A schematic of such a shock front containing both intermediate shock types has been constructed previously based solely on the known properties of MHD shocks from the Rankine-Hugoniot equations and specific requirements placed on the shock solution at points along the front where the shock normal and upstream magnetic field are aligned. The shock front also contains, at various locations along the front, a hydrodynamic (nonmagnetic) shock, a switch-on shock, and a fast shock in addition to the intermediate shocks. This particular configuration occurs when the shock front speed exceeds the upstream (preshock) intermediate wave speed but is less than a critical speed defined in the paper (equation 1) along at least some portion of the shock front. A distinctive feature of the front is that it is concave upward (away from the surface) near the region where the field in the preshock plasma is normal to the front of near the central portion of the shock front

  2. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.

    2017-01-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that...

  3. Interferometric Mapping of Perseus Outflows with MASSES

    Science.gov (United States)

    Stephens, Ian; Dunham, Michael; Myers, Philip C.; MASSES Team

    2017-01-01

    The MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA) survey, a Submillimeter Array (SMA) large-scale program, is mapping molecular lines and continuum emission about the 75 known Class 0/I sources in the Perseus Molecular Cloud. In this talk, I present some of the key results of this project, with a focus on the CO(2-1) maps of the molecular outflows. In particular, I investigate how protostars inherit their rotation axes from large-scale magnetic fields and filamentary structure.

  4. The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunju; Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-Daero, Giheung-gu Yongin-shi, Gyunggi-do 17104 (Korea, Republic of); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan 5, Haidian Qu, 100871 Beijing (China); Kang, Sung-ju; Kang, Miju, E-mail: jeongeun.lee@khu.ac.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Collaboration: JCMT Transient Team

    2017-11-01

    During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a submillimeter luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first six months of our survey, from 2016 February to August. The submillimeter emission began to brighten in 2016 September, reached a peak brightness of 1.5 times the faint state, and has been decaying slowly since 2017 February. The change in submillimeter brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of ≥4. The 850 μ m light curve resembles the historical K -band light curve, which varies by a factor of ∼6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and submillimeter wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.

  5. Theoretical study of intermediate-mass fragments in proton-nucleus reactions at 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sabra, Mohammad S. [NASA Marshall Space Flight Center, USRA Space Science Department, Huntsville, AL (United States)

    2017-03-15

    We have analyzed energy spectra, angular distributions, and mass and charge distributions of intermediate-mass fragments (IMFs) from the interaction of {sup 27}Al, {sup 59}Co, and {sup 197}Au with 200 MeV protons. Calculations within the modified statistical model with final-state interaction were performed using SAPTON code. Within the experimental uncertainty and constraint, SAPTON shows good agreement with the data, and suggests that the IMFs are produced after the intra-nuclear cascade stage, and during the surface coalescence, as well as the evaporation/fission stages. (orig.)

  6. Surveying Low-Mass Star Formation with the Submillimeter Array

    Science.gov (United States)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  7. Necessity of intermediate mass scales in grand unified theories with spontaneously broken CP invariance

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1982-07-01

    It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)

  8. Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cabrit, S.; Codella, C.; Kristensen, L. E.; Ceccarelli, C.; van Dishoeck, E. F.; Boogert, A. C. A.; Bottinelli, S.; Castets, A.; Caux, E.; Comito, C.; Demyk, K.; Herpin, F.; Lefloch, B.; McCoey, C.; Mottram, J. C.; Parise, B.; Taquet, V.; van der Tak, F. F. S.; Visser, R.; Yıldız, U. A.

    2013-01-01

    Context. The measure of the water deuterium fractionation is a relevant tool for understanding mechanisms of water formation and evolution from the prestellar phase to the formation of planets and comets. Aims: The aim of this paper is to study deuterated water in the solar-type protostars NGC 1333

  9. Intermediate-mass Higgs boson and isosinglet neutral heavy lepton signals at hadron supercolliders

    International Nuclear Information System (INIS)

    Bhattacharya, G.

    1992-01-01

    The signals for the Standard Model intermediate-mass Higgs boson and isosinglet neutral heavy leptons at the forthcoming hadron supercolliders-the Superconducting Super Collider (SSC) and the CERN Large Hadron Collider (LHC), are studied. The author studies inclusive production of the Standard Model Higgs boson in the intermediate-mass region (M W approx-lt m H approx-lt 2M Z ) and its subsequent decay into two on- or off-shell W bosons that decay leptonically. Backgrounds from continuum W pair production and top quark pair production with semileptonic decays are investigated. The author concludes the Higgs boson signal may be observed via the decay H → W*W* → (ell bar v ell ) (bar ell' v' ell ) at the SSC for 145 GeV H approx-lt 2M Z and at the LHC for 150 GeV H approx-lt 2M Z if m t > 150 GeV. The author analyzes the search and discovery potential of isosinglet neutral heavy leptons (NHLs) produced via real or virtual W decay at pp supercolliders. The author considers the signal resulting from the leptonic decay of the NHL, and the two major backgrounds-continuum WZ, Wγ production and t bar tj production, where j is a hadronic jet. The decay patterns of NHL depend on its mass M N , and different search strategies are needed for the two mass regions M N W and M N > M Z . The author finds for m t ≥ 150 (200) GeV the signal is observable for M N ≤ 60 (70) GeV in the mass-region M N W , and up to M N ≅ 110 GeV for M N > M W , at both SSC and LHC. It is shown the non-observance of the signal (with a 4σ statistical significance) in the region M N W could put upper limits on the NHL coupling constants that would be an improvement over the limits obtainable from the CERN Large Electron Positron Collider (LEP I)

  10. The dwarfs beyond: The stellar-to-halo mass relation for a new sample of intermediate redshift low-mass galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Sarah H.; Ellis, Richard S.; Newman, Andrew B. [California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (United States); Benson, Andrew, E-mail: smiller@astro.caltech.edu [Carnegie Observatories, 813 Santa Barbara St, Pasadena, CA 91101 (United States)

    2014-02-20

    A number of recent challenges to the standard ΛCDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the assumption that the Local Volume's dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low-mass (10{sup 7}-10{sup 9} M {sub ☉}), star-forming galaxies at intermediate redshift (0.2 < z < 1). For 50% of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully-Fisher relation to masses as low as 10{sup 7} M {sub ☉}. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass relation for comparison with abundance matching predictions. We find a discrepancy between our observations and the predictions from abundance matching in the sense that we observe 3-12 times more stellar mass at a given halo mass. We suggest possible reasons for this discrepancy, as well as improved tests for the future.

  11. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    Science.gov (United States)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  12. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  13. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  14. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  15. Medical Advice for Sick-reported Students (MASS) in intermediate vocational education schools: design of a controlled before-and-after study.

    Science.gov (United States)

    Van der Vlis, Madelon K; Lugtenberg, Marjolein; Vanneste, Yvonne T M; Berends, Wenda; Mulder, Wico; Bannink, Rienke; Van Grieken, Amy; Raat, Hein; de Kroon, Marlou L A

    2017-06-29

    School absenteeism, including medical absenteeism, is associated with early school dropout and may result in physical, mental, social and work-related problems in later life. Especially at intermediate vocational education schools, high rates of medical absenteeism are found. In 2012 the Dutch intervention 'Medical Advice for Sick-reported Students' (MASS), previously developed for pre-vocational secondary education, was adjusted for intermediate vocational education schools. The aim of the study outlined in this paper is to evaluate the effectiveness of the MASS intervention at intermediate vocational education schools in terms of reducing students' medical absenteeism and early dropping out of school. Additionally, the extent to which biopsychosocial and other factors moderate the effectiveness of the intervention will be assessed. A controlled before-and-after study will be conducted within Intermediate Vocational Education schools. Schools are allocated to be an intervention or control school based on whether the schools have implemented the MASS intervention (intervention schools) or not (control schools). Intervention schools apply the MASS intervention consisting of active support for students with medical absenteeism provided by the school including a consultation with the Youth Health Care (YHC) professional if needed. Control schools provide care as usual. Data will be collected by questionnaires among students in both groups meeting the criteria for extensive medical absenteeism (i.e. 'reported sick four times in 12 school weeks or for more than six consecutive school days' at baseline and at 6 months follow-up). Additionally, in the intervention group a questionnaire is completed after each consultation with a YHC professional, by both the student and the YHC professional. Primary outcome measures are duration and cumulative incidence of absenteeism and academic performances. Secondary outcome measures are biopsychosocial outcomes of the students. It

  16. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  17. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

    Science.gov (United States)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.

    2018-06-01

    A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

  18. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF AGB STARS AT DIFFERENT METALLICITIES. III. INTERMEDIATE-MASS MODELS, REVISED LOW-MASS MODELS, AND THE pH-FRUITY INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D. [INAF-Osservatorio Astronomico di Collurania, I-64100 Teramo (Italy)

    2015-08-15

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M{sub ⊙}) at different metallicities (−2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M{sub ⊙} ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the {sup 22}Ne(α,n){sup 25}Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY)

  19. Liquid-vapor phase transition, collective flow and entropy determination from future measurements of intermediate mass fragments

    International Nuclear Information System (INIS)

    Coffin, J.P.

    1991-01-01

    Some global variables reflecting the highly collective character of nuclear matter produced in relativistic heavy-ion collisions are briefly reviewed on the basis of presently available experimental results and of Quantum Statistical Model and Quantum Molecular Dynamic Model predictions relative to intermediate mass fragments. Possible future measurements are suggested. (author) 27 refs., 8 figs

  20. Correlations of intermediate mass fragments from Fe+Ta, Au, and Th collisions

    International Nuclear Information System (INIS)

    Sangster, T.C.; Begemann-Blaich, M.; Blaich, T.; Britt, H.C.; Hansen, L.F.; Namboodiri, M.N.; Peilert, G.

    1995-01-01

    Charge, velocity, and angular correlations between intermediate mass fragments (IMF) are presented for 50 and 100 MeV/nucleon Fe bombardments of Ta, Au, and Th targets. Correlation functions generated as a function of the relative velocity and the opening angle between two IMF's are qualitatively independent of the projectile energy and target mass and show a suppression at small relative velocities and opening angles due to the Coulomb repulsion between the fragments. The correlations are consistent with IMF's emitted primarily from a highly excited target residue following a rapid preequilibrium cascade. The correlation data are compared to model calculations using the event generator MENEKA and the quantum molecular dynamics (QMD) code with a statistical deexcitation of residual fragments utilizing the multifragmentation code SMM. All data are consistent with a simultaneous multifragmentation at a freeze-out density of 0.1--0.3 times normal nuclear matter density or a more sequential emission with time constant τ≤500 fm/c

  1. Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293–2422

    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Field, David [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Jørgensen, Jes K.; Brinch, Christian; Bisschop, Suzanne E. [Centre for Star and Planet Formation, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS42, Cambridge, MA 02138 (United States); Hogerheijde, Michiel R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Frieswijk, Wilfred W. F., E-mail: cfavre@umich.edu [Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands)

    2014-07-20

    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly formed stars, for example, to identify the presence of rotation and infall. IRAS 16293–2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.''46 × 0.''29, i.e., ∼55 × 35 AU) images of compact emission from the C{sup 17}O (3-2) and C{sup 34}S (7-6) transitions at 337 GHz (0.89 mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C{sup 17}O (3-2) and C{sup 34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS 16293A. Our combined eSMA and SMA observations show that the velocity field on the 50-400 AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293–2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.

  2. Interferometric diameters of five evolved intermediate-mass planet-hosting stars measured with PAVO at the CHARA Array

    Science.gov (United States)

    White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.

    2018-04-01

    Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly-measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12±0.16 R⊙, 4949±58 K), 24 Sextantis (5.49±0.18 R⊙, 4908±65 K), κ Coronae Borealis (4.77±0.07 R⊙, 4870±47 K), HR 6817 (4.45±0.08 R⊙, 5013±59 K), and HR 8641 (4.91±0.12 R⊙, 4950±68 K). We find disagreements of typically 15 % in angular diameter and ˜ 200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜ 15 %) lower masses than generally reported in the literature.

  3. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    Science.gov (United States)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  4. THE EXTRAORDINARY FAR-INFRARED VARIATION OF A PROTOSTAR: HERSCHEL/PACS OBSERVATIONS OF LRLL54361

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Zoltan; Detre, Örs H.; Bouwmann, Jeroen; Nielbock, Markus; Klaas, Ulrich; Krause, Oliver; Henning, Thomas [Max Planck Institute for Astronomy Königstuhl 17, Heidelberg D-69117 (Germany); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Flaherty, Kevin [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Furlan, Elise [Natinal Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Gutermuth, Rob [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Juhasz, Attila [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333-CA Leiden (Netherlands); Bally, John [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States); Marton, Gabor, E-mail: balog@mpia.de [Konkoly Observatory, Research Center for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege 15-17, 1121 Budapest (Hungary)

    2014-07-10

    We report Herschel/Photodetector Array Camera and Spectrometer (PACS) photometric observations at 70 μm and 160 μm of LRLL54361—a suspected binary protostar that exhibits periodic (P = 25.34 days) flux variations at shorter wavelengths (3.6 μm and 4.5 μm) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well correlated with the variations at shorter wavelengths. At 70 μm the object increases its flux by a factor of six while at 160 μm the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 μm with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation, indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and envelope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.

  5. Medical Advice for Sick-reported Students (MASS in intermediate vocational education schools: design of a controlled before-and-after study

    Directory of Open Access Journals (Sweden)

    Madelon K Van der Vlis

    2017-06-01

    Full Text Available Abstract Background School absenteeism, including medical absenteeism, is associated with early school dropout and may result in physical, mental, social and work-related problems in later life. Especially at intermediate vocational education schools, high rates of medical absenteeism are found. In 2012 the Dutch intervention ‘Medical Advice for Sick-reported Students’ (MASS, previously developed for pre-vocational secondary education, was adjusted for intermediate vocational education schools. The aim of the study outlined in this paper is to evaluate the effectiveness of the MASS intervention at intermediate vocational education schools in terms of reducing students’ medical absenteeism and early dropping out of school. Additionally, the extent to which biopsychosocial and other factors moderate the effectiveness of the intervention will be assessed. Methods A controlled before-and-after study will be conducted within Intermediate Vocational Education schools. Schools are allocated to be an intervention or control school based on whether the schools have implemented the MASS intervention (intervention schools or not (control schools. Intervention schools apply the MASS intervention consisting of active support for students with medical absenteeism provided by the school including a consultation with the Youth Health Care (YHC professional if needed. Control schools provide care as usual. Data will be collected by questionnaires among students in both groups meeting the criteria for extensive medical absenteeism (i.e. ‘reported sick four times in 12 school weeks or for more than six consecutive school days’ at baseline and at 6 months follow-up. Additionally, in the intervention group a questionnaire is completed after each consultation with a YHC professional, by both the student and the YHC professional. Primary outcome measures are duration and cumulative incidence of absenteeism and academic performances. Secondary outcome

  6. Limits on runaway growth of intermediate mass black holes from advanced LIGO

    Science.gov (United States)

    Kovetz, Ely D.; Cholis, Ilias; Kamionkowski, Marc; Silk, Joseph

    2018-06-01

    There is growing evidence that intermediate-mass black holes (IMBHs), defined here as having a mass in the range M =500 -105 M⊙ , are present in the dense centers of certain globular clusters (GCs). Gravitational waves from their mergers with other IMBHs or with stellar BHs in the cluster are mostly emitted in frequencies ≲10 Hz , which unfortunately is out of reach for current ground-based observatories such as advanced LIGO (aLIGO). Nevertheless, we show that aLIGO measurements can be used to efficiently probe one of the possible formation mechanisms of IMBHs in GCs, namely a runaway merger process of stellar seed BHs. In this case, aLIGO will be sensitive to the lower-mass rungs of the merger ladder, ranging from the seed BH mass to masses ≳50 - 300 M⊙ , where the background from standard mergers is expected to be very low. Assuming this generic IMBH formation scenario, we calculate the mass functions that correspond to the limiting cases of possible merger trees. Based on estimates for the number density of GCs and taking into account the instrumental sensitivity, we show that current observations do not effectively limit the occupation fraction focc of IMBHs formed by runaway mergers of stellar BHs in GCs. However, we find that if runaway mergers occur steadily throughout the lifetimes of GCs (as opposed to happening mainly early in their lifetimes), then a six-year run of aLIGO at design sensitivity will be able to probe down to focc≲3 % at a 99.9% confidence level, either finding evidence for this formation mechanism, or necessitating others if the fraction of GCs that harbor IMBHs is higher.

  7. EVIDENCE FOR AN INTERMEDIATE-MASS BLACK HOLE IN NGC 5408 X-1

    International Nuclear Information System (INIS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An ∼100 ks pointing with XMM/Newton obtained in 2008 January reveals a strong 10 mHz quasi-periodic oscillation (QPO) in the >1 keV flux, as well as flat-topped, band-limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power law with an index of ∼2.5. These new measurements, combined with results from our previous 2006 January pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole (BH) sources, but at much higher X-ray luminosity and longer characteristic timescales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broadband noise amplitude (rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with the BH mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency-spectral index relations from five stellar-mass BH systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 to 9000 M sun . We argue that these are conservative limits, and a more likely range is from 2000 to 5000 M sun . Moreover, the recent relation from Gierlinski et al. that relates the BH mass to the strength of variability at high frequencies (above the break in the power spectrum) is also indicative of such a high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a BH mass less than ∼1000 M sun for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an intermediate-mass BH.

  8. EVOLUTION OF INTERMEDIATE-MASS X-RAY BINARIES DRIVEN BY THE MAGNETIC BRAKING OF AP/BP STARS. I. ULTRACOMPACT X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cong [School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000 (China); Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2016-10-20

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  9. A next-to-leading-log Monte Carlo study of photon pairs and the search for the intermediate mass Higgs Boson

    International Nuclear Information System (INIS)

    Bailey, B.R.

    1993-01-01

    Symmetry breaking and the question of the origin of mass are the reasons the Superconducting Super Collider and the Large Hadron Collider are being built. The Standard Model of particle physics provides a solution to this problem by proposing the existence of a neutral scalar particle, the Higgs boson. This particle, via its interactions, gives mass to all of the particles in the Standard Model. The question of whether the Higgs boson can be detected at these machines depends critically on its final state decays. These decays in turn depend crucially on the mass of the Higgs boson, an unknown parameter of the theory. A lower bound of the Higgs mass has been set by experiment and a upper bound via theoretical arguments. Throughout much of the mass range Higgs decays via weak gauge bosons yield a clear signal. However, near the lower limit, the so-called intermediate mass region, the situation is less clear. In this region Higgs decays into photon pairs have been suggested as a viable signal. The significance of such a signal depends on other competing processes or backgrounds. This dissertation attempts to answer the question, open-quotes Can the Intermediate mass Higgs boson be detected via its electromagnetic decays?close quotes To answer this question various Standard Model processes are calculated to the leading-log and next-to-leading-log level in a Monte Carlo environment

  10. Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters

    Science.gov (United States)

    Fragione, Giacomo; Ginsburg, Idan; Kocsis, Bence

    2018-04-01

    The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from { \\mathcal R }≈ 1000 Gpc‑3 yr‑1 beyond z ≈ 2 to { \\mathcal R }≈ 1{--}10 Gpc‑3 yr‑1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104 M ⊙. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

  11. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  12. OPTICAL VARIABILITY OF THE ACCRETION DISK AROUND THE INTERMEDIATE-MASS BLACK HOLE ESO 243-49 HLX-1 DURING THE 2012 OUTBURST

    Energy Technology Data Exchange (ETDEWEB)

    Webb, N. A.; Godet, O.; Barret, D. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Wiersema, K. [University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Lasota, J.-P. [Institut d' Astrophysique de Paris, UMR 7095, CNRS, UPMC Université Paris 06, 98bis Boulevard Arago, F-75014 Paris (France); Farrell, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Maccarone, T. J. [Department of Physics, Box 41051, Texas Tech University, Lubbock TX 79409-1051 (United States); Servillat, M., E-mail: natalie.webb@irap.omp.eu [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Université Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France)

    2014-01-01

    We present dedicated quasi-simultaneous X-ray (Swift) and optical (Very Large Telescope, V-, and R-band) observations of the intermediate-mass black hole candidate HLX-1 before and during the 2012 outburst. We show that the V-band magnitudes vary with time, thus proving that a portion of the observed emission originates in the accretion disk. Using the first quiescent optical observations of HLX-1, we show that the stellar population surrounding HLX-1 is fainter than V ∼ 25.1 and R ∼ 24.2. We show that the optical emission may increase before the X-ray emission consistent with the scenario proposed by Lasota et al. in which the regular outbursts could be related to the passage at periastron of a star circling the intermediate-mass black hole in an eccentric orbit, which triggers mass transfer into a quasi-permanent accretion disk around the black hole. Further, if there is indeed a delay in the X-ray emission we estimate the mass-transfer delivery radius to be ∼10{sup 11} cm.

  13. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Jeong; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400 Austin, TX 78712-1205 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Pontoppidan, Klaus M., E-mail: hyojeong@astro.as.utexas.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  14. A highly embedded protostar in SFO 18: IRAS 05417+0907

    Science.gov (United States)

    Saha, Piyali; Gopinathan, Maheswar; Puravankara, Manoj; Sharma, Neha; Soam, Archana

    2018-04-01

    Bright-rimmed clouds, located at the periphery of relatively evolved HIT regions, are considered to be the sites of star formation possibly triggered by the implosion caused due to the ionizing radiation from nearby massive stars. SFO 18 is one such region showing a bright-rim on the side facing the 0-type star, A Ori. A point source, IRAS 05417+0907, is detected towards the high density region of the cloud. A molecular outflow has been found to be associated with the source. The outflow is directed towards a Herbig-Haro object, HH 175. From the Spitzer and WISE observations, we show evidence of a physical connection between the molecular outflow, IRAS 05417+0907 and the HH object. The spectral energy distribution constructed using multi-wavelength data shows that the point source is most likely a highly embedded protostar.

  15. Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: a multiple-method approach

    Science.gov (United States)

    Koliopanos, F.; Ciambur, B.; Graham, A.; Webb, N.; Coriat, M.; Mutlu-Pakdil, B.; Davis, B.; Godet, O.; Barret, D.; Seigar, M.

    2017-10-01

    Intermediate Mass Black Holes (IMBHs) are predicted by a variety of models and are the likely seeds for super massive BHs (SMBHs). However, we have yet to establish their existence. One method, by which we can discover IMBHs, is by measuring the mass of an accreting BH, using X-ray and radio observations and drawing on the correlation between radio luminosity, X-ray luminosity and the BH mass, known as the fundamental plane of BH activity (FP-BH). Furthermore, the mass of BHs in the centers of galaxies, can be estimated using scaling relations between BH mass and galactic properties. We are initiating a campaign to search for IMBH candidates in dwarf galaxies with low-luminosity AGN, using - for the first time - three different scaling relations and the FP-BH, simultaneously. In this first stage of our campaign, we measure the mass of seven LLAGN, that have been previously suggested to host central IMBHs, investigate the consistency between the predictions of the BH scaling relations and the FP-BH, in the low mass regime and demonstrate that this multiple method approach provides a robust average mass prediction. In my talk, I will discuss our methodology, results and next steps of this campaign.

  16. Probing the CO and methanol snow lines in young protostars. Results from the CALYPSO IRAM-PdBI survey

    Science.gov (United States)

    Anderl, S.; Maret, S.; Cabrit, S.; Belloche, A.; Maury, A. J.; André, Ph.; Codella, C.; Bacmann, A.; Bontemps, S.; Podio, L.; Gueth, F.; Bergin, E.

    2016-06-01

    Context. So-called snow lines, indicating regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars, which are still in their early phase of heavy accretion. Aims: We aim to use the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. This information is crucial to get the full picture of the early protostellar collapse and the subsequent evolution of young protostars. Methods: As part of the CALYPSO IRAM Large Program, we have obtained observations of C18O, N2H+, and CH3OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources, we have modeled the emission using a chemical code coupled with a radiative transfer module. Results: We observe an anti-correlation of C18O and N2H+ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This emission morphology, which is due to N2H+ being chemically destroyed by CO, reveals the CO and N2 ice sublimation regions in these protostellar envelopes with unprecedented resolution. We also observe compact methanol emission towards three of the sources. Based on our chemical model and assuming temperature and density profiles from the literature, we find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices (~855 K). The emission regions of models and observations match for a higher value of the CO binding energy of 1200 K, corresponding to a dust temperature of ~24 K at the CO snow line. The binding energy for N2 ices is modeled at 1000 K, also higher than for

  17. METHYL CYANIDE OBSERVATIONS TOWARD MASSIVE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58090 (Mexico); Bieging, J. [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States)

    2013-07-01

    We report the results of a survey in the CH{sub 3}CN J = 12 {yields} 11 transition toward a sample of massive proto-stellar candidates. The observations were carried out with the 10 m Submillimeter Telescope on Mount Graham, AZ. We detected this molecular line in 9 out of 21 observed sources. In six cases this is the first detection of this transition. We also obtained full beam sampled cross-scans for five sources which show that the lower K-components can be extended on the arcminute angular scale. The higher K-components, however, are always found to be compact with respect to our 36'' beam. A Boltzmann population diagram analysis of the central spectra indicates CH{sub 3}CN column densities of about 10{sup 14} cm{sup -2}, and rotational temperatures above 50 K, which confirms these sources as hot molecular cores. Independent fits to line velocity and width for the individual K-components resulted in the detection of an increasing blueshift with increasing line excitation for four sources. Comparison with mid-infrared (mid-IR) images from the SPITZER GLIMPSE/IRAC archive for six sources show that the CH{sub 3}CN emission is generally coincident with a bright mid-IR source. Our data clearly show that the CH{sub 3}CN J = 12 {yields} 11 transition is a good probe of the hot molecular gas near massive protostars, and provide the basis for future interferometric studies.

  18. Probing the water and CO snow lines in the young protostar NGC 1333-IRAS4B

    Science.gov (United States)

    Anderl, Sibylle; Maret, Sébastien; André, Philippe; Maury, Anaëlle; Belloche, Arnaud; Cabrit, Sylvie; Codella, Claudio; Lefloch, Bertrand

    2015-08-01

    Today, we believe that the onset of life requires free energy, water, and complex, probably carbon-based chemistry. In the interstellar medium, complex organic molecules seem to mostly form in reactions happening on the icy surface of dust grains, such that they are released into the gas phase when the dust is heated. The resulting “snow lines”, marking regions where ices start to sublimate, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. Accordingly, it is a crucial piece of information in order to get the full picture of how organic chemistry evolves already at the earliest stages of the formation of sun-like stars. As part of the CALYPSO Large Program (http://irfu.cea.fr/Projets/Calypso/), we have obtained observations of C18O, N2H+ and CH3OH towards the Class 0 protostar NGC 1333-IRAS4B with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. Of these we use the methanol observations as a proxy for the water snow line, assuming methanol is trapped in water ice. The observed anti-correlation of C18O and N2H+, with N2H+ forming a ring around the centrally peaked C18O emission, reveals for the first time the CO snow line in this protostellar envelope, with a radius of ~300 AU. The methanol emission is much more compact than that of C18O, and traces the water snow line with a radius of ~40 AU. We have modeled the emission using a chemical model coupled with a radiative transfer module. We find that the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out

  19. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Chavushyan, Vahram [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico); Leon-Tavares, Jonathan, E-mail: erika@astro.unam.mx [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, 02540 Kylmaelae (Finland)

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.

  20. Multifragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Britt, H.C.; Claesson, G.

    1986-01-01

    There has been considerable recent interest in the production of intermediate mass fragments (A > 4) in intermediate and high energy nucleus-nucleus collisions. The mechanism for production of these fragments is not well understood and has been described by models employing a variety of assumptions. Some examples are: disassembly of a system in thermal equilibrium into nucleons and nuclear fragments, liquid-vapor phase transitions in nuclear matter, final state coalescence of nucleons and dynamical correlations between nucleons at breakup. Previous studies of fragment production, with one exception, have been single particle inclusive measurements; the observed fragment mass (or charge) distributions can be described by all of the models above. To gain insight into the fragment production mechanism, the authors used the GSI/LBL Plastic Ball detector system to get full azimuthal coverage for intermediate mass fragments in the forward hemisphere in the center of mass system while measuring all the light particles in each event. The authors studied the systems 200 MeV/nucleon Au + Au and Au + Fe

  1. A midrapidity source of intermediate mass fragments in highly central collisions of Au+Au at 150 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Alard, J P; Bastid, N; Crouau, M; Dupieux, P; Fraysse, L; Jorio, M; Montarou, G; Morel, P [Laboratoire de Physique Corpusculaire, 63 - Clermont-Ferrand (France); Basrak, Z; Caplar, R; Cindro, N; Hoelbling, S [Rudjer Boskovic Inst., Zagreb (Yugoslavia); Belayev, I M; Frolov, S; Korchagin, Y; Lebedev, A; Smolyankin, S; Zhilin, A V [Institute for Experimental and Theoretical Physics, Moscow (Russia); Bini, M; Olmi, A; Pasquali, G; Poggi, G; Taccetti, N [Florence Univ. (Italy); [INFN, Florence (Italy); Blaich, T [Mainz Univ. (Germany); Buta, A; Legrand, I; Moisa, D; Petrovici, M; Simion, V [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cerruti, C; Coffin, J P; Fintz, P; Guillaume, G; Houari, O; Jundt, F; Kuhn, C; Maguire, C; Rami, F; Tezkratt, R; Wagner, P [Centre de Recherches Nucleaires, 67 - Strasbourg (France); [Strasbourg Univ., 67 (France); Eroe, J; Fodor, Z; Kecskemeti, J; Koncz, P; Seres, Z [Central Research Inst. for Physics, Budapest (Hungary); Grigoriyan, Y; Manko, V; Mgebrishvili, G; Sadchikov, A; Vasiliev, M A [Kurchatov Inst. for Atomic Energy, Moscow (Russia); Herrmann, N; Pelte, D; Trzaska, M; Wienold, T [Heidelberg Univ. (Germany). Physikalisches Inst.; Kotte, R; Moesner, J; Neubert, W; Wohlfarth, D [Forschungszentrum Rossendorf (Germany); Matulewicz, T; Sikora, B; Wilhelmi, Z [Warsaw Univ. (Poland). Inst. of Experimental Physics; Bock, R; Fan, Z G; Freifelder, R; Gobbi, A; Hildenbrand, K D; Jeong, S C; Kraemer, M; Reisdorf, W; Schuell, D; Sodan, U; Teh, K; Wessels, J P; FOPI Collaboration at GSI

    1992-02-01

    Charged particles have been observed in collisions of Au on Au at incident energy of 150 A MeV using a high-granularity detector system covering approximatley the forward hemisphere in the center-of-mass system. Highly central collisions have been studied using a double selection criterion which combines large charged particle multiplicities with small transverse momentum directivities. In this class of events about one quarter of the total nuclear charge emerges as intermediate mass fragments with nuclear charges Z>2. These fragments are centred at midrapidity and are produced with large transverse velocities. (orig.).

  2. A midrapidity source of intermediate mass fragments in highly central collisions of Au+Au at 150 A MeV

    International Nuclear Information System (INIS)

    Alard, J.P.; Bastid, N.; Crouau, M.; Dupieux, P.; Fraysse, L.; Jorio, M.; Montarou, G.; Morel, P.; Basrak, Z.; Caplar, R.; Cindro, N.; Hoelbling, S.; Belayev, I.M.; Frolov, S.; Korchagin, Y.; Lebedev, A.; Smolyankin, S.; Zhilin, A.V.; Bini, M.; Olmi, A.; Pasquali, G.; Poggi, G.; Taccetti, N.; Blaich, T.; Buta, A.; Legrand, I.; Moisa, D.; Petrovici, M.; Simion, V.; Cerruti, C.; Coffin, J.P.; Fintz, P.; Guillaume, G.; Houari, O.; Jundt, F.; Kuhn, C.; Maguire, C.; Rami, F.; Tezkratt, R.; Wagner, P.; Eroe, J.; Fodor, Z.; Kecskemeti, J.; Koncz, P.; Seres, Z.; Grigoriyan, Y.; Manko, V.; Mgebrishvili, G.; Sadchikov, A.; Vasiliev, M.A.; Herrmann, N.; Pelte, D.; Trzaska, M.; Wienold, T.; Matulewicz, T.; Sikora, B.; Wilhelmi, Z.; Bock, R.; Fan, Z.G.; Freifelder, R.; Gobbi, A.; Hildenbrand, K.D.; Jeong, S.C.; Kraemer, M.; Reisdorf, W.; Schuell, D.; Sodan, U.; Teh, K.; Wessels, J.P.

    1992-02-01

    Charged particles have been observed in collisions of Au on Au at incident energy of 150 A MeV using a high-granularity detector system covering approximatley the forward hemisphere in the center-of-mass system. Highly central collisions have been studied using a double selection criterion which combines large charged particle multiplicities with small transverse momentum directivities. In this class of events about one quarter of the total nuclear charge emerges as intermediate mass fragments with nuclear charges Z>2. These fragments are centred at midrapidity and are produced with large transverse velocities. (orig.)

  3. Prospects for detection of intermediate-mass black holes in globular clusters using integrated-light spectroscopy

    Science.gov (United States)

    de Vita, R.; Trenti, M.; Bianchini, P.; Askar, A.; Giersz, M.; van de Ven, G.

    2017-06-01

    The detection of intermediate-mass black holes (IMBHs) in Galactic globular clusters (GCs) has so far been controversial. In order to characterize the effectiveness of integrated-light spectroscopy through integral field units, we analyse realistic mock data generated from state-of-the-art Monte Carlo simulations of GCs with a central IMBH, considering different setups and conditions varying IMBH mass, cluster distance and accuracy in determination of the centre. The mock observations are modelled with isotropic Jeans models to assess the success rate in identifying the IMBH presence, which we find to be primarily dependent on IMBH mass. However, even for an IMBH of considerable mass (3 per cent of the total GC mass), the analysis does not yield conclusive results in one out of five cases, because of shot noise due to bright stars close to the IMBH line of sight. This stochastic variability in the modelling outcome grows with decreasing BH mass, with approximately three failures out of four for IMBHs with 0.1 per cent of total GC mass. Finally, we find that our analysis is generally unable to exclude at 68 per cent confidence an IMBH with mass of 103 M⊙ in snapshots without a central BH. Interestingly, our results are not sensitive to GC distance within 5-20 kpc, nor to misidentification of the GC centre by less than 2 arcsec (<20 per cent of the core radius). These findings highlight the value of ground-based integral field spectroscopy for large GC surveys, where systematic failures can be accounted for, but stress the importance of discrete kinematic measurements that are less affected by stochasticity induced by bright stars.

  4. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-06-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which have short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on this work.

  5. GAS GAPS IN THE PROTOPLANETARY DISK AROUND THE YOUNG PROTOSTAR HL TAU

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hsi-Wei; Gu, Pin-Gao; Hirano, Naomi; Lee, Chin-Fei; Takakuwa, Shigehisa [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Liu, Hauyu Baobab [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Puspitaningrum, Evaria, E-mail: hwyen@asiaa.sinica.edu.tw [Department of Astronomy, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2016-04-01

    We have analyzed the HCO{sup +} (1–0) data of the Class I–II protostar, HL Tau, obtained from the Atacama Large Millimeter/submillimeter Array long baseline campaign. We generated the HCO{sup +} image cube at an angular resolution of ∼0.″07 (∼10 au) and performed azimuthal averaging on the image cube to enhance the signal-to-noise ratio and measure the radial profile of the HCO{sup +} integrated intensity. Two gaps at radii of ∼28 and ∼69 au and a central cavity are identified in the radial intensity profile. The inner HCO{sup +} gap is coincident with the millimeter continuum gap at a radius of 32 au. The outer HCO{sup +} gap is located at the millimeter continuum bright ring at a radius of 69 au and overlaps with the two millimeter continuum gaps at radii of 64 and 74 au. On the contrary, the presence of the central cavity is likely due to the high optical depth of the 3 mm continuum emission and not the depletion of the HCO{sup +} gas. We derived the HCO{sup +} column density profile from its intensity profile. From the column density profile, the FWHM widths of the inner and outer HCO{sup +} gaps are both estimated to be ∼14 au, and their depths are estimated to be ∼2.4 and ∼5.0. These results are consistent with the expectation from the gaps opened by forming (sub-)Jovian mass planets, while placing tight constraints on the theoretical models solely incorporating the variation of dust properties and grain sizes.

  6. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  7. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO

    Science.gov (United States)

    Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.

    2018-01-01

    The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.

  8. EXTREMELY LARGE AND HOT MULTILAYER KEPLERIAN DISK AROUND THE O-TYPE PROTOSTAR W51N: THE PRECURSORS OF THE HCH II REGIONS?

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-01-01

    We present sensitive high angular resolution (0.''57-0.''78) SO, SO 2 , CO, C 2 H 5 OH, HC 3 N, and HCOCH 2 OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.''7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH 2 OH reveals the possible presence of a warm 'companion' located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO 2 is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  9. Infall-driven protostellar accretion and the solution to the luminosity problem

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2014-01-01

    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates...... in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall...... rates from protostar to protostar, and large fluctuations during the evolution of individual protostars. In most cases, the infall rate is initially of order 10–5 M ☉ yr–1, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed...

  10. The effects of magnetic fields and protostellar feedback on low-mass cluster formation

    Science.gov (United States)

    Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2018-05-01

    We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.

  11. Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  12. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\\le f_{0}/\\mathrm{Hz} \\le 2000$ and decay timescale $0.0001\\lesssim \\tau/\\mathrm{s} \\lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant ...

  13. Abandoning the ship: spontaneous mass exodus of Clinostomum complanatum (Rudolphi, 1814) progenetic metecercariae from the dying intermediate host Trichogaster fasciatus (Bloch & Schneider, 1801).

    Science.gov (United States)

    Rizvi, Asim; Alam, Md Maroof; Parveen, Saltanat; Saleemuddin, M; Abidi, S M A

    2012-04-01

    The dramatic and spontaneous exodus of live Clinostomum complanatum progenetic metacercaria from the gill slits of the dying intermediate host, Trichogaster fasciatus is reported. Basic water parameter tests for dissolved oxygen, pH and temperature revealed slightly lower level of dissolved oxygen in tank water used for water change. To the best of our knowledge, it is the first report of a digenean metacercariae, en mass leaving their intermediate host, upon its death in search of an alternative host to support their survival and help in continuing their life cycle.

  14. ROTATING BULLETS FROM A VARIABLE PROTOSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Héctor G. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas, E-mail: xpchen@pmo.ac.cn [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-06-20

    We present Submillimeter Array (SMA) CO (2–1) observations toward the protostellar jet driven by SVS 13 A, a variable protostar in the NGC 1333 star-forming region. The SMA CO (2–1) images show an extremely high-velocity jet composed of a series of molecular “bullets.” Based on the SMA CO observations, we discover clear and large systematic velocity gradients, perpendicular to the jet axis, in the blueshifted and redshifted bullets. After discussing several alternative interpretations, such as twin-jets, jet precession, warped disk, and internal helical shock, we suggest that the systematic velocity gradients observed in the bullets result from the rotation of the SVS 13 A jet. From the SMA CO images, the measured rotation velocities are 11.7–13.7 km s{sup −1} for the blueshifted bullet and 4.7 ± 0.5 km s{sup −1} for the redshifted bullet. The estimated specific angular momenta of the two bullets are comparable to those of dense cores, about 10 times larger than those of protostellar envelopes, and about 20 times larger than those of circumstellar disks. If the velocity gradients are due to the rotation of the SVS 13 A jet, the significant amount of specific angular momenta of the bullets indicates that the rotation of jets/outflows is a key mechanism to resolve the so-called “angular momentum problem” in the field of star formation. The kinematics of the bullets suggests that the jet launching footprint on the disk has a radius of ∼7.2–7.7 au, which appears to support the extended disk-wind model. We note that further observations are needed to comprehensively understand the kinematics of the SVS 13 A jet, in order to confirm the rotation nature of the bullets.

  15. INTERMEDIATE-MASS HOT CORES AT ∼500 AU: DISKS OR OUTFLOWS?

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Fuente, Asunción; Alonso-Albi, Tomás; Fontani, Francesco; Sánchez-Monge, Álvaro; Boissier, Jérémie; Piétu, Vincent; Neri, Roberto; Busquet, Gemma; Estalella, Robert; Zapata, Luis A.; Zhang, Qizhou; Ho, Paul T. P.; Audard, Marc

    2011-01-01

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at ∼500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH 3 CH 2 OH, (CH 2 OH) 2 , CH 3 COCH 3 , and CH 3 OH, with, additionally, CH 3 CHO, CH 3 OD, and HCOOD for IRAS 22198+6336, and C 6 H and O 13 CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of ∼300 and ∼600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass ∼> 4 M ☉ . As for AFGL 5142, the hot core emission is resolved into two elongated cores separated ∼1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H 2 O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  16. Characterizing the Energetics of the Youngest Protostars: FIFI-LS Spectroscopy of Herschel-Identified Extreme Class 0 objects in Orion

    Science.gov (United States)

    Megeath, S.

    2014-10-01

    We propose FIFI-LS spectroscopy observations toward 3 of the youngest known Herschel- detected Class 0 protostars in the Orion molecular clouds. Characterization of the far-IR spectrum toward these PACS Bright Red Sources (PBRS) is imperative: this is the only observational means to characterize the complete energetics of the outflow in the earliest stages of the star formation process. We have already obtained Herschel-PACS spectroscopy for 8/14 PBRS; for these, the CO rotation temperatures are systematically lower than the larger samples of 'more typical' protostars observed. Furthermore, all of the Herschel-detected PBRS also have CARMA CO (J=1-0) outflow maps, enabling us to identify tentative trends between the detection and morphology (compact or extended) of the CO outflow and the presence or lack of far-infrared emission lines. Moreover, we only convincingly detect [OI] emission toward the source with the brightest outflow emission; thus, [OI] may not be universally present in protostellar outflows. However, due to the small-numbers with PACS spectroscopy, it is unclear if these trends are real and the three proposed PBRS have outflow maps of varying morphologies, but no far-infrared spectra. The results from this program will provide a firm observational footing for the presence or lack of such trends and will strengthen the connection of the far-IR emission lines to the outflow.

  17. On the diversity and statistical properties of protostellar discs

    Science.gov (United States)

    Bate, Matthew R.

    2018-04-01

    We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yr. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order 10 to a few hundred au, grow in size on time-scales ≲ 104 yr, and are smaller around lower mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ ∝ r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1-1 to ages ≲ 104 yr and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.

  18. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.

    Science.gov (United States)

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei

    2008-12-25

    Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.

  19. Near-IR spectroscopic monitoring of CLASS I protostars: Variability of accretion and wind indicators

    Energy Technology Data Exchange (ETDEWEB)

    Connelley, Michael S. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035 (United States)

    2014-06-01

    We present the results of a program that monitored the near-IR spectroscopic variability of a sample of 19 embedded protostars. Spectra were taken on time intervals from 2 days to 3 yr, over a wavelength range from 0.85 μm to 2.45 μm, for 4-9 epochs of observations per target. We found that the spectra of all targets are variable and that every emission feature observed is also variable (although not for all targets). With one exception, there were no drastic changes in the continua of the spectra, nor did any line completely disappear, nor did any line appear that was not previously apparent. This analysis focuses on understanding the connection between accretion (traced by H Br γ and CO) and the wind (traced by He I, [Fe II], and sometimes H{sub 2}). For both accretion and wind tracers, the median variability was constant versus the time interval between observations; however, the maximum variability that we observed increased with the time interval between observations. Extinction is observed to vary within the minimum sampling time of 2 days, suggesting extinguishing material within a few stellar radii at high disk latitudes. The variability of [Fe II] and H{sub 2} were correlated for most (but not all) of the 7 young stellar objects showing both features, and the amplitude of the variability depends on the veiling. Although the occurrence of CO and Br γ emission are connected, their variability is uncorrelated, suggesting that these emissions originate in separate regions near the protostar (e.g., disk and wind). The variability of Br γ and wind tracers were found to be positively correlated, negatively correlated, or uncorrelated, depending on the target. The variability of Br γ, [Fe II], and H{sub 2} always lies on a plane, although the orientation of the plane in three dimensions depends on the target. While we do not understand all interactions behind the variability that we observed, we have shown that spectroscopic variability is a powerful tool

  20. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  1. A RING/DISK/OUTFLOW SYSTEM ASSOCIATED WITH W51 NORTH: A VERY MASSIVE STAR IN THE MAKING

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Schilke, Peter; Menten, Karl; Ho, Paul T. P.; Rodriguez, Luis F.; Palau, Aina; Garrod, Robin T.

    2009-01-01

    Sensitive and high angular resolution (∼0.''4) SO 2 [22 2,20 → 22 1,21 ] and SiO[5 → 4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) toward the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M sun ) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M sun ) and collimated (∼14 0 ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity on the order of 10 5 L sun . A molecular hybrid local thermodynamic equilibrium model of a Keplerian and infalling disk with an inner cavity and a central stellar mass of more than 60 M sun agrees well with the SO 2 [22 2,20 → 22 1,21 ] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate-mass stars, might not be necessary for forming very massive stars.

  2. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  3. Bifurcations and Chaos of AN Immersed Cantilever Beam in a Fluid and Carrying AN Intermediate Mass

    Science.gov (United States)

    AL-QAISIA, A. A.; HAMDAN, M. N.

    2002-06-01

    The concern of this work is the local stability and period-doubling bifurcations of the response to a transverse harmonic excitation of a slender cantilever beam partially immersed in a fluid and carrying an intermediate lumped mass. The unimodal form of the non-linear dynamic model describing the beam-mass in-plane large-amplitude flexural vibration, which accounts for axial inertia, non-linear curvature and inextensibility condition, developed in Al-Qaisia et al. (2000Shock and Vibration7 , 179-194), is analyzed and studied for the resonance responses of the first three modes of vibration, using two-term harmonic balance method. Then a consistent second order stability analysis of the associated linearized variational equation is carried out using approximate methods to predict the zones of symmetry breaking leading to period-doubling bifurcation and chaos on the resonance response curves. The results of the present work are verified for selected physical system parameters by numerical simulations using methods of the qualitative theory, and good agreement was obtained between the analytical and numerical results. Also, analytical prediction of the period-doubling bifurcation and chaos boundaries obtained using a period-doubling bifurcation criterion proposed in Al-Qaisia and Hamdan (2001 Journal of Sound and Vibration244, 453-479) are compared with those of computer simulations. In addition, results of the effect of fluid density, fluid depth, mass ratio, mass position and damping on the period-doubling bifurcation diagrams are studies and presented.

  4. Intermediate coupling vibrational descriptions of odd mass gold isotopes

    CERN Document Server

    Vieu, C; Paar, V

    1976-01-01

    The theoretical analysis of /sup 193-195/Au levels is semi qualitatively performed in the frame of the intermediate coupling vibrational models of Kisslinger-Sorensen and Alaga. From the comparison between the experimental data and the corresponding predictions of the two models, conclusions are drawn on the influence of the clusters and broken pairs.

  5. ON THE ORIGIN OF STELLAR MASSES

    International Nuclear Information System (INIS)

    Krumholz, Mark R.

    2011-01-01

    It has been a longstanding problem to determine, as far as possible, the characteristic masses of stars in terms of fundamental constants; the almost complete invariance of this mass as a function of the star-forming environment suggests that this should be possible. Here I provide such a calculation. The typical stellar mass is set by the characteristic fragment mass in a star-forming cloud, which depends on the cloud's density and temperature structure. Except in the very early universe, the latter is determined mainly by the radiation released as matter falls onto seed protostars. The energy yield from this process is ultimately set by the properties of deuterium burning in protostellar cores, which determines the stars' radii. I show that it is possible to combine these considerations to compute a characteristic stellar mass almost entirely in terms of fundamental constants, with an extremely weak residual dependence on the interstellar pressure and metallicity. This result not only explains the invariance of stellar masses, it resolves a second mystery: why fragmentation of a cold, low-density interstellar cloud, a process with no obvious dependence on the properties of nuclear reactions, happens to select a stellar mass scale such that stellar cores can ignite hydrogen. Finally, the weak residual dependence on the interstellar pressure and metallicity may explain recent observational hints of a smaller characteristic mass in the high-pressure, high-metallicity cores of giant elliptical galaxies.

  6. ROTATION AND OUTFLOW MOTIONS IN THE VERY LOW-MASS CLASS 0 PROTOSTELLAR SYSTEM HH 211 AT SUBARCSECOND RESOLUTION

    International Nuclear Information System (INIS)

    Lee, C.-F.; Hirano, Naomi; Ho, Paul T. P.; Shang, Hsien; Palau, Aina; Bourke, Tyler L.; Zhang Qizhou

    2009-01-01

    HH 211 is a nearby young protostellar system with a highly collimated jet. We have mapped it in 352 GHz continuum, SiO (J = 8 - 7), and HCO + (J = 4 - 3) emission at up to ∼0.''2 resolution with the Submillimeter Array (SMA). The continuum source is now resolved into two sources, SMM1 and SMM2, with a separation of ∼ 84 AU. SMM1 is seen at the center of the jet, probably tracing a (inner) dusty disk around the protostar driving the jet. SMM2 is seen to the southwest of SMM1 and may trace an envelope-disk around a small binary companion. A flattened envelope-disk is seen in HCO + around SMM1 with a radius of ∼ 80 AU perpendicular to the jet axis. Its velocity structure is consistent with a rotation motion and can be fitted with a Keplerian law that yields a mass of ∼50 ± 15 M Jup (a mass of a brown dwarf) for the protostar. Thus, the protostar could be the lowest mass source known to have a collimated jet and a rotating flattened envelope-disk. A small-scale (∼200 AU) low-speed (∼2 km s -1 ) outflow is seen in HCO + around the jet axis extending from the envelope-disk. It seems to rotate in the same direction as the envelope-disk and may carry away part of the angular momentum from the envelope-disk. The jet is seen in SiO close to ∼100 AU from SMM1. It is seen with a 'C-shaped' bending. It has a transverse width of ∼ -1 . A possible velocity gradient is seen consistently across its innermost pair of knots, ∼0.5 km s -1 at ∼10 AU, consistent with the sense of rotation of the envelope-disk. If this gradient is an upper limit of the true rotational gradient of the jet, then the jet carries away a very small amount of angular momentum of ∼ -1 and thus must be launched from the very inner edge of the disk near the corotation radius.

  7. Introductory Overview of Intermediate-luminosity X-ray Objects

    Science.gov (United States)

    Colbert, E. J. M.

    2001-05-01

    Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.

  8. THE M BH-L SPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES

    International Nuclear Information System (INIS)

    Graham, Alister W.; Scott, Nicholas

    2013-01-01

    From a sample of 72 galaxies with reliable supermassive black hole masses M bh , we derive the M bh -(host spheroid luminosity, L) relation for (1) the subsample of 24 core-Sérsic galaxies with partially depleted cores, and (2) the remaining subsample of 48 Sérsic galaxies. Using K s -band Two Micron All Sky Survey data, we find the near-linear relation M bh ∝L 1.10±0.20 K s for the core-Sérsic spheroids thought to be built in additive dry merger events, while we find the relation M bh ∝L 2.73±0.55 K s for the Sérsic spheroids built from gas-rich processes. After converting literature B-band disk galaxy magnitudes into inclination- and dust-corrected bulge magnitudes, via a useful new equation presented herein, we obtain a similar result. Unlike with the M bh -(velocity dispersion) diagram, which is also updated here using the same galaxy sample, it remains unknown whether barred and non-barred Sérsic galaxies are offset from each other in the M bh -L diagram. While black hole feedback has typically been invoked to explain what was previously thought to be a nearly constant M bh /M Spheroid mass ratio of ∼0.2%, we advocate that the near-linear M bh -L and M bh -M Spheroid relations observed at high masses may have instead arisen largely from the additive dry merging of galaxies. We argue that feedback results in a dramatically different scaling relation, such that black hole mass scales roughly quadratically with the spheroid mass in Sérsic galaxies. We therefore introduce a revised cold-gas 'quasar' mode feeding equation for semi-analytical models to reflect what we dub the quadratic growth of black holes in Sérsic galaxies built amidst gas-rich processes. Finally, we use our new Sérsic M bh -L equations to predict the masses of candidate intermediate mass black holes in almost 50 low-luminosity spheroids containing active galactic nuclei, finding many masses between that of stellar mass black holes and supermassive black holes.

  9. A Solution to the Protostellar Accretion Problem

    OpenAIRE

    Padoan, Paolo; Kritsuk, Alexei; Norman, Michael L.; Nordlund, Ake

    2004-01-01

    Accretion rates of order 10^-8 M_\\odot/yr are observed in young protostars of approximately a solar mass with evidence of circumstellar disks. The accretion rate is significantly lower for protostars of smaller mass, approximately proportional to the second power of the stellar mass, \\dot{M}_accr\\propto M^2. The traditional view is that the observed accretion is the consequence of the angular momentum transport in isolated protostellar disks, controlled by disk turbulence or self--gravity. Ho...

  10. Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl

    Science.gov (United States)

    Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.

    2012-01-01

    Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.

  11. Prompt emission from tidal disruptions of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Laguna P.

    2012-12-01

    Full Text Available We present a qualitative picture of prompt emission from tidal disruptions of white dwarfs (WD by intermediate mass black holes (IMBH. The smaller size of an IMBH compared to a supermassive black hole and a smaller tidal radius of a WD disruption lead to a very fast event with high peak luminosity. Magnetic field is generated in situ following the tidal disruption, which leads to effective accretion. Since large-scale magnetic field is also produced, geometrically thick super-Eddington inflow leads to a relativistic jet. The dense jet possesses a photosphere, which emits quasi-thermal radiation in soft X-rays. The source can be classified as a long low-luminosity gamma-ray burst (ll-GRB. Tidal compression of a WD causes nuclear ignition, which is observable as an accompanying supernova. We suggest that GRB060218 and SN2006aj is such a pair of ll-GRB and supernova. We argue that in a flux-limited sample the disruptions of WDs by IMBHs are more frequent then the disruptions of other stars by IMBHs.

  12. Intermediate L-K molecular orbital radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.H.; Jaeger, H.U.; Richter, H.; Woittennek, H.

    1975-09-01

    The structure of x-ray continua observed recently in violent collisions between intermediate mass atoms can be explained by a superposition of K molecular orbital (KMO) radiation and of an intermediate L-K molecular orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. (author)

  13. Wandering off the centre: a characterization of the random motion of intermediate-mass black holes in star clusters

    Science.gov (United States)

    de Vita, Ruggero; Trenti, Michele; MacLeod, Morgan

    2018-04-01

    Despite recent observational efforts, unequivocal signs for the presence of intermediate-mass black holes (IMBHs) in globular clusters (GCs) have not been found yet. Especially when the presence of IMBHs is constrained through dynamical modelling of stellar kinematics, it is fundamental to account for the displacement that the IMBH might have with respect to the GC centre. In this paper, we analyse the IMBH wandering around the stellar density centre using a set of realistic direct N-body simulations of star cluster evolution. Guided by the simulation results, we develop a basic yet accurate model that can be used to estimate the average IMBH radial displacement (〈rbh〉) in terms of structural quantities as the core radius (rc), mass (Mc), and velocity dispersion (σc), in addition to the average stellar mass (mc) and the IMBH mass (Mbh). The model can be expressed by the equation /r_c=A(m_c/M_bh)^α [σ _c^2r_c/(GM_c)]^β, in which the free parameters A, α, and β are calculated through comparison with the numerical results on the IMBH displacement. The model is then applied to Galactic GCs, finding that for an IMBH mass equal to 0.1 per cent of the GC mass, the typical expected displacement of a putative IMBH is around 1 arcsec for most Galactic GCs, but IMBHs can wander to larger angular distances in some objects, including a prediction of a 2.5 arcsec displacement for NGC 5139 (ω Cen), and >10 arcsec for NGC5053, NGC6366, and ARP2.

  14. FRAGMENTATION OF MOLECULAR CLUMPS AND FORMATION OF A PROTOCLUSTER

    International Nuclear Information System (INIS)

    Zhang, Qizhou; Lu, Xing; Wang, Ke; Jiménez-Serra, Izaskun

    2015-01-01

    Sufficiently massive clumps of molecular gas collapse under self-gravity and fragment to spawn a cluster of stars that have a range of masses. We investigate observationally the early stages of formation of a stellar cluster in a massive filamentary infrared dark cloud, G28.34+0.06 P1, in the 1.3 mm continuum and spectral line emission using the Atacama Large Millimeter/Submillimeter Array. Sensitive continuum data reveal further fragmentation in five dusty cores at a resolution of several 10 3 AU. Spectral line emission from C 18 O, CH 3 OH, 13 CS, H 2 CO, and N 2 D + is detected for the first time toward these dense cores. We found that three cores are chemically more evolved as compared with the other two; interestingly, though, all of them are associated with collimated outflows as suggested by evidence from the CO, SiO, CH 3 OH, H 2 CO, and SO emission. The parsec-scale kinematics in exhibit velocity gradients along the filament, consistent with accretion flows toward the clumps and cores. The moderate luminosity and the chemical signatures indicate that the five cores harbor low- to intermediate-mass protostars that likely become massive ones at the end of the accretion. Despite the fact that the mass limit reached by the dust continuum sensitivity is 30 times lower than the thermal Jeans mass, there is a lack of a distributed low-mass protostellar population in the clump. Our observations indicate that in a protocluster, low-mass stars form at a later stage after the birth of more massive protostars

  15. Arctic Intermediate Water in the Nordic Seas, 1991-2009

    Science.gov (United States)

    Jeansson, Emil; Olsen, Are; Jutterström, Sara

    2017-10-01

    The evolution of the different types of Arctic Intermediate Water (AIW) in the Nordic Seas is evaluated and compared utilising hydro-chemical data from 1991 to 2009. It has been suggested that these waters are important components of the Norwegian Sea Arctic Intermediate Water (NSAIW), and of the dense overflows to the North Atlantic. Thus, it is important to understand how their properties and distribution vary with time. The AIWs from the Greenland and Iceland Seas, show different degrees of variability during the studied period; however, only the Greenland Sea Arctic Intermediate Water (GSAIW) shows an increasing temperature and salinity throughout the 2000s, which considerably changed the properties of this water mass. Optimum multiparameter (OMP) analysis was conducted to assess the sources of the NSAIW. The analysis shows that the Iceland Sea Arctic Intermediate Water (ISAIW) and the GSAIW both contribute to NSAIW, at different densities corresponding to their respective density range. This illustrates that they flow largely isopycnally from their source regions to the Norwegian Sea. The main source of the NSAIW, however, is the upper Polar Deep Water, which explains the lower concentrations of oxygen and chlorofluorocarbons, and higher salinity and nutrient concentrations of the NSAIW layer compared with the ISAIW and GSAIW. This shows how vital it is to include chemical tracers in any water mass analysis to correctly assess the sources of the water mass being studied.

  16. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  17. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  18. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan

    2017-08-04

    Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.

  19. NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA

    International Nuclear Information System (INIS)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-01-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam –1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ☉ . These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs ∼> 1000 M ☉ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  20. No Evidence for Intermediate-mass Black Holes in Globular Clusters: Strong Constraints from the JVLA

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-05-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam-1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ⊙. These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs >~ 1000 M ⊙ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  1. Small scale kinematics of massive star-forming cores

    NARCIS (Netherlands)

    Wang, Kuo-Song

    2013-01-01

    Unlike the formation of Solar-type stars, the formation of massive stars (M>8 Msun) is not yet well understood. For Solar-type protostars, the presence of circumstellar or protoplanetary disks which provide a path for mass accretion onto protostars is well established. However, to date only few

  2. X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. II. X-RAY-BRIGHT ACCRETION AND POSSIBLE EVIDENCE FOR SLIM DISKS

    International Nuclear Information System (INIS)

    Desroches, Louis-Benoit; Greene, Jenny E.; Ho, Luis C.

    2009-01-01

    We present X-ray properties of optically selected intermediate-mass (∼10 5 -10 6 M sun ) black holes (BHs) in active galactic nuclei (AGNs), using data from the Chandra X-Ray Observatory. Our observations are a continuation of a pilot study by Greene and Ho. Of the eight objects observed, five are detected with X-ray luminosities in the range L 0.5-2keV = 10 41 -10 43 erg s -1 , consistent with the previously observed sample. Objects with enough counts to extract a spectrum are well fit by an absorbed power law. We continue to find a range of soft photon indices 1 s -Γ s , consistent with previous AGN studies, but generally flatter than other narrow-line Seyfert 1 active nuclei (NLS1s). The soft photon index correlates strongly with X-ray luminosity and Eddington ratio, but does not depend on BH mass. There is no justification for the inclusion of any additional components, such as a soft excess, although this may be a function of the relative inefficiency of detecting counts above 2 keV in these relatively shallow observations. As a whole, the X-ray-to-optical spectral slope α ox is flatter than in more massive systems, even other NLS1s. Only X-ray-selected NLS1s with very high Eddington ratios share a similar α ox . This is suggestive of a physical change in the accretion structure at low masses and at very high accretion rates, possibly due to the onset of slim disks. Although the detailed physical explanation for the X-ray loudness of these intermediate-mass BHs is not certain, it is very striking that targets selected on the basis of optical properties should be so distinctly offset in their broader spectral energy distributions.

  3. The Metallicity Evolution of Blue Compact Dwarf Galaxies from the Intermediate Redshift to the Local Universe

    Science.gov (United States)

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  4. Emsission of intermediate mass fragments in the p(1.9 GeV)+natNI reaction

    International Nuclear Information System (INIS)

    Bubak, A.

    2004-06-01

    The emission of the intermediate mass fragments (IMFs; 2 ≤ Z ≤ 14) produced in the interaction of 1.9 GeV protons with nickel ( nat Ni) has been a subject of interest of the present study. Energy spectra of isotopically and elementally identified ejectiles have been measured at angles 15 and 120 with the respect to the beam direction. The identification of the emitted IMFs has been performed by means of the Bragg curve spectroscopy and the time-of-flight technique (TOF). The Bragg curve detectors (BCDs) were employed for the charge identification, whereas the TOF method combined with the BCD, for the mass identification. The main task of the present PhD thesis was to built appropriate data acquisition system, to perform the experiment on the internal beam of the COSY accelerator, to propose the methodology of the off-line analysis of the data, to apply it to the event-by-event stored data, and to perform the phenomenological analysis of the obtained data. The results, experimental procedures, and different techniques of the element and isotope identification by means of the BCD + TOF are presented. The determination of the power law parameter τ characterizing the mass and charge distributions of the reaction products is discussed. Various methods of the nuclear matter temperature determination, the comparison between nuclear matter thermometers, and the discussion of the obtained results, shown in the energy-temperature diagram (the so called caloric curve), are presented as well. The results suggest two different mechanisms of the IMFs production: from the equilibrated (IMFs measured at 120 ), and non-equilibrated (IMFs measured at 15 ) state of the nucleus. (orig.)

  5. COMBINED ANALYSIS OF IMAGES AND SPECTRAL ENERGY DISTRIBUTIONS OF TAURUS PROTOSTARS

    International Nuclear Information System (INIS)

    Gramajo, Luciana V.; Gomez, Mercedes; Whitney, Barbara A.; Robitaille, Thomas P.

    2010-01-01

    We present an analysis of spectral energy distributions (SEDs), near- and mid-infrared images, and Spitzer spectra of eight embedded Class I/II objects in the Taurus-Auriga molecular cloud. The initial model for each source was chosen using the grid of young stellar objects (YSOs) and SED fitting tool of Robitaille et al. Then the models were refined using the radiative transfer code of Whitney et al. to fit both the spectra and the infrared images of these objects. In general, our models agree with previous published analyses. However, our combined models should provide more reliable determinations of the physical and geometrical parameters since they are derived from SEDs, including the Spitzer spectra, covering the complete spectral range; and high-resolution near-infrared and Spitzer IRAC images. The combination of SED and image modeling better constrains the different components (central source, disk, envelope) of the YSOs. Our derived luminosities are higher, on average, than previous estimates because we account for the viewing angles (usually nearly edge-on) of most of the sources. Our analysis suggests that the standard rotating collapsing protostar model with disks and bipolar cavities works well for the analyzed sample of objects in the Taurus molecular cloud.

  6. Dense Molecular Gas Around Protostars and in Galactic Nuclei European Workshop on Astronomical Molecules 2004

    CERN Document Server

    Baan, W A; Langevelde, H J

    2004-01-01

    The phenomena observed in young stellar objects (YSO), circumstellar regions and extra-galactic nuclei show some similarity in their morphology, dynamical and physical processes, though they may differ in scale and energy. The European Workshop on Astronomical Molecules 2004 gave astronomers a unique opportunity to discuss the links among the observational results and to generate common interpretations of the phenomena in stars and galaxies, using the available diagnostic tools such as masers and dense molecular gas. Their theoretical understanding involves physics, numerical simulations and chemistry. Including a dozen introductory reviews, topics of papers in this book also cover: maser and dense gas diagnostics and related phenomena, evolution of circumstellar regions around protostars, evolution of circumnuclear regions of active galaxies, diagnostics of the circumnuclear gas in stars and galactic nuclei. This book summarizes our present knowledge in these topics, highlights major problems to be addressed...

  7. Search for ternary fragmentation in the reaction 856 MeV 98Mo + 51V: Kinematic probing of intermediate-mass-fragment emissions

    International Nuclear Information System (INIS)

    Vardaci, Emanuele; Kaplan, Morton; Parker, Winifred E.; Moses, David J.; Boger, J.T.; Gilfoyle, G.T.; McMahan, M.A.; Montoya, M.

    2000-05-01

    A new technique has been applied to coincidence measurements between fission fragments (FF) and intermediate mass fragments (IMF) emitted from the composite system 149 65 Tb at an excitation energy of 224 MeV. The method permits simultaneous observation of IMF emissions along and normal to the FF separation axes. For the integrated total of 0.10 +-0.02 IMF emitted per fission, we find no significant correlation with FF direction, suggesting that IMFs associated with fission reactions are predominantly emitted from the system prior to fission

  8. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  9. VLA Ammonia Observations of IRAS 16253-2429: A Very Young and Low Mass Protostellar System

    Science.gov (United States)

    Wiseman, Jennifer J.

    2011-01-01

    IRAS l6253-2429. the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source as possibly one of the youngest and lowest mass sources in formation yet known.

  10. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  11. CCS Observations of the Protostellar Envelope of B335

    Science.gov (United States)

    Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.

    1995-01-01

    Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.

  12. Protoplanetary disks around intermediate-mass stars: the asset of imaging in the mid-infrared

    International Nuclear Information System (INIS)

    Doucet, Coralie

    2006-01-01

    The accrued efficiency of the instruments in many wavelengths has allowed to show that most young stellar objects were surrounded by circumstellar matter distributed in a disk. Direct imaging of such systems is very difficult because of their narrow angular size and their weak luminosity in comparison with the star. Nowadays, 50 % of low-mass pre-main sequence stars, i.e. T Tauri stars, are surrounded by a disk. This proportion is less obvious for intermediate-mass stars, like Herbig Ae stars, that are less numerous and whose direct disk detection is more difficult. Until now, only the interpretation of the Spectral Energy Distribution (SED) of such objects allows to have access to the geometry of the disk. But the solutions are degenerated and several parameters fit the same SED. It is essential to have direct images of the objects, the only evidence of the presence of disks. This PhD allows to show that mid-infrared imaging could rise a part of the degeneracy of the disk's parameters linked to the fit of the SED for several objects and gives constraints on the minimum external radius and inclination of the disk. We present a new observation mode with VISIR, the mid-infrared imager and spectrometer on the VLT (ESO, Chile): the so-called BURST mode. This mode allows to reach the diffraction limit of the telescope. Thanks to mid-infrared imaging with this instrument, we were able, for the first time, to have access to the geometry of a disk (flared structure) around a massive star that was, until now, only deduced from the SED modelling. (author) [fr

  13. Chemical and Physical Picture of IRAS 16293–2422 Source B at a Sub-arcsecond Scale Studied with ALMA

    Science.gov (United States)

    Oya, Yoko; Moriwaki, Kana; Onishi, Shusuke; Sakai, Nami; López–Sepulcre, Ana; Favre, Cécile; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Lefloch, Bertrand; Yamamoto, Satoshi

    2018-02-01

    We have analyzed the OCS, H2CS, CH3OH, and HCOOCH3 data observed toward the low-mass protostar IRAS 16293–2422 Source B at a sub-arcsecond resolution with ALMA. A clear chemical differentiation is seen in their distributions; OCS and H2CS are extended with a slight rotation signature, while CH3OH and HCOOCH3 are concentrated near the protostar. Such a chemical change in the vicinity of the protostar is similar to the companion (Source A) case. The extended component is interpreted by the infalling-rotating envelope model with a nearly face-on configuration. The radius of the centrifugal barrier of the infalling-rotating envelope is roughly evaluated to be (30–50) au. The observed lines show the inverse P-Cygni profile, indicating the infall motion within a few 10 au from the protostar. The nearly pole-on geometry of the outflow lobes is inferred from the SiO distribution, and thus, the infalling and outflowing motions should coexist along the line of sight to the protostar. This implies that the infalling gas is localized near the protostar and the current launching points of the outflow have an offset from the protostar. A possible mechanism for this configuration is discussed.

  14. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    Energy Technology Data Exchange (ETDEWEB)

    Donato, D.; Troja, E. [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Cenko, S. B.; Fox, O. [Astrophysics Science Division, NASA/GSFC, Mail Code 661, Greenbelt, MD 20771 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Pursimo, T. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Kutyrev, A. [Observational Cosmology Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771-2400 (United States); Campana, S.; Fugazza, D. [Joint Space Science Institute, University of Maryland, College Park, MD 20742 (United States); Landt, H. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Butler, N. R., E-mail: davide.donato-1@nasa.gov [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-02-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10{sup 6} K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M {sub BH}/M {sub ☉}) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  15. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    International Nuclear Information System (INIS)

    Donato, D.; Troja, E.; Cenko, S. B.; Fox, O.; Covino, S.; Pursimo, T.; Cheung, C. C.; Kutyrev, A.; Campana, S.; Fugazza, D.; Landt, H.; Butler, N. R.

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10 6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M BH /M ☉ ) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  16. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    Science.gov (United States)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  17. Intermediate-mass black holes in dwarf galaxies out to redshift ˜ 2.4 in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.

    2018-05-01

    We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.

  18. Measurement of Fragment Mass Distributions in Neutron-induced Fission of {sup 238}U and {sup 232}Th at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Simutkin, V.D. [Uppsala University, P.O Box 525, SE-751 20 Uppsala (Sweden)

    2008-07-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the {sup 238}U(n,f) and {sup 232}Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both {sup 238}U and {sup 232}Th. Up to now, the intermediate energy measurements have been performed for {sup 238}U only, and there are no data for the {sup 232}Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the {sup 232}Th(n,f) and {sup 238}U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  19. Angular distributions of intermediate mass fragments emitted in 30 MeV/u 40Ar induced reactions

    International Nuclear Information System (INIS)

    Gou Quanbu; Zhu Yongtai; Xu Hushan; Wei Zhiyong; Lu Jun; Zhang Yuhu; Wang Qi; Li Songlin; Wu Zhongli

    1999-01-01

    The angular distributions of intermediate mass fragments with charge numbers from 3 to 24 emitted in 30 MeV/u 40 Ar + 58,64 Ni and 115 In reactions over an angular range of 5 degree-140 degree have been measured. In different angular region an exponential distribution function dσ/dΩ = N exp(-θ/α) was used to fit the measured angular distributions. The decay factor α which can be connected with the interaction time τ and the factor N which is related to the intensity of the emission sources have been extracted. The relationship of α(Z) and N(Z) with Z for different reaction systems and different angular regions has been discussed. The different behavior of dσ/dΩ, α(Z), and N(Z) for the three studied reaction systems exists mainly in the middle and backward angular regions. The dependencies of angular distributions on isospin and the size of reaction systems have also been discussed

  20. MULTIWAVELENGTH OBSERVATIONS OF V2775 Ori, AN OUTBURSTING PROTOSTAR IN L 1641: EXPLORING THE EDGE OF THE FU ORIONIS REGIME

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas; Kounkel, Marina [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Tobin, John J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stutz, Amelia M.; Henning, Thomas [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Ali, Babar [NHSC/IPAC/Caltech, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Remming, Ian; Manoj, P. [Department of Physics and Astronomy, 500 Wilson Boulevard, University of Rochester, Rochester, NY 14627 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008, Granada (Spain); Wilson, T. L., E-mail: wfische@utnet.utoledo.edu [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2012-09-01

    Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I {lambda}10830 absorption, strong H{sub 2}O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from the Infrared Telescope Facility, the Two Micron All Sky Survey, the Hubble Space Telescope, Spitzer, the Wide-field Infrared Survey Explorer, Herschel, and the Atacama Pathfinder Experiment that span from 1 to 70 {mu}m pre-outburst and from 1 to 870 {mu}m post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from {approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} to {approx}10{sup -5} M{sub Sun} yr{sup -1} during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L{sub Sun }, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.

  1. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  2. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    Transport and transformation of surface water masses across the Mascarene Plateau during the Northeast Monsoon season. ... Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water ...

  3. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

    2017-04-20

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  4. Towards a dynamical description of intermediate mass fragment formation in heavy-ion collisions at some tens of MeV/A

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly remind the possible dynamical scenario of fragments formation in central heavy-ion collisions at some tens of MeV/A. We discuss how present day dynamical models can describe fragment formation. We show that particle methods provide a reasonable solution of Boltzman-like equations. We next turn to the Boltzmann-Langevin formalism which gives a well defined framework for the understanding of Intermediate Mass Fragments formation. We present a first numerical solution of this equation and show the importance of fluctuations in the dynamics of the collision. We finally apply the formalism to the onset of multifragmentation in the 40 Ca + 40 Ca system between 20 and 60 MeV/A beam energy

  5. Experimental determination of primary and intermediate ions in a flame front

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.B.; Fialkov, B.S.

    1988-10-01

    A procedure is described for determining the primary and intermediate ions in the front of a flame rarefied using mass spectrometry. By using the method proposed here, primary CHO(+) and CHO2(+) ions as well as a series of short-lived intermediate ions have been identified. The possibility of using this method for obtaining quantitative data on the characteristic lifetimes of ions and rate constants of ion-molecular reactions in flames is demonstrated. 16 references.

  6. Review of Global Ocean Intermediate Water Masses: 1.Part A,the Neutral Density Surface (the 'McDougall Surface') as a Study Frame for Water-Mass Analysis

    Institute of Scientific and Technical Information of China (English)

    Yuzhu You

    2006-01-01

    This review article commences with a comprehensive historical review of the evolution and application of various density surfaces in atmospheric and oceanic studies.The background provides a basis for the birth of the neutral density idea.Attention is paid to the development of the neutral density surface concept from the nonlinearity of the equation of state of seawater.The definition and properties of neutral density surface are described in detail as developed from the equations of state of seawater and the buoyancy frequency when the squared buoyancy frequency N2 is zero, a neutral state of stability.In order to apply the neutral density surface to intermediate water-mass analysis, this review also describes in detail its practical oceanographic application.The mapping technique is focused for the first time on applying regularly gridded data in this review.It is reviewed how a backbone and ribs framework was designed to flesh out from a reference cast and first mapped the global neutral surfaces in the world's oceans.Several mapped neutral density surfaces are presented as examples for each world ocean.The water-mass property is analyzed in each ocean at mid-depth.The characteristics of neutral density surfaces are compared with those of potential density surfaces.

  7. The spectral appearance of solar-type collapsing protostellar clouds

    International Nuclear Information System (INIS)

    Bertout, C.; Yorke, H.W.

    1978-04-01

    In this paper, we review the spectral properties of collapsing protostellar clouds, based on radiative transfer computations in hydrodynamic protostar models. In the first section, the basic results of protostar evolution computations in spherically symmetric and axially symmetry geometries, as they pertain to the appearance of protostars, are briefly reviewed. In the second section, we discuss the continuum appearance of spherically symmetric protostars with various masses. Also, we present recent results for the continuum appearance of an axially symmetric protostellar cloud. The third section deals with the line formation problem and describes preliminary results for a OH molecule in an axially symmetric collapsing cloud. Then we review recent theoretical and observational results obtained for the last evolutionary phase of protostars, known as the YY Orionis phase, when the stellar core first becomes visible in the optical range. Some of the new results and conclusions presented here can be summarized as follows: Rotating collapsing clouds are in general less luminous and cooler than corresponding non-rotating clouds - due to the longer evolutionary time scale. Nevertheless, high resolution studies (resolution [de

  8. RESOLVING THE CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR DRIVING THE HH 80-81 JET

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Gonzalez, Carlos [Max-Planck-Institut fuer Radioastronomie (MPIfR), Auf dem Huegel 69, 53121 Bonn (Germany); Galvan-Madrid, Roberto [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching (Germany); Anglada, Guillem; Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); D' Alessio, Paola; Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacan (Mexico); Hofner, Peter [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Linz, Hendrik [Max-Planck-Institut fuer Astronomie (MPIA), Koenigstuhl 17, 69117 Heidelberg (Germany); Araya, Esteban D., E-mail: carrasco@mpifr-bonn.mpg.de [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States)

    2012-06-20

    We present new high angular resolution observations toward the driving source of the HH 80-81 jet (IRAS 18162-2048). Continuum emission was observed with the Very Large Array at 7 mm and 1.3 cm, and with the Submillimeter Array at 860 {mu}m, with angular resolutions of {approx}0.''1 and {approx}0.''8, respectively. Submillimeter observations of the sulfur oxide (SO) molecule are reported as well. At 1.3 cm the emission traces the well-known radio jet, while at 7 mm the continuum morphology is quadrupolar and seems to be produced by a combination of free-free and dust emission. An elongated structure perpendicular to the jet remains in the 7 mm image after subtraction of the free-free contribution. This structure is interpreted as a compact accretion disk of {approx}200 AU radius. Our interpretation is favored by the presence of rotation in our SO observations observed at larger scales. The observations presented here add to the small list of cases where the hundred-AU scale emission from a circumstellar disk around a massive protostar has been resolved.

  9. Multiple Stars Across the H-R Diagram

    CERN Document Server

    Hubrig, Swetlana; Tokovinin, Andrei; Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005

    2008-01-01

    Stars show a marked tendency to be in systems of different multiplicity, ranging from simple binaries and triples to globular clusters with several 10,000's of stars. The formation and evolution of multiple systems remains a challenging part of astrophysics, and the contributions in this book report on the significant progress that had been made in this research field in the last years. The reader will find a variety of research topics addressed, such as the dynamical evolution in multiple stars, the effects of the environment on multiple system parameters, stellar evolution within multiple stars, multiplicity of massive stars, pre-main sequence and intermediate mass stars, multiplicity of low-mass stars from embedded protostars to open clusters, and brown dwarfs and extrasolar planets in multiples. This book presents the proceedings of the ESO Workshop on Multiple Stars across the H-R Diagram held in the summer of 2005.

  10. Dynamics of light, intermediate, heavy and superheavy nuclear ...

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a com- pound nucleus ...

  11. Methanol maps of low-mass protostellar systems

    DEFF Research Database (Denmark)

    Kristensen, L. E.; van Dishoeck, E. F.; van Kempen, T. A.

    2010-01-01

    shows that strong CO depletion leads to a high gas-phase abundance of CH 3OH not just for the Serpens sources, but also for a larger sample of deeply embedded protostars. Conclusions. The observations illustrate the large-scale, low-level desorption of CH3OH from dust grains, extending out to and beyond...... on grain surfaces and is therefore a clean tracer of surface chemistry. Aims. Determining the physical and chemical structure of low-mass, young stellar objects, in particular the abundance structure of CH3OH, to investigate where and how CH3OH forms and how it is eventually released back to the gas phase...... source. None of the Serpens Class 0 sources show the high-K lines seen in several other Class 0 sources. The abundance is typically 10-9-10-8 with respect to H2 in the outer envelope, whereas "jumps" by factors of up to 102-103 inside the region where the dust temperature exceeds 100 K are not excluded...

  12. N-body modeling of globular clusters: detecting intermediate-mass black holes by non-equipartition in HST proper motions

    Science.gov (United States)

    Trenti, Michele

    2010-09-01

    Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in

  13. Oxidative demethylation of lanosterol in cholesterol biosynthesis: accumulation of sterol intermediates

    International Nuclear Information System (INIS)

    Shafiee, A.; Trzaskos, J.M.; Paik, Y.K.; Gaylor, J.L.

    1986-01-01

    With [ 3 H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1 H-NMR, and infrared spectroscopy of the isolated sterols

  14. On protostellar evolution

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Tarter, C.B.

    1975-01-01

    An investigation of the evolution of spherically symmetric protostars with initial masses in the range 0.1less than or equal toM/M/sub sun/less than or equal to50 has been carried out. In order to perform the calculations, a numerical technique has been developed in which rapid dynamical motions in one region of the star and quasi-static evolution in another region can be simultaneously computed. The general evolutionary features are similar to those found by other workers: an initial free-fall collapse is followed by the creation of a core in hydrostatic equilibrium, and the core's subsequent accretion of the surrounding envelope. However, our final hydrostatic-equilibrium configurations have radii large compared with those of the protostellar models of Larson (but in reasonable agreement with those of conventional pre-main-sequence models). For low-mass protostars (Mless than or equal toM/sub sun/) the luminosity remains relatively small until late evolutionary times and the evolution is very sensitive to the treatment of convective energy transport. For large-mass protostars (Mgreater than or equal to3M/sub sun/) a convective phase never exists, and a fraction (increasing with mass) of the initial mass is ejected by the combined effects of heating and radiation pressure in the envelope

  15. Model of cosmology and particle physics at an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Di Clemente, V.; King, S. F.

    2005-01-01

    We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M * ∼10 13 GeV by four independent pieces of physics: electroweak symmetry breaking; the μ parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance

  16. The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range

    Science.gov (United States)

    Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.

    2013-08-01

    Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. Aims: A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. Methods: We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. Results: We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. Conclusions: We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L⊙ luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. Appendix A is available in electronic form at http://www.aanda.org

  17. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  18. Burn out or fade away? On the X-ray and magnetic death of intermediate mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Kashyap, Vinay; Günther, H. Moritz; Wright, Nicholas J. [Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138 (United States); Braithwaite, Jonathan, E-mail: jdrake@cfa.harvard.edu [Argelander Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-05-10

    The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20 ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was L{sub X} ≤ 1.3 × 10{sup 27} erg s{sup –1}. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionization of helium could host a dynamo that should be effective throughout the main sequence but can only produce X-ray luminosities of the order 10{sup 25} erg s{sup –1}. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.

  19. REVERBERATION MAPPING OF THE INTERMEDIATE-MASS NUCLEAR BLACK HOLE IN SDSS J114008.71+030711.4

    International Nuclear Information System (INIS)

    Rafter, Stephen E.; Kaspi, Shai; Behar, Ehud; Kollatschny, Wolfram; Zetzl, Matthias

    2011-01-01

    We present the results of a reverberation mapping (RM) campaign on the black hole (BH) associated with the active galactic nucleus (AGN) in SDSS J114008.71+030711.4 (hereafter GH08). This object is selected from a sample of 19 candidate intermediate-mass BHs (M BH 6 M sun ) found by Greene and Ho in the Sloan Digital Sky Survey. We used the Hobby-Eberly Telescope to obtain 30 spectra over a period of 178 days in an attempt to resolve the reverberation time lag (τ) between the continuum source and the broad-line region (BLR) in order to determine the radius of the BLR (R BLR ) in GH08. We measure τ to be two days with an upper limit of six days. We estimate the AGN luminosity at 5100 Å to be λL 5100 ≈ 1.1 × 10 43 erg s –1 after deconvolution from the host galaxy. The most well-calibrated R BLR –L relation predicts a time lag that is four times larger than what we measure. Using the measured Hβ full width at half-maximum of 703 ± 110 km s –1 and an upper limit for R BLR =6 light days, we find M BH ∼ 5 M sun as an upper limit to the BH virial mass in GH08, which implies super-Eddington accretion. Based on our measured M BH we propose that GH08 may be another candidate to add to the very short list of AGNs with M BH 6 M sun determined using RM.

  20. Formation rate of water masses in the Japan Sea

    International Nuclear Information System (INIS)

    Kawamura, Hideyuki; Ito, Toshimichi; Yoon, Jong-Hwan

    2007-01-01

    Water masses in the subsurface and the intermediate layer are actively formed due to strong winter convection in the Japan Sea. It is probable that some fraction of pollution is carried into the layer below the sea surface together with these water masses, so it is important to estimate the formation rate and turnover time of water masses to study the fate of pollutants. The present study estimates the annual formation rate and the turnover time of water masses using a three-dimensional ocean circulation model and a particle chasing method. The total annual formation rate of water masses below the sea surface amounted to about 3.53±0.55 Sv in the Japan Sea. Regarding representative intermediate water masses, the annual formation rate of the Upper portion of the Japan Sea Proper Water (UJSPW) and the Japan Sea Intermediate Water (JSIW) were estimated to be about 0.38±0.11 and 1.43±0.16 Sv, respectively, although there was little evidence of the formation of deeper water masses below a depth of about 1500 m in a numerical experiment. An estimate of turnover time shows that the UJSPW and the JSIW circulate in the intermediate layer of the Japan Sea with timescales of about 22.1 and 2.2 years, respectively. (author)

  1. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  2. An intermediate-mass black hole in the darf galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    2005-01-01

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  3. An Intermediate-Mass Black Hole in the Dwarf Galaxy Pox 52

    Science.gov (United States)

    Barth, Aaron

    Do dwarf elliptical and dwarf spiral galaxies contain central black holes with masses below 106 solar masses? Beyond the Local Group dynamical searches for black holes in this mass range are very difficult but the detection of accretion-powered nuclear activity could be used to infer the presence of a black hole. The nearby dwarf spiral galaxy NGC 4395 hosts a faint Seyfert 1 nucleus with a likely black hole mass in the range 104-105 solar masses and for more than a decade it has been the only known example of a Seyfert 1 nucleus in a dwarf galaxy. I will present new Keck spectra of the dwarf galaxy POX 52 which demonstrate that it has a Seyfert 1 spectrum nearly identical to that of NGC 4395. Its velocity dispersion is 37 km/s suggesting a possible black hole mass of order 105 solar masses. I will discuss the prospects for systematic searches for nuclear activity in dwarf galaxies and the implications for black hole demographics.

  4. Emission of intermediate mass fragments in the heavy ion interaction of (14.0 MeV/u) Pb+Au

    International Nuclear Information System (INIS)

    Khan, E.U.; Qureshi, I.E.; Shahzad, M.I.; Khattak, F.N.; Khan, H.A.

    2001-01-01

    We have studied the heavy ion interactions of (14.0 MeV/u) Pb + Au using two threshold detectors, mica and CN-85. A thin layer of Au was deposited on each of the three mica and two CN-85 detector pieces. These target-detector assemblies were exposed to a beam of 14.0 MeV/u Pb ions having the fluence of 1.5x10 6 cm 2 at GSI, Darmstadt, Germany. After removing the target material and etching the samples in appropriate etchants, we scanned 32.29 cm 2 and 24.97 cm 2 area of mica and CN-85, respectively. Based on the observed number of events of various multiplicities, we have determined the total as well as partial experimental reaction cross-sections. It is shown that a significant number of intermediate mass fragments are emitted along with the heavy fragments in the present reaction

  5. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    International Nuclear Information System (INIS)

    Davidson, J. A.; Li, Z.-Y.; Hull, C. L. H.; Plambeck, R. L.; Kwon, W.; Crutcher, R. M.; Looney, L. W.; Novak, G.; Chapman, N. L.; Matthews, B. C.; Stephens, I. W.; Tobin, J. J.; Jones, T. J.

    2014-01-01

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse

  6. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: jackie.davidson@uwa.edu.au [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2014-12-20

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

  7. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Science.gov (United States)

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  8. Chiral analysis of bambuterol, its intermediate and active drug in human plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study.

    Science.gov (United States)

    Zhou, Ting; Liu, Shan; Zhao, Ting; Zeng, Jing; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-08-01

    A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous chiral analysis of an antiasthma drug bambuterol, its key intermediate monocarbamate bambuterol and its active drug terbutaline in human plasma. All samples were extracted with ethyl acetate and separated on an Astec Chirobiotic T column under isocratic elution with a mobile phase consisting of methanol and water with the addition of 20mm ammonium acetate and 0.005% (v/v) formic acid at 0.6mL/min. The analytes were detected by a Xevo TQ-S tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method has high sensitivity with the lower limit of quantifications of 25.00pg/mL for bambuterol enantiomers, and 50.00pg/mL for monocarbamate bambuterol and terbutaline enantiomers, respectively. The calibration curves for bambuterol enantiomers were linear in the range of 25.00-2500pg/mL, and for monocarbamate bambuterol and terbutaline enantiomers were linear in the range of 50.00-5000pg/mL. The intra- and inter-day precisions were <12.4%. All the analytes were separated in 18.0min. For the first time, the validated method was successfully applied to an enantioselective pharmacokinetic study of rac-bambuterol in 8 healthy volunteers. According to the results, this chiral LC-MS/MS assay provides a suitable and robust method for the enantioselectivity and interaction study of the prodrug bambuterol, the key intermediate monocarbamate bambuterol and its active drug terbutaline in human. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    Science.gov (United States)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  10. Experimental study on the performance of the vapor injection refrigeration system with an economizer for intermediate pressures

    Science.gov (United States)

    Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk

    2018-04-01

    In this study, to investigate the performance characteristics of vapor injection refrigeration system with an economizer at an intermediate pressure, the vapor injection refrigeration system was analyzed under various experiment conditions. As a result, the optimum design data of the vapor injection refrigeration system with an economizer were obtained. The findings from this study can be summarized as follows. The mass flow rate through the compressor increases with intermediate pressure. The compression power input showed an increasing trend under all the test conditions. The evaporation capacity increased and then decreased at the intermediate pressure, and as such, it became maximum at the given intermediate pressure. The increased mass flow rate of the by-passed refrigerant enhanced the evaporation capacity at the low medium pressure range, but the increased saturation temperature limited the subcooling degree of the liquid refrigerant after the application of the economizer when the intermediate pressure kept rising, and degenerated the evaporation capacity. The coefficient of performance (COP) increased and then decreased with respect to the intermediate pressures under all the experiment conditions. Nevertheless, there was an optimum intermediate pressure for the maximum COP under each experiment condition. Therefore, the optimum intermediate pressure in this study was found at -99.08 kPa, which is the theoretical standard medium pressure under all the test conditions.

  11. New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.

    Science.gov (United States)

    Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph

    2013-05-31

    An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties.

  12. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    International Nuclear Information System (INIS)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-01-01

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process

  13. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xiong, Wei [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Hongrong [College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081 (China); Huang, Xiaojun; Ji, Gang; Sun, Fei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Zheng, Congyi, E-mail: cctcc202@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Zhu, Ping, E-mail: zhup@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  14. Clinical impact of body mass index on prostate biopsy in patients with intermediate PSA levels

    International Nuclear Information System (INIS)

    Sekita, Nobuyuki; Chin, Kensei; Fujimura, Masaaki; Mikami, Kazuo; Suzuki, Hiroyoshi; Kamijima, Shuichi

    2008-01-01

    From April 2005 to September 2007, 480 patients underwent transrectal prostate biopsy at our institution. The clinical data including age, serum prostate specific antigen (PSA) level, prostate volume and body mass index (BMI) were obtained, and the cancer detection rates and pathological findings were evaluated in 305 cases with a PSA concentration of 4.0 to 10.0 ng/ml. Prostate volume was calculated from magnetic resonance imaging (MRI) findings. The 305 patients were categorized according to their BMI into three groups (normal, less than 22 kg/m 2 ; overweight, 22-25 kg/m 2 ; and obese, more than 25 kg/m 2 ). Cancer detection rates and histopathologic findings were compared between the groups. Multivariate logistic regression analysis was also performed. Prostate cancer was detected in 127 patients. No significant differences in BMI were observed between biopsy-positive and biopsy-negative cases (p=0.965), and the detection rates of prostate cancer observed in the three groups were not significantly different. There was a significant association between BMI and the findings of high Gleason score (more than 4+3) (p=0.048). BMI was not a contributory factor of prostate cancer detection for cases with intermediate PSA levels; however, patients with high BMI may have high-grade malignancy features. (author)

  15. Intermediate vector-boson properties at the CERN super proton synchrotron collider

    International Nuclear Information System (INIS)

    Arnison, A; Albrow, M.G.; Allkofer, O.C.; Astbury, A.; Aubert, B.; Bacci, C.; Batley, J.R.; Bauer, G.; Bettini, A.; Bezaguet, A.; Bock, R.K.; Brena, C.; Buckley, E.; Bunn, J.; Busetto, G.; Catz, P.; Cennini, P.; Centro, S.; Ceradini, F.; Ciapetti, G.; Ciottolin, S.; Cline, D.; Cochet, C.; Colas, J.; Colas, P.; Corden, M.; Cox, G.; Dallman, D.; Dau, D.; DeBeer, M.; De Giorgi, M.; Della Negra, M.; Demoulin, M.; Denby, E.; Denegri, D.; Di Ciaccio, A.; Dobrzynski, L.; Dorenbosch, J.; Dowell, J.D.; Duchovni, E.; Edgecock, R.; Eggert, K.; Eisenhandler, E.; Ellis, N.; Erhard, P.; Faissner, H.; Fincke Keeler, M.; Flynn, P.; Fontaine, G.; Frey, R.; Fruehwirth, R.; Garvey, J.; Geer, S.; Ghesquiere, C.; Ghez, P.; Ghio, F.; Gibson, W.R.; Giradu-Heraud, Y.; Givernaud, A.; Gonidec, A.; Goodman, M.; Grassmann, H.; Grayer, G.; Guryn, W.; Haynes, W.; Hoffmann, H.; Holthuizen, D.J.; Homer, R.J.; Honma, A.; Jank, W.; Jorat, G.; Kalmus, P.I.P.; Karimaeki, V.; Keeler, R.; Kenyon, I.; Kernan, A.; Kinnunen, R.; Kroll, J.; Kryn, D.; Kyberd, P.; Lacava, F.; Laugier, J.P.; Lees, J.P.; Leuchs, R.; Levegrun, S.; Leveque, A.; Levi, M.; Linglin, D.; Locci, E.; Markiewicz, T.; Markytan, M.; Martin, T.; Maurin, G.; McMahon, T.; Mendiburu, J.P.; Meneguzzo, A.; Meyer, O.; Meyer, T.; Minard, M.N.; Mohammadi, M.; Morgan, K.; Moricca, M.; Moser, H.; Mours, B.; Muller, T.; Nandi, A.; Naumann, L.; Norton, A.; Paoluzi, L.; Pascoli, D.; Pauss, F.; Perault, C.; Piano Mortari, G.; Pietarinen, E.; Pimiae, M.; Pitman, D.; Placci, A.; Porte, J.P.; Radermacher, E.; Raja, R.; Ransdell, J.; Redelberger, T.; Reithler, H.; Revol, J.P.; Rijssenbeek, M.; Rohlf, J.; Rossi, P.; Roberts, C.; Rubbia, C.; Sajot, G.; Salvini, G.; Sass, J.; Sadoulet, B.; Savoy-Navarro, A.; Schinzel, D.; Schwartz, A.; Scott, W.; Shah, T.P.; Sheer, I.; Siotis, I.; Smith, D.; Sobie, R.; Stenzler, M.; Strauss, J.; Streets, J.; Stubenrauch, C.; Summers, D.; Sumorok, K.; Szoncso, F.; Tao, C.; Thompson, G.; Tscheslog, E.; Tuominiemi, J.; Eijk, B. van; Verecchia, P.; Vialle, J.P.; Virdee, T.S.; Schmitt, H. von der; Von Schlippe, W.; Vrana, J.; Vuillemin, V.; Wahl, H.D.; Watkins, P.; Wilke, R.; Wilson, J.; Wingerter, I.; Wimpenny, S.J.; Wulz, C.E.; Wyatt, T.; Yvert, M.; Zaganidis, N.; Zanello, L.; Zotto, P.

    1986-01-01

    The properties of a sample of 172 charged intermediate vector bosons decaying in the (eνsub(e)) channel and 16 neutral intermediate vector bosons decaying in the (e + e - ) channel are described. Masses, decay widths, decay angular distributions, and production cross-sections are given; they shown are to be in excellent agreement with the expectations of the SU 2 x U 1 standard model. A limit is put on the number of light-neutrino types Nsub(ν) <= 10 at 90% c.l. (orig.)

  16. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    Science.gov (United States)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  17. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    International Nuclear Information System (INIS)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping

    2017-01-01

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  18. L1188: A Promising Candidate for Cloud–Cloud Collisions Triggering the Formation of Low- and Intermediate-mass Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Fang, Min; Mao, Ruiqing; Zhang, Shaobo; Wang, Yuan; Su, Yang; Chen, Xuepeng; Yang, Ji; Wang, Hongchi; Lu, Dengrong, E-mail: ygong@pmo.ac.cn [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China)

    2017-01-20

    We present a new large-scale (2° × 2°) simultaneous {sup 12}CO, {sup 13}CO, and C{sup 18}O (J = 1–0) mapping of L1188 with the Purple Mountain Observatory 13.7 m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molecular clouds at two clearly separated velocities. Toward the intersection showing large velocity spreads, we find several bridging features connecting the two clouds in velocity, and an open arc structure that exhibits high excitation temperatures, enhanced {sup 12}CO and {sup 13}CO emission, and broad {sup 12}CO line wings. This agrees with the scenario that the two clouds are colliding with each other. The distribution of young stellar object (YSO) candidates implies an enhancement of star formation in the intersection of the two clouds. We suggest that a cloud–cloud collision happened in L1188 about 1 Myr ago, possibly triggering the formation of low- and intermediate-mass YSOs in the intersection.

  19. Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197AU

    International Nuclear Information System (INIS)

    Turzo, K.; Begemann-Blaich, M.L.; Auger, G.

    2003-12-01

    Low-energy π + (E π 12 C+ 197 Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximately isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E p >or ≤ 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R ∼ 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the statistical multifragmentation model are in good agreement with the experimental data. (orig.)

  20. Velocity structure of protostellar envelopes: gravitational collapse and rotation

    International Nuclear Information System (INIS)

    Belloche, Arnaud

    2002-01-01

    Stars form from the gravitational collapse of pre-stellar condensations in molecular clouds. The major aim of this thesis is to compare the predictions of collapse models with observations of both very young (class 0) protostars and starless condensations in millimeter molecular lines. We wish to understand what determines the masses of forming stars and whether the initial conditions have an effect on the dynamical evolution of a condensation. Using a Monte-Carlo radiative transfer code, we analyze rotation and infall spectroscopic signatures to study the velocity structure of a sample of protostellar condensations. We show that the envelope of the class 0 protostar IRAM 04191 in the Taurus molecular cloud is undergoing both extended, subsonic infall and fast, differential rotation. We propose that the inner part of the envelope is a magnetically supercritical core in the process of decoupling from the ambient cloud still supported by the magnetic field. We suggest that the kinematical properties observed for IRAM 04191 are representative of the physical conditions characterizing isolated protostars shortly after point mass formation. On the other hand, a similar study for the pre-stellar condensations of the Rho Ophiuchi proto-cluster yields mass accretion rates that are an order of magnitude higher than in IRAM 04191. This suggests that individual protostellar collapse in clusters is induced by external disturbances. Moreover, we show that the condensations do not have time to orbit significantly through the proto-cluster gas before evolving into protostars and pre-main-sequence stars. This seems inconsistent with models which resort to dynamical interactions and competitive accretion to build up a mass spectrum comparable to the stellar initial mass function. We conclude that protostellar collapse is nearly spontaneous in regions of isolated star formation such as the Taurus cloud but probably strongly induced in proto-clusters. (author) [fr

  1. Mass distributions in nucleon-induced fission at intermediate energies

    CERN Document Server

    Duijvestijn, M C; Hambsch, F J

    2001-01-01

    Temperature-dependent fission barriers and fission-fragment mass distributions are calculated in the framework of the multimodal random neck-rupture model (MM-RNRM). It is shown how the distinction between the different fission modes disappears at higher excitation energies, due to the melting of shell effects. The fission-fragment mass yield calculations are coupled to the nuclear reaction code ALICE-91, which takes into account the competition between the other reaction channels and fission. With the combination of the temperature-dependent MM-RNRM and ALICE-91 nucleon-induced fission is investigated at energies between 10 and 200 MeV for nuclei varying from Au to Am. (72 refs).

  2. Intermediate L-K molecular-orbital radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.H.; Jaeger, H.U.; Richter, H.; Woittennek, H.

    1976-01-01

    The structure of X-ray continua observed recently in violent collisions between mean-mass atoms can be explained by a superposition of K molecular orbital (KMO) radiation and an intermediate L-K molecular orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. (Auth.)

  3. MID Max: LC–MS/MS Method for Measuring the Precursor and Product Mass Isotopomer Distributions of Metabolic Intermediates and Cofactors for Metabolic Flux Analysis Applications

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Young, Jamey D.; Xu, Sibei

    2016-01-01

    The analytical challenges to acquire accurate isotopic data of intracellular metabolic intermediates for stationary, nonstationary, and dynamic metabolic flux analysis (MFA) are numerous. This work presents MID Max, a novel LC–MS/MS workflow, acquisition, and isotopomer deconvolution method for MFA...... that takes advantage of additional scan types that maximizes the number of mass isotopomer distributions (MIDs) that can be acquired in a given experiment. The analytical method was found to measure the MIDs of 97 metabolites, corresponding to 74 unique metabolite-fragment pairs (32 precursor spectra and 42...

  4. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  5. DEEP MIPS OBSERVATIONS OF THE IC 348 NEBULA: CONSTRAINTS ON THE EVOLUTIONARY STATE OF ANEMIC CIRCUMSTELLAR DISKS AND THE PRIMORDIAL-TO-DEBRIS DISK TRANSITION

    International Nuclear Information System (INIS)

    Currie, Thayne; Kenyon, Scott J.

    2009-01-01

    We describe new, deep MIPS photometry and new high signal-to-noise optical spectroscopy of the 2.5 Myr old IC 348 Nebula. To probe the properties of the IC 348 disk population, we combine these data with previous optical/infrared photometry and spectroscopy to identify stars with gas accretion, to examine their mid-IR colors, and to model their spectral energy distributions. IC 348 contains many sources in different evolutionary states, including protostars and stars surrounded by primordial disks, two kinds of transitional disks, and debris disks. Most disks surrounding early/intermediate spectral-type stars (>1.4 M sun at 2.5 Myr) are debris disks; most disks surrounding solar and subsolar-mass stars are primordial disks. At the 1-2 σ level, more massive stars also have a smaller frequency of gas accretion and smaller mid-IR luminosities than lower-mass stars. These trends are suggestive of a stellar mass-dependent evolution of disks, where most disks around high/intermediate-mass stars shed their primordial disks on rapid, 2.5 Myr timescales. The frequency of MIPS-detected transitional disks is ∼15%-35% for stars plausibly more massive than 0.5 M sun . The relative frequency of transitional disks in IC 348 compared to that for 1 Myr old Taurus and 5 Myr old NGC 2362 is consistent with a transition timescale that is a significant fraction of the total primordial disk lifetime.

  6. Misalignment of Magnetic Fields and Outflows in Protostellar Cores

    OpenAIRE

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erika; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.

    2013-01-01

    We present results of λ1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with ~2."5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotati...

  7. Heat and mass transfer analysis intermediate temperature solid oxide fuel cells (IT-SOFC)

    International Nuclear Information System (INIS)

    Timurkutluk, B.; Mat, M. M.; Kaplan, Y.

    2007-01-01

    Solid oxide fuel cells (SOFCs) have been considered as next generation energy conversion system due to their high efficiency, clean and quite operation with fuel flexibility. To date, yittria stabilized zirconia (YSZ) electrolytes have been mainly used for SOFC applications at high temperatures around 1000 degree C because of their high ionic conductivity, chemical stability and good mechanical properties. However, such a high temperature is undesirable for fuel cell operations in the viewpoint of stability. Moreover, high operation temperature necessitates high cost interconnect and seal materials. Thus, the reduction in the operation temperature of SOFCs is one of the key issues in the aspects of the cost reduction and the long term operation without degradation as well as commercialization of the SOFC systems. With the reducing temperature, not only low cost stainless steels and glass materials can be used as interconnect and sealing materials respectively but the manufacturing technology will also extend. Therefore, the design of complex geometrical SOFC component will also be possible. One way to reduce the operation temperature of SOFC is use of an alternative electrolyte material to YSZ showing acceptable properties at intermediate temperatures (600-800 degree C). As being one of IT-SOFC electrolyte materials, gadolinium doped ceria (GDC) has been taken great deals. In this study, a mathematical model for mass and heat transfer for a single cell GDC electrolyte SOFC system was developed and numerical solutions were evaluated. In order to verify the mathematical model, set of experiments were performed by taking species from four different samples randomly and five various temperature measurements. The numerical results reasonably agree with experimental data

  8. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    International Nuclear Information System (INIS)

    Kun, M.; Moór, A.; Wolf-Chase, G.; Apai, D.; Balog, Z.; O’Linger-Luscusk, J.; Moriarty-Schieven, G. H.

    2016-01-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  9. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Wolf-Chase, G. [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Apai, D. [Steward Observatory, 933 N. Cherry Avenue, Tucson, AZ 85719 (United States); Balog, Z. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); O’Linger-Luscusk, J. [On leave from California Institute of Technology, 1200 E. California Avenue, Pasadena, CA 91125 (United States); Moriarty-Schieven, G. H., E-mail: kun@konkoly.hu [National Research Council—Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2016-06-01

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27 flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.

  10. Intermediate treatments

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    Intermediate treatments are those applied after a new stand is successfully established and before the final harvest. These include not only intermediate cuttings - primarily thinning - but also fertilization, irrigation, and protection of the stand from damaging agents.

  11. The formation of massive primordial stars in the presence of moderate UV backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S. [Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Grassi, T. [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen (Denmark); Spaans, M., E-mail: mlatif@astro.physik.uni-goettingen.de [Kapteyn Astronomical Institute, University of Groningen, 9700-AV Groningen (Netherlands)

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  12. Observation of an intermediate state in psi (3684) radiative cascade decay

    International Nuclear Information System (INIS)

    Tanenbaum, W.; Whitaker, J.S.; Abrams, G.S.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Chinowsky, W.; Feldman, G.J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hanson, G.; Hartill, D.L.; Jean-Marie, B.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Luke, D.; Lulu, B.A.; Luth, V.; Lynch, H.L.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Pierre, F.M.; Pun, T.P.; Rapidis, P.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Trilling, G.H.; Vannucci, F.; Winkelmann, F.C.; Wiss, J.E.

    1975-01-01

    We present evidence for the existence of an intermediate state observed in the decay sequence psi(3684) → psi(3095)γγ. The mass of the state is either 3500+-10 or 3270+-10 MeV. The branching fraction of the sequence is (3.6+-0.7)%

  13. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)

    2017-07-20

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  14. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu; Fang, Guanwen

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D n (4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D n (4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models

  15. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fang, Guanwen, E-mail: ljhhw@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D{sub n}(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D{sub n}(4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  16. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  17. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  18. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  19. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  20. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  1. Effects of local mass anomalies in Eoetvoes-like experiments

    International Nuclear Information System (INIS)

    Talmadge, C.; Aronson, S.H.; Fischbach, E.

    1986-01-01

    We consider in detail the effects of local mass anomalies in Eoetvoes-like experiments. It is shown that in the presence of an intermediate-range non-gravitational force, the dominant contributions to both the sign and magnitude of the Eoetvoes anomaly may come from nearby masses and not from the earth as a whole. This observation has important implications in the design and interpretation of future experiments, and in the formulation of unified theories incorporating new intermediate-range forces

  2. The new intermediate long-bursting source XTE J1701-407

    DEFF Research Database (Denmark)

    Falanga, M.; Cumming, A.; Bozzo, E.

    2009-01-01

    functions with e-folding times of tau(1) = 40 +/- 3 s and tau(2) = 221 +/- 9 s. The bursts occurred at a persistent luminosity of L-per = 8.3 x 10(36) erg s(-1) (approximate to 2.2% of the Eddington luminosity). For the intermediate long-burst, the mass accretion rate per unit area onto the neutron star...

  3. Fission of intermediate mass nuclei by photons of stopping radiation in the maximum energy range 0,8 - 1,8 MeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-07-01

    The fission of intermediate mass nuclei in Al - Ta interval, induced by stopping radiation phtons of maximum energies between 0,8 and 1.8 GeV is studied. Nd and Sm thin targets and Al, Ti, Co, Zr, Nb, Ag, In and Ta thick targets were used, considering all peculiarities inherent to absorption of fission fragments in the target. The samples were exposed into the 2.5 GeV Electron Synchrotron in Bonn Univerity. The fission fragment tracks were registered in foil type detectors using mica muscovite for Sm and Nd, CR-39 for Al and Ti and makrofol for Co, Zr; Nb, Ag, In, Nd and Ta. The track length and track depth angle distributions were measured for determining fission efficiencies. The fission cross sections and nuclear fissionable of the studied elements were evaluated. (M.C.K.) [pt

  4. The path of the Levantine intermediate water to the Alboran sea

    Science.gov (United States)

    Font, Jordi

    1987-10-01

    The Levantine Intermediate Water (LIW) traditionally has been assumed to reach the Alboran Sea as a counter-current along the North African coast. Here data are presented that confirm the LIW flow through the sill that separates the Balearic Islands from the mainland, after contouring cyclonically the western Mediterranean along the continental slope. This seems to be a seasonal phenomenon related to the process of deep water formation in the northwestern Mediterranean and to fluctuations in the Ligurian Current. In winter the LIW can circulate across the Catalan Sea without remarkable dilution, while in summer the intermediate outflow has almost lost the LIW water mass characteristics.

  5. Hadron mass corrections in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Accardi, A.; Hobbs, T.; Melnitchouk, W.

    2009-01-01

    We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron h. The hadron mass correction is made by introducing a generalized, finite-Q 2 scaling variable ζ h for the hadron fragmentation function, which approaches the usual energy fraction z h = E h /ν in the Bjorken limit. We systematically examine the kinematic dependencies of the mass corrections to semi-inclusive cross sections, and find that these are even larger than for inclusive structure functions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, Q 2 2 and intermediate x B > 0.3, and will be important to efforts at extracting parton distributions from semi-inclusive processes at intermediate energies.

  6. Abundances in Planetary Nebulae: an Autopsy of Low and Intermediate Mass Stars

    Science.gov (United States)

    Buell, James Francis

    In this work we report on the results of synthetic thermally pulsing asymptotic giant branch models (TP-AGB) and compare the results to the abundance ratios in a sample of planetary nebulae. We use updated the input parameters for mass-loss, the stellar luminosity, and dredge-up. We calculated models with masses between 0.8 solar masses and 8 solar masses. We also calculated models with (Fe/H) between -2.5 and 0.3. The effect of the first, second, and third dredge-up as well as hot-bottom burning are reported on. The analysis of a sample of Galactic bulge and disk planetary nebulae is also reported on.

  7. Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes

    Science.gov (United States)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-11-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.

  8. A grid of one-dimensional low-mass star formation collapse models

    Science.gov (United States)

    Vaytet, N.; Haugbølle, T.

    2017-02-01

    Context. Numerical simulations of star formation are becoming ever more sophisticated, incorporating new physical processes in increasingly realistic set-ups. These models are being compared to the latest observations through state-of-the-art synthetic renderings that trace the different chemical species present in the protostellar systems. The chemical evolution of the interstellar and protostellar matter is very topical, with more and more chemical databases and reaction solvers available online to the community. Aims: The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modelling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. Methods: A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert-like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 M⊙, temperatures of 5-30 K, and radii 3000 ≤ R0 ≤ 30 000 AU. Results: A spread due to differing initial conditions and optical depths, was found in the thermal evolutionary tracks of the runs. Within less than an order of magnitude, all first and second Larson cores had masses and radii essentially independent of the initial conditions. Radial profiles of the gas density, velocity, and temperature were found to vary much more outside of the first core than inside. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years before the onset of

  9. Variable mycorrhizal benefits on the reproductive output of Geranium sylvaticum, with special emphasis on the intermediate phenotype.

    Science.gov (United States)

    Varga, S; Kytöviita, M-M

    2014-03-01

    In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function--seed production--did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Discovery of the weak neutral intermediate vector boson Zsup(O)

    International Nuclear Information System (INIS)

    Kiss, D.

    1983-01-01

    The experimental detection and identification of the theoretically predicted new particle, the neutral intermediate vector boson of weak and electromagnetic interactions are described. Some technical details of the experiment made by CERN group led by C. Rubbia are discussed. The mass and width of Zsup(O) particle are in agreement with theoretical predictions. The importance of the new discovery is emphasized. (D.Gy.)

  11. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    International Nuclear Information System (INIS)

    Mohanty, Subhanjoy; Mortlock, Daniel; Greaves, Jane; Pascucci, Ilaria; Apai, Daniel; Scholz, Aleks; Thompson, Mark; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ∼100 AU for intermediate-mass stars, solar types, and VLMS, and ∼20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ∼ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly

  12. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  13. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-03-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations, from radii of 50 to 1000 au. The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disk size in B335.

  14. Warm water deuterium fractionation in IRAS 16293-2422

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm; Jørgensen, Jes Kristian; van Dishoeck, E. F.

    2013-01-01

    observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low......Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength...... interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large...

  15. RESOLVING THE LUMINOSITY PROBLEM IN LOW-MASS STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Vorobyov, Eduard I., E-mail: michael.dunham@yale.edu, E-mail: eduard.vorobiev@univie.ac.at [Institute of Astronomy, University of Vienna, Vienna 1180 (Austria)

    2012-03-01

    We determine the observational signatures of protostellar cores by coupling two-dimensional radiative transfer calculations with numerical hydrodynamical simulations that predict accretion rates that both decline with time and feature short-term variability and episodic bursts caused by disk gravitational instability and fragmentation. We calculate the radiative transfer of the collapsing cores throughout the full duration of the collapse, using as inputs the core, disk, protostellar masses, radii, and mass accretion rates predicted by the hydrodynamical simulations. From the resulting spectral energy distributions, we calculate standard observational signatures (L{sub bol}, T{sub bol}, L{sub bol}/L{sub smm}) to directly compare to observations. We show that the accretion process predicted by these models reproduces the full spread of observed protostars in both L{sub bol}-T{sub bol} and L{sub bol}-M{sub core} space, including very low luminosity objects, provides a reasonable match to the observed protostellar luminosity distribution, and resolves the long-standing luminosity problem. These models predict an embedded phase duration shorter than recent observationally determined estimates (0.12 Myr versus 0.44 Myr), and a fraction of total time spent in Stage 0 of 23%, consistent with the range of values determined by observations. On average, the models spend 1.3% of their total time in accretion bursts, during which 5.3% of the final stellar mass accretes, with maximum values being 11.8% and 35.5% for the total time and accreted stellar mass, respectively. Time-averaged models that filter out the accretion variability and bursts do not provide as good of a match to the observed luminosity problem, suggesting that the bursts are required.

  16. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  17. Two-loop renormalization group analysis of supersymmetric SO(10) models with an intermediate scale

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; Brahmachari, B.

    1996-03-01

    Two-loop evolutions of the gauge couplings in a class of intermediate scale supersymmetric SO(10) models including the effect of third generation Yukawa couplings are studied. The unification scale, the intermediate scale and the value of the unification gauge coupling in these models are calculated and the gauge boson mediated proton decay rates are estimated. In some cases the predicted proton lifetime turns out to be in the border-line of experimental limit. The predictions of the top quark mass, the mass ratio m b (m b )/m τ (m τ ) from the two-loop evolution of Yukawa couplings and the mass of the left handed neutrino via see-saw mechanism are summarized. The lower bounds on the ratio of the VEVs of the two low energy doublets (tan β) from the requirement of the perturbative unitarity of the top quark Yukawa coupling up to the grand unification scale are also presented. All the predictions have been compared with those of the one-step unified theory. (author). 33 refs, 5 figs, 1 tab

  18. Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale.

    Science.gov (United States)

    Radjenović, Jelena; Sirtori, Carla; Petrović, Mira; Barceló, Damià; Malato, Sixto

    2010-04-01

    In the present study the mechanisms of solar photodegradation of H(2)-receptor antagonist ranitidine (RNTD) were studied in a well-defined system of a pilot plant scale Compound Parabolic Collector (CPC) reactor. Two types of heterogeneous photocatalytic experiments were performed: catalysed by titanium-dioxide (TiO(2)) semiconductor and by Fenton reagent (Fe(2+)/H(2)O(2)), each one with distilled water and synthetic wastewater effluent matrix. Complete disappearance of the parent compounds and discreet mineralization were attained in all experiments. Furthermore, kinetic parameters, main intermediate products, release of heteroatoms and formation of carboxylic acids are discussed. The main intermediate products of photocatalytic degradation of RNTD have been structurally elucidated by tandem mass spectrometry (MS(2)) experiments performed at quadrupole-time of flight (QqToF) mass analyzer coupled to ultra-performance liquid chromatograph (UPLC). RNTD displayed high reactivity towards OH radicals, although a product of conduction band electrons reduction was also present in the experiment with TiO(2). In the absence of standards, quantification of intermediates was not possible and only qualitative profiles of their evolution could be determined. The proposed TiO(2) and photo-Fenton degradation routes of RNTD are reported for the first time. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Interaction of the Faroe Bank Channel overflow with Iceland Basin intermediate waters

    Science.gov (United States)

    Ullgren, Jenny E.; Fer, Ilker; Darelius, Elin; Beaird, Nicholas

    2014-01-01

    The narrow and deep Faroe Bank Channel (FBC) is an important pathway for cold, dense waters from the Nordic Seas to flow across the Iceland-Scotland ridge into the North Atlantic. The swift, turbulent FBC overflow is associated with strong vertical mixing. Hydrographic profiles from a shipboard survey and two Slocum electric gliders deployed during a cruise in May-June 2012 show an intermediate water mass characterized by low salinity and low oxygen concentration between the upper waters of Atlantic origin and the dense overflow water. A weak low-salinity signal originating north-east of Iceland is discernible at the exit of the FBC, but smeared out by intense mixing. Further west (downstream) marked salinity and oxygen minima are found, which we hypothesize are indicators of a mixture of Labrador Sea Water and Intermediate Water from the Iceland Basin. Water mass characteristics vary strongly on short time scales. Low-salinity, low-oxygen water in the stratified interface above the overflow plume is shown to move along isopycnals toward the Iceland-Faroe Front as a result of eddy stirring and a secondary, transverse circulation in the plume interface. The interaction of low-salinity, low-oxygen intermediate waters with the overflow plume already at a short distance downstream of the sill, here reported for the first time, affects the final properties of the overflow waters through entrainment and mixing.

  20. Alignment between Protostellar Outflows and Filamentary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Lee, Katherine I.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Vorobyov, Eduard I. [Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, A-1060 (Austria); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kristensen, Lars E. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Jørgensen, Jes K. [Niels Bohr Institute and Center for Star and Planet Formation, Copenhagen University, DK-1350 Copenhagen K. (Denmark); Bourke, Tyler L. [SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Arce, Héctor G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Plunkett, Adele L., E-mail: ian.stephens@cfa.harvard.edu [European Southern Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile)

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  1. STAR FORMATION ACTIVITY OF CORES WITHIN INFRARED DARK CLOUDS

    International Nuclear Information System (INIS)

    Chambers, E. T.; Jackson, J. M.; Rathborne, J. M.; Simon, R.

    2009-01-01

    Infrared Dark Clouds (IRDCs) contain compact cores which probably host the early stages of high-mass star formation. Many of these cores contain regions of extended, enhanced 4.5 μm emission, the so-called 'green fuzzies', which indicate shocked gas. Many cores also contain 24 μm emission, presumably from heated dust which indicates embedded protostars. Because 'green fuzzies' and 24 μm point sources both indicate star formation, we have developed an algorithm to identify star-forming cores within IRDCs by searching for the simultaneous presence of these two distinct indicators. We employ this algorithm on a sample of 190 cores found toward IRDCs, and classify the cores as 'active' if they contain a green fuzzy coincident with an embedded 24 μm source, and as 'quiescent' if they contain neither IR signature. We hypothesize that the 'quiescent' cores represent the earliest 'preprotostellar' (starless) core phase, before the development of a warm protostar, and that the 'active' cores represent a later phase, after the development of a protostar. We test this idea by comparing the sizes, densities, and maser activity of the 'active' and 'quiescent' cores. We find that, on average, 'active' cores have smaller sizes, higher densities, and more pronounced water and methanol maser activity than the 'quiescent' cores. This is expected if the 'quiescent' cores are in an earlier evolutionary state than the 'active' cores. The masses of 'active' cores suggest that they may be forming high-mass stars. The highest mass 'quiescent' cores are excellent candidates for the elusive high-mass starless cores.

  2. Soft electromagnetic bremsstrahlung in inelastic hadronic collisions at high and intermediate energies

    International Nuclear Information System (INIS)

    Rueckl, R.

    1978-01-01

    Electromagnetic bremsstrahlung in hadronic collisions was studied extensively at low and intermediate energies. It was found that the infrared divergent term of the cross section describes the data well up to surprisingly large photon energies. Using essentially the same soft photon approximation, production of low mass-low energy electron pairs via internal conversion of soft virtual bremsstrahlung accompanying the production of charged hadrons in hadron-hadron collisions at very high and intermediate energies. The resulting electron yields explain, at least in part, the direct electrons with small transverse momenta seen at the ISR, and are in no contradiction to the rates observed at LAMPF

  3. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    Science.gov (United States)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  4. ALMA OBSERVATIONS OF A HIGH-DENSITY CORE IN TAURUS: DYNAMICAL GAS INTERACTION AT THE POSSIBLE SITE OF A MULTIPLE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, Kazuki; Onishi, Toshikazu [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Saigo, Kazuya; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Fukui, Yasuo; Inutsuka, Shu-ichiro; Tachihara, Kengo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Tomida, Kengo, E-mail: s_k.tokuda@p.s.osakafu-u.ac.jp [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-07-01

    Starless dense cores eventually collapse dynamically, forming protostars inside them, and the physical properties of the cores determine the nature of the forming protostars. We report ALMA observations of dust continuum emission and molecular rotational lines toward MC27 or L1521F, which is considered to be very close to the first protostellar core phase. We found a few starless high-density cores, one of which has a very high density of ∼10{sup 7} cm{sup –3}, within a region of several hundred AU around a very low-luminosity protostar detected by Spitzer. A very compact bipolar outflow with a dynamical timescale of a few hundred years was found toward the protostar. The molecular line observation shows several cores with an arc-like structure, possibly due to the dynamical gas interaction. These complex structures revealed in the present observations suggest that the initial condition of star formation is highly dynamical in nature, which is considered to be a key factor in understanding fundamental issues of star formation such as the formation of multiple stars and the origin of the initial mass function of stars.

  5. PROTOPLANETARY DISK MASSES IN IC348: A RAPID DECLINE IN THE POPULATION OF SMALL DUST GRAINS AFTER 1 Myr

    International Nuclear Information System (INIS)

    Lee, Nicholas; Williams, Jonathan P.; Cieza, Lucas A.

    2011-01-01

    We present a 1.3 mm continuum survey of protoplanetary disks in the 2-3 Myr old cluster, IC348, with the Submillimeter Array. We observed 85 young stellar objects and detected 10 with 1.3 mm fluxes greater than 2 mJy. The brightest source is a young embedded protostar driving a molecular outflow. The other nine detections are dusty disks around optically visible stars. Our millimeter flux measurements translate into total disk masses ranging from 2 to 6 Jupiter masses. Each detected disk has strong mid-infrared emission in excess of the stellar photosphere and has Hα equivalent widths larger than the average in the cluster and indicative of ongoing gas accretion. The disk mass distribution, however, is shifted by about a factor of 20 to lower masses, compared to that in the ∼1 Myr old Taurus and Ophiuchus regions. These observations reveal the rapid decline in the number of small dust grains in disks with time and probably their concomitant growth beyond millimeter sizes. Moreover, if IC348 is to form planets in the same proportion as detected in the field, these faint millimeter detections may represent the best candidates in the cluster to study the progression from planetesimals to planets.

  6. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  7. THE ROTATING OUTFLOW, ENVELOPE, AND DISK OF THE CLASS-0/I PROTOSTAR [BHB2007] no. 11 IN THE PIPE NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Hara, C. [University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan); Shimajiri, Y.; Kurono, Y.; Saigo, K.; Nakamura, F.; Saito, M.; Kawabe, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-0015 (Japan); Tsukagoshi, T. [Ibaraki University, 2-1-1 Bunkyo Mito, Ibaraki Prefecture 310-8512 (Japan); Wilner, David, E-mail: c.hara@nao.ac.jp [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-07-10

    We present the results of observations toward a low-mass Class-0/I protostar [BHB2007] no. 11 (B59 no. 11) in the nearby (d = 130 pc) star-forming region Barnard 59 (B59), in the Pipe Nebula. We utilize the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope ({approx}22'' resolution), focusing on the CO(3-2), HCO{sup +}, H{sup 13}CO{sup +}(4-3), and 1.1 mm dust-continuum emission transitions. We also show Submillimeter Array (SMA) data with {approx}5'' resolution in {sup 12}CO, {sup 13}CO, C{sup 18}O(2-1), and 1.3 mm dust-continuum emission. From ASTE CO(3-2) observations, we found that B59 no. 11 is blowing a collimated outflow whose axis lies almost on the plane of the sky. The outflow traces well a cavity-like structure seen in the 1.1 mm dust-continuum emission. The results of SMA {sup 13}CO and C{sup 18}O(2-1) observations have revealed that a compact and elongated structure of dense gas is associated with B59 no. 11; the structure is oriented perpendicular to the outflow axis. There is a compact dust condensation with a size of 350 Multiplication-Sign 180 AU seen in the SMA 1.3 mm continuum map, and the direction of its major axis is almost the same as that of the dense gas elongation. The distributions of {sup 13}CO and C{sup 18}O emission also show velocity gradients along their major axes, which are thought to arise from the envelope/disk rotation. From detailed analysis of the SMA data, we infer that B59 no. 11 is surrounded by a Keplerian disk with a radius of less than 350 AU. In addition, the SMA CO(2-1) image shows a velocity gradient in the outflow in the same direction as that of the dense gas rotation. We suggest that this velocity gradient indicates rotation in the outflow.

  8. Features of Red Sea Water Masses

    Science.gov (United States)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  9. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  10. Intermediality and media change

    OpenAIRE

    2012-01-01

    This book is about intermediality as an approach to analysing and understanding media change. Intermediality and Media Change is critical of technological determinism that characterises 'new media discourse' about the ongoing digitalization, framed as a revolution and creating sharp contrasts between old and new media. Intermediality instead emphasises paying attention to continuities between media of all types and privileges a comparative perspective on technological changes in media over ti...

  11. Analysis for mass distribution of proton-induced reactions in intermediate energy range

    CERN Document Server

    Xiao Yu Heng

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reactions needs to be studied, because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. In present work, the Many State Dynamical Model (MSDM) is based on the Cascade-Exciton Model (CEM). The authors use it to investigate the mass distribution of Nb, Au and Pb proton-induced reactions in energy range from 100 MeV to 3 GeV. The agreement between the MSDM simulations and the measured data is good in this energy range, and deviations mainly show up in the mass range of 90 - 150 for the high energy proton incident upon Au and Pb

  12. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  13. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  14. Mass differences of light hadron isomultiplets

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1989-01-01

    Mass differences of low-lying, non-strange, hadron isomultiplets are investigated in the framework of a relativistic, independent quark potential model, implemented by center-of-mass, one-gluon-exchange and pion-cloud corrections. The introduction of pionic self-energy corrections with non-degenerate intermediate states is instrumental in our analysis, playing also a fundamental role for a successful description of the ρ-ω mass splitting. The effect of the supersposition of all these corrections is discussed in some detail for the p-n, Π + -Π 0 , ρ + -ρ 0 and Δ ++ -Δ 0 mass differences. The corresponding hadronic masses are also calculated with suitable values for the hardronic sizes and quark masses. (author) [pt

  15. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  16. Intermediate Fragment

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This text and its connected exhibition are aiming to reflect both on the thoughts, the processes and the outcome of the design and production of the artefact ‘Intermediate Fragment’ and making as a contemporary architectural tool in general. Intermediate Fragment was made for the exhibition ‘Enga...... of realising an exhibition object was conceived, but expanded, refined and concretised through this process. The context of the work shown here is an interest in a tighter, deeper connection between experimentally obtained material knowledge and architectural design....

  17. Governance-Default Risk Relationship and the Demand for Intermediated and Non-Intermediated Debt

    Directory of Open Access Journals (Sweden)

    Husam Aldamen

    2012-09-01

    Full Text Available This paper explores the impact of corporate governance on the demand for intermediated debt (asset finance, bank debt, non-bank private debt and non-intermediated debt (public debt in the Australian debt market. Relative to other countries the Australian debt market is characterised by higher proportions of intermediated or private debt with a lower inherent level of information asymmetry in that private lenders have greater access to financial information (Gray, Koh & Tong 2009. Our firm level, cross-sectional evidence suggests that higher corporate governance impacts demand for debt via the mitigation of default risk. However, this relationship is not uniform across all debt types. Intermediated debt such as bank and asset finance debt are more responsive to changes in governance-default risk relationship than non-bank and non-intermediated debt. The implication is that a firm’s demand for different debt types will reflect its governance-default risk profile.

  18. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    Science.gov (United States)

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  19. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    International Nuclear Information System (INIS)

    Tso, Kin.

    1996-05-01

    The 129 Xe-induced reactions on nat Cu, 89 Y, 165 Ho, and 197 Au at bombarding energies of E/A = 40 ampersand 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129 Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied

  20. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  1. Features of Red Sea Water Masses

    KAUST Repository

    Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-01-01

    by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red

  2. The census of complex organic molecules in the solar-type protostar IRAS16293-2422

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, E. [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France)

    2014-08-10

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  3. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  4. The B-L scotogenic models for Dirac neutrino masses

    Science.gov (United States)

    Wang, Weijian; Wang, Ruihong; Han, Zhi-Long; Han, Jin-Zhong

    2017-12-01

    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1)_{B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B-L charges so that the direct SM Yukawa mass term \\bar{ν }_Lν _R\\overline{φ ^0} and the Majorana mass term (m_N/2)\\overline{ν _R^C}ν _R are naturally forbidden. After the spontaneous breaking of the U(1)_{B-L} symmetry, the discrete Z2 or Z3 symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed.

  5. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  6. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  7. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    Science.gov (United States)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  8. Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81

    Science.gov (United States)

    Reipurth, Bo

    2017-08-01

    Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.

  9. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  10. Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Bucher, M.; Cardoso, J.-F.

    2013-01-01

    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-N...

  11. n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine

    KAUST Repository

    Wang, Zhandong; Chen, Bingjie; Moshammer, Kai; Popolan-Vaida, Denisia M.; Sioud, Salim; Shankar, Vijai; Vuilleumier, David; Tao, Tao; Ruwe, Lena; Brä uer, Eike; Hansen, Nils; Dagaut, Philippe; Kohse-Hö inghaus, Katharina; Raji, Misjudeen; Sarathy, Mani

    2017-01-01

    -OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar

  12. The H2CO abundance in the inner warm regions of low mass protostellar envelopes

    NARCIS (Netherlands)

    Maret, S; Ceccarelli, C; Caux, E; Tielens, A. G. G. M.; Jorgensen, JK; van Dishoeck, E; Bacmann, A; Castets, A; Lefloch, B; Loinard, L; Parise, B; Schoier, FL

    We present a survey of the formaldehyde emission in a sample of eight Class 0 protostars obtained with the IRAM and JCMT millimeter telescopes. The range of energies of the observed transitions allows us to probe the physical and chemical conditions across the protostellar envelopes. The data have

  13. Signatures of non-universal soft breaking sfermion masses at Hadron colliders

    International Nuclear Information System (INIS)

    Datta, Amitava; Datta, Aseshkrishna; Parida, M.K.

    1997-12-01

    We identify several mass patterns, within the framework of N = 1 SUGRA with nonuniversal soft breaking masses for the sfermions, which may significantly alter SUSY signals and the current squark-gluino mass limits from the Tevatron. These effects are illustrated in a SO(10) SUSY GUT with an intermediate mass scale, but the conclusions are also valid in SUSU SO(10) models with grand deserts. (author)

  14. Production of intermediate vector bosons W and Z in proton and anti-protons interactions at 540 GeV in the center of mass

    International Nuclear Information System (INIS)

    Locci, E.

    1984-06-01

    The most important and the most expected result of the s = 540 GeV pantip collider at CERN is the proof of the existence of the weak intermediate bosons W +- and Z 0 , and the study of their properties. This study in the UA1 experiment is presented. 52W + (W - )→e + (e - )νsub(e)(antiνsub(e)) and 4 Z 0 → e + e - have been produced. Their measured masses are Msub(W) = 80.9sub(-1.4)sup(+0.6) GeV/c 2 et Msub(Z) = 95.6 +- 1.4 GeV/c 2 . Their properties are entirely consistent with the ''standard model'' and their characteristics of production are consistent with QCD expectations. The relative numbers of W → eνsub(e) and Z → e + e - , as well as the width of the Z, give an upper limit of the number of ''generations'' [fr

  15. The B - L scotogenic models for Dirac neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weijian [North China Electric Power University, Department of Physics, Baoding (China); Wang, Ruihong [Hebei Agricultural University, College of Information Science and Technology, Baoding (China); Han, Zhi-Long [University of Jinan, School of Physics and Technology, Jinan, Shandong (China); Han, Jin-Zhong [Zhoukou Normal University, School of Physics and Telecommunications Engineering, Zhoukou, Henan (China)

    2017-12-15

    We construct the one-loop and two-loop scotogenic models for Dirac neutrino mass generation in the context of U(1){sub B-L} extensions of standard model. It is indicated that the total number of intermediate fermion singlets is uniquely fixed by the anomaly free condition and the new particles may have exotic B - L charges so that the direct SM Yukawa mass term anti ν{sub L}ν{sub R}φ{sup 0} and the Majorana mass term (m{sub N}/2)ν{sub R}{sup C}ν{sub R} are naturally forbidden. After the spontaneous breaking of the U(1){sub B-L} symmetry, the discrete Z{sub 2} or Z{sub 3} symmetry appears as the residual symmetry and gives rise to the stability of intermediate fields as DM candidates. Phenomenological aspects of lepton flavor violation, DM, leptogenesis and LHC signatures are discussed. (orig.)

  16. Information acquisition and financial intermediation

    OpenAIRE

    Boyarchenko, Nina

    2012-01-01

    This paper considers the problem of information acquisition in an intermediated market, where the specialists have access to superior technology for acquiring information. These informational advantages of specialists relative to households lead to disagreement between the two groups, changing the shape of the intermediation-constrained region of the economy and increasing the frequency of periods when the intermediation constraint binds. Acquiring the additional information is, however, cost...

  17. The quest for an intermediate-scale accidental axion and further ALPs

    International Nuclear Information System (INIS)

    Dias, A.G.; Nishi, C.C.; Machado, A.C.B.; Vaudrevange, P.

    2014-03-01

    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 10 13 GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10 9 GeV and 10 13 GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.

  18. The quest for an intermediate-scale accidental axion and further ALPs

    Energy Technology Data Exchange (ETDEWEB)

    Dias, A.G.; Nishi, C.C. [Univ. Federal do ABC - UFABC, Sao Paulo (Brazil); Machado, A.C.B. [Teorica-Univ. Estadual Paulista, Sao Paulo (Brazil). Instituto de Fisica; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, P. [Technische Univ. Muenchen, Garching (Germany). Excellence Cluster Universe

    2014-03-15

    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 10{sup 13} GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10{sup 9} GeV and 10{sup 13} GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.

  19. Results of intermediate-scale hot isostatic press can experiments

    International Nuclear Information System (INIS)

    Nelson, L.O.; Vinjamuri, K.

    1995-05-01

    Radioactive high-level waste (HLW) has been managed at the Idaho Chemical Processing Plant (ICPP) for a number of years. Since 1963, liquid HLW has been solidified into a granular solid (calcine). Presently, over 3,800 m 3 of calcine is stored in partially-underground stainless steel bins. Four intermediate- scale HLW can tests (two 6-in OD x 12-in tall and two 4-in OD x 7-in tall) are described and compared to small-scale HIP can tests (1- to 3-in OD x 1- to 4.5-in tall). The intermediate-scale HIP cans were loaded with a 70/30 calcine/frit blend and HIPped at an off-site facility at 1050 degrees C; and 20 ksi. The dimensions of two cans (4-in OD x 7-in tall) were monitored during the HIP cycle with eddy-current sensors. The sensor measurements indicated that can deformation occurs rapidly at 700 degrees C; after which, there is little additional can shrinkage. HIP cans were subjected to a number of analyses including calculation of the overall packing efficiency (56 to 59%), measurement of glass-ceramic (3.0 to 3.2 g/cc), 14-day MCC-1 leach testing (total mass loss rates 2 day), and scanning electron microscopy (SEM). Based on these analyses, the glass-ceramic material produced in intermediate-scale cans is similar to material produced in small-scale cans. No major scale-up problems were indicated. Based on the packing efficiency observed in intermediate- and small-scale tests, the overall packing efficiency of production-scale (24-in OD x 36- to 190-in tall) cans would be approximately 64% for a pre-HIP right-circular cylinder geometry. An efficiency of 64% would represent a volume reduction factor of 2.5 over a candidate glass waste prepared at 33 wt% waste loading

  20. Water in star-forming regions with Herschel (WISH) : IV. A survey of low-J H2O line profiles toward high-mass protostars

    NARCIS (Netherlands)

    van der Tak, F. F. S.; Chavarria, L.; Herpin, F.; Wyrowski, F.; Walmsley, C. M.; van Dishoeck, E. F.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Hogerheijde, M. R.; Johnstone, D.; Kristensen, L. E.; Liseau, R.; Nisini, B.; Tafalla, M.

    Context. Water is a key constituent of star-forming matter, but the origin of its line emission and absorption during high-mass star formation is not well understood. Aims. We study the velocity profiles of low-excitation H2O lines toward 19 high-mass star-forming regions and search for trends with

  1. Isoporphyrin intermediate in heme oxygenase catalysis. Oxidation of alpha-meso-phenylheme.

    Science.gov (United States)

    Evans, John P; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-07-11

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the alpha-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin pi-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of alpha-meso-phenylheme-IX, alpha-meso-(p-methylphenyl)-mesoheme-III, and alpha-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593-42604), only the alpha-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced alpha-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation.

  2. Intergalactic stellar populations in intermediate redshift clusters

    Science.gov (United States)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  3. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  4. On spallation and fragmentation of heavy ions at intermediate energies

    International Nuclear Information System (INIS)

    Musulmanbekov, G.; Al-Haidary, A.

    2002-01-01

    A new code for simulation of spallation and (multi)fragmentation of nuclei in proton and nucleus induced collisions at intermediate and high energies is developed. The code is a combination of modified intranuclear cascade model with traditional fission - evaporation part and multifragmentation part based on lattice representation of nuclear structure and percolation approach. The production of s-wave resonances and formation time concept included into standard intranuclear cascade code provides correct calculation of excitation energy of residues. This modified cascade code served as a bridge between low and high energy model descriptions of nucleus-nucleus collisions. A good agreement with experiments has been obtained for multiparticle production at intermediate and relatively high energies. Nuclear structure of colliding nuclei is represented as face centered cubic lattice. This representation, being isomorphic to the shell model of nuclear structure, allows to apply percolation approach for nuclear fragmentation. The offered percolation model includes both site and bond percolation. Broken sites represent holes left by nucleons knocked out at cascade state. Therefore, in the first cascade stage mutual rescattering of the colliding nuclei results in knocking some nucleons out of them. After this fast stage paltrily destruct and excited residues remain. On the second stage residual nuclei either evaporate nucleons and light nuclei up to alpha-particles or fragment into pieces with intermediate masses. The choice depends on residue's destruction degree. At low excitation energy and small destruction of the residue the evaporation and fission mechanisms are preferable. The more excitation energy and destruction the more probability of (multi)fragmentation process. Moreover, the more destruction degree of the residual the more the site percolation probability. It is concluded, that at low and intermediate excitation energies the fragmentation of nuclei is slow

  5. Discourses and Models of Intermediality

    OpenAIRE

    Schröter, Jens

    2011-01-01

    In his article "Discourses and Models of Intermediality" Jens Schröter discusses the question as to what relations do different discourses pose between different "media." Schröter identifies four models of discourse: 1) synthetic intermediality: a "fusion" of different media to super-media, a model with roots in the Wagnerian concept of Gesamtkunstwerk with political connotations, 2) formal (or transmedial) intermediality: a concept based on formal structures not "specific" to one medium but ...

  6. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  7. Fulltext PDF

    Indian Academy of Sciences (India)

    The third term in the RHS represents the loss of magnetic energy via Joule dissipation, and it is negative for finite ... mechanism is said to occur when the magnetic energy reaches a finite value asymptot- ically, that is as t .... deuterium burning protostar to be the solar radius and mass to be twice the solar mass. If we take the ...

  8. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  9. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    Science.gov (United States)

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  10. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  11. Intermediality: Bridge to Critical Media Literacy.

    Science.gov (United States)

    Pailliotet, Ann Watts; Semali, Ladislaus; Rodenberg, Rita K.; Giles, Jackie K.; Macaul, Sherry L.

    2000-01-01

    Defines "intermediality" as the ability to critically read and write with and across varied symbol systems. Relates it to critical media literacy. Offers rationales for teaching critical media literacy in general, and intermedial instruction in particular. Identifies seven guiding intermedial elements: theory, texts, processes, contexts,…

  12. Vibration analysis of three guyed tower designs for intermediate size wind turbines

    Science.gov (United States)

    Christie, R. J.

    1982-01-01

    Three guyed tower designs were analyzed for intermediate size wind turbines. The four lowest natural frequencies of vibration of the three towers concepts were estimated. A parametric study was performed on each tower to determine the effect of varying such tower properties as the inertia and stiffness of the tower and guys, the inertia values of the nacelle and rotor, and the rotational speed of the rotor. Only the two lowest frequencies were in a range where they could be excited by the rotor blade passing frequencies. There two frequencies could be tuned by varying the guy stiffness, the guy attachment point on the tower, the tower and mass stiffness, and the nacelle/rotor/power train masses.

  13. POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole

    Science.gov (United States)

    Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Sargent, Wallace L. W.

    2004-05-01

    We describe new optical images and spectra of POX 52, a dwarf galaxy with an active nucleus that was originally detected in the POX objective-prism survey. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with broad components to the permitted line profiles, and we classify POX 52 as a Seyfert 1 galaxy. The host galaxy appears to be a dwarf elliptical, and its brightness profile is best fit by a Sérsic model with an index of 3.6+/-0.2 and a total magnitude of MV=-17.6. Applying mass-luminosity-line width scaling relations to estimate the black hole mass from the broad Hβ line width and nonstellar continuum luminosity, we find MBH~1.6×105Msolar. The stellar velocity dispersion in the host galaxy, measured from the Ca II λ8498, 8542 lines, is 36+/-5 km s-1, also suggestive of a black hole mass of order 105Msolar. Further searches for active nuclei in dwarf galaxies can provide unique constraints on the demographics of black holes in the mass range below 106Msolar.

  14. A NEW CLASS OF GAMMA-RAY BURSTS FROM STELLAR DISRUPTIONS BY INTERMEDIATE-MASS BLACK HOLES

    International Nuclear Information System (INIS)

    Gao, H.; Lu, Y.; Zhang, S. N.

    2010-01-01

    It has been argued that the long gamma-ray burst (GRB) of GRB 060614 without an associated supernova (SN) has challenged the current classification and fuel model for long GRBs, and thus a tidal disruption model has been proposed to account for such an event. Since it is difficult to detect SNe for long GRBs at high redshift, the absence of an SN association cannot be regarded as the solid criterion for a new classification of long GRBs similar to GRB 060614, called GRB 060614-type bursts. Fortunately, we now know that there is an obvious periodic substructure observed in the prompt light curve of GRB 060614. We thus use such periodic substructure as a potential criterion to categorize some long GRBs into a new class of bursts, which might have been fueled by an intermediate-mass black hole (IMBH) gulping a star, rather than a massive star collapsing to form a black hole. Therefore, the second criterion to recognize for this new class of bursts is whether they fit the tidal disruption model. From a total of 328 Swift GRBs with accurately measured durations and without SN association, we find 25 GRBs satisfying the criteria for GRB 060614-type bursts: seven of them are with known redshifts and 18 with unknown redshifts. These new bursts are ∼6% of the total Swift GRBs, which are clustered into two subclasses: Type I and Type II with considerably different viscous parameters of accretion disks formed by tidally disrupting their different progenitor stars. We suggest that the two different kinds of progenitors are solar-type stars and white dwarfs: the progenitors for four Type I bursts with viscous parameter of around 0.1 are solar-type stars, and the progenitors for 21 Type II bursts with viscous parameter of around 0.3 are white dwarfs. The potential applications of this new class of GRBs as cosmic standard candles are discussed briefly.

  15. A population of relic intermediate-mass black holes in the halo of the Milky Way

    International Nuclear Information System (INIS)

    Rashkov, Valery; Madau, Piero

    2014-01-01

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M BH -σ * relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, σ m , below which central black holes are assumed to be increasingly rare, as many as ∼2000 (σ m = 3 km s –1 ) or as few as ∼70 (σ m = 12 km s –1 ) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ≲ 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the σ m = 12 km s –1 scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m V = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr –1 . Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.

  16. Physics of the intermediate vector bosons

    International Nuclear Information System (INIS)

    Altavelli, G.; DiLella, L.

    1989-01-01

    The conversion of the CERN 450 GeV proton synchrotron (SPS) into a proton-antiproton collider was originally proposed in 1976 as a fast and relatively cheap way to produce and detect the weak intermediate Vector Bosons (IVB), W* and Z, by achieving hadronic collisions at an energy large enough to provide observable rates. The properties of such particles had been predicted already in the 60's in the framework of the so-called Standard Model of the unified electroweak theory developed; however, the interest in this theory arose only some years later, following the proof of renormalizability and the first experimental observation of neutrino interactions mediated by Z-exchange. In particular, the experiment obtained a measurement of the weak mixing angle, which allowed a quantitative prediction of the IVB mass values. The CERN Collider project was approved in 1978 and the first bar pp collisions at a total center-of-mass energy (√s) of 546 GeV were observed in 1981. The decay W → e ν was first observed among data collected at the end of 1982, and the decay Z → e + e - and Z → μ + μ - were observed a few months later. At present, following two more data-taking runs in 1984 and 1985 at a slightly increased center-of-mass energy (√s = 630 GeV), samples of ∼250 W → e ν and ∼30 Z → e + e - events are available from each of the two major experiments (UA1 and UA2), making possible a quantitative comparison of IVB properties with the predictions of the Standard Model. In this article the authors first describe the Standard Model of the unified electroweak theory, and the authors use the theoretical framework to derive the IVB mass values and their decay properties

  17. Water in Star-forming Regions with Herschel (WISH): recent results and trends

    Science.gov (United States)

    van Dishoeck, E. F.

    2012-03-01

    Water is a key molecule in the physics and chemistry of star- and planet-forming regions. In the `Water in Star-forming Regions with Herschel' (WISH) Key Program, we have obtained a comprehensive set of water data toward a large sample of well-characterized protostars, covering a wide range of masses and luminosities --from the lowest to the highest mass protostars--, as well as evolutionary stages --from pre-stellar cores to disks. Lines of both ortho- and para-H_2O and their isotopologues, as well as chemically related hydrides, are observed with the HIFI and PACS instruments. The data elucidate the physical processes responsible for the warm gas, probe dynamical processes associated with forming stars and planets (outflow, infall, expansion), test basic chemical processes and reveal the chemical evolution of water and the oxygen-reservoir into planet-forming disks. In this brief talk a few recent WISH highlights will be presented, including determinations of the water abundance in each of the different physical components (inner and outer envelope, outflow) and constraints on the ortho/para ratio. Special attention will be given to trends found across the sample, especially the similarity in profiles from low to high-mass protostars and the evolution of the gas-phase water abundance from prestellar cores to disks. More details can be found at http://www.strw.leidenuniv.nl/WISH, whereas overviews are given in van Dishoeck et al. (2011, PASP 123, 138), Kristensen & van Dishoeck (2011, Astronomische Nachrichten 332, 475) and Bergin & van Dishoeck (2012, Phil. Trans. Royal Soc. A).

  18. The structure of protostellar dense cores: a millimeter continuum study

    International Nuclear Information System (INIS)

    Motte, Frederique

    1998-01-01

    A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr

  19. Baryogenesis and neutrino masses

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1992-01-01

    The erasure of any preexisting B+L asymmetry in the universe in its late stages suggests that the B asymmetry observed today either originated at the electroweak scale or it arose from an original L asymmetry. For the latter case to be viable either neutrino masses are much below the eV scale or the L asymmetry itself is generated at an intermediate scale. Several features of the generation of a B asymmetry via an L asymmetry are discussed, including the interesting possibility that the present baryon asymmetry in the universe originates as a result of CP violating phases in the neutrino mass matrix

  20. Seismic Characterization of Oceanic Water Masses, Water Mass Boundaries, and Mesoscale Eddies SE of New Zealand

    Science.gov (United States)

    Gorman, Andrew R.; Smillie, Matthew W.; Cooper, Joanna K.; Bowman, M. Hamish; Vennell, Ross; Holbrook, W. Steven; Frew, Russell

    2018-02-01

    The Subtropical and Subantarctic Fronts, which separate Subtropical, Subantarctic, and Antarctic Intermediate Waters, are diverted to the south of New Zealand by the submerged continental landmass of Zealandia. In the upper ocean of this region, large volumes of dissolved or suspended material are intermittently transported across the Subtropical Front; however, the mechanisms of such transport processes are enigmatic. Understanding these oceanic boundaries in three dimensions generally depends on measurements collected from stationary vessels and moorings. The details of these data sets, which are critical for understanding how water masses interact and mix at the fine-scale (seismic reflection images of oceanic water masses have been produced using petroleum industry data. These seismic sections clearly show three main water masses, the boundary zones (fronts) between them, and associated thermohaline fine structure that may be related to the mixing of water masses in this region. Interpretations of the data suggest that the Subtropical Front in this region is a landward-dipping zone, with a width that can vary between 20 and 40 km. The boundary zone between Subantarctic Waters and the underlying Antarctic Intermediate Waters is also observed to dip landward. Several isolated lenses have been identified on the three data sets, ranging in size from 9 to 30 km in diameter. These lenses are interpreted to be mesoscale eddies that form at relatively shallow depths along the south side of the Subtropical Front.

  1. n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine

    KAUST Repository

    Wang, Zhandong

    2017-10-03

    This work identifies classes of cool flame intermediates from n-heptane low-temperature oxidation in a jet-stirred reactor (JSR) and a motored cooperative fuel research (CFR) engine. The sampled species from the JSR oxidation of a mixture of n-heptane/O2/Ar (0.01/0.11/0.88) were analyzed using a synchrotron vacuum ultraviolet radiation photoionization (SVUV-PI) time-of-flight molecular-beam mass spectrometer (MBMS) and an atmospheric pressure chemical ionization (APCI) Orbitrap mass spectrometer (OTMS). The OTMS was also used to analyze the sampled species from a CFR engine exhaust. Approximately 70 intermediates were detected by the SVUV-PI-MBMS, and their assigned molecular formulae are in good agreement with those detected by the APCI-OTMS, which has ultra-high mass resolving power and provides an accurate elemental C/H/O composition of the intermediate species. Furthermore, the results show that the species formed during the partial oxidation of n-heptane in the CFR engine are very similar to those produced in an ideal reactor, i.e., a JSR.The products can be classified by species with molecular formulae of C7H14Ox (x = 0–5), C7H12Ox (x = 0–4), C7H10Ox (x = 0–4), CnH2n (n = 2–6), CnH2n−2 (n = 4–6), CnH2n+2O (n = 1–4), CnH2nO (n = 1–6), CnH2n−2O (n = 2–6), CnH2n−4O (n = 4–6), CnH2n+2O2 (n = 0–4, 7), CnH2nO2 (n = 1–6), CnH2n−2O2 (n = 2–6), CnH2n−4O2 (n = 4–6), and CnH2nO3 (n = 3–6). The identified intermediate species include alkenes, dienes, aldehyde/keto compounds, olefinic aldehyde/keto compounds, diones, cyclic ethers, peroxides, acids, and alcohols/ethers. Reaction pathways forming these intermediates are proposed and discussed herein. These experimental results are important in the development of more accurate kinetic models for n-heptane and longer-chain alkanes.

  2. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.

    2017-01-01

    . Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...

  3. EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H-R DIAGRAMS?

    International Nuclear Information System (INIS)

    Baraffe, I.; Chabrier, G.; Gallardo, J.

    2009-01-01

    We present evolutionary models for young low-mass stars and brown dwarfs taking into account episodic phases of accretion at early stages of the evolution, a scenario supported by recent large surveys of embedded protostars. An evolution including short episodes of vigorous accretion followed by longer quiescent phases can explain the observed luminosity spread in H-R diagrams of star-forming regions at ages of a few Myr, for objects ranging from a few Jupiter masses to a few tenths of a solar mass. The gravitational contraction of these accreting objects strongly departs from the standard Hayashi track at constant T eff . The best agreement with the observed luminosity scatter is obtained if most of the accretion shock energy is radiated away. The obtained luminosity spread at 1 Myr in the H-R diagram is equivalent to what can be misinterpreted as an ∼10 Myr age spread for non-accreting objects. We also predict a significant spread in radius at a given T eff , as suggested by recent observations. These calculations bear important consequences for our understanding of star formation and early stages of evolution and on the determination of the initial mass function for young (≤ a few Myr) clusters. Our results also show that the concept of a stellar birthline for low-mass objects has no valid support.

  4. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  5. A 400-solar-mass black hole in the galaxy M82.

    Science.gov (United States)

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-04

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

  6. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  7. The intermediate state in Patd

    African Journals Online (AJOL)

    ) Jesus had assumed. (concerning the 'intermediate state') as existing, anything which does not exist. Three basic things about the intermediate state emerge from the parable: (a) Jesus recognizes that at the moment of death, in ipso articulo.

  8. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  9. An Intermediate-Mass Black Hole in the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Barth, A.; Ho, L.; Sargent, W.

    2004-06-01

    We describe new observations of POX 52, a previously known but nearly forgotten example of a dwarf galaxy with an active nucleus. While POX 52 was originally thought to be a Seyfert 2 galaxy, the new data reveal an emission-line spectrum very similar to that of the dwarf Seyfert 1 galaxy NGC 4395, with clear broad components to the permitted line profiles. The host galaxy appears to be a dwarf elliptical; this is the only known case of a Seyfert nucleus in a galaxy of this type. Applying scaling relations to estimate the black hole mass from the broad Hβ linewidth and continuum luminosity, we find MBH ≈ 1.6×105 M⊙. The stellar velocity dispersion in the host galaxy is 36 km s-1, also suggestive of a black hole mass of order 105 M⊙. Further searches for AGNs in dwarf galaxies can provide crucial constraints on the demographics of black holes in the mass range below 106 M⊙.

  10. Chemical intermediate detection following corona discharge on volatile organic compounds: general method using molecular beam techniques

    International Nuclear Information System (INIS)

    He Luning; Sulkes, Mark

    2011-01-01

    Nonthermal plasma (NTP)-based treatments of volatile organic compounds (VOCs) have potential for effective environmental remediation. Theory and experiment that consider the basic science pertaining to discharge events have helped improve NTP remediation outcomes. If direct information on early post-discharge chemical intermediates were also available, it would likely lead to additional improvement in NTP remediation outcomes. To this point, however, experiments yielding direct information on post-NTP VOC intermediates have been limited. An approach using supersonic expansion molecular beam methods offers general promise for detection of post-discharge VOC intermediates. To illustrate the potential utility of these methods, we present mass spectra showing the growth of early products formed when pulsed corona discharges were carried out on toluene in He and then in He with added O 2 . Good general detection of neutral post-discharge species was obtained using 800 nm 150 fs photoionization pulses.

  11. [Therapy of intermediate uveitis].

    Science.gov (United States)

    Doycheva, D; Deuter, C; Zierhut, M

    2014-12-01

    Intermediate uveitis is a form of intraocular inflammation in which the vitreous body is the major site of inflammation. Intermediate uveitis is primarily treated medicinally and systemic corticosteroids are the mainstay of therapy. When recurrence of uveitis or side effects occur during corticosteroid therapy an immunosuppressive treatment is required. Cyclosporine A is the only immunosuppressive agent that is approved for therapy of uveitis in Germany; however, other immunosuppressive drugs have also been shown to be effective and well-tolerated in patients with intermediate uveitis. In severe therapy-refractory cases when conventional immunosuppressive therapy has failed, biologics can be used. In patients with unilateral uveitis or when the systemic therapy is contraindicated because of side effects, an intravitreal steroid treatment can be carried out. In certain cases a vitrectomy may be used.

  12. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Energy Technology Data Exchange (ETDEWEB)

    De Buizer, James M.; Shuping, Ralph [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Liu, Mengyao; Tan, Jonathan C.; Staff, Jan E.; Tanaka, Kei E. I. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Beltrán, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Whitney, Barbara [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States)

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  13. Prediction of mass absorption coefficients from inelastically scattered X-radiation for specimens of less than 'infinite thickness'

    International Nuclear Information System (INIS)

    Kieser, R.; Mulligan, T.J.

    1979-01-01

    An equation is developed which describes the X-ray scatter radiation from specimens of any thickness. This equation suggests that a specimen's mass absorption coefficient can be determined from its inelastically scattered X-radiation not only when the specimen is 'infinitely thick' but also when it is of 'intermediate thickness'. Measurements have been carried out with a standard energy-dispersive X-ray spectrometer on specimens of 'intermediate thickness'. Good agreement is obtained between the mass absorption coefficients that are calculated from the scattered radiation and those obtained on the basis of tabulated mass absorption coefficients for the elements. (author)

  14. Influence of mass asymmetry in fusion cross section of intermediate weight ions

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1987-01-01

    The mass asymmetry degree effect on fusion, was investigated for different systems involving nucleus A projectie , A target ≤ 40, populating a compound nucleus. The following systems were studied: ( 19 F + 19 F), ( 12 C + 26 Mg) and ( 19 F + 12 C, 16 O, 27 Al, 40 Ca) in the energy range of 32 ≤ E lab ≤ 72 MeV and angular range 6 0 ≤ Θ lab ≤ 28 0 . The experimental method employed the time of flight technique, of the evaporation residuals. Analysis of excitation function indicate different behavior for symmetric and asymmetric systems suggesting that the presence of other more competitive processes is more pronounced in asymmetric entrance channels at high energies. These behaviors indicate that mass asymmetry is an important point in complete and incomplete fusion processes. (A.C.A.S.) [pt

  15. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  16. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  17. Intermediate structure and threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2004-01-01

    The Intermediate Structure, evidenced through microstructures of the neutron strength function, is reflected in open reaction channels as fluctuations in excitation function of nuclear threshold effects. The intermediate state supporting both neutron strength function and nuclear threshold effect is a micro-giant neutron threshold state. (author)

  18. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  19. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro.

    Science.gov (United States)

    Li, Jian; Nemes, Peter; Guo, Ji

    2018-04-01

    There is widespread interest in using absorbable polymers, such as poly(lactic-co-glycolic acid) (PLGA), as components in the design and manufacture of new-generation drug eluting stents (DES). PLGA undergoes hydrolysis to progressively degrade through intermediate chemical entities to simple organic acids that are ultimately absorbed by the human body. Understanding the composition and structure of these intermediate degradation products is critical not only to elucidate polymer degradation pathways accurately, but also to assess the safety and performance of absorbable cardiovascular implants. However, analytical approaches to determining the intermediate degradation products have yet to be established and evaluated in a standard or regulatory setting. Hence, we developed a methodology using electrospray ionization mass spectrometry to qualitatively and quantitatively describe intermediate degradation products generated in vitro from two PLGA formulations commonly used in DES. Furthermore, we assessed the temporal evolution of these degradation products using time-lapse experiments. Our data demonstrated that PLGA degradation products via heterogeneous cleavage of ester bonds are modulated by multiple intrinsic and environmental factors, including polymer chemical composition, degradants solubility in water, and polymer synthesis process. We anticipate the methodologies and outcomes presented in this work will elevate the mechanistic understanding of comprehensive degradation profiles of absorbable polymeric devices, and facilitate the design and regulation of cardiovascular implants by supporting the assessments of the associated biological response to degradation products. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1129-1137, 2018. © 2017 Wiley Periodicals, Inc.

  20. Figura moderní melancholie a její inventář: intermediální interpretace jednoho Jiráskova obrazu

    Czech Academy of Sciences Publication Activity Database

    Fedrová, Stanislava

    2014-01-01

    Roč. 61, č. 5 (2014), s. 410-428 ISSN 0037-6973 R&D Projects: GA ČR GAP406/12/1711 Institutional support: RVO:68378068 Keywords : melancholy * intermediality * description * atmosphere Subject RIV: AJ - Letters, Mass-media, Audiovision

  1. Jeden model, různé zájmy. Konvergence a divergence intermediálních studií

    Czech Academy of Sciences Publication Activity Database

    Jedličková, Alice

    2017-01-01

    Roč. 20, č. 1 (2017), s. 98-125 ISSN 1213-2144 R&D Projects: GA ČR(CZ) GA16-11101S Institutional support: RVO:68378068 Keywords : intermediality * transmediation * media representation Subject RIV: AJ - Letters, Mass-media, Audiovision OBOR OECD: Specific literatures

  2. Ortho-to-para ratio of interstellar heavy water

    NARCIS (Netherlands)

    Vastel, C.; Ceccarelli, C.; Caux, E.; Coutens, A.; Cernicharo, J.; Bottinelli, S.; Demyk, K.; Faure, A.; Wiesenfeld, L.; Scribano, Y.; Bacmann, A.; Hily-Blant, P.; Maret, S.; Walters, A.; Bergin, E.A.; Blake, G.A.; Castets, A.; Crimier, N.; Dominik, C.; Encrenaz, P.; Gérin, M.; Hennebelle, P.; Kahane, C.; Klotz, A.; Melnick, G.; Pagani, L.; Parise, B.; Schilke, P.; Wakelam, V.; Baudry, A.; Bell, T.; Benedettini, M.; Boogert, A.; Cabrit, S.; Caselli, P.; Codella, C.; Comito, C.; Falgarone, E.; Fuente, A.; Goldsmith, P.F.; Helmich, F.; Henning, T.; Herbst, E.; Jacq, T.; Kama, M.; Langer, W.; Lefloch, B.; Lis, D.; Lord, S.; Lorenzani, A.; Neufeld, D.; Nisini, B.; Pacheco, S.; Pearson, J.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Tak, F.; van der Wiel, M.H.D.; Viti, S.; Wyrowski, F.; Yorke, H.; Cais, P.; Krieg, J.M.; Olberg, M.; Ravera, L.

    2010-01-01

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star-forming regions, and in particular the Class 0 protostar IRAS 16293-2422. Aims. The CHESS (Chemical HErschel Surveys of Star forming regions) key

  3. Regularities of intermediate adsorption complex relaxation

    International Nuclear Information System (INIS)

    Manukova, L.A.

    1982-01-01

    The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained

  4. FINANCIAL INTERMEDIATION, ENTREPRENEURSHIP AND ECONOMIC GROWTH

    OpenAIRE

    Wenli Cheng

    2007-01-01

    This paper presents a simple general equilibrium model of financial intermediation, entrepreneurship and economic growth. In this model, the role of financial intermediation is to pool savings and to lend the pooled funds to an entrepreneur, who in turn invests the funds in a new production technology. The adoption of the new production technology improves individual real income. Thus financial intermediation promotes economic growth through affecting individuals’ saving behaviour and enabl...

  5. Some Intermediate-Level Violin Concertos.

    Science.gov (United States)

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  6. A new direction for dark matter research: intermediate-mass compact halo objects

    Energy Technology Data Exchange (ETDEWEB)

    Chapline, George F. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Frampton, Paul H., E-mail: george.chapline@gmail.com, E-mail: paul.h.frampton@gmail.com [15 Summerheights, 29 Water Eaton Road, Oxford OX2 7PG (United Kingdom)

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15 M {sub ⊙} may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.

  7. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    Science.gov (United States)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  8. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  9. Quantification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2016-09-17

    This work provides new temperature-dependent mole fractions of elusive intermediates relevant to the low-temperature oxidation of dimethyl ether (DME). It extends the previous study of Moshammer et al. [ J. Phys. Chem. A 2015, 119, 7361–7374] in which a combination of a jet-stirred reactor and molecular beam mass spectrometry with single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation was used to identify (but not quantify) several highly oxygenated species. Here, temperature-dependent concentration profiles of 17 components were determined in the range of 450–1000 K and compared to up-to-date kinetic modeling results. Special emphasis is paid toward the validation and application of a theoretical method for predicting photoionization cross sections that are hard to obtain experimentally but essential to turn mass spectral data into mole fraction profiles. The presented approach enabled the quantification of the hydroperoxymethyl formate (HOOCH2OCH2O), which is a key intermediate in the low-temperature oxidation of DME. The quantification of this keto-hydroperoxide together with the temperature-dependent concentration profiles of other intermediates including H2O2, HCOOH, CH3OCHO, and CH3OOH reveals new opportunities for the development of a next-generation DME combustion chemistry mechanism.

  10. Dynamical Mass Generation.

    Science.gov (United States)

    Mendel Horwitz, Roberto Ruben

    1982-03-01

    In the framework of the Glashow-Weinberg-Salem model without elementary scalar particles, we show that masses for fermions and intermediate vector bosons can be generated dynamically. The mechanism is the formation of fermion-antifermion pseudoscalar bound states of zero total four momentum, which form a condensate in the physical vacuum. The force responsible for the binding is the short distance part of the net Coulomb force due to photon and Z exchange. Fermions and bosons acquire masses through their interaction with this condensate. The neutrinos remain massless because their righthanded components have no interactions. Also the charge -1/3 quarks remain massless because the repulsive force from the Z exchange dominates over the Coulomb force. To correct this, we propose two possible modifications to the theory. One is to cut off the Z exchange at very small distances, so that all fermions except the neutrinos acquire masses, which are then, purely electromagnetic in origin. The other is to introduce an additional gauge boson that couples to all quarks with a pure vector coupling. To make this vector boson unobservable at usual energies, at least two new fermions must couple to it. The vector boson squared masses receive additive contributions from all the fermion squared masses. The photon remains massless and the masses of the Z and W('(+OR -)) bosons are shown to be related through the Weinberg angle in the conventional way. Assuming only three families of fermions, we obtain estimates for the top quark mass.

  11. Formation and fragmentation of protostellar dense cores

    International Nuclear Information System (INIS)

    Maury, Anaelle

    2009-01-01

    Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr

  12. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  13. Money distribution with intermediation

    OpenAIRE

    Teles, Caio Augusto Colnago

    2013-01-01

    This pap er analyzes the distribution of money holdings in a commo dity money search-based mo del with intermediation. Intro ducing heterogeneity of costs to the Kiyotaki e Wright ( 1989 ) mo del, Cavalcanti e Puzzello ( 2010) gives rise to a non-degenerated distribution of money. We extend further this mo del intro ducing intermediation in the trading pro cess. We show that the distribution of money matters for savings decisions. This gives rises to a xed p oint problem for the ...

  14. Hunting for the intermediate-mass Higgs boson in a hadron collider

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kalyniak, P.; Soldate, M.; Galison, P.

    1985-01-01

    We examine the feasibility of identifying in a hadron machine the standard, neutral Higgs boson, produced in association with a W, when the mass of the Higgs is between approximately 100 GeV and 2m/sub W/. The production cross section is calculated with quasirealistic cuts imposed under the assumption that the Higgs decays into tt-bar. Possible backgrounds arising from the continuum production of tt-bar, tb-bar, or t-barb accompanied by a W are computed as well

  15. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Klajn, D.B.; Rubbia, K.; Meer, S.

    1983-01-01

    Problem of registration and search for intermediate vector bosons is discussed. According to weak-current theory there are three intermediate vector bosons with +1(W + )-1(W - ) and zero (Z 0 ) electric charges. It was suggested to conduct the investigation into particles in 1976 by cline, Rubbia and Makintair using proton-antiproton beams. Major difficulties of the experiment are related to the necessity of formation of sufficient amount of antiparticles and the method of antiproton beam ''cooling'' for the purpose of reduction of its random movements. The stochastic method was suggested by van der Meer in 1968 as one of possible cooling methods. Several large detectors were designed for searching intermediate vector bosons

  16. Validation of intermediate end points in cancer research.

    Science.gov (United States)

    Schatzkin, A; Freedman, L S; Schiffman, M H; Dawsey, S M

    1990-11-21

    Investigations using intermediate end points as cancer surrogates are quicker, smaller, and less expensive than studies that use malignancy as the end point. We present a strategy for determining whether a given biomarker is a valid intermediate end point between an exposure and incidence of cancer. Candidate intermediate end points may be selected from case series, ecologic studies, and animal experiments. Prospective cohort and sometimes case-control studies may be used to quantify the intermediate end point-cancer association. The most appropriate measure of this association is the attributable proportion. The intermediate end point is a valid cancer surrogate if the attributable proportion is close to 1.0, but not if it is close to 0. Usually, the attributable proportion is close to neither 1.0 nor 0; in this case, valid surrogacy requires that the intermediate end point mediate an established exposure-cancer relation. This would in turn imply that the exposure effect would vanish if adjusted for the intermediate end point. We discuss the relative advantages of intervention and observational studies for the validation of intermediate end points. This validation strategy also may be applied to intermediate end points for adverse reproductive outcomes and chronic diseases other than cancer.

  17. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  18. Simplifying biochemical models with intermediate species

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    techniques, we study systematically the effects of intermediate, or transient, species in biochemical systems and provide a simple, yet rigorous mathematical classification of all models obtained from a core model by including intermediates. Main examples include enzymatic and post-translational modification...... systems, where intermediates often are considered insignificant and neglected in a model, or they are not included because we are unaware of their existence. All possible models obtained from the core model are classified into a finite number of classes. Each class is defined by a mathematically simple...... canonical model that characterizes crucial dynamical properties, such as mono- and multistationarity and stability of steady states, of all models in the class. We show that if the core model does not have conservation laws, then the introduction of intermediates does not change the steady...

  19. Misalignment of magnetic fields and outflows in protostellar cores

    NARCIS (Netherlands)

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erica; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.; Looney, Leslie W.; Matthews, Brenda C.; Mundy, Lee; Pillai, Thushara; Pound, Marc W.; Stephens, Ian W.; Tobin, John J.; Vaillancourt, John E.; Volgenau, N. H.; Wright, Melvyn C. H.

    2013-01-01

    We present results of lambda 1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with similar to 2 ''.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of similar to 1000 AU are not tightly aligned with outflows from the

  20. Water in massive star-forming regions with Herschel Space Observatory

    Science.gov (United States)

    Chavarria, L.; Herpin, F.; Bontemps, S.; Jacq, T.; Baudry, A.; Braine, J.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.

    2011-05-01

    High-mass stars formation process is much less understood than the low-mass case: short timescales, high opacities and long distance to the sources challenge the study of young massive stars. The instruments on board the Heschel Space Observatory permit us to investigate molecular species at high spectral resolution in the sub-milimeter wavelengths. Water, one of the most abundant molecules in the Universe, might elucidate key episodes in the process of stellar birth and it may play a major role in the formation of high-mass stars. This contribution presents the first results of the Heschel Space Observatory key-program WISH (Water In Star forming regions with Herschel) concerning high-mass protostars. The program main purpose is to follow the process of star formation during the various stages using the water molecule as a physical diagnostic throughout the evolution. In general, we aim to adress the following questions: How does protostars interact with their environment ? How and where water is formed ? How is it transported from cloud to disk ? When and where water becomes a dominant cooling or heating agent ? We use the HIFI and PACS instruments to obtain maps and spectra of ~20 water lines in ~20 massive protostars spanning a large range in physical parameters, from pre-stellar cores to UCHII regions. I will review the status of the program and focus specifically on the spectroscopic results. I will show how powerful are the HIFI high-resolution spectral observations to resolve different physical source components such as the dense core, the outflows and the extended cold cloud around the high-mass object. We derive water abundances between 10-7 and 10-9 in the outer envelope. The abundance variations derived from our models suggest that different chemical mechanisms are at work on these scales (e.g. evaporation of water-rich icy grain mantles). The detection and derived abundance ratios for rare isotopologues will be discussed. Finally, a comparison in tems

  1. Reactions of stabilized Criegee Intermediates

    Science.gov (United States)

    Vereecken, Luc; Harder, Hartwig; Novelli, Anna

    2014-05-01

    Carbonyl oxides (Criegee intermediates) were proposed as key intermediates in the gas phase ozonolysis of alkenes in 1975 by Rudolf Criegee. Despite the importance of ozonolysis in atmospheric chemistry, direct observation of these intermediates remained elusive, with only indirect experimental evidence for their role in the oxidation of hydrocarbons, e.g. through scavenging experiments. Direct experimental observation of stabilized CI has only been achieved since 2008. Since then, a concerted effort using experimental and theoretical means is in motion to characterize the chemistry and kinetics of these reactive intermediates. We present the results of theoretical investigations of the chemistry of Criegee intermediates with a series of coreactants which may be of importance in the atmosphere, in experimental setups, or both. This includes the CI+CI cross-reaction, which proceeds with a rate coefficient near the collision limit and can be important in experimental conditions. The CI + alkene reactions show strong dependence of the rate coefficient depending on the coreactants, but is generally found to be rather slow. The CI + ozone reaction is sufficiently fast to occur both in experiment and the free troposphere, and acts as a sink for CI. The reaction of CI with hydroperoxides, ROOH, is complex, and leads both to the formation of oligomers, as to the formation of reactive etheroxides, with a moderately fast rate coefficient. The importance of these reactions is placed in the context of the reaction conditions in different atmospheric environments ranging from unpolluted to highly polluted.

  2. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  3. The intermediate endpoint effect in logistic and probit regression

    Science.gov (United States)

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted

  4. Gravity with Intermediate Goods Trade

    Directory of Open Access Journals (Sweden)

    Sujin Jang

    2017-12-01

    Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.

  5. Regional regularities for the even-even nuclei in intermediate mass region

    International Nuclear Information System (INIS)

    Varshney, Mani; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.

    2011-01-01

    With the development of experimental techniques more and more nuclear data are accumulated and compiled for over five decades. The proton neutron interaction has been considered the key ingredient in the development of collectivity and ultimately the deformation in atomic nuclei. The purpose of the present study is to analyze the growth of R4/2 in different mass regions. The rate of growth regions in regions having proton number Z = 38, 54, 60 and 76 with changing neutron number where the interaction between particle - particle, particle - hole and hole - hole

  6. Baryon- and lepton-number non-conserving processes and intermediate mass scales

    International Nuclear Information System (INIS)

    Nieves, J.F.

    1981-01-01

    An analysis of the possible mechanisms to mediate various baryon- and lepton-number non-conserving processes is presented. Processes considered include the Δ(B+L) = 0 proton decay, ΔB = 2 neutron-antineutron oscillations and neutrino Majorana masses. Among our results we find that, in the absence of elementary scalars and exotic fermions, all the renormalizable interactions of vector bosons and ordinary fermions conserve B-L. Therefore, the observation of Δ(B-L) not equal 0 processes would imply the existence of elementary scalars and/or exotic fermions. (orig.)

  7. Mobile communication and intermediality

    DEFF Research Database (Denmark)

    Helles, Rasmus

    2013-01-01

    communicative affordances of mobile devices in order to understand how people choose between them for different purposes. It is argued that mobile communication makes intermediality especially central, as the choice of medium is detached from the location of stationary media and begins to follow the user across......The article argues the importance of intermediality as a concept for research in mobile communication and media. The constant availability of several, partially overlapping channels for communication (texting, calls, email, Facebook, etc.) requires that we adopt an integrated view of the various...

  8. Classical model of intermediate statistics

    International Nuclear Information System (INIS)

    Kaniadakis, G.

    1994-01-01

    In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions

  9. Searching For Low-mass Companions Of Cepheids

    Science.gov (United States)

    Remage Evans, Nancy; Bond, H.; Schaefer, G.; Karovska, M.; Mason, B.; DePasquale, J.; Pillitteri, I.; Guinan, E.; Engle, S.

    2011-05-01

    The role played by binary and multiple stars in star formation is receiving a great deal of attention, both theoretically and observationally. Two questions under discussion are how wide physical companions can be and how frequently massive stars have low mass companions. An important new observational tool is the development of high resolution imaging, both from space and from the ground (Adaptive Optics and interferometry). We are conducting a snapshot survey of the nearest Cepheids using the Hubble Space Telescope Wide Field Camera 3 (WFC3). The aim is to discover possible resolved low mass companions. Results from this survey will be discussed, including images of Eta Aql. X-ray luminosity can confirm or refute that putative low mass companions are young enough to be physical companions. This project tests the reality of both wide and low mass companions of these intermediate-mass stars.

  10. Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products

    International Nuclear Information System (INIS)

    Zhou, Shuai; Pecha, Brennan; Kuppevelt, Michiel van; McDonald, Armando G.; Garcia-Perez, Manuel

    2014-01-01

    The formation of liquid intermediates and the distribution of products were studied under slow and fast pyrolysis conditions. Results indicate that monomers are formed from lignin oligomeric products during secondary reactions, rather than directly from the native lignin. Lignin from Douglas-fir (Pseudotsuga menziesii) wood was extracted using the milled wood enzyme lignin isolation method. Slow pyrolysis using a microscope with hot-stage captured the liquid formation (>150 °C), shrinking, swelling (foaming), and evaporation behavior of lignin intermediates. The activation energy (E a ) for 5–80% conversions was 213 kJ mol −1 , and the pre-exponential factor (log A) was 24.34. Fast pyrolysis tests in a wire mesh reactor were conducted (300–650 °C). The formation of the liquid intermediate was visualized with a fast speed camera (250 Hz), showing the existence of three well defined steps: formation of lignin liquid intermediates, foaming and liquid intermediate swelling, and evaporation and droplet shrinking. GC/MS and UV-Fluorescence of the mesh reactor condensate revealed lignin oligomer formation but no mono-phenols were seen. An increase in pyrolytic lignin yield was observed as temperature increased. The molar mass determined by ESI-MS was not affected by pyrolysis temperature. SEM of the char showed a smooth surface with holes, evidence of a liquid intermediate with foaming; bursting from these foams could be responsible for the removal of lignin oligomers. Py-GC/MS studies showed the highest yield of guaiacol compounds at 450–550 °C. - Highlights: • The formation of a liquid intermediate phase is a critical step during lignin pyrolysis. • The lignin oligomers are thermally ejected from the liquid intermediate phase. • The mono-phenols are formed mainly from the secondary reactions of lignin oligomers

  11. Using Peephole Optimization on Intermediate Code

    NARCIS (Netherlands)

    Tanenbaum, A.S.; van Staveren, H.; Stevenson, J.W.

    1982-01-01

    Many portable compilers generate an intermediate code that is subsequently translated into the target machine's assembly language. In this paper a stack-machine-based intermediate code suitable for algebraic languages (e.g., PASCAL, C, FORTRAN) and most byte-addressed mini- and microcomputers is

  12. Pair production of intermediate vector bosons

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1979-01-01

    The production of intermediate vector boson pairs W + W - , Z 0 Z 0 , W +- Z 0 and W +- γ in pp and p anti p collisions is discussed. The motivation is to detect the self-interactions among the four intermediate vector bosons

  13. Language in use intermediate : classroom book

    CERN Document Server

    Doff, Adrian

    1995-01-01

    ach of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  14. Language in use intermediate : teacher's book

    CERN Document Server

    Doff, Adrian

    1998-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  15. Fixed mass and scaling sum rules

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    1975-01-01

    Using the correspondence principle (continuity in dynamics), the approach of Keppell-Jones-Ward-Taha to fixed mass and scaling current algebraic sum rules is extended so as to consider explicitly the contributions of all classes of intermediate states. A natural, generalized formulation of the truncation ideas of Cornwall, Corrigan, and Norton is introduced as a by-product of this extension. The formalism is illustrated in the familiar case of the spin independent Schwinger term sum rule. New sum rules are derived which relate the Regge residue functions of the respective structure functions to their fixed hadronic mass limits for q 2 → infinity. (Auth.)

  16. Analyzing import intermediates of mitochondrial proteins by blue native gel electrophoresis.

    Science.gov (United States)

    Waizenegger, Thomas; Rapaport, Doron

    2007-01-01

    Blue native gel electrophoresis (BNGE) is a powerful tool for analyzing native protein complexes from biological membranes as well as water-soluble proteins. It can be used for determining relative molecular masses of protein complexes and their subunit composition and for the detection of subcomplexes. We describe the analysis by BNGE of in vitro import reactions composed of radiolabeled precursor proteins and isolated mitochondria. Such an analysis is a powerful tool to follow import intermediates and to study assembly of protein complexes. Analysis of import reactions by BNGE provides information on the molecular mass of the complex with which the imported precursor is associated. In addition, components of such a complex can be identified by incubating the mitochondrial lysate with either soluble antibodies or antibodies coupled to protein A matrix. The binding of soluble antibodies to specific complexes results in an observed shift in their apparent molecular mass (antibody shift). Alternatively, addition of matrix-bound antibodies followed by removal of the matrix from the mixture will result in depletion of the specific complex from the mitochondrial lysate (antibody depletion). The experimental details of these techniques are described.

  17. Gateways and Water Mass Mixing in the Late Cretaceous North Atlantic

    Science.gov (United States)

    Asgharian Rostami, M.; Martin, E. E.; MacLeod, K. G.; Poulsen, C. J.; Vande Guchte, A.; Haynes, S.

    2017-12-01

    Regions of intermediate/deep water formation and water-mass mixing in the North Atlantic are poorly defined for the Late Cretaceous, a time of gateway evolution and cooler conditions following the Mid Cretaceous greenhouse. Improved proxy data combined with modeling efforts are required to effectively evaluate the relationship between CO2, paleogeography, and circulation during this cooler interval. We analyzed and compiled latest Cretaceous (79 - 66 Ma) ɛNd and δ13C records from seven bathyal (paleodepths 0.2 - 2 km) and eight abyssal (paleodepths > 2 km) sites in the North Atlantic. Data suggest local downwelling of Northern Component Water (NCW; ɛNd -9.5 and δ13C 1.7 ‰) is the primary source of intermediate/deep water masses in the basin. As this water flows southward and ages, δ13C values decrease and ɛNd values increase; however, additional chemical changes at several sites require mixing with contributions from several additional water masses. Lower ɛNd ( -10) and higher δ13C ( 1.9 ‰) values in the deep NW part of the basin indicate proximal contributions from a region draining old continental crust, potentially representing deep convection following opening of the Labrador Sea. In the deep NE Iberian Basin, higher ɛNd ( -7) and lower δ13C ( 0.8 ‰) during the Campanian suggest mixing with a Tethyan source (ɛNd -7 and δ13C 0.1 ‰) whose importance decreased with restriction of that gateway in the Maastrichtian. Data from bathyal sites suggest additional mixing. In the SE Cape Verde region, observed ɛNd variations from -10 in the Campanian to -13 and -12 in the early and late Maastrichtian, respectively, may record variations in output rates of Tethyan and/or NCW sources and Demerara Bottom Water (ɛNd -16), a proposed warm saline intermediate water mass formed in shallow, equatorial seas. Pacific inflow through the Caribbean gateway impacts intermediate sites at Blake Nose (ɛNd values -8), particularly the shallowest site during the late

  18. Interpretation and code generation based on intermediate languages

    DEFF Research Database (Denmark)

    Kornerup, Peter; Kristensen, Bent Bruun; Madsen, Ole Lehrmann

    1980-01-01

    The possibility of supporting high level languages through intermediate languages to be used for direct interpretation and as intermediate forms in compilers is investigated. An accomplished project in the construction of an interpreter and a code generator using one common intermediate form...

  19. Simulation of neutron rich nuclei production through 239U fission at intermediates energies

    International Nuclear Information System (INIS)

    Mirea, M.; Clapier, F.; Pauwels, N.; Proust, J.

    1997-01-01

    The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239 U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)

  20. Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200, Tenerife (Spain); Jiménez-Vicente, J.; Calderón-Infante, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A.; Vives-Arias, H. [Departamento de Astronomía y Astrofísica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain)

    2017-02-20

    The idea that dark matter can be made of intermediate-mass primordial black holes (PBHs) in the 10 M {sub ⊙} ≲ M ≲ 200 M {sub ⊙} range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We conclude that the fraction of mass in black holes or any type of compact objects is negligible outside of the 0.05 M {sub ⊙} ≲ M ≲ 0.45 M {sub ⊙} mass range and that it amounts to 20% ± 5% of the total matter, in agreement with the expected masses and abundances of the stellar component. Consequently, the existence of a significant population of intermediate-mass PBHs appears to be inconsistent with current microlensing observations. Therefore, primordial massive black holes are a very unlikely source of the gravitational radiation detected by LIGO.

  1. Studies on the dynamics of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C; Aichelin, J.

    1997-01-01

    We use the Quantum Molecular Dynamics model for the investigation of the dynamics of heavy ion collisions at intermediate energies. A detailed comparison between different versions of the models demonstrate the influence of not exactly known parameters in the description of nuclei like interaction range or initial densities and thus describes the limits of predictive power. The dynamics of the reaction are discussed quite similarly in the different models. A radial expansion with a linear velocity profile is found at central collisions. A strong interaction of pions with nuclear matter is reported. This interaction is strongly influenced by the lifetime of baryonic resonances in nuclear matter. These lifetimes depend strongly on the mass distribution of the resonances. These mass distributions are influenced by the momentum distribution in the nuclei. Here the inclusion of the spectral function shows visible effects. These effects influence the energy dissipation in nuclei and thus enter e.g. into the analysis of p + A collisions for the GEDEON project. (author)

  2. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Cline, D.B.; Rubbia, C.; van der Meer, S.

    1982-01-01

    Over the past 15 years a new class of unified theories has been developed to describe the forces acting between elementary particles. The most successful of the new theories establishes a link between electromagnetism and the weak force. A crucial prediction of this unified electroweak theory is the existence of three massive particles called intermediate vector bosons. If these intermediate vector bosons exist and if they have properties attributed to them by electroweak theory, they should soon be detected, as the world's first particle accelerator with enough energy to create such particles has recently been completed at the European Organization for Nuclear Research (CERN) in Geneva. The accelerator has been converted to a colliding beam machine in which protons and antiprotons collide head on. According to electroweak theory, intermediate vector bosons can be created in proton-antiproton collisions. (SC)

  3. 39 CFR 3001.39 - Intermediate decisions.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL RULES OF PRACTICE AND PROCEDURE Rules of General Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in...

  4. 42 CFR 54.12 - Treatment of intermediate organizations.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Treatment of intermediate organizations. 54.12... intermediate organizations. If a nongovernmental organization (referred to here as an “intermediate organization”), acting under a contract or other agreement with the Federal Government or a State or local...

  5. Sex differences in correlates of intermediate phenotypes and prevalent cardiovascular disease in the general population

    Directory of Open Access Journals (Sweden)

    Renate B. Schnabel

    2015-04-01

    Full Text Available Background-There are marked sex differences in cardiovascular disease [CVD] manifestation. It is largely unknown how the distribution of CVD risk factors or intermediate phenotypes explain sex-specific differences.Methods and Results-In 5000 individuals of the population-based Gutenberg Health Study, mean age 55±11 years, 51% males, we examined sex-specific associations of classical CVD risk factors with intima-media thickness, ankle-brachial index, flow-mediated dilation, peripheral arterial tonometry, echocardiographic and electrocardiographic variables. Intermediate cardiovascular phenotypes were related to prevalent CVD (coronary artery disease, heart failure, stroke, myocardial infarction, lower extremity artery disease [LEAD] N=561.We observed differential distributions of CVD risk factors with a higher risk factor burden in men. Manifest coronary artery disease, stroke, myocardial infarction and LEAD were more frequent in men; the proportion of heart failure was higher in women. Intermediate phenotypes showed clear sex differences with more beneficial values in women. Fairly linear changes towards less beneficial values with age were observed in both sexes. In multivariable-adjusted regression analyses age, systolic blood pressure and body mass index were consistently associated with intermediate phenotypes in both sexes with different ranking according to random forests, maximum model R² 0.43. Risk factor-adjusted associations with prevalent CVD showed some differences by sex. No interactions by menopausal status were observed. Conclusions-In a population-based cohort we observed sex differences in risk factors and a broad range of intermediate phenotypes of noninvasive cardiovascular structure and function. Their relation to prevalent CVD differed markedly. Our results indicate the need of future investigations to understand sex differences in CVD manifestation.

  6. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  7. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-09-01

    POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  8. GEOMETRIC AND KINEMATIC STRUCTURE OF THE OUTFLOW/ENVELOPE SYSTEM OF L1527 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATION OF CS

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Lefloch, Bertrand; Ceccarelli, Cecilia, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Universite Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2015-10-10

    Subarcsecond-resolution images of the rotational line emissions of CS and c-C{sub 3}H{sub 2} obtained toward the low-mass protostar IRAS 04368+2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale (∼10{sup 4} AU) outflow suggested previously from the {sup 12}CO (J = 3–2) observation, and to the morphology of infrared reflection near the protostar (∼200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position–velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.

  9. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    Science.gov (United States)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  10. Intermediate mass dimuon events

    International Nuclear Information System (INIS)

    Moser, H.-G.

    1985-01-01

    We report the observation of 67 dimuon events at the CERN p anti p collider with the UA1 detector. The events will be interpreted in terms of the Drell-Yan mechanism, J/PSI and UPSILON decays and heavy flavour production. (author)

  11. Partially folded intermediates during trypsinogen denaturation

    Directory of Open Access Journals (Sweden)

    Martins N.F.

    1999-01-01

    Full Text Available The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

  12. Program TOTELA calculating basic cross sections in intermediate energy region by using systematics

    International Nuclear Information System (INIS)

    Fukahori, Tokio; Niita, Koji

    2000-01-01

    Program TOTELA can calculate neutron- and proton-induced total, elastic scattering and reaction cross sections and angular distribution of elastic scattering in the intermediate energy region from 20 MeV to 3 GeV. The TOTELA adopts the systematics modified from that by Pearlstein to reproduce the experimental data and LA150 evaluation better. The calculated results compared with experimental data and LA150 evaluation are shown in figures. The TOTELA results can reproduce those data almost well. The TOTELA was developed to fill the lack of experimental data of above quantities in the intermediate energy region and to use for production of JENDL High Energy File. In the case that there is no experimental data of above quantities, the optical model parameters can be fitted by using TOTELA results. From this point of view, it is also useful to compare the optical model calculation by using RIPL with TOTELA results, in order to verify the parameter quality. Input data of TOTELA is only atomic and mass numbers of incident particle and target nuclide and input/output file names. The output of TOTELA calculation is in ENDF-6 format used in the intermediate energy nuclear data files. It is easy to modify the main routine by users. Details are written in each subroutine and main routine

  13. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  14. On light cluster production in nucleon induced reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Blideanu, V.; Durand, D

    2004-09-01

    A dynamical model dedicated to nucleon induced reaction between 30-150 MeV is presented. It considers different stages of the reaction: the approaching phase, the in-medium nucleon-nucleon collisions, the cluster formation and the secondary de-excitation process. The notions of influence area and phase-space exploration during the reaction are introduced. The importance of the geometry of the reaction and of the conservation laws are underlined. The model is able to globally reproduce the absolute cross sections for the emission of neutron and light charged particles for proton and neutron induced reactions on heavy and intermediate mass targets ({sup 56}Fe and {sup 208}Pb). (authors)

  15. On light cluster production in nucleon induced reactions at intermediate energy

    International Nuclear Information System (INIS)

    Lacroix, D.; Blideanu, V.; Durand, D.

    2004-09-01

    A dynamical model dedicated to nucleon induced reaction between 30-150 MeV is presented. It considers different stages of the reaction: the approaching phase, the in-medium nucleon-nucleon collisions, the cluster formation and the secondary de-excitation process. The notions of influence area and phase-space exploration during the reaction are introduced. The importance of the geometry of the reaction and of the conservation laws are underlined. The model is able to globally reproduce the absolute cross sections for the emission of neutron and light charged particles for proton and neutron induced reactions on heavy and intermediate mass targets ( 56 Fe and 208 Pb). (authors)

  16. Cataclysmic variables from a ROSAT/2MASS selection - I. Four new intermediate polars

    NARCIS (Netherlands)

    Gänsicke, B.T.; Marsh, T.R.; Edge, A.; Rodríguez-Gil, P.; Steeghs, D.; Araujo-Betancor, S.; Harlaftis, E.; Giannakis, O.; Pyrzas, S.; Morales-Rueda, L.; Aungwerojwit, A.

    2005-01-01

    We report the first results from a new search for cataclysmic variables (CVs) using a combined X-ray (ROSAT)/infrared (2MASS) target selection that discriminates against background active galactic nuclei. Identification spectra were obtained at the Isaac Newton Telescope for a total of 174 targets,

  17. Nuclear dissipation effects on fission and evaporation in systems of intermediate fissility

    Directory of Open Access Journals (Sweden)

    Gelli N.

    2010-03-01

    Full Text Available The systems of intermediate fissility 132Ce and 158Er have been studied experimentally and theoretically in order to investigate the dissipation properties of nuclear matter. Cross sections of fusion-fission and evaporation residues channels together with charged particles multiplicities in both channels, their spectra, angular correlations and mass-energy distribution of fission fragments have been measured. Theoretical analysis has been performed using multi-dimensional stochastic approach with realistic treatment of particle evaporation. The results of analysis show that full one-body or unusually strong two-body dissipation allows to reproduce experimental data. No temperature dependent dissipation was needed.

  18. On-Line Synthesis and Analysis by Mass Spectrometry

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2015-01-01

    In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…

  19. Present status of intermediate band solar cell research

    International Nuclear Information System (INIS)

    Cuadra, L.; Marti, A.; Luque, A.

    2004-01-01

    The intermediate band solar cell is a theoretical concept with the potential for exceeding the performance of conventional single-gap solar cells. This novel photovoltaic converter bases its superior theoretical efficiency over single-gap solar cells by enhancing its photogenerated current, via the two-step absorption of sub-band gap photons, without reducing its output voltage. This is achieved through a material with an electrically isolated and partially filled intermediate band located within a higher forbidden gap. This material is commonly named intermediate band material. This paper centres on summarising the present status of intermediate band solar cell research. A number of attempts, which aim to implement the intermediate band concept, are being followed: the direct engineering of the intermediate band material, its implementation by means of quantum dots and the highly porous material approach. Among other sub-band gap absorbing proposals, there is a renewed interest on the impurity photovoltaic effect, the quantum well solar cells and the particularly promising proposal for the use of up- and down-converters

  20. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, David Lewis [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(ET), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  1. Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation

    NARCIS (Netherlands)

    Machguth, H.; Purves, R.S.; Oerlemans, J.; Hoelzle, M.; Paul, F.

    2008-01-01

    By means of Monte Carlo simulations we calculated uncertainty in modelled cumulative mass balance over 400 days at one particular point on the tongue of Morteratsch Glacier, Switzerland, using a glacier energy balance model of intermediate complexity. Before uncertainty assessment, the model was

  2. Associations of Systemic Diseases with Intermediate Uveitis.

    Science.gov (United States)

    Shoughy, Samir S; Kozak, Igor; Tabbara, Khalid F

    2016-01-01

    To determine the associations of systemic diseases with intermediate uveitis. The medical records of 50 consecutive cases with intermediate uveitis referred to The Eye Center in Riyadh, Saudi Arabia, were reviewed. Age- and sex-matched patients without uveitis served as controls. Patients had complete ophthalmic and medical examinations. There were 27 male and 23 female patients. Mean age was 29 years with a range of 5-62 years. Overall, 21 cases (42%) had systemic disorders associated with intermediate uveitis and 29 cases (58%) had no associated systemic disease. A total of 11 patients (22%) had asthma, 4 (8%) had multiple sclerosis, 3 (6%) had presumed ocular tuberculosis, 1 (2%) had inflammatory bowel disease, 1 (2%) had non-Hodgkin lymphoma and 1 (2%) had sarcoidosis. Evidence of systemic disease was found in 50 (5%) of the 1,000 control subjects. Bronchial asthma was found in 37 patients (3.7 %), multiple sclerosis in 9 patients (0.9%), inflammatory bowel disease in 3 patients (0.3%), and tuberculosis in 1 patient (0.1%). None of the control patients had sarcoidosis or lymphoma. There were statistically significant associations between intermediate uveitis and bronchial asthma (p = 0.0001), multiple sclerosis (p = 0.003) and tuberculosis (p = 0.0005). Bronchial asthma and multiple sclerosis were the most frequently encountered systemic diseases associated with intermediate uveitis in our patient population. Patients with intermediate uveitis should undergo careful history-taking and investigations to rule out associated systemic illness.

  3. Vaporization thermodynamics of Pd-rich intermediate phases in the Pd–Yb system

    Energy Technology Data Exchange (ETDEWEB)

    Ciccioli, A., E-mail: andrea.ciccioli@uniroma1.it [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Balducci, G.; Gigli, G. [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Provino, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Palenzona, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Manfrinetti, P. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2016-02-20

    Highlights: • Vaporization equilibria of Pd–Yb intermediate phases investigated by effusion techniques. • Heats of formation of Pd–Yb compounds determined from decomposition/atomization enthalpies. • Phase diagram of the Pd–Yb system re-drawn. • Influence of the Yb valence state on the thermodynamic properties observed. - Abstract: The vaporization thermodynamics of several intermediate phases in the Pd–Yb system was investigated by means of vaporization experiments performed under Knudsen conditions (KEML, Knudsen Effusion Mass Loss). The following thermal decomposition processes were studied in the overall temperature range 819–1240 K and their enthalpy changes determined: 4 PdYb(s) = Pd{sub 4}Yb{sub 3}(s) + Yb(g); 5/3 Pd{sub 4}Yb{sub 3}(s) = 4/3 Pd{sub 5}Yb{sub 3}(s) + Yb(g); 21/13 Pd{sub 5}Yb{sub 3}(s) = 5/13 Pd{sub 21}Yb{sub 10}(s) + Yb(g); 1/3 Pd{sub 21}Yb{sub 10}(s) = 21/9 Pd{sub 3}Yb(s) + Yb(g). Additional measurements were performed by KEMS (Knudsen Effusion Mass Spectrometry) on a Pd-rich two-phase sample, which allowed to detect both Yb(g) and Pd(g) in the vapor phase and to determine the atomization enthalpy of the Pd{sub 3}Yb phase (Pd-rich composition boundary, Pd{sub 3.08}Yb{sub 0.92}): Pd{sub 3.08}Yb{sub 0.92}(s) = 0.92 Yb(g) + 3.08 Pd(g). The enthalpy of formation of this compound was thereafter determined as −68 ± 2 kJ/mol at. and, by combining this value with the decomposition enthalpies derived by KEML, the enthalpies of formation of the studied Pd–Yb intermediate phases were evaluated (kJ/mol at.): −75 ± 4 (Pd{sub 21}Yb{sub 10}), −75 ± 3 (Pd{sub 5}Yb{sub 3}), −73 ± 3 (Pd{sub 4}Yb{sub 3}), and −66 ± 3 (PdYb). A modified version of the Pd–Yb phase diagram is also reported, re-drawn on the basis of literature data and of new experimental information recently become available.

  4. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    Science.gov (United States)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  5. Intermediate- and heavy-Higgs-boson physics at a 0.5 TeV e+e- collider

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Kniehl, B.A.; Phillips, R.J.N.

    1992-01-01

    We explore the potential of a future e + e- collider in the 0.5 TeV center-of-mass energy range to detect intermediate or heavy Higgs bosons in the standard model. We first briefly assess the logistics for finding a Higgs boson of intermediate mass, with M Z H W . We then study in detail the possibility of detecting a heavy Higgs boson, with m H >2M W , through the production of pairs of weak bosons. We quantitatively analyze the sensitivity of the process e + e-→ν bar νW + W-(ZZ) to the presence of a heavy-Higgs-boson resonance in the standard model. We compare this signal to various backgrounds and to the smaller signal from e + e-→ZH→μ + μ - W+W-(ZZ), assuming the weak-boson pairs to be detected and measured in their dominant hadronic decay modes W + W-(ZZ)→4 jets. A related Higgs-boson signal in 6-jet final states is also estimated. We show how the main backgrounds from e + e-W+W-(ZZ), eνWZ, and t bar t production can be reduced by suitable acceptance cuts. Bremsstrahlung and typical beamstrahlung corrections are calculated. These corrections reduce Higgs-boson production by scattering mechanisms but increase production by annihilation mechanisms; they also smear out some dynamical features such as Jacobian peaks in p T (H). With all these corrections included, we conclude that it should be possible to detect a heavy-Higgs-boson signal in the ν bar νW + W-(ZZ) channels up to mass m H =350 GeV

  6. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Science.gov (United States)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  7. A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole

    Science.gov (United States)

    Barth, Aaron

    2004-07-01

    We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.

  8. RECONSTRUCTING THE STELLAR MASS DISTRIBUTIONS OF GALAXIES USING S4G IRAC 3.6 AND 4.5 μm IMAGES. I. CORRECTING FOR CONTAMINATION BY POLYCYCLIC AROMATIC HYDROCARBONS, HOT DUST, AND INTERMEDIATE-AGE STARS

    International Nuclear Information System (INIS)

    Meidt, Sharon E.; Schinnerer, Eva; Knapen, Johan H.; Bosma, Albert; Athanassoula, E.; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Buta, Ronald J.; Zaritsky, Dennis; Hinz, Joannah L.; Skibba, Ramin A.; Laurikainen, Eija; Salo, Heikki; Elmegreen, Debra; Elmegreen, Bruce G.; Gadotti, Dimitri A.; Regan, Michael; Ho, Luis C.; Madore, Barry F.; Gil de Paz, Armando

    2012-01-01

    With the aim of constructing accurate two-dimensional maps of the stellar mass distribution in nearby galaxies from Spitzer Survey of Stellar Structure in Galaxies 3.6 and 4.5 μm images, we report on the separation of the light from old stars from the emission contributed by contaminants. Results for a small sample of six disk galaxies (NGC 1566, NGC 2976, NGC 3031, NGC 3184, NGC 4321, and NGC 5194) with a range of morphological properties, dust content, and star formation histories are presented to demonstrate our approach. To isolate the old stellar light from contaminant emission (e.g., hot dust and the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature) in the IRAC 3.6 and 4.5 μm bands we use an independent component analysis (ICA) technique designed to separate statistically independent source distributions, maximizing the distinction in the [3.6]-[4.5] colors of the sources. The technique also removes emission from evolved red objects with a low mass-to-light ratio, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, revealing maps of the underlying old distribution of light with [3.6]-[4.5] colors consistent with the colors of K and M giants. The contaminants are studied by comparison with the non-stellar emission imaged at 8 μm, which is dominated by the broad PAH feature. Using the measured 3.6 μm/8 μm ratio to select individual contaminants, we find that hot dust and PAHs together contribute between ∼5% and 15% to the integrated light at 3.6 μm, while light from regions dominated by intermediate-age (AGB and RSG) stars accounts for only 1%-5%. Locally, however, the contribution from either contaminant can reach much higher levels; dust contributes on average 22% to the emission in star-forming regions throughout the sample, while intermediate-age stars contribute upward of 50% in localized knots. The removal of these contaminants with ICA leaves maps of the old stellar disk that retain a high degree of structural information

  9. Spectroscopic evidence for intermediate species formed during aniline polymerization and polyaniline degradation.

    Science.gov (United States)

    Planes, G A; Rodríguez, J L; Miras, M C; García, G; Pastor, E; Barbero, C A

    2010-09-21

    Spectroscopic methods are used to investigate the formation of low molecular mass intermediates during aniline (ANI) oxidation and polyaniline (PANI) degradation. Studying ANI anodic oxidation by in situ Fourier transform infrared spectroscopy (FTIRS) it is possible to obtain, for the first time, spectroscopic evidence for ANI dimers produced by head-to-tail (4-aminodiphenylamine, 4ADA) and tail-to-tail (benzidine, BZ) coupling of ANI cation radicals. The 4ADA dimer is adsorbed on the electrode surface during polymerization, as proved by cyclic voltammetry of thin PANI films and its infrared spectrum. This method also allows, with the help of computational simulations, to assign characteristic vibration frequencies for the different oxidation states of PANI. The presence of 4ADA retained inside thin polymer layers is established too. On the other hand, FTIRS demonstrates that the electrochemically promoted degradation of PANI renders p-benzoquinone as its main product. This compound, retained inside the film, is apparent in the cyclic voltammogram in the same potential region previously observed for 4ADA dimer. Therefore, applying in situ FTIRS is possible to distinguish between different chemical species (4ADA or p-benzoquinone) which give rise to voltammetric peaks in the same potential region. Indophenol and CO(2) are also detected by FTIRS during ANI oxidation and polymer degradation. The formation of CO(2) during degradation is confirmed by differential electrochemical mass spectroscopy. To the best of our knowledge, this is the first evidence of the oxidation of a conducting polymer to CO(2) by electrochemical means. The relevance of the production of different intermediate species towards PANI fabrication and applications is discussed.

  10. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-02-20

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the CO emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.

  11. Observation of the muonic decay of the charged intermediate vector boson

    International Nuclear Information System (INIS)

    Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Nandi, A.K.; Roberts, C.; Scott, W.; Shah, T.P.; Bezaguet, A.; Bock, R.K.; Calvetti, M.; Cennini, P.; Cittolin, S.; Dallman, D.; Demoulin, M.; DiBitonto, D.; Ellis, N.; Hoffmann, H.; Jank, W.; Jorat, G.; Leveque, A.; Maurin, G.; Muller, F.; Naumann, L.; Norton, A.; Pauss, F.; Placci, A.; Porte, J.P.; Revol, J.P.; Rijssenbeek, M.; Rossi, P.; Rubbia, C.; Sadoulet, B.; Schinzel, D.; Sumorok, K.; Timmer, J.; Vuillemin, V.; Xie, Y.G.; Zurfluh, E.; Kryn, D.; Cochet, C.; DeBeer, M.; Denegri, D.; Givernaud, A.; Laugier, J.P.; Locci, E.; Malosse, J.J.; Rich, J.; Sass, J.; Saudraix, J.; Savoy-Navarro, A.; Spiro, M.; Dobrzynski, L.; Fontaine, G.; Ghesquiere, C.; Giraud-Heraud, Y.; Mendiburu, J.P.; Orkin-Lecourtois, A.; Sajot, G.; Tao, C.; Vrana, J.; Hertzberger, L.O.; Holthuizen, D.J.; Eijk, B. van; Bacci, C.; Ceradini, F.; Di Ciaccio, A.; Lacava, F.; Moricca, M.; Paoluzi, L.; Piano Mortari, G.; Salvini, G.; Bauer, G.; Cline, D.; Markiewicz, T.; Mohammadi, M.; Centro, S.; Corden, M.; Dowell, J.D.; Garvey, J.; Homer, R.J.; Kenyon, I.; McMahon, T.; Streets, J.; Watkins, P.; Wilson, J.; Eggert, K.; Erhard, P.; Faissner, H.; Giboni, K.L.; Hansl-Kozanecka, T.; Hoffmann, D.; Lehmann, H.; Leuchs, R.; Radermacher, E.; Reithler, H.; Tscheslog, E.; Fincke, M.; Muirhead, H.; Frey, R.; Kernan, A.; Kozanecki, W.; Morgan, K.; Ransdell, J.; Smith, D.; Fruehwirth, R.; Dallman, D.; Strauss, J.; Szoncso, F.; Wahl, H.D.; Wulz, C.E.; Geer, S.; Rohlf, J.; Karimaeki, V.; Kinnunen, R.; Pietarinen, E.; Pimiae, M.; Tuominiemi, J.

    1984-01-01

    Muons of high transverse momentum psub(T)sup(μ) have been observed in the large drift chambers surrounding the UA1 detector at the CERN 540 GeV panti p collider. For an integrated luminosity of 108 nb -1 , 14 isolated muons have been found with psub(T) > 15 GeV/c. They are correlated with a large imbalance in total transverse energy, and show a kinematic behaviour consistent with the muonic decay of the Intermediate Vector Boson Wsup(+-) of weak interactions. The partial cross section is in agreement with previous measurements for electronic decays and with muon-electron universality. The W mass is determined to be msub(W) = 81sub(-7) +6 GeV/c 2 . (orig.)

  12. Language in use intermediate : self-study workbook

    CERN Document Server

    Doff, Adrian

    1994-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  13. an intermediate moisture meat

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... traditional SM muscle without compromising quality. ... technique is intermediate moisture food processing. ... Traditionally, most tsire suya producers use ..... quality of Chinese purebred and European X Chinese crossbred ...

  14. Time evolution of the mass exchange in grazing heavy-ion collisions

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-10-01

    On the basis of a macroscopical approach to the description of two interpenetrating quantum objects, the equations of two-fluid hydrodynamics for the cohesion stage of deeply inelastic heavy-ion collisions are formulated. The elasticity of the ions is analyzed in peripheral mass exchange reactions at intermediate energies. The system of closed equations of Newtonian mechanics, which simultaneously describes the motion of the ions along classical trajectories as well as the mass time evolution during the interaction period are derived and solved. The role of mass exchange in the friction force is discussed. (author) 22 refs.; 2 figs

  15. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    Science.gov (United States)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  16. Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars

    Science.gov (United States)

    2004-05-01

    : 3815 x 4574 pix - 5.4M] Caption: PR Photo 15a/04 is a reproduction of a three-colour composite of the sky region of M 17, a H II region excited by a cluster of young, hot stars. A large silhouette disc has been found to the south-west of the cluster centre. The area within the indicated square is shown in more detail in PR Photo 15b/04. The present image was obtained with the ISAAC near-infrared instrument at the 8.2-m VLT ANTU telescope at Paranal. In the left photo, the orientation and the scale at the distance of M 17 (7,000 light-years) are indicated, and the main regions are identified. To the right, this beautiful photo is available without text and in full resolution for reproduction purposes. While many details related to the formation and early evolution of low-mass stars like the Sun are now well understood, the basic scenario that leads to the formation of high-mass stars [2] still remains a mystery. Two possible scenarios for the formation of massive stars are currently being studied. In the first, such stars form by accretion of large amounts of circumstellar material; the infall onto the nascent star varies with time. Another possibility is formation by collision (coalescence) of protostars of intermediate masses, increasing the stellar mass in "jumps". In their continuing quest to add more pieces to the puzzle and help providing an answer to this fundamental question, a team of European astronomers [1] used a battery of telescopes, mostly at two of the European Southern Observatory's Chilean sites of La Silla and Paranal, to study in unsurpassed detail the Omega nebula. The Omega nebula, also known as the 17th object in the list of famous French astronomer Charles Messier, i.e. Messier 17 or M 17, is one of the most prominent star forming regions in our Galaxy. It is located at a distance of 7,000 light-years. M 17 is extremely young - in astronomical terms - as witnessed by the presence of a cluster of high-mass stars that ionise the surrounding

  17. Taxation of Financial Intermediation Activities in Hong Kong

    OpenAIRE

    Jack M. Mintz; Stephen R. Richardson

    2001-01-01

    This paper discusses issues related to the taxation of financial intermediation in Hong Kong in the context of Hong Kong's position as a major regional financial centre. It first provides some background analysis as to the definition of financial intermediation and identification of the providers of financial services. This is then followed by a discussion of the principles of taxation applicable to financial intermediation, including a comparison of income taxes to consumption taxes. Some sp...

  18. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  19. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  20. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  1. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    Science.gov (United States)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  2. THE LOWEST-MASS MEMBER OF THE β PICTORIS MOVING GROUP

    International Nuclear Information System (INIS)

    Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.

    2010-01-01

    We present spectral and kinematic evidence that 2MASS J06085283-2753583 (M8.5γ) is a member of the β Pictoris Moving Group (BPMG, age ∼12 Myr), making it the latest-type known member of this young, nearby association. We confirm low-gravity spectral morphology at both medium and high resolutions in the near-infrared. We present new radial velocity and proper motion measurements, and use these to calculate galactic location and space motion consistent with other high-probability members of the BPMG. The predicted mass range consistent with the object's effective temperature, surface gravity, spectral type, and age is 15-35 M Jup , placing 2MASS 0608-27 well within the brown dwarf mass regime. 2MASS J06085283-2753583 is thus confidently added to the short list of very low mass, intermediate age benchmark objects that inform ongoing searches for the lowest-mass members of nearby young associations.

  3. Oxidative degradation of atenolol by heat-activated persulfate: Kinetics, degradation pathways and distribution of transformation intermediates.

    Science.gov (United States)

    Miao, Dong; Peng, Jianbiao; Zhou, Xiaohuan; Qian, Li; Wang, Mengjie; Zhai, Li; Gao, Shixiang

    2018-05-17

    Atenolol (ATL) has been widely detected in wastewater and aquatic environment. Although satisfactory removal of ATL from wastewater could be achieved, the mineralization ratio is usually low, which may result in the accumulation of its transformation products in the effluent and cause additional ecological risk to the environment. The aim of this study is to explore the effectiveness of heat activated persulfate (PS) in the removal of ATL from wastewater. Influencing factors including temperature, PS dosage, solution pH, existence of NO 3 - , Cl - , HCO 3 - and Suwannee river fulvic acid (SRFA) were examined. Complete removal of ATL was achieved within 40 min at pH 7.0 and 70 °C by using 0.5 mM PS. Inhibitive effects of HCO 3 - and FA had been observed on ATL oxidation, which was increased with the increase of their concentration. Sulfate radical (SO 4 - ) was determined as the main reactive species by quenching experiment. Eight intermediates produced in ATL degradation were identified, and four degradation pathways were proposed based on the analysis of mass spectrum and frontier electron densities. The distribution of major intermediates was influenced by reaction temperature. Hydroxylation intermediates and deamidation intermediate were the most prominent at 50 °C and 60 °C, respectively. All intermediates were completely degraded in 40 min except P134 at 70 °C. Effective removal of TOC (74.12%) was achieved with 0.5 mM PS, pH 7.0 and 70 °C after 240 min. The results proved that heat activation of PS is a promising method to remove organic pollutants in wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  5. HIGH-RESOLUTION 8 mm AND 1 cm POLARIZATION OF IRAS 4A FROM THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tobin, John [Leiden Observatory, Leiden University, P.O. Box 9513, 2000-RA Leiden (Netherlands); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Tychoniec, Łukasz [Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, PL-60-268 Poznań (Poland); Chandler, Claire J.; Perez, Laura M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kratter, Kaitlin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Sadavoy, Sarah I., E-mail: egcox2@illinois.edu [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany)

    2015-12-01

    Magnetic fields can regulate disk formation, accretion, and jet launching. Until recently, it has been difficult to obtain high-resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ∼0.″2 (50 AU) resolution at λ = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with β ∼ 1.3, suggesting that millimeter-/centimeter-sized grains have grown and survived in the short lifetime of the protostar.

  6. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Westmoreland, Phillip R. [Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2009-04-15

    Flame-sampling molecular-beam mass spectrometry of premixed, laminar, low-pressure flat flames has been demonstrated to be an efficient tool to study combustion chemistry. In this technique, flame gases are sampled through a small opening in a quartz probe, and after formation of a molecular beam, all flame species are separated using mass spectrometry. The present review focuses on critical aspects of the experimental approach including probe sampling effects, different ionization processes, and mass separation procedures. The capability for isomer-resolved flame species measurements, achievable by employing tunable vacuum-ultraviolet radiation for single-photon ionization, has greatly benefited flame-sampling molecular-beam mass spectrometry. This review also offers an overview of recent combustion chemistry studies of flames fueled by hydrocarbons and oxygenates. The identity of a variety of intermediates in hydrocarbon flames, including resonantly stabilized radicals and closed-shell intermediates, is described, thus establishing a more detailed understanding of the fundamentals of molecular-weight growth processes. Finally, molecular-beam mass-spectrometric studies of reaction paths in flames of alcohols, ethers, and esters, which have been performed to support the development and validation of kinetic models for bio-derived alternative fuels, are reviewed. (author)

  7. Evolution of the Black Hole Mass Function in Star Clusters from Multiple Mergers

    Science.gov (United States)

    Christian, Pierre; Mocz, Philip; Loeb, Abraham

    2018-05-01

    We investigate the effects of black hole (BH) mergers in star clusters on the black hole mass function (BHMF). As BHs are not produced in pair-instability supernovae, it is suggested that there is a dearth of high-mass stellar BHs. This dearth generates a gap in the upper end of the BHMF. Meanwhile, parameter fitting of X-ray binaries suggests the existence of a gap in the mass function under 5 solar masses. We show, through evolving a coagulation equation, that BH mergers can appreciably fill the upper mass gap, and that the lower mass gap generates potentially observable features at larger mass scales. We also explore the importance of ejections in such systems and whether dynamical clusters can be formation sites of intermediate-mass BH seeds.

  8. Mapping Intermediality in Performance

    NARCIS (Netherlands)

    2010-01-01

    Mapping Intermediality in Performance benadert het vraagstuk van intermedialiteit met betrekking tot performance (vooral theater) vanuit vijf verschillende invalshoeken: performativiteit en lichaam; tijd en ruimte; digitale cultuur en posthumanisme; netwerken; pedagogiek en praxis. In deze boeiende

  9. Efficient synthesis and physicochemical characterization of natural danshensu, its S isomer and intermediates thereof

    Science.gov (United States)

    Sidoryk, Katarzyna; Filip, Katarzyna; Cmoch, Piotr; Łaszcz, Marta; Cybulski, Marcin

    2018-02-01

    The synthesis and molecular structure details of R- 3,4-dihydroxyphenyl lactic acid (danshensu) and related compounds, i.e. S isomer and the key intermediates have been described. Danshensu is an important water soluble phenolic acid of Salvia miltiorrhiza herb (danshen or red sag) with numerous applications in traditional Chinese medicine (TCM). Our synthetic approach was based on the Knoevenagel condensation of the protected 3,4-dihydroxybenzaldehyd and Meldrum acid derivative, followed by asymmetric Sharples dihydroxylation, reductive mono dehydroxylation and final deprotection. All compounds were characterized by various spectroscopic techniques: 1H-, 13C- magnetic resonance (NMR); Fourier-transformed infrared (FTIR); Raman, HR mass spectroscopy. For the determination of compound optical purities original HPLC methods were developed which allowed for the efficient resolution of danshensu R and S enantiomers as well as its intermediate enantiomers, using commercially available chiral stationary phases. Furthermore, in order to better understand danshensu specificity as a potential API in drug formulation, the physicochemical properties of the compounds were studied by thermal analysis, including differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

  10. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  11. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  12. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Leon-Tavares, Jonathan [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FI-02540, Kylmaelae (Finland); Chavushyan, Vahram H., E-mail: erika@astro.unam.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico)

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  13. ENVIRONMENT AND PROTOSTELLAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tan, Jonathan C., E-mail: yczhang.astro@gmail.com [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2015-04-01

    Even today in our Galaxy, stars form from gas cores in a variety of environments, which may affect the properties of the resulting star and planetary systems. Here, we study the role of pressure, parameterized via ambient clump mass surface density, on protostellar evolution and appearance, focusing on low-mass Sun-like stars and considering a range of conditions from relatively low pressure filaments in Taurus, to intermediate pressures of cluster-forming clumps like the Orion Nebula Cluster, to very high pressures that may be found in the densest infrared dark clouds or in the Galactic center. We present unified analytic and numerical models for the collapse of prestellar cores, accretion disks, protostellar evolution, and bipolar outflows, coupled with radiative transfer calculations and a simple astrochemical model to predict CO gas-phase abundances. Prestellar cores in high-pressure environments are smaller and denser and thus collapse with higher accretion rates and efficiencies, resulting in higher luminosity protostars with more powerful outflows. The protostellar envelope is heated to warmer temperatures, affecting infrared morphologies (and thus classification) and astrochemical processes like CO depletion onto dust grain ice mantles (and thus CO morphologies). These results have general implications for star and planet formation, especially via their effect on astrochemical and dust grain evolution during infall to and through protostellar accretion disks.

  14. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  15. The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics

    International Nuclear Information System (INIS)

    Bose, A.; Betti, R.; Shvarts, D.; Woo, K. M.

    2017-01-01

    To achieve ignition with inertial confinement fusion (ICF), it is important to under- stand the effect of asymmetries on the hydrodynamics and energetics of the compres- sion. This paper describes a theoretical model for the compression of distorted hot spots, and quantitative estimates using hydrodynamic simulations. The asymmetries are categorized into low (Ι < 6) and intermediate (Ι < A < 40) modes by comparison of the wavelength with the thermal-diffusion scale length. Long-wavelength modes introduce substantial nonradial motion, whereas intermediate-wavelength modes in- volve more cooling by thermal ablation. We discover that for distorted hot spots, the measured neutron-averaged properties can be very different from the real hydro- dynamic conditions. This is because mass ablation driven my thermal conduction introduces flows in the Rayleigh–Taylor bubbles, this results in pressure variation, in addition to temperature variation between the bubbles and the neutron-producing region (~1 keV for intermediate modes). The differences are less pronounced for long-wavelength asymmetries since the bubbles are relatively hot and sustain fusion reactions. The yield degradation− with respect to the symmetric− results primarily from a reduction in the hot-spot pressure for low modes and from a reduction in burn volume for intermediate modes. It is shown that the degradation in internal energy of the hot-spot is equivalent for both categories, and is equal to the total residual energy in the shell including the bubbles. This quantity is correlated with the shell residual kinetic energy for low-modes, and includes the kinetic energy in the bubbles for mid-modes.

  16. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  17. Polarimetry, photometry and spectroscopy of the intermediate polar V1223 Sgr

    Energy Technology Data Exchange (ETDEWEB)

    Watts, D J; Giles, A B; Greenhill, J G; Hill, K [Tasmania Univ., Sandy Bay (Australia). Dept. of Physics; Bailey, J [Anglo-Australian Observatory, Epping (Australia)

    1985-07-01

    Optical and IR polarization studies of the intermediate polar V1223 Sgr are reported. The optical and IR light curves have assisted in the determination of the photometric period of 0.14 day. The IR flux of the 794-s pulsations is consistent with X-ray heating of a cool atmosphere. The white-dwarf spin period of 746s was not detected. The IR data are consistent with the published fit of a steady state optically thick disc model to the optical and UV continua. No IR excess from the secondary is apparent. High-dispersion spectroscopic observations over half the orbital period show a small radial velocity change accompanied by complex line profile changes. The low mass function implies a low inclination for a main-sequence companion.

  18. Heavy residues from very mass asymmetric heavy ion reactions

    International Nuclear Information System (INIS)

    Hanold, K.A.

    1994-08-01

    The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129 Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with that expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model

  19. Systematics of intermediate-energy single-nucleon removal cross sections

    Science.gov (United States)

    Tostevin, J. A.; Gade, A.

    2014-11-01

    There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.

  20. Intermediate Inflation or Late Time Acceleration?

    International Nuclear Information System (INIS)

    Sanyal, A.K.

    2008-01-01

    The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.

  1. On financial equilibrium with intermediation costs

    DEFF Research Database (Denmark)

    Markeprand, Tobias Ejnar

    2008-01-01

    This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium correspond......This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium...

  2. Intermediate product selection and blending in the food processing industry

    DEFF Research Database (Denmark)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates...

  3. The magnetic strip(s) in the advanced phases of stellar evolution. Theoretical convective turnover timescale and Rossby number for low- and intermediate-mass stars up to the AGB at various metallicities

    Science.gov (United States)

    Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Aurière, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.

    2017-09-01

    Context. Recent spectropolarimetric observations of otherwise ordinary (in terms e.g. of surface rotation and chemical properties) G, K, and M giants have revealed localized magnetic strips in the Hertzsprung-Russell diagram coincident with the regions where the first dredge-up and core helium burning occur. Aims: We seek to understand the origin of magnetic fields in such late-type giant stars, which is currently unexplained. In analogy with late-type dwarf stars, we focus primarily on parameters known to influence the generation of magnetic fields in the outer convective envelope. Methods: We compute the classical dynamo parameters along the evolutionary tracks of low- and intermediate-mass stars at various metallicities using stellar models that have been extensively tested by spectroscopic and asteroseismic observations. Specifically, these include convective turnover timescales and convective Rossby numbers, computed from the pre-main sequence (PMS) to the tip of the red giant branch (RGB) or the early asymptotic giant branch (AGB) phase. To investigate the effects of the very extended outer convective envelope, we compute these parameters both for the entire convective envelope and locally, that is, at different depths within the envelope. We also compute the turnover timescales and corresponding Rossby numbers for the convective cores of intermediate-mass stars on the main sequence. Results: Our models show that the Rossby number of the convective envelope becomes lower than unity in the well-delimited locations of the Hertzsprung-Russell diagram where magnetic fields have indeed been detected. Conclusions: We show that α - Ω dynamo processes might not be continuously operating, but that they are favored in the stellar convective envelope at two specific moments along the evolution tracks, that is, during the first dredge-up at the base of the RGB and during central helium burning in the helium-burning phase and early-AGB. This general behavior can explain

  4. Intermediate product selection and blending in the food processing industry

    NARCIS (Netherlands)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter; Grunow, Martin

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates are

  5. BINARY FORMATION MECHANISMS: CONSTRAINTS FROM THE COMPANION MASS RATIO DISTRIBUTION

    International Nuclear Information System (INIS)

    Reggiani, Maddalena M.; Meyer, Michael R.

    2011-01-01

    We present a statistical comparison of the mass ratio distribution of companions, as observed in different multiplicity surveys, to the most recent estimate of the single-object mass function. The main goal of our analysis is to test whether or not the observed companion mass ratio distribution (CMRD) as a function of primary star mass and star formation environment is consistent with having been drawn from the field star initial mass function (IMF). We consider samples of companions for M dwarfs, solar-type stars, and intermediate-mass stars, both in the field as well as clusters or associations, and compare them with populations of binaries generated by random pairing from the assumed IMF for a fixed primary mass. With regard to the field we can reject the hypothesis that the CMRD was drawn from the IMF for different primary mass ranges: the observed CMRDs show a larger number of equal-mass systems than predicted by the IMF. This is in agreement with fragmentation theories of binary formation. For the open clusters α Persei and the Pleiades we also reject the IMF random-pairing hypothesis. Concerning young star-forming regions, currently we can rule out a connection between the CMRD and the field IMF in Taurus but not in Chamaeleon I. Larger and different samples are needed to better constrain the result as a function of the environment. We also consider other companion mass functions and we compare them with observations. Moreover the CMRD both in the field and clusters or associations appears to be independent of separation in the range covered by the observations. Combining therefore the CMRDs of M (1-2400 AU) and G (28-1590 AU) primaries in the field and intermediate-mass primary binaries in Sco OB2 (29-1612 AU) for mass ratios, q = M 2 /M 1 , from 0.2 to 1, we find that the best chi-square fit follows a power law dN/dq∝q β , with β = -0.50 ± 0.29, consistent with previous results. Finally, we note that the Kolmogorov-Smirnov test gives a ∼1

  6. DIRECT IMAGING OF A COMPACT MOLECULAR OUTFLOW FROM A VERY LOW LUMINOSITY OBJECT: L1521F-IRS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Ohashi, Nagayoshi [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Bourke, Tyler L., E-mail: satoko.takahashi@nao.ac.jp [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-09-01

    Studying the physical conditions of very low luminosity objects (VeLLOs; L{sub bol} < 0.1 L{sub Sun }) is important for understanding the earliest evolutionary stage of protostars and brown dwarfs. We report interferometric observations of the VeLLO L1521F-IRS, in {sup 12}CO (2-1) line emission and the 1.3 mm continuum emission, using the Submillimeter Array. With the {sup 12}CO (2-1) high-resolution observations, we have spatially resolved a compact but poorly collimated molecular outflow associated with L1521F-IRS for the first time. The blueshifted and redshifted lobes are aligned along the east and west side of L1521F-IRS with a lobe size of Almost-Equal-To 1000 AU. The estimated outflow mass, maximum outflow velocity, and outflow force are (9.0-80) Multiplication-Sign 10{sup -4} M{sub Sun }, 7.2 km s{sup -1}, and (7.4-66) Multiplication-Sign 10{sup -7} M{sub Sun} km s{sup -1} yr{sup -1}, respectively. The estimated outflow parameters such as size, mass, and momentum rate are similar to values derived for other VeLLOs, and are located at the lower end of values compared to previously studied outflows associated with low- to high-mass star-forming regions. Low-velocity less collimated (1.5 km s{sup -1}/1200 AU) and higher-velocity compact (4.0 km s{sup -1}/920 AU) outflow components are suggested by the data. These velocity structures are not consistent with those expected in the jet-driven or wind-driven outflow models, perhaps suggesting a remnant outflow from the first hydrostatic core as well as an undeveloped outflow from the protostar. Detection of an infrared source and compact millimeter continuum emission suggests the presence of the protostar, while its low bolometric luminosity (0.034-0.07 L{sub Sun }) and small outflow suggests that L1521F is in the earliest protostellar stage (<10{sup 4} yr) and contains a substellar mass object. The bolometric (or internal) luminosity of L1521F-IRS suggests that the current mass accretion rate is an order of

  7. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  8. Multiplicity of the Protostar Serpens SMM 1 Revealed by Millimeter Imaging

    OpenAIRE

    Choi, Minho

    2009-01-01

    The Serpens SMM 1 region was observed in the 6.9 mm continuum with an angular resolution of about 0.6 arcsec. Two sources were found to have steep positive spectra suggesting emission from dust. The stronger one, SMM 1a, is the driving source of the bipolar jet known previously, and the mass of the dense molecular gas traced by the millimeter continuum is about 8 solar mass. The newly found source, SMM 1b, positionally coincides with the brightest mid-IR source in this region, which implies t...

  9. Tracer signals of the intermediate layer of the Arabian Sea

    Science.gov (United States)

    Rhein, Monika; Stramma, Lothar; Plähn, Olaf

    In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian Sea. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by air-sea gas exchange. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red Sea outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red Sea which were isolated from the surface for some time. The tracer contributions to the Arabian Sea for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian Sea, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red Sea Water into the Arabian Sea.

  10. A DETAILED STUDY OF SPITZER-IRAC EMISSION IN HERBIG-HARO OBJECTS. II. INTERACTION BETWEEN EJECTA AND AMBIENT GAS

    International Nuclear Information System (INIS)

    Takami, Michihiro; Karr, Jennifer L.; Nisini, Brunella; Ray, Thomas P.

    2011-01-01

    We present a new analysis of the physical conditions in three Herbig-Haro complexes (HH 54, HH 212, and the L 1157 protostellar jet) using archival data from the Infrared Array Camera on the Spitzer Space Telescope. As described in detail in Paper I, the emission observed using the 4.5 μm filter is enhanced in molecular shocks (T = 1000-4000 K) at relatively high temperatures or densities compared with that observed with the 8.0 μm filter. Using these data sets, we investigate different distributions of gas between high and low temperatures/densities. Our analysis reveals the presence of a number of warm/dense knots, most of which appear to be associated with working surfaces such as the head of bow shocks and cometary features, and reverse shocks in the ejecta. These are distributed not only along the jet axis, as expected, but also across it. While some knotty or fragmenting structures can be explained by instabilities in shocked flows, others can be more simply explained by the scenario that the mass ejection source acts as a 'shot gun', periodically ejecting bullets of material along similar but not identical trajectories. Such an explanation challenges to some degree the present paradigm for jet flows associated with low-mass protostars. It also gives clues to reconciling our understanding of the mass ejection mechanism in high- and low-mass protostars and evolved stars.

  11. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  12. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  13. Comments on intermediate-scale models

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.

    1987-01-01

    Some superstring-inspired models employ intermediate scales m I of gauge symmetry breaking. Such scales should exceed 10 16 GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above m I . However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O(m W ), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has not renormalizable interactions at scales below m I . We also comment on the danger of baryon and lepton number violation in the effective low-energy theory. (orig.)

  14. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...

  15. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Jaworowski, J.; Leandersson, M.; El Bouanani, M. [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B. [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J.; Westerberg, L.; Van Veldhuizen, E.J. [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1996-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  16. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Jaworowski, J; Leandersson, M; El Bouanani, M [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J; Westerberg, L; Van Veldhuizen, E J [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1997-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  17. Negative ion electrospray ionization mass spectrometry of nucleoside phosphoramidate monoesters: elucidation of novel rearrangement mechanisms by multistage mass spectrometry incorporating in-source deuterium labelling.

    Science.gov (United States)

    Xu, Peng-Xiang; Hu, An-Fu; Hu, Dan; Gao, Xiang; Zhao, Yu-Fen

    2008-10-01

    Several O-2',3'-isopropylideneuridine-O-5'-phosphoramidate monoesters were synthesized and analyzed by negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)). Two kinds of novel rearrangement reactions were observed due to the difference in the amino acid in the nucleoside phosphoramidate monoesters, and possible mechanisms were proposed. One involves a five-membered cyclic transition state. The other is formation of a stable five-membered ring intermediate by Michael addition. Results were confirmed by tandem mass spectrometry and isotopically labeled hydrogen atoms. Furthermore, the internal hydrogen exchange between active hydrogen and methyl acrylate in the heated capillary of the mass spectrometer was found. The characteristic fragmentation behavior in ESI-MS may be used to monitor this kind of compounds in the biological metabolism.

  18. Computational uncertainties in silicon dioxide/plutonium intermediate neutron spectrum systems

    International Nuclear Information System (INIS)

    Jaegers, P.J.

    1997-01-01

    In the past several years, several proposals have been made for the long-term stabilization and storage of surplus fissile materials. Many of these proposed scenarios involve systems that have an intermediate neutron energy spectrum. Such intermediate-energy systems are dominated by scattering and fission events induced by neutrons ranging in energy from 1 eV to 100keV. To ensure adequate safety margins and cost effectiveness, it is necessary to have benchmark data for these intermediate-energy spectrum systems; however, a review of the nuclear criticality benchmarks indicates that no formal benchmarks are available. Nuclear data uncertainties have been reported for some types of intermediate-energy spectrum systems. Using a variety of Monte Carlo computer codes and cross-section sets, reported significant variations in the calculated k ∞ of intermediate-energy spectrum metal/ 235 U systems. We discuss the characteristics of intermediate neutron spectrum systems and some of the computational differences that can occur in calculating the k eff of these systems

  19. On the stability of rotational discontinuities and intermediate shocks

    International Nuclear Information System (INIS)

    Lee, L.C.; Huang, L.; Chao, J.K.

    1989-01-01

    The stability of rotational discontinuities and intermediate shocks is studied based on a hybrid simulation code. The simulation results show that rotational discontinuities are stable and intermediate shocks are not stationary. Intermediate shocks tend to evolve to rotational discontinuities and waves. The authors employ several different initial profiles for the magnetic field in the transition region and find that the final structure of the discontinuities or shocks is not sensitive to the initial magnetic field profile. The present results are different from those obtained from the resistive MHD simulations. Furthermore, their study indicates that the kinetic effect of particles plays an important role in the structure and stability of rotational discontinuities and intermediate shocks

  20. Can a Modified Bosniak Classification System Risk Stratify Pediatric Cystic Renal Masses?

    Science.gov (United States)

    Saltzman, Amanda F; Carrasco, Alonso; Colvin, Alexandra N; Meyers, Mariana L; Cost, Nicholas G

    2018-03-20

    We characterize and apply the modified Bosniak classification system to a cohort of children with cystic renal lesions and known surgical pathology. We identified all patients at our institution with cystic renal masses who also underwent surgery for these lesions. Patients without available preoperative imaging or pathology were excluded. All radiological imaging was independently reviewed by a pediatric radiologist blinded to pathological findings. Imaging characteristics (size, border, septations, calcifications, solid components, vascularity) were recorded from the most recent preoperative ultrasounds and computerized tomograms. The modified Bosniak classification system was applied to these scans and then correlated with final pathology. A total of 22 patients met study criteria. Median age at surgery was 6.1 years (range 11 months to 16.8 years). Of the patients 12 (54.5%) underwent open nephrectomy, 6 (27.3%) open partial nephrectomy, 2 (9.1%) laparoscopic cyst decortication, 1 (4.5%) open renal biopsy and 1 (4.5%) laparoscopic partial nephrectomy. Final pathology was benign in 9 cases (41%), intermediate in 6 (27%) and malignant in 7 (32%). All malignant lesions were modified Bosniak class 4, all intermediate lesions were modified class 3 or 4 and 8 of 9 benign lesions (89%) were modified class 1 or 2. Cystic renal lesions in children with a modified Bosniak class of 1 or 2 were most often benign, while class 3 or 4 lesions warranted surgical excision since more than 90% of masses harbored intermediate or malignant pathology. The modified Bosniak classification system appears to allow for a reasonable clinical risk stratification of pediatric cystic renal masses. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.