WorldWideScience

Sample records for intermediate mass binary

  1. Intermediate mass fragments emission in binary fragmentation model

    International Nuclear Information System (INIS)

    Bhattacharya, C.; Bhattacharya, S.

    1991-01-01

    Intermediate mass fragments emission in intermediate-energy nucleus-nucleus collisions has been studied in the framework of a generalized model where the fragments are assumed to be emitted from binary fissionlike decay of the fully equilibrated compound nucleus. The present formulation, with a schematic exit channel shape configuration and simple rotating liquid-drop nuclear potential, has been found to explain most of the intermediate mass fragments emission cross sections reasonably well without incorporating any free parameters in the calculation

  2. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    Science.gov (United States)

    Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.

  3. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.

    2017-01-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that...

  4. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  5. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    Science.gov (United States)

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  6. Evolving ONe WD+He star systems to intermediate-mass binary pulsars

    Science.gov (United States)

    Liu, D.; Wang, B.; Chen, W.; Zuo, Z.; Han, Z.

    2018-03-01

    It has been suggested that accretion-induced collapse (AIC) is a non-negligible path for the formation of the observed neutron stars (NSs). An ONe white dwarf (WD) that accretes material from a He star may experience AIC process and eventually produce intermediate-mass binary pulsars (IMBPs), named as the ONe WD+He star scenario. Note that previous studies can only account for part of the observed IMBPs with short orbital periods. In this work, we investigate the evolution of about 900 ONe WD+He star binaries to explore the distribution of IMBPs. We found that the ONe WD+He star scenario could form IMBPs including pulsars with 5-340 ms spin periods and 0.75-1.38 M_{⊙} WD companions, in which the orbital periods range from 0.04 to 900 d. Compared with the 20 observed IMBPs, this scenario can cover the parameters of 13 sources in the final orbital period-WD mass plane and the Corbet diagram, most of which has short orbital periods. We found that the ONe WD+He star scenario can explain almost all the observed IMBPs with short orbital periods. This work can well match the observed parameters of PSR J1802-2124 (one of the two precisely observed IMBPs), providing a possible evolutional path for its formation. We also speculate that the compact companion of HD 49798 (a hydrogen depleted sdO6 star) may be not a NS based on the present work.

  7. Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries

    Science.gov (United States)

    Fritze, Hannah; Wright, Simon; Kilgard, Roy

    2018-01-01

    X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.

  8. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, D J; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S. S. Y.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; Debra, D.; Deelman, E; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.J.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, A.S.P.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.E.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, S.W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, H.C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang-Cheol, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, W. H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A.; Shahriar, M. S.; Shao, L.P.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, G.W.K.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2017-01-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves

  9. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei

    Science.gov (United States)

    Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen

    2017-07-01

    Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination

  10. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO

    Science.gov (United States)

    Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.

    2018-01-01

    The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.

  11. THE LEECH EXOPLANET IMAGING SURVEY: ORBIT AND COMPONENT MASSES OF THE INTERMEDIATE-AGE, LATE-TYPE BINARY NO UMa

    Energy Technology Data Exchange (ETDEWEB)

    Schlieder, Joshua E. [NASA Ames Research Center, Space Science and Astrobiology Division, MS 245-6, Moffett Field, CA 94035 (United States); Skemer, Andrew J.; Hinz, Philip; Leisenring, Jarron; Defrère, Denis; Close, Laird M.; Eisner, Josh A. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Maire, Anne-Lise; Desidera, Silvano [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122, Padova (Italy); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Bailey, Vanessa [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Esposito, Simone [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); Strassmeier, Klaus G.; Weber, Michael [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN, 46556 (United States); Hofmann, Karl-Heinz, E-mail: joshua.e.schlieder@nasa.gov [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany); and others

    2016-02-10

    We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBT Interferometer Exozodi Exoplanet Common Hunt exoplanet imaging survey. Our H-, K{sub s}-, and L′-band observations resolve the system at angular separations <0.″09. The components exhibit significant orbital motion over a span of ∼7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0 ± 0.5 primary and K6.5 ± 0.5 secondary are 0.83 ± 0.02 M{sub ⊙} and 0.64 ± 0.02 M{sub ⊙}, respectively. We also derive a system distance of d = 25.87 ± 0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ∼500 Myr old Ursa Major moving group, and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.

  12. Mass Transfer in Mira-Type Binaries

    Directory of Open Access Journals (Sweden)

    Mohamed S.

    2012-06-01

    Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.

  13. Eclipsing Binary B-Star Mass Determinations

    Science.gov (United States)

    Townsend, Amanda; Eikenberry, Stephen S.

    2016-01-01

    B-stars in binary pairs provide a laboratory for key astrophysical measurements of massive stars, including key insights for the formation of compact objects (neutron stars and black holes). In their paper, Martayan et al (2004) find 23 Be binary star pairs in NGC2004 in the Large Magellanic Cloud, five of which are both eclipsing and spectroscopic binaries with archival data from VLT-Giraffe and photometric data from MACHO. By using the Wilson eclipsing binary code (e.g., Wilson, 1971), we can determine preliminary stellar masses of the binary components. We present the first results from this analysis. This study also serves as proof-of-concept for future observations with the Photonic Synthesis Telescope Array (Eikenberry et al., in prep) that we are currently building for low-cost, precision spectroscopic observations. With higher resolution and dedicated time for observations, we can follow-up observations of these Be stars as well as Be/X-ray binaries, for improved mass measurements of neutron stars and black holes and better constraints on their origin/formation.

  14. Formation of Low-Mass X-Ray Binaries. II. Common Envelope Evolution of Primordial Binaries with Extreme Mass Ratios

    Science.gov (United States)

    Kalogera, Vassiliki; Webbink, Ronald F.

    1998-01-01

    We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible

  15. Neutrino mass as the probe of intermediate mass scales

    Energy Technology Data Exchange (ETDEWEB)

    Senjanovic, G.

    1980-01-01

    A discussion of the calculability of neutrino mass is presented. The possibility of neutrinos being either Dirac or Majorana particles is analyzed in detail. Arguments are offered in favor of the Majorana case: the smallness of neutrino mass is linked to the maximality of parity violation in weak interactions. It is shown how the measured value of neutrino mass would probe the existence of an intermediate mass scale, presumably in the TeV region, at which parity is supposed to become a good symmetry. Experimental consequences of the proposed scheme are discussed, in particular the neutrino-less double ..beta.. decay, where observation would provide a crucial test of the model, and rare muon decays such as ..mu.. ..-->.. e..gamma.. and ..mu.. ..-->.. ee anti e. Finally, the embedding of this model in an O(10) grand unified theory is analyzed, with the emphasis on the implications for intermediate mass scales that it offers. It is concluded that the proposed scheme provides a distinct and testable alternative for understanding the smallness of neutrino mass. 4 figures.

  16. Initial mass function of intermediate-mass black hole seeds

    Science.gov (United States)

    Ferrara, A.; Salvadori, S.; Yue, B.; Schleicher, D.

    2014-09-01

    We study the initial mass function (IMF) and hosting halo properties of intermediate-mass black holes (IMBHs, 104-6 M⊙) formed inside metal-free, UV-illuminated atomic-cooling haloes (virial temperature Tvir ≥ 104 K) either via the direct collapse of the gas or via an intermediate supermassive star (SMS) stage. These IMBHs have been recently advocated as the seeds of the supermassive black holes observed at z ≈ 6. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the zero-age main sequence and later collapse into an IMBH; (b) we use merger-tree simulations to select atomic-cooling haloes in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the hosting haloes and the mass distribution of black holes at this stage, and dub it the `birth mass function'; (c) we follow the further growth of the DCBH by accreting the leftover gas in the parent halo and compute the final IMBH mass. We consider two extreme cases in which minihaloes (Tvir populate haloes (a) of mass 7.5 < log (Mh/ M⊙) < 8, (b) in the redshift range 8 < z < 17, (c) with IMBH in the mass range 4.75 < (log M•/ M⊙) < 6.25.

  17. THE BINARY FRACTION OF LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    Brown, Justin M.; Kilic, Mukremin; Brown, Warren R.; Kenyon, Scott J.

    2011-01-01

    We describe spectroscopic observations of 21 low-mass (≤0.45 M sun ) white dwarfs (WDs) from the Palomar-Green survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is ≤30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus, additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.

  18. Researchers Resolve Intermediate Mass Black Hole Mystery

    Science.gov (United States)

    2004-04-01

    New research, funded by the Royal Netherlands Academy of Sciences, the Institute of Advanced Physical and Chemical Research, NASA and the University of Tokyo, solved the mystery of how a black hole, with the mass more than several hundreds times larger than that of our Sun, could be formed in the nearby starburst galaxy, M82. Recent observations of the Chandra X-ray observatory (Matsumoto et al., 2001 ApJ 547, L25) indicate the presence of an unusually bright source in the star cluster MGG11 in the starburst galaxy M82. The properties of the X-ray source are best explained by a black hole with a mass of about a thousand times the mass of the Sun, placing it intermediate between the relatively small (stellar mass) black holes in the Milky way Galaxy and the supermassive black holes found in the nuclei of galaxies. For comparison, stellar-mass black holes are only a few times more massive than the Sun, whereas the black hole in the center of the Milky-way Galaxy is more than a few million times more massive than the Sun. An international team of researchers, using the world's fastest computer, the GRAPE-6 system in Japan, were engaged in a series of simulations of star clusters that resembled MGG11. They used the GRAPE-6 to perform simulations with two independently developed computer programs (Starlab and NBODY4 developed by Sverre Aarseth in Cambridge), both of which give the same qualitative result. The simulations ware initiated by high resolution observations of the star cluster MGG11 by McCrady et al (2003, ApJ 596, 240) using the Hubble Space Telescope and Keck, and by Harashima et al (2001) using the giant Subaru telescope. M82 Chandra X-ray image of the central region of the starburst galaxy M82. The GRAPE's detailed, star-by-star simulations represent the state of the art in cluster modeling. For the first time using the GRAPE, researchers perform simulations of the evolution of young and dense star clusters with up to 600000 stars; they calculate the

  19. Explaining two recent intermediate-luminosity optical transients (ILOTs) by a binary interaction and jets

    Science.gov (United States)

    Soker, Noam; Kashi, Amit

    2016-10-01

    We propose that two recent intermediate-luminosity optical transients (ILOTs), M31LRN 2015 and SN 2015bh (SNHunt 275; PTF 13efv) can be accounted for with a stellar binary model involving mass transfer that leads to the launching of jets. We inspect observations of the ILOT M31LRN 2015 and conclude that it cannot be explained by the onset of a common envelope evolution (CEE). Instead, we conjecture that an M ˜eq 1 - 3 {M_{⊙}} main-sequence star accreted ≃ 0.04 M⊙ from the giant star, possibly during a periastron passage. The main-sequence star-accreted mass through an accretion disc, that launches jets. The radiation from the disc and the collision of the jets with the ambient gas can account for the luminosity of the event. Along similar lines, we suggest that the 2013 eruption of SN 2015bh (SNHunt 275) can also be explained by the high-accretion-powered ILOT (HAPI) model. In this case, a massive secondary star M2 ≳ 10 M⊙ accreted ≈ 0.05 M⊙ from a much more massive and more evolved star during a periastron passage. If the much more energetic 2015 outburst of SN 2015bh (SNHunt 275) was not a supernova explosion, it might have been a full almost head-on merger event, or else can be accounted for by the HAPI-jets model in a very highly eccentric orbit.

  20. Mechanism of intermediate mass fragment emission at low energy

    International Nuclear Information System (INIS)

    Dhara, A.K.; Bhattacharya, C.; Bhattacharya, S.; Krishan, K.

    1993-01-01

    The study of the dynamics of intermediate mass fragment emission in fusion-fission processes has been carried out. The average kinetic energies and relative yield ratio of different fragments are calculated and compared with experimental values

  1. LUT observations of the mass-transferring binary AI Dra

    Science.gov (United States)

    Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping

    2016-06-01

    Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.

  2. A multistep evaporation model for intermediate mass fragment emission

    International Nuclear Information System (INIS)

    Cole, A.J.; Grotowski, K.; Kozik, T.; Rebel, H.

    1988-11-01

    A multistep evaporation model for intermediate mass fragment emission in heavy ion reactions is described. It applies the canonical transition-state method for the determination of the probability for disintegration of a fused system. The energy and angular momentum relations at the saddle and scission points are calculated on the basis of the finite range liquid drop model. The derivation of the total kinetic energy release uses the concept of amplifying modes which is equivalent to that of shape fluctuations at the ridge point. The model reproduces fairly well the mass and angular distributions and the energy spectra of intermediate mass fragments yields from inclusive and coincidence experiments. (orig.) [de

  3. Estimating Mass Parameters of Doubly Synchronous Binary Asteroids

    Science.gov (United States)

    Davis, Alex; Scheeres, Daniel J.

    2017-10-01

    The non-spherical mass distributions of binary asteroid systems lead to coupled mutual gravitational forces and torques. Observations of the coupled attitude and orbital dynamics can be leveraged to provide information about the mass parameters of the binary system. The full 3-dimensional motion has 9 degrees of freedom, and coupled dynamics require the use of numerical investigation only. In the current study we simplify the system to a planar ellipsoid-ellipsoid binary system in a doubly synchronous orbit. Three modes are identified for the system, which has 4 degrees of freedom, with one degree of freedom corresponding to an ignorable coordinate. The three modes correspond to the three major librational modes of the system when it is in a doubly synchronous orbit. The linearized periods of each mode are a function of the mass parameters of the two asteroids, enabling measurement of these parameters based on observations of the librational motion. Here we implement estimation techniques to evaluate the capabilities of this mass measurement method. We apply this methodology to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), the final flyby target of the recently announced LUCY Discovery mission. This system is of interest because a stellar occultation campaign of the Patroclus and Menoetius system has suggested that the asteroids are similarly sized oblate ellipsoids moving in a doubly-synchronous orbit, making the system an ideal test for this investigation. A number of missed observations during the campaign also suggested the possibility of a crater on the southern limb of Menoetius, the presence of which could be evaluated by our mass estimation method. This presentation will review the methodology and potential accuracy of our approach in addition to evaluating how the dynamical coupling can be used to help understand light curve and stellar occultation observations for librating binary systems.

  4. Photometric Study of Fourteen Low-mass Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J. [Astronomical Institute, Charles University, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Hoňková, K., E-mail: korda@sirrah.troja.mff.cuni.cz [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic)

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  5. Resolving the Birth of High-Mass Binary Stars

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    New observations may help us to learn more about the birth of high-mass star systems. For the first time, scientists have imaged a very young, high-mass binary system and resolved the individual disks that surround each star and the binary.Massive MultiplesIts unusually common for high-mass stars to be discovered in multiple-star systems. More than 80% of all O-type stars which have masses greater than 16 times that of the Sun are in close multiple systems, compared with a multiplicity fraction of only 20% for stars of 3 solar masses, for instance.Reconstructed VLTI observations of the two components of the high-mass binary IRAS17216-3801. [Adapted from Kraus et al. 2017]Why do more massive stars preferentially form in multiple-star systems? Many different models of high-mass star formation have been invoked to explain this observation, but before we can better understand the process, we need better observations. In particular, past observations have placed few constraints on the architecture and disk structure of early high-mass stars.Conveniently, a team of scientists led by Stefan Kraus (University of Exeter) may have found exactly what we need: a high-mass protobinary that is still in the process of forming. Using ESOs Very Large Telescope Interferometer (VLTI), Kraus and collaborators have captured the first observations of a very young, high-mass binary system in which the circumbinary disk and the two circumstellar dust disks could all be spatially resolved.Clues from Resolved DisksThe VLTI near-infrared observations reveal that IRAS17216-3801, originally thought to be a single high-mass star, is instead a close binary separated by only 170 AU. Its two components are both surrounded by disks from which the protostars are actively accreting mass, and both of these circumstellar disks are strongly misaligned with respect to the separation vector of the binary. This confirms that the system is very young, as tidal forces havent yet had time to align the disks

  6. Finding binaries from phase modulation of pulsating stars with Kepler: V. Orbital parameters, with eccentricity and mass-ratio distributions of 341 new binaries

    Science.gov (United States)

    Murphy, Simon J.; Moe, Maxwell; Kurtz, Donald W.; Bedding, Timothy R.; Shibahashi, Hiromoto; Boffin, Henri M. J.

    2018-03-01

    The orbital parameters of binaries at intermediate periods (102-103 d) are difficult to measure with conventional methods and are very incomplete. We have undertaken a new survey, applying our pulsation timing method to Kepler light curves of 2224 main-sequence A/F stars and found 341 non-eclipsing binaries. We calculate the orbital parameters for 317 PB1 systems (single-pulsator binaries) and 24 PB2s (double-pulsators), tripling the number of intermediate-mass binaries with full orbital solutions. The method reaches down to small mass ratios q ≈ 0.02 and yields a highly homogeneous sample. We parametrize the mass-ratio distribution using both inversion and Markov-Chain Monte Carlo forward-modelling techniques, and find it to be skewed towards low-mass companions, peaking at q ≈ 0.2. While solar-type primaries exhibit a brown dwarf desert across short and intermediate periods, we find a small but statistically significant (2.6σ) population of extreme-mass-ratio companions (q 0.1, we measure the binary fraction of current A/F primaries to be 15.4 per cent ± 1.4 per cent, though we find that a large fraction of the companions (21 per cent ± 6 per cent) are white dwarfs in post-mass-transfer systems with primaries that are now blue stragglers, some of which are the progenitors of Type Ia supernovae, barium stars, symbiotics, and related phenomena. Excluding these white dwarfs, we determine the binary fraction of original A/F primaries to be 13.9 per cent ± 2.1 per cent over the same parameter space. Combining our measurements with those in the literature, we find the binary fraction across these periods is a constant 5 per cent for primaries M1 < 0.8 M⊙, but then increases linearly with log M1, demonstrating that natal discs around more massive protostars M1 ≳ 1 M⊙ become increasingly more prone to fragmentation. Finally, we find the eccentricity distribution of the main-sequence pairs to be much less eccentric than the thermal distribution.

  7. Mechanism for the Suppression of Intermediate-Mass Black Holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.; Samarchenko, D. A.

    2010-01-01

    A model for the formation of supermassive primordial black holes in galactic nuclei with the simultaneous suppression of the formation of intermediate-mass black holes is presented. A bimodal mass function for black holes formed through phase transitions in a model with a "Mexican hat" potential has been found. The classical motion of the phase of a complex scalar field during inflation has been taken into account. Possible observational manifestations of primordial black holes in galaxies an...

  8. Using High-Mass X-ray Binaries to Probe Massive Binary Evolution

    Science.gov (United States)

    Garofali, Kristen; Williams, Ben

    2018-01-01

    High-mass X-ray binaries (HMXBs) provide an exciting window into the underlying processes of both binary as well as massive star evolution. Because HMXBs are systems containing a compact object accreting from a high-mass star at close orbital separations they are also likely progenitors of gamma-ray bursts and gravitational wave sources. I will present work on the classification and age measurements of HMXBs in M33 using a combination of deep Chandra X-ray imaging, and archival Hubble Space Telescope data. I am able to constrain the ages of the HMXB candidates by fitting the color-magnitude diagrams of the surrounding stars, which yield the star formation histories of the surrounding region. Unlike the age distributions measured for HMXB populations in the Magellenic Clouds, the age distribution for the HMXB population in M33 contains a number of extremely young (population.

  9. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  10. ON THE MASS RADIATED BY COALESCING BLACK HOLE BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Barausse, E. [Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Morozova, V.; Rezzolla, L. [Max-Planck-Institut fuer Gravitationsphysik, Albert Einstein Institut, Potsdam, D-14476 Golm (Germany)

    2012-10-10

    We derive an analytic phenomenological expression that predicts the final mass of the black hole (BH) remnant resulting from the merger of a generic binary system of BHs on quasi-circular orbits. Besides recovering the correct test-particle limit for extreme mass-ratio binaries, our formula reproduces well the results of all the numerical-relativity simulations published so far, both when applied at separations of a few gravitational radii and when applied at separations of tens of thousands of gravitational radii. These validations make our formula a useful tool in a variety of contexts ranging from gravitational-wave (GW) physics to cosmology. As representative examples, we first illustrate how it can be used to decrease the phase error of the effective-one-body waveforms during the ringdown phase. Second, we show that, when combined with the recently computed self-force correction to the binding energy of nonspinning BH binaries, it provides an estimate of the energy emitted during the merger and ringdown. Finally, we use it to calculate the energy radiated in GWs by massive BH binaries as a function of redshift, using different models for the seeds of the BH population.

  11. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  12. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the

  13. Evolution Into Contact of the Low Mass Close Binary Systems

    Science.gov (United States)

    Sarna, M. J.; Fedorova, A. V.

    1989-06-01

    We investigated the effect of mass accretion on the secondary components in close binomy systems (M total ≤ 2.5 M ⊙ M 2,0 ≤ 0.75 M ⊙) exchanging mass in the case A. The evolution of the low-mass close binary systems (M total ≤ 2.5 M ⊙) exchanging the mass in the case A depends on the three main factors: -the initial mass ratio (q 0 = M 2,0/M 1,0), which determines the rate of mass transfer between components; -the inital mass of the secondary component (M 2,0) and -the effectiveness of the heating of the photosphere of the secondary component, by infalling matter. The second factor allows to divide all systems into two essentially different groups: a) systems in which the secondary component is a star with a radiative envelope, or with a thin convection zone in the uppermost layers; b) and systems in which secondary component has a thick convective envelope or is fully convective. The systems from the first group evolve into contact in a characteristic time scale 105 107 years, and reach contact after transfering of 0.03 0.3 M ⊙. The mass exchange proceeds only in a thermal time scale. For the systems from the group b the effectiveness of the heating of the stellar surface is the most important. In the case when the entropy of the newly accreted matter is the same as the surface entropy of the secondary, a convective star should shrink upon accretion. Then contact binaries are not formed. In the case when the entropy of the infalling matter is greater then that on the surface, the reaction of the secondary is different. The radius of the secondary component grows rapidly in response to accretion, and the systems reaches contact after the 103 3 106 years, and after transfer of 0.002 0.2. M ⊙. The reaction of the secondary is determined by the formation of the temperature inversion layer below the stellar surface. Full references in: Sarna, M.J. and Fedorova, A.V. (1988) “Evolutionary status of W UMa-type Binaries — Evolution into contact

  14. Interactions of Stellar-Mass Black Holes Around Supermassive Black Hole Binaries

    Science.gov (United States)

    Stafford, Jennifer Nicole; Li, Gongjie; Naoz, Smadar; Hoang, Bao-Minh

    2018-01-01

    Supermassive black hole (SMBH) binaries are expected to reside in the center of galaxies due to galaxy mergers. The gravitational interactions between SMBH binaries and stellar BH binaries can lead to interesting dynamical effects, such as the merger of the stellar mass BHs, via gravitational wave emission. Specifically, we consider the systems where the stellar mass BH binary orbits around one of the SMBH binary components, and the other component perturbs the orbit of the stellar mass BH binary. The key effect leading to the merger is the eccentric Kozai-Lidov oscillation. The calculated rate can be compared with the binary black merger rates detected by LIGO, and provide valuable information on the population of stellar-mass BH binaries in galactic nuclei.

  15. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    Science.gov (United States)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  16. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Patrick M. [Indiana University Kokomo, School of Sciences, P.O. Box 9003, Kokomo, IN 46903-9004 (United States); Frank, Juhan; Clayton, Geoffrey C.; Tohline, Joel E. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Staff, Jan [College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 (United States); Fryer, Christopher L.; Even, Wesley [Center for Theoretical Astrophysics/CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Diehl, Steven, E-mail: pmotl@iuk.edu [TLT-Turbo GmbH, Gleiwitzstrasse 7, 66482 Zweibrücken (Germany)

    2017-04-01

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n  = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.

  17. Intermediate Mass Black Holes: Their Motion and Associated Energetics

    Directory of Open Access Journals (Sweden)

    C. Sivaram

    2014-01-01

    Full Text Available There is a lot of current astrophysical evidence and interest in intermediate mass black holes (IMBH, ranging from a few hundred to several thousand solar masses. The active galaxy M82 and the globular cluster G1 in M31, for example, are known to host such objects. Here, we discuss several aspects of IMBH such as their expected luminosity, spectral nature of radiation, and associated jets. We also discuss possible scenarios for their formation including the effects of dynamical friction, and gravitational radiation. We also consider their formation in the early universe and also discuss the possibility of supermassive black holes forming from mergers of several IMBH and compare the relevant time scales involved with other scenarios.

  18. Tidal disruption of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Bode T.

    2012-12-01

    Full Text Available Modeling ultra-close encounters between a white dwarf and a spinning, intermediate mass black hole requires a full general relativistic treatment of gravity. This paper summarizes results from such a study. Our results show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. On the other hand, the late-time accretion onto the black hole follows the same decay, Ṁ ∝  t−5/3, estimated from Newtonian gravity disruption studies. The spectrum of the fallback material peaks in the soft X-rays and sustains Eddington luminosity for 1–3 yrs after the disruption. The orientation of the black hole spin has also a profound effect on how the outflowing debris obscures the central region. The disruption produces a burst of gravitational radiation with characteristic frequencies of ∼3.2 Hz and strain amplitudes of ∼10−18 for galactic intermediate mass black holes.

  19. Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals

    International Nuclear Information System (INIS)

    Han Wenbiao; Cao Zhoujian

    2011-01-01

    A new scheme for computing dynamical evolutions and gravitational radiations for intermediate-mass-ratio inspirals (IMRIs) based on an effective one-body (EOB) dynamics plus Teukolsky perturbation theory is built in this paper. In the EOB framework, the dynamic essentially affects the resulted gravitational waveform for a binary compact star system. This dynamic includes two parts. One is the conservative part, which comes from effective one-body reduction. The other part is the gravitational backreaction, which contributes to the shrinking process of the inspiral of a binary compact star system. Previous works used an analytical waveform to construct this backreaction term. Since the analytical form is based on post-Newtonian expansion, the consistency of this term is always checked by numerical energy flux. Here, we directly use numerical energy flux by solving the Teukolsky equation via the frequency-domain method to construct this backreaction term. The conservative correction to the leading order terms in mass-ratio is included in the deformed-Kerr metric and the EOB Hamiltonian. We try to use this method to simulate not only quasicircular adiabatic inspiral, but also the nonadiabatic plunge phase. For several different spinning black holes, we demonstrate and compare the resulted dynamical evolutions and gravitational waveforms.

  20. Runaway stars from young star clusters containing initial binaries. I. Equal-mass, equal-energy binaries

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.J.T.; Duncan, M.J.

    1988-07-01

    The production of runaway stars by the dynamical-ejection mechanism in an open star cluster containing 50 percent binaries of equal mass and energy is investigated theoretically by means of numerical simulations using the NBODY5 code of Aarseth (1985). The construction of the models is outlined, and the results are presented graphically and characterized in detail. It is shown that binary-binary collisions capable of producing runaways can occur (via formation and disruption, with some stellar collisions, of hierarchical double binaries) in clusters of relatively low density (e.g., pc-sized clusters of O or B stars). The frequency of binaries in the runaway population is found to vary between 0 and 50 percent, with the majority of runaways being unevolved early-type stars. 38 references.

  1. Mass accretion rate fluctuations in black hole X-ray binaries

    NARCIS (Netherlands)

    Rapisarda, S.

    2017-01-01

    This thesis is about the first systematic and quantitative application of propagating mass accretion rate fluctuations models to black hole X-ray binaries. Black hole X-ray binaries are systems consisting of a solar mass star orbiting around a stellar mass black hole. Eventually, the black hole

  2. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    Energy Technology Data Exchange (ETDEWEB)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav, E-mail: ryan.j.oelkers@vanderbilt.edu [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN 37235 (United States)

    2017-06-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10{sup 3} au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10{sup 3} and 10{sup 5.5} au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  3. Gaia Assorted Mass Binaries Long Excluded from SLoWPoKES (GAMBLES): Identifying Ultra-wide Binary Pairs with Components of Diverse Mass

    International Nuclear Information System (INIS)

    Oelkers, Ryan J.; Stassun, Keivan G.; Dhital, Saurav

    2017-01-01

    The formation and evolution of binary star systems are some of the remaining key questions in modern astronomy. Wide binary pairs (separations >10 3 au) are particularly intriguing because their low binding energies make it difficult for the stars to stay gravitationally bound over extended timescales, and thus to probe the dynamics of binary formation and dissolution. Our previous SLoWPoKES catalogs, I and II, provided the largest and most complete sample of wide-binary pairs of low masses. Here we present an extension of these catalogs to a broad range of stellar masses: the Gaia Assorted Mass Binaries Long Excluded from SloWPoKES (GAMBLES), comprising 8660 statistically significant wide pairs that we make available in a living online database. Within this catalog we identify a subset of 543 long-lived (dissipation timescale >1.5 Gyr) candidate binary pairs, of assorted mass, with typical separations between 10 3 and 10 5.5 au (0.002–1.5 pc), using the published distances and proper motions from the Tycho -Gaia Astrometric Solution and Sloan Digital Sky Survey photometry. Each pair has at most a false positive probability of 0.05; the total expectation is 2.44 false binaries in our sample. Among these, we find 22 systems with 3 components, 1 system with 4 components, and 15 pairs consisting of at least 1 possible red giant. We find the largest long-lived binary separation to be nearly 3.2 pc; even so, >76% of GAMBLES long-lived binaries have large binding energies and dissipation lifetimes longer than 1.5 Gyr. Finally, we find that the distribution of binary separations is clearly bimodal, corroborating the findings from SloWPoKES and suggesting multiple pathways for the formation and dissipation of the widest binaries in the Galaxy.

  4. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  5. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    Science.gov (United States)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  6. Strong nuclear enhancement in intermediate mass Drell-Yan production

    CERN Document Server

    Jian Wei Qiu

    2002-01-01

    We calculate nuclear effect in Drell-Yan massive lepton-pair production in terms of parton multiple scattering in Quantum Chromodynamics (QCD). We present the nuclear modification to inclusive Drell-Yan cross sections d sigma /dQ/sup 2/ in terms of multiparton correlation functions. By extracting the size of the correlation functions from measured Drell-Yan transverse momentum broadening in nuclear media, we determine the nuclear modification at O( alpha /sub s//Q/sup 2/). We find that the nuclear modification strongly enhances the inclusive Drell-Yan cross section in the intermediate mass region (IMR): 1.5

  7. Masses of the components of SB2 binaries observed with Gaia - IV. Accurate SB2 orbits for 14 binaries and masses of three binaries*

    Science.gov (United States)

    Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.

    2018-02-01

    The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.

  8. Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  9. Evidence from K2 for Rapid Rotation in the Descendant of an Intermediate-mass Star

    Science.gov (United States)

    Hermes, J. J.; Kawaler, Steven D.; Romero, A. D.; Kepler, S. O.; Tremblay, P.-E.; Bell, Keaton J.; Dunlap, B. H.; Montgomery, M. H.; Gänsicke, B. T.; Clemens, J. C.; Dennihy, E.; Redfield, S.

    2017-05-01

    Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate (1.13 ± 0.02 hr) of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR telescope show that the star (SDSSJ0837+1856, EPIC 211914185) is a 13,590+/- 340 K, 0.87 ± 0.03 M ⊙ white dwarf. This is the highest mass measured for any pulsating white dwarf with known rotation, suggesting a possible link between high mass and fast rotation. If it is the product of single-star evolution, its progenitor was a roughly 4.0 M ⊙ main-sequence B star; we know very little about the angular momentum evolution of such intermediate-mass stars. We explore the possibility that this rapidly rotating white dwarf is the byproduct of a binary merger, which we conclude is unlikely given the pulsation periods observed.

  10. X-ray Emission Properties of Intermediate-Mass, Pre-Main-Sequence Stars

    Science.gov (United States)

    Povich, Matthew S.; Binder, Breanna; Townsley, Leisa K.; Broos, Patrick S.

    2017-08-01

    Intermediate-mass (2-8 M⊙) main-sequence stars with A to mid-B spectral types occupy an X-ray "desert" of weak intrinsic emission between low- and high-mass stars. Lacking the wind-shock driven emission of massive, O and early B stars or the convectively-driven magnetic reconnection flaring activity of later-type stars, X-ray detections of (non-peculiar) main-sequence AB stars are typically ascribed to the presence of unresolved, lower-mass binary companions. There is mounting evidence, however, that intermediate-mass, pre-main sequence stars (IMPS) with GK spectral types produce intrinsic X-ray emission that rapidly decays with time following the development of a radiative zone as IMPS approach the ZAMS as AB stars. This suggests that X-ray emission from IMPS may be a more luminous analog of the well-studied coronal X-ray emission from lower-mass, T Tauri stars. Statistical studies of young IMPS have been hampered by their scarcety in nearby, unobscured star-forming regions. We present the first results from a spectral-fitting study to measure absorption-corrected X-ray luminosities and plasma temperatures for hundreds of candidate X-ray emitting IMPS found in the MYStIX and MAGiX surveys of massive Galactic star forming regions. Candidate IMPS are placed on the HR diagram via a novel infrared spectral energy distribution modeling technique designed for highly-obscured, young massive star-forming regions. The rapid decay of X-ray emission from these objects has the potential to provide an independent chronometer to constrain star formation rates, and may produce an age-dependent bias in the relationship between the stellar X-ray luminosity function and mass function in distant (>2 kpc) regions observed with relatively shallow X-ray observations.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  11. Mass-dependence of self-diffusion coefficients in disparate-mass binary fluid mixtures

    Directory of Open Access Journals (Sweden)

    I. Binas

    2009-01-01

    Full Text Available Self-diffusion coefficients of a binary fluid mixture with components differing only in their particle masses are studied, in particular the case when mass ratio μ of light and heavy particles tends to zero. These coefficients were calculated within the memory function formalism, using the systematic subsequence of approximations for the relaxation times of velocity autocorrelation function. We obtained a general relation for the self-diffusion coefficients which show polynomial dependence on the mass ratio μ. The obtained expression has a correct Brownian limit. We developed the hierarchy of approximations for the self-diffusion coefficients that tends to an exact result from above and below when the order of approximations increases.

  12. The origin and fate of short-period low-mass black-hole binaries

    NARCIS (Netherlands)

    Yungelson, L.R.; Lasota, J.P.; Nelemans, G.A.; Dubus, G.; Heuvel, E.P.J. van den; Dewi, J.; Portegies Zwart, S.

    2006-01-01

    We present results of a population synthesis study for semidetached short orbital period binaries which contain low-mass (1.5 Mo) donors and massive ( 4 Mo) compact accretors, which in our model represent black holes. Evolution of these binaries is determined by nuclear

  13. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  14. Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters

    Science.gov (United States)

    Fragione, Giacomo; Ginsburg, Idan; Kocsis, Bence

    2018-04-01

    The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from { \\mathcal R }≈ 1000 Gpc‑3 yr‑1 beyond z ≈ 2 to { \\mathcal R }≈ 1{--}10 Gpc‑3 yr‑1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104 M ⊙. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

  15. Intermediate-mass-ratio inspirals in the Einstein Telescope. II. Parameter estimation errors

    International Nuclear Information System (INIS)

    Huerta, E. A.; Gair, Jonathan R.

    2011-01-01

    We explore the precision with which the Einstein Telescope will be able to measure the parameters of intermediate-mass-ratio inspirals, i.e., the inspirals of stellar mass compact objects into intermediate-mass black holes (IMBHs). We calculate the parameter estimation errors using the Fisher Matrix formalism and present results of Monte Carlo simulations of these errors over choices for the extrinsic parameters of the source. These results are obtained using two different models for the gravitational waveform which were introduced in paper I of this series. These two waveform models include the inspiral, merger, and ringdown phases in a consistent way. One of the models, based on the transition scheme of Ori and Thorne [A. Ori and K. S. Thorne, Phys. Rev. D 62, 124022 (2000).], is valid for IMBHs of arbitrary spin; whereas, the second model, based on the effective-one-body approach, has been developed to cross-check our results in the nonspinning limit. In paper I of this series, we demonstrated the excellent agreement in both phase and amplitude between these two models for nonspinning black holes, and that their predictions for signal-to-noise ratios are consistent to within 10%. We now use these waveform models to estimate parameter estimation errors for binary systems with masses 1.4M · +100M · , 10M · +100M · , 1.4M · +500M · , and 10M · +500M · and various choices for the spin of the central IMBH. Assuming a detector network of three Einstein Telescopes, the analysis shows that for a 10M · compact object inspiralling into a 100M · IMBH with spin q=0.3, detected with a signal-to-noise ratio of 30, we should be able to determine the compact object and IMBH masses, and the IMBH spin magnitude to fractional accuracies of ∼10 -3 , ∼10 -3.5 , and ∼10 -3 , respectively. We also expect to determine the location of the source in the sky and the luminosity distance to within ∼0.003 steradians and ∼10%, respectively. We also compute results for

  16. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars

    Science.gov (United States)

    Moe, Maxwell; Di Stefano, Rosanne

    2017-06-01

    We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q = {M}{comp}/M 1. After combining the samples from the various surveys and correcting for their respective selection effects, we find that the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P ≲ 20 days (separations a ≲ 0.4 au), the binaries have small eccentricities e ≲ 0.4, favor modest mass ratios ≈ 0.5, and exhibit a small excess of twins q > 0.95. Second, the companion frequency peaks at intermediate periods log P (days) ≈ 3.5 (a ≈ 10 au), where the binaries have mass ratios weighted toward small values q ≈ 0.2-0.3 and follow a Maxwellian “thermal” eccentricity distribution. Finally, companions with long orbital periods log P (days) ≈ 5.5-7.5 (a ≈ 200-5000 au) are outer tertiary components in hierarchical triples and have a mass ratio distribution across q ≈ 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary-star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that 30% ± 10% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q > 0.1 and log P (days) < 8.0 per primary increases from 0.50 ± 0.04 for solar-type MS primaries to 2.1 ± 0.3 for O-type MS primaries. We fit joint probability density functions f({M}1,q,P,e)\

  17. Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral

    International Nuclear Information System (INIS)

    Brown, Duncan A

    2005-01-01

    The INSPIRAL program is the LIGO Scientific Collaboration's computational engine for the search for gravitational waves from binary neutron stars and sub-solar mass black holes. We describe how this program, which makes use of the FINDCHIRP algorithm, is integrated into a sophisticated data analysis pipeline that was used in the search for low-mass binary inspirals in data taken during the second LIGO science run

  18. Two rigidity-percolation transitions on binary Bethe networks and the intermediate phase in glass.

    Science.gov (United States)

    Moukarzel, Cristian F

    2013-12-01

    Rigidity percolation is studied analytically on randomly bonded networks with two types of nodes, respectively, with coordination numbers z(1) and z(2), and with g(1) and g(2) degrees of freedom each. For certain cases that model chalcogenide glass networks, two transitions, both of first order, are found, with the first transition usually rather weak. The ensuing intermediate pase, although not isostatic in its entirety, has very low self-stress. Our results suggest a possible mechanism for the appearance of intermediate phases in glass that does not depend on a self-organization principle.

  19. Intermediate coupling vibrational descriptions of odd mass gold isotopes

    CERN Document Server

    Vieu, C; Paar, V

    1976-01-01

    The theoretical analysis of /sup 193-195/Au levels is semi qualitatively performed in the frame of the intermediate coupling vibrational models of Kisslinger-Sorensen and Alaga. From the comparison between the experimental data and the corresponding predictions of the two models, conclusions are drawn on the influence of the clusters and broken pairs.

  20. Investigating Exoplanet Orbital Evolution Around Binary Star Systems with Mass Loss

    Directory of Open Access Journals (Sweden)

    Walid A. Rahoma

    2016-12-01

    Full Text Available A planet revolving around binary star system is a familiar system. Studies of these systems are important because they provide precise knowledge of planet formation and orbit evolution. In this study, a method to determine the evolution of an exoplanet revolving around a binary star system using different rates of stellar mass loss will be introduced. Using a hierarchical triple body system, in which the outer body can be moved with the center of mass of the inner binary star as a two-body problem, the long period evolution of the exoplanet orbit is determined depending on a Hamiltonian formulation. The model is simulated by numerical integrations of the Hamiltonian equations for the system over a long time. As a conclusion, the behavior of the planet orbital elements is quite affected by the rate of the mass loss from the accompanying binary star.

  1. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Biscans, S; Blackburn, J. K.; Blair, C. D.

    2017-01-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of 12^(+7)_(-2) M⊙ and 7^(+2)_(-2) M⊙ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowi...

  2. Inferring the Astrophysical Population of Black Hole Binaries from their Mass Distribution

    Science.gov (United States)

    Omoruyi, Osase; Weinstein, Alan; LIGO Laboratory at Caltech

    2018-01-01

    LIGO’s gravitational wave detections have not only proved the existence of black hole binaries but also confirmed the presence of stellar mass black holes larger than 20 solar masses. Our project aims to develop a system that will allow us to study the mass distribution of these binaries throughout space. Currently, LIGO has made 4 detections of binary black hole (BBH) mergers. However, within the next 10 years, LIGO expects this number of detections to rise significantly. With these future detections in mind, our project utilizes simulated data to generate a large population of BBH systems. From our general astrophysical knowledge about black holes and nature, we expect the underlying population to fall like a power-law in the total mass of the binary black hole system, M-α, in which α is the power-law index. Using the large sample of events our simulations provide, we seek to constrain the value of the power-law index more precisely and accurately. Successfully recovering the simulated value of α, in turn, will allow us to recover the actual value of α when LIGO detects enough events to form a significant population of BBH systems. Understanding the mass distribution of binary black holes will allow us to make inferences about how black hole binaries have formed and evolved over time.

  3. Mass models of NGC 6624 without an intermediate-mass black hole

    Science.gov (United States)

    Gieles, Mark; Balbinot, Eduardo; Yaaqib, Rashid I. S. M.; Hénault-Brunet, Vincent; Zocchi, Alice; Peuten, Miklos; Jonker, Peter G.

    2018-02-01

    An intermediate-mass black hole (IMBH) was recently reported to reside in the centre of the Galactic globular cluster (GC) NGC 6624, based on timing observations of a millisecond pulsar (MSP) located near the cluster centre in projection. We present dynamical models with multiple mass components of NGC 6624 - without an IMBH - which successfully describe the surface brightness profile and proper motion kinematics from the Hubble Space Telescope (HST) and the stellar-mass function at different distances from the cluster centre. The maximum line-of-sight acceleration at the position of the MSP accommodates the inferred acceleration of the MSP, as derived from its first period derivative. With discrete realizations of the models we show that the higher-order period derivatives - which were previously used to derive the IMBH mass - are due to passing stars and stellar remnants, as previously shown analytically in literature. We conclude that there is no need for an IMBH to explain the timing observations of this MSP.

  4. Long-term variability of low-mass X-ray binaries

    Directory of Open Access Journals (Sweden)

    Filippova E.

    2014-01-01

    Full Text Available We consider modulations of mass captured by the compact object from the companion star’s stellar wind in Low Mass X-ray Binaries with late type giants. Based on 3D simulations with two different hydrodynamic codes used Lagrangian and Eulerian approaches – the SPH code GADGET and the Eulerian code PLUTO, we conclude that a hydrodynamical interaction of the wind matter within a binary system even without eccentricity results in variability of the mass accretion rate with characteristic time-scales close to the orbital period. Observational appearances of this wind might be similar to that of an accretion disc corona/wind.

  5. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-01-01

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ☉

  6. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  7. LUT Reveals a New Mass-transferring Semi-detached Binary

    Science.gov (United States)

    Qian, S.-B.; Zhou, X.; Zhu, L.-Y.; Zejda, M.; Soonthornthum, B.; Zhao, E.-G.; Zhang, J.; Zhang, B.; Liao, W.-P.

    2015-12-01

    GQ Dra is a short-period eclipsing binary in a double stellar system that was discovered by Hipparcos. Complete light curves in the UV band were obtained with the Lunar-based Ultraviolet Telescope in 2014 November and December. Photometric solutions are determined using the W-D (Wilson and Devinney) method. It is discovered that GQ Dra is a classical Algol-type semi-detached binary where the secondary component is filling the critical Roche lobe. An analysis of all available times of minimum light suggests that the orbital period is increasing continuously at a rate of \\dot{P}=+3.48(+/- 0.23)× {10}-7 days yr-1. This could be explained by mass transfer from the secondary to the primary, which is in agreement with the semi-detached configuration with a lobe-filling secondary. By assuming a conservation of mass and angular momentum, the mass transfer rate is estimated as \\dot{m}=9.57(+/- 0.63)× {10}-8 {M}⊙ {{yr}}-1. All of these results reveal that GQ Dra is a mass-transferring semi-detached binary in a double system that was formed from an initially detached binary star. After the massive primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration with two sub-giant or giant component stars.

  8. Formation and Evolution of Neutron Star Binaries: Masses of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Lee Chang-Hwan

    2012-02-01

    Full Text Available Neutron star (NS is one of the most interesting astrophysical compact objects for hardronic physics. It is believed that the central density of NS can reach several times the normal nuclear matter density (ρ0. Hence, the inner part of NS is the ultimate testing place for the physics of dense matter. Recently, the mass of NS in a NS-white dwarf (WD binary PSR J1614-2230 has been estimated to be 1.97 ± 0.04M๏ [1]. Since this estimate is based on the observed Shapiro delay, it can give the lower limit of the maximum NS mass and rules out many soft equations of state. On the other hand, all the well-measured NS masses in NS-NS binaries are smaller than 1.5M๏. In this work, by introducing the supercritical accretion during the binary evolution, we propose a possibility of forming higher mass NS in NS-WD binaries. In this scenario, the lifetimes of NS and WD progenitors are significantly different, and NS in NS-WD binary can accrete > 0.5M๏ after NS formation during the giant phase of the progenitor of WD. On the other hand, for the binary system with NS and heavier (> 8M๏ giants, the first-born NS will accrete more from the companion and can collapse into black hole. The only way to avoid the supercritical accretion is that the initial masses of progenitors of NS binary should be very close so that they evolve almost at the same time and don’t have time to accrete after NS formation.

  9. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    Science.gov (United States)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  10. Tidal disruption by extreme mass ratio binaries and application to ASASSN-15lh

    Science.gov (United States)

    Coughlin, Eric R.; Armitage, Philip J.

    2018-03-01

    Tidal disruption events (TDEs) observed in massive galaxies with inferred central black hole masses Mh > 108 M⊙ are presumptive candidates for TDEs by lower mass secondaries in binary systems. We use hydrodynamic simulations to quantify the characteristics of such TDEs, focusing on extreme mass ratio binaries and mpc separations where the debris stream samples the binary potential. The simulations are initialized with disruption trajectories from three-body integrations of stars with parabolic orbits with respect to the binary centre of mass. The most common outcome is found to be the formation of an unbound debris stream, with either weak late-time accretion or no accretion at all. A substantial fraction of streams remain bound, however, and these commonly yield structured fallback rate curves that exhibit multiple peaks or sharp drops. We apply our results to the superluminous supernova candidate ASASSN-15lh and show that its features, including its anomalous rebrightening at ˜100 d after detection, are consistent with the tidal disruption of a star by a supermassive black hole in a binary system.

  11. The End of the MACHO Era, Revisited: New Limits on MACHO Masses from Halo Wide Binaries

    Science.gov (United States)

    Monroy-Rodríguez, Miguel A.; Allen, Christine

    2014-08-01

    In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen & Monroy-Rodríguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widest binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M ⊙. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M ⊙. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliable—albeit smallest—sample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M ⊙. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M ⊙, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.

  12. Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems

    Science.gov (United States)

    Geist, Emily; Beaky, Matthew; Jamison, Kate

    2018-01-01

    In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.

  13. Probing the low-stellar-mass domain with Kepler and APOGEE observations of eclipsing binaries

    Science.gov (United States)

    Prsa, Andrej; Hambleton, Kelly

    2018-01-01

    Observations of low-mass stars (M noise, shot noise, nuisance astrophysical signals (such as spots) and the full set of eclipsing binary parameters. The results are obtained within a probabilistic framework, with robust mass and radius uncertainties ~1-4%. We overplot the derived masses, radii and temperatures over evolutionary models and note stellar size bloating w.r.t. model predictions for both systems. This work has been funded by the NSF grant #1517460.

  14. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  15. Low-mass eclipsing binaries in the WFCAM Transit Survey: the persistence of the M-dwarf radius inflation problem

    Science.gov (United States)

    Cruz, Patricia; Diaz, Marcos; Birkby, Jayne; Barrado, David; Sipöcz, Brigitta; Hodgkin, Simon

    2018-03-01

    We present the characterization of 5 new short-period low-mass eclipsing binaries from the WFCAM Transit Survey. The analysis was performed by using the photometric WFCAM J-mag data and additional low- and intermediate-resolution spectroscopic data to obtain both orbital and physical properties of the studied sample. The light curves and the measured radial velocity curves were modeled simultaneously with the JKTEBOP code, with Markov chain Monte Carlo simulations for the error estimates. The best-model fit have revealed that the investigated detached binaries are in very close orbits, with orbital separations of 2.9 ≤ a ≤ 6.7 R⊙ and short periods of 0.59 ≤ Porb ≤ 1.72 d, approximately. We have derived stellar masses between 0.24 and 0.72 M⊙ and radii ranging from 0.42 to 0.67 R⊙. The great majority of the LMEBs in our sample has an estimated radius far from the predicted values according to evolutionary models. The components with derived masses of M < 0.6 M⊙ present a radius inflation of ˜9% or more. This general behavior follows the trend of inflation for partially-radiative stars proposed previously. These systems add to the increasing sample of low-mass stellar radii that are not well-reproduced by stellar models. They further highlight the need to understand the magnetic activity and physical state of small stars. Missions like TESS will provide many such systems to perform high-precision radius measurements to tightly constrain low-mass stellar evolution models.

  16. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei

    Science.gov (United States)

    Bartos, Imre; Kocsis, Bence; Haiman, Zoltán; Márka, Szabolcs

    2017-02-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) found direct evidence for double black hole binaries emitting gravitational waves. Galactic nuclei are expected to harbor the densest population of stellar-mass black holes. A significant fraction (˜ 30 % ) of these black holes can reside in binaries. We examine the fate of the black hole binaries in active galactic nuclei, which get trapped in the inner region of the accretion disk around the central supermassive black hole. We show that binary black holes can migrate into and then rapidly merge within the disk well within a Salpeter time. The binaries may also accrete a significant amount of gas from the disk, well above the Eddington rate. This could lead to detectable X-ray or gamma-ray emission, but would require hyper-Eddington accretion with a few percent radiative efficiency, comparable to thin disks. We discuss implications for gravitational-wave observations and black hole population studies. We estimate that Advanced LIGO may detect ˜20 such gas-induced binary mergers per year.

  17. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NARCIS (Netherlands)

    Abadie, J.; van den Brand, J.F.J.; Bulten, H.J.; Rabeling, D.S.; LIGO Sci, Collaboration; Virgo, Collaboration

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M this includes binary neutron stars, binary black holes, and binaries

  18. Resistances for heat and mass transfer through a liquid–vapor interface in a binary mixture

    NARCIS (Netherlands)

    Glavatskiy, K.S.; Bedeaux, D.

    2010-01-01

    In this paper we calculate the interfacial resistances to heat and mass transfer through a liquid–vapor interface in a binary mixture. We use two methods, the direct calculation from the actual nonequilibrium solution and integral relations, derived earlier. We verify, that integral relations, being

  19. Quasi-binary incident electron–centre of mass collision in (e, 3e ...

    Indian Academy of Sciences (India)

    These two geometrical modes are such that the quasi-binary collision between the incident electron and centre of mass of the ejected electrons is in the scattering plane. The theoretical formalism has been developed using plane waves,. Le Sech wave function and approximated BBK-type wave function respectively for the.

  20. Quasi-binary incident electron–centre of mass collision in (e, 3e ...

    Indian Academy of Sciences (India)

    These two geometrical modes are such that the quasi-binary collision between the incident electron and centre of mass of the ejected electrons is in the scattering plane. The theoretical formalism has been developed using plane waves, Le Sech wave function and approximated BBK-type wave function respectively for the ...

  1. Low-mass X-ray binaries from black-hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-03-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH-binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  2. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M}ȯ and {7}-2+2 {M}ȯ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity.

  3. Equilibrium vortex lattices of a binary rotating atomic Bose–Einstein condensate with unequal atomic masses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Han, Wei; Zhang, Shou-Gang [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China); Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China)

    2016-10-15

    We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with our numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.

  4. Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?

    Science.gov (United States)

    Yang, Huan; East, William E.; Lehner, Luis

    2018-04-01

    The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M ⊙ (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.

  5. Radio detections during two state transitions of the intermediate-mass black hole HLX-1.

    Science.gov (United States)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-08-03

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (~3 to 20 solar masses, M(⊙)) as well as supermassive black holes (~10(6) to 10(9) M(⊙)) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (~10(2) to 10(5) M(⊙)), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ~9 × 10(3) M(⊙) and ~9 × 10(4) M(⊙).

  6. Constraining the Population of Small Close-in Planets Around Evolved Intermediate Mass Stars

    Science.gov (United States)

    Medina, Amber; Johnson, John Asher

    2018-01-01

    Intermediate mass stars ( > 1.3 M_Sun) have high occurrence rates of Jupiter mass planets in predominately long period orbits (~1.0 AU). There is a prominent planet gap, known as the ‘Planet Desert’, for low mass planets (Super-Earth, Neptune) < 0.5 AU from subgiants, the evolved counterpart to intermediate mass stars. Thus far, using current radial velocity methods, we have not been able to detect short period planets around subgiants due to noise from p-mode oscillations perhaps mimicking radial velocity signals (~5 m/s) in this planetary regime. Here we present techniques and preliminary results with regards to finding low mass, short period planets around subgiants and its implications for the Planet Desert.

  7. Age and mass of the star cluster around the intermediate-mass black hole HLX-1

    Science.gov (United States)

    Soria, Roberto

    2017-08-01

    We propose to study the optical counterpart of the intermediate-mass black hole (IMBH) HLX-1, about 3 years after its last X-ray outburst. Previous HST observations taken at epochs closer to an outburst show a variable near-UV/blue component, plus a constant red/near-IR component. The redder component probably comes from an old stellar population around the black hole; the bluer component may be a combination of emission from an irradiated accretion disk, and from a young stellar population. Their relative contributions and the age of the stellar population(s) are still subject of debate. By re-observing the system when the irradiated component is minimal, we will determine whether the near-UV/blue optical emission has declined even further and whether the red/near-IR optical emission has stayed approximately constant. This will tell us whether the optical counterpart is a massive star cluster, and place a strong upper limit to the young stellar population around the IMBH. Having determined the constant contribution of the stellar emission, we will then insert it into broad-band models of the emission in outburst, and obtain a better estimate of the accretion disk parameters, constraining formation and evolution scenarios for the IMBH. We will use the same set of filters as in previous HST observations, for direct comparison of brightness and colors: F140LP (ACS SBC); F300X, F336W, F390W, F555W, F621M, F775W (WFC3 UVIS); F105W, F160W (WFC3 IR). We request a total of 7 orbits.

  8. The measurement of intermediate mass fragments in the fermi energy domain

    International Nuclear Information System (INIS)

    Rudolf, G.

    1987-01-01

    Intermediate mass fragments in the Fermi energy domain were studied at GANIL via the Kr84 + Au reaction at 44 MeV/u. The Erel* quantity is used to study correlations between fragments. Fast-fast coincidences; fast-slow coincidences; slow-slow coincidences; and light particles are considered. Reaction mechanisms are discussed. Only qualitative analysis results are available, but they suggest that the quantitative results will be very instructive: light particle spectra will deliver source parameters (velocity, total charge, excitation energy and temperature); the multiplicity of intermediate mass fragments will be deduced from the triple coincidences between modules of XYZt detector

  9. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae.

    Science.gov (United States)

    Kızıltan, Bülent; Baumgardt, Holger; Loeb, Abraham

    2017-02-08

    Intermediate-mass black holes should help us to understand the evolutionary connection between stellar-mass and super-massive black holes. However, the existence of intermediate-mass black holes is still uncertain, and their formation process is therefore unknown. It has long been suspected that black holes with masses 100 to 10,000 times that of the Sun should form and reside in dense stellar systems. Therefore, dedicated observational campaigns have targeted globular clusters for many decades, searching for signatures of these elusive objects. All candidate signatures appear radio-dim and do not have the X-ray to radio flux ratios required for accreting black holes. Based on the lack of an electromagnetic counterpart, upper limits of 2,060 and 470 solar masses have been placed on the mass of a putative black hole in 47 Tucanae (NGC 104) from radio and X-ray observations, respectively. Here we show there is evidence for a central black hole in 47 Tucanae with a mass of solar masses when the dynamical state of the globular cluster is probed with pulsars. The existence of an intermediate-mass black hole in the centre of one of the densest clusters with no detectable electromagnetic counterpart suggests that the black hole is not accreting at a sufficient rate to make it electromagnetically bright and therefore, contrary to expectations, is gas-starved. This intermediate-mass black hole might be a member of an electromagnetically invisible population of black holes that grow into supermassive black holes in galaxies.

  10. THE INITIAL-FINAL MASS RELATION AMONG WHITE DWARFS IN WIDE BINARIES

    International Nuclear Information System (INIS)

    Zhao, J. K.; Oswalt, T. D.; Willson, L. A.; Wang, Q.; Zhao, G.

    2012-01-01

    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main-sequence star and a white dwarf. The temperature and gravity of each white dwarf were measured by fitting theoretical model atmospheres to the observed spectrum using a χ 2 fitting algorithm. The cooling time and mass were obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main-sequence component to an uncertainty of about 0.17 dex in log t. The difference between the total age and white dwarf cooling time is taken as the main-sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main-sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 and 2 M ☉ . Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences—at least among progenitors with masses in the range of 1-2 M ☉ . A comparison of our observations to theoretical models suggests that low-mass stars preferentially lose mass on the red giant branch.

  11. Mass flow due to heating in a binary system - Application to U Cephei

    Science.gov (United States)

    Kondo, Y.; Modisette, J. L.

    1982-01-01

    The possibility of mass flow due to the heating of the cooler component in a close binary system has been investigated. The heating may be caused by irradiation from the hotter companion or by other mechanisms such as the spacial coincidence of non-linear 'g-mode' oscillations in the cooler star. The 2.4-day period binary U Cep, in which gas streaming has been observed, has been chosen for model calculations. Preliminary results show that such a heating of the lower atmosphere of the cooler star could lead to mass flow at an average rate of 10 to the -9th - 10 to the -7th solar mass per year without the star necessarily filling its critical Roche surface.

  12. ACCURATE MASSES FOR THE PRIMARY AND SECONDARY IN THE ECLIPSING WHITE DWARF BINARY NLTT 11748

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Allende Prieto, Carlos; Agueeros, M. A.; Camilo, Fernando

    2010-01-01

    We measure the radial velocity curve of the eclipsing detached white dwarf binary NLTT 11748. The primary exhibits velocity variations with a semi-amplitude of 273 km s -1 and an orbital period of 5.641 hr. We do not detect any spectral features from the secondary star or any spectral changes during the secondary eclipse. We use our composite spectrum to constrain the temperature and surface gravity of the primary to be T eff = 8690 ± 140 K and log g = 6.54 ± 0.05, which correspond to a mass of 0.18 M sun . For an inclination angle of 89. 0 9 derived from the eclipse modeling, the mass function requires a 0.76 M sun companion. The merger time for the system is 7.2 Gyr. However, due to the extreme mass ratio of 0.24, the binary will most likely create an AM CVn system instead of a merger.

  13. Excitation of high frequency voices from intermediate-mass-ratio inspirals with large eccentricity

    Science.gov (United States)

    Han, Wen-Biao; Cao, Zhoujian; Hu, Yi-Ming

    2017-11-01

    The coalescence of a stellar-mass compact object together with an intermediate-mass black hole, also known as an intermediate-mass-ratio inspiral, is usually not expected to be a viable gravitational wave source for the current ground-based gravitational wave detectors, due to the generally lower frequency of such a source. In this paper, we adopt the effective-one-body formalism as the equation of motion, and obtain the accurately calculated gravitational waveforms by solving the Teukolsky equation using the frequency-domain method. We point out that high frequency modes of gravitational waves can be excited by large eccentricities of intermediate-mass-ratio inspirals. These high frequency modes can extend to more than 10 Hz, and enter the designed sensitive band of Advanced LIGO and Advanced Virgo. We propose that such kinds of highly eccentric intermediate-mass-ratio inspirals could be feasible sources and potentially observable by the ground-based gravitational wave detectors, like the Advanced LIGO and Advanced Virgo.

  14. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    Science.gov (United States)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  15. Computer simulations of close encounters between binary and single stars: the effect of the impact velocity and the stellar masses

    International Nuclear Information System (INIS)

    Fullerton, L.W.; Hills, J.G.

    1982-01-01

    A total of 45 760 simulated encounters between binary and single stars were run to study the effect of impact velocity and the masses of the three stars on the outcome of the collisions. Letting α be the kinetic energy of impact in units of the minimum kinetic energy required to break up the binary, we find that the crossover point between hard binaries (tightly bound binaries which increase their binding energies in the collisions) and soft binaries (more loosely bound binaries which decrease their binding energies in collisions) occurs at αapprox. =0.5 if the impacting single star is equal to or less massive than the binary components and occurs at αapprox. =10 if its mass is three or more times that of the binary components. This bimodal behavior of the crossover point is even more clearly defined when we find its location in terms of the impact velocity V/sub f/ , expressed in units of the original mean orbital speed V/sub o/ of the binary. We find that the crossover point occurs at V/sub f//V/sub o/ approx. =0.6 when the mass of the impacting star is equal to or less than that of the more massive binary component, and it occurs at V/sub f//V/sub o/ approx. =1.9 when its mass is three or more times greater than that of this binary component. The probability that the binary will be broken up in the encounter depends greatly on the mass of the impacting single star relative to that of the binary components, as well as on the impact velocity. If the single-star mass equals or exceeds that of the individual binary components, there is an interval of impact velocity over which all the binaries are broken up in encounters at the zero-impact parameter. This interval grows as the mass of the impacting single star increases. If the impacting star is less massive than the binary components, then the maximum probability of dissociation drops dramatically

  16. Binary Orbits as the Driver of Gamma-Ray Emission and Mass Ejection in Classical Novae

    Science.gov (United States)

    Chomiuk, Laura; Linford, Justin D.; Yang, Jun; O'Brien, T. J.; Paragi, Zsolt; Mioduszewski, Amy J.; Beswick, R. J.; Cheung, C. C.; Mukai, Koji; Nelson, Thomas

    2014-01-01

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10 (sup -4) solar masses of material at velocities exceeding 1,000 kilometers per second.However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at giga-electronvolt gamma-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the gamma-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion..At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters.

  17. Binary orbits as the driver of γ-ray emission and mass ejection in classical novae.

    Science.gov (United States)

    Chomiuk, Laura; Linford, Justin D; Yang, Jun; O'Brien, T J; Paragi, Zsolt; Mioduszewski, Amy J; Beswick, R J; Cheung, C C; Mukai, Koji; Nelson, Thomas; Ribeiro, Valério A R M; Rupen, Michael P; Sokoloski, J L; Weston, Jennifer; Zheng, Yong; Bode, Michael F; Eyres, Stewart; Roy, Nirupam; Taylor, Gregory B

    2014-10-16

    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel about 10(-4) solar masses of material at velocities exceeding 1,000 kilometres per second. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of thermonuclear energy, prolonged optically thick winds or binary interaction with the nova envelope. Classical novae are now routinely detected at gigaelectronvolt γ-ray wavelengths, suggesting that relativistic particles are accelerated by strong shocks in the ejecta. Here we report high-resolution radio imaging of the γ-ray-emitting nova V959 Mon. We find that its ejecta were shaped by the motion of the binary system: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of γ-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are γ-ray emitters.

  18. Assessing the fundamental limits of multiple star formation: An imaging search for the lowest mass stellar companions to intermediate-mass stars

    Science.gov (United States)

    Duchene, Gaspard; Tzern Oon, Jner; Kantorski, Patrick; De Rosa, Robert J.; Thomas, Sandrine; Patience, Jennifer; Pueyo, Laurent; Nielsen, Eric L.; Konopacky, Quinn M.

    2017-01-01

    Stellar binaries are a common byproduct of star formation and therefore inform us on the processes of collapse and fragmentation of prestellar cores. While multiplicity surveys generally reveal an extensive diversity of multiple systems, with broad ranges of semi-major axis, mass ratio and eccentricities, one remarkable feature that was identified in the last two decades is the so-called brown dwarf desert, i.e., the apparent paucity of (non-planetary) substellar companions to solar-type stars. This "desert" was primarily identified among spectroscopic binaries but also appears to be a significant feature of wider, visual binaries. The physical origin of this feature has not been fully accounted for but is likely established during the formation of the systems. One way to shed new light on this question is to study the frequency of low-mass stellar companions to intermediate-mass star (late-B type, or 3-5 Msun), as those form through a similar, albeit scaled-up, mechanism as solar-type stars. Here we present preliminary results from two adaptive-optics based surveys to search for such multiple systems. Specifically, we are using the new ShaneAO system on the Lick3m telescope (~100 stars observed to date) and the Gemini Planet Imager (45 stars observed). We are targeting stars located both in open clusters and scattered in the Galactic field to search for potential evidence of dynamic evolution. To identify candidate low-mass companions as close in to target stars, we use advanced point spread function (PSF) subtraction algorithms, specifically implementations of the LOCI and KLIP algorithms. In the case of the ShaneAO observations, which do not allow for field rotation, we use LOCI in combination with Reference Differential Imaging (ADI), using our library of science images as input for PSF subtraction. In this contribution, we will discuss the potential of ShaneAO to reveal faint, subarcsecond companions in this context and present candidate companions from both

  19. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  20. Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis

    Science.gov (United States)

    Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho

    2018-01-01

    OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be {T}{eff,1}=8260+/- 210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M 1 = 2.03 ± 0.06 {M}⊙ , M 2 = 0.19 ± 0.01 {M}⊙ , R 1 = 2.08 ± 0.03 {R}⊙ , R 2 = 1.20 ± 0.02 {R}⊙ , L 1 = 18 ± 2 {L}⊙ , and L 2 = 2.0 ± 0.2 {L}⊙ . Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.

  1. Measuring the accreting stellar and intermediate mass black hole populations in the Galaxy and Local Group

    NARCIS (Netherlands)

    Grindlay, J.; Barret, D.; Belloni, T.; Corbel, S.; Kaaret, P.; Allen, B.; Bazzano, A.; Berger, E.; Bignami, G.; Caraveo, P.; De Luca, A.; Fabbiano, P.; Finger, M.; Feroci, M.; Hong, J.; Jernigan, G.; van der Klis, M.; Kouveliotou, C.; Kutyrev, A.; Loeb, A.; Paizis, A.; Pareschi, G.; Skinner, G.; Di Stefano, R.; Ubertini, P.; Wilson-Hodge, C.A.

    2010-01-01

    The population of stellar black holes (SBHs) in the Galaxy and galaxies generally is poorly known in both number and distribution. SBHs are the fossil record of the massive stars in galaxy evolution and may have produced some (if not all) of the intermediate mass (≳100M⊙) black holes (IMBHs) and, in

  2. The 90-110 mu m dust feature in low to intermediate mass protostars : Calcite?

    NARCIS (Netherlands)

    Chiavassa, A; Ceccarelli, C; Tielens, AGGM; Caux, E; Maret, S

    We present ISO spectra between 60 and 180 mum of 32 protostars of low to intermediate mass. About half of the spectra present a dust feature between similar to90 and similar to110 mum. We describe the observational characteristics of this feature, which seems to be due to one single carrier. In

  3. The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift

    Science.gov (United States)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-01-01

    We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.

  4. Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions

    Science.gov (United States)

    Makarov, M. S.; Makarova, S. N.

    2016-01-01

    Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.

  5. Uncovering the identities of compact objects in high-mass X-ray binaries and gamma-ray binaries by astrometric measurements

    Science.gov (United States)

    Yamaguchi, M. S.; Yano, T.; Gouda, N.

    2018-03-01

    We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.

  6. Detection of late intermediates in virus capsid assembly by charge detection mass spectrometry.

    Science.gov (United States)

    Pierson, Elizabeth E; Keifer, David Z; Selzer, Lisa; Lee, Lye Siang; Contino, Nathan C; Wang, Joseph C-Y; Zlotnick, Adam; Jarrold, Martin F

    2014-03-05

    The assembly of hundreds of identical proteins into an icosahedral virus capsid is a remarkable feat of molecular engineering. How this occurs is poorly understood. Key intermediates have been anticipated at the end of the assembly reaction, but it has not been possible to detect them. In this work we have used charge detection mass spectrometry to identify trapped intermediates from late in the assembly of the hepatitis B virus T = 4 capsid, a complex of 120 protein dimers. Prominent intermediates are found with 104/105, 110/111, and 117/118 dimers. Cryo-EM observations indicate the intermediates are incomplete capsids and, hence, on the assembly pathway. On the basis of their stability and kinetic accessibility we have proposed plausible structures. The prominent trapped intermediate with 104 dimers is attributed to an icosahedron missing two neighboring facets, the 111-dimer species is assigned to an icosahedron missing a single facet, and the intermediate with 117 dimers is assigned to a capsid missing a ring of three dimers in the center of a facet.

  7. Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding

    Science.gov (United States)

    Shi, Liuqing; Holliday, Alison E.; Glover, Matthew S.; Ewing, Michael A.; Russell, David H.; Clemmer, David E.

    2016-01-01

    Proline favors trans-configured peptide bonds in native proteins. Although cis/ trans configurations vary for non-native and unstructured states, solvent also influences these preferences. Water induces the all- cis right-handed polyproline-I (PPI) helix of polyproline to fold into the all- trans left-handed polyproline-II (PPII) helix. Our recent work has shown that this occurs via a sequential mechanism involving six resolved intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we use ion mobility-mass spectrometry to make the first detailed thermodynamic measurements of the folding intermediates, which inform us about how and why this transition occurs. It appears that early intermediates are energetically favorable because of the hydration of the peptide backbone, whereas late intermediates are enthalpically unfavorable. However, folding continues, as the entropy of the system increases upon successive formation of each new structure. When PPII is immersed in 1-propanol, the PPII→PPI transition occurs, but this reaction occurs through a very different mechanism. Early on, the PPII population splits onto multiple pathways that eventually converge through a late intermediate that continues on to the folded PPI helix. Nearly every step is endothermic. Folding results from a stepwise increase in the disorder of the system, allowing a wide-scale search for a critical late intermediate. Overall, the data presented here allow us to establish the first experimentally determined energy surface for biopolymer folding as a function of solution environment.

  8. The detection rates of merging binary black holes originating from star clusters and their mass function

    Science.gov (United States)

    Fujii, Michiko S.; Tanikawa, Ataru; Makino, Junichiro

    2017-12-01

    Advanced LIGO (Laser Interferometer Gravitational Wave Observatory) observations achieved the first detection of the gravitational wave, which was from a merging binary black hole (BBH). In the near future, more merger events will be observed, and the mass distribution of them will become available. The mass distribution of merger events reflects the evolutionary path of BBHs: dynamical formation in dense star clusters or common envelope evolution from primordial binaries. In this paper, we estimate the detection rate of merging BBHs which dynamically formed in dense star clusters by combining the results of N-body simulations, modeling of globular clusters, and cosmic star-cluster formation history. We estimate that the merger rate density in the local universe within the redshift of 0.1 is 13-57 Gpc-3 yr-1. We find that the detection rate is 0.23-4.6 per year for the current sensitivity limit and that it would increase to 5.1-99 per year for the designed sensitivity which will be achieved in 2019. The distribution of merger rate density in the local universe as a function of redshifted chirp mass has a peak close to the low-mass end. The chirp mass function of the detected mergers, on the other hand, has a peak at the high-mass end, but is almost flat. This difference is simply because the detection range is larger for more massive BBHs.

  9. Tracing non-conservative mass transfer eras in close binaries from observed period variations

    Science.gov (United States)

    Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.

    2013-09-01

    The pure information directly taken from the observed orbital evolution of eclipsing binary stars (centuries at most) is valuable for the study of many important physical mechanisms related to the stellar structure. Especially in the case of eclipsing binary systems, this may happen by monitoring their eclipse timing variations, i.e. by means of an O-C diagram analysis. As long as a binary system attains a semi-detached configuration, material begins to flow from the component that fills its Roche lobe toward its mate through the first Lagrangian (L1) point. Here, we examine two non conservative mass transfer (MT) paths. The MT process is then accompanied by mass and angular momentum loss from the system. In the first path, angular momentum is removed through a hot spot which re-emits part of the incoming material, and in the second, angular momentum is carried away via an outer Lagrangian point (L2/L3) due to the small accumulating efficiency of the accretion disk surrounding the gainer. Dealing with the less massive component as the donor in the latter path, it is shown that there is always a critical mass ratio over which the period is expected to decrease, contrary to what the fully conservative MT predicts. Consistent with our expectations, the critical values become progressively smaller as the degree of liberalism is gradually widened. The O-C diagram of several semi-detached systems, expecting to experience a liberal era, is individually examined aiming to estimate both the mass transfer and the mass loss rate.

  10. Spectroscopic Study of the Low Mass Benchmark Eclipsing Binary UV Piscium

    Science.gov (United States)

    Feiden, G. A.; Stempels, E.; Hebb, L.; Mack, C. E., III; Chaboyer, B.

    2015-07-01

    We report on the progress of a program to rigorously characterize the low-mass benchmark eclipsing binary UV Piscium. Although the system has been extensively characterized previously, there is significant disagreement in the literature concerning the masses of the two stars. This disagreement presents difficulty when carrying out comparisons with stellar evolution models. In addition, no metallicity estimate exists for the system, allowing models greater flexibility in the aforementioned comparisons. To combat these issues, we have obtained high resolution, high signal-to-noise ratio optical spectra using the SALT HRS and the CTIO CHIRON spectrograph. Here, we present preliminary estimates of the masses, measured from a subset of the SALT spectra and the complete set of CTIO data, the impact those masses would have on testing the accuracy of stellar evolution models, and we provide an outline of the future direction of the program.

  11. A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.

    Science.gov (United States)

    Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva

    2016-01-21

    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.

  12. Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor

    Science.gov (United States)

    Giacobbo, Nicola; Mapelli, Michela; Spera, Mario

    2018-03-01

    The first four gravitational wave events detected by LIGO were all interpreted as merging black hole binaries (BHBs), opening a new perspective on the study of such systems. Here we use our new population-synthesis code MOBSE, an upgraded version of BSE, to investigate the demography of merging BHBs. MOBSE includes metallicity-dependent prescriptions for mass-loss of massive hot stars. It also accounts for the impact of the electron-scattering Eddington factor on mass-loss. We perform >108 simulations of isolated massive binaries, with 12 different metallicities, to study the impact of mass-loss, core-collapse supernovae and common envelope on merging BHBs. Accounting for the dependence of stellar winds on the Eddington factor leads to the formation of black holes (BHs) with mass up to 65 M⊙ at metallicity Z ˜ 0.0002. However, most BHs in merging BHBs have masses ≲ 40 M⊙. We find merging BHBs with mass ratios in the 0.1-1.0 range, even if mass ratios >0.6 are more likely. We predict that systems like GW150914, GW170814 and GW170104 can form only from progenitors with metallicity Z ≤ 0.006, Z ≤ 0.008 and Z ≤ 0.012, respectively. Most merging BHBs have gone through a common envelope phase, but up to ˜17 per cent merging BHBs at low metallicity did not undergo any common envelope phase. We find a much higher number of mergers from metal-poor progenitors than from metal-rich ones: the number of BHB mergers per unit mass is ˜10-4 M_{⊙}^{-1} at low metallicity (Z = 0.0002-0.002) and drops to ˜10-7 M_{⊙}^{-1} at high metallicity (Z ˜ 0.02).

  13. Dynamical Masses of Cool White Dwarfs in Double-Degenerate Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Nelan, E. P.; Schaefer, G.

    2014-01-01

    The cool white dwarfs (WDs) WD 1639+153 and WD 1818+126 were originally resolved into close visual binaries containing two WDs each during a survey with the Hubble Space Telescope (HST) and its Fine Guidance Sensors (FGS). Follow up FGS observations of these two double-degenerate (DD) systems, along with the previously known DD G 107-70, have yielded the orbital elements of all three visual binaries. We find orbital periods of 3.88 yr, 12.19 yr, and 18.84 yr for WD 1639+153, WD 1818+126, and G 107-70, respectively. Moreover, for each of the systems we have been observing nearby field stars with FGS1r in POS mode to determine the local inertial reference frame, from which we obtain the parallax and proper motion of the DD, along with the motion of each WD about its system barycenter. This leads directly to a dynamical mass for each WD. We have also used HST STIS observations to obtain individual spectra of each of the six WDs, which provide the effective temperature and subclass of each WD. This provides insight into the cooling age of each star. From the cooling ages and dynamical masses, we obtain constraints on the initial-mass/final-mass relation for WD stars.

  14. Pre-explosion Spiral Mass Loss of a Binary Star Merger

    Science.gov (United States)

    Pejcha, Ondřej; Metzger, Brian D.; Tyles, Jacob G.; Tomida, Kengo

    2017-11-01

    Binary stars commonly pass through phases of direct interaction, which result in the rapid loss of mass, energy, and angular momentum. Though crucial to understanding the fates of these systems, including their potential as gravitational wave sources, this short-lived phase is poorly understood and has thus far been unambiguously observed in only a single event, V1309 Sco. Here we show that the complex and previously unexplained photometric behavior of V1309 Sco prior to its main outburst results naturally from the runaway loss of mass and angular momentum from the outer Lagrange point, which lasts for thousands of orbits prior to the final dynamical coalescence, much longer than predicted by contemporary models. This process enshrouds the binary in a “death spiral” outflow, which affects the amplitude and phase modulation of its light curve, and contributes to driving the system together. The total amount of mass lost during this gradual phase (˜ 0.05 {M}⊙ ) rivals the mass lost during the subsequent dynamical interaction phase, which has been the main focus of “common envelope” modeling so far. Analogous features in related transients suggest that this behavior is ubiquitous.

  15. Neutrino transport in black hole-neutron star binaries: Neutrino emission and dynamical mass ejection

    Science.gov (United States)

    Kyutoku, Koutarou; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke

    2018-01-01

    We study the merger of black hole-neutron star binaries by fully general-relativistic neutrino-radiation-hydrodynamics simulations throughout the coalescence, particularly focusing on the role of neutrino irradiation in dynamical mass ejection. Neutrino transport is incorporated by an approximate transfer scheme based on the truncated moment formalism. While we fix the mass ratio of the black hole to the neutron star to be 4 and the dimensionless spin parameter of the black hole to be 0.75, the equations of state for finite-temperature neutron-star matter are varied. The hot accretion disk formed after tidal disruption of the neutron star emits a copious amount of neutrinos with the peak total luminosity ˜1 - 3 ×1053 erg s-1 via thermal pair production and subsequent electron/positron captures on free nucleons. Nevertheless, the neutrino irradiation does not modify significantly the electron fraction of the dynamical ejecta from the neutrinoless β -equilibrium value at zero temperature of initial neutron stars. The mass of the wind component driven by neutrinos from the remnant disk is negligible compared to the very neutron-rich dynamical component, throughout our simulations performed until a few tens milliseconds after the onset of merger, for the models considered in this study. These facts suggest that the ejecta from black hole-neutron star binaries are very neutron rich and are expected to accommodate strong r -process nucleosynthesis, unless magnetic or viscous processes contribute substantially to the mass ejection from the disk. We also find that the peak neutrino luminosity does not necessarily increase as the disk mass increases, because tidal disruption of a compact neutron star can result in a remnant disk with a small mass but high temperature.

  16. SpeX Spectroscopy of Unresolved Very Low Mass Binaries. II. Identification of 14 Candidate Binaries with Late-M/Early-L and T Dwarf Components

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Gelino, Christopher R.; Looper, Dagny L.; Nicholls, Christine P.; Schmidt, Sarah J.; Cruz, Kelle; West, Andrew A.; Gizis, John E.; Metchev, Stanimir

    2014-10-01

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  17. Very low velocity ion slowing down in binary ionic mixtures: Charge- and mass-asymmetry effects

    Directory of Open Access Journals (Sweden)

    Patrice Fromy

    2010-10-01

    Full Text Available A binary ionic mixture (BIM in dense and hot plasmas of specific concern for inertial confinement fusion and white dwarf crust is considered as a target for incoming light ions with a velocity smaller than the thermal electron one. The given target stopping power, mostly BIM monitored, is specifically studied in terms of charge and mass asymmetry in its ionic component. The classical plasma target is worked out within a dielectric framework, and scanned with respect to density, temperature, and BIM composition.

  18. Parasites favour intermediate nestling mass and brood size in cliff swallows.

    Science.gov (United States)

    Brown, Charles R; Brown, Mary Bomberger

    2018-02-01

    A challenge of life-history theory is to explain why animal body size does not continue to increase, given various advantages of larger size. In birds, body size of nestlings and the number of nestlings produced (brood size) have occasionally been shown to be constrained by higher predation on larger nestlings and those from larger broods. Parasites also are known to have strong effects on life-history traits in birds, but whether parasitism can be a driver for stabilizing selection on nestling body size or brood size is unknown. We studied patterns of first-year survival in cliff swallows (Petrochelidon pyrrhonota) in western Nebraska in relation to brood size and nestling body mass in nests under natural conditions and in those in which hematophagous ectoparasites had been removed by fumigation. Birds from parasitized nests showed highest first-year survival at the most common, intermediate brood-size and nestling-mass categories, but cliff swallows from nonparasitized nests had highest survival at the heaviest nestling masses and no relationship with brood size. A survival analysis suggested stabilizing selection on brood size and nestling mass in the presence (but not in the absence) of parasites. Parasites apparently favour intermediate offspring size and number in cliff swallows and produce the observed distributions of these traits, although the mechanisms are unclear. Our results emphasize the importance of parasites in life-history evolution. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  19. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  20. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  1. Formation, evolution and environment of high-mass X-ray binaries

    International Nuclear Information System (INIS)

    Coleiro, Alexis

    2013-01-01

    High-Mass X-ray Binaries are interacting binary systems composed of a compact object orbiting an O/B massive star. These objects are deeply studied with the aim of understanding accretion and ejection processes around compact objects. Recent studies claim that most of the Galactic massive stars do not live alone and suffer from mass transfer during their life. Therefore, understanding the HMXB evolution and their interaction with the close environment allows to better understand not only the evolution of massive binary stars, possible progenitors of gamma-ray bursts and gravitational waves emitters during their coalescence, but also to correctly characterize the faraway galaxies. How do these sources evolve? Where are they located in the Galaxy? What are their principal properties? What is the influence of their environment? What is their impact on the interstellar medium? This thesis aims at shedding some light on these questions, by adopting two complementary approaches: a statistical study of the Galactic population of HMXB and on another hand a multi-wavelength study of individual sources. The first part of this thesis introduces the main characteristics of massive stars. Their evolution and the observational features are described. We also present the main observational and theoretical properties of HMXB together with the multi-wavelength approach used in this work. With the aim of better understanding the stellar evolution and the connections between compact objects and supernovae or gamma-ray bursts, it is of major interest to understand where these compact objects are born. Thus, the second part details the statistical study carried out on the Galactic HMXB population. Thanks to a uniform approach based on spectral energy distribution fitting, we determine, for the first time, the distance of 46 HMXB into the Milky Way with an accurate uncertainties estimation. Then, we present the distribution of these sources in the Galaxy and we show that a correlation

  2. Accurate evolutions of inspiralling and magnetized neutron stars: Equal-mass binaries

    International Nuclear Information System (INIS)

    Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca

    2011-01-01

    By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival of the hypermassive neutron star produced at the merger by accelerating its collapse to a black hole. We also provide evidence that, even if purely poloidal initially, the magnetic fields produced in the tori surrounding the black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during the inspiral or after the merger, we conclude that for realistic magnetic-field strengths B 12 G such effects could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However, magnetically induced modifications could become detectable in the case of small-mass binaries and with the development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at frequencies larger than ≅2 kHz.

  3. Role of nuclear reactions on stellar evolution of intermediate-mass stars

    Science.gov (United States)

    Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.

    2018-01-01

    The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.

  4. A possible state transition in the low-mass X-ray binary XSS J12270-4859

    Science.gov (United States)

    Bassa, C. G.; Patruno, A.; Hessels, J. W. T.; Archibald, A. M.; Mahony, E. K.; Monard, B.; Keane, E. F.; Bogdanov, S.; Stappers, B. W.; Janssen, G. H.; Tendulkar, S.

    2013-12-01

    Spurred by the recent state change in the "missing link" pulsar binary system PSR J1023+0038 (ATel #5513, #5514, #5515, #5516; Stappers et al. 2013, arXiv:1311.7506; Patruno et al. 2013, arXiv:1310.7549) we report on optical, radio, X-ray and gamma-ray observations of the low-mass X-ray binary XSS J12270-4859, conducted between 2012 March 29 and 2013 December 10.

  5. Physical properties of low-mass star-forming galaxies at intermediate redshifts (z <1)

    Science.gov (United States)

    Gallego, J.; Rodríguez-Muñoz, L.; Pacifici, C.; Tresse, L.; Charlot, S.; Gil de Paz, A.; Barro, G.; Villar, V.

    2015-05-01

    In this poster we present the physical properties of a sample of low-mass star-forming galaxies at intermediate redshifts (zstructures that hierarchical models predict to form first in the Universe (Dekel & Silk 1986) and that are responsible for the reionization process (Bouwens et al. 2012); and (2) the way or epoch they form and how they evolve are still open questions of modern astrophysics. We selected the sample on the CDFS field. Photometry (40 bands, from UV to far-IR) and preliminary photometric redshifts and stellar masses were obtained from RAINBOW database (Pérez-González et al. 2008). Morphology fom Griffith et al. (2012). Main selection was done by stellar mass, selecting those galaxies with stellar mass M_*MOS spectroscopy with the VIMOS spectrograph at VLT. The average spectrum is characterized by a faint, blue and flat continuum and strong emission lines, revealing that the systems are dominated by an undergoing star formation burst. SFRs and stellar masses are consistent with the SF main-squence over a 2 dex range. More massive objects show higher SFRs than low-mass objects, following the SF main sequence. Distant dwarfs and BCDs follow the overall star-forming sequence in the excitation-luminosity diagram, populating the high excitation, low metallicity and high strength region.

  6. A state change in the low-mass X-ray binary XSS J12270-4859

    NARCIS (Netherlands)

    Bassa, C.G.; Patruno, A.; Hessels, J.W.T.; Keane, E.F.; Monard, B.; Mahony, E.K.; Bogdanov, S.; Corbel, S.; Edwards, P.G.; Archibald, A.M.; Janssen, G.H.; Stappers, B.W.; Tendulkar, S.

    2014-01-01

    Millisecond radio pulsars acquire their rapid rotation rates through mass and angular momentum transfer in a low-mass X-ray binary system. Recent studies of PSR J1824−2452I and PSR J1023+0038 have observationally demonstrated this link, and they have also shown that such systems can repeatedly

  7. Intermediate long X-ray bursts from the ultra-compact binary candidate SLX1737-282

    DEFF Research Database (Denmark)

    Falanga, M.; Chenevez, Jérôme; Cumming, A.

    2008-01-01

    . The observed intermediate long burst properties from SLX 1737-282 are consistent with helium ignition at the column depth of 5-8 × 109 g cm-2 and a burst energy release of 1041 erg. The apparent recurrence time of ≃86 days between the intermediate long bursts from SLX 1737-282 suggests a regime of unstable...... bursts. Methods: Up to now only four bursts, all with duration between ≃15{-}30 min, have been recorded for SLX 1737-282. The properties of three of these intermediate long X-ray bursts observed by INTEGRAL are investigated and compared to other burster sources. The broadband spectrum of the persistent...

  8. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    Science.gov (United States)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  9. A fast search strategy for gravitational waves from low-mass x-ray binaries

    International Nuclear Information System (INIS)

    Messenger, C; Woan, G

    2007-01-01

    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems. A component of this strategy is based on the incoherent summation of frequency-modulated binary signal sidebands, a method previously employed in the detection of electromagnetic pulsar signals from radio observations. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required a priori. For the final stage we propose a fully coherent Markov chain Monte Carlo based follow-up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass x-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting x-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search

  10. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    International Nuclear Information System (INIS)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel; Davison, Cassy L.; Malo, Lison; Reylé, Céline

    2015-01-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3

  11. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Robert, Jasmin; Nadeau, Daniel [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada); Davison, Cassy L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Malo, Lison [Canada-France-Hawaii Telescope, 65–1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Reylé, Céline, E-mail: baron@astro.umontreal.ca [Institut Utinam, CNRS UMR6213, Université de Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  12. Determination of Protein Folding Intermediate Structures Consistent with Data from Oxidative Footprinting Mass Spectrometry.

    Science.gov (United States)

    Heinkel, Florian; Gsponer, Jörg

    2016-01-29

    The mapping of folding landscapes remains an important challenge in protein chemistry. Pulsed oxidative labeling of exposed residues and their detection via mass spectrometry provide new means of taking time-resolved "snapshots" of the structural changes that occur during protein folding. However, such experiments have been so far only interpreted qualitatively. Here, we report the detailed structural interpretation of mass spectrometry data from fast photochemical oxidation of proteins (FPOP) experiments at atomic resolution in a biased molecular dynamics approach. We are able to calculate structures of the early folding intermediate of the model system barstar that are fully consistent with FPOP data and Φ values. Furthermore, structures calculated with both FPOP data and Φ values are significantly less compact and have fewer helical residues than intermediate structures calculated with Φ values only. This improves the agreement with the experimental β-Tanford value and CD measurements. The restraints that we introduce facilitate the structural interpretation of FPOP data and provide new means for refined structure calculations of transiently sampled states on protein folding landscapes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Inspiral, merger, and ring-down of equal-mass black-hole binaries

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Cook, Gregory B.; Pretorius, Frans

    2007-01-01

    We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. The simulations were performed with an evolution code based on generalized harmonic coordinates developed by Pretorius, and used quasiequilibrium initial-data sets constructed by Cook and Pfeiffer. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes, and exhibit between 2-8 GW cycles before coalescence. We find that to a good approximation the inspiral phase of the evolution is quasicircular, followed by a 'blurred, quasicircular plunge' lasting for about 1-1.5 GW cycles. After this plunge the GW frequency decouples from the orbital frequency, and we define this time to be the start of the merger phase. Roughly 10-15 M separates the time between the beginning of the merger phase and when we are able to extract quasinormal ring-down modes from gravitational waves emitted by the newly formed black hole. This suggests that the merger lasts for a correspondingly short amount of time, approximately 0.5-0.75 of a full GW cycle. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results--more detailed and accurate comparisons will need to await numerical simulations with higher accuracy, better control of systemic errors (including coordinate artifacts), and initial configurations where the binaries are further separated. During the inspiral, we find that if the orbital phase is well modeled, the leading order Newtonian quadrupole formula is able to match both the amplitude and phase of the numerical GW quite accurately until close to the point of merger. We provide comparisons between the numerical results and analytical predictions based on the adiabatic post-Newtonian (PN) and nonadiabatic resummed-PN models (effective-one-body and Pade models). For all

  14. Constraining the disk masses of the class I binary protostar GV Tau

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A., E-mail: psheehan@email.arizona.edu [Steward Observatory, University of Arizona 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  15. Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1

    Science.gov (United States)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    intermediate mass black hole.

  16. Mass estimates from optical-light curves for binary X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.

    1978-01-01

    The small amplitude variations with orbital phase of the optical light from X-ray binaries are caused by the changing geometrical aspect of the primary as seen by a fixed observer. The shape and the amplitude of the light curve depends on the stellar masses and on the orbital elements. The light curve can, therefore, be used to determine, or set limits on, the parameters of the binary system. A self-consistent procedure for the calculation of the light curve can be formulated if the primary is formulated if the primary is uniformly rotating at an angular velocity equal to the angular velocity of its orbital revolution in a circular orbit, and if the primary is in a hydrostatic and radiative equilibrium in the co-rotating frame. When the primary is further approximated to be centrally condensed, the above set of assumptions is called the standard picture. The standard picture is described, its validity discussed and its application to various systems reviewed. (C.F.)

  17. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    Science.gov (United States)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  18. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky; Rasio, Frederic A., E-mail: sourav.chatterjee@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) Physics and Astronomy, Northwestern University, Evanston, IL 60202 (United States)

    2017-02-20

    Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically, we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.

  19. Understanding the environment around the intermediate mass black hole candidate ESO 243-49 HLX-1

    Science.gov (United States)

    Webb, N. A.; Guérou, A.; Ciambur, B.; Detoeuf, A.; Coriat, M.; Godet, O.; Barret, D.; Combes, F.; Contini, T.; Graham, Alister W.; Maccarone, T. J.; Mrkalj, M.; Servillat, M.; Schroetter, I.; Wiersema, K.

    2017-06-01

    Aims: ESO 243-49 HLX-1, otherwise known as HLX-1, is an intermediate mass black hole (IMBH) candidate located 8'' (3.7 Kpc) from the centre of the edge-on S0 galaxy ESO 243-49. How the black hole came to be associated with this galaxy, and the nature of the environment in which it resides, remain unclear. Using multi-wavelength observations we aim to investigate the nature of the medium surrounding HLX-1, search for evidence of past mergers with ESO 243-49 and constrain parameters of the galaxy, including the mass of the expected central supermassive black hole, essential for future modelling of the interaction of the IMBH and ESO 243-49. Methods: We have reduced and analysed integral field unit observations of ESO 243-49 that were taken with the MUSE instrument on the VLT. Using complementary multi-wavelength data, including X-shooter, HST, Swift, Chandra and ATCA data, we have further examined the vicinity of HLX-1. We additionally examined the nature of the host galaxy and estimate the mass of the central supermassive black hole in ESO 243-49 using (black hole mass)-(host spheroid) scaling relations and the fundamental plane of black hole activity. Results: No evidence for a recent minor-merger that could result in the presence of the IMBH is discerned, but the data are compatible with a scenario in which minor mergers may have occurred in the history of ESO 243-49. The MUSE data reveal a rapidly rotating disc in the centre of the galaxy, around the supermassive black hole. The mass of the supermassive black hole at the centre of ESO 243-49 is estimated to be 0.5-23 × 107M⊙. Studying the spectra of HLX-1, that were taken in the low and hard state, we determine Hα flux variability to be at least a factor 6, compared to observations taken during the high and soft state. This Hα flux variability over one year indicates that the line originates close to the intermediate mass black hole, excluding the possibility that the line emanates from a surrounding nebula

  20. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  1. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Dolphin, Andrew, E-mail: ben@astro.washington.edu, E-mail: bbinder@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: mce@astro.psu.edu, E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ 85734 (United States)

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.

  2. Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film

    Directory of Open Access Journals (Sweden)

    Khalal Larbi

    2015-01-01

    Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.

  3. A state change in the low-mass X-ray binary XSS J12270-4859

    Science.gov (United States)

    Bassa, C. G.; Patruno, A.; Hessels, J. W. T.; Keane, E. F.; Monard, B.; Mahony, E. K.; Bogdanov, S.; Corbel, S.; Edwards, P. G.; Archibald, A. M.; Janssen, G. H.; Stappers, B. W.; Tendulkar, S.

    2014-06-01

    Millisecond radio pulsars acquire their rapid rotation rates through mass and angular momentum transfer in a low-mass X-ray binary system. Recent studies of PSR J1824-2452I and PSR J1023+0038 have observationally demonstrated this link, and they have also shown that such systems can repeatedly transition back-and-forth between the radio millisecond pulsar and low-mass X-ray binary states. This also suggests that a fraction of such systems are not newly born radio millisecond pulsars but are rather suspended in a back-and-forth, state-switching phase, perhaps for gigayears. XSS J12270-4859 has been previously suggested to be a low-mass X-ray binary, and until recently the only such system to be seen at MeV-GeV energies. We present radio, optical and X-ray observations that offer compelling evidence that XSS J12270-4859 is a low-mass X-ray binary which transitioned to a radio millisecond pulsar state between 2012 November 14 and December 21. We use optical and X-ray photometry/spectroscopy to show that the system has undergone a sudden dimming and no longer shows evidence for an accretion disc. The optical observations constrain the orbital period to 6.913 ± 0.002 h.

  4. EVIDENCE FOR AN INTERMEDIATE-MASS BLACK HOLE IN NGC 5408 X-1

    International Nuclear Information System (INIS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An ∼100 ks pointing with XMM/Newton obtained in 2008 January reveals a strong 10 mHz quasi-periodic oscillation (QPO) in the >1 keV flux, as well as flat-topped, band-limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power law with an index of ∼2.5. These new measurements, combined with results from our previous 2006 January pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole (BH) sources, but at much higher X-ray luminosity and longer characteristic timescales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broadband noise amplitude (rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with the BH mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency-spectral index relations from five stellar-mass BH systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 to 9000 M sun . We argue that these are conservative limits, and a more likely range is from 2000 to 5000 M sun . Moreover, the recent relation from Gierlinski et al. that relates the BH mass to the strength of variability at high frequencies (above the break in the power spectrum) is also indicative of such a high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a BH mass less than ∼1000 M sun for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an intermediate-mass BH.

  5. Intermediate-mass Higgs boson and isosinglet neutral heavy lepton signals at hadron supercolliders

    International Nuclear Information System (INIS)

    Bhattacharya, G.

    1992-01-01

    The signals for the Standard Model intermediate-mass Higgs boson and isosinglet neutral heavy leptons at the forthcoming hadron supercolliders-the Superconducting Super Collider (SSC) and the CERN Large Hadron Collider (LHC), are studied. The author studies inclusive production of the Standard Model Higgs boson in the intermediate-mass region (M W approx-lt m H approx-lt 2M Z ) and its subsequent decay into two on- or off-shell W bosons that decay leptonically. Backgrounds from continuum W pair production and top quark pair production with semileptonic decays are investigated. The author concludes the Higgs boson signal may be observed via the decay H → W*W* → (ell bar v ell ) (bar ell' v' ell ) at the SSC for 145 GeV H approx-lt 2M Z and at the LHC for 150 GeV H approx-lt 2M Z if m t > 150 GeV. The author analyzes the search and discovery potential of isosinglet neutral heavy leptons (NHLs) produced via real or virtual W decay at pp supercolliders. The author considers the signal resulting from the leptonic decay of the NHL, and the two major backgrounds-continuum WZ, Wγ production and t bar tj production, where j is a hadronic jet. The decay patterns of NHL depend on its mass M N , and different search strategies are needed for the two mass regions M N W and M N > M Z . The author finds for m t ≥ 150 (200) GeV the signal is observable for M N ≤ 60 (70) GeV in the mass-region M N W , and up to M N ≅ 110 GeV for M N > M W , at both SSC and LHC. It is shown the non-observance of the signal (with a 4σ statistical significance) in the region M N W could put upper limits on the NHL coupling constants that would be an improvement over the limits obtainable from the CERN Large Electron Positron Collider (LEP I)

  6. NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA

    International Nuclear Information System (INIS)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-01-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam –1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ☉ . These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs ∼> 1000 M ☉ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  7. No Evidence for Intermediate-mass Black Holes in Globular Clusters: Strong Constraints from the JVLA

    Science.gov (United States)

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-05-01

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 μJy beam-1 at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3σ upper limits on IMBHs from 360 to 980 M ⊙. These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs >~ 1000 M ⊙ are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  8. Probing Intermediate Mass Higgs Interactions at the CERN Large Hadron Collider

    CERN Document Server

    Éboli, Oscar J P; Lietti, S M; Novaes, S F

    2000-01-01

    We analyze the potentiality of the CERN Large Hadron Collider to probe the Higgs boson couplings to the electroweak gauge bosons. We parametrize the possible deviations of these couplings due to new physics in a model independent way, using the most general dimension--six effective lagrangian where the SU(2)_L x U(1)_Y is realized linearly. For intermediate Higgs masses, the decay channel into two photons is the most important one for Higgs searches at the LHC. We study the effects of these new interactions on the Higgs production mechanism and its subsequent decay into two photons. We show that the LHC will be sensitive to new physics scales beyond the present limits extracted from the LEP and Tevatron physics.

  9. Intermediate-mass single stars and accreting white dwarfs as sources of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1981-01-01

    During the most luminous portion of the asymptotic giant-branch phase, models of intermediate-mass stars first become carbon stars and then produce s-process isotopes in the solar-system distribution. Recent observations of the optically most luminous carbon stars in the Magellanic Clouds introduce the possibility that real intermediate-mass stars lose their hydrogen-rich envelopes during the asymptotic giant-branch phase before they have made s-process isotopes both in large quantities and in the solar system distribution. This encourages a search for alternate sources of these isotopes. A promising site for the production of some neutron-rich isotopes isthe convective helium-carbon region that appears in accreting white dwarfs during helium shell flashes. For appropriate accretion rates, overlap of matter in successive convective zones may lead to an exponential distribution of exposures. Further, because of a small entropy barrier between the convective shell and the hydrogen-rich envelope, protons enter the shell and provide a source of neutrons that, for appropriate accretion rates, is repetitive in strength and either dominates or is complementary to the 22 Ne(α,n) 25 Mg source. This permits an estimate of the distribution of neutron-rich isotopes that is formed after many flashes. The distribution, in most instances, tends to be weighted more toward heavier elements than is the case when 22 Ne(α, n) 25 Mg is the sole source of neutrons. Hence, accreting white dwarfs cannot be major contributors to the enrichment of the interstellar medium in most s-process isotopes. Considerable effort should be devoted toward demonstrating whether or not the bolometrically most lumious asymptotic giant branch stars in local systems obey M/sub BOL/ /sup min/ -6.5, then either the source of most Galactic s-process isotopes is as yet unknown, or the rate of the 22 Ne(α, n) 25 Mg reaction has been underestimated

  10. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  11. XMM-Newton observations of the low-mass X-ray binary EXO 0748-676 in quiescence

    NARCIS (Netherlands)

    Trigo, M. Diaz; Boirin, L.; Costantini, E.; Mendez, M.; Parmar, A.

    The neutron star low-mass X-ray binary EXO 0748-676 started a transition from outburst to quiescence in August 2008, after more than 24 years of continuous accretion. The return of the source to quiescence has been monitored extensively by several X-ray observatories. Here, we report on four

  12. Relativistic iron emission lines in neutron star low-mass X-ray binaries as probes of neutron star radii

    NARCIS (Netherlands)

    Cackett, E.M.; Miller, J.M.; Bhattacharyya, S.; Grindlay, J.E.; Homan, J.; van der Klis, M.; Miller, M.C.; Strohmayer, T.E.; Wijnands, R.

    2008-01-01

    Using Suzaku observations of three neutron star low-mass X-ray binaries ( Ser X-1, 4U 1820-30, and GX 349+2) we have found broad, asymmetric, relativistic Fe K emission lines in all three objects. These Fe K lines can be well fit by a model for lines from a relativistic accretion disk ("diskline''),

  13. Characterizing low-mass binaries from observation of long-timescale caustic-crossing gravitational microlensing events

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Choi, J.-Y

    2012-01-01

    Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of phys...

  14. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    Science.gov (United States)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  15. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  16. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  17. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  18. Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center

    Science.gov (United States)

    Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith

    2018-01-01

    We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.

  19. Revealing the Formation of Stellar-mass Black Hole Binaries: The Need for Deci-Hertz Gravitational-wave Observatories

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian [Astronomy Department, School of Physics, Peking University, 100871 Beijing (China); Amaro-Seoane, Pau, E-mail: xian.chen@pku.edu.cn, E-mail: pau@ice.cat [Institut de Ciències de l’Espai (CSIC-IEEC) at Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona (Spain)

    2017-06-10

    The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, we show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.

  20. Revealing the Formation of Stellar-mass Black Hole Binaries: The Need for Deci-Hertz Gravitational-wave Observatories

    Science.gov (United States)

    Chen, Xian; Amaro-Seoane, Pau

    2017-06-01

    The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, we show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.

  1. Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures.

    Science.gov (United States)

    Löwen, Hartmut; Allahyarov, Elshad

    2011-10-07

    Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures. © 2011 American Institute of Physics

  2. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul [University of California, San Diego, Center for Astrophysics and Space Sciences, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Caballero, Isabel [CEA Saclay, DSM/IRFU/SAp -UMR AIM (7158) CNRS/CEA/Universite P. Diderot, Orme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette (France); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Kuehnel, Matthias; Wilms, Joern [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); Fuerst, Felix [Space Radiation Lab, MC 290-17 Cahill, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (United States); Doroshenko, Victor [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D-72076 Tuebingen (Germany); Camero-Arranz, Ascension, E-mail: rrothschild@ucsd.edu [Institut de Ciencies de l' Espai, (IEEC-CSIC), Campus UAB, Fac. de Ciencies, Torre C5, parell, 2a planta, E-08193 Barcelona (Spain)

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.

  3. Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-10-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.

  4. METALLICITY EFFECT ON LOW-MASS X-RAY BINARY FORMATION IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-W.; Fabbiano, G.; Fragos, T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ivanova, N.; Sivakoff, G. R. [Department of Physics, University of Alberta, Edmonton, AB (Canada); Jordan, A. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Voss, R. [Department of Astrophysics/IMAPP, Radboud University, Nijmegen (Netherlands)

    2013-02-10

    We present comprehensive observational results of the metallicity effect on the fraction of globular clusters (GCs) that contain low-mass X-ray binaries (LMXB), by utilizing all available data obtained with Chandra for LMXBs and Hubble Space Telescope Advanced Camera for Surveys (ACS) for GCs. Our primary sample consists of old elliptical galaxies selected from the ACS Virgo and Fornax surveys. To improve statistics at both the lowest and highest X-ray luminosity, we also use previously reported results from other galaxies. It is well known that the fraction of GCs hosting LMXBs is considerably higher in red, metal-rich, GCs than in blue, metal-poor GCs. In this paper, we test whether this metallicity effect is X-ray luminosity-dependent and find that the effect holds uniformly in a wide luminosity range. This result is statistically significant (at {>=}3{sigma}) in LMXBs with luminosities in the range L {sub X} = 2 Multiplication-Sign 10{sup 37} to 5 Multiplication-Sign 10{sup 38} erg s{sup -1}, where the ratio of GC-LMXB fractions in metal-rich to metal-poor GCs is R = 3.4 {+-} 0.5. A similar ratio is also found at lower (down to 10{sup 36} erg s{sup -1}) and higher luminosities (up to the ULX regime), but with less significance ({approx}2{sigma} confidence). Because different types of LMXBs dominate in different luminosities, our finding requires a new explanation for the metallicity effect in dynamically-formed LMXBs. We confirm that the metallicity effect is not affected by other factors such as stellar age, GC mass, stellar encounter rate, and galacto-centric distance.

  5. Observations and Analysis of the Extreme Mass Ratio, High Fill-out Solar Type Binary, V1695 Aquilae

    Science.gov (United States)

    Samec, R. G.; Gray, C. R.; Caton, D.; Faulkner, D. R.; Hill, R.; Hamme, W. V.

    2017-12-01

    CCD BVRcIc light curves of V1695 Aquilae were taken during the Fall 2016 season at the Cerro Tololo InterAmerican Observatory with the 0.6-meter reflector of the SARA South observatory in remote mode. It is an eclipsing binary with a period of 0.41283 d. The light curves yield a total eclipse (duration: 59 minutes) but have an amplitude of only 0.4 mag. The spectral type is G8V ( 5500 K). Four times of minimum light were calculated, all primary eclipses, from our present observations. We calculated linear and quadratic ephemerides from all available times of minimum light. A 17-year period study reveals a quadratic orbital period decrease at a high level of confidence. The orbital period is changing at a rapid rate of of dp / dt = -1.73 x 10-6 d/yr. The solution is that of an Extreme Mass Ratio Binary. The mass ratio is found to be near 0.16. Its Roche Lobe fill-out is a hefty 83%. The small component has the slightly hotter temperature of 5650 K, which makes it a W-type W UMa Binary. As expected in binaries of this spectral type, it has cool spot regions.

  6. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  7. Clinical impact of body mass index on prostate biopsy in patients with intermediate PSA levels

    International Nuclear Information System (INIS)

    Sekita, Nobuyuki; Chin, Kensei; Fujimura, Masaaki; Mikami, Kazuo; Suzuki, Hiroyoshi; Kamijima, Shuichi

    2008-01-01

    From April 2005 to September 2007, 480 patients underwent transrectal prostate biopsy at our institution. The clinical data including age, serum prostate specific antigen (PSA) level, prostate volume and body mass index (BMI) were obtained, and the cancer detection rates and pathological findings were evaluated in 305 cases with a PSA concentration of 4.0 to 10.0 ng/ml. Prostate volume was calculated from magnetic resonance imaging (MRI) findings. The 305 patients were categorized according to their BMI into three groups (normal, less than 22 kg/m 2 ; overweight, 22-25 kg/m 2 ; and obese, more than 25 kg/m 2 ). Cancer detection rates and histopathologic findings were compared between the groups. Multivariate logistic regression analysis was also performed. Prostate cancer was detected in 127 patients. No significant differences in BMI were observed between biopsy-positive and biopsy-negative cases (p=0.965), and the detection rates of prostate cancer observed in the three groups were not significantly different. There was a significant association between BMI and the findings of high Gleason score (more than 4+3) (p=0.048). BMI was not a contributory factor of prostate cancer detection for cases with intermediate PSA levels; however, patients with high BMI may have high-grade malignancy features. (author)

  8. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  9. Prompt emission from tidal disruptions of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Laguna P.

    2012-12-01

    Full Text Available We present a qualitative picture of prompt emission from tidal disruptions of white dwarfs (WD by intermediate mass black holes (IMBH. The smaller size of an IMBH compared to a supermassive black hole and a smaller tidal radius of a WD disruption lead to a very fast event with high peak luminosity. Magnetic field is generated in situ following the tidal disruption, which leads to effective accretion. Since large-scale magnetic field is also produced, geometrically thick super-Eddington inflow leads to a relativistic jet. The dense jet possesses a photosphere, which emits quasi-thermal radiation in soft X-rays. The source can be classified as a long low-luminosity gamma-ray burst (ll-GRB. Tidal compression of a WD causes nuclear ignition, which is observable as an accompanying supernova. We suggest that GRB060218 and SN2006aj is such a pair of ll-GRB and supernova. We argue that in a flux-limited sample the disruptions of WDs by IMBHs are more frequent then the disruptions of other stars by IMBHs.

  10. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    NARCIS (Netherlands)

    Aasi, J.; Agathos, M.; Beker, M.G.; Bertolini, A.; Bulten, H.J.; Del Pozzo, W.; Jonker, R.; Meidam, J.; van den Brand, J.F.J.; LIGO Sci, Collaboration; Virgo, Collaboration

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as

  11. Simultaneous determination of the intermediates of the citric acid cycle by gas chromatography--mass fragmentography using deuterated internal standards

    International Nuclear Information System (INIS)

    Lee, C.R.; Pollitt, R.J.

    1977-01-01

    Current developments in the use of gas chromatography and mass spectroscopy in studying the intermediates in the Krebs tricarboxylic acid cycle are outlined. The methods developed make use of deuterated internal standards and multiple-ion monitoring to obtain sensitivity comparable to that of the better fluorimetric enzymatic assays. The problems still remaining are indicated

  12. Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

    Directory of Open Access Journals (Sweden)

    Stan Owocki

    2012-03-01

    Full Text Available A few high-mass X-ray binaries–consisting of an OB star plus compact companion– have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS to be sources of very high energy (VHE; up to 30 TeV γ-rays. This paper focuses on the prominent γ-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical (e ≈ 0.24 orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole. Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of γ-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of γ-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the γ-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE γ-ray emission in massive-star binaries.

  13. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    Science.gov (United States)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  14. CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kılıçoğlu, T.; Albayrak, B. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara (Turkey); Monier, R. [LESIA, UMR 8109, Observatoire de Paris Meudon, Place J. Janssen, Meudon (France); Richer, J. [Département de physique, Université de Montréal, 2900, Boulevard Edouard-Montpetit, Montréal QC, H3C 3J7 (Canada); Fossati, L., E-mail: tkilicoglu@ankara.edu.tr, E-mail: balbayrak@ankara.edu.tr, E-mail: Richard.Monier@obspm.fr, E-mail: Jacques.Richer@umontreal.ca, E-mail: lfossati@astro.uni-bonn.de [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2016-03-15

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500–5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H{sub β} profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are

  15. Chemical Composition of Intermediate-mass Star Members of the M6 (NGC 6405) Open Cluster

    Science.gov (United States)

    Kılıçoğlu, T.; Monier, R.; Richer, J.; Fossati, L.; Albayrak, B.

    2016-03-01

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500-5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the Hβ profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are still under

  16. Measuring the masses of Intermediate Polars with NuSTAR: V709 Cas, NY Lup and V1223 Sgr

    OpenAIRE

    Shaw, A. W.; Heinke, C. O.; Mukai, K.; Sivakoff, G. R.; Tomsick, J. A.; Rana, V.

    2018-01-01

    The X-ray spectra of intermediate polars can be modelled to give a direct measurement of white dwarf mass. Here we fit accretion column models to NuSTAR spectra of three intermediate polars; V709 Cas, NY Lup and V1223 Sgr in order to determine their masses. From fits to 3-78 keV spectra, we find masses of $M_{\\rm WD}=0.88^{+0.05}_{-0.04}M_{\\odot}$, $1.16^{+0.04}_{-0.02}M_{\\odot}$ and $0.75\\pm0.02M_{\\odot}$ for V709 Cas, NY Lup and V1223 Sgr, respectively. Our measurements are generally in agr...

  17. Identification of high-mass X-ray binaries selected from XMM-Newton observations of the LMC★

    Science.gov (United States)

    van Jaarsveld, N.; Buckley, D. A. H.; McBride, V. A.; Haberl, F.; Vasilopoulos, G.; Maitra, C.; Udalski, A.; Miszalski, B.

    2018-04-01

    The Large Magellanic Cloud (LMC) currently hosts around 23 high-mass X-ray binaries (HMXBs) of which most are Be/X-ray binaries. The LMC XMM-Newton survey provided follow-up observations of previously known X-ray sources that were likely HMXBs, as well as identifying new HMXB candidates. In total, 19 candidate HMXBs were selected based on their X-ray hardness ratios. In this paper we present red and blue optical spectroscopy, obtained with Southern African Large Telescope and the South African Astronomical Observatory 1.9-m telescope, plus a timing analysis of the long-term optical light curves from OGLE to confirm the nature of these candidates. We find that nine of the candidates are new Be/X-ray binaries, substantially increasing the LMC Be/X-ray binary population. Furthermore, we present the optical properties of these new systems, both individually and as a group of all the BeXBs identified by the XMM-Newton survey of the LMC.

  18. The impact of body mass index on treatment outcomes for patients with low-intermediate risk prostate cancer

    International Nuclear Information System (INIS)

    Yamoah, Kosj; Zeigler-Johnson, Charnita M.; Jeffers, Abra; Malkowicz, Bruce; Spangler, Elaine; Park, Jong Y.; Whittemore, Alice; Rebbeck, Timothy R.

    2016-01-01

    Little is known about the relationship between preoperative body mass index and need for adjuvant radiation therapy (RT) following radical prostatectomy. The goal of this study was to evaluate the utility of body mass index in predicting adverse clinical outcomes which require adjuvant RT among men with organ-confined prostate cancer (PCa). We used a prospective cohort of 1,170 low-intermediate PCa risk men who underwent radical prostatectomy and evaluated the effect of body mass index on adverse pathologic features and freedom from biochemical failure (FFbF). Clinical and pathologic variables were compared across the body mass index groups using an analysis of variance model for continuous variables or χ 2 for categorical variables. Factors related to adverse pathologic features were examined using logistic regression models. Time to biochemical recurrence was compared across the groups using a log-rank survivorship analysis. Multivariable analysis predicting biochemical recurrence was conducted with a Cox proportional hazards model. Patients with elevated body mass index (defined as body mass index ≥25 kg/m 2 ) had greater extraprostatic extension (p = 0.004), and positive surgical margins (p = 0.01). Elevated body mass index did not correlate with preoperative risk groupings (p = 0.94). However, when compared with non-obese patients (body mass index <30 kg/m 2 ), obese patients (body mass index ≥30 kg/m 2 ) were much more likely to have higher rate of adverse pathologic features (p = 0.006). In patients with low- and intermediate- risk disease, obesity was strongly associated with rate of pathologic upgrading of tumors (p = 0.01 and p = 0.02), respectively. After controlling for known preoperative risk factors, body mass index was independently associated with ≥2 adverse pathologic features (p = 0.002), an indicator for adjuvant RT as well as FFbF (p = 0.001). Body mass index of ≥30 kg/m 2 is independently associated with adverse pathologic features

  19. ROSAT Energy Spectra of Low-Mass X-Ray Binaries

    Science.gov (United States)

    Schulz, N. S.

    1999-01-01

    The 0.1-2.4 keV bandpass of the ROSAT Position Sensitive Proportional Counter (PSPC) offers an opportunity to study the very soft X-ray continuum of bright low-mass X-ray binaries (LMXBs). In 46 pointed observations, 23 LMXBs were observed with count rates between 0.4 and 165.4 counts s-1. The survey identified a total of 29 different luminosity levels, which are compared with observations and identified spectral states from other missions. The atoll source 4U 1705-44 was observed near Eddington luminosities in an unusually high intensity state. Spectral analysis provided a measure of the interstellar column density for all 49 observations. The sensitivity of spectral fits depends strongly on column density. Fits to highly absorbed spectra are merely insensitive toward any particular spectral model. Sources with column densities well below 1022 cm-2 are best fitted by power laws, while the blackbody model gives clearly worse fits to the data. Most single-component fits from sources with low column densities, however, are not acceptable at all. The inclusion of a blackbody component in eight sources can improve the fits significantly. The obtained emission radii of less than 5 km suggest emission from the neutron star surface. In 10 sources acceptable fits can only be achieved by including soft-line components. With a spectral resolution of the PSPC of 320-450 eV, between 0.6 and 1.2 keV unresolved broad-line features were detected around 0.65, 0.85, and 1.0 keV. The line fluxes range within 10-11 and 10-12 ergs cm-2 s-1, with equivalent widths between 24 and 210 eV. In LMC X-2, 2S 0918-549, and 4U 1254-690, line emission is indicated for the first time. The soft emission observed in 4U 0614+091 compares with recent ASCA results, with a new feature indicated at 1.31 keV. The deduced line fluxes in 4U 1820-30 and Cyg X-2 showed variability of a factor of 2 within timescales of 1-2 days. Average fluxes of line components in 4U 1820-30 varied by the same factor over a

  20. ON THE ORIGIN OF THE METALLICITY DEPENDENCE IN DYNAMICALLY FORMED EXTRAGALACTIC LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N.; Avendano Nandez, J. L.; Sivakoff, G. R. [Department of Physics, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Fragos, T.; Kim, D.-W.; Fabbiano, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lombardi, J. C. [Department of Physics, Allegheny College, Meadville, PA 16335 (United States); Voss, R. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Jordan, A., E-mail: nata.ivanova@ualberta.ca [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, 7820436 Macul, Santiago (Chile)

    2012-12-01

    Globular clusters (GCs) effectively produce dynamically formed low-mass X-ray binaries (LMXBs). Observers detect {approx}100 times more LMXBs per stellar mass in GCs compared to stars in the fields of galaxies. Observationally, metal-rich GCs are about three times more likely to contain an X-ray source than their metal-poor counterparts. Recent observations have shown that this ratio holds in extragalactic GCs for all bright X-ray sources with L{sub X} between 2 Multiplication-Sign 10{sup 37} and 5 Multiplication-Sign 10{sup 38} erg s{sup -1}. In this Letter, we propose that the observed metallicity dependence of LMXBs in extragalactic GCs can be explained by the differences in the number densities and average masses of red giants in populations of different metallicities. Red giants serve as seeds for the dynamical production of bright LMXBs via two channels-binary exchanges and physical collisions-and the increase of the number densities and masses of red giants boost LMXB production, leading to the observed difference. We also discuss a possible effect of the age difference in stellar populations of different metallicities.

  1. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\\le f_{0}/\\mathrm{Hz} \\le 2000$ and decay timescale $0.0001\\lesssim \\tau/\\mathrm{s} \\lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant ...

  2. Suzaku observation of the eclipsing high mass X-ray binary pulsar ...

    Indian Academy of Sciences (India)

    Jincy Devasia

    2018-02-09

    Feb 9, 2018 ... The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments. Keywords. X-ray: neutron stars—X-ray binaries: individual (XTE J1855-026). 1. Introduction.

  3. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eunkyu; Muirhead, Philip S. [Department of Astronomy and Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Swift, Jonathan J. [The Thacher School, 5025 Thacher Road Ojai, CA 93023 (United States); Baranec, Christoph; Atkinson, Dani [Institute for Astronomy, University of Hawaiì at Mānoa, Hilo, HI 96720-2700 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Riddle, Reed [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Mace, Gregory N. [McDonald Observatory and The University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); DeFelippis, Daniel, E-mail: eunkyuh@bu.edu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2017-09-01

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius of the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.

  4. Observation of the intermediates of in-source aldolization reaction in electrospray ionization mass spectrometry analysis of heteroaromatic aldehydes.

    Science.gov (United States)

    Jiang, Kezhi; Zhang, Xiaoping; Bai, Xingfeng; Lv, Huiqing; Li, Zuguang; Lee, Maw-Rong

    2015-01-01

    Electrospray ionization mass spectrometry (ESI-MS) analyses of 2-(1,2,4-triazole-1-yl)-6-methyl-3- quinolinecarboxaldehyde were carried out by using an ion trap mass spectrometer in a positive-ion mode. Interestingly, several unusual [M + 15](+), [M + 33](+), and [M + 47](+) ions were observed with a high abundance in the ESI-MS spectrum when methanol was used as the ESI solvent. However, only the protonated molecule was obtained with acetonitrile as the ESI solvent. These unusual ions have been proposed as the intermediates of an aldolization reaction occurring in the ESI source, which have been validated by a tandem mass spectrometry experiment, high-performance liquid chromatography/mass spectrometry analysis, and theoretical calculations. A full understanding of this reaction can contribute to the avoidance of analysis errors in the ESI-MS analysis of unknown heteroaromatic aldehydes.

  5. BVRI Photometric Study of the High Mass Ratio, Detached, Pre-contact W UMa Binary GQ Cancri

    Science.gov (United States)

    Samec, R. G.; Olson, A.; Caton, D.; Faulkner, D. R.

    2017-12-01

    CCD BVRcIc light curves of GQ Cancri were observed in April 2013 using the SARA North 0.9-meter Telescope at Kitt Peak National Observatory in Arizona in remote mode. It is a high-amplitude (V 0.9 magnitude) K0±V type eclipsing binary (T1 5250 K) with a photometrically-determined mass ratio of M2 / M1 = 0.80. Its spectral color type classifies it as a pre-contact W UMa Binary (PCWB). The Wilson-Devinney Mode 2 solutions show that the system has a detached binary configuration with fill-outs of 94% and 98% for the primary and secondary component, respectively. As expected, the light curve is asymmetric due to spot activity. Three times of minimum light were calculated, for two primary eclipses and one secondary eclipse, from our present observations. In total, some 26 times of minimum light covering nearly 20 years of observation were used to determine linear and quadratic ephemerides. It is noted that the light curve solution remained in a detached state for every iteration of the computer runs. The components are very similar with a computed temperature difference of only 4 K, and the flux of the primary component accounts for 53±55% of the system's light in B, V, Rc, and Ic. A 12-degree radius high latitude white spot (faculae) was iterated on the primary component.

  6. Kilohertz QPOs in low-mass X-ray binaries as oscillation modes of tori around neutron stars - I

    Science.gov (United States)

    de Avellar, Marcio G. B.; Porth, Oliver; Younsi, Ziri; Rezzolla, Luciano

    2018-03-01

    There have been many efforts to explain the dynamical mechanisms behind the phenomenology of quasi-periodic oscillations (QPOs) seen in the X-ray light curves of low-mass X-ray binaries. Up to now, none of the models can successfully explain all the frequencies observed in the power spectral density of the light curves. After performing several general-relativistic hydrodynamic simulations of non-self-gravitating axisymmetric thick tori with constant specific angular momentum oscillating around a neutron star such as the one associated with the low-mass X-ray binary 4U 1636 - 53, we find that the oscillation modes give rise to QPOs similar to those seen in the observational data. In particular, when matching pairs of kilohertz QPOs from the numerical simulations with those observed, certain combinations reproduce well the observations, provided we take a mass for the neutron star that is smaller than what is generally assumed. At the same time, we find that tori with constant specific angular momentum cannot match the entire range of frequencies observed for 4U 1636-53 due to physical constraints set on their size. Finally, we show that our results are consistent with the observed shifts in QPO frequency that could accompany state transitions of the accretion disc.

  7. On the Origin of Sub-subgiant Stars. II. Binary Mass Transfer, Envelope Stripping, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Leiner, Emily; Mathieu, Robert D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Geller, Aaron M., E-mail: leiner@astro.wisc.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2017-05-10

    Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolution code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.

  8. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    Science.gov (United States)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  9. HIGH RESOLUTION H{alpha} IMAGES OF THE BINARY LOW-MASS PROPLYD LV 1 WITH THE MAGELLAN AO SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.-L.; Close, L. M.; Males, J. R.; Follette, K.; Morzinski, K.; Kopon, D.; Rodigas, T. J.; Hinz, P. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Puglisi, A.; Esposito, S.; Pinna, E.; Riccardi, A.; Xompero, M.; Briguglio, R., E-mail: yalinwu@email.arizona.edu [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)

    2013-09-01

    We utilize the new Magellan adaptive optics system (MagAO) to image the binary proplyd LV 1 in the Orion Trapezium at H{alpha}. This is among the first AO results in visible wavelengths. The H{alpha} image clearly shows the ionization fronts, the interproplyd shell, and the cometary tails. Our astrometric measurements find no significant relative motion between components over {approx}18 yr, implying that LV 1 is a low-mass system. We also analyze Large Binocular Telescope AO observations, and find a point source which may be the embedded protostar's photosphere in the continuum. Converting the H magnitudes to mass, we show that the LV 1 binary may consist of one very-low-mass star with a likely brown dwarf secondary, or even plausibly a double brown dwarf. Finally, the magnetopause of the minor proplyd is estimated to have a radius of 110 AU, consistent with the location of the bow shock seen in H{alpha}.

  10. Spectroscopic observations of the peculiar low-mass X-ray binary XSS J12270-4859

    Science.gov (United States)

    de Martino, D.; Velazquez, J. Casares; Mason, E.; Kotze, M.; Buckley, D. A. H.; Bonnet-Bidaud, J.-M.; Belloni, T.; Mouchet, M.; Falanga, M.

    2013-12-01

    The enigmatic low-mass X-ray binary XSS J12270-4859 associated to the Fermi/LAT Gamma ray source 1FGL 1227.9-4852/2FGL 1227.7-4853 (de Martino et al. 2010, A&A 515, A25; Hill et al. 2011, MNRAS 415, 235; de Martino et al. 2013, A&A 550, A89) was extensively observed from radio to gamma rays but its orbital period is still unknown. Pretorius (2009, MNRAS, 395, 386) did not find a period in time resolved optical observations.

  11. UV Observations of the Symbiotic Star AR PAV in Eclipse & Two Mass-Transfer X-Ray Binaries

    Science.gov (United States)

    Cowley, Anne P.

    Previous IUE observations of the eclipse egress of the symbiotic binary AR Pav show that the hot secondary and high excitation emission line region are not eclipsed during the optical totality. Further uv observations nearer the center of eclipse are required to determine the distribution, structure and physical conditions of the disk surrounding the hot star. UV observations of two unusual xray sources with high mass-transfer rates will also be obtained to investigate variations on the time scales of a few days to a few weeks.

  12. Interferometric diameters of five evolved intermediate-mass planet-hosting stars measured with PAVO at the CHARA Array

    Science.gov (United States)

    White, T. R.; Huber, D.; Mann, A. W.; Casagrande, L.; Grunblatt, S. K.; Justesen, A. B.; Silva Aguirre, V.; Bedding, T. R.; Ireland, M. J.; Schaefer, G. H.; Tuthill, P. G.

    2018-04-01

    Debate over the planet occurrence rates around intermediate-mass stars has hinged on the accurate determination of masses of evolved stars, and has been exacerbated by a paucity of reliable, directly-measured fundamental properties for these stars. We present long-baseline optical interferometry of five evolved intermediate-mass (˜ 1.5 M⊙) planet-hosting stars using the PAVO beam combiner at the CHARA Array, which we combine with bolometric flux measurements and parallaxes to determine their radii and effective temperatures. We measured the radii and effective temperatures of 6 Lyncis (5.12±0.16 R⊙, 4949±58 K), 24 Sextantis (5.49±0.18 R⊙, 4908±65 K), κ Coronae Borealis (4.77±0.07 R⊙, 4870±47 K), HR 6817 (4.45±0.08 R⊙, 5013±59 K), and HR 8641 (4.91±0.12 R⊙, 4950±68 K). We find disagreements of typically 15 % in angular diameter and ˜ 200 K in temperature compared to interferometric measurements in the literature, yet good agreement with spectroscopic and photometric temperatures, concluding that the previous interferometric measurements may have been affected by systematic errors exceeding their formal uncertainties. Modelling based on BaSTI isochrones using various sets of asteroseismic, spectroscopic, and interferometric constraints tends to favour slightly (˜ 15 %) lower masses than generally reported in the literature.

  13. Planck intermediate results: III. the relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Bucher, M.; Cardoso, J.-F.

    2013-01-01

    on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which......We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM......-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL-D A2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based...

  14. Intermediate mass fragments emission in the reaction 96 MeV 19F on 12C

    International Nuclear Information System (INIS)

    Bhattacharya, C.; Bandyopadhyay, D.; Basu, S.K.; Bhattacharya, S.; Krishan, K.; Murthy, G.S.; Chatterjee, A.; Kailas, S.; Singh, P.

    1996-01-01

    The energy distributions of the complex fragments (3≤Z≤11) emitted in the reaction 19 F(96 MeV) + 12 C have been measured in the angular range 10 degree ≤θ lab ≤60 degree. The lighter fragments (3≤Z≤6) have been found to be emitted predominantly due to the asymmetric fissionlike decay of the compound nucleus, whereas the heavier fragments (Z≥10) have been identified as evaporation residues. The shapes of the fragment energy distributions, as well as the total elemental yields for the lighter fragments (3≤Z≤6) have been explained fairly well by the asymmetric binary fission model. The binary fragment yields from the reaction 19 F(96 MeV) + 12 C have been compared with those obtained in α(60 MeV) + 27 Al and 7 Li(47 MeV) + 24 Mg reactions, all producing the same composite 31 P at same excitation energy. No significant entrance channel asymmetry dependence has been observed. copyright 1996 The American Physical Society

  15. The White-Dwarf Mass-Radius Relation from 40 Eridani B and Other Nearby Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bedard, A.

    2018-01-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD's mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M⊙. We have used model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then comparethese results with WD interior models.Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star's location in the mass-radius plane. This consistency is, however, achieved only if we assume a "thin'' outer hydrogen layer, with qH = MH/MWD ∼ 10–10.We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of expectation from canonical stellar-evolution theory of "thick'' H layers with qH ∼ 10–4 . The cooling age of 40 Eri B is ~122 Myr, and its total age is ~1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observation is excellent in all cases.However, astrophysical puzzles remain. The eccentricity of the BC orbit has remained high (0.43), even though the progenitor of B ought to have interacted tidally with C when it was an AGB star. This puzzle exists also for the Sirius and Procyon systems. If thin hydrogen layers are common among WDs, the mass scale will need to be shifted downwards by a few hundredths of a solar mass.

  16. CIRCUMSTELLAR ENVIRONMENT AND EFFECTIVE TEMPERATURE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS J05352184-0546085

    International Nuclear Information System (INIS)

    Mohanty, Subhanjoy; Stassun, Keivan G.; Mathieu, Robert D.

    2009-01-01

    We present new Spitzer IRAC/PU/MIPS photometry from 3.6 to 24 μm, and new Gemini GMOS photometry at 0.48 μm, of the young brown dwarf eclipsing binary 2MASS J05352184-0546085, located in the Orion Nebula Cluster. No excess disk emission is detected. The measured fluxes at λ ≤ 8 μm are within 1σ (∼ -10 M sun ) if it extends in to within ∼0.1 AU of the binary (the approximate tidal truncation radius), or it must be optically thick with a large inner hole, >0.6-10 AU in radius depending on degree of flaring. The consequence in all cases is that disk accretion is likely to be negligible or absent. This supports the recent proposal that the strong Hα emission in the primary (more massive) brown dwarf results from chromospheric activity, and thereby bolsters the hypothesis that the surprising T eff inversion observed between the components is due to strong magnetic fields on the primary. Our data also set constraints on the T eff of the components independent of spectral type, and thereby on models of the aforementioned magnetic field effects. We discuss the consequences for the derived fundamental properties of young brown dwarfs and very low mass stars in general. Specifically, if very active isolated young brown dwarfs and very low mass stars suffer the same activity/field related effects as the 2M0535-05 primary, the low-mass stellar/substellar initial mass function currently derived from standard evolutionary tracks may be substantially in error.

  17. N-body modeling of globular clusters: detecting intermediate-mass black holes by non-equipartition in HST proper motions

    Science.gov (United States)

    Trenti, Michele

    2010-09-01

    Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in

  18. Tidal Disruptions Due to Stellar Mass Black Hole Binaries: Modifying the Spin Magnitudes and Directions of LIGO Sources

    Science.gov (United States)

    Lopez, Martin; Batta, Aldo; Ramírez-Ruiz, Enrico

    2018-01-01

    Globular clusters have about a thousand times denser stellar environments than our Milky Way. This crowded setting leads to many interactions between inhabitants of the cluster and the formation of a whole myriad of exotic objects. One such object is a binary system that forms which is composed of two stellar mass black holes (BHs). Due to the recent detection of gravitational waves (GWs), we know that some of these BH binaries (BHBs) are able to merge. Upon coalescence, BHBs produce GW signals that can be measured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) group on Earth. Spin is one such parameter that LIGO can estimate from the type of signals they observe and as such can be used to constrain their production site. After these BHBs are assembled in dense stellar systems they can continue to interact with other members, either through tidal interactions or physical collisions. When a BHB tidally disrupts a star, a significant fraction of the debris can be accreted by the binary, effectively altering the spin of the BH members. Therefore, although a dynamically formed BHB will initially have low randomly aligned spins, through these types of interactions their birth spins can be significantly altered both in direction and magnitude. We have used a Lagrangian 3D Smoothed Particle Hydrodynamics (SPH) code GADGET-3 to simulate these interactions. Our results allow us to understand whether accretion from a tidal disruption event can significantly alter the birth properties of dynamically assembled BHBs such as spin, mass, and orbital attributes. The implications of these results will help us constrain the properties of BHBs in dense stellar systems in anticipation of an exciting decade ahead of us.

  19. Microlensing discovery of a population of very tight, very low mass binary brown dwarfs

    DEFF Research Database (Denmark)

    Choi, J.-Y.; Han, C.; Udalski, A.

    2013-01-01

    Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the disc......Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present...

  20. Discoveries of high-frequency QPOs from intermediate-mass black holes with XMM, RXTE and NICER

    Science.gov (United States)

    Ranga Reddy Pasham, Deeraj; Strohmayer, Tod E.; Steiner, James F.

    2017-08-01

    Stable, twin-peak X-ray quasi-periodic oscillations (QPOs; frequency range of 100-450 Hz) in a 3:2 frequency ratio have been observed from a sample of stellar-mass black holes (e.g., Belloni et al. 2012). These frequencies scale inversely with the black hole mass as expected from general relativistic motion near a black hole. Under the black hole unification paradigm, it has been argued that intermediate-mass black holes (IMBH) should also exhibit the 3:2 ratio high-frequency QPOs, but at frequencies lower than stellar-mass black holes. Thence, such QPOs will provide an accurate measurement of IMBH masses (Abramowicz et al. 2004).Combining all the entire archival RXTE/PCA observations of the ultraluminous X-ray source (ULX) M82 X-1, we discovered stable, twin-peak X-ray QPOs at 3.3 and 5 Hz (3:2 frequency ratio). Scaling these frequencies to the oscillations of the stellar-mass black holes of known mass implies that M82 X-1's black hole is 428+-105 solar masses (Pasham, Strohmayer & Mushotzky 2014). We discovered similar 3:2 frequency ratio QPOs from another ULX NGC 1313 X-1 (0.30 and 0.45 Hz). These frequencies imply a black hole mass of 5000+-1300 solar masses in NGC 1313 X-1 (Pasham et al. 2015b). In addition to these results I will discuss some early results from NICER observations of ULXs.

  1. THE DISCOVERY OF THE YOUNGEST MOLECULAR OUTFLOW ASSOCIATED WITH AN INTERMEDIATE-MASS PROTOSTELLAR CORE, MMS-6/OMC-3

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.

    2012-01-01

    We present subarcsecond resolution HCN (4-3) and CO (3-2) observations made with the Submillimeter Array, toward an extremely young intermediate-mass protostellar core, MMS 6-main, located in the Orion Molecular Cloud 3 region (OMC-3). We have successfully imaged a compact molecular outflow lobe (≈1000 AU) associated with MMS 6-main, which is also the smallest molecular outflow ever found in the intermediate-mass protostellar cores. The dynamical timescale of this outflow is estimated to be ≤100 yr. The line width dramatically increases downstream at the end of the molecular outflow (Δv ∼ 25 km s –1 ) and clearly shows the bow-shock-type velocity structure. The estimated outflow mass (≈10 –4 M ☉ ) and outflow size are approximately two to four orders and one to three orders of magnitude smaller, respectively, while the outflow force (≈10 –4 M ☉ km s –1 yr –1 ) is similar, compared to the other molecular outflows studied in OMC-2/3. These results show that MMS 6-main is a protostellar core at the earliest evolutionary stage, most likely shortly after the second core formation.

  2. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  3. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  4. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  5. Abundances in Planetary Nebulae: an Autopsy of Low and Intermediate Mass Stars

    Science.gov (United States)

    Buell, James Francis

    In this work we report on the results of synthetic thermally pulsing asymptotic giant branch models (TP-AGB) and compare the results to the abundance ratios in a sample of planetary nebulae. We use updated the input parameters for mass-loss, the stellar luminosity, and dredge-up. We calculated models with masses between 0.8 solar masses and 8 solar masses. We also calculated models with (Fe/H) between -2.5 and 0.3. The effect of the first, second, and third dredge-up as well as hot-bottom burning are reported on. The analysis of a sample of Galactic bulge and disk planetary nebulae is also reported on.

  6. Evolution, Nucleosynthesis, and Yields of AGB Stars at Different Metallicities. III. Intermediate-mass Models, Revised Low-mass Models, and the ph-FRUITY Interface

    Science.gov (United States)

    Cristallo, S.; Straniero, O.; Piersanti, L.; Gobrecht, D.

    2015-08-01

    We present a new set of models for intermediate-mass asymptotic giant branch (AGB) stars (4.0, 5.0, and 6.0 M⊙) at different metallicities (-2.15 ≤ [Fe/H] ≤ +0.15). This set integrates the existing models for low-mass AGB stars (1.3 ≤ M/M⊙ ≤ 3.0) already included in the FRUITY database. We describe the physical and chemical evolution of the computed models from the main sequence up to the end of the AGB phase. Due to less efficient third dredge up episodes, models with large core masses show modest surface enhancements. This effect is due to the fact that the interpulse phases are short and, therefore, thermal pulses (TPs) are weak. Moreover, the high temperature at the base of the convective envelope prevents it from deeply penetrating the underlying radiative layers. Depending on the initial stellar mass, the heavy element nucleosynthesis is dominated by different neutron sources. In particular, the s-process distributions of the more massive models are dominated by the 22Ne(α,n)25Mg reaction, which is efficiently activated during TPs. At low metallicities, our models undergo hot bottom burning and hot third dredge up. We compare our theoretical final core masses to available white dwarf observations. Moreover, we quantify the influence intermediate-mass models have on the carbon star luminosity function. Finally, we present the upgrade of the FRUITY web interface, which now also includes the physical quantities of the TP-AGB phase for all of the models included in the database (ph-FRUITY).

  7. Prospects for detection of intermediate-mass black holes in globular clusters using integrated-light spectroscopy

    Science.gov (United States)

    de Vita, R.; Trenti, M.; Bianchini, P.; Askar, A.; Giersz, M.; van de Ven, G.

    2017-06-01

    The detection of intermediate-mass black holes (IMBHs) in Galactic globular clusters (GCs) has so far been controversial. In order to characterize the effectiveness of integrated-light spectroscopy through integral field units, we analyse realistic mock data generated from state-of-the-art Monte Carlo simulations of GCs with a central IMBH, considering different setups and conditions varying IMBH mass, cluster distance and accuracy in determination of the centre. The mock observations are modelled with isotropic Jeans models to assess the success rate in identifying the IMBH presence, which we find to be primarily dependent on IMBH mass. However, even for an IMBH of considerable mass (3 per cent of the total GC mass), the analysis does not yield conclusive results in one out of five cases, because of shot noise due to bright stars close to the IMBH line of sight. This stochastic variability in the modelling outcome grows with decreasing BH mass, with approximately three failures out of four for IMBHs with 0.1 per cent of total GC mass. Finally, we find that our analysis is generally unable to exclude at 68 per cent confidence an IMBH with mass of 103 M⊙ in snapshots without a central BH. Interestingly, our results are not sensitive to GC distance within 5-20 kpc, nor to misidentification of the GC centre by less than 2 arcsec (<20 per cent of the core radius). These findings highlight the value of ground-based integral field spectroscopy for large GC surveys, where systematic failures can be accounted for, but stress the importance of discrete kinematic measurements that are less affected by stochasticity induced by bright stars.

  8. Binary Populations and Stellar Dynamics in Young Clusters

    Science.gov (United States)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  9. Signal and background in NLO QCD for the search of the intermediate mass Higgs boson at the SSC

    International Nuclear Information System (INIS)

    Bailey, B.

    1993-01-01

    The signal and background for the search of the Standard Model Higgs boson in the intermediate mass range 80 GeV H Z is studied based on calculations of the cross sections in next-to-leading order QCD perturbation theory for the production of the Higgs boson via gluon-gluon fusion and for the hadronic two-photon production. The method of Monte-Carlo integration allows the application of realistic cuts (p T , rapidity, photon isolation) to the cross section. Results are given for the K-factors of the signal and the background. It turns out that the NLO corrections improve the situation for a Higgs boson mass in the range of 80--120 GeV. Furthermore, the influence of a cut on the transverse momentum of the additional jet produced in the processes gg → Hg, gq → Hq, q bar q → Hg is compared to a similar cut for the background

  10. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  11. THE CRITICAL MASS RATIO OF DOUBLE WHITE DWARF BINARIES FOR VIOLENT MERGER-INDUCED TYPE IA SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakasato, Naohito [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Tanikawa, Ataru; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Maeda, Keiichi, E-mail: sato@ea.c.u-tokyo.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-10

    Mergers of carbon–oxygen (CO) white dwarfs (WDs) are considered to be one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics simulations of merging CO WDs, we derived a critical mass ratio (q{sub cr}) leading to the violent merger scenario that is more stringent than previous results. We conclude that this difference mainly comes from the differences in the initial condition of whether or not the WDs are synchronously spinning. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new q{sub cr} does not significantly affect the brightness distribution. We present the direct outcome immediately following CO WD mergers for various primary masses and mass ratios. We also discussed the final fate of the central system of the bipolar planetary nebula Henize 2-428, which was recently suggested to be a double CO WD system whose total mass exceeds the Chandrasekhar-limiting mass, merging within the Hubble time. Even considering the uncertainties in the proposed binary parameters, we concluded that the final fate of this system is almost certainly a sub-Chandrasekhar mass SN Ia in the violent merger scenario.

  12. On the infant weight loss of low- to intermediate-mass star clusters

    Science.gov (United States)

    Weidner, C.; Kroupa, P.; Nürnberger, D. E. A.; Sterzik, M. F.

    2007-04-01

    Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction fst of its stars. To date there are no observational constraints for fst, although N-body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20-30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that fst < 50 per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range 10-103Msolar keep at most 50 per cent of their stars.

  13. Vaporizing neutron stars in low-mass x-ray binaries and the statistics of millisecond pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tavani, M. (California Univ., Livermore, CA (United States). Inst. of Geophysics and Planetary Physics)

    1991-08-08

    Recent data on low-mass X-ray binaries (LMXBs) and msec pulsars (MSPs) pose a challenge to evolutionary which neglect the effects of disk and companion irradiation. Here we discuss the main features of a radiation-driven (RD) evolutionary model that may be applicable to several LMXBs. According to this model, irradiation from the accreting compact star LMXBs vaporizes'' the accretion disk and the companion star by driving a self-sustained mass loss until a sudden accretion-turn of occurs. The main characteristics of the RD-evolution are: (1) the lifetime of RD-LMXB's is of order 10{sup 7} years or less: (2) both the orbital period gap and the X-ray luminosity may be consequences of RD-evolution of LMXB's containing lower main sequence and degenerate companion stars; (3) the companion star may transfer mass to the primary even if it underfills its Roche lobe; (4) the recycled msec pulsar can continue to vaporize the low-mass companion star even after the accretion turn-off produced by a strong pulsar wind; (5) the RD-evolutionary model resolves the apparent statistical discrepancy between the number of MSP's and their LMXB progenitors. 14 refs., 1 fig., 1 tab.

  14. Analysis for mass distribution of proton-induced reactions in intermediate energy range

    CERN Document Server

    Xiao Yu Heng

    2002-01-01

    The mass and charge distribution of residual products produced in the spallation reactions needs to be studied, because it can provide useful information for the disposal of nuclear waste and residual radioactivity generated by the spallation neutron target system. In present work, the Many State Dynamical Model (MSDM) is based on the Cascade-Exciton Model (CEM). The authors use it to investigate the mass distribution of Nb, Au and Pb proton-induced reactions in energy range from 100 MeV to 3 GeV. The agreement between the MSDM simulations and the measured data is good in this energy range, and deviations mainly show up in the mass range of 90 - 150 for the high energy proton incident upon Au and Pb

  15. Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system

    Science.gov (United States)

    Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.

    2018-04-01

    The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.

  16. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE ACTIVE GALACTIC NUCLEI. II. HOST BULGE PROPERTIES AND BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Chavushyan, Vahram [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico); Leon-Tavares, Jonathan, E-mail: erika@astro.unam.mx [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, 02540 Kylmaelae (Finland)

    2013-02-15

    We present a study of the host bulge properties and their relations with the black hole mass for a sample of 10 intermediate-type active galactic nuclei (AGNs). Our sample consists mainly of early-type spirals, four of them hosting a bar. For 70{sup +10} {sub -17}% of the galaxies, we have been able to determine the type of the bulge, and find that these objects probably harbor a pseudobulge or a combination of classical bulge/pseudobulge, suggesting that pseudobulges might be frequent in intermediate-type AGNs. In our sample, 50% {+-} 14% of the objects show double-peaked emission lines. Therefore, narrow double-peaked emission lines seem to be frequent in galaxies harboring a pseudobulge or a combination of classical bulge/pseudobulge. Depending on the bulge type, we estimated the black hole mass using the corresponding M {sub BH}-{sigma}* relation and found them within a range of 5.69 {+-} 0.21 < log M {sup {sigma}}*{sub BH} < 8.09 {+-} 0.24. Comparing these M {sup {sigma}}*{sub BH} values with masses derived from the FWHM of H{beta} and the continuum luminosity at 5100 A from their SDSS-DR7 spectra (M {sub BH}), we find that 8 out of 10 (80{sup +7} {sub -17}%) galaxies have black hole masses that are compatible within a factor of 3. This result would support that M {sub BH} and M {sup {sigma}}*{sub BH} are the same for intermediate-type AGNs, as has been found for type 1 AGNs. However, when the type of the bulge is taken into account, only three out of the seven (43{sup +18} {sub -15}%) objects of the sample have their M {sup {sigma}}*{sub BH} and M {sub BH} compatible within 3{sigma} errors. We also find that estimations based on the M {sub BH}-{sigma}* relation for pseudobulges are not compatible in 50% {+-} 20% of the objects.

  17. A new direction for dark matter research: intermediate-mass compact halo objects

    Science.gov (United States)

    Chapline, George F.; Frampton, Paul H.

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.

  18. Influence of mass asymmetry in fusion cross section of intermediate weight ions

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1987-01-01

    The mass asymmetry degree effect on fusion, was investigated for different systems involving nucleus A projectie , A target ≤ 40, populating a compound nucleus. The following systems were studied: ( 19 F + 19 F), ( 12 C + 26 Mg) and ( 19 F + 12 C, 16 O, 27 Al, 40 Ca) in the energy range of 32 ≤ E lab ≤ 72 MeV and angular range 6 0 ≤ Θ lab ≤ 28 0 . The experimental method employed the time of flight technique, of the evaporation residuals. Analysis of excitation function indicate different behavior for symmetric and asymmetric systems suggesting that the presence of other more competitive processes is more pronounced in asymmetric entrance channels at high energies. These behaviors indicate that mass asymmetry is an important point in complete and incomplete fusion processes. (A.C.A.S.) [pt

  19. Wandering off the centre: a characterization of the random motion of intermediate-mass black holes in star clusters

    Science.gov (United States)

    de Vita, Ruggero; Trenti, Michele; MacLeod, Morgan

    2018-04-01

    Despite recent observational efforts, unequivocal signs for the presence of intermediate-mass black holes (IMBHs) in globular clusters (GCs) have not been found yet. Especially when the presence of IMBHs is constrained through dynamical modelling of stellar kinematics, it is fundamental to account for the displacement that the IMBH might have with respect to the GC centre. In this paper, we analyse the IMBH wandering around the stellar density centre using a set of realistic direct N-body simulations of star cluster evolution. Guided by the simulation results, we develop a basic yet accurate model that can be used to estimate the average IMBH radial displacement (〈rbh〉) in terms of structural quantities as the core radius (rc), mass (Mc), and velocity dispersion (σc), in addition to the average stellar mass (mc) and the IMBH mass (Mbh). The model can be expressed by the equation /r_c=A(m_c/M_bh)^α [σ _c^2r_c/(GM_c)]^β, in which the free parameters A, α, and β are calculated through comparison with the numerical results on the IMBH displacement. The model is then applied to Galactic GCs, finding that for an IMBH mass equal to 0.1 per cent of the GC mass, the typical expected displacement of a putative IMBH is around 1 arcsec for most Galactic GCs, but IMBHs can wander to larger angular distances in some objects, including a prediction of a 2.5 arcsec displacement for NGC 5139 (ω Cen), and >10 arcsec for NGC5053, NGC6366, and ARP2.

  20. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  1. Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins

    Science.gov (United States)

    Isoyama, Soichiro; Nakano, Hiroyuki

    2018-01-01

    Black holes (BHs) in an inspiraling compact binary system absorb the gravitational-wave (GW) energy and angular-momentum fluxes across their event horizons and this leads to the secular change in their masses and spins during the inspiral phase. The goal of this paper is to present ready-to-use, 3.5 post-Newtonian (PN) template families for spinning, non-precessing, binary BH inspirals in quasicircular orbits, including the 2.5 PN and 3.5 PN horizon-flux contributions as well as the correction due to the secular change in the BH masses and spins through 3.5 PN order, respectively, in phase. We show that, for binary BHs observable by Advanced LIGO with high mass ratios (larger than  ∼10) and large aligned-spins (larger than  ∼ 0.7 ), the mismatch between the frequency-domain template with and without the horizon-flux contribution is typically above the 3% mark. For (supermassive) binary BHs observed by LISA, even a moderate mass-ratios and spins can produce a similar level of the mismatch. Meanwhile, the mismatch due to the secular time variations of the BH masses and spins is well below the 1% mark in both cases, hence this is truly negligible. We also point out that neglecting the cubic-in-spin, point-particle phase term at 3.5 PN order would deteriorate the effect of BH absorption in the template.

  2. Why a New Code for Novae Evolution and Mass Transfer in Binaries?

    Directory of Open Access Journals (Sweden)

    G. Shaviv

    2015-02-01

    Full Text Available One of the most interesting problems in Cataclysmic Variables is the long time scale evolution. This problem appears in long time evolution, which is also very important in the search for the progenitor of SN Ia. The classical approach to overcome this problem in the simulation of novae evolution is to assume: (1 A constant in time, rate of mass transfer. (2 The mass transfer rate that does not vary throughout the life time of the nova, even when many eruptions are considered. Here we show that these assumptions are valid only for a single thermonuclear flash and such a calculation cannot be the basis for extrapolation of the behavior over many flashes. In particular, such calculation cannot be used to predict under what conditions an accreting WD may reach the Chandrasekhar mass and collapse. We report on a new code to attack this problem. The basic idea is to create two parallel processes, one calculating the mass losing star and the other the accreting white dwarf. The two processes communicate continuously with each other and follow the time depended mass loss.

  3. Hunting for the intermediate-mass Higgs boson in a hadron collider

    International Nuclear Information System (INIS)

    Gunion, J.F.; Kalyniak, P.; Soldate, M.; Galison, P.

    1985-01-01

    We examine the feasibility of identifying in a hadron machine the standard, neutral Higgs boson, produced in association with a W, when the mass of the Higgs is between approximately 100 GeV and 2m/sub W/. The production cross section is calculated with quasirealistic cuts imposed under the assumption that the Higgs decays into tt-bar. Possible backgrounds arising from the continuum production of tt-bar, tb-bar, or t-barb accompanied by a W are computed as well

  4. Regional regularities for the even-even nuclei in intermediate mass region

    International Nuclear Information System (INIS)

    Varshney, Mani; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.

    2011-01-01

    With the development of experimental techniques more and more nuclear data are accumulated and compiled for over five decades. The proton neutron interaction has been considered the key ingredient in the development of collectivity and ultimately the deformation in atomic nuclei. The purpose of the present study is to analyze the growth of R4/2 in different mass regions. The rate of growth regions in regions having proton number Z = 38, 54, 60 and 76 with changing neutron number where the interaction between particle - particle, particle - hole and hole - hole

  5. Chemical evolution of high-mass stars in close binaries. II. The evolved component of the eclipsing binary V380 Cygni

    Czech Academy of Sciences Publication Activity Database

    Pavlovski, K.; Tamajo, E.; Koubský, Pavel; Southworth, J.; Yang, S.; Kolbas, V.

    2009-01-01

    Roč. 400, č. 2 (2009), s. 791-804 ISSN 0035-8711 Institutional research plan: CEZ:AV0Z10030501 Keywords : binaries stars * eclipsing * fundamental parameters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.103, year: 2009

  6. Measurement of Fragment Mass Distributions in Neutron-induced Fission of 238U and 232Th at Intermediate Energies

    International Nuclear Information System (INIS)

    Simutkin, V.D.

    2008-01-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the 238 U(n,f) and 232 Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both 238 U and 232 Th. Up to now, the intermediate energy measurements have been performed for 238 U only, and there are no data for the 232 Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the 232 Th(n,f) and 238 U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  7. On the Origin of Microheterogeneity : A Mass Spectrometric Study of Dimethyl Sulfoxide-Water Binary Mixture

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2001-01-01

    We have studied the microscopic solvent structure of dimethyl sulfoxide-water mixtures and its influence on the solvation structure of solute from a clustering point of View, by means of a specially designed mass spectrometric system. It was observed that the propensity to the cluster formation is

  8. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hamilton-Ayers, M.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was

  9. From X-ray binaries to quasars black holes on all mass scales black holes on all mass scales

    CERN Document Server

    Ho, L C; Maccarone, T J

    2005-01-01

    This volume brings together contributions from many of the world's leading authorities on black hole accretion. The papers within represent part of a new movement to make use of the relative advantages of studying stellar mass and supermassive black holes and to bring together the knowledge gained from the two approaches. The topics discussed here run the gamut of the state of the art in black hole observational and theoretical work-variability, spectroscopy, disk-jet connections, and multi-wavelength campaigns on black holes are all covered. Reprinted from ASTROPHYSICS AND SPACE SCIENCE, 300:1-3 (2005)

  10. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  11. Formation and Evolution of X-ray Binaries

    Science.gov (United States)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period

  12. On the Origin of Microheterogeneity : Mass Spectrometric Studies of Acetonitrile-Water and Dimethyl Sulfoxide-Water Binary Mixtures (Part 2)

    NARCIS (Netherlands)

    Shin, Dong Nam; Wijnen, Jan W.; Engberts, Jan B.F.N.; Wakisaka, Akihiro

    2002-01-01

    The microscopic structures of acetonitrile-water and DMSO-water binary mixed solvents and their influence on the solvation for solutes (some alcohols and phenol) have been studied on the basis of the cluster structures observed through a specially designed mass spectrometer. In acetonitrile-water

  13. Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system.

    Science.gov (United States)

    Valsecchi, Francesca; Glebbeek, Evert; Farr, Will M; Fragos, Tassos; Willems, Bart; Orosz, Jerome A; Liu, Jifeng; Kalogera, Vassiliki

    2010-11-04

    The X-ray source M33 X-7 in the nearby galaxy Messier 33 is among the most massive X-ray binary stellar systems known, hosting a rapidly spinning, 15.65M(⊙) black hole orbiting an underluminous, 70M(⊙) main-sequence companion in a slightly eccentric 3.45-day orbit (M(⊙), solar mass). Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-ray luminosity, the star's underluminosity, the black hole's spin and the orbital eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report simulations of evolutionary tracks which reveal that if M33 X-7 started as a primary body of 85M(⊙)-99M(⊙) and a secondary body of 28M(⊙)-32M(⊙), in a 2.8-3.1-d orbit, its observed properties can be consistently explained. In this model, the main-sequence primary transfers part of its envelope to the secondary and loses the rest in a wind; it ends its life as a ∼16M(⊙) helium star with an iron-nickel core that collapses to a black hole (with or without an accompanying supernova). The release of binding energy, and possibly collapse asymmetries, 'kick' the nascent black hole into an eccentric orbit. Wind accretion explains the X-ray luminosity, and the black-hole spin can be natal.

  14. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  15. THE M BH-L SPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES

    International Nuclear Information System (INIS)

    Graham, Alister W.; Scott, Nicholas

    2013-01-01

    From a sample of 72 galaxies with reliable supermassive black hole masses M bh , we derive the M bh -(host spheroid luminosity, L) relation for (1) the subsample of 24 core-Sérsic galaxies with partially depleted cores, and (2) the remaining subsample of 48 Sérsic galaxies. Using K s -band Two Micron All Sky Survey data, we find the near-linear relation M bh ∝L 1.10±0.20 K s for the core-Sérsic spheroids thought to be built in additive dry merger events, while we find the relation M bh ∝L 2.73±0.55 K s for the Sérsic spheroids built from gas-rich processes. After converting literature B-band disk galaxy magnitudes into inclination- and dust-corrected bulge magnitudes, via a useful new equation presented herein, we obtain a similar result. Unlike with the M bh -(velocity dispersion) diagram, which is also updated here using the same galaxy sample, it remains unknown whether barred and non-barred Sérsic galaxies are offset from each other in the M bh -L diagram. While black hole feedback has typically been invoked to explain what was previously thought to be a nearly constant M bh /M Spheroid mass ratio of ∼0.2%, we advocate that the near-linear M bh -L and M bh -M Spheroid relations observed at high masses may have instead arisen largely from the additive dry merging of galaxies. We argue that feedback results in a dramatically different scaling relation, such that black hole mass scales roughly quadratically with the spheroid mass in Sérsic galaxies. We therefore introduce a revised cold-gas 'quasar' mode feeding equation for semi-analytical models to reflect what we dub the quadratic growth of black holes in Sérsic galaxies built amidst gas-rich processes. Finally, we use our new Sérsic M bh -L equations to predict the masses of candidate intermediate mass black holes in almost 50 low-luminosity spheroids containing active galactic nuclei, finding many masses between that of stellar mass black holes and supermassive black holes.

  16. Analysis of triacetone triperoxide (TATP) and TATP synthetic intermediates by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Sigman, Michael E; Clark, C Douglas; Caiano, Tara; Mullen, Rebecca

    2008-01-01

    The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples. Copyright (c) 2007 John Wiley & Sons, Ltd.

  17. SpeX Spectroscopy of Unresolved Very Low-Mass Binaries. I. Identification of Seventeen Candidate Binaries Straddling the L Dwarf/T Dwarf Transition

    OpenAIRE

    Burgasser, Adam J.; Cruz, Kelle L.; Cushing, Michael C.; Gelino, Christopher R.; Looper, Dagny L.; Faherty, Jacqueline K.; Kirkpatrick, J. Davy; Reid, I. Neill

    2009-01-01

    We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13581 pairs of absolute flux-ca...

  18. Formation and Evolution of Binary Systems Containing Collapsed Stars

    Science.gov (United States)

    Rappaport, Saul; West, Donald (Technical Monitor)

    2003-01-01

    This research includes theoretical studies of the formation and evolution of five types of interacting binary systems. Our main focus has been on developing a number of comprehensive population synthesis codes to study the following types of binary systems: (i) cataclysmic variables (#3, #8, #12, #15), (ii) low- and intermediate-mass X-ray binaries (#13, #20, #21), (iii) high-mass X-ray binaries (#14, #17, #22), (iv) recycled binary millisecond pulsars in globular clusters (#5, #10, #ll), and (v) planetary nebulae which form in interacting binaries (#6, #9). The numbers in parentheses refer to papers published or in preparation that are listed in this paper. These codes take a new unified approach to population synthesis studies. The first step involves a Monte Carlo selection of the primordial binaries, including the constituent masses, and orbital separations and eccentricities. Next, a variety of analytic methods are used to evolve the primary star to the point where either a dynamical episode of mass transfer to the secondary occurs (the common envelope phase), or the system evolves down an alternate path. If the residual core of the primary is greater than 2.5 solar mass, it will evolve to Fe core collapse and the production of a neutron star and a supernova explosion. In the case of systems involving neutron stars, a kick velocity is chosen randomly from an appropriate distribution and added to the orbital dynamics which determine the state of the binary system after the supernova explosion. In the third step, all binaries which commence stable mass transfer from the donor star (the original secondary in the binary system) to the compact object, are followed with a detailed binary evolution code. Finally, we include all the relevant dynamics of the binary system. For example, in the case of LMXBs, the binary system, with its recoil velocity from the supernova explosion, is followed in time through its path in the Galactic potential. For our globular cluster

  19. Simulation of heat and mass transfer in domain of casting made from binary alloy

    Directory of Open Access Journals (Sweden)

    B. Mochnacki

    2008-12-01

    Full Text Available In the paper the mathematical model, numerical algorithm and example of cylindrical casting solidification are presented. In particular the casting made from Cu-Zn alloy is considered. It is assumed that the temperature corresponding to the beginning of solidification is time-dependent and it is a function of temporary alloy component concentration. The course of macrosegregation has been modelled using the mass balances in the set of control volumes resulting from a domain discretization. The balances have been constructed in different ways, in particular under the assumption of instant equalization of alloy chemical constitution (a lever arm rule, next the Scheil model (e.g. [1] has been used and finally the broken line model [2] has been taken into account. On a stage of numerical algorithm construction the boundary element method has been used in the variant called BEM using discretization in time [3, 4, 5] supplemented by the alternating phase truncation procedure

  20. Rapid quantification of metabolic intermediates in blood by liquid chromatography-tandem mass spectrometry to investigate congenital lactic acidosis.

    Science.gov (United States)

    Peng, Minzhi; Cai, Yanna; Fang, Xiefan; Liu, Li

    2016-10-26

    A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been established to quantify metabolic intermediates, including lactate (Lac), pyruvate (Pyr), acetoacetate (ACAC) and 3-hydroxybutyrate (3-HB) in blood. Samples were deproteinized with methanol-acetonitrile solution, and analytes were separated on an adamantyl group-bonded reverse phase column and detected in multiple reaction monitoring mode. Total analysis time was 4 min per sample. Method validation results displayed that limits of quantification were 10.0 μmol L -1 for Lac and Pyr, and 5.0 μmol L -1 for ACAC and 3-HB. The within- and between-run coefficients of variation were in the range of 1.2-6.4% for all analytes. The recoveries were ranged from 95.6 to 111.5%. The reference values of analytes were determined for the pediatric population. Duo to instability of Lac, Pyr and ACAC in vitro, a comprehensive stability assay was performed to determine optimal conditions for sample collection, pretreatment and storage. Results showed that precipitation of protein in blood at bedside combined with low storage temperature could effectively preserve the integrity of Lac, Pyr and 3-HB, but the precipitated protein accelerated degradation of ACAC. Isolation of supernatant fluid slowed degradation of ACAC. Supernatant samples could store at -20 °C for 10 days. The use of plasma or serum to determine these intermediates was not recommended. In this study, 450 samples from patients were analyzed, and 7 patients were diagnosed as congenital lactic acidosis. With the advantages of rapid, accurate and reliable, this method is very suitable for congenital lactic acidosis screening and researches related to energy metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Gravity Modes Reveal the Internal Rotation of a Post-mass-transfer Gamma Doradus/Delta Scuti Hybrid Pulsator in Kepler Eclipsing Binary KIC 9592855

    Science.gov (United States)

    Guo, Z.; Gies, D. R.; Matson, R. A.

    2017-12-01

    We report the discovery of a post-mass-transfer Gamma Doradus/Delta Scuti hybrid pulsator in the eclipsing binary KIC 9592855. This binary has a circular orbit, an orbital period of 1.2 days, and contains two stars of almost identical masses ({M}1=1.72 {M}⊙ ,{M}2=1.71 {M}⊙ ). However, the cooler secondary star is more evolved ({R}2=1.96 {R}⊙ ), while the hotter primary is still on the zero-age-main-sequence ({R}1=1.53 {R}⊙ ). Coeval models from single-star evolution cannot explain the observed masses and radii, and binary evolution with mass-transfer needs to be invoked. After subtracting the binary light curve, the Fourier spectrum shows low-order pressure-mode pulsations, and more dominantly, a cluster of low-frequency gravity modes at about 2 day-1. These g-modes are nearly equally spaced in period, and the period spacing pattern has a negative slope. We identify these g-modes as prograde dipole modes and find that they stem from the secondary star. The frequency range of unstable p-modes also agrees with that of the secondary. We derive the internal rotation rate of the convective core and the asymptotic period spacing from the observed g-modes. The resulting values suggest that the core and envelope rotate nearly uniformly, i.e., their rotation rates are both similar to the orbital frequency of this synchronized binary.

  2. Emsission of intermediate mass fragments in the p(1.9 GeV)+natNI reaction

    International Nuclear Information System (INIS)

    Bubak, A.

    2004-06-01

    The emission of the intermediate mass fragments (IMFs; 2 ≤ Z ≤ 14) produced in the interaction of 1.9 GeV protons with nickel ( nat Ni) has been a subject of interest of the present study. Energy spectra of isotopically and elementally identified ejectiles have been measured at angles 15 and 120 with the respect to the beam direction. The identification of the emitted IMFs has been performed by means of the Bragg curve spectroscopy and the time-of-flight technique (TOF). The Bragg curve detectors (BCDs) were employed for the charge identification, whereas the TOF method combined with the BCD, for the mass identification. The main task of the present PhD thesis was to built appropriate data acquisition system, to perform the experiment on the internal beam of the COSY accelerator, to propose the methodology of the off-line analysis of the data, to apply it to the event-by-event stored data, and to perform the phenomenological analysis of the obtained data. The results, experimental procedures, and different techniques of the element and isotope identification by means of the BCD + TOF are presented. The determination of the power law parameter τ characterizing the mass and charge distributions of the reaction products is discussed. Various methods of the nuclear matter temperature determination, the comparison between nuclear matter thermometers, and the discussion of the obtained results, shown in the energy-temperature diagram (the so called caloric curve), are presented as well. The results suggest two different mechanisms of the IMFs production: from the equilibrated (IMFs measured at 120 ), and non-equilibrated (IMFs measured at 15 ) state of the nucleus. (orig.)

  3. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

    2017-04-20

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  4. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    Science.gov (United States)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  5. Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Haggard, Daryl; Heinke, Craig; Hooper, Dan; Linden, Tim

    2017-05-01

    If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to $\\sim$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $\\sim$$10^3$ LMXBs from within a $10^{\\circ}$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.

  6. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    Science.gov (United States)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  7. Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1

    Energy Technology Data Exchange (ETDEWEB)

    Güngör, C.; Ekşi, K. Y. [İstanbul Technical University, Faculty of Science and Letters, Physics Engineering Department, 34469, İstanbul (Turkey); Göğüş, E. [Sabancı University, Faculty of Engineering and Natural Science, Orhanlı—Tuzla, 34956, İstanbul (Turkey); Güver, T., E-mail: gungorcan@itu.edu.tr [İstanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, İstanbul (Turkey)

    2017-10-10

    Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.

  8. Discovery of a Highly Unequal-mass Binary T Dwarf with Keck Laser Guide Star Adaptive Optics: A Coevality Test of Substellar Theoretical Models and Effective Temperatures

    Science.gov (United States)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K.

    2010-10-01

    Highly unequal-mass ratio binaries are rare among field brown dwarfs, with the mass ratio distribution of the known census described by q (4.9±0.7). However, such systems enable a unique test of the joint accuracy of evolutionary and atmospheric models, under the constraint of coevality for the individual components (the "isochrone test"). We carry out this test using two of the most extreme field substellar binaries currently known, the T1 + T6 epsilon Ind Bab binary and a newly discovered 0farcs14 T2.0 + T7.5 binary, 2MASS J12095613-1004008AB, identified with Keck laser guide star adaptive optics. The latter is the most extreme tight binary resolved to date (q ≈ 0.5). Based on the locations of the binary components on the Hertzsprung-Russell (H-R) diagram, current models successfully indicate that these two systems are coeval, with internal age differences of log(age) = -0.8 ± 1.3(-1.0+1.2 -1.3) dex and 0.5+0.4 -0.3(0.3+0.3 -0.4) dex for 2MASS J1209-1004AB and epsilon Ind Bab, respectively, as inferred from the Lyon (Tucson) models. However, the total mass of epsilon Ind Bab derived from the H-R diagram (≈ 80 M Jup using the Lyon models) is strongly discrepant with the reported dynamical mass. This problem, which is independent of the assumed age of the epsilon Ind Bab system, can be explained by a ≈ 50-100 K systematic error in the model atmosphere fitting, indicating slightly warmer temperatures for both components; bringing the mass determinations from the H-R diagram and the visual orbit into consistency leads to an inferred age of ≈ 6 Gyr for epsilon Ind Bab, older than previously assumed. Overall, the two T dwarf binaries studied here, along with recent results from T dwarfs in age and mass benchmark systems, yield evidence for small (≈100 K) errors in the evolutionary models and/or model atmospheres, but not significantly larger. Future parallax, resolved spectroscopy, and dynamical mass measurements for 2MASS J1209-1004AB will enable a more

  9. Statistical properties of twin kilohertz quasi-periodic oscillations neutron star low-mass X-ray binaries

    Science.gov (United States)

    Wang, D. H.; Chen, L.; Zhang, C. M.; Lei, Y. J.; Qu, J. L.

    2014-02-01

    We collect the data of twin kilohertz quasi-periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low-mass X-ray binary (LMXB) sources, then we analyze the centroid frequency (ν) distribution of twin kHz QPOs (lower frequency ν_1 and upper frequency ν_2) both for Atoll and Z sources. For the data without shift-and-add, we find that Atoll and Z sources show different distributions of ν_1, ν_2 and ν_2/ν_1, but the same distribution of Δν (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Δν is quite different from a constant value, so is ν_2/ν_1 from a constant ratio. The weighted mean values and maxima of ν_1 and ν_2 in Atoll sources are slightly higher than those in Z sources. We also find that shift-and-add technique can reconstruct the distributions of ν_1 and Δν. The K-S test results of ν_1 and Δν between Atoll and Z sources from data with shift-and-add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root-mean-squared (rms) amplitude of 4U 0614+09 with data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency (ν_s) distribution of 28 NS-LMXBs show a bigger mean value (˜ 408 Hz) than that (˜ 281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency ν_s, we find the approximate correlations of the mean values of Δν with NS spin and its half, respectively.

  10. Intermediate mass dimuon events

    International Nuclear Information System (INIS)

    Moser, H.-G.

    1985-01-01

    We report the observation of 67 dimuon events at the CERN p anti p collider with the UA1 detector. The events will be interpreted in terms of the Drell-Yan mechanism, J/PSI and UPSILON decays and heavy flavour production. (author)

  11. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    International Nuclear Information System (INIS)

    Calvano, C.D.; Monopoli, A.; Ditaranto, N.; Palmisano, F.

    2013-01-01

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity

  12. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Calvano, C.D., E-mail: cosimadamiana.calvano@uniba.it [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Monopoli, A.; Ditaranto, N. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Palmisano, F. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy)

    2013-10-10

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity.

  13. Angular distributions of intermediate mass fragments emitted in 30 MeV/u 40Ar induced reactions

    International Nuclear Information System (INIS)

    Gou Quanbu; Zhu Yongtai; Xu Hushan; Wei Zhiyong; Lu Jun; Zhang Yuhu; Wang Qi; Li Songlin; Wu Zhongli

    1999-01-01

    The angular distributions of intermediate mass fragments with charge numbers from 3 to 24 emitted in 30 MeV/u 40 Ar + 58,64 Ni and 115 In reactions over an angular range of 5 degree-140 degree have been measured. In different angular region an exponential distribution function dσ/dΩ = N exp(-θ/α) was used to fit the measured angular distributions. The decay factor α which can be connected with the interaction time τ and the factor N which is related to the intensity of the emission sources have been extracted. The relationship of α(Z) and N(Z) with Z for different reaction systems and different angular regions has been discussed. The different behavior of dσ/dΩ, α(Z), and N(Z) for the three studied reaction systems exists mainly in the middle and backward angular regions. The dependencies of angular distributions on isospin and the size of reaction systems have also been discussed

  14. Multiplicity correlations of intermediate-mass fragments with pions and fast protons in 12C + 197AU

    International Nuclear Information System (INIS)

    Turzo, K.; Begemann-Blaich, M.L.; Auger, G.

    2003-12-01

    Low-energy π + (E π 12 C+ 197 Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximately isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E p >or ≤ 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R ∼ 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the statistical multifragmentation model are in good agreement with the experimental data. (orig.)

  15. A YOUNG MASSIVE STELLAR POPULATION AROUND THE INTERMEDIATE-MASS BLACK HOLE ESO 243-49 HLX-1

    International Nuclear Information System (INIS)

    Farrell, S. A.; Servillat, M.; Pforr, J.; Maraston, C.; Maccarone, T. J.; Knigge, C.; Godet, O.; Webb, N. A.; Barret, D.; Belmont, R.; Gosling, A. J.; Wiersema, K.

    2012-01-01

    We present Hubble Space Telescope and simultaneous Swift X-ray Telescope observations of the strongest candidate intermediate-mass black hole (IMBH) ESO 243-49 HLX-1. Fitting the spectral energy distribution from X-ray to near-infrared wavelengths showed that the broadband spectrum is not consistent with simple and irradiated disk models, but is well described by a model comprised of an irradiated accretion disk plus a ∼10 6 M ☉ stellar population. The age of the population cannot be uniquely constrained, with both young and old stellar populations allowed. However, the old solution requires excessive disk reprocessing and an extremely small disk, so we favor the young solution (∼13 Myr). In addition, the presence of dust lanes and the lack of any nuclear activity from X-ray observations of the host galaxy suggest that a gas-rich minor merger may have taken place less than ∼200 Myr ago. Such a merger event would explain the presence of the IMBH and the young stellar population.

  16. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)

    2017-07-20

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  17. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    International Nuclear Information System (INIS)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping

    2017-01-01

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  18. L1188: A Promising Candidate for Cloud–Cloud Collisions Triggering the Formation of Low- and Intermediate-mass Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan; Fang, Min; Mao, Ruiqing; Zhang, Shaobo; Wang, Yuan; Su, Yang; Chen, Xuepeng; Yang, Ji; Wang, Hongchi; Lu, Dengrong, E-mail: ygong@pmo.ac.cn [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China)

    2017-01-20

    We present a new large-scale (2° × 2°) simultaneous {sup 12}CO, {sup 13}CO, and C{sup 18}O (J = 1–0) mapping of L1188 with the Purple Mountain Observatory 13.7 m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molecular clouds at two clearly separated velocities. Toward the intersection showing large velocity spreads, we find several bridging features connecting the two clouds in velocity, and an open arc structure that exhibits high excitation temperatures, enhanced {sup 12}CO and {sup 13}CO emission, and broad {sup 12}CO line wings. This agrees with the scenario that the two clouds are colliding with each other. The distribution of young stellar object (YSO) candidates implies an enhancement of star formation in the intersection of the two clouds. We suggest that a cloud–cloud collision happened in L1188 about 1 Myr ago, possibly triggering the formation of low- and intermediate-mass YSOs in the intersection.

  19. The structure of protoplanetary disks surrounding three young intermediate mass stars: I. Resolving the disk rotation in the [OI] 6300 Å line

    NARCIS (Netherlands)

    van der Plas, G.; van den Ancker, M.E.; Fedele, D.; Acke, B.; Dominik, C.; Waters, L.B.F.M.; Bouwman, J.

    2008-01-01

    We present high-spectral-resolution, optical spectra of three young, intermediate-mass stars, in all of which we spectrally resolve the 6300 Å [OI] emission line. Two of these have a double-peaked line-profile. We attempt to fit these data using a simple model of [OI] emission, which is generated by

  20. Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers

    Science.gov (United States)

    Nitz, Alexander H.

    2018-02-01

    ‘Blip glitches’ are a type of short duration transient noise in LIGO data. The cause for the majority of these is currently unknown. Short duration transient noise creates challenges for searches of the highest mass binary black hole systems, as standard methods of applying signal consistency, which look for consistency in the accumulated signal-to-noise of the candidate event, are unable to distinguish many blip glitches from short duration gravitational-wave signals due to similarities in their time and frequency evolution. We demonstrate a straightforward method, employed during Advanced LIGO’s second observing run, including the period of joint observation with the Virgo observatory, to separate the majority of this transient noise from potential gravitational-wave sources. This yields a  ∼20% improvement in the detection rate of high mass binary black hole mergers (> 60 Mȯ ) for the PyCBC analysis.

  1. The X-ray luminosity functions of field low-mass X-ray binaries in early-type galaxies: Evidence for a stellar age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Lehmer, B. D.; Tzanavaris, P.; Yukita, M. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Berkeley, M.; Basu-Zych, A.; Hornschemeier, A. E.; Ptak, A. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Zezas, A. [Physics Department, University of Crete, Heraklion (Greece); Alexander, D. M. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Bauer, F. E. [Pontificia Universidad Catolica de Chile, Departamento de Astronomia y Astrofisica, Casilla 306, Santiago 22 (Chile); Brandt, W. N. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Fragos, T. [IESL, Foundation for Research and Technology, 71110 Heraklion, Crete (Greece); Kalogera, V. [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Sivakoff, G. R. [Department of Physics, University of Alberta, CCIS 4-183 Edmonton, AB T6G 2E1 (Canada)

    2014-07-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span ≈3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background active galactic nuclei/galaxies. We find that the 'young' early-type galaxy NGC 3384 (≈2-5 Gyr) has an excess of luminous field LMXBs (L {sub X} ≳ (5-10) × 10{sup 37} erg s{sup –1}) per unit K-band luminosity (L{sub K} ; a proxy for stellar mass) than the 'old' early-type galaxies NGC 3115 and 3379 (≈8-10 Gyr), which results in a factor of ≈2-3 excess of L {sub X}/L{sub K} for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  2. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  3. Spectral indications of ejection of mass by the symbiotic binary Z Andromedae during its 2000-2002 outburst

    Science.gov (United States)

    Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.

    2008-09-01

    High-resolution observations in the region of the lines Hα, HeII λ4686 and Hγ of the spectrum of the symbiotic binary Z Andromedae were performed in the quiescent state of the system and also during its outburst phase in 2000-2002. The triplet lines of HeI had P Cygni profiles indicating stellar wind with a velocity of 60 km s-1 from the hot secondary. This wind created an absorption dip in the emission profile of the line Hγ. The lines Hγ and HeII λ4686 had a broad emission component, indicating an optically thin stellar wind with a velocity of about 500 km s-1. The intensity of the broad component reached its maximum together with the optical light. To explain the observations, a model with an accretion disc was proposed, where the velocity of the wind from the accretor is supposed to be 500 km s-1. The accretion disc is responsible for the breaking of the stellar wind close to the orbital plane where its velocity decreases to about 60 km s-1. The mass-loss rate of the accretor at the time of a maximal light was obtained of 2.4 × 10-7 (d/1.12 kpc)3/2 Msolar yr-1 and decreased to 1.0 × 10-7 (d/1.12 kpc)3/2 Msolar yr-1 in 2001 October. Based on observations collected at the National Astronomical Observatory Rozhen, Bulgaria. E-mail: tomov@astro.bas.bg

  4. Binary colloidal crystals

    NARCIS (Netherlands)

    Christova-Zdravkova, C.G.

    2005-01-01

    Binary crystals are crystals composed of two types of particles having different properties like size, mass density, charge etc. In this thesis several new approaches to make binary crystals of colloidal particles that differ in size, material and charge are reported We found a variety of crystal

  5. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The conditions of mass exchange in close binary systems with masses of components less or equal to one solar mass have been analysed for the case, when the system radiates gravitational waves. It has been shown that the mass exchange rate depends in a certain way on the mass ratio of components and on the mass of component that fills its inner critical lobe. The comparison of observed periods, masses of contact components, and mass exchange rates of observed cataclysmic binaries have led to the conclusion that the evolution of close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G 61-29 may be driven by the emission of gravitational waves [ru

  6. Photometric and polarimetric variability and mass-loss rate of the massive binary Wolf-Rayet star HDE 311884 (WN6 + 05: V)

    International Nuclear Information System (INIS)

    Moffat, A.F.J.; Drissen, L.; Robert, C.; Lamontagne, R.; Coziol, R.

    1990-01-01

    Photometric and polarimetric monitoring of the Wolf-Rayet (W-R) + O-type binary system HDE 311884 = WR 47 over many orbital cycles shows the clear effects of phase-dependent electron scattering of O-star light as the orbiting O companion shines through varying column density of W-R stellar wind material. In contrast to this wind-type eclipse, the stars themselves do not quite eclipse. Both photometry and polarimetry give a consistent estimate of the mass-loss rate of the W-R component: at about 0.00003 solar mass/yr. The orbital inclination, i = 70 deg, along with the previously published velocity orbit, yields high masses: M(WN6) = 48 solar masses and M(O5:V) = 57 solar masses. 33 refs

  7. KIC 8262223: A Post-mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    Science.gov (United States)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio; Han, Zhanwen; Chen, Xuefei

    2017-03-01

    KIC 8262223 is an eclipsing binary with a short orbital period (P = 1.61 day). The Kepler light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of δ Scuti type. We analyzed the Kepler photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4 meter Mayall telescope at the Kitt Peak National Observatory and determined the fundamental parameters of this system. The low-mass and oversized secondary ({M}2=0.20{M}⊙ , {R}2=1.31{R}⊙ ) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal δ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that this system and several other systems discussed in prior literature can be understood as the result of non-conservative binary evolution for the formation of EL CVn-type binaries. The pulsations of the primary star can be explained as radial and non-radial pressure modes. The equilibrium models from single star evolutionary tracks can match the observed mass and radius ({M}1=1.94{M}⊙ , {R}1=1.67{R}⊙ ) but the predicted unstable modes associated with these models differ somewhat from those observed. We discuss the need for better theoretical understanding of such post-mass transfer δ Scuti pulsators.

  8. The Effect of Starspots on Accurate Radius Determination of the Low-Mass Double-Lined Eclipsing Binary Gu Boo

    Science.gov (United States)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-04-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. López-Morales & Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by López-Morales & Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, López-Morales & Ribas derived masses and radii accurate to sime2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of López-Morales & Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun, 0.6413 ± 0.0049 R sun, and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and López-Morales & Ribas data, respectively. Each of these measurements agrees with the value reported by López-Morales & Ribas (R 1 = 0.623 ± 0.016 R sun) at the level of ≈2%. In addition, the spread in these values is ≈1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun, 0.5944 ± 0.0069 R sun, and 0.5976 ± 0.0059 R sun from the three respective data sets. The López-Morales & Ribas value is R 2 = 0.620 ± 0.020 R sun, which is ≈2%-3% larger than each of the three values we found. The spread in these values is ≈2% from the mean. The systematic difference between our three determinations of the secondary radius and that of López-Morales & Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ≈2% level.

  9. THE EFFECT OF STARSPOTS ON ACCURATE RADIUS DETERMINATION OF THE LOW-MASS DOUBLE-LINED ECLIPSING BINARY GU Boo

    International Nuclear Information System (INIS)

    Windmiller, G.; Orosz, J. A.; Etzel, P. B.

    2010-01-01

    GU Boo is one of only a relatively small number of well-studied double-lined eclipsing binaries that contain low-mass stars. Lopez-Morales and Ribas present a comprehensive analysis of multi-color light and radial velocity curves for this system. The GU Boo light curves presented by Lopez-Morales and Ribas had substantial asymmetries, which were attributed to large spots. In spite of the asymmetry, Lopez-Morales and Ribas derived masses and radii accurate to ≅2%. We obtained additional photometry of GU Boo using both a CCD and a single-channel photometer and modeled the light curves with the ELC software to determine if the large spots in the light curves give rise to systematic errors at the few percent level. We also modeled the original light curves from the work of Lopez-Morales and Ribas using models with and without spots. We derived a radius of the primary of 0.6329 ± 0.0026 R sun , 0.6413 ± 0.0049 R sun , and 0.6373 ± 0.0029 R sun from the CCD, photoelectric, and Lopez-Morales and Ribas data, respectively. Each of these measurements agrees with the value reported by Lopez-Morales and Ribas (R 1 = 0.623 ± 0.016 R sun ) at the level of ∼2%. In addition, the spread in these values is ∼1%-2% from the mean. For the secondary, we derive radii of 0.6074 ± 0.0035 R sun , 0.5944 ± 0.0069 R sun , and 0.5976 ± 0.0059 R sun from the three respective data sets. The Lopez-Morales and Ribas value is R 2 = 0.620 ± 0.020 R sun , which is ∼2%-3% larger than each of the three values we found. The spread in these values is ∼2% from the mean. The systematic difference between our three determinations of the secondary radius and that of Lopez-Morales and Ribas might be attributed to differences in the modeling process and codes used. Our own fits suggest that, for GU Boo at least, using accurate spot modeling of a single set of multi-color light curves results in radii determinations accurate at the ∼2% level.

  10. The central dynamics of M3, M13, and M92: stringent limits on the masses of intermediate-mass black holes

    Science.gov (United States)

    Kamann, S.; Wisotzki, L.; Roth, M. M.; Gerssen, J.; Husser, T.-O.; Sandin, C.; Weilbacher, P.

    2014-06-01

    We used the PMAS integral field spectrograph to obtain large sets of radial velocities in the central regions of three northern Galactic globular clusters: M3, M13, and M92. By applying the novel technique of crowded field 3D spectroscopy, we measured radial velocities for about 80 stars within the central ~10″ of each cluster. These are by far the largest spectroscopic datasets obtained in the innermost parts of these clusters up to now. To obtain kinematical data across the whole extent of the clusters, we complement our data with measurements available in the literature. We combine our velocity measurements with surface brightness profiles to analyse the internal dynamics of each cluster using spherical Jeans models, and investigate whether our data provide evidence for an intermediate-mass black hole in any of the clusters. The surface brightness profiles reveal that all three clusters are consistent with a core profile, although shallow cusps cannot be excluded. We find that spherical Jeans models with a constant mass-to-light ratio provide a good overall representation of the kinematical data. A massive black hole is required in none of the three clusters to explain the observed kinematics. Our 1σ (3σ) upper limits are 5300 M⊙ (12 000 M⊙) for M3, 8600 M⊙ (13 000 M⊙) for M13, and 980 M⊙ (2700 M⊙) for M92. A puzzling circumstance is the existence of several potential high velocity stars in M3 and M13, as their presence can account for the majority of the discrepancies that we find in our mass limits compared to M92. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Appendices are available in electronic form at http://www.aanda.orgTables D.1 to D.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  11. Evolution of dwarf binaries

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Fedorova, A.V.; Yungel'son, L.R.

    1982-01-01

    The circumstances of mass exchange in close binary systems whose components have a mass < or approx. =1 M/sub sun/ are analyzed for the case where the system is losing orbital angular momentum by radiation of gravitational waves. The mass exchange rate will depend on the mass ratio of the components and on the mass of the component that is overfilling its critical Roche lobe. A comparison of the observed orbital periods, masses of the components losing material, and mass exchange rates against the theoretical values for cataclysmic binaries indicates that the evolution of the close binaries WZ Sge, OY Car, Z Cha, TT Ari, 2A 0311-227, and G61-29 may be driven by the emission of gravitational waves

  12. Evolution of cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.

    1981-01-01

    Cataclysmic binaries with short orbital periods have low mass secondary components. Their nuclear time scale is too long to be of evolutionary significance. Angular momentum loss from the binary drives the mass transfer between the two components. As long as the characteristic time scale is compared with the Kelvin-Helmholtz time scale of the mass losing secondary the star remains close to the main sequence, and the binary period decreases with time. If angular momentum loss is due to gravitational radiation then the mass transfer time scale becomes comparable to the Kelvin-Helmoltz time scale when the secondary's mass decreases to 0.12 Msub(sun), and the binary period is reduced to 80 minutes. Later, the mass losing secondary departs from the main sequence and gradually becomes degenerate. Now the orbital period increases with time. The observed lower limit to the orbital periods of hydrogen rich cataclysmic binaries implies that gravitational radiation is the main driving force for the evolution of those systems. It is shown that binaries emerging from a common envelope phase of evolution are well detached. They have to lose additional angular momentum to become semidetached cataclysmic variables. (author)

  13. Hydrodynamic and Radiative Modeling of Temporal Hα Emission V/R Variations Caused by Discontinuous Mass Transfer in Binaries

    Czech Academy of Sciences Publication Activity Database

    Chadima, P.; Fiřt, R.; Harmanec, P.; Wolf, M.; Ruždjak, D.; Božić, H.; Koubský, Pavel

    2011-01-01

    Roč. 142, č. 1 (2011), 7/1-7/4 ISSN 0004-6256 Institutional research plan: CEZ:AV0Z10030501 Keywords : close binaries stars * circumstellar matter * emission-line Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.035, year: 2011

  14. Medical Advice for Sick-reported Students (MASS in intermediate vocational education schools: design of a controlled before-and-after study

    Directory of Open Access Journals (Sweden)

    Madelon K Van der Vlis

    2017-06-01

    Full Text Available Abstract Background School absenteeism, including medical absenteeism, is associated with early school dropout and may result in physical, mental, social and work-related problems in later life. Especially at intermediate vocational education schools, high rates of medical absenteeism are found. In 2012 the Dutch intervention ‘Medical Advice for Sick-reported Students’ (MASS, previously developed for pre-vocational secondary education, was adjusted for intermediate vocational education schools. The aim of the study outlined in this paper is to evaluate the effectiveness of the MASS intervention at intermediate vocational education schools in terms of reducing students’ medical absenteeism and early dropping out of school. Additionally, the extent to which biopsychosocial and other factors moderate the effectiveness of the intervention will be assessed. Methods A controlled before-and-after study will be conducted within Intermediate Vocational Education schools. Schools are allocated to be an intervention or control school based on whether the schools have implemented the MASS intervention (intervention schools or not (control schools. Intervention schools apply the MASS intervention consisting of active support for students with medical absenteeism provided by the school including a consultation with the Youth Health Care (YHC professional if needed. Control schools provide care as usual. Data will be collected by questionnaires among students in both groups meeting the criteria for extensive medical absenteeism (i.e. ‘reported sick four times in 12 school weeks or for more than six consecutive school days’ at baseline and at 6 months follow-up. Additionally, in the intervention group a questionnaire is completed after each consultation with a YHC professional, by both the student and the YHC professional. Primary outcome measures are duration and cumulative incidence of absenteeism and academic performances. Secondary outcome

  15. Medical Advice for Sick-reported Students (MASS) in intermediate vocational education schools: design of a controlled before-and-after study.

    Science.gov (United States)

    Van der Vlis, Madelon K; Lugtenberg, Marjolein; Vanneste, Yvonne T M; Berends, Wenda; Mulder, Wico; Bannink, Rienke; Van Grieken, Amy; Raat, Hein; de Kroon, Marlou L A

    2017-06-29

    School absenteeism, including medical absenteeism, is associated with early school dropout and may result in physical, mental, social and work-related problems in later life. Especially at intermediate vocational education schools, high rates of medical absenteeism are found. In 2012 the Dutch intervention 'Medical Advice for Sick-reported Students' (MASS), previously developed for pre-vocational secondary education, was adjusted for intermediate vocational education schools. The aim of the study outlined in this paper is to evaluate the effectiveness of the MASS intervention at intermediate vocational education schools in terms of reducing students' medical absenteeism and early dropping out of school. Additionally, the extent to which biopsychosocial and other factors moderate the effectiveness of the intervention will be assessed. A controlled before-and-after study will be conducted within Intermediate Vocational Education schools. Schools are allocated to be an intervention or control school based on whether the schools have implemented the MASS intervention (intervention schools) or not (control schools). Intervention schools apply the MASS intervention consisting of active support for students with medical absenteeism provided by the school including a consultation with the Youth Health Care (YHC) professional if needed. Control schools provide care as usual. Data will be collected by questionnaires among students in both groups meeting the criteria for extensive medical absenteeism (i.e. 'reported sick four times in 12 school weeks or for more than six consecutive school days' at baseline and at 6 months follow-up). Additionally, in the intervention group a questionnaire is completed after each consultation with a YHC professional, by both the student and the YHC professional. Primary outcome measures are duration and cumulative incidence of absenteeism and academic performances. Secondary outcome measures are biopsychosocial outcomes of the students. It

  16. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit

    Science.gov (United States)

    Triaud, A. H. M. J.; Hebb, L.; Anderson, D. R.; Cargile, P.; Collier Cameron, A.; Doyle, A. P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Maxted, P.; Naef, D.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Smalley, B.; Stassun, K.; Udry, S.; West, R. G.

    2013-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 ± 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects have projected spin-orbit angles aligned with their primaries' rotation. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass-radius relationship, whereas WASP-30b lies above it. Using WASP-South photometric observations (Sutherland, South Africa) confirmed with radial velocity measurement from the CORALIE spectrograph, photometry from the EulerCam camera (both mounted on the Swiss 1.2 m Euler Telescope), radial velocities from the HARPS spectrograph on the ESO's 3.6 m Telescope (prog ID 085.C-0393), and photometry from the robotic 60 cm TRAPPIST telescope, all located at ESO, La Silla, Chile. The data is publicly available at the CDS Strasbourg and on demand to the main author.Tables A.1-A.3 are available in electronic form at http://www.aanda.orgPhotometry tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A18

  17. The First Photometric Study of NSVS 1461538: A New W-subtype Contact Binary with a Low Mass Ratio and Moderate Fill-out Factor

    Directory of Open Access Journals (Sweden)

    Hyoun-Woo Kim

    2016-09-01

    Full Text Available New multiband BVRI light curves of NSVS 1461538 were obtained as a byproduct during the photometric observations of our program star PV Cas for three years from 2011 to 2013. The light curves indicate characteristics of a typical W-subtype W UMa eclipsing system, displaying a flat bottom at primary eclipse and the O’Connell effect, rather than those of an Algol/b Lyrae eclipsing variable classified by the northern sky variability survey (NSVS. A total of 35 times of minimum lights were determined from our observations (20 timings and the SuperWASP measurements (15 ones. A period study with all the timings shows that the orbital period may vary in a sinusoidal manner with a period of about 5.6 yr and a small semiamplitude of about 0.008 day. The cyclical period variation can be interpreted as a light-time effect due to a tertiary body with a minimum mass of 0.71 M⊙. Simultaneous analysis of the multiband light curves using the 2003 version of the Wilson-Devinney binary model shows that NSVS 1461538 is a genuine W-subtype W UMa contact binary with the hotter primary component being less massive and the system shows a low mass ratio of q(mc/mh=3.51, a high orbital inclination of 88.7°, a moderate fill-out factor of 30 %, and a temperature difference of ΔT=412 K. The O’Connell effect can be similarly explained by cool spots on either the hotter primary star or the cool secondary star. A small third-light corresponding to about 5 % and 2 % of the total systemic light in the B and V bandpasses, respectively, supports the third-body hypothesis proposed by the period study. Preliminary absolute dimensions of the system were derived and used to look into its evolutionary status with other W UMa binaries in the mass-radius and mass-luminosity diagrams. A possible evolution scenario of the system was also discussed in the context of the mass vs mass ratio diagram.

  18. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    OpenAIRE

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom heavy IMFs. These bottom heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars based ...

  19. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D H ∼ 20 cm -2 . The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR ∼ (1-8) x 10 11 L sun . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M * ) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M * , respectively, we constrain the relation L gal HX = αM * + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) x 10 28 erg s -1 M -1 sun and β = (1.62 ± 0.22) x 10 39 erg s -1 (M sun yr -1 ) -1 . This scaling provides a more physically meaningful estimate of L gal HX , with ∼0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M * ∼>5.9 x 10 -11 yr -1 , a factor of ∼2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M * ∼> 10 -9 yr -1 , appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions

  20. Optical and Radio Observations of the T Tauri Binary KH 15D (V582 Mon): Stellar Properties, Disk Mass Limit, and Discovery of a CO Outflow

    Science.gov (United States)

    Aronow, Rachel A.; Herbst, William; Hughes, A. Meredith; Wilner, David J.; Winn, Joshua N.

    2018-01-01

    We present VRIJHK photometry of the KH 15D T Tauri binary system for the 2015/2016 and 2016/2017 observing seasons. For the first time in the modern (CCD) era, we are seeing Star B fully emerge from behind the trailing edge of the precessing circumbinary ring during each apastron passage. We are, therefore, able to measure its luminosity and color. Decades of photometry on the system now allow us to infer the effective temperature, radius, mass, and age of each binary component. We find our values to be in good agreement with previous studies, including archival photographic photometry from the era when both stars were fully visible, and they set the stage for a full model of the system that can be constructed once radial velocity measurements are available. We also present the first high-sensitivity radio observations of the system, taken with the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array. The respective 2.0 and 0.88 mm observations provide an upper limit on the circumbinary (gas and dust) disk mass of 1.7 M Jup and reveal an extended CO outflow, which overlaps with the position, systemic velocity, and orientation of the KH 15D system and is certainly associated with it. The low velocity, tight collimation, and extended nature of the emission suggest that the outflow is inclined nearly orthogonal to the line of sight, implying it is also orthogonal to the circumbinary ring. The position angle of the radio outflow also agrees precisely with the direction of polarization of the optical emission during the faint phase. A small offset between the optical image of the binary and the central line of the CO outflow remains a puzzle and possible clue to the jet launching mechanism.

  1. Unveiling the redback nature of the low-mass X-ray binary XSS J1227.0-4859 through optical observations

    Science.gov (United States)

    de Martino, D.; Casares, J.; Mason, E.; Buckley, D. A. H.; Kotze, M. M.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Coppejans, R.; Gulbis, A. A. S.

    2014-11-01

    The peculiar low-mass X-ray binary XSS J12270-4859, associated with the Fermi/LAT source 2FGL J1227.7-4853, was in an X-ray, gamma-ray and optical low-luminosity persistent state for about a decade until the end of 2012, when it entered into the dimmest state ever observed. The nature of the compact object has been controversial until the detection of a 1.69 ms radio pulsar early 2014. We present optical spectroscopy and optical/near-IR photometry during the previous brighter and in the recent faint states. We determine the first spectroscopic orbital ephemeris and an accurate orbital period of 6.912 46(5) h. We infer a mid G-type donor star and a distance d = 1.8-2.0 kpc. The donor spectral type changes from G5 V to F5 V between inferior and superior conjunctions, a signature of strong irradiation effects. We infer a binary inclination 45° ≲ i ≲ 65° and a highly undermassive donor, M2 ˜ 0.06-0.12 M⊙, for a neutron star mass in the range 1.4-3 M⊙. Thus, this binary joins as the seventh member the group of `redbacks'. In the high state, the emission lines reveal the presence of an accretion disc. They tend to vanish at the donor star superior conjunction, where also flares are preferentially observed together with the occurrence of random dips. This behaviour could be related to the propeller mechanism of the neutron star recently proposed to be acting in this system during the high state. In the low state, the emission lines are absent in all orbital phases indicating that accretion has completely switched-off and that XSS J12270-4859 has transited from an accretion-powered to a rotation-powered phase.

  2. A CROSS-MATCH OF 2MASS AND SDSS. II. PECULIAR L DWARFS, UNRESOLVED BINARIES, AND THE SPACE DENSITY OF T DWARF SECONDARIES

    International Nuclear Information System (INIS)

    Geissler, Kerstin; Metchev, Stanimir; Kirkpatrick, J. Davy; Berriman, G. Bruce; Looper, Dagny

    2011-01-01

    We present the completion of a program to cross-correlate the Sloan Digital Sky Survey Data Release 1 (SDSS DR1) and Two-Micron All-Sky Survey (2MASS) Point Source Catalog in search for extremely red L and T dwarfs. The program was initiated by Metchev and collaborators, who presented the findings on all newly identified T dwarfs in SDSS DR1 and estimated the space density of isolated T0-T8 dwarfs in the solar neighborhood. In the current work, we present most of the L dwarf discoveries. Our red-sensitive (z - J ≥ 2.75 mag) cross-match proves to be efficient in detecting peculiarly red L dwarfs, adding two new ones, including one of the reddest known L dwarfs. Our search also nets a new peculiarly blue L7 dwarf and, surprisingly, two M8 dwarfs. We further broaden our analysis to detect unresolved binary L or T dwarfs through spectral template fitting to all L and T dwarfs presented here and in the earlier work by Metchev and collaborators. We identify nine probable binaries, six of which are new and eight harbor likely T dwarf secondaries. We combine this result with current knowledge of the mass ratio distribution and frequency of substellar companions to estimate an overall space density of 0.005-0.05 pc -3 for individual T0-T8 dwarfs.

  3. Analytical and Numerical Study of Soret and Dufour Effects on Double Diffusive Convection in a Shallow Horizontal Binary Fluid Layer Submitted to Uniform Fluxes of Heat and Mass

    Directory of Open Access Journals (Sweden)

    A. Lagra

    2018-01-01

    Full Text Available Combined Soret and Dufour effects on thermosolutal convection induced in a horizontal layer filled with a binary fluid and subject to constant heat and mass fluxes are investigated analytically and numerically. The thresholds marking the onset of supercritical and subcritical convection are predicted analytically and explicitly versus the governing parameters. The present investigation shows that different regions exist in the N-Du plane corresponding to different parallel flow regimes. The number, the extent, and the locations of these regions depend on whether SrDu>-(1+Le2/2Le2=f(Le or SrDu<-(1+Le2/2Le2. Conjugate effects of cross-phenomena on thresholds of fluid flow and heat and mass transfer characteristics are illustrated and discussed.

  4. The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    OpenAIRE

    Triaud, Amaury H. M. J.; Hebb, Leslie; Anderson, David R.; Cargile, Phill; Cameron, Andrew Collier; Doyle, Amanda P.; Faedi, Francesca; Gillon, Michaël; Chew, Yilen Gomez Maqueo; Hellier, Coel; Jehin, Emmanuel; Maxted, Pierre; Naef, Dominique; Pepe, Francesco; Pollacco, Don

    2012-01-01

    This paper introduces a series of papers aiming to study the dozens of low-mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F,...

  5. Black holes in massive close binaries - observational data and evolutionary status

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Cherepashchuk, A.M.; Moskovskii Gosudarstvennyi Universitet, Moscow, USSR)

    1985-01-01

    The available information on the mass of four candidate black holes in X-ray binary systems is summarized; these systems are compared with neutron star binaries with regard to the mass of their components. In mass, the relativistic objects form two distinct groups, neutron stars with masses equal to about 1-2 solar masses and black hole candidates with masses equal to about 10-60 solar masses (there seem to be no intermediate cases), but there is no correlation with the mass of the optical star. Mass exchange between the optical component of a close binary and its neutron star companion would be unlikely to produce a black hole more massive than 5-7 solar masses. Instead, the black holes having masses greater than about 10 solar masses might result from core collapse in stars of initial mass equating 20-100 solar masses through either a rise in the presupernova core mass or weakness of the magnetic field. The (10-30)-fold disparity in the incidence of black holes coupled with OB stars and with radio pulsars could indicate that black holes tend to form in pairs. 36 references

  6. Effects of Hardness of Primordial Binaries on Evolution of Star Clusters

    Science.gov (United States)

    Tanikawa, A.; Fukushige, T.

    2008-05-01

    We performed N-body simulations of star clusters with primordial binaries using a new code, GORILLA. It is based on Makino and Aarseth (1992)'s integration scheme on GRAPE, and includes a special treatment for relatively isolated binaries. Using the new code, we investigated effects of hardness of primordial binaries on whole evolution of the clusters. We simulated seven N=16384 equal-mass clusters containing 10% (in mass) primordial binaries whose binding energies are 1, 3, 10, 30, 100, 300, and 1000kT, respectively. Additionally, we also simulated a cluster without primordial binaries and that in which all binaries are replaced by stars with double mass, as references of soft and hard limits, respectively. We found that, in both soft (≤ 3kT) and hard (≥ 1000kT) limits, clusters experiences deep core collapse and shows gravothermal oscillations. On the other hands, in the intermediate hardness (10-300kT), the core collapses halt halfway due an energy releases of the primordial binaries.

  7. LIMES: A computer program for analyses of light and intermediate-mass fragment emission in heavy ion reactions by an extended sum-rule model

    International Nuclear Information System (INIS)

    Brancus, I.M.; Wentz, J.; Hohn, H.U.

    1989-10-01

    The computer program LIMES is based on an improved version of the extended sum-rule model for light and intermediate-mass fragment emission in heavy ion reactions. It includes a code for dynamical calculations of the critical angular momentum for fusion following the suggestions. The report briefly describes the use of this program, the necessary input for the calculations of the element distribution and partial cross sections and gives a Fortran listing. Using the fitting routine FITEX the program provides an option for fast parameter adjustments. The use is demonstrated by an application to a specific example. (orig.) [de

  8. Black holes in massive close binary systems: observation data and evolutionary state

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Cherepashchuk, A.M.; Moskovskij Gosudarstvennyj Univ.

    1985-01-01

    The modern data on the masses of candidates for black holes in binary systems are summarized. The masses of components of binary systems with probable balck holes are compared with the characteristics of the binary sistems with neutron stars. It is pointed out that, concerning the masses of relativistic components, the separation into two groups takes place: Msub(x) approximately equal to 1.6 M (M is solar mass) (neutron stars) and Msub(x) approximately equal to (10-60) M (black holes candidates). The intermediate cases are presumably abssent. The masses of relativistic objects do not correlate with the masses of optical stars. It is shown that during the mass exchange between the optical star ad the neutron star in a close binary. It is difficult to produce a black hole with the mass exceeding (5-7) M. The suggestion is put forward that massive black holes with M > or approximately 10 M may be formed as a result of the collapse of the core of the stars of ordinary (20-100) M initial mass, due to either the increase of the mass of the core of the presupernova, or to the weakness of the magnetic field. A disagreement by a factor of 10-30 between the observed numbers of black holes pairing with OB stars and with the radiopulsars is pointed out, which may be connected with the ''pairing'' formation of black holes

  9. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.

  10. The Spin Distribution of Fast-spinning Neutron Stars in Low-mass X-Ray Binaries: Evidence for Two Subpopulations

    Science.gov (United States)

    Patruno, A.; Haskell, B.; Andersson, N.

    2017-11-01

    We study the current sample of rapidly rotating neutron stars in both accreting and non-accreting binaries in order to determine whether the spin distribution of accreting neutron stars in low-mass X-ray binaries (LMXBs) can be reconciled with current accretion torque models. We perform a statistical analysis of the spin distributions and show that there is evidence for two subpopulations among LMXBs, one at a relatively low spin frequency, with an average of ≈ 300 {Hz} and a broad spread, and a peaked population at higher frequency with an average spin frequency of ≈ 575 {Hz}. We show that the two subpopulations are separated by a cut-point at a frequency of ≈ 540 {Hz}. We also show that the spin frequency of radio millisecond pulsars (RMSPs) does not follow a log-normal distribution and shows no evidence for the existence of distinct subpopulations. We discuss the uncertainties of different accretion models and speculate that either the accreting neutron star cut-point marks the onset of gravitational waves as an efficient mechanism to remove angular momentum or some of the neutron stars in the fast subpopulation do not evolve into RMSPs.

  11. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Senta, Ivan; Krizman-Matasic, Ivona; Terzic, Senka; Ahel, Marijan

    2017-08-04

    Macrolide antibiotics are a prominent group of emerging contaminants frequently found in wastewater effluents and wastewater-impacted aquatic environments. In this work, a novel analytical method for simultaneous determination of parent macrolide antibiotics (azithromycin, erythromycin, clarithromycin and roxithromycin), along with their synthesis intermediates, byproducts, metabolites and transformation products in wastewater and surface water was developed and validated. Samples were enriched using solid-phase extraction on Oasis HLB cartridges and analyzed by reversed-phase liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The target macrolide compounds were separated on an ACE C18 PFP column and detected using multiple reaction monitoring in positive ionization polarity. The optimized method, which included an additional extract clean-up on strong anion-exchange cartridges (SAX), resulted in high recoveries and accuracies, low matrix effects and improved chromatographic separation of the target compounds, even in highly complex matrices, such as raw wastewater. The developed method was applied to the analysis of macrolide compounds in wastewater and river water samples from Croatia. In addition to parent antibiotics, several previously unreported macrolide transformation products and/or synthesis intermediates were detected in municipal wastewater, some of them reaching μg/L levels. Moreover, extremely high concentrations of macrolides up to mg/L level were found in pharmaceutical industry effluents, indicating possible importance of this source to the total loads into ambient waters. The results revealed a significant contribution of synthesis intermediates and transformation products to the overall mass balance of macrolides in the aquatic environment. Copyright © 2017. Published by Elsevier B.V.

  12. Event Rates of Gravitational Waves from merging Intermediate mass Black Holes: based on a Runaway Path to a SMBH

    Science.gov (United States)

    Shinkai, Hisaaki

    2018-01-01

    Based on a dynamical formation model of a supermassive black hole (SMBH), we estimate the expected observational profile of gravitational wave at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up, we are able to detect the ring-down gravitational wave of a BH with the mass M LIGO/VIRGO), we find that the BH merger of its total mass M ˜ 60M⊙ is at the peak of the expected mass distribution. With its signal-to-noise ratio ρ = 10(30), we estimate the event rate R ˜ 200(20) per year in the most optimistic case, and we also find that BH mergers in the range M 1 per year for ρ = 10. Thus, if we observe a BH with more than 100M⊙ in future gravitational-wave observations, our model naturally explains its source.

  13. BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg2 SUBMILLIMETER GALACTIC SURVEY IN VELA (l ∼ 2650)

    International Nuclear Information System (INIS)

    Netterfield, Calvin B.; Martin, Peter G.; Roy, Arabindo; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Phillip; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Devlin, Mark J.; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Olmi, Luca; Patanchon, Guillaume

    2009-01-01

    We present first results from an unbiased 50 deg 2 submillimeter Galactic survey at 250, 350, and 500 μm from the 2006 flight of the Balloon-borne Large Aperture Submillimeter Telescope. The map has resolution ranging from 36'' to 60'' in the three submillimeter bands spanning the thermal emission peak of cold starless cores. We determine the temperature, luminosity, and mass of more than 1000 compact sources in a range of evolutionary stages and an unbiased statistical characterization of the population. From comparison with C 18 O data, we find the dust opacity per gas mass, κr= 0.16 cm 2 g -1 at 250 μm, for cold clumps. We find that 2% of the mass of the molecular gas over this diverse region is in cores colder than 14 K, and that the mass function for these cold cores is consistent with a power law with index α = -3.22 ± 0.14 over the mass range 14 M sun sun . Additionally, we infer a mass-dependent cold core lifetime of t c (M) = 4 x 10 6 (M/20 M sun ) -0.9 yr-longer than what has been found in previous surveys of either low or high-mass cores, and significantly longer than free fall or likely turbulent decay times. This implies some form of non-thermal support for cold cores during this early stage of star formation.

  14. ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Francesco; Buchan, Stewart [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Guo, Hong; Zheng, Zheng [Department of Physics and Astronomy, University of Utah, UT 84112 (United States); Bouillot, Vincent [Centre for Astrophysics, Cosmology and Gravitation, Department of Mathematics and Applied Mathematics, University of Cape Town, Cape Town 7701 (South Africa); Rettura, Alessandro [Jet Propulsion Laboratory, California Institute of Technology, MS 169-234, Pasadena, CA 91109 (United States); Meert, Alan; Bernardi, Mariangela; Sheth, Ravi; Vikram, Vinu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Kravtsov, Andrey [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Behroozi, Peter [Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305 (United States); Maraston, Claudia; Capozzi, Diego [Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Ascaso, Begoña; Huertas-Company, Marc [GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Gal, Roy R. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lubin, Lori M., E-mail: F.Shankar@soton.ac.uk [University of California, One Shields Avenue, Davis, CA 95616 (United States); and others

    2014-12-20

    The stellar mass-halo mass relation is a key constraint in all semi-analytic, numerical, and semi-empirical models of galaxy formation and evolution. However, its exact shape and redshift dependence remain under debate. Several recent works support a relation in the local universe steeper than previously thought. Based on comparisons with a variety of data on massive central galaxies, we show that this steepening holds up to z ∼ 1 for stellar masses M {sub star} ≳ 2 × 10{sup 11} M {sub ☉}. Specifically, we find significant evidence for a high-mass end slope of β ≳ 0.35-0.70 instead of the usual β ≲ 0.20-0.30 reported by a number of previous results. When including the independent constraints from the recent Baryon Oscillation Spectroscopic Survey clustering measurements, the data, independent of any systematic errors in stellar masses, tend to favor a model with a very small scatter (≲ 0.15 dex) in stellar mass at fixed halo mass, in the redshift range z < 0.8 and for M {sub star} > 3 × 10{sup 11} M {sub ☉}, suggesting a close connection between massive galaxies and host halos even at relatively recent epochs. We discuss the implications of our results with respect to the evolution of the most massive galaxies since z ∼ 1.

  15. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  16. OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS

    DEFF Research Database (Denmark)

    Wampfler, Susanne Franziska; Bruderer, S.; Karska, A.

    2013-01-01

    are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong...

  17. A NuSTAR observation of the reflection spectrum of the low-mass X-ray binary 4U 1728-34

    DEFF Research Database (Denmark)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with k......T = 1.5 keV and a cutoff power law with Γ = 1.5, and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe Kα line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of Rin≤2RISCO...

  18. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  19. Thermohaline instability and rotation-induced mixing in low and intermediate mass stars: Consequences on global asteroseismic quantities

    Directory of Open Access Journals (Sweden)

    Ekström S.

    2013-03-01

    Full Text Available Thermohaline mixing has been recently identified as the probable dominating process that governs the photospheric composition of low-mass bright red giant stars. Here, we present the predictions of stellar models computed with the code STAREVOL including this process together with rotational mixing. We compare our theoretical predictions with recent observations, and discuss the effects of both mechanisms on asteroseismic diagnostics.

  20. Herschel/PACS far-IR spectral imaging of a jet from an intermediate mass protostar in the OMC-2 region

    Science.gov (United States)

    González-García, B.; Manoj, P.; Watson, D. M.; Vavrek, R.; Megeath, S. T.; Stutz, A. M.; Osorio, M.; Wyrowski, F.; Fischer, W.; Tobin, J. J.; Sánchez-Portal, M.; Diaz Rodriguez, A. K.; Wilson, T. L.

    2016-11-01

    We present the first detection of a jet in the far-IR [O I] lines from an intermediate mass protostar. This jet was detected in a Herschel/PACS spectral mapping study in the [O I] lines of OMC-2 FIR 3 and FIR 4, two of the most luminous protostars in Orion outside of the Orion Nebula. The spatial morphology of the fine structure line emission reveals the presence of an extended photodissociation region (PDR) and a narrow, but intense jet connecting the two protostars. The jet seen in [O I] emission is spatially aligned with the Spitzer/IRAC 4.5 μm jet and the CO (6-5) molecular outflow centered on FIR 3. The mass-loss rate derived from the total [O I] 63 μm line luminosity of the jet is 7.7 × 10-6M⊙ yr-1, more than an order of magnitude higher than that measured for typical low-mass class 0 protostars. The implied accretion luminosity is significantly higher than the observed bolometric luminosity of FIR 4, indicating that the [O I] jet is unlikely to be associated with FIR 4. We argue that the peak line emission seen toward FIR 4 originates in the terminal shock produced by the jet driven by FIR 3. The higher mass-loss rate that we find for FIR 3 is consistent with the idea that intermediate-mass protostars drive more powerful jets than their low-mass counterparts. Our results also call into question the nature of FIR 4. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The final reduced Herschel data used in this paper (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A26

  1. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    Energy Technology Data Exchange (ETDEWEB)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  2. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    OpenAIRE

    Abbott, B. P.; Abbott, R.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Anderson, S. B.; Appert, S.; Arai, K.; Araya, M. C.; Aston, S. M.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Blackburn, J. K.; Bork, R.

    2017-01-01

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2^(8.4) _(−6.0)M_⊙ and 19.4^(5.3...

  3. Event Rates of Gravitational Waves from merging Intermediate mass Black Holes: based on a Runaway Path to a SMBH

    Directory of Open Access Journals (Sweden)

    Shinkai Hisaaki

    2018-01-01

    Full Text Available Based on a dynamical formation model of a supermassive black hole (SMBH, we estimate the expected observational profile of gravitational wave at ground-based detectors, such as KAGRA or advanced LIGO/VIRGO. Noting that the second generation of detectors have enough sensitivity from 10 Hz and up, we are able to detect the ring-down gravitational wave of a BH with the mass M 1 per year for ρ = 10. Thus, if we observe a BH with more than 100M⊙ in future gravitational-wave observations, our model naturally explains its source.

  4. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S. S. Y.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; Debra, D.; Deelman, E; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.J.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, A.S.P.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Johnson-McDaniel, N. K.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.E.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, S.W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, H.C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang-Cheol, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, W. H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Fokkema, R.L.K.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A.; Shahriar, M. S.; Shao, L.P.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, J. A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Wald, R. M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, G.W.K.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman, A.; Zucker, M. E.; Zweizig, J.

    2017-01-01

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10: 11: 58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during

  5. An Asymmetric Runaway Domain Swap Antithrombin Dimer as a Key Intermediate for Polymerization Revealed by Hydrogen/Deuterium-Exchange Mass Spectrometry.

    Science.gov (United States)

    Trelle, Morten Beck; Pedersen, Shona; Østerlund, Eva Christina; Madsen, Jeppe Buur; Kristensen, Søren Risom; Jørgensen, Thomas J D

    2017-01-03

    Antithrombin deficiency is associated with increased risk of venous thrombosis. In certain families, this condition is caused by pathogenic polymerization of mutated antithrombin in the blood. To facilitate future development of pharmaceuticals against antithrombin polymerization, an improved understanding of the polymerogenic intermediates is crucial. However, X-ray crystallography of these intermediates is severely hampered by the difficulty in obtaining well-diffracting crystals of transient and heterogeneous noncovalent protein assemblies. Furthermore, their large size prohibits structural analysis by NMR spectroscopy. Here, we show how hydrogen/deuterium-exchange mass spectrometry (HDX-MS) provides detailed insight into the structural dynamics of each subunit in a polymerization-competent antithrombin dimer. Upon deuteration, this dimer surprisingly yields bimodal isotope distributions for the majority of peptides, demonstrating an asymmetric configuration of the two subunits. The data reveal that one subunit is very dynamic, potentially intrinsically disordered, whereas the other is considerably less dynamic. The local subunit-specific deuterium uptake of this polymerization-competent dimer strongly supports a β4A-β5A β-hairpin runaway domain swap mechanism for antithrombin polymerization. HDX-MS thus holds exceptional promise as an enabling analytical technique in the efforts toward future pharmacological intervention with protein polymerization and associated diseases.

  6. Measurement of Fragment Mass Distributions in Neutron-induced Fission of {sup 238}U and {sup 232}Th at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Simutkin, V.D. [Uppsala University, P.O Box 525, SE-751 20 Uppsala (Sweden)

    2008-07-01

    Conceptual analysis of accelerator-driven systems assumes extensive use of nuclear data on neutron-induced reactions at intermediate energies. In particular, information about the fission fragment yields from the {sup 238}U(n,f) and {sup 232}Th(n,f) reactions is of particular interest at neutron energies from 10 to 200 MeV. However, there is a lack of such data for both {sup 238}U and {sup 232}Th. Up to now, the intermediate energy measurements have been performed for {sup 238}U only, and there are no data for the {sup 232}Th(n,f) reaction. The aim of the work is to provide such data. Fission fragment mass distributions for the {sup 232}Th(n,f) and {sup 238}U(n,f) reactions have been measured for the incident neutron energies 32.8 MeV, 45.3 MeV and 59.9 MeV. The experiments have been performed at the neutron beam facility of the Universite Catholique de Louvain, Belgium. A multi-section Frisch-gridded ionization chamber has been used as a fission fragment detector. The data obtained have been interpreted in terms of the multimodal random neck-rupture model (MMRNRM). (authors)

  7. Interacting binary stars

    International Nuclear Information System (INIS)

    Pringle, J.E.; Wade, R.A.

    1985-01-01

    This book reviews the theoretical and observational knowledge of interacting binary stars. The topics discussed embrace the following features of these objects: their orbits, evolution, mass transfer, angular momentum losses, X-ray emission, eclipses, variability, and other related phenomena. (U.K.)

  8. Isobaric yield curves at A=72 from the spallation of medium mass isotopes by intermediate energy protons

    International Nuclear Information System (INIS)

    Tobin, M.J.; Karol, P.J.; Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)

    1989-01-01

    Cross sections of radionuclides in the A∼72 mass region produced by the interaction 800 MeV protons with 89 Y, /sup 92,96,100/Mo, and 130 Te were measured. Particular emphasis was paid to the measurement of short-lived products far from β stability. The cross sections were used to generate isobaric yield curves at A=72. Precise characterization of these curves showed that the distribution parameters (mean, standard deviation, skewness) vary in a regular fashion with target N/Z. For 89 Y, relative isobaric curves produced by 500 and 800 MeV protons were found to be identical within experimental error. The yield distributions for the /sup 92,96,100/Mo targets also scaled with those from an earlier alpha-induced spallation study. These findings lend strong support to the argument that the spallation mechanism is independent of projectile energy and target composition

  9. Observing the linked depletion of dust and CO gas at 0.1–10 au in disks of intermediate-mass stars

    Science.gov (United States)

    Banzatti, A.; Garufi, A.; Kama, M.; Benisty, M.; Brittain, S.; Pontoppidan, K. M.; Rayner, J.

    2018-02-01

    We report on the discovery of correlations between dust and CO gas tracers of the 0.1–10 au region in planet-forming disks around young intermediate-mass stars. The abundance of refractory elements on stellar photospheres decreases as the location of hot CO gas emission recedes to larger disk radii, and as the near-infrared excess emission from hot dust in the inner disk decreases. The linked behavior between these observables demonstrates that the recession of infrared CO emission to larger disk radii traces an inner disk region where dust is being depleted. We also find that Herbig disk cavities have either low ( 5–10%) or high ( 20–35%) near-infrared excess, a dichotomy that has not been captured by the classic definition of “pre-transitional” disks.

  10. Discovery of a correlation between the frequency of the mHz quasi-periodic oscillations and the neutron-star temperature in the low-mass X-ray binary 4U 1636-53

    NARCIS (Netherlands)

    Lyu, Ming; Méndez, Mariano; Altamirano, Diego

    2014-01-01

    We detected millihertz quasi-periodic oscillations (QPOs) in an XMM-Newton observation of the neutron-star low-mass X-ray binary 4U 1636-53. These QPOs have been interpreted as marginally stable burning on the neutron-star surface. At the beginning of the observation the QPO was at around 8 mHz,

  11. An integrated metabolomics workflow for the quantification of sulfur pathway intermediates employing thiol protection with N-ethyl maleimide and hydrophilic interaction liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Ortmayr, Karin; Schwaiger, Michaela; Hann, Stephan; Koellensperger, Gunda

    2015-11-21

    The sulfur metabolic pathway is involved in basic modes of cellular metabolism, including methylation, cell division, respiratory oscillations and stress responses. Hence, the implicated high reactivity of the sulfur pathway intermediates entails challenges for their quantitative analysis. In particular the unwanted oxidation of the thiol group-containing metabolites glutathione, cysteine, homocysteine, γ-glutamyl cysteine and cysteinyl glycine must be prevented in order to obtain accurate snapshots of this important part of cellular metabolism. Suitable analytical methodologies are therefore needed to support studies of drug metabolism and metabolic engineering. In this work, a novel sample preparation strategy targeting thiolic metabolites was established by implementing thiol group protection with N-ethyl maleimide using a cold methanol metabolite extraction procedure. It was shown that N-ethyl maleimide derivatization is compatible with typical metabolite extraction procedures and also allowed for the stabilization of the instable thiolic metabolites in a fully (13)C-labeled yeast cell extract. The stable isotope labeled metabolite analogs could be used for internal standardization to achieve metabolite quantification with high precision. Furthermore, a dedicated hydrophilic interaction liquid chromatography tandem mass spectrometry method for the separation of sulfur metabolic pathway intermediates using a sub-2 μm particle size stationary phase was developed. Coupled with tandem mass spectrometry, the presented methodology proved to be robust, and sensitive (absolute detection limits in the low femtomole range), and allowed for the quantification of cysteine, cysteinyl glycine, cystathionine, cystine, glutamic acid, glutamyl cysteine, reduced glutathione, glutathione disulfide, homocysteine, methionine, S-adenosyl homocysteine and serine in a human ovarian carcinoma cell model.

  12. Dynamical equivalence, the origin of the Galactic field stellar and binary population, and the initial radius-mass relation of embedded clusters

    Science.gov (United States)

    Belloni, Diogo; Kroupa, Pavel; Rocha-Pinto, Helio J.; Giersz, Mirek

    2018-03-01

    In order to allow a better understanding of the origin of Galactic field populations, dynamical equivalence of stellar-dynamical systems has been postulated by Kroupa and Belloni et al. to allow mapping of solutions of the initial conditions of embedded clusters such that they yield, after a period of dynamical processing, the Galactic field population. Dynamically equivalent systems are defined to initially and finally have the same distribution functions of periods, mass ratios and eccentricities of binary stars. Here, we search for dynamically equivalent clusters using the MOCCA code. The simulations confirm that dynamically equivalent solutions indeed exist. The result is that the solution space is next to identical to the radius-mass relation of Marks & Kroupa, ( r_h/pc )= 0.1^{+0.07}_{-0.04} ( M_ecl/M_{⊙} )^{0.13± 0.04}. This relation is in good agreement with the oIMF. This is achieved by applying a similar procedurebserved density of molecular cloud clumps. According to the solutions, the time-scale to reach dynamical equivalence is about 0.5 Myr which is, interestingly, consistent with the lifetime of ultra-compact H II regions and the time-scale needed for gas expulsion to be active in observed very young clusters as based on their dynamical modelling.

  13. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; AultONeal, K; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bawaj, M; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Deelman, E; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Duncan, J; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gabel, M; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garufi, F; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mayani, R; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Ramirez, K E; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Rynge, M; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Taylor, J A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahi, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wald, R M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, M; Wang, Y-F; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zimmerman, A; Zucker, M E; Zweizig, J

    2017-06-02

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2_{-6.0}^{+8.4}M_{⊙} and 19.4_{-5.9}^{+5.3}M_{⊙} (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_{eff}=-0.12_{-0.30}^{+0.21}. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880_{-390}^{+450}  Mpc corresponding to a redshift of z=0.18_{-0.07}^{+0.08}. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_{g}≤7.7×10^{-23}  eV/c^{2}. In all cases, we find that GW170104 is consistent with general relativity.

  14. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wald, R. M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman, A.; Zucker, M. E.; Zweizig, J.; LIGO Scientific; Virgo Collaboration

    2017-06-01

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31. 2-6.0+8.4M⊙ and 19. 4-5.9+5.3 M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.1 2-0.30+0.21 . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 88 0-390+450 Mpc corresponding to a redshift of z =0.1 8-0.07+0.08 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7 ×10-23 eV /c2 . In all cases, we find that GW170104 is consistent with general relativity.

  15. Evolution of Thermally Pulsing Asymptotic Giant Branch Stars. V. Constraining the Mass Loss and Lifetimes of Intermediate-mass, Low-metallicity AGB Stars

    Science.gov (United States)

    Rosenfield, Philip; Marigo, Paola; Girardi, Léo; Dalcanton, Julianne J.; Bressan, Alessandro; Williams, Benjamin F.; Dolphin, Andrew

    2016-05-01

    Thermally pulsing asymptotic giant branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass loss, and dust production can dramatically affect the chemical enrichment histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the Advanced Camera for Surveys Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al., in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 ≲ {{[Fe/H]}} ≲ -0.56 and initial TP-AGB masses up to ˜4 M ⊙, which include TP-AGB stars that undergo hot-bottom burning. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  16. The Brightest Binaries

    Science.gov (United States)

    Vanbeveren, D., Van Rensbergen, W., De Loore, C.

    Massive stars are distributed all over the upper part of the Hertzsprung-Russell diagram according to their subsequent phases of stellar evolution from main sequence to supernova. Massive stars may either be single or they may be a component of a close binary. The observed single star/binary frequency is known only in a small part of the Galaxy. Whether this holds for the whole galaxy or for the whole cosmos is questionable and needs many more high quality observations. Massive star evolution depends critically on mass loss by stellar wind and this stellar wind mass loss may change dramatically when stars evolve from one phase to another. We start the book with a critical discussion of observations of the different types of massive stars, observations that are of fundamental importance in relation to stellar evolution, with special emphasis on mass loss by stellar wind. We update our knowledge of the physics that models the structure and evolution of massive single stars and we present new calculations. The conclusions resulting from a comparison between these calculations and observations are then used to study the evolution of massive binaries. This book provides our current knowledge of a great variety of massive binaries, and hence of a great variety of evolutionary phases. A large number of case studies illustrates the existence of these phases. Finally, we present the results of massive star population number synthesis, including the effect of binaries. The results indicate that neglecting them leads to a conclusion which may be far from reality. This book is written for researchers in massive star evolution. We hope that, after reading this book, university-level astrophysics students will become fascinated by the exciting world of the `Brightest Binaries'.

  17. ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Chen Xian; Liu, F. K.; Madau, Piero; Sesana, Alberto

    2009-01-01

    'Hard' massive black hole (MBH) binaries embedded in steep stellar cusps can shrink via three-body slingshot interactions. We show that this process will inevitably be accompanied by a burst of stellar tidal disruptions, at a rate that can be several orders of magnitude larger than that appropriate for a single MBH. Our numerical scattering experiments reveal that (1) a significant fraction of stars initially bound to the primary hole are scattered into its tidal disruption loss cone by gravitational interactions with the secondary hole, an enhancement effect that is more pronounced for very unequal mass binaries; (2) about 25% (40%) of all strongly interacting stars are tidally disrupted by an MBH binary of mass ratio q = 1/81 (q = 1/243) and eccentricity 0.1; and (3) two mechanisms dominate the fueling of the tidal disruption loss cone, a Kozai nonresonant interaction that causes the secular evolution of the stellar angular momentum in the field of the binary, and the effect of close encounters with the secondary hole that change the stellar orbital parameters in a chaotic way. For a hard MBH binary of 10 7 M sun and mass ratio 10 -2 , embedded in an isothermal stellar cusp of velocity dispersion σ * = 100 km s -1 , the tidal disruption rate can be as large as N-dot * ∼1 yr -1 . This is 4 orders of magnitude higher than estimated for a single MBH fed by two-body relaxation. When applied to the case of a putative intermediate-mass black hole inspiraling onto Sgr A*, our results predict tidal disruption rates N-dot * ∼0.05-0.1 yr -1 .

  18. Encounters of binaries

    International Nuclear Information System (INIS)

    Mikkola, S.

    1983-01-01

    Gravitational encounters of pairs of binaries have been studied numerically. Various cross-sections have been calculated for qualitative final results of the interaction and for energy transfer between the binding energy and the centre of mass kinetic energy. The distribution of the kinetic energies, resulting from the gravitational collision, were found to be virtually independent of the impact velocity in the case of collision of hard binaries. It was found that one out of five collisions, which are not simple fly-by's, leads to the formation of a stable three-body system. (author)

  19. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Guillot, Sebastien; Rutledge, Robert E.; Servillat, Mathieu; Webb, Natalie A.

    2013-01-01

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS , are quasi-constant (within measurement errors, of ∼10%) for astrophysically relevant masses (M NS >0.5 M ☉ ). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS , constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R NS =9.1 +1.3 -1.5 km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  20. Measurement of the Radius of Neutron Stars with High Signal-to-noise Quiescent Low-mass X-Ray Binaries in Globular Clusters

    Science.gov (United States)

    Guillot, Sebastien; Servillat, Mathieu; Webb, Natalie A.; Rutledge, Robert E.

    2013-07-01

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS, are quasi-constant (within measurement errors, of ~10%) for astrophysically relevant masses (M NS>0.5 M ⊙). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R_NS =9.1^{+ 1.3}_{- 1.5} \\,km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  1. Coupling hydrodynamics with comoving frame radiative transfer. II. Stellar wind stratification in the high-mass X-ray binary Vela X-1

    Science.gov (United States)

    Sander, A. A. C.; Fürst, F.; Kretschmar, P.; Oskinova, L. M.; Todt, H.; Hainich, R.; Shenar, T.; Hamann, W.-R.

    2018-02-01

    Context. Vela X-1, a prototypical high-mass X-ray binary (HMXB), hosts a neutron star (NS) in a close orbit around an early-B supergiant donor star. Accretion of the donor star's wind onto the NS powers its strong X-ray luminosity. To understand the physics of HMXBs, detailed knowledge about the donor star winds is required. Aims: To gain a realistic picture of the donor star in Vela X-1, we constructed a hydrodynamically consistent atmosphere model describing the wind stratification while properly reproducing the observed donor spectrum. To investigate how X-ray illumination affects the stellar wind, we calculated additional models for different X-ray luminosity regimes. Methods: We used the recently updated version of the Potsdam Wolf-Rayet code to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer. Results: The wind flow in Vela X-1 is driven by ions from various elements, with Fe III and S III leading in the outer wind. The model-predicted mass-loss rate is in line with earlier empirical studies. The mass-loss rate is almost unaffected by the presence of the accreting NS in the wind. The terminal wind velocity is confirmed at v∞≈ 600 km s-1. On the other hand, the wind velocity in the inner region where the NS is located is only ≈100 km s-1, which is not expected on the basis of a standard β-velocity law. In models with an enhanced level of X-rays, the velocity field in the outer wind can be altered. If the X-ray flux is too high, the acceleration breaks down because the ionization increases. Conclusions: Accounting for radiation hydrodynamics, our Vela X-1 donor atmosphere model reveals a low wind speed at the NS location, and it provides quantitative information on wind driving in this important HMXB.

  2. A propeller scenario for the gamma-ray emission of low-mass X-ray binaries: the case of XSS J12270-4859

    Science.gov (United States)

    Papitto, A.; Torres, D. F.; Li, Jian

    2014-03-01

    XSS J12270-4859 is the only low-mass X-ray binary (LMXB) with a proposed persistent gamma-ray counterpart in the Fermi-Large Area Telescope domain, 2FGL 1227.7-4853. Here, we present the results of the analysis of recent INTEGRAL observations, aimed at assessing the long-term variability of the hard X-ray emission, and thus the stability of the accretion state. We confirm that the source behaves as a persistent hard X-ray emitter between 2003 and 2012. We propose that XSS J12270-4859 hosts a neutron star in a propeller state, a state we investigate in detail, developing a theoretical model to reproduce the associated X-ray and gamma-ray properties. This model can be understood as being of a more general nature, representing a viable alternative by which LMXBs can appear as gamma-ray sources. In particular, this may apply to the case of millisecond pulsars performing a transition from a state powered by the rotation of their magnetic field to a state powered by matter infall, such as that recently observed from the transitional pulsar PSR J1023+0038. While the surface magnetic field of a typical neutron star (NS) in an LMXB is lower by more than four orders of magnitude than the much more intense fields of neutron stars accompanying high-mass binaries, the radius at which the matter inflow is truncated in an NS-LMXB system is much smaller. The magnetic field at the magnetospheric interface is then orders of magnitude larger at this interface, and as consequence, so is the power to accelerate electrons. We demonstrate that the cooling of the accelerated electron population takes place mainly through synchrotron interaction with the magnetic field permeating the interface, and through inverse Compton losses due to the interaction between the electrons and the synchrotron photons they emit. We found that self-synchrotron Compton processes can explain the high-energy phenomenology of XSS J12270-4859.

  3. High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.

    Science.gov (United States)

    Stolyarova, V L; Shilov, A L; Lopatin, S I; Shugurov, S M

    2014-04-15

    Binary glass-forming systems containing bismuth(III) oxide, especially the Bi2O3-SiO2 system, are of great importance in modern materials science: preparation of thin films, fiber optics, potential solar converters, and radiation shields in nuclear physics. Information on vaporization processes and thermodynamic properties obtained in the present study and the results of modeling of this system will be useful for optimization of the synthesis and applications of Bi2O3-containing materials at high temperatures. High-temperature Knudsen effusion mass spectrometry was used to study the vaporization processes and to determine the partial pressures of components of the Bi2O3-SiO2 system. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two iridium-plated molybdenum effusion cells containing the sample under study and pure bismuth(III) oxide (reference substance). Modeling of the thermodynamic properties and structure of glasses and melts in the Bi2O3-SiO2 and Bi2O3-B2O3 systems was performed using a modified approach based on the generalized lattice theory of associated solutions (GLTAS). At a temperature of 1000 K, Bi and O2 were found to be the main vapor species over the samples studied. The Bi2O3 activity as a function of composition of the Bi2O3-SiO2 system was obtained from the measured partial pressures of the vapor species. The thermodynamic properties of mixing from oxides in this system were calculated. The advantages of GLTAS for modeling of glasses and melts in the binary systems containing Bi2O3 were demonstrated. The thermodynamic functions of mixing in glasses and melts of the Bi2O3-SiO2 system determined at 1000 K in the present study, as well as in the Bi2O3-B2O3 system, demonstrated negative deviations from ideality. Modeling of the obtained experimental data using GLTAS allowed a correlation to be found between the thermodynamic properties and the relative number of bonds of various types formed in

  4. New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.

    Science.gov (United States)

    Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph

    2013-05-31

    An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties.

  5. Interactions in Massive Colliding Wind Binaries

    Directory of Open Access Journals (Sweden)

    Michael F. Corcoran

    2012-03-01

    Full Text Available There are observational difficulties determining dynamical masses of binary star components in the upper HR diagram both due to the scarcity of massive binary systems and spectral and photometric contamination produced by the strong wind outflows in these systems. We discuss how variable X-ray emission in these systems produced by wind-wind collisions in massive binaries can be used to constrain the system parameters, with application to two important massive binaries, Eta Carinae and WR 140.

  6. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  7. Detection Rates for Close Binaries via Microlensing

    Science.gov (United States)

    Gaudi, B. Scott; Gould, Andrew

    1997-06-01

    Microlensing is one of the most promising methods of reconstructing the stellar mass function down to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the presence of unresolved binaries, which can, in principle, significantly alter the inferred mass function. Here we quantify the fraction of binaries that can be detected using microlensing, considering specifically the mass ratio and separation of the binary. We find that almost all binary systems with separations greater than b ~ 0.4 of their combined Einstein ring radius are detectable assuming a detection threshold of 3%. For two M dwarfs, this corresponds to a limiting separation of >~1 AU. Since very few observed M dwarfs have companions at separations corrupt the measurements of the mass function. We find that the detectability depends only weakly on the mass ratio. For those events for which individual masses can be determined, we find that binaries can be detected down to b ~ 0.2.

  8. Interannual thermohaline (1979-2014) and nutrient (2002-2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea

    Science.gov (United States)

    Ozer, Tal; Gertman, Isaac; Kress, Nurit; Silverman, Jacob; Herut, Barak

    2017-04-01

    In this study a > 30 years dataset of 1382 CTD casts in the Levantine Basin (LB) was analyzed to examine the thermohaline trends of the Surface ( 0-50 m) and Intermediate ( 150-350 m) Water masses (LSW, LIW). In addition, a 13 years (2002-2014) dataset of 3 deep water stations (> 1000 m) in the eastern Levantine Basin (Haifa Section cruises) that were visited 2-3 times annually was used to explore the relations between the physical and nutrient properties in the LIW. Over the past 30 years the LSW and LIW masses displayed positive long-term trends in salinity of + 0.008 ± 0.006 and + 0.005 ± 0.003 year- 1, respectively, and temperature of + 0.12 ± 0.07 and + 0.03 ± 0.02 °C year- 1, respectively. Decadal variations in salinity and temperature were superimposed on all long-term trends. Throughout the period 2002-2014 nutrient levels in the LIW core and corresponding integrated values of chlorophyll a also varied in nearly opposite phase with temperature and salinity. Furthermore, these variations occurred with a similar decadal periodicity, but with shifted phase with those observed in the Southern Adriatic and North Ionian Seas in the same water mass. The latter were considered to be caused by decadal reversals in the North Ionian Gyre, i.e. Bimodal Oscillation System (BiOS). These results indicate that the thermohaline flux variations attributed to the BiOS mechanism have a significant impact in magnitude on the available nutrients and the dynamics of the eastern basin primary productivity. These results should be taken into consideration in assessing the relative contribution of external nutrient loads in comparison to those attributed to variations in thermohaline fluxes and in the assessment of long-term and interannual primary productivity (chlorophyll a and nutrients) trends in the LB.

  9. Further constraints on neutron star crustal properties in the low-mass X-ray binary 1RXS J180408.9-342058

    Science.gov (United States)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Ootes, L.; Page, D.

    2018-05-01

    We report on two new quiescent XMM-Newton observations (in addition to the earlier Swift/XRT and XMM-Newton coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9-342058. Its crust was heated during the ˜4.5 month accretion outburst of the source. From our quiescent observations, fitting the spectra with a neutron star atmosphere model, we found that the crust had cooled from ˜100 to ˜73 eV from ˜8 to ˜479 d after the end of its outburst. However, during the most recent observation, taken ˜860 d after the end of the outburst, we found that the crust appeared not to have cooled further. This suggested that the crust had returned to thermal equilibrium with the neutron star core. We model the quiescent thermal evolution with the theoretical crustal cooling code NSCool and find that the source requires a shallow heat source, in addition to the standard deep crustal heating processes, contributing ˜0.9 MeV per accreted nucleon during outburst to explain its observed temperature decay. Our high quality XMM-Newton data required an additional hard component to adequately fit the spectra. This slightly complicates our interpretation of the quiescent data of 1RXS J180408.9-342058. The origin of this component is not fully understood.

  10. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    Energy Technology Data Exchange (ETDEWEB)

    Van den Berg, Maureen; Fridriksson, Joel K. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Homan, Jeroen [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02139 (United States); Linares, Manuel, E-mail: M.C.vandenBerg@uva.nl [Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n, La Laguna, E-38205, S/C de Tenerife (Spain)

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelette spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.

  11. Phase-resolved spectroscopy of the low-mass X-ray binary system 4U 1636-536/V801 Ara

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Brauer, Kaley; Peris, Charith; Boroson, Bram; McCollough, Michael

    2017-08-01

    4U1636-543/V801 Ara observations covering the full binary orbit of 3.8 days were obtained with the IMACS instrument on the 6.5m Walter Baade Telescope at Las Campanas. Our tomograms of the system in H-alpha and H-beta clearly detect the accretion disk but the disk is not centered on the center-of-mass of the neutron star. This offset has been seen also in the persistent NS LMXB, X1822-371 and implies disk precession. Instead of a hot spot as is expected at the point where the accretion stream hits the disk these tomograms show enhanced emission below this region. Lack of a hot spot and emission at a further point on the disk implies a gas stream interaction downstream of the hot spot as also seen in X1822-371 and other similar systems (eg EXO0748-676). The radial velocity curve of H-alpha does not show strong orbital modulation which is consistent with emission dominated by the disk. The radial velocity curves of the Bowen blend show strong modulation at the orbital period as expected for emission originating on the secondary and the tomogram suggests emission from the heated side of the secondary.

  12. A TEST OF THE NATURE OF THE FE K LINE IN THE NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chia-Ying; Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI 48202 (United States); Miller, Jon M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI48109-1046 (United States); Barret, Didier [Universite de Toulouse, UPS-OMP, Toulouse (France); Fabian, Andy C.; Parker, Michael L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); D’Aì, Antonino [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Bhattacharyya, Sudip [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Burderi, Luciano [Dipartimento di Fisica, Università degli Studi di Cagliari, SP Monserrato-Sestu, KM 0.7, I-09042 Monserrato (Italy); Salvo, Tiziana Di; Iaria, Rosario [Dipartimento di Fisica e Chimica, Universitá di Palermo, via Archirafi 36, I-90123 Palermo (Italy); Egron, Elise [INAF-Osservatorio Astronomico di Cagliari, via della Scienza 5, I-09047 Selargius (Italy); Homan, Jeroen [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Lin, Dacheng [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Miller, M. Coleman, E-mail: ft8320@wayne.edu [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States)

    2016-04-20

    Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems as well as in neutron star systems. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk which is broadened by strong relativistic effects. However, the nature of the lines in neutron star low-mass X-ray binaries (LMXBs) has been a matter of debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of Serpens X-1. The observation was taken under the “continuous clocking” mode, and thus was free of photon pile-up effects. We carry out a systematic analysis and find that the blurred reflection model fits the Fe line of Serpens X-1 significantly better than a broad Gaussian component does, implying that the relativistic reflection scenario is much preferred. Chandra HETGS also provides a highest spectral resolution view of the Fe K region and we find no strong evidence for additional narrow lines.

  13. Supergiant fast X-ray transients versus classical supergiant high mass X-ray binaries: Does the difference lie in the companion wind?

    Science.gov (United States)

    Pradhan, P.; Bozzo, E.; Paul, B.

    2018-02-01

    We present a comparative study of stellar winds in classical supergiant high mass X-ray binaries (SgXBs) and supergiant fast X-ray transients (SFXTs) based on the analysis of publicly available out-of-eclipse observations performed with Suzaku and XMM-Newton. Our data set includes 55 observations of classical SgXBs and 21 observations of SFXTs. We found that classical SgXBs are characterized by a systematically higher absorption and luminosity compared to the SFXTs, confirming the results of previous works in the literature. Additionally, we show that the equivalent width of the fluorescence Kα iron line in the classical SgXBs is significantly larger than that of the SFXTs (outside X-ray eclipses). Based on our current understanding of the physics of accretion in these systems, we conclude that the most likely explanation of these differences is ascribed to the presence of mechanisms inhibiting accretion most of the time in SFXTs, thereby leading to a much less efficient photoionization of the stellar wind compared to classical SgXBs. We do not find evidence for the previously reported anticorrelation between the equivalent width of the fluorescence iron line and the luminosity of SgXBs.

  14. ON THE EVOLUTION OF THE INNER DISK RADIUS WITH FLUX IN THE NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chia-Ying; Morgan, Robert A.; Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock, Detroit, MI 48202 (United States); Miller, Jon M. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1046 (United States); Bhattacharyya, Sudip [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Strohmayer, Tod E., E-mail: ft8320@wayne.edu [X-Ray Astrophysics Lab, Astrophysics Science Division, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-11-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of ∼8 R {sub G}, which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L / L {sub Edd} ∼ 0.4–0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  15. On the Evolution of the Inner Disk Radius with Flux in the Neutron Star Low-mass X-Ray Binary Serpens X-1

    Science.gov (United States)

    Chiang, Chia - Ying; Morgan, Robert A.; Cackett, Edward M.; Miller, Jon M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2016-01-01

    We analyze the latest Suzaku observation of the bright neutron star (NS) low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of approx. 8 R(sub G), which gives an upper limit on the size of the NS. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of L/L(sub Edd) approx. 0.4-0.6, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside of the innermost stable circular orbit by the boundary layer, rather than the stellar magnetic field.

  16. Diverse Long-term Variability of Five Candidate High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Energy Technology Data Exchange (ETDEWEB)

    Corbet, Robin H. D. [University of Maryland, Baltimore County, MD 21250 (United States); Coley, Joel B. [NASA Postdoctoral Program, and Astroparticle Physics Laboratory, Code 661 NASA Goddard Space Flight Center, Greenbelt Road, MD 20771 (United States); Krimm, Hans A., E-mail: corbet@umbc.edu [Universities Space Research Association, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044 (United States)

    2017-09-10

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton . Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ∼30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  17. Momentum flow in black-hole binaries. II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins

    International Nuclear Information System (INIS)

    Lovelace, Geoffrey; Chen Yanbei; Cohen, Michael; Kaplan, Jeffrey D.; Keppel, Drew; Matthews, Keith D.; Nichols, David A.; Scheel, Mark A.; Sperhake, Ulrich

    2010-01-01

    Research on extracting science from binary-black-hole (BBH) simulations has often adopted a 'scattering matrix' perspective: given the binary's initial parameters, what are the final hole's parameters and the emitted gravitational waveform? In contrast, we are using BBH simulations to explore the nonlinear dynamics of curved spacetime. Focusing on the head-on plunge, merger, and ringdown of a BBH with transverse, antiparallel spins, we explore numerically the momentum flow between the holes and the surrounding spacetime. We use the Landau-Lifshitz field-theory-in-flat-spacetime formulation of general relativity to define and compute the density of field energy and field momentum outside horizons and the energy and momentum contained within horizons, and we define the effective velocity of each apparent and event horizon as the ratio of its enclosed momentum to its enclosed mass-energy. We find surprisingly good agreement between the horizons' effective and coordinate velocities. During the plunge, the holes experience a frame-dragging-induced acceleration orthogonal to the plane of their spins and their infall ('downward'), and they reach downward speeds of order 1000 km/s. When the common apparent horizon forms (and when the event horizons merge and their merged neck expands), the horizon swallows upward field momentum that resided between the holes, causing the merged hole to accelerate in the opposite ('upward') direction. As the merged hole and the field energy and momentum settle down, a pulsational burst of gravitational waves is emitted, and the merged hole has a final effective velocity of about 20 km/s upward, which agrees with the recoil velocity obtained by measuring the linear momentum carried to infinity by the emitted gravitational radiation. To investigate the gauge dependence of our results, we compare generalized harmonic and Baumgarte-Shapiro-Shibata-Nakamura-moving-puncture evolutions of physically similar initial data; although the generalized

  18. Production of intermediate vector bosons W and Z in proton and anti-protons interactions at 540 GeV in the center of mass

    International Nuclear Information System (INIS)

    Locci, E.

    1984-06-01

    The most important and the most expected result of the s = 540 GeV pantip collider at CERN is the proof of the existence of the weak intermediate bosons W +- and Z 0 , and the study of their properties. This study in the UA1 experiment is presented. 52W + (W - )→e + (e - )νsub(e)(antiνsub(e)) and 4 Z 0 → e + e - have been produced. Their measured masses are Msub(W) = 80.9sub(-1.4)sup(+0.6) GeV/c 2 et Msub(Z) = 95.6 +- 1.4 GeV/c 2 . Their properties are entirely consistent with the ''standard model'' and their characteristics of production are consistent with QCD expectations. The relative numbers of W → eνsub(e) and Z → e + e - , as well as the width of the Z, give an upper limit of the number of ''generations'' [fr

  19. Mass spectrometric identification of intermediates in the O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR.

    Science.gov (United States)

    Crack, Jason C; Thomson, Andrew J; Le Brun, Nick E

    2017-04-18

    The iron-sulfur cluster containing protein Fumarate and Nitrate Reduction (FNR) is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O 2 that leads to conversion to a [2Fe-2S] form with loss of high-affinity DNA binding. Here, we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a [3Fe-3S] cluster and persulfide-coordinated [2Fe-2S] clusters [[2Fe-2S](S) n , where n = 1 or 2]. Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion and not as a subsequent, secondary reaction to generate [2Fe-2S](S) n species. This methodology shows great potential for broad application to studies of protein cofactor-small molecule interactions.

  20. The Age of Upper Scorpius from Eclipsing Binaries

    Science.gov (United States)

    David, Trevor; Hillenbrand, Lynne

    2018-01-01

    The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning astrophysical timescales. Classical estimates of the association age based on the kinematics of high-mass members and a Hertzsprung-Russell (H-R) diagram of the full stellar population established an age of 5 Myr. However, recent analyses based on the H-R diagram for intermediate- and high-mass members suggest an older age of 11 Myr. Importantly, the H-R diagram ages of stars in Upper Scorpius (and other clusters of a similar age) are mass-dependent, such that low-mass members appear younger than their high-mass counterparts. Here we report an age that is self-consistent in the mass range of 0.3–5 M⊙, and based on the fundamentally-determined masses and radii of eclipsing binaries (EBs). We present nine EBs in Upper Scorpius, four of which are newly reported here and all of which were discovered from K2 photometry. Joint fitting of the eclipse photometry and radial velocities from newly acquired Keck-I/HIRES spectra yields precise masses and radii for those systems that are spectroscopically double-lined. We identify one of the EB components as a slowly pulsating B-star. We use these EBs to develop an empirical mass-radius relation for pre-main-sequence stars, and to evaluate the predictions of widely-used stellar evolutionary models. Our results are consistent with previous studies that indicate most models underestimate the masses of low-mass stars by tens of percent based on H-R diagram analyses. Models including the effects of magnetic fields produce better agreement between the observed bulk and radiative parameters of these young, low-mass stars. From the orbital elements and photometrically inferred rotation periods, we consider the dynamical states of several binaries and compare with expectations from tidal dissipation theories.

  1. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Sebastien; Rutledge, Robert E. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H2X-3R4 (Canada); Servillat, Mathieu [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Universite Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Webb, Natalie A., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2013-07-20

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter-present in the core of NSs-is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R{sub NS}, are quasi-constant (within measurement errors, of {approx}10%) for astrophysically relevant masses (M{sub NS}>0.5 M{sub Sun }). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R{sub NS} value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R{sub NS}, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R{sub NS}=9.1{sup +1.3}{sub -1.5} km (90%-confidence). Such a value is consistent with low-R{sub NS} equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  2. Measurement of the masses of the neutron star, Her X-1, and its binary companion, HZ Her, as derived from the study of 1. 24-second optical pulsations from the Hz Her - Her X-1 binary system and the x ray-to-optical reprocessing reflection and transmission mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Middleditch, J.

    1975-10-01

    Intermittent optical pulsations at the 0.1--0.3 percent level have been detected from this binary system in over 500 hours of optical observations. These pulsations are present only for well defined values of the 1.7-day (binary) and 35-day phases. Positions of the pulsation-emitting regions, projected onto the orbital plane, have been measured and three distinct regions have been resolved. A simple model is put forth which accounts for the observed binary behavior, which gives a direct determination of the mass ratio, M/sub HZ Her//M/sub Her X-1/ = 1.69 +- 0.05, and which establishes that the spin of the pulsar is prograde. Additionally it is shown that HZ Her fills its critical Roche lobe. Using the above, the known x ray eclipse duration, and the mass function, the orbital inclination is calculated to be i = 85/sup 0/ +- 5/sup 0/ and the masses to be M/sub Her X-1/ = 1.28 +- 0.08 M/sub solar/ and M/sub HZ Her/ = 2.16 +- 0.07 M/sub solar/. Constraints on the physical parameters of the accretion stream and disk are derived from the data. The nature of the 35-day modulation of the data is discussed in relation to various models.

  3. Measurement of the masses of the neutron star, Her X-1, and its binary companion, HZ Her, as derived from the study of 1.24-second optical pulsations from the Hz Her - Her X-1 binary system and the x ray-to-optical reprocessing reflection and transmission mechanisms

    International Nuclear Information System (INIS)

    Middleditch, J.

    1975-10-01

    Intermittent optical pulsations at the 0.1--0.3 percent level have been detected from this binary system in over 500 hours of optical observations. These pulsations are present only for well defined values of the 1.7-day (binary) and 35-day phases. Positions of the pulsation-emitting regions, projected onto the orbital plane, have been measured and three distinct regions have been resolved. A simple model is put forth which accounts for the observed binary behavior, which gives a direct determination of the mass ratio, M/sub HZ Her//M/sub Her X-1/ = 1.69 +- 0.05, and which establishes that the spin of the pulsar is prograde. Additionally it is shown that HZ Her fills its critical Roche lobe. Using the above, the known x ray eclipse duration, and the mass function, the orbital inclination is calculated to be i = 85 0 +- 5 0 and the masses to be M/sub Her X-1/ = 1.28 +- 0.08 M/sub solar/ and M/sub HZ Her/ = 2.16 +- 0.07 M/sub solar/. Constraints on the physical parameters of the accretion stream and disk are derived from the data. The nature of the 35-day modulation of the data is discussed in relation to various models

  4. Time lags of the kilohertz quasi-periodic oscillations in the low-mass X-ray binaries 4U 1608-52 and 4U 1636-53

    NARCIS (Netherlands)

    de Avellar, M. G. B.; Méndez, M.; Sanna, A.; Horvath, J. E.

    2014-01-01

    We studied the time lags and the coherence of the X-ray light curves of the neutron star low mass X-ray binaries 4U 1608-52 and 4U 1636-53. These quantities are frequency-dependent measures of the time or phase delay and of the degree of linear correlation between two X-ray light curves in two

  5. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  6. On the Maximum Separation of Visual Binaries

    Indian Academy of Sciences (India)

    2016-01-27

    minimum) angular separation ρmax(ρmin), the corresponding apparent position angles (|ρmax , |ρmin) and the individual masses of visual binary systems. The algorithm uses Reed's formulae (1984) for the masses, and a ...

  7. SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS OF MAGNETIC ACTIVITY IN ULTRACOOL DWARFS. IV. THE ACTIVE, YOUNG BINARY NLTT 33370 AB (= 2MASS J13142039+1320011)

    International Nuclear Information System (INIS)

    Williams, P. K. G.; Berger, E.; Irwin, J.; Charbonneau, D.; Berta-Thompson, Z. K.

    2015-01-01

    We present multi-epoch simultaneous radio, optical, Hα, UV, and X-ray observations of the active, young, low-mass binary NLTT 33370 AB (blended spectral type M7e). This system is remarkable for its extreme levels of magnetic activity: it is the most radio-luminous ultracool dwarf (UCD) known, and here we show that it is also one of the most X-ray luminous UCDs known. We detect the system in all bands and find a complex phenomenology of both flaring and periodic variability. Analysis of the optical light curve reveals the simultaneous presence of two periodicities, 3.7859 ± 0.0001 and 3.7130 ± 0.0002 hr. While these differ by only ∼2%, studies of differential rotation in the UCD regime suggest that it cannot be responsible for the two signals. The system's radio emission consists of at least three components: rapid 100% polarized flares, bright emission modulating periodically in phase with the optical emission, and an additional periodic component that appears only in the 2013 observational campaign. We interpret the last of these as a gyrosynchrotron feature associated with large-scale magnetic fields and a cool, equatorial plasma torus. However, the persistent rapid flares at all rotational phases imply that small-scale magnetic loops are also present and reconnect nearly continuously. We present a spectral energy distribution of the blended system spanning more than 9 orders of magnitude in wavelength. The significant magnetism present in NLTT 33370 AB will affect its fundamental parameters, with the components' radii and temperatures potentially altered by ∼+20% and ∼–10%, respectively. Finally, we suggest spatially resolved observations that could clarify many aspects of this system's nature

  8. Testing theory of binary evolution with interacting binary stars

    Science.gov (United States)

    Ergma, E.; Sarna, M. J.

    2002-01-01

    Of particular interest to us is the study of mass loss and its influence on the evolution of a binary systems. For this we use theoretical evolutionary models, which include: mass accretion, mass loss, novae explosion, super--efficient wind, and mixing processes. To test our theoretical prediction we proposed to determine the 12C / 13C ratio via measurements of the 12CO and 13CO bands around 2.3 micron. The available observations (Exter at al. 2001, in preparation) show good agreement with the theoretical predictions (Sarna 1992), for Algol-type binaries. Our preliminary estimates of the isotopic ratios for pre-CV's and CV's (Catalan et al. 2000, Dhillon et al. 2001) agree with the theoretical predictions from the common--envelope binary evolution models by Sarna et al. (1995). For the SXT we proposed (Ergma & Sarna 2001) similar observational test, which has not been done yet.

  9. X-ray follow-ups of XSS J12270-4859: a low-mass X-ray binary with gamma-ray Fermi-LAT association

    Science.gov (United States)

    de Martino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Mukai, K.; Possenti, A.

    2013-02-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9-4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity low-mass X-ray binary (LMXB), but its nature is still unclear. Aims: To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods: We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results: The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d1 kpc2 erg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at ~13 kK and a cool one at ~4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (≳6 h) also suggests a longer orbital period than previously estimated. Conclusions: The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact

  10. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Zhang, Lin-Ping; Lin, Xiao-Yan; Zhu, Zhi-Wei; Chen, Ming-Xue

    2016-06-17

    A high-throughput method was developed using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) for the profiling and quantification of 43 phytohormones and their major metabolites, including auxins, abscisic acid, jasmonic acid, salicylic acid, cytokinins and gibberellins in a single sample extract. Considerable matrix effects (MEs) were observed (with most ME values in the range of 29%-84%, but maximum MEs of more than 115%, even up to 206%, existed) in sample extracts for most of the compounds studied. The application of the proposed binary solid-phase extraction using polymer anion and polymer cation exchange resins, was performed to purify 25 acidic and 18 alkaline phytohormones and their major metabolites prior to the LC-MS/MS analysis, which markedly reduced the MEs to acceptable levels, with ME values in the range of ±15%. Moreover, all of the isomers of cytokinins and their metabolites were fully separated on a sub-2μm particle C18 reverse-phase column with the optimized mobile phase consisting of methanol and 5mM ammonium formate. The method showed good linearity for all 43 analytes with regression coefficients (R(2))>0.991. Limits of detection ranged from 0.19 to 7.57 fmol for auxin, gibberellins, abscisic acid and their metabolites, 29.7 fmol for jasmonic acid, 18.1 fmol for salicylic acid, and from 0.03 to 0.31 fmol for cytokinins and their metabolites. The mean recoveries for all of the analytes were from 70.7 to 118.5%, and the inter-day precisions (n=6) were less than 18.7%, with intra-day precisions (n=6) within 25.4%. Finally, 20 compounds were successfully quantified in rice sample profiles using the proposed method, which will greatly facilitate the understanding of hormone-related regulatory networks that influence rice growth and development. To our knowledge, there are limited reports that measure this level of phytohormone species in rice samples using a single analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  12. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  13. Detecting Black Hole Binaries by Gaia

    OpenAIRE

    Yamaguchi, Masaki S.; Kawanaka, Norita; Bulik, Tomasz; Piran, Tsvi

    2017-01-01

    We study the prospect of the Gaia satellite to identify black hole binary systems by detecting the orbital motion of the companion stars. Taking into account the initial mass function, mass transfer, common envelope phase, interstellar absorption and identifiability of black holes, we estimate the number of black hole binaries detected by Gaia and their distributions with respect to the black hole mass for several models with different parameters. We find that $\\sim 300-6000$ black hole binar...

  14. The chemical evolution of the solar neighbourhood: the effect of binaries

    Science.gov (United States)

    De Donder, E.; Vanbeveren, D.

    2002-03-01

    In this paper we compute the time evolution of the elements ( 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ca and 56Fe) and of the supernova rates in the solar neighbourhood by means of a galactic chemical evolutionary code that includes in detail the evolution of both single and binary stars. Special attention is payed to the formation of black holes. Our main conclusions: in order to predict the galactic time evolution of the different types of supernovae, it is essential to compute in detail the evolution of the binary population, the observed time evolution of carbon is better reproduced by a galactic model where the effect is included of a significant fraction of intermediate mass binaries, massive binary mass exchange provides a possible solution for the production of primary nitrogen during the very early phases of galactic evolution, chemical evolutionary models with binaries or without binaries but with a detailed treatment of the SN Ia progenitors predict very similar age-metallicity relations and very similar G-dwarf distributions whereas the evolution of the yields as function of time of the elements 4He, 16O, 20Ne, 24Mg, 28Si, 32S and 40Ca differ by no more than a factor of two or three, the observed time evolution of oxygen is best reproduced when most of the oxygen produced during core helium burning in ALL massive stars serves to enrich the interstellar medium. This can be used as indirect evidence that (massive) black hole formation in single stars and binary components is always preceded by a supernova explosion.

  15. Discovery of Psr J1227-4853: A Transition from a Low-mass X-Ray Binary to a Redback Millisecond Pulsar

    NARCIS (Netherlands)

    Roy, J.; Ray, P.S.; Bhattacharyya, B.; Stappers, B.; Chengalur, J.N.; Deneva, J.; Camilo, F.; Johnson, T.J.; Wolff, M.; Hessels, J.W.T.; Bassa, C.G.; Keane, E.F.; Ferrara, E.C.; Harding, A.K.; Wood, K.S.

    2015-01-01

    XSS J12270−4859 is an X-ray binary associated with the Fermi Large Area Telescope gamma-ray source 1FGL J1227.9−4852. In 2012 December, this source underwent a transition where the X-ray and optical luminosity dropped and the spectral signatures of an accretion disk disappeared. We report the

  16. Instabilities in Interacting Binary Stars

    Science.gov (United States)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other

  17. BPASS predictions for binary black hole mergers

    Science.gov (United States)

    Eldridge, J. J.; Stanway, E. R.

    2016-11-01

    Using the Binary Population and Spectral Synthesis code, BPASS, we have calculated the rates, time-scales and mass distributions for binary black hole (BH) mergers as a function of metallicity. We consider these in the context of the recently reported first Laser Interferometer Gravitational-Wave Observatory (LIGO) event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z = 0.010 (Z ≳ 0.5 Z⊙). Binary BH merger events with the reported masses are most likely in populations below 0.008 (Z ≲ 0.4 Z⊙). Events of this kind can occur at all stellar population ages from 3 Myr up to the age of the Universe, but constitute only 0.1-0.4 per cent of binary BH mergers between metallicities of Z = 0.001 and 0.008. However at metallicity Z = 10-4, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity, the progenitor merger times can be close to ≈10 Gyr and rotationally mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the BHs in the binary progenitor of GW 150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.

  18. Statistical properties of spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    As part of a study of the mass-ratio distribution of spectroscopic binary stars, the statistical properties of the systems in the Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Stars, compiled by Batten et al. (1989), are investigated. Histograms are presented of the

  19. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    Science.gov (United States)

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  20. The Sloan Lens ACS Survey. XI. Beyond Hubble Resolution : Size, Luminosity, and Stellar Mass of Compact Lensed Galaxies at Intermediate Redshift

    NARCIS (Netherlands)

    Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphaeel; Bolton, Adam S.; Koopmans, Leon V. E.; Moustakas, Leonidas A.

    We exploit the strong lensing effect to explore the properties of intrinsically faint and compact galaxies at intermediate redshift (z(s) similar or equal to 0.4-0.8) at the highest possible resolution at optical wavelengths. Our sample consists of 46 strongly lensed emission line galaxies (ELGs)

  1. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  2. EVOLUTION OF THE BINARY FRACTION IN DENSE STELLAR SYSTEMS

    International Nuclear Information System (INIS)

    Fregeau, John M.; Ivanova, Natalia; Rasio, Frederic A.

    2009-01-01

    Using our recently improved Monte Carlo evolution code, we study the evolution of the binary fraction in globular clusters. In agreement with previous N-body simulations, we find generally that the hard binary fraction in the core tends to increase with time over a range of initial cluster central densities for initial binary fractions ∼<90%. The dominant processes driving the evolution of the core binary fraction are mass segregation of binaries into the cluster core and preferential destruction of binaries there. On a global scale, these effects and the preferential tidal stripping of single stars tend to roughly balance, leading to overall cluster binary fractions that are roughly constant with time. Our findings suggest that the current hard binary fraction near the half-mass radius is a good indicator of the hard primordial binary fraction. However, the relationship between the true binary fraction and the fraction of main-sequence stars in binaries (which is typically what observers measure) is nonlinear and rather complicated. We also consider the importance of soft binaries, which not only modify the evolution of the binary fraction, but can also drastically change the evolution of the cluster as a whole. Finally, we briefly describe the recent addition of single and binary stellar evolution to our cluster evolution code.

  3. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    Science.gov (United States)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  4. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  5. Microlensing Binaries Discovered through High-magnification Channel

    DEFF Research Database (Denmark)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.

    2012-01-01

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturba...

  6. Compact stars and the evolution of binary systems

    NARCIS (Netherlands)

    van den Heuvel, E.P.J.

    2011-01-01

    The Chandrasekhar limit is of key importance for the evolution of white dwarfs in binary systems and for the formation of neutron stars and black holes in binaries. Mass transfer can drive a white dwarf in a binary over the Chandrasekhar limit, which may lead to a Type Ia supernova (in case of a CO

  7. Matter in compact binary mergers

    Science.gov (United States)

    Read, Jocelyn; LIGO Scientific Collaboration, Virgo Scientific Collaboration

    2018-01-01

    Mergers of binary neutron stars or neutron-star/black-hole systems are promising targets for gravitational-wave detection. The dynamics of merging compact objects, and thus their gravitational-wave signatures, are primarily determined by the mass and spin of the components. However, the presence of matter can make an imprint on the final orbits and merger of a binary system. I will outline efforts to understand the impact of neutron-star matter on gravitational waves, using both theoretical and computational input, so that gravitational-wave observations can be used to measure the properties of source systems with neutron-star components.

  8. Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production

    Science.gov (United States)

    Liao, Chun-fa; Jiao, Yun-fen; Wang, Xu; Cai, Bo-qing; Sun, Qiang-chao; Tang, Hao

    2017-09-01

    Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055°C. The temperature ( t) and the addition of Al2O3 ( W(Al2O3)), Sm2O3 ( W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity ( κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature ( t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3): W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.

  9. Arecibo PALFA Survey and Einstein@Home: Binary Pulsar Discovery by Volunteer Computing

    Science.gov (United States)

    Knispel, B.; Lazarus, P.; Allen, B.; Anderson, D.; Aulbert, C.; Bhat, N. D. R.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Fehrmann, H.; Freire, P. C. C.; Hammer, D.; Hessels, J. W. T.; Jenet, F. A.; Kaspi, V. M.; Kramer, M.; van Leeuwen, J.; Lorimer, D. R.; Lyne, A. G.; Machenschalk, B.; McLaughlin, M. A.; Messenger, C.; Nice, D. J.; Papa, M. A.; Pletsch, H. J.; Prix, R.; Ransom, S. M.; Siemens, X.; Stairs, I. H.; Stappers, B. W.; Stovall, K.; Venkataraman, A.

    2011-05-01

    We report the discovery of the 20.7 ms binary pulsar J1952+2630, made using the distributed computing project Einstein@Home in Pulsar ALFA survey observations with the Arecibo telescope. Follow-up observations with the Arecibo telescope confirm the binary nature of the system. We obtain a circular orbital solution with an orbital period of 9.4 hr, a projected orbital radius of 2.8 lt-s, and a mass function of f = 0.15 M sun by analysis of spin period measurements. No evidence of orbital eccentricity is apparent; we set a 2σ upper limit e <~ 1.7 × 10-3. The orbital parameters suggest a massive white dwarf companion with a minimum mass of 0.95 M sun, assuming a pulsar mass of 1.4 M sun. Most likely, this pulsar belongs to the rare class of intermediate-mass binary pulsars. Future timing observations will aim to determine the parameters of this system further, measure relativistic effects, and elucidate the nature of the companion star.

  10. The intermediate endpoint effect in logistic and probit regression

    Science.gov (United States)

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted

  11. Orbital synchronization capture of two binaries emitting gravitational waves

    Science.gov (United States)

    Seto, Naoki

    2018-03-01

    We study the possibility of orbital synchronization capture for a hierarchical quadrupole stellar system composed by two binaries emitting gravitational waves. Based on a simple model including the mass transfer for white dwarf binaries, we find that the capture might be realized for inter-binary distances less than their gravitational wavelength. We also discuss related intriguing phenomena such as a parasitic relation between the coupled white dwarf binaries and significant reductions of gravitational and electromagnetic radiations.

  12. Planck Intermediate Results. XI: The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with Malmquist bias effects......We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo...... indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass...

  13. Binary evolution and observational constraints

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of close binaries is discussed in connection with problems concerning mass and angular momentum losses. Theoretical and observational evidence for outflow of matter, leaving the system during evolution is given: statistics on total masses and mass ratios, effects of the accretion of the mass gaining component, the presence of streams, disks, rings, circumstellar envelopes, period changes, abundance changes in the atmosphere. The effects of outflowing matter on the evolution is outlined, and estimates of the fraction of matter expelled by the loser, and leaving the system, are given. The various time scales involved with evolution and observation are compared. Examples of non conservative evolution are discussed. Problems related to contact phases, on mass and energy losses, in connection with entropy changes are briefly analysed. For advanced stages the disruption probabilities for supernova explosions are examined. A global picture is given for the evolution of massive close binaries, from ZAMS, through WR phases, X-ray phases, leading to runaway pulsars or to a binary pulsar and later to a millisecond pulsar. (Auth.)

  14. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  15. Binary black hole late inspiral: Simulations for gravitational wave observations

    International Nuclear Information System (INIS)

    Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; Meter, James R. van; Choi, Dae-Il; Koppitz, Michael

    2007-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Until recently it has been impossible to reliably derive the predictions of general relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late-inspiral stage on orbits with very low eccentricity and evolve for ∼1200M through ∼7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass ∼14 cycle before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to post-Newtonian (PN) calculations for the earlier parts of the inspiral provides a combined waveform with less than one cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform, which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR > or approx. 10 for some intermediate mass binary black holes (IMBBHs) out to z∼1, and that LISA can see massive binary black holes (MBBHs) in the range 3x10 4 · 7 at SNR>100 out to the earliest epochs of structure formation at z>15

  16. Seismic probing of the first dredge-up event through the eccentric red-giant and red-giant spectroscopic binary KIC 9163796. How different are red-giant stars with a mass ratio of 1.015?

    Science.gov (United States)

    Beck, P. G.; Kallinger, T.; Pavlovski, K.; Palacios, A.; Tkachenko, A.; Mathis, S.; García, R. A.; Corsaro, E.; Johnston, C.; Mosser, B.; Ceillier, T.; do Nascimento, J.-D.; Raskin, G.

    2018-04-01

    Context. Binaries in double-lined spectroscopic systems (SB2) provide a homogeneous set of stars. Differences of parameters, such as age or initial conditions, which otherwise would have strong impact on the stellar evolution, can be neglected. The observed differences are determined by the difference in stellar mass between the two components. The mass ratio can be determined with much higher accuracy than the actual stellar mass. Aim. In this work, we aim to study the eccentric binary system KIC 9163796, whose two components are very close in mass and both are low-luminosity red-giant stars. Methods: We analysed four years of Kepler space photometry and we obtained high-resolution spectroscopy with the Hermes instrument. The orbital elements and the spectra of both components were determined using spectral disentangling methods. The effective temperatures, and metallicities were extracted from disentangled spectra of the two stars. Mass and radius of the primary were determined through asteroseismology. The surface rotation period of the primary is determined from the Kepler light curve. From representative theoretical models of the star, we derived the internal rotational gradient, while for a grid of models, the measured lithium abundance is compared with theoretical predictions. Results: From seismology the primary of KIC 9163796 is a star of 1.39 ± 0.06 M⊙, while the spectroscopic mass ratio between both components can be determined with much higher precision by spectral disentangling to be 1.015 ± 0.005. With such mass and a difference in effective temperature of 600 K from spectroscopy, the secondary and primary are, respectively, in the early and advanced stage of the first dredge-up event on the red-giant branch. The period of the primary's surface rotation resembles the orbital period within ten days. The radial rotational gradient between the surface and core in KIC 9163796 is found to be 6.9-1.0+2.0. This is a low value but not exceptional if

  17. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Allende Prieto, Carlos, E-mail: wbrown@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain)

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  18. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos

    2013-01-01

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ≤ 1 day) binaries. Our sample includes four objects with remarkable log g ≅ 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M ☉ companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  19. The 'WN + WC' Wolf-Rayet stars MR 111 and GP CEP - Spectrum binaries or missing links?

    Science.gov (United States)

    Massey, Philip; Grove, Kjirsten

    1989-09-01

    MR 111 and GP Cep are two Wolf-Rayet stars classified as 'WN + WC', showing emission features of both the nitrogen and carbon sequences. They are also both known spectroscopic binaries, providing an excellent opportunity to determine whether the WN and WC features arise in two stars or in a single 'transition' object whose composition is intermediate between that of WN and WC stars. A radial velocity study of the C IV 5806A and N IV 7107A lines shows that these two lines vary in phase, and that therefore both sets of emission lines are produced in a single object in each of these two systems. In addition, an orbit solution is given for MR 111. If the mass of the W-R star is like that known in other binary systems, then the mass of the as-yet undetected companion is at least 15 solar masses, consistent with that of other W-R binaries. The mass of companion must be greater than that of the W-R component, unless the W-R star is very massive (m greater than 40 solar masses).

  20. Progenitor models of Wolf-Rayet+O binary systems

    NARCIS (Netherlands)

    Petrovic, J.; Langer, N.

    2007-01-01

    Since close WR+O binaries are the result of a strong interaction of both stars in massive close binary systems, they can be used to constrain the highly uncertain mass and angular momentum budget during the major mass- transfer phase. We explore the progenitor evolution of the three best suited WR+O

  1. Solving a binary puzzle

    NARCIS (Netherlands)

    P.H. Utomo (Putranto); R.H. Makarim (Rusydi)

    2017-01-01

    textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and

  2. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  3. The Evolution of Compact Binary Star Systems

    Directory of Open Access Journals (Sweden)

    Yungelson, Lev R.

    2006-12-01

    Full Text Available We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs, neutron stars (NSs, and black holes (BHs. Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA. Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  4. Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. I. Dispersing and Rotating Core around the Intermediate-Mass Protostar MMS 7

    Science.gov (United States)

    Takahashi, Satoko; Saito, Masao; Takakuwa, Shigehisa; Kawabe, Ryohei

    2006-11-01

    We report the results of H13CO+ (1-0), CO (1-0), and 3.3 mm dust continuum observations toward MMS 7, one of the strongest millimeter-wave sources in OMC-3, with the Nobeyama Millimeter Array (NMA) and the Nobeyama 45 m telescope. With the NMA, we detected centrally condensed 3.3 mm dust continuum emission, which coincides with the mid-infrared (MIR) source and the free-free jet. Our H13CO+ observations revealed a disklike envelope around MMS 7, whose size and mass are 0.15×0.11 pc and 5.1 Msolar, respectively. The outer portion of the disklike envelope has a fan-shaped structure, which delineates the rim of the observed CO outflow. The position-velocity diagrams in the H13CO+ (1-0) emission show that the velocity field in the disklike envelope is composed of a dispersing gas motion and a possible rigid-like rotation. The mass-dispersing rate is estimated to be 3.4×10-5 Msolar yr-1, which implies that MMS 7 has an ability to disperse ~10 Msolar during the protostellar evolutional time. The specific angular momentum in the disklike envelope is nearly 2 orders of magnitude larger than that in low-mass cores. The turnover point of the power law of the angular momentum distribution in the disklike envelope (Sports, Science, and Technology of Japan.

  5. On the production of He, C, and N by low- and intermediate-mass stars: a comparison of observed and model-predicted planetary nebula abundances

    Science.gov (United States)

    Henry, R. B. C.; Stephenson, B. G.; Miller Bertolami, M. M.; Kwitter, K. B.; Balick, B.

    2018-01-01

    The primary goal of this paper is to make a direct comparison between the measured and model-predicted abundances of He, C, and N in a sample of 35 well-observed Galactic planetary nebulae (PNe). All observations, data reductions, and abundance determinations were performed in house to ensure maximum homogeneity. Progenitor star masses (M ≤ 4 M⊙) were inferred using two published sets of post-asymptotic giant branch model tracks and L and Teff values. We conclude the following: (1) the mean values of N/O across the progenitor mass range exceeds the solar value, indicating significant N enrichment in the majority of our objects; (2) the onset of hot bottom burning appears to begin around 2 M⊙, i.e. lower than ∼5 M⊙ implied by theory; (3) most of our objects show a clear He enrichment, as expected from dredge-up episodes; (4) the average sample C/O value is 1.23, consistent with the effects of third dredge up; and (5) model grids used to compare to observations successfully span the distribution over metallicity space of all C/O and many He/H data points but mostly fail to do so in the case of N/O. The evident enrichment of N in PN and the general discrepancy between the observed and model-predicted N/O abundance ratios signal the need for extra mixing as an effect of rotation and/or thermohaline mixing in the models. The unexpectedly high N enrichment that is implied here for low-mass stars, if confirmed, will likely impact our conclusions about the source of N in the Universe.

  6. Black Hole Mass Determination In the X-Ray Binary 4U 1630-47: Scaling of Spectral and Variability Characteristics

    Science.gov (United States)

    Seifina, Elena; Titarchuk, Lev; Shaposhnikov, Nikolai

    2014-01-01

    We present the results of a comprehensive investigation on the evolution of spectral and timing properties of the Galactic black hole candidate 4U 1630-47 during its spectral transitions. In particular, we show how a scaling of the correlation of the photon index of the Comptonized spectral component gamma with low-frequency quasi-periodic oscillations (QPOs), ?(sub L), and mass accretion rate, M, can be applied to the black hole mass and the inclination angle estimates.We analyze the transition episodes observed with the Rossi X-Ray Timing Explorer and BeppoSAX satellites.We find that the broadband X-ray energy spectra of 4U 1630-47 during all spectral states can be modeled by a combination of a thermal component, a Comptonized component, and a red-skewed iron-line component. We also establish that gamma monotonically increases during transition from the low-hard state to the high-soft state and then saturates for high mass accretion rates. The index saturation levels vary for different transition episodes. Correlations of gamma versus ?(sub L) also show saturation at gamma (is) approximately 3. Gamma -M and gamma -?(sub L) correlations with their index saturation revealed in 4U 1630-47 are similar to those established in a number of other black hole candidates and can be considered as an observational evidence for the presence of a black hole in these sources. The scaling technique, which relies on XTE J1550-564, GRO 1655-40, and H1743-322 as reference sources, allows us to evaluate a black hole mass in 4U 1630-47 yielding M(sub BH) (is) approximately 10 +/- 0.1 solar masses and to constrain the inclination angle of i (is) approximately less than 70 deg.

  7. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    Energy Technology Data Exchange (ETDEWEB)

    Duke, Dana Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  8. ROTATION PERIODS OF WIDE BINARIES IN THE KEPLER FIELD

    International Nuclear Information System (INIS)

    Janes, K. A.

    2017-01-01

    In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period–color diagram. Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.

  9. ROTATION PERIODS OF WIDE BINARIES IN THE KEPLER FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Janes, K. A. [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2017-01-20

    In a search of proper motion catalogs for common proper motion stars in the field of the Kepler spacecraft I identified 93 likely binary systems. A comparison of their rotation periods is a test of the gyrochronology concept. To find their periods I calculated the autocorrelation function (ACF) of the Kepler mission photometry for each star. In most systems for which good periods can be found, the cooler star has a longer period than the hotter component, in general agreement with models. However, there is a wide range in the gradients of lines connecting binary pairs in a period–color diagram. Furthermore, near the solar color, only a few stars have longer periods than the Sun, suggesting that they, and their cooler companions, are not much older than the Sun. In addition, there is an apparent gap at intermediate periods in the period distribution of the late K and early M stars. Either star formation in this direction has been variable, or stars evolve in period at a non-uniform rate, or some stars evolve more rapidly than others at the same mass. Finally, using the ACF as a measure of the activity level, I found that while the F, G, and early K stars become less active as their periods increase, there is no correlation between period and activity for the mid K to early M stars.

  10. An Asymmetric Runaway Domain Swap Antithrombin Dimer as a Key Intermediate for Polymerization Revealed by Hydrogen/Deuterium-Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Trelle, Morten Beck; Pedersen, Shona; Østerlund, Eva Christina

    2017-01-01

    analysis by NMR spectroscopy. Here, we show how hydrogen/deuterium-exchange mass spectrometry (HDX-MS) provides detailed insight into the structural dynamics of each subunit in a polymerization-competent antithrombin dimer. Upon deuteration, this dimer surprisingly yields bimodal isotope distributions...... for the majority of peptides, demonstrating an asymmetric configuration of the two subunits. The data reveal that one subunit is very dynamic, potentially intrinsically disordered, whereas the other is considerably less dynamic. The local subunit-specific deuterium uptake of this polymerization-competent dimer...... strongly supports a β4A-β5A β-hairpin runaway domain swap mechanism for antithrombin polymerization. HDX-MS thus holds exceptional promise as an enabling analytical technique in the efforts toward future pharmacological intervention with protein polymerization and associated diseases....

  11. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    Science.gov (United States)

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  12. The fate of close encounters between binary stars and binary supermassive black holes

    Science.gov (United States)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  13. BINARIES MIGRATING IN A GASEOUS DISK: WHERE ARE THE GALACTIC CENTER BINARIES?

    International Nuclear Information System (INIS)

    Baruteau, C.; Lin, D. N. C.; Cuadra, J.

    2011-01-01

    The massive stars in the Galactic center inner arcsecond share analogous properties with the so-called Hot Jupiters. Most of these young stars have highly eccentric orbits and were probably not formed in situ. It has been proposed that these stars acquired their current orbits from the tidal disruption of compact massive binaries scattered toward the proximity of the central supermassive black hole. Assuming a binary star formed in a thin gaseous disk beyond 0.1 pc from the central object, we investigate the relevance of disk-satellite interactions to harden the binding energy of the binary, and to drive its inward migration. A massive, equal-mass binary star is found to become more tightly wound as it migrates inward toward the central black hole. The migration timescale is very similar to that of a single-star satellite of the same mass. The binary's hardening is caused by the formation of spiral tails lagging the stars inside the binary's Hill radius. We show that the hardening timescale is mostly determined by the mass of gas inside the binary's Hill radius and that it is much shorter than the migration timescale. We discuss some implications of the binary's hardening process. When the more massive (primary) components of close binaries eject most their mass through supernova explosion, their secondary stars may attain a range of eccentricities and inclinations. Such processes may provide an alternative unified scenario for the origin of the kinematic properties of the central cluster and S-stars in the Galactic center as well as the high-velocity stars in the Galactic halo.

  14. Estimating the Binary Fraction of Central Stars of Planetary Nebulae

    Science.gov (United States)

    Douchin, Dimitri

    2015-01-01

    Planetary nebulae are the end-products of intermediate-mass stars evolution, following a phase of expansion of their atmospheres at the end of their lives. Observationally, it has been estimated that 80% of them have non-spherical shapes. Such a high fraction is puzzling and has occupied the planetary nebula community for more than 30 years. One scenario that would allow to justify the observed shapes is that a comparable fraction of the progenitors of central stars of planetary nebula (CSPN) are not single, but possess a companion. The shape of the nebulae would then be the result of an interaction with this companion. The high fraction of non-spherical planetary nebulae would thus imply a high fraction of binary central stars of planetary nebulae, making binarity a preferred channel for planetary nebula formation. After presenting the current state of knowledge regarding planetary nebula formation and shaping and reviewing the diverse efforts to find binaries in planetary nebulae, I present my work to detect a near-infrared excess that would be the signature of the presence of cool companions. The first part of the project consists in the analysis of data and photometry acquired and conducted by myself. The second part details an attempt to make use of archived datasets: the Sloan Digital Sky Survey Data Release 7 optical survey and the extended database assembled by Frew (2008). I also present results from a radial velocity analysis of VLT/UVES spectra for 14 objects aiming to the detection of spectroscopic companions. Finally I give details of the analysis of optical photometry data from our observations associated to the detection of companions around central stars of planetary nebulae using the photometric variability technique. The main result of this thesis is from the near-infrared excess studies which I combine with previously published data. I conclude that if the detected red and NIR flux excess is indicative of a stellar companion then the binary

  15. Binary interaction dominates the evolution of massive stars.

    Science.gov (United States)

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  16. Detectability of Gravitational Waves from High-Redshift Binaries.

    Science.gov (United States)

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  17. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  18. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experime......The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either...... experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...

  19. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  20. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    Science.gov (United States)

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  1. Star formation history: Modeling of visual binaries

    Science.gov (United States)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  2. Absolute Dimensions of Contact Binary Stars in Baade Window

    Directory of Open Access Journals (Sweden)

    Young Woon Kang

    1999-12-01

    Full Text Available The light curves of the representative 6 contact binary stars observed by OGLE Project of searching for dark matter in our Galaxy have been analyzed by the method of the Wilson and Devinney Differential Correction to find photometric solutions. The orbital inclinations of these binaries are in the range of 52 deg - 69 deg which is lower than that of the solar neighborhood binaries. The Roche lobe filling factor of these binaries are distributed in large range of 0.12 - 0.90. Since absence of spectroscopic observations for these binaries we have found masses of the 6 binary systems based on the intersection between Kepler locus and locus derived from Vandenberg isochrones in the mass - luminosity plane. Then absolute dimensions and distances have been found by combining the masses and the photometric solutions. The distances of the 6 binary systems are distributed in the range of 1 kpc - 6 kpc. This distance range is the limiting range where the contact binaries which have period shorter than a day are visible. Most contact binaries discovered in the Baade window do not belong to the Galactic bulge.

  3. A clumpy stellar wind and luminosity-dependent cyclotron line revealed by the first Suzaku observation of the high-mass X-ray binary 4U 1538–522

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, Paul B.; Rothschild, Richard E.; Markowitz, Alex [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 920093-0424 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 290-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Pottschmidt, Katja [Center for Space Science and Technology, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Wilms, Jörn, E-mail: pbhemphill@physics.ucsd.edu [Dr. Karl Remeis-Sternwarte and Erlangen Center for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-09-01

    We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538–522. The broadband spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at 23.0 ± 0.4 keV and the iron Kα line at 6.426 ± 0.008 keV, as well as placing limits on the strengths of the iron Kβ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the light curve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron Kα line intensity vary significantly with phase, with the iron line intensity significantly out of phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.

  4. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    effectivity rule is regular if it is the effectivity rule of some regular binary SCR. We characterize completely the family of regular binary effectivity rules. Quite surprisingly, intrinsically defined von Neumann-Morgenstern solutions play an important role in this characterization...

  5. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  6. Exploring the Birth of Binary Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    understand the alignment of protostellar outflows during binary formation, Offner and collaborators conduct a series of numerical simulations of the process of turbulent fragmentation.The teams radiation-magnetohydrodynamics simulations start with a spherical core with random turbulent velocities within it. The simulations then follow the formation of seeds within the core, which accrete mass and eventually launch protostellar outflows.In total, Offner and collaborators run twelve simulations, in which five produce single stars, five produce binaries, and two produce triplestar systems.Comparison to ObservationsCumulative density function of the angles between simulated binary pairs protostellar outflows. The black line is the MASSES data (observations of actual binaries). The alignments from the simulations are consistent with the real observational data. [Offner et al. 2016]As a final step, the authors generate synthetic observations from their simulations, to demonstrate what the protostellar outflows would look like. They then compare these to real observations of outflow orientations in young binaries from a survey known as MASSES.Statistical analysis shows that the protostellar jets in the authors simulations are consistent with being randomly aligned or misaligned. This confirms what we would expect since the systems formed at wide separations from separate gravitational collapse events and the alignment distribution is consistent with observations of binaries in MASSES.Offner and collaborators work in this study indicates that the presence of misaligned binaries in observations supports turbulent fragmentation as the mechanism for binary formation. The authors caution, however, that were dealing with small-number statistics: MASSES consists of only 19 binary pairs. The next step is to obtain a larger sample of observations for comparison.CitationStella S. R. Offner et al 2016 ApJ 827 L11. doi:10.3847/2041-8205/827/1/L11

  7. Formation of Thorne–Żytkow objects in close binaries

    Indian Academy of Sciences (India)

    Bumareyamu Hutilukejiang

    2018-03-06

    Zytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, ...

  8. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  9. The magnetic strip(s) in the advanced phases of stellar evolution. Theoretical convective turnover timescale and Rossby number for low- and intermediate-mass stars up to the AGB at various metallicities

    Science.gov (United States)

    Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Aurière, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.

    2017-09-01

    Context. Recent spectropolarimetric observations of otherwise ordinary (in terms e.g. of surface rotation and chemical properties) G, K, and M giants have revealed localized magnetic strips in the Hertzsprung-Russell diagram coincident with the regions where the first dredge-up and core helium burning occur. Aims: We seek to understand the origin of magnetic fields in such late-type giant stars, which is currently unexplained. In analogy with late-type dwarf stars, we focus primarily on parameters known to influence the generation of magnetic fields in the outer convective envelope. Methods: We compute the classical dynamo parameters along the evolutionary tracks of low- and intermediate-mass stars at various metallicities using stellar models that have been extensively tested by spectroscopic and asteroseismic observations. Specifically, these include convective turnover timescales and convective Rossby numbers, computed from the pre-main sequence (PMS) to the tip of the red giant branch (RGB) or the early asymptotic giant branch (AGB) phase. To investigate the effects of the very extended outer convective envelope, we compute these parameters both for the entire convective envelope and locally, that is, at different depths within the envelope. We also compute the turnover timescales and corresponding Rossby numbers for the convective cores of intermediate-mass stars on the main sequence. Results: Our models show that the Rossby number of the convective envelope becomes lower than unity in the well-delimited locations of the Hertzsprung-Russell diagram where magnetic fields have indeed been detected. Conclusions: We show that α - Ω dynamo processes might not be continuously operating, but that they are favored in the stellar convective envelope at two specific moments along the evolution tracks, that is, during the first dredge-up at the base of the RGB and during central helium burning in the helium-burning phase and early-AGB. This general behavior can explain

  10. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  11. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  12. Inferences about binary stellar populations using gravitational wave observations

    Science.gov (United States)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  13. Rotation and magnetism in intermediate mass stars

    Science.gov (United States)

    Quentin, Léo G.; Tout, Christopher A.

    2018-03-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20, 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  14. The Benchmark Eclipsing Binary V530 Ori

    DEFF Research Database (Denmark)

    Torres, Guillermo; Lacy, Claud H. Sandberg; Pavlovski, Kresimir

    2015-01-01

    We report accurate measurements of the physical properties (mass, radius, temperature) of components of the G+M eclipsing binary V530 On. The M-type secondary shows a larger radius and a cooler temperature than predicted by standard stellar evolution models, as has been found for many other low...

  15. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters

    International Nuclear Information System (INIS)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    2014-01-01

    The inspiral and merger of eccentric binaries leads to gravitational waveforms distinct from those generated by circularly merging binaries. Dynamical environments can assemble binaries with high eccentricity and peak frequencies within the LIGO band. In this paper, we study binary-single stellar scatterings occurring in dense stellar systems as a source of eccentrically inspiraling binaries. Many interactions between compact binaries and single objects are characterized by chaotic resonances in which the binary-single system undergoes many exchanges before reaching a final state. During these chaotic resonances, a pair of objects has a non-negligible probability of experiencing a very close passage. Significant orbital energy and angular momentum are carried away from the system by gravitational wave (GW) radiation in these close passages, and in some cases this implies an inspiral time shorter than the orbital period of the bound third body. We derive the cross section for such dynamical inspiral outcomes through analytical arguments and through numerical scattering experiments including GW losses. We show that the cross section for dynamical inspirals grows with increasing target binary semi-major axis a and that for equal-mass binaries it scales as a 2/7 . Thus, we expect wide target binaries to predominantly contribute to the production of these relativistic outcomes. We estimate that eccentric inspirals account for approximately 1% of dynamically assembled non-eccentric merging binaries. While these events are rare, we show that binary-single scatterings are a more effective formation channel than single-single captures for the production of eccentrically inspiraling binaries, even given modest binary fractions.

  16. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  17. Interaction of Massive Black Hole Binaries with Their Stellar Environment. II. Loss Cone Depletion and Binary Orbital Decay

    Science.gov (United States)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero

    2007-05-01

    We study the long-term evolution of massive black hole binaries (MBHBs) at the centers of galaxies using detailed scattering experiments to solve the full three-body problem. Ambient stars drawn from an isotropic Maxwellian distribution unbound to the binary are ejected by the gravitational slingshot. We construct a minimal, hybrid model for the depletion of the loss cone and the orbital decay of the binary and show that secondary slingshots-stars returning on small-impact parameter orbits to have a second superelastic scattering with the MBHB-may considerably help the shrinking of the pair in the case of large binary mass ratios. In the absence of loss cone refilling by two-body relaxation or other processes, the mass ejected before the stalling of a MBHB is half the binary reduced mass. About 50% of the ejected stars are expelled in a ``burst'' lasting ~104 yr M1/46, where M6 is the binary mass in units of 106 Msolar. The loss cone is completely emptied in a few bulge crossing timescales, ~107 yr M1/46. Even in the absence of two-body relaxation or gas dynamical processes, unequal mass and/or eccentric binaries with M6>~0.1 can shrink to the gravitational wave emission regime in less than a Hubble time and are therefore ``safe'' targets for the planned Laser Interferometer Space Antenna.

  18. Composition dependent non-ideality in aqueous binary mixtures as ...

    Indian Academy of Sciences (India)

    Abstract. We explore the potential energy landscape of structure breaking binary mixtures (SBBM) where two constituents dislike each other, yet remain macroscopically homogeneous at intermediate to high temper- atures. Interestingly, we find that the origin of strong composition dependent non-ideal behaviour lies in its.

  19. The dynamical evolution of binaries in clusters

    International Nuclear Information System (INIS)

    Heggie, D.C.

    1975-01-01

    Using information on the rates at which binaries suffer encounters in a stellar system (Heggie, 1974), the effects of such processes on the evolution of the system itself are studied. First considering systems with no binaries initially, it is shown that low-energy pairs attain a quasi-equilibrium distribution comparatively quickly. Their effect on the evolution of the cluster is negligible compared with that of two-body relaxation. In small systems energetic pairs may form sufficiently quickly to exercise a substantial effect on its development and on the escape rate, but in large systems their appearance is delayed until the evolution of the core is well advanced. In that case they appear to be responsible for arresting the collapse of the core at some stage. Binaries of low energy, even if present initially in large numbers, are likely to have at most only a temporary effect on the evolution of the system. High-energy pairs are not so easily destroyed, and so, if present initially, their effect is persistent. It competes with two-body relaxation especially when the fraction of such pairs and the total number-density are high, as in the core, where, in addition, binaries tend to congregate by mass segregation. When encounters with binaries become important, being mostly 'super-elastic' they enhance escape and lead to ejection of mass from the core into the halo, thus accelerating the rate at which mass is lost by tidal forces. It is difficult to decide observationally whether globular clusters possess sufficiently large numbers of binaries for these effects to be important. (Auth.)

  20. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  1. Close binary stars

    International Nuclear Information System (INIS)

    Larsson-Leander, G.

    1979-01-01

    Studies of close binary stars are being persued more vigorously than ever, with about 3000 research papers and notes pertaining to the field being published during the triennium 1976-1978. Many major advances and spectacular discoveries were made, mostly due to increased observational efficiency and precision, especially in the X-ray, radio, and ultraviolet domains. Progress reports are presented in the following areas: observational techniques, methods of analyzing light curves, observational data, physical data, structure and models of close binaries, statistical investigations, and origin and evolution of close binaries. Reports from the Coordinates Programs Committee, the Committee for Extra-Terrestrial Observations and the Working Group on RS CVn binaries are included. (Auth./C.F.)

  2. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  3. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  4. Binary and Millisecond Pulsars

    OpenAIRE

    Lorimer, D. R.

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...

  5. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    Science.gov (United States)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  6. STUDIES OF THE ORIGIN OF HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS OF MASS-ACCRETING BLACK HOLES IN X-RAY BINARIES WITH NEXT-GENERATION X-RAY TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric, E-mail: b.beheshtipour@wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, CB 1105, St. Louis, MO 63130 (United States)

    2016-08-01

    Observations with RXTE ( Rossi X-ray Timing Explorer ) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodic oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT ( Large Observatory for X-ray Timing ) and polarization signatures with space-borne X-ray polarimeters such as IXPE ( Imaging X-ray Polarimetry Explorer ), PolSTAR ( Polarization Spectroscopic Telescope Array ), PRAXyS ( Polarimetry of Relativistic X-ray Sources ), or XIPE ( X-ray Imaging Polarimetry Explorer ). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT -type mission.

  7. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  8. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  9. A simple model for binary star evolution

    International Nuclear Information System (INIS)

    Whyte, C.A.; Eggleton, P.P.

    1985-01-01

    A simple model for calculating the evolution of binary stars is presented. Detailed stellar evolution calculations of stars undergoing mass and energy transfer at various rates are reported and used to identify the dominant physical processes which determine the type of evolution. These detailed calculations are used to calibrate the simple model and a comparison of calculations using the detailed stellar evolution equations and the simple model is made. Results of the evolution of a few binary systems are reported and compared with previously published calculations using normal stellar evolution programs. (author)

  10. Waveform Catalog, Extreme Mass Ratio Binary (Capture)

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerically-generated gravitational waveforms for circular inspiral into Kerr black holes. These waveforms were developed using Scott Hughes' black hole perturbation...

  11. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  12. Flare Activity of Wide Binary Stars with Kepler

    Science.gov (United States)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  13. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  14. Close Binaries in the 21st Century: New Opportunities and Challenges

    CERN Document Server

    Giménez, Àlvaro; Niarchos, Panagiotis; Rucinski, Slavek

    2006-01-01

    An International Conference entitled "Close Binaries in the 21st Century: New Opportunities and Challenges", was held in Syros island, Greece, from 27 to 30 June, 2005. There are many binary star systems whose components are so close together, that they interact in various ways. Stars in such systems do not pass through all stages of their evolution independently of each other; in fact their evolutionary path is significantly affected by their companions. Processes of interaction include gravitational effects, mutual irradiation, mass exchange, mass loss from the system, phenomena of extended atmospheres, semi-transparent atmospheric clouds, variable thickness disks and gas streams. The zoo of Close Binary Systems includes: Close Eclipsing Binaries (Detached, Semi-detached, Contact), High and Low-Mass X-ray Binaries, Cataclysmic Variables, RS CVn systems, Pulsar Binaries and Symbiotic Stars. The study of these binaries triggered the development of new branches of astrophysics dealing with the structure and ev...

  15. Binary magnetic structures in HoEr

    DEFF Research Database (Denmark)

    Howard, B.K.; Bohr, J.

    1991-01-01

    The magnetic structure of a single crystal of the rare earth random alloy Ho50% Er50% has been investigated by elastic neutron diffraction measurements in the temperature range 120-10 K. Three distinct magnetic phases are identified below the Neel temperature of 104 K. The high-temperature phase...... observed between 104 K and 47.5 K is a binary magnetic structure where the holmium and erbium moments belong to different modulated c-axis spirals. The intermediate-temperature phase between 47.5 K and 35 K is a simple basal plane spiral. Below 35 K, the measurements suggest a ferrimagnetic structure...

  16. Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory

    Science.gov (United States)

    van Roestel, J.; Kupfer, T.; Ruiz-Carmona, R.; Groot, P. J.; Prince, T. A.; Burdge, K.; Laher, R.; Shupe, D. L.; Bellm, E.

    2018-04-01

    We report on the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf (pre-He-WD) and an early-type main-sequence companion. This more than doubles the known population of these systems. We have used supervised machine learning methods to search 0.8 million light curves from the Palomar Transient Factory (PTF), combined with Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and Two-Micron All-Sky Survey (2MASS) colours. The new systems range in orbital periods from 0.46 to 3.8 d and in apparent brightness from ˜14 to 16 mag in the PTF R or g΄ filters. For 12 of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the light curves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 R⊙) and effective temperatures (8000-17 000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 M⊙) show more variance than models have predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages.

  17. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  18. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  19. Binary and ternary fission yields induced by 12C and 20Ne ions on 238U targets

    International Nuclear Information System (INIS)

    Otto, R.J.

    1974-01-01

    Evidence for ternary fission of 250 Cf* and 258 No* compound nuclei has been found. Relative cross section data for nuclides with masses between 24 Na and 161 Tb have been determined for 12 C bombardments of natural uranium at laboratory energies of 122 MeV, 113 MeV and 105 MeV. Relative cross section data for 8 nuclides between 24 Na and 66 Ni were sought for 20 Ne bombardments of natural uranium at 150 MeV laboratory energies. The binary fission fragment mass distribution for 238 U( 12 C,f) was determined by analysis of fission fragment recoil collection foils using radiochemical techniques and high resolution gamma ray spectroscopy. The results indicated the existence of a ternary fission branch similar to mass distributions obtained for He induced fission of Th, U, and Pu nuclei at intermediate energies. Comparison of the data with He induced ternary fission data obtained previously in this laboratory indicated an increase in the ternary fission probability with increasing Z 2 /A of the compound nucleus and with excitation energy. A shift of the binary-ternary fission product intersection point to lower mass numbers with increasing Z 2 /A and excitation energy of the compound nucleus was also observed. (Diss. Abstr. Int., B)

  20. Binary Neutron Star Mergers<