WorldWideScience

Sample records for interlevel transfer driven

  1. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  2. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  3. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  4. Quantum decoherence and interlevel relations

    Science.gov (United States)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful

  5. The validity of quantum-classical multi-channel diffusion equations describing interlevel transitions in the condensed phase. The adiabatic representation

    CERN Document Server

    Basilevsky, M V

    2002-01-01

    We develop an approach for derivation of quantum-classical relaxation equations for a two-channel problem. The treatment is based on the adiabatic channel wavefunctions and the system-bath coupling is modelled as a bilinear interaction in momentum representation. In the quantum-classical limit we obtain Liouville equations with the relaxation operator containing diffusion terms diagonal in Liouvillian space and the off-diagonal part which is responsible for thermal interlevel transitions. The high-frequency interlevel quantum beats are fully taken into account in this relaxation term. In the framework of the present formulation and as a consequence of the momentum-dependent interaction the Smoluchovsky diffusion limit can be reached without invoking Fokker-Planck equations as an intermediate step. The inherent property of equations so obtained is that the partial rates of interlevel transitions obey the principle of detailed balance. This result could not be gained in earlier treatments of the two-level diffu...

  6. Dipolar-induced interplay between inter-level physics and macroscopic phase transitions in triple-well potentials

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2012-01-01

    We propose a scheme to reveal the interplay between dipole–dipole interaction (DDI), inter-level coupling and macroscopic phase transitions in dipolar condensates. By considering a macroscopic sample of dipolar bosons in triple-well potentials, DDI-induced coupling between the inter-level physics and the macroscopic phase transitions is presented. When the DDI exceeds certain thresholds, the degeneracy of the two lowest energy levels and the excitation of new eigenstates occur, respectively. Interestingly, these thresholds give the boundaries of various quantum phase transitions. That is, the quantum phase transitions are the consequence of the levels' degeneracy and the new eigenstates' excitation. Furthermore, DDI-induced long-range macroscopic Josephson oscillations are observed and long-range coherent quantum transportation is achieved. Our results give clear proof of the interplay between the multi-level physics and quantum phase transitions, and also provide a way for designing the long-range coherent quantum transportation. (paper)

  7. Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.

    Science.gov (United States)

    Santoli, Salvatore

    2009-02-01

    Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.

  8. Interlevel transfer mechanisms and their application to GRASERS

    International Nuclear Information System (INIS)

    Solem, J.C.

    1985-01-01

    Within the gamma-ray laser (GRASER) research community, much attention is being given to two-step schemes that store energy in a long-lived isomeric state and achieve lasing by transferring population to a short-lived state. Because the electron system exhibits large multipole moments and is in the near field of the nucleus, it can be used as an intermediate mechanism for transferring energy, angular momentum, and parity change. Two distinct electron-nucleus interaction mechanisms are discussed: (1) resonant electronic transitions and (2) collective outer-shell excitations. 9 refs

  9. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  10. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  11. Evaluating transfer capability of economic-driven power markets

    DEFF Research Database (Denmark)

    Xu, Zhao

    2007-01-01

    in the present economic-driven electricity markets. A mathematical model of a multi-objective optimization (MOOP) technique has been adopted and presented here for transfer capability studies; which can be helpful for power system planning and operation procedures. The newly-developed algorithm is being tested......The on-going restructuring of electric power utilities poses great challenges for power system engineers to plan and operate power systems as economical and reliable as possible. This paper discusses an important issue, which has been usually neglected, when quantifying active power transfer levels...

  12. Data-Driven Model Reduction and Transfer Operator Approximation

    Science.gov (United States)

    Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank

    2018-06-01

    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.

  13. L1 Transfer in Post-Verbal Preposition: An Inter-level Comparison

    Directory of Open Access Journals (Sweden)

    Samira Mollaei

    2013-10-01

    Full Text Available The study intended to investigate the well-known issue of L1 transfer in L2acquisition. The primary aim of this research was to compare the extent to which L1 transfer may take place in different developmental stages in L2 learning procedure. Persian learners of English have been observed to misuse a number of the prepositions with some of the verbs. Having scrutinized more than a hundred pieces of students’ writing assignments, the authors came up with a pattern of errors in this area. It was observed that the majority of these errors could be attributed to Persian: the learners’ choice of preposition mirror the corresponding case in their L1, Persian. Moreover, the pattern of mistakes was put to test to check whether these mistakes increase or decrease according to the level of proficiency of the learners. To this end, two groups of students, one in elementary and the other in intermediate level, were tested on their use of proper prepositions with different verbs and the results of these tests were compared to see whether any significant difference exists between the two groups of students. The results showed no significant difference between the students of the two proficiency levels.

  14. Infrared laser driven double proton transfer. An optimal control theory study

    Science.gov (United States)

    Abdel-Latif, Mahmoud K.; Kühn, Oliver

    2010-02-01

    Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.

  15. Magnetization Transfer Effects on the Efficiency of Flow-driven Adiabatic Fast Passage Inversion of Arterial Blood

    OpenAIRE

    Hernandez-Garcia, Luis; Lewis, David P.; Moffat, Bradford; Branch, Craig A.

    2007-01-01

    Continuous arterial spin labeling experiments typically use flow-driven adiabatic fast passage (AFP) inversion of the arterial blood water protons. In this article, we measure the effect of magnetization transfer in blood and how it affects the inversion label. We use modified Bloch equations to model flow-driven adiabatic inversion in the presence of magnetization transfer in blood flowing at velocities from 1 to 30 cm/s in order to explain our findings. Magnetization transfer results in a r...

  16. Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows

    International Nuclear Information System (INIS)

    Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko

    2015-01-01

    Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)

  17. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  18. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  19. Analytical study of synchronization in spin-transfer-driven magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Roberto [Politecnico di Torino - sede di Verres, via Luigi Barone 8, I-11029 Verres (Italy); Bertotti, Giorgio; Bortolotti, Paolo [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino (Italy); Serpico, Claudio [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' , via Claudio 21, I-80125 Napoli (Italy); D' Aquino, Massimiliano [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , via Medina 40, I-80133 Napoli (Italy); Mayergoyz, Isaak D, E-mail: p.bortolotti@inrim.i [Electrical and Computer Engineering Department and UMIACS, University of Maryland, College Park MD 20742 (United States)

    2010-01-01

    An analytical study of the synchronization effects in spin-transfer-driven nanomagnets subjected to either microwave magnetic fields or microwave electrical currents is discussed. Appropriate stability diagrams are constructed and the conditions under which the current-induced magnetization precession is synchronized by the microwave external excitation are derived and discussed. Analytical predictions are given for the existence of phase-locking effects in current-induced magnetization precessions and for the occurrence of hysteresis in phase-locking as a function of the spin-polarized current.

  20. Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.

    Science.gov (United States)

    Marti, J; Capmany, J

    1996-12-20

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  1. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    International Nuclear Information System (INIS)

    Longhi, Stefano

    2014-01-01

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H -hat (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H -hat (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization

  2. Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer

    Science.gov (United States)

    Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John

    2006-01-01

    Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.

  3. Studies of heat transfer having relevance to nuclear reactor containment cooling by buoyancy-driven air flow

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. D.; Li, J.; Wang, J. [The Univ., of Manchester, Manchester (United Kingdom)

    2003-07-01

    Two separate effects experiments concerned with buoyancy-influenced convective heat transfer in vertical passages which have relevance to the problem of nuclear reactor containment cooling by means of buoyancy-driven airflow are described. A feature of each is that local values of heat transfer coefficient are determined on surfaces maintained at uniform temperature. Experimental results are presented which highlight the need for buoyancy-induced impairment of turbulent convective heat transfer to be accounted for in the design of such passive cooling systems. A strategy is presented for predicting the heat removal by combined convective and radiative heat transfer from a full scale nuclear reactor containment shell using such experimental results.

  4. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism

    Science.gov (United States)

    Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael

    2012-09-01

    Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.

  5. Ion transfer through solvent polymeric membranes driven by an exponential current flux.

    Science.gov (United States)

    Molina, A; Torralba, E; González, J; Serna, C; Ortuño, J A

    2011-03-21

    General analytical equations which govern ion transfer through liquid membranes with one and two polarized interfaces driven by an exponential current flux are derived. Expressions for the transient and stationary E-t, dt/dE-E and dI/dE-E curves are obtained, and the evolution from transient to steady behaviour has been analyzed in depth. We have also shown mathematically that the voltammetric and stationary chronopotentiometric I(N)-E curves are identical (with E being the applied potential for voltammetric techniques and the measured potential for chronopotentiometric techniques), and hence, their derivatives provide identical information.

  6. Carbon nanoparticle stabilised liquid|liquid micro-interfaces for electrochemically driven ion-transfer processes

    International Nuclear Information System (INIS)

    MacDonald, Stuart M.; Fletcher, Paul D.I.; Cui Zhenggang; Opallo, Marcin; Chen Jingyuan; Marken, Frank

    2007-01-01

    Stabilised liquid|liquid interfaces between an organic 4-(3-phenylpropyl)-pyridine (PPP) phase and an aqueous electrolyte phase are obtained in the presence of suitable nanoparticles. The use of nanoparticulate stabilisers (ca. 30 nm diameter laponite or 9-18 nm diameter carbon) in 'Pickering' emulsion systems allows stable organic microdroplets to be formed and these are readily deposited onto conventional tin-doped indium oxide (ITO) electrodes. In contrast to the electrically insulating laponite nanoparticles, conducting carbon nanoparticles are shown to effectively catalyse the simultaneous electron transfer and ion transfer process at triple phase boundary junctions. Anion transfer processes between the aqueous and organic phase are driven electrochemically at the extensive triple phase junction carbon nanoparticle|4-(3-phenylpropyl)-pyridine|aqueous electrolyte. The organic phase consists of a redox active reagent 5,10,15,20-tetraphenyl-21H,23H-porphinato manganese(III) (MnTPP + ), 5,10,15,20-tetraphenyl-21H,23H-porphinato iron(III) (FeTPP + ), or proto-porphyrinato-IX iron(III) (hemin) dissolved in 4-(3-phenylpropyl)-pyridine (PPP). The composition of the aqueous electrolyte phase determines the reversible potential for the Nernstian anion transfer process. The methodology is shown to be versatile and, in future, could be applied more generally in liquid|liquid electroanalysis

  7. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    Science.gov (United States)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design

  8. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    Science.gov (United States)

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  10. Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses

    International Nuclear Information System (INIS)

    Zhang Wen-Jing; Xie Xiao-Tao; Jin Lu-Ling; Bai Jin-Tao

    2013-01-01

    The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman scattering with sequential or simultaneous ultrashort pulses are investigated respectively. We find that the ultrashort pulses with about two optical cycles can be used to realize the population operation. This suggests that the population transfer can be completed in the femtosecond time scale. At the same time, our simulation shows that the signal of the carrier-envelope-phase-dependent effect can be enlarged due to quantum interference in some conditions. Our theoretic study may promote the research on the coherent control via ultrashort pulses in the related fields

  11. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  12. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    Science.gov (United States)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  13. Effect of radical species density and ion bombardment during ashing of extreme ultralow-κ interlevel dielectric materials

    International Nuclear Information System (INIS)

    Worsley, M. A.; Bent, S. F.; Fuller, N. C. M.; Tai, T. L.; Doyle, J.; Rothwell, M.; Dalton, T.

    2007-01-01

    The significance of ion impact and radical species density on ash-induced modification of an extreme ultralow-κ interlevel dielectric (ILD) material (κ 2 and Ar/N 2 dual frequency capacitive discharges is determined by combining plasma diagnostics, modeling of the ion angular distribution function, and material characterization such as angle resolved x-ray photoelectron spectroscopy. Radical species density was determined by optical emission actinometry under the same conditions and in the same reactor in a previous study by the present authors. ILD modification is observed and correlated with changes in the plasma for a range of pressures (5-60 mTorr), bias powers (0-350 W), and percent Ar in the source gas (0%, 85%). For the Ar/O 2 discharge, extensive modification of the ILD sidewall was observed for significant ion scattering conditions, whereas minimal modification of the ILD sidewall was observed under conditions of minimal or no ion scattering. Further, for an identical increase in the O-radical density (∼ an order of magnitude), a different degree of modification was induced at the ILD trench bottom surface depending on whether pressure or percent Ar was used to increase the radical density. The different degrees of modification seemingly correlated with the relative changes in the ion current for increasing pressure or percent Ar. For the Ar/N 2 discharge, reduced damage of the ILD sidewall and trench bottom surfaces was observed for increasing pressure (increasing N-radical density) and decreasing ion current to both surfaces. It is, thus, proposed that the mechanism for modification of the porous ILD is dominated by the creation of reactive sites by ion impact under the present conditions. A detailed discussion of the results which support this proposal is presented

  14. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, N.K. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020 (India)]. E-mail: nkrastogi@cftri.com

    2005-08-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity.

  15. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    International Nuclear Information System (INIS)

    Rastogi, N.K.

    2005-01-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity

  16. Stress effects of the inter-level dielectric layer on the ferroelectric performance of integrated SrBi2Ta2O9 capacitors

    International Nuclear Information System (INIS)

    Hong, Suk-Kyoung; Yang, B.; Oh, Sang Hyun; Kang, Young Min; Kang, Nam Soo; Hwang, Cheol Seong; Kwon, Oh Seong

    2001-01-01

    The thermal stress effects of the inter-level dielectric (ILD) layer on the ferroelectric performance of integrated Pt/SrBi 2 Ta 2 O 9 (SBT)/Pt capacitors were investigated. Two different thin film materials, pure SiO 2 grown at 650 degree C and B- and P-doped SiO 2 grown at 400 degree C by chemical vapor deposition techniques, were tested as an ILD layer. The ILD layer encapsulated the SBT capacitor array. During high temperature thermal cycling (up to 800 degree C) after ILD deposition, which is used for both densifying the ILD and curing of the various damage imposed on the SBT capacitors, a large thermal stress occurred in the bottom Pt layer due to the thermal expansion mismatch between the various layers. In particular, the pure SiO 2 ILD layer between the capacitors did not allow thermal expansion of the Pt layers, which led to a large accumulation of compressive stress in the layer. This resulted in hillock formation in the bottom Pt layer and eventual capacitor failure. However, the B- and P-doped SiO 2 ILD layer contracted during thermal cycling by removing residual impurities, which allowed greater expansion of the Pt layer. Therefore, compressive stress accumulation did not occur and excellent ferroelectric properties were thus obtained from the integrated capacitor array. [copyright] 2001 American Institute of Physics

  17. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  18. Electrostatic models of electron-driven proton transfer across a lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Anatoly Yu; Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Mourokh, Lev G [Department of Physics, Queens College, The City University of New York, Flushing, NY 11367 (United States)

    2011-06-15

    We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase complex in the inner mitochondria membranes, the electrostatic coupling to the site occupied by an electron lowers the energy level of the proton-binding site, making proton transfer possible. In the second model, roughly describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a proton from the negative side of the membrane to a shuttle, which subsequently diffuses across the membrane and unloads the proton to its positive side. We show that both models can be described by the same approach, which can be significantly simplified if the system is separated into several clusters, with strong Coulomb interaction inside each cluster and weak transfer couplings between them. We derive and solve the equations of motion for the electron and proton creation/annihilation operators, taking into account the appropriate Coulomb terms, tunnel couplings, and the interaction with the environment. For the second model, these equations of motion are solved jointly with a Langevin-type equation for the shuttle position. We obtain expressions for the electron and proton currents and determine their dependence on the electron and proton voltage build-ups, on-site charging energies, reorganization energies, temperature, and other system parameters. We show that the quantum yield in our models can be up to 100% and the power-conversion efficiency can reach 35%.

  19. Electrostatic models of electron-driven proton transfer across a lipid membrane

    International Nuclear Information System (INIS)

    Smirnov, Anatoly Yu; Nori, Franco; Mourokh, Lev G

    2011-01-01

    We present two models for electron-driven uphill proton transport across lipid membranes, with the electron energy converted to the proton gradient via the electrostatic interaction. In the first model, associated with the cytochrome c oxidase complex in the inner mitochondria membranes, the electrostatic coupling to the site occupied by an electron lowers the energy level of the proton-binding site, making proton transfer possible. In the second model, roughly describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a proton from the negative side of the membrane to a shuttle, which subsequently diffuses across the membrane and unloads the proton to its positive side. We show that both models can be described by the same approach, which can be significantly simplified if the system is separated into several clusters, with strong Coulomb interaction inside each cluster and weak transfer couplings between them. We derive and solve the equations of motion for the electron and proton creation/annihilation operators, taking into account the appropriate Coulomb terms, tunnel couplings, and the interaction with the environment. For the second model, these equations of motion are solved jointly with a Langevin-type equation for the shuttle position. We obtain expressions for the electron and proton currents and determine their dependence on the electron and proton voltage build-ups, on-site charging energies, reorganization energies, temperature, and other system parameters. We show that the quantum yield in our models can be up to 100% and the power-conversion efficiency can reach 35%.

  20. Decoherence approach to energy transfer and work done by slowly driven systems

    Science.gov (United States)

    Wang, Wen-ge

    2018-01-01

    A main problem, which is met when computing the energy transfer of or work done by a quantum system, comes from the fact that the system may lie in states with coherence in its energy eigenstates. As is well known, when the so-called environment-induced decoherence has happened with respect to a preferred basis given by the energy basis, no coherence exists among the energy basis and the energy change of the system can be computed in a definite way. I argue that one may make use of this property, in the search for an appropriate definition of quantum work for a total system that does not include any measuring apparatus. To show how this idea may work, in this paper, I study decoherence properties of a generic slowly driven system, which is weakly coupled to a huge environment whose main body is a complex quantum system. It is shown that decoherence may generically happen for such a system.

  1. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions.

    Science.gov (United States)

    Bartocci, Silvia; Berrocal, José Augusto; Guarracino, Paola; Grillaud, Maxime; Franco, Lorenzo; Mba, Miriam

    2018-02-26

    The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and 1 H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improper ferroelectric polarization in a perovskite driven by intersite charge transfer and ordering

    Science.gov (United States)

    Chen, Wei-Tin; Wang, Chin-Wei; Wu, Hung-Cheng; Chou, Fang-Cheng; Yang, Hung-Duen; Simonov, Arkadiy; Senn, M. S.

    2018-04-01

    It is of great interest to design and make materials in which ferroelectric polarization is coupled to other order parameters such as lattice, magnetic, and electronic instabilities. Such materials will be invaluable in next-generation data storage devices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realized. Here we report detailed crystallographic studies of a perovskite HgAMn3A'Mn4BO12 that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A'- and B-sites, which are themselves driven by a highly unusual MnA '-MnB intersite charge transfer. The inherent coupling of polar, charge, orbital, and hence magnetic degrees of freedom make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.

  3. Nonadiabatic population transfer in a driven four-level system

    International Nuclear Information System (INIS)

    Prants, S.V.

    1994-01-01

    The coherent dynamics of a four-level quantum system with an arbitrary level configuration is described analytically in the modulated polychromatic laser field. The method of dynamical symmetries is invoked to develop the formalism for explicit calculation of the evolution matrix of the system in the resonance fields. The method is free of the usual adiabatic-passage, weak-field approximations, and approximation of the slowly varying amplitudes. The conditions for occurrence of the coherent effects of the total inversion and the total depletion of the initial level of a system driven simultaneously driven simultaneously at several transitions by the laser pulses of arbitrary shape are derived analytically. The obtained results can be applied to problems of the control of quantum processes in multilevel atoms and molecules. 14 refs

  4. Wireless adiabatic power transfer

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-01-01

    Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  5. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    Science.gov (United States)

    Dalgicdir, Cahit; Sensoy, Ozge; Peter, Christine; Sayar, Mehmet

    2013-12-01

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  6. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    International Nuclear Information System (INIS)

    Dalgicdir, Cahit; Sensoy, Ozge; Sayar, Mehmet; Peter, Christine

    2013-01-01

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties

  7. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    Energy Technology Data Exchange (ETDEWEB)

    Dalgicdir, Cahit; Sensoy, Ozge; Sayar, Mehmet, E-mail: msayar@ku.edu.tr [College of Engineering, Koç University, 34450 Istanbul (Turkey); Peter, Christine [Max Planck Institute for Polymer Research, 55128 Mainz (Germany); Department of Chemistry, University of Konstanz, 78547 Konstanz (Germany)

    2013-12-21

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  8. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation

    DEFF Research Database (Denmark)

    Larsen, Daniel Bo; Petersen, Allan Robertson; Dethlefsen, Johannes Rytter

    2016-01-01

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the t......The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates...

  9. Research Knowledge Transfer through Business-Driven Student Assignment

    OpenAIRE

    Sas, Corina

    2009-01-01

    This paper presents a knowledge transfer method which capitalises on both research and teaching dimensions of academic work. It also proposes a framework for evaluating the impact of such a method on the involved stakeholders.

  10. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer.

    Science.gov (United States)

    Gao, Chao; Chen, Shuangming; Wang, Ying; Wang, Jiawen; Zheng, Xusheng; Zhu, Junfa; Song, Li; Zhang, Wenkai; Xiong, Yujie

    2018-03-01

    Visible-light-driven conversion of CO 2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single-atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO 2 conversion, wherein the graphene bridges homogeneous light absorbers with single-atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min -1 , superior to those obtained with the state-of-the-art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO 2 conversion from the angle of single-atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    Science.gov (United States)

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  12. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  13. Impact of kinetic mass transfer on free convection in a porous medium

    Science.gov (United States)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  14. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    Science.gov (United States)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  15. Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall

    Science.gov (United States)

    Kareem, Ali Khaleel; Gao, Shian

    2018-02-01

    The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.

  16. Disorder-driven metal-insulator-transition assisted by interband Coulomb repulsion in a surface transfer doped electron system

    Science.gov (United States)

    Francisco Sánchez-Royo, Juan

    2012-12-01

    The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.

  17. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  18. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  19. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  20. Development of a coupled tendon-driven 3D multi-joint manipulator. Investigation of tension transfer efficiency, optimal reel arrangement and tip positioning accuracy

    International Nuclear Information System (INIS)

    Horigome, Atsushi; Yamada, Hiroya; Hirose, Shigeo; Sen, Shin; Endo, Gen

    2017-01-01

    Long-reach robotic manipulators are expected to be used in the space where humans cannot work such as nuclear power plant disaster areas. We suggested a coupled tendon-driven articulated manipulator '3D CT-Arm' and developed a preliminary prototype 'Mini 3D CT-Arm' whose arm had 2.4 m length and 0.3 m width. In order to consider developing '3D CT-Arm' deeply, we discussed tension transfer efficiency of a tendon through pulleys, the arrangement of the maximum number of reels in a limited space and the tip positioning accuracy. Through many transfer efficiency experiments, we conclude that tension transfer efficiency of '3D CT-Arm' can reach over 88% in the worst case. We investigated non-interfering reels' arrangement in the base by full search in cases of up to 10 reels. In all simulations, V-shaped or W-shaped arrangement can support the most reels in a limited space. Therefore, we conclude this is the most optimal reels' arrangement. Finally, we carried out the positioning accuracy experiment with 'Mini 3D CT-Arm' via motion capture system. Although the tip position had a 2 to 41 mm error between the desired value and the measured value by potentiometer, a 29 to 95 mm error between the desired value and the measured value was measured by motion capture system. (author)

  1. Double-diffusive mixed convection in a lid-driven cavity with non ...

    Indian Academy of Sciences (India)

    S SIVASANKARAN

    2017-11-11

    Nov 11, 2017 ... transfer are solved using the finite-volume method. The numerical ... Keywords. Mixed convection; double diffusion; non-uniform heating; lid-driven cavity. 1. ... exhaustive research due to its importance in various engi- neering ...

  2. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  3. Knowledge Management and Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sennanye, D.M.; Thugwane, S.J.; Rasweswe, M.A. [South African Young Nuclear Professionals Society, South African Nuclear Energy Cooperation, National Nuclear Regulator, P O Box 7106, Centurion 0046 (South Africa)

    2008-07-01

    Knowledge management has become an important concept in the nuclear industry globally. This has been driven by the fact that new reactors are commissioned and some are decommissioned. Since most old experts are near retirement then there is a need to capture the nuclear knowledge and expertise and transfer it to the new generation. Knowledge transfer is one of the important building blocks of knowledge management. Processes and strategies need to be developed in order to transfer this knowledge. South African Young Nuclear Professionals Society (SAYNPS) has established a document to address strategies that can be used to close the knowledge gap between the young less experienced and experts in the field. This action will help the young generation to participate in knowledge management. The major challenges will be the willingness of the experts to share and making sure that all knowledge is captured, stored and kept up to date. The paper presents the SAYNPS point of view with regard to knowledge transfer. (authors)

  4. Knowledge Management and Transfer

    International Nuclear Information System (INIS)

    Sennanye, D.M.; Thugwane, S.J.; Rasweswe, M.A.

    2008-01-01

    Knowledge management has become an important concept in the nuclear industry globally. This has been driven by the fact that new reactors are commissioned and some are decommissioned. Since most old experts are near retirement then there is a need to capture the nuclear knowledge and expertise and transfer it to the new generation. Knowledge transfer is one of the important building blocks of knowledge management. Processes and strategies need to be developed in order to transfer this knowledge. South African Young Nuclear Professionals Society (SAYNPS) has established a document to address strategies that can be used to close the knowledge gap between the young less experienced and experts in the field. This action will help the young generation to participate in knowledge management. The major challenges will be the willingness of the experts to share and making sure that all knowledge is captured, stored and kept up to date. The paper presents the SAYNPS point of view with regard to knowledge transfer. (authors)

  5. Kinetics of proton transfer in a green fluorescent protein: A laser ...

    Indian Academy of Sciences (India)

    Unknown

    therefore implicates bulk solvent-controlled protein dynamics in the protonation process. ... recently to protein–protein interactions in the bacterial response regulator SpoOF. NMR ..... molecular mechanism for redox-driven proton transfer to a buried iron–sulphur cluster ... Dynamic simulations of proton transfer from bulk.

  6. Effects of Movable-Baffle on Heat Transfer and Entropy Generation in a Cavity Saturated by CNT Suspensions: Three-Dimensional Modeling

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2017-04-01

    Full Text Available Convective heat transfer and entropy generation in a 3D closed cavity, equipped with adiabatic-driven baffle and filled with CNT (carbon nanotube-water nanofluid, are numerically investigated for a range of Rayleigh numbers from 103 to 105. This research is conducted for three configurations; fixed baffle (V = 0, rotating baffle clockwise (V+ and rotating baffle counterclockwise (V− and a range of CNT concentrations from 0 to 15%. Governing equations are formulated using potential vector vorticity formulation in its three-dimensional form, then solved by the finite volume method. The effects of motion direction of the inserted driven baffle and CNT concentration on heat transfer and entropy generation are studied. It was observed that for low Rayleigh numbers, the motion of the driven baffle enhances heat transfer regardless of its direction and the CNT concentration effect is negligible. However, with an increasing Rayleigh number, adding driven baffle increases the heat transfer only when it moves in the direction of the decreasing temperature gradient; elsewhere, convective heat transfer cannot be enhanced due to flow blockage at the corners of the baffle.

  7. Mixed convection of nanofluids in a lid-driven rough cavity

    Science.gov (United States)

    Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.

    2017-06-01

    Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.

  8. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  9. Tax Anti-avoidance Through Transfer Pricing

    DEFF Research Database (Denmark)

    Rossing, Christian Plesner; Riise Johansen, Thomas; Pearson, Thomas C.

    2016-01-01

    -driven discipline to be dealt with by accounting and tax experts. Instead, MNEs face the task of establishing a complex fit with their environment beyond the typical stakeholders with transfer pricing, i.e. tax authorities. These include government officials, tax activists, and consumers who voice......This paper examines the case of Starbucks’ UK branch, which became subject to massive public criticism over alleged tax avoidance. Despite Starbucks arguing that its transfer pricing practices were in full compliance with regulatory requirements, public pressure for higher corporate tax payments...... led Starbucks to increase its UK tax payment on transfer pricing income beyond regulatory requirements. This case study suggests that MNE tax behavior on international transfer pricing is not strictly a matter of compliance with formal tax regulation. We demonstrate the way an MNE attempts to re...

  10. Polymerization-Driven Immobilization of dc-APGD Synthesized Gold Nanoparticles into a Quaternary Ammonium-Based Hydrogel Resulting in a Polymeric Nanocomposite with Heat-Transfer Applications

    Directory of Open Access Journals (Sweden)

    Piotr Cyganowski

    2018-03-01

    Full Text Available A new method for the production of nanocomposites, composed of gold nanoparticles (AuNPs and (vinylbenzyltrimethylammonium chloride-co-N,N-methylene bisacrylamide (VBTAC-co-MBA hydrogel, is described. Raw-AuNPs of defined optical and granulometric properties were synthesized using direct current atmospheric pressure glow discharge (dc-APGD generated in contact with a solution of HAuCl4. Different approaches to the polymerization-driven synthesis of Au/VBTAC-co-MBA nanocomposites were tested. It was established that homogenous dispersion of AuNPs in this new nanomaterial with was achieved in the presence of NaOH in the reaction mixture. The new nanocomposite was found to have excellent heat-transfer properties.

  11. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.

    Science.gov (United States)

    Sarkar, Aritra; Dhiman, Shikha; Chalishazar, Aditya; George, Subi J

    2017-10-23

    Chirality-driven self-sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core-substituted naphthalene-diimide-based donor and acceptor molecules with minimal structural mismatch and they comprise strong self-recognizing chiral motifs to determine the self-sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality-controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self-sorting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  13. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Janina Zygadlo

    2016-01-01

    . For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble...... glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed...... compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons....

  14. Heat Flux of a Transferred Arc Driven by a Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Naomi Matsumoto

    2009-01-01

    Full Text Available Theoretical consideration of a magnetically driven arc was performed to elucidate the variation of heat flux with an imposed DC magnetic field. Experiments were conducted to confirm the validity of the theoretical model. The heat flux decreased concomitantly with increased imposed magnetic flux density. Theoretical predictions agreed with experimental results.

  15. Poverty Alleviation and Environmental Sustainability through Improved Regimes of Technology Transfer

    Directory of Open Access Journals (Sweden)

    Klaus Bosselmann

    2006-06-01

    Full Text Available To achieve the Millennium Development Goals, international technology transfer can play a major role for poverty alleviation and environmental sustainability. At present, there are economic, social and legal (rather than technical barriers preventing the transfer of environmentally sound technology (EST from a wider use in international regimes. Removing these barriers requires greater political and regulatory efforts both domestically and internationally. To enable EST transfer, developed States need to improve domestic market conditions such as removal of negative subsidies and barriers to foreign investment, targeted fiscal incentives and law reforms favouring sustainable production and use of energy. There is no realistic perspective for international EST transfer as long as it is disadvantaged domestically. A coherent EST transfer regime is only possible through greater governmental intervention at the national and international level, including environmental regulations, national systems of innovation, and creating an enabling environment for EST. Such intervention should include effective public-private partnerships, both within and between States. Partnerships, if guided by law, could ensure EST innovation more efficiently than purely State-driven or market-driven EST transfers. In search for a model, the EST transfer regime under the Vienna Ozone Layer Convention and the Montreal Protocol deserves recognition. For example, the clean development mechanism under the Kyoto Protocol allows for considerable scope for EST transfer. The potential of EST transfer for climate change and for meeting the Millennium Development Goals has yet to be realized.

  16. Different Frequencies between Power and Efficiency in Wireless Power Transfer

    OpenAIRE

    Muhammad Afnan, Habibi; Hodaka, Ichijo

    2017-01-01

    Wireless Power Transfer (WPT) has been recognized as a common power transfer method because it transfers electric power without any cable from source to the load. One of the physical principle of WPT is the law of electromagnetic induction, and the WPT system is driven by alternative current power source under specific frequency. The frequency that provides maximum gain between voltages or currents is called resonance frequency. On the other hand, some studies about WPT said that resonance fr...

  17. Nitrogen transfer in the interface between the symbionts in pea root nodules

    DEFF Research Database (Denmark)

    Rosendahl, L.; Mouritzen, P.; Rudbeck, A.

    2001-01-01

    Transport mechanisms for transfer of nitrogen from the bacteroid side across the symbiosome membrane of pea (Pisum sativum L.) root nodules were identified by the use of energised bacteroid side-out symbiosome membrane vesicles. Such membrane vesicles were used to study a mechanism with high...... was not observed. The ammonium transporter has been identified as a voltage-driven channel whereas the symbiosome membrane aspartate transporter appears to be a H+/aspartate symport. The results suggest that nitrogen transfer between the symbionts in pea root nodules involves transfer of amino acids as well...... capacity for transport of ammonium and another mechanism capable of transporting aspartate. Both transport mechanisms are voltage driven and the rate of transport relates positively to the magnitude of the imposed membrane potentials. Competition for transport between ammonium and aspartate...

  18. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  19. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  20. Improving the bulk data transfer experience

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  1. You can go your own way: effectiveness of participant-driven versus experimenter-driven processing strategies in memory training and transfer.

    Science.gov (United States)

    Flegal, Kristin E; Lustig, Cindy

    2016-07-01

    Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either (1) mandated a specific strategy to increase deep, associative encoding, (2) attempted to suppress such encoding by mandating rote rehearsal, or (3) encouraged time and effort toward encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies.

  2. You can go your own way: Effectiveness of participant-driven versus experimenter-driven processing strategies in memory training and transfer

    Science.gov (United States)

    Flegal, Kristin E.; Lustig, Cindy

    2016-01-01

    Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either 1) mandated a specific strategy to increase deep, associative encoding, 2) attempted to suppress such encoding by mandating rote rehearsal, or 3) encouraged time and effort towards encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies. PMID:26549616

  3. Current-driven parametric resonance in magnetic multilayers

    International Nuclear Information System (INIS)

    Wang, C; Seinige, H; Tsoi, M

    2013-01-01

    Current-induced parametric excitations were observed in point-contact spin-valve nanodevices. Point contacts were used to inject high densities of direct and microwave currents into spin valves, thus producing oscillating spin-transfer and Oersted-field torques on magnetic moments. The resulting magnetodynamics were observed electrically by measuring rectified voltage signals across the contact. In addition to the spin-torque-driven ferromagnetic resonance we observe doubled-frequency signals which correspond to the parametric excitation of magnetic moments. Numerical simulations suggest that while both spin-transfer torque and ac Oersted field contribute to the parametrically excited dynamics, the ac spin torque dominates, and dc spin torque can switch it on and off. The dc bias dependence of the parametric resonance signal enabled the mapping of instability regions characterizing the nonlinearity of the oscillation. (paper)

  4. Phonons and charge-transfer excitations in HTS superconductors

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1989-01-01

    Some of the experimental and theoretical evidence implicating phonons and charge-transfer excitations in HTS superconductors is reviewed. It is suggested that superconductivity may be driven by a synergistic interplay of (anharmonic) phonons and electronic degrees of freedom (e.g., charge fluctuations, excitons). 47 refs., 5 figs

  5. Wind-driven rain as a boundary condition for HAM simulations: analysis of simplified modelling approaches

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Roels, Staf

    2007-01-01

    While the numerical simulation of moisture transfer inside building components is currently undergoing standardisation, the modelling of the atmospheric boundary conditions has received far less attention. This article analyses the modelling of the wind-driven-rain load on building facades...... though: the full variability with the perpendicular wind speed and horizontal rain intensity should be preserved, where feasible, for improved estimations of the moisture transfer in building components. In the concluding section, it is moreover shown that the dependence of the surface moisture transfer...

  6. Thermochemical performance analysis of solar driven CO_2 methane reforming

    International Nuclear Information System (INIS)

    Fuqiang, Wang; Jianyu, Tan; Huijian, Jin; Yu, Leng

    2015-01-01

    Increasing CO_2 emission problems create urgent challenges for alleviating global warming, and the capture of CO_2 has become an essential field of scientific research. In this study, a finite volume method (FVM) coupled with thermochemical kinetics was developed to analyze the solar driven CO_2 methane reforming process in a metallic foam reactor. The local thermal non-equilibrium (LTNE) model coupled with radiative heat transfer was developed to provide more temperature information. A joint inversion method based on chemical process software and the FVM coupled with thermochemical kinetics was developed to obtain the thermochemical reaction parameters and guarantee the calculation accuracy. The detailed thermal and thermochemical performance in the metal foam reactor was analyzed. In addition, the effects of heat flux distribution and porosity on the solar driven CO_2 methane reforming process were analyzed. The numerical results can serve as theoretical guidance for the solar driven CO_2 methane reforming application. - Highlights: • Solar driven CO_2 methane reforming process in metal foam reactor is analyzed. • FVM with chemical reactions was developed to analyze solar CO_2 methane reforming. • A joint inversion method was developed to obtain thermochemical reaction parameters. • Results can be a guidance for the solar driven CO_2 methane reforming application.

  7. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  8. Beyond Crowd Judgments: Data-driven Estimation of Market Value in Association Football

    DEFF Research Database (Denmark)

    Müller, Oliver; Simons, Alexander; Weinmann, Markus

    2017-01-01

    concern. Market values can be understood as estimates of transfer fees—that is, prices that could be paid for a player on the football market—so they play an important role in transfer negotiations. These values have traditionally been estimated by football experts, but crowdsourcing has emerged......Association football is a popular sport, but it is also a big business. From a managerial perspective, the most important decisions that team managers make concern player transfers, so issues related to player valuation, especially the determination of transfer fees and market values, are of major......’ market values using multilevel regression analysis. The regression results suggest that data-driven estimates of market value can overcome several of the crowd's practical limitations while producing comparably accurate numbers. Our results have important implications for football managers and scouts...

  9. Crystallographic Structure of Xanthorhodopsin, the Light-Driven Proton Pump With a Dual Chromophore

    International Nuclear Information System (INIS)

    Luecke, H.; Schobert, B.; Stagno, J.; Imasheva, E.S.; Wang, J.M.; Balashov, S.P.; Lanyi, J.K

    2008-01-01

    Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-(angstrom) resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine-aspartate complex for regulating the pK a of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as ∼45%, and the 46 o angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer

  10. Horizontal Gene Transfers in Mycoplasmas (Mollicutes).

    Science.gov (United States)

    Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E

    2018-04-12

    The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.

  11. Clinicians' ability, motivation, and opportunity to acquire and transfer knowledge: An age-driven perspective.

    Science.gov (United States)

    Profili, Silvia; Sammarra, Alessia; Dandi, Roberto; Mascia, Daniele

    2017-11-08

    Many countries are seeing a dramatic increase in the average age of their clinicians. The literature often highlights the challenges of high replacement costs and the need for strategies to retain older personnel. Less discussed are the potential pitfalls of knowledge acquisition and transfer that accompany this aging issue. We propose a conceptual framework for understanding how clinicians' age interact with ability, motivation, and opportunity to predict clinical knowledge transfer and acquisition in health care organizations. This study integrates life-span development perspectives with the ability-motivation-opportunity framework to develop a number of testable propositions on the interaction between age and clinicians' ability, motivation, and opportunity to acquire and transfer clinical knowledge. We posit that the interaction between ability (the knowledge and skills to acquire knowledge), motivation (the willingness to acquire and transfer knowledge), and opportunity (resources required for acquiring and transferring knowledge) is a determinant of successful knowledge management. We also suggest that clinicians' age-and more specifically, the cognitive and motivational changes that accompany aging-moderates these relationships. This study contributes to existing research by offering a set of testable propositions for future research. These propositions will hopefully encourage empirical research into this important topic and lead to guidelines for reducing the risks of organizational knowledge loss due to aging. We suggest several ways that health care organizations can tailor managerial practices in order to help capitalize on the knowledge-based resources held by their younger and older clinicians. Such initiatives may affect employees' ability (e.g., by providing specific training programs), motivation (e.g., by expanding subjective perceptions of future time at work), and opportunities (e.g., by providing mentoring, reverse mentoring, and coaching

  12. Current-driven thermo-magnetic switching in magnetic tunnel junctions

    Science.gov (United States)

    Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.

    2017-12-01

    We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.

  13. Light-field-driven currents in graphene

    Science.gov (United States)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  14. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  15. Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection

    Science.gov (United States)

    Han, Li-Hsin; Wu, Shaomin; Condit, J. Christopher; Kemp, Nate J.; Milner, Thomas E.; Feldman, Marc D.; Chen, Shaochen

    2010-05-01

    We report on the design, fabrication, and analysis of a light-driven micromotor. The micromotor was created from a nanoporous polymer with close-packed gold nanoparticles which generate heat by absorbing light. The blades of the micromotor were curved, forming convex and concave sides. Upon lateral irradiation, by geometric effect the convex side transfers more photon-generated heat to the surrounding gas molecules, causing a convective motion of gas and leading to the rotation of the micromotor. The light-driven motions of gas molecules were analyzed using molecular dynamics modeling.

  16. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    Science.gov (United States)

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  17. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables

    Science.gov (United States)

    Barnett, Lionel; Barrett, Adam B.; Seth, Anil K.

    2009-12-01

    Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.

  18. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  19. Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine

    Czech Academy of Sciences Publication Activity Database

    Szabla, Rafal; Kruse, Holger; Šponer, Jiří; Gora, R.W.

    2017-01-01

    Roč. 19, č. 27 (2017), s. 17531-17537 ISSN 1463-9076 Institutional support: RVO:68081707 Keywords : driven proton-transfer * excited-state dynamics * potentially prebiotic synthesis Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  20. Study of energy transfer in table-top X-pinch driven by a water line

    International Nuclear Information System (INIS)

    Beg, F N; Zhang, T; Fedin, D; Beagen, B; Chua, E; Lee, J Y; Rawat, R S; Lee, P

    2007-01-01

    The current passing through X-pinches and the energy transferring from the pulse forming line to the load are modelled using a simple LCR circuit. A comparison of the electrical properties of two table-top X-pinch devices is made. It was found that up to 25% of the stored energy is transferred from the water transmission line to the load in the University of California,San Diego (UCSD) table-top X-pinch before x-ray emission starts. The highest energy transmitted (75%) is found after the current peak. In comparison, only 3% of the energy is transferred to the load in the National Institute of Education (NIE) X-pinch device just after the maximum current peak. The highest energy (25%) transmitted to the plasma occurs long after the current peak. The plasma in both devices is visually and qualitatively similar. However, the UCSD device emits intense x-rays with no x-rays observed in the NIE device. This observation is consistent with the electrical circuit analysis

  1. Gate-Driven Pure Spin Current in Graphene

    Science.gov (United States)

    Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng

    2017-09-01

    The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.

  2. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  3. Intrafirm knowledge transfer of agile software practices: barriers and their relations

    DEFF Research Database (Denmark)

    Tordrup Heeager, Lise; Nielsen, Peter Axel

    2018-01-01

    to knowledge transfer, we modify and extend the framework to transferring knowledge of agile practices. This framework is subsequently applied for interpreting and analyzing the case study data. The analysis shows how these barriers (e.g., the organizational culture, time and resources, knowledge strategy......Agile software practices are widely used in a great variety of organizations, and the shift from traditional plan-driven approaches entails a redefinition of processes in these organizations. Intrafirm knowledge transfer of agile software practices between projects is a key concern...... in this redefinition. While knowledge transfer is essential for an organization to develop or keep its competitive advantage, it is also both difficult and time consuming, due to a wide range of barriers. Transferring knowledge on agile practices is even more complex due to there being a high degree of tacit knowledge...

  4. SIGNATURES OF MRI-DRIVEN TURBULENCE IN PROTOPLANETARY DISKS: PREDICTIONS FOR ALMA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Jacob B. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Hughes, A. Meredith; Flaherty, Kevin M. [Astronomy Department, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459 (United States); Bai, Xue-Ning [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States); Armitage, Philip J., E-mail: jbsimon.astro@gmail.com [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States)

    2015-08-01

    Spatially resolved observations of molecular line emission have the potential to yield unique constraints on the nature of turbulence within protoplanetary disks. Using a combination of local non-ideal magnetohydrodynamics (MHD) simulations and radiative transfer calculations, tailored to properties of the disk around HD 163296, we assess the ability of ALMA to detect turbulence driven by the magnetorotational instability (MRI). Our local simulations show that the MRI produces small-scale turbulent velocity fluctuations that increase in strength with height above the mid-plane. For a set of simulations at different disk radii, we fit a Maxwell–Boltzmann distribution to the turbulent velocity and construct a turbulent broadening parameter as a function of radius and height. We input this broadening into radiative transfer calculations to quantify observational signatures of MRI-driven disk turbulence. We find that the ratio of the peak line flux to the flux at line center is a robust diagnostic of turbulence that is only mildly degenerate with systematic uncertainties in disk temperature. For the CO(3–2) line, which we expect to probe the most magnetically active slice of the disk column, variations in the predicted peak-to-trough ratio between our most and least turbulent models span a range of approximately 15%. Additional independent constraints can be derived from the morphology of spatially resolved line profiles, and we estimate the resolution required to detect turbulence on different spatial scales. We discuss the role of lower optical depth molecular tracers, which trace regions closer to the disk mid-plane where velocities in MRI-driven models are systematically lower.

  5. A Case Study of Horizontal Reuse in a Project-Driven Organisation

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Røn, Henrik

    2000-01-01

    This experience paper presents observations, lessons learned, and recommendations based on a case study of reuse. The case study is concerned with the development, maturation, and reuse of a business domain independent software component (horizontal reuse) in a project-driven organisation that has...... knowledge is transferred within an organisation; (c) design patterns can be as risky as they can be beneficial; and (d) there is more to architectural mismatch than “merely ” packaging mismatch....

  6. Finite-Time Thermoeconomic Optimization of a Solar-Driven Heat Engine Model

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2011-01-01

    Full Text Available In the present paper, the thermoeconomic optimization of an irreversible solar-driven heat engine model has been carried out by using finite-time/finite-size thermodynamic theory. In our study we take into account losses due to heat transfer across finite time temperature differences, heat leakage between thermal reservoirs and internal irreversibilities in terms of a parameter which comes from the Clausius inequality. In the considered heat engine model, the heat transfer from the hot reservoir to the working fluid is assumed to be Dulong-Petit type and the heat transfer to the cold reservoir is assumed of the Newtonian type. In this work, the optimum performance and two design parameters have been investigated under two objective functions: the power output per unit total cost and the ecological function per unit total cost. The effects of the technical and economical parameters on the thermoeconomic performance have been also discussed under the aforementioned two criteria of performance.

  7. A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls

    International Nuclear Information System (INIS)

    Aydin, O.; Uenal, A.; Ayhan, T.

    1999-01-01

    Buoyancy-driven flows in enclosures play a vital role in many engineering applications such as double glazing, ventilation of rooms, nuclear reactor insulation, solar energy collection, cooling of electronic components, and crystal growth in liquids. Here, numerical study on buoyancy-driven laminar flow in an inclined square enclosure heated from one side and cooled from the adjacent side is conducted using finite difference methods. The effect of inclination angle on fluid flow and heat transfer is investigated by varying the angle of inclination between 0 degree and 360degree, and the results are presented in the form of streamlines and isotherms for different inclination angles and Rayleigh numbers. On the basis of the numerical data, the authors determine the critical values of the inclination angle at which the rate of the transfer within the enclosure is either maximum or minimum

  8. Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2014-06-27

    Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.

  9. [Determination by thermometric titrimetry of the thermodynamic parameters of water/n-octanol transfer of several non-steroidal anti-inflammatory drugs].

    Science.gov (United States)

    Burgot, G; Burgot, J L

    1995-01-01

    The calorimetric determination by thermometric titrimetry of the water/n-octanol transfer enthalpies of some non steroidic anti-inflammatory compounds is described. By combining the values obtained with that of the free enthalpies of transfer issuing from the values of corresponding log P, it is possible to determinate the transfer entropies of the solutes. The whole results of the show that almost the transfers are both enthalpy and entropy driven. They demonstrate the occurrence of three different mechanisms of transfer.

  10. Mass transfer dynamics in double degenerate binary systems

    International Nuclear Information System (INIS)

    Dan, M; Rosswog, S; Brueggen, M

    2009-01-01

    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.

  11. Charge Transfer into Aqueous Droplets via Kilovolt Potentials

    Science.gov (United States)

    Hamlin, B. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2012-11-01

    When an aqueous droplet immersed in an insulating oil contacts an electrified surface, the droplet acquires net charge. For sufficiently large field strengths, the charged droplet is driven back and forth electrophoretically between the electrodes, in essence ``bouncing'' between them. Although it is clear that the droplet acquires charge, the underlying mechanism controlling the charge transfer process has been unclear. Here we demonstrate that the chemical species present in the droplet strongly affect the charge transfer process into the drop. Using two independent charge measurement techniques, high speed video velocimetry and direct current measurement, we show that the charge acquired during contact is strongly influenced by the droplet pH. We also provide physical evidence that the electrodes undergo electroplating or corrosion for droplets with appropriate chemical species present. Together, the observations strongly suggest that electrochemical reactions govern the charge transfer process into the droplet.

  12. Dynamical Properties of Two Coupled Dissipative QED Cavities Driven by Coherent Fields

    International Nuclear Information System (INIS)

    Hou Bangpin; Sun Weili; Wang Shunjin; Wang Gang

    2007-01-01

    When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the environment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.

  13. Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders

    Directory of Open Access Journals (Sweden)

    Fatih Selimefendigil

    2015-09-01

    Full Text Available Mixed convection of ferrofluid filled lid driven cavity in the presence of two rotating cylinders were numerically investigated by using the finite element method. The cavity is heated from below, cooled from driven wall and rotating cylinder surfaces and side vertical walls of the cavity are assumed to be adiabatic. A magnetic dipole source is placed below the bottom wall of the cavity. The study is performed for various values of Reynolds numbers (100 ≤ Re ≤ 1000, angular rotational speed of the cylinders (−400 ≤ Ω ≤ 400, magnetic dipole strengths (0 ≤ γ ≤ 500, angular velocity ratios of the cylinders (0.25≤Ωi/Ωj≤4 and diameter ratios of the cylinders (0.5≤Di/Dj≤2. It is observed that flow patterns and thermal transport within the cavity are affected by variation in Reynolds number and magnetic dipole strength. The results of this investigation revealed that cylinder angular velocities, ratio of the angular velocities and diameter ratios have profound effect on heat transfer enhancement within the cavity. Averaged heat transfer enhancements of 181.5 % is achieved for clockwise rotation of the cylinder at Ω = −400 compared to motionless cylinder case. Increasing the angular velocity ratio from Ω2/Ω1=0.25 to Ω2/Ω1=4 brings about 91.7 % of heat transfer enhancement.

  14. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  15. A new pathway for transmembrane electron transfer in photosyntetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.

    NARCIS (Netherlands)

    van Brederode, M.E.; Jones, M.R.; van Mourik, F.; van Stokkum, I.H.M.; van Grondelle, R.

    1997-01-01

    It is generally accepted that electron transfer in bacterial photosynthesis is driven by the first singlet excited state of a special pair of bacteriochlorophylls (P*). We have examined the first steps of electron transfer in a mutant of the Rhodobacter sphaeroides reaction center in which charge

  16. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol

    2014-06-23

    A difference in work function plays a key role in charge transfer between two materials. Inorganic electrides provide a unique opportunity for electron transfer since interstitial anionic electrons result in a very low work function of 2.4-2.6 eV. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers was more effective in donating electrons to SWNTs than closed cage structured [Ca24Al28O64] 4+·4e- due to the higher electron concentration (1.3 × 1022 cm-3) and mobility (∼200 cm 2 V-1 s-1 at RT). A non-covalent conjugation enhanced near-infrared fluorescence of SWNTs as high as 52%. The field emission current density of electride-SWNT-silver paste dramatically increased by a factor of 46000 (14.8 mA cm-2) at 2 V μm-1 (3.5 wt% [Ca2N]+·e-) with a turn-on voltage of 0.85 V μm-1. This journal is © the Partner Organisations 2014.

  17. Geometric phase and quantum interference in photosynthetic reaction center: Regulation of electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuming, E-mail: ymsun@ytu.edu.cn; Su, Yuehua; Dai, Zhenhong; Wang, WeiTian

    2016-10-20

    Photosynthesis is driven by electron transfer in reaction centers in which the functional unit is composed of several simple molecules C{sub 2}-symmetrically arranged into two branches. In view of quantum mechanism, both branches are possible pathways traversed by the transferred electron. Due to different evolution of spin state along two pathways in transmembrane electric potential (TEP), quantum state of the transferred electron at the bridged site acquires a geometric phase difference dependent on TEP, the most efficient electron transport takes place in a specific range of TEP beyond which electron transfer is dramatically suppressed. What’s more, reaction center acts like elaborately designed quantum device preparing polarized spin dependent on TEP for the transferred electron to regulate the reduction potential at bridged site. In brief, electron transfer generates the TEP, reversely, TEP modulates the efficiency of electron transfer. This may be an important approach to maintaining an appreciable pH environment in photosynthesis.

  18. High performance data transfer

    Science.gov (United States)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  19. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  20. Barriers to the Transfer of Low-carbon Electricity Generation Technologies in Four Latin American Countries

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Haselip, James Arthur

    2015-01-01

    This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low-carbon ene......This article discusses the conclusions of four national Technology Needs Assessment (TNA) processes in Latin America (2011-2013), as applied to the electricity sector. The primary focus is on the financial and economic barriers identified by countries to the transfer of prioritized low......-carbon energy technologies. While many electricity markets in Latin America were liberalized during the 1990s and 2000s, such market-driven reform policies were far from uniform and in reality there exist a diversity of governance frameworks for national electricity markets, exemplified here by Argentina, Cuba...... to the debate about the relationship between financial and economic barriers to technology transfer and electricity market structures, based on a new round of country-driven priorities and analysis, in support of the UNFCCC process on climate change mitigation....

  1. Interfacial spin-orbit splitting and current-driven spin torque in anisotropic tunnel junctions

    KAUST Repository

    Manchon, Aurelien

    2011-05-17

    Spin transport in magnetic tunnel junctions comprising a single magnetic layer in the presence of interfacial spin-orbit interaction (SOI) is investigated theoretically. Due to the presence of interfacial SOI, a current-driven spin torque can be generated at the second order in SOI, even in the absence of an external spin polarizer. This torque possesses two components, one in plane and one perpendicular to the plane of rotation, that can induce either current-driven magnetization switching from an in-plane to out-of-plane configuration or magnetization precessions, similar to spin transfer torque in spin valves. Consequently, it appears that it is possible to control the magnetization steady state and dynamics by either varying the bias voltage or electrically modifying the SOI at the interface.

  2. Experimental investigation of the thermal hydraulics in lead bismuth eutectic-helium experimental loop of an accelerator-driven system

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Wenxuan; Wang, Yong Wei; Li, Xun Feng; Huai, Xiulan; Cal, Jun [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing (China)

    2016-10-15

    The heat transfer characteristics between liquid lead bismuth eutectic (LBE) and helium are of great significance for the two-loop cooling system based on an accelerator-driven system (ADS). This paper presents an experimental study on the resistance characteristics and heat transfer performance in a LBE-helium experimental loop of ADS. Pressure drops in the LBE loop, the main heat transfer, and the coupled heat transfer characteristics between LBE and helium are investigated experimentally. The temperature of LBE has a significant effect on the LBE thermo-physical properties, and is therefore considered in the prediction of pressure drops. The results show that the overall heat transfer coefficient increases with the increasing helium flow rate and the decreasing inlet temperature of helium. Increasing the LBE Reynolds number and LBE inlet temperature promotes the heat transfer performance of main heat transfer and thus the overall heat transfer coefficient. The experimental results give an insight into the flow and heat transfer properties in a LBE-helium heat exchanger and are helpful for the optimization of an ADS system design.

  3. A framework for a process-driven common foundation programme for graduates.

    Science.gov (United States)

    Jasper, M; Rolfe, G

    1993-10-01

    This paper discusses some of the problems encountered in writing a shortened Common Foundation Programme in nursing for graduates, and outlines a course which takes as its starting point the particular educational needs and requirements of the student group. Thus, the first question to be addressed by the curriculum writers when designing the course was "How can we teach these students?", rather than "What can we teach them?". The resulting process-driven course is heavily influenced by the student-centred philosophy of Carl Rogers, and utilizes a variety of large- and small-group methods to facilitate the students in gradually taking responsibility for, and making decisions about, their learning needs. The paper continues with some strategies for ensuring a smooth transition from a tutor-led, syllabus-driven start to the course, to a student-led, process-driven finish for both the theoretical and clinical components, and for the assessment schedule. Finally, a student-centred approach to evaluation is briefly outlined, and the paper concludes by suggesting that the principles employed in designing and implementing this course could be successfully transferred to a wide variety of other educational settings.

  4. Magnetization switching driven by spin-transfer-torque in high-TMR magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Aurelio, D.; Torres, L.; Finocchio, G.

    2009-01-01

    This paper presents a numerical study of magnetization switching driven by spin-polarized current in high-TMR magnetic tunnel junctions (TMR>100%). The current density distribution throughout the free-layer is computed dynamically, by modeling the ferromagnet/insulator/ferromagnet trilayer as a series of parallel resistances. The validity of the main hypothesis, which states that the current flows perpendicular to the sample plane, has been verified by numerically solving the Poisson equation. Our results show that the nonuniform current density distribution is a source of asymmetry to the switching process. Furthermore, we observe that the reversal mechanisms are characterized by well-defined localized pre-switching oscillation modes.

  5. On unambiguous parametrization of neutron cross-sections in the low-energy region

    International Nuclear Information System (INIS)

    Novoselov, G.M.; Kolomiets, V.M.

    1982-08-01

    One of the most important aims of analysis in the resonance region is the evaluation of neutron resonance parameters on the basis of a given formalism of the theory of nuclear reactions. However, the task of finding resonance parameters from experimental data on the energy dependence of cross-sections is subject to a number of difficulties. These difficulties are not only of a theoretical character associated with the selection of one version or another of the theory taking into account the effects necessary (interference between resonances, Doppler effect etc.), but also involve problems of principle. Whether the set of parameters found is the only possible one within the context of a single formalism used remains open. The specific features of processing the experimental data are such that even with good resolution a number of overlapping resonances (occurring as a result of the fluctuation in inter-level distances or the Doppler effect) may be classified as an isolated resonance. Moreover, even given a very weak inter-level interference and Doppler effect, unambiguous parametrization of the cross-sections is not always possible. In the present paper these questions (the choice of the approximation needed for describing experimentally observed cross-sections, allowance for inter-level interference and the Doppler effect and the possibility of ambiguous reproduction of the resonance structure of cross-sections) are examined with reference to the parametrization of the total cross-sections for non-fissionable nuclei in the low-neutron-energy region

  6. Chirality transfer technique between liquid crystal microdroplets using microfluidic systems

    Science.gov (United States)

    Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun

    2018-02-01

    Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.

  7. Discrete changes of current statistics in periodically driven stochastic systems

    International Nuclear Information System (INIS)

    Chernyak, Vladimir Y; Sinitsyn, N A

    2010-01-01

    We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel–Whitney class of topological invariants. (letter)

  8. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed

    2016-02-17

    The negative imaginary (NI) property occurs in many important applications. For instance, flexible structure systems with collocated force actuators and position sensors can be modelled as negative imaginary systems. In this study, a data-driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller response is used to identify the controller transfer function using system identification methods. © The Institution of Engineering and Technology 2016.

  9. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation.

    Science.gov (United States)

    Larsen, Daniel B; Petersen, Allan R; Dethlefsen, Johannes R; Teshome, Ayele; Fristrup, Peter

    2016-11-07

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH 2 OH at 175 °C. Under these conditions, PhCH 2 OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic-labelling experiments (using PhCH 2 OD and PhCD 2 OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Evolution of Phototrophy in the Chloroflexi Phylum Driven by Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Lewis M. Ward

    2018-02-01

    Full Text Available The evolutionary mechanisms behind the extant distribution of photosynthesis is a point of substantial contention. Hypotheses range from the presence of phototrophy in the last universal common ancestor and massive gene loss in most lineages, to a later origin in Cyanobacteria followed by extensive horizontal gene transfer into the extant phototrophic clades, with intermediate scenarios that incorporate aspects of both end-members. Here, we report draft genomes of 11 Chloroflexi: the phototrophic Chloroflexia isolate Kouleothrix aurantiaca as well as 10 genome bins recovered from metagenomic sequencing of microbial mats found in Japanese hot springs. Two of these metagenome bins encode photrophic reaction centers and several of these bins form a metabolically diverse, monophyletic clade sister to the Anaerolineae class that we term Candidatus Thermofonsia. Comparisons of organismal (based on conserved ribosomal and phototrophy (reaction center and bacteriochlorophyll synthesis protein phylogenies throughout the Chloroflexi demonstrate that two new lineages acquired phototrophy independently via horizontal gene transfer (HGT from different ancestral donors within the classically phototrophic Chloroflexia class. These results illustrate a complex history of phototrophy within this group, with metabolic innovation tied to HGT. These observations do not support simple hypotheses for the evolution of photosynthesis that require massive character loss from many clades; rather, HGT appears to be the defining mechanic for the distribution of phototrophy in many of the extant clades in which it appears.

  11. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    Science.gov (United States)

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  12. An analysis of inter-healthcare facility transfer of neonates within the ...

    African Journals Online (AJOL)

    RESEARCH. 514. May 2016, Vol. 106, No. 5. The inter-healthcare transfer of neonates is an integral component of neonatal care and is often driven by a lack .... ECT. A 2-year mid-level qualification leading to a limited number of skills within the ALS scope of practice. ECP. A 4-year professional Bachelor degree within the.

  13. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  14. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.; Rohatgi, U.S.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations al these conditions were compared with the GIRAFFE data. The effects of PCCS cell nodings on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three-node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer in the presence of noncondensable gases with only a coarse mesh. The cell length term in the condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  15. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  16. Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers.

    NARCIS (Netherlands)

    Visschers, R.W.; Vulto, S.I.E.; Jones, M.R.; van Grondelle, R.; Kraayenhof, R.

    1999-01-01

    The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for

  17. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-05-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  18. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-01-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  19. Global characteristics of zonal flows generated by ion temperature gradient driven turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Miyato, Naoaki; Kishimoto, Yasuaki; Li, Jiquan

    2004-08-01

    Global structure of zonal flows driven by ion temperature gradient driven turbulence in tokamak plasmas is investigated using a global electromagnetic Landau fluid code. Characteristics of the coupled system of the zonal flows and the turbulence change with the safety factor q. In a low q region stationary zonal flows are excited and suppress the turbulence effectively. Coupling between zonal flows and poloidally asymmetric pressure perturbations via a geodesic curvature makes the zonal flows oscillatory in a high q region. Also we identify energy transfer from the zonal flows to the turbulence via the poloidally asymmetric pressure perturbations in the high q region. Therefore in the high q region the zonal flows cannot quench the turbulent transport completely. (author)

  20. An Evaluation of the Tax-Transfer Treatment of Married Couples in European Countries

    DEFF Research Database (Denmark)

    Immervoll, Herwig; Kleven, Henrik Jacobsen; Kreiner, Claus Thustrup

    negatively on the earnings of the spouse. This stands in contrast to the previous literature on this question, which has focused on a specific form of positive jointness. The presence of negative jointness is driven by family-based and means-tested transfer programs combined with tax systems that usually...... feature very little jointness. Second, we consider the labor supply distortion on secondary earners relative to primary earners implied by the current tax-transfer systems, and study the welfare effects of small reforms that change the relative taxation of spouses. By adopting a small-reform methodology...

  1. An Evaluation of the Tax-Transfer Treatment of Married Couples in European Countries

    DEFF Research Database (Denmark)

    Immervoll, Herwig; Kleven, Henrik Jacobsen; Kreiner, Claus Thustrup

    2009-01-01

    negatively on the earnings of the spouse. This stands in contrast to the previous literature on this question, which has focused on a specific form of positive jointness. The presence of negative jointness is driven by family-based and means-tested transfer programs combined with tax systems that usually...... feature very little jointness. Second, we consider the labour supply distortion on secondary earners relative to primary earners implied by the current tax-transfer systems, and study the welfare effects of small reforms that change the relative taxation of spouses. By adopting a small-reform methodology...

  2. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  3. Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors

    Science.gov (United States)

    Thomas, Kukku; Alexander, Dinu; Sisira, S.; Gopi, Subash; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac

    2018-06-01

    Tb3+/Eu3+ co-doped lanthanum molybdate nanophosphors were synthesized by conventional co-precipitation method. The Powder X-ray diffractogram revealed the formation of highly crystalline tetragonal nanocrystals with space group I41/a and the detailed analysis of the small variation of lattice parameters with Tb/Eu co-doping on the host lattice were carried out based on the ionic radii of the dopants. The FTIR spectra is employed to identify the fundamental vibrational modes in La2-x-y (MoO4)3:xTb, yEu nanocrystals. The formation of nanocrystals by oriented attachment was recognized from the HR TEM images and the d-spacing calculated was in accordance with that corresponding to highest intensity diffraction peak in the XRD patterns. The constituent elements present in the samples were identified with the aid of EDAX and elemental mapping analysis. The broad Mo6+- O2- CTB and the sharp excitation peaks of Tb and Eu identified from the UV-Vis absorption spectra facilitates the suitability of exciting the phosphors effectively over NUV and visible region of the spectra. The possibility of energy transfer from host to Tb3+/Eu3+ ions and from Tb3+ to Eu3+ ions were confirmed from the PL excitation spectra monitoring 5D0→7F2 transition of Eu3+ ions around 615 nm. The correlated analysis of PL emission spectra, life time measurements and CIE diagram, upon different excitation channels elucidate the excellent luminescent properties of La2-x-y (MoO4)3:xTb, yEu nanophosphors with tunable emission colours in a wide range varying from yellow green region to reddish orange region and the efficient energy transfer from Tb3+ to Eu3+ ions in lanthanum molybdate host lattice. The Tb→Eu energy transfer efficiency and probability were calculated from the decay measurements and the values were found to be satisfactory for exploiting the prepared nanophosphors for the development of multifunctional luminescent nanophosphors.

  4. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-01-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic

  5. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    International Nuclear Information System (INIS)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

    1995-01-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes

  6. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  7. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  8. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling

    International Nuclear Information System (INIS)

    Guo, Jinxin; Gleeson, Michael R; Liu, Shui; Sheridan, John T

    2011-01-01

    The non-local photopolymerization driven diffusion (NPDD) model predicts that a reduction in the non-local response length within a photopolymer material will improve its high spatial frequency response. The introduction of a chain transfer agent reduces the average molecular weight of polymer chains formed during free radical polymerization. Therefore a chain transfer agent (CTA) provides a practical method to reduce the non-local response length. An extended NPDD model is presented, which includes the chain transfer reaction and most major photochemical processes. The addition of a chain transfer agent into an acrylamide/polyvinyl alcohol photopolymer material is simulated and the predictions of the model are examined. The predictions of the model are experimentally examined in part II of this paper

  9. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance?

    Science.gov (United States)

    Freeman, Christopher J; Thacker, Robert W; Baker, David M; Fogel, Marilyn L

    2013-06-01

    By forming symbiotic interactions with microbes, many animals and plants gain access to the products of novel metabolic pathways. We investigated the transfer of symbiont-derived carbon and nitrogen to the sponges Aplysina cauliformis, Aplysina fulva, Chondrilla caribensis, Neopetrosia subtriangularis and Xestospongia bocatorensis, all of which host abundant microbial populations, and Niphates erecta, which hosts a sparse symbiont community. We incubated sponges in light and dark bottles containing seawater spiked with (13)C- and (15)N-enriched inorganic compounds and then measured (13)C and (15)N enrichment in the microbial (nutrient assimilation) and sponge (nutrient transfer) fractions. Surprisingly, although most sponges hosting abundant microbial communities were more enriched in (13)C than N. erecta, only N. subtriangularis was more enriched in (15)N than N. erecta. Although photosymbiont abundance varied substantially across species, (13)C and (15)N enrichment was not significantly correlated with photosymbiont abundance. Enrichment was significantly correlated with the ratio of gross productivity to respiration (P:R), which varied across host species and symbiont phylotype. Because irradiance impacts P:R ratios, we also incubated A. cauliformis in (13)C-enriched seawater under different irradiances to determine whether symbiont carbon fixation and transfer are dependent on irradiance. Carbon fixation and transfer to the sponge host occurred in all treatments, but was greatest at higher irradiances and was significantly correlated with P:R ratios. Taken together, these results demonstrate that nutrient transfer from microbial symbionts to host sponges is influenced more by host-symbiont identities and P:R ratios than by symbiont abundance.

  10. Solar thermally driven cooling systems: Some investigation results and perspectives

    International Nuclear Information System (INIS)

    Ajib, Salman; Günther, Wolfgang

    2013-01-01

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  11. Role of wall heat transfer and other system variables on fuel compaction and recriticality

    International Nuclear Information System (INIS)

    Dhir, V.K.; Castle, J.N.; Catton, I.; Kastenberg, W.E.; Doshi, J.B.

    1976-01-01

    The assessment of the molten fuel gaining recriticality after a hypothetical core disruptive accident in a fast reactor is an important safety consideration. Recriticality of the disrupted core can be envisioned to occur, if the fuel rearranges itself into a denser configuration either due to gravity slumping of the molten fuel or due to pressure or heat transfer driven compaction of the earlier dispersed fuel. In this paper the role played by wall heat transfer, internal radiation and the bottle pressure on the physical state of the molten fuel pool is discussed. It is suggested that in the absence of a solid crust the heat transfer process from the molten fuel to the surrounding steel will be very efficient because of melting and buoyancy driven removal of less dense steel through the pool of heavier UO 2 . The internal radiation at the high fuel temperature significantly increase the effective thermal conductivity of the molten fuel and lead to increased heat transfer in situations where a solid crust of UO 2 exists between molten UO 2 and molten steel. IN a boiled-up bottled pool, the pool pressure is shown to increase very rapidly with time and thus necessitate higher fission heating of the fuel to maintain it in a certain boiled up state. Finally, the results of the above discussion are applied to study the recriticality of a fuel pool formed during a hypothetical core disrupted accident in a fast reactor

  12. Customer-Driven Supply Chains From Glass Pipelines to Open Innovation Networks

    CERN Document Server

    Lyons, Andrew C; Piller, Frank; Poler, Raúl

    2012-01-01

    In recent years, the supply chain has become a key element to the survival and prosperity of organisations in different industry sectors. Organisations dealing in dynamic business environments demand supply chains that support the satisfaction of customer needs. The principles of lean thinking that once permeated standalone organisations have now been transferred to the supply chain, making imperative the development of innovative approaches to supply chain management.    Customer-Driven Supply Chains: From Glass Pipelines to Open Innovation Networks reviews the concept of lean thinking and its relationship to other key initiatives associated with supply chain management. Detailed industrial case studies based on the authors’ experience illustrate the principles behind lean supply chains. Moreover, a series of diagrams are used to illustrate critical concepts and supply chain architectures. Special emphasis is placed on the importance of transferring lean principles from the organisational level to the s...

  13. Fuel transfer system for a nuclear reactor

    International Nuclear Information System (INIS)

    Katz, L.R.; Marshall, J.R.; Desmarchais, W.E.

    1977-01-01

    Disclosed is a fuel transfer system for moving nuclear reactor fuel assemblies from a new fuel storage pit to a containment area containing the nuclear reactor, and for transferring spent fuel assemblies under water from the reactor to a spent fuel storage area. The system includes an underwater track which extends through a wall dividing the fuel building from the reactor containment and a car on the track serves as the vehicle for moving fuel assemblies between these two areas. The car is driven by a motor and linkage extending from an operating deck to a chain belt drive on the car. A housing pivotally mounted at its center on the car is hydraulically actuated to vertically receive a fuel assembly which then is rotated to a horizontal position to permit movement through the wall between the containment and fuel building areas. Return to the vertical position provides for fuel assembly removal and the reverse process is repeated when transferring an assembly in the opposite direction. Limit switches used in controlling operation of the system are designed to be replaced from the operating deck when necessary by tools designed for this purpose. 5 claims, 8 figures

  14. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  15. Computational Model of a Biomass Driven Absorption Refrigeration System

    Directory of Open Access Journals (Sweden)

    Munyeowaji Mbikan

    2017-02-01

    Full Text Available The impact of vapour compression refrigeration is the main push for scientists to find an alternative sustainable technology. Vapour absorption is an ideal technology which makes use of waste heat or renewable heat, such as biomass, to drive absorption chillers from medium to large applications. In this paper, the aim was to investigate the feasibility of a biomass driven aqua-ammonia absorption system. An estimation of the solid biomass fuel quantity required to provide heat for the operation of a vapour absorption refrigeration cycle (VARC is presented; the quantity of biomass required depends on the fuel density and the efficiency of the combustion and heat transfer systems. A single-stage aqua-ammonia refrigeration system analysis routine was developed to evaluate the system performance and ascertain the rate of energy transfer required to operate the system, and hence, the biomass quantity needed. In conclusion, this study demonstrated the results of the performance of a computational model of an aqua-ammonia system under a range of parameters. The model showed good agreement with published experimental data.

  16. Revenue, relationships and routines: the social organization of acute myocardial infarction patient transfers in the United States.

    Science.gov (United States)

    Veinot, Tiffany C; Bosk, Emily A; Unnikrishnan, K P; Iwashyna, Theodore J

    2012-11-01

    Heart attack, or acute myocardial infarction (AMI), is a leading cause of death in the United States (U.S.). The most effective therapy for AMI is rapid revascularization: the mechanical opening of the clogged artery in the heart. Forty-four percent of patients with AMI who are admitted to a non-revascularization hospital in the U.S. are transferred to a hospital with that capacity. Yet, we know little about the process by which community hospitals complete these transfers, and why publicly available hospital quality data plays a small role in community hospitals' choice of transfer destinations. Therefore, we investigated how community hospital staff implement patient transfers and select destinations. We conducted a mixed methods study involving: interviews with staff at three community hospitals (n = 25) in a Midwestern state and analysis of U.S. national Medicare records for 1996-2006. Community hospitals in the U.S., including our field sites, typically had longstanding relationships with one key receiving hospital. Community hospitals addressed the need for rapid AMI patient transfers by routinizing the collective, interhospital work process. Routinization reduced staff uncertainty, coordinated their efforts and conserved their cognitive resources for patient care. While destination selection was nominally a physician role, the decision was routinized, such that staff immediately contacted a "usual" transfer destination upon AMI diagnosis. Transfer destination selection was primarily driven at an institutional level by organizational concerns and bed supply, rather than physician choice or patient preference. Transfer routinization emerged as a form of social order that invoked tradeoffs between process speed and efficiency and patient-centered, quality-driven decision making. We consider the implications of routinization and institutional imperatives for health policy, quality improvement and health informatics interventions. Copyright © 2012 Elsevier Ltd

  17. Effects-Driven IT Development

    DEFF Research Database (Denmark)

    Hertzum, Morten; Simonsen, Jesper

    2010-01-01

    We present effects-driven IT development as an instrument for pursuing and reinforcing Participatory Design (PD) when it is applied in commercial information technology (IT) projects. Effects-driven IT development supports the management of a sustained PD process throughout design and organizatio......We present effects-driven IT development as an instrument for pursuing and reinforcing Participatory Design (PD) when it is applied in commercial information technology (IT) projects. Effects-driven IT development supports the management of a sustained PD process throughout design...

  18. Photogenerated carriers transfer in dye-graphene-SnO2 composites for highly efficient visible-light photocatalysis.

    Science.gov (United States)

    Zhuang, Shendong; Xu, Xiaoyong; Feng, Bing; Hu, Jingguo; Pang, Yaru; Zhou, Gang; Tong, Ling; Zhou, Yuxue

    2014-01-08

    The visible-light-driven photocatalytic activities of graphene-semiconductor catalysts have recently been demonstrated, however, the transfer pathway of photogenerated carriers especially where the role of graphene still remains controversial. Here we report graphene-SnO2 aerosol nanocomposites that exhibit more superior dye adsorption capacity and photocatalytic efficiency compared with pure SnO2 quantum dots, P25 TiO2, and pure graphene aerosol under the visible light. This study examines the origin of the visible-light-driven photocatalysis, which for the first time links to the synergistic effect of the cophotosensitization of the dye and graphene to SnO2. We hope this concept and corresponding mechanism of cophotosensitization could provide an original understanding for the photocatalytic reaction process at the level of carrier transfer pathway as well as a brand new approach to design novel and versatile graphene-based composites for solar energy conversion.

  19. Task-driven image acquisition and reconstruction in cone-beam CT

    International Nuclear Information System (INIS)

    Gang, Grace J; Stayman, J Webster; Siewerdsen, Jeffrey H; Ehtiati, Tina

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d′) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d′ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d′ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  20. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  1. Mechanochemical Association Reaction of Interfacial Molecules Driven by Shear.

    Science.gov (United States)

    Khajeh, Arash; He, Xin; Yeon, Jejoon; Kim, Seong H; Martini, Ashlie

    2018-05-29

    Shear-driven chemical reaction mechanisms are poorly understood because the relevant reactions are often hidden between two solid surfaces moving in relative motion. Here, this phenomenon is explored by characterizing shear-induced polymerization reactions that occur during vapor phase lubrication of α-pinene between sliding hydroxylated and dehydroxylated silica surfaces, complemented by reactive molecular dynamics simulations. The results suggest that oxidative chemisorption of the α-pinene molecules at reactive surface sites, which transfers oxygen atoms from the surface to the adsorbate molecule, is the critical activation step. Such activation takes place more readily on the dehydroxylated surface. During this activation, the most strained part of the α-pinene molecules undergoes a partial distortion from its equilibrium geometry, which appears to be related to the critical activation volume for mechanical activation. Once α-pinene molecules are activated, association reactions occur between the newly attached oxygen and one of the carbon atoms in another molecule, forming ether bonds. These findings have general implications for mechanochemistry because they reveal that shear-driven reactions may occur through reaction pathways very different from their thermally induced counterparts and specifically the critical role of molecular distortion in such reactions.

  2. Kinetic and thermodynamic study of the transfer of anionic polyamidoamine dendrimers across two immiscible liquids

    International Nuclear Information System (INIS)

    Gonzalez-Fuentes, Miguel A.; Manriquez, J.; Antano-Lopez, R.; Godinez, Luis A.

    2011-01-01

    The kinetics and thermodynamics for the phase transfer of carboxyl-terminated polyamidoamine (PAMAM) dendrimers across the water/dichloroethane interface were analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. A three phase junction was employed by inserting a cylindrical gold electrode through the liquid-liquid interface. The reversible redox species decamethylferrocene (DMFc) was used in the organic phase in order to promote dendrimer transfer. It was found that the electrochemical behaviour of DMFc at the gold/dichloroethane interface depends on the generation and concentration of the dendrimer species in the aqueous phase. In addition, it was observed that the electrochemically driven transfer of these macromolecules corresponds to a quasi-reversible process. The data obtained from thermodynamic studies indicate that dendrimers are transferred between the two phases under study by an entropy controlled process.

  3. Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes

    KAUST Repository

    Menamparambath, Mini Mol; Park, Jong Ho; Yoo, Ho Sung; Patole, Shashikant P.; Yoo, Ji Beom; Kim, Sung Wng; Baik, Seunghyun

    2014-01-01

    V. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers

  4. Eosin Y as a Direct Hydrogen Atom Transfer Photocatalyst for the Functionalization of C-H Bonds.

    Science.gov (United States)

    Fan, Xuan-Zi; Rong, Jia-Wei; Wu, Hao-Lin; Zhou, Quan; Deng, Hong-Ping; Tan, Jin Da; Xue, Cheng-Wen; Wu, Li-Zhu; Tao, Hai-Rong; Wu, Jie

    2018-05-02

    Eosin Y, a well-known economical alternative to metal catalysts in visible-light-driven single-electron transfer-based organic transformations, can behave as an effective direct hydrogen atom transfer catalyst for C-H activation. Using the alkylation of C-H bonds with electron-deficient alkenes as a model study revealed an extremely broad substrate scope, enabling easy access to a variety of important synthons. This eosin Y-based photocatalytic hydrogen atom transfer strategy is promising for diverse functionalization of a wide range of native C-H bonds in a green and sustainable manner. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photorelaxation of imidazole and adenine via electron-driven proton transfer along H2O wires

    Czech Academy of Sciences Publication Activity Database

    Szabla, Rafal; Gora, R.W.; Janicki, M.; Šponer, Jiří

    2016-01-01

    Roč. 195, č. 2016 (2016), s. 237-251 E-ISSN 1364-5498 R&D Projects: GA ČR(CZ) GA14-12010S Institutional support: RVO:68081707 Keywords : excited-state deactivation * induced charge-transfer Subject RIV: BO - Biophysics

  6. A fast laser alloying process for the selective electroplating of metal on SiO2 and polyimide

    International Nuclear Information System (INIS)

    Malba, V.; Bernhardt, A.F.

    1992-01-01

    This paper reports on a new laser direct-write process for patterning of metal on multichip modules. The process involves the laser modification of the non-conductive surface of a seed multilayer, converting it to a conductive surface, which can be electroplated with metal. The seed multilayer is composed of a TiW adhesion layer, onto which a Au film is sputtered, followed by an a-Si layer, which forms the non-conductive surface. The laser modifies the surface by alloying (or mixing) the Si and Au to form the conductive surface. This laser process has been shown to be capable of writing speeds of 2.5 m/s. With a silicon dioxide interlevel dielectric layer, the process works over a large range of laser power (P max /P min ∼ 5). A polyimide interlevel dielectric layer can be used without damage or loss of adhesion, although the process margin is substantially reduced (P max /P min ∼ 2)

  7. Induced photoemission from driven nonadiabatic dynamics in an avoided crossing system

    Energy Technology Data Exchange (ETDEWEB)

    Arasaki, Yasuki; Mizuno, Yuta; Takatsuka, Kazuo, E-mail: kaztak@mns2.c.u-tokyo.ac.jp [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo (Japan); Scheit, Simona [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902 Tokyo (Japan); Theoretische Chemie, Universität Heidelberg, Im Neuneheimer Feld 229, 69120 Heidelberg (Germany)

    2014-12-21

    When vibrational dynamics on an ionic state (large dipole moment) is coupled to that on a neutral state (small dipole moment) such as at an avoided crossing in the alkali halide system, the population transfer between the states cause oscillation of the molecular dipole, leading to dipole emission. Such dynamics may be driven by an external field. We study how the coupled wavepacket dynamics is affected by the parameters (intensity, frequency) of the driving field with the aim of making use of the photoemission as an alternative detection scheme of femtosecond and subfemtosecond vibrational and electronic dynamics or as a characteristic optical source.

  8. A finite volume method for density driven flows in porous media

    Directory of Open Access Journals (Sweden)

    Hilhorst Danielle

    2013-01-01

    Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.

  9. Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis.

    Science.gov (United States)

    Bazant, Martin Z

    2017-07-01

    Motivated by the possibility of electrochemical control of phase separation, a variational theory of thermodynamic stability is developed for driven reactive mixtures, based on a nonlinear generalization of the Cahn-Hilliard and Allen-Cahn equations. The Glansdorff-Prigogine stability criterion is extended for driving chemical work, based on variations of nonequilibrium Gibbs free energy. Linear stability is generally determined by the competition of chemical diffusion and driven autocatalysis. Novel features arise for electrochemical systems, related to controlled total current (galvanostatic operation), concentration-dependent exchange current (Butler-Volmer kinetics), and negative differential reaction resistance (Marcus kinetics). The theory shows how spinodal decomposition can be controlled by solo-autocatalytic charge transfer, with only a single faradaic reaction. Experimental evidence is presented for intercalation and electrodeposition in rechargeable batteries, and further applications are discussed in solid state ionics, electrovariable optics, electrochemical precipitation, and biological pattern formation.

  10. Light-Driven Alignment

    CERN Document Server

    Antonyuk, Boris P

    2009-01-01

    This book deals with influencing the properties of solids by light-driven electron transport. The theoretical basis of these effects, light-driven ordering and self-organisation, as well as optical motors are presented. With light as a tool, new ways to produce materials are opened.

  11. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  12. Heat transfer performance of heat pipe for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Wang Minglu; Xiong Zhengqin; Gu Hanyang; Ye Cheng; Cheng Xu

    2014-01-01

    A large-scale loop heat pipe has no electricity driven component and high efficiency of heat transfer. It can be used for the passive cooling of the SFP after SBO to improve the safety performance of nuclear power plants. In this paper, such a large-scale loop heat pipe is studied experimentally. The heat transfer rate, evaporator average heat transfer coefficient operating temperature, operating pressure and ammonia flow rate have been obtained with the water flow ranging from 0.007 m/s to 0.02 m/s outside the evaporator section, heating water temperature in the range of 50 to 90℃, air velocity outside the condensation section ranging from 0.5 to 2.5 m/s. It is found that the heat transfer rate reaches as high as 20.1 kW. Parametric analysis indicates that, the heat transfer rate and ammonia flow rate are influenced significantly by hot water inlet temperature and velocity, while beyond 1.5 m/s, the effect of air velocity outside the condensation section is minor. (authors)

  13. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    OpenAIRE

    Yu, Zhao-xian; Jiao, Zhi-yong

    2003-01-01

    In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...

  14. Heat Transfer and Entropy Generation Analysis of an Intermediate Heat Exchanger in ADS

    Science.gov (United States)

    Wang, Yongwei; Huai, Xiulan

    2018-04-01

    The intermediate heat exchanger for enhancement heat transfer is the important equipment in the usage of nuclear energy. In the present work, heat transfer and entropy generation of an intermediate heat exchanger (IHX) in the accelerator driven subcritical system (ADS) are investigated experimentally. The variation of entropy generation number with performance parameters of the IHX is analyzed, and effects of inlet conditions of the IHX on entropy generation number and heat transfer are discussed. Compared with the results at two working conditions of the constant mass flow rates of liquid lead-bismuth eutectic (LBE) and helium gas, the total pumping power all tends to reduce with the decreasing entropy generation number, but the variations of the effectiveness, number of transfer units and thermal capacity rate ratio are inconsistent, and need to analyze respectively. With the increasing inlet mass flow rate or LBE inlet temperature, the entropy generation number increases and the heat transfer is enhanced, while the opposite trend occurs with the increasing helium gas inlet temperature. The further study is necessary for obtaining the optimized operation parameters of the IHX to minimize entropy generation and enhance heat transfer.

  15. Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Powell, M.W.

    1994-01-01

    A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer

  16. Transfer of an induced preferred retinal locus of fixation to everyday life visual tasks.

    Science.gov (United States)

    Barraza-Bernal, Maria J; Rifai, Katharina; Wahl, Siegfried

    2017-12-01

    Subjects develop a preferred retinal locus of fixation (PRL) under simulation of central scotoma. If systematic relocations are applied to the stimulus position, PRLs manifest at a location in favor of the stimulus relocation. The present study investigates whether the induced PRL is transferred to important visual tasks in daily life, namely pursuit eye movements, signage reading, and text reading. Fifteen subjects with normal sight participated in the study. To develop a PRL, all subjects underwent a scotoma simulation in a prior study, where five subjects were trained to develop the PRL in the left hemifield, five different subjects on the right hemifield, and the remaining five subjects could naturally chose the PRL location. The position of this PRL was used as baseline. Under central scotoma simulation, subjects performed a pursuit task, a signage reading task, and a reading-text task. In addition, retention of the behavior was also studied. Results showed that the PRL position was transferred to the pursuit task and that the vertical location of the PRL was maintained on the text reading task. However, when reading signage, a function-driven change in PRL location was observed. In addition, retention of the PRL position was observed over weeks and months. These results indicate that PRL positions can be induced and may further transferred to everyday life visual tasks, without hindering function-driven changes in PRL position.

  17. Dissociative electron attachment and charge transfer in condensed matter

    International Nuclear Information System (INIS)

    Bass, A.D.; Sanche, L.

    2003-01-01

    Experiments using energy-selected beams of electrons incident from vacuum upon thin vapour deposited solids show that, as in the gas-phase, scattering cross sections at low energies are dominated by the formation of temporary negative ions (or resonances) and that molecular damage may be effected via dissociative electron attachment (DEA). Recent results also show that charge transfer between anionic states of target molecules and their environment is often crucial in determining cross sections for electron driven processes. Here, we review recent work from our laboratory, in which charge transfer is observed. For rare gas solids, electron exchange between the electron-exciton complex and either a metal substrate or co-adsorbed molecule enhances the desorption of metastable atoms and/or molecular dissociation. We discuss how transient electron capture by surface electron states of a substrate and subsequent electron transfer to a molecular adsorbate enhances the effective cross sections for DEA. We also consider the case of DEA to CF 2 Cl 2 condensed on water and ammonia ices, where electron exchange between pre-solvated electron states of ice and transient molecular anions can also increase DEA cross sections. Electron transfer from molecular resonances into pre-solvated electron states of ice is also discussed

  18. Data-Driven and Expectation-Driven Discovery of Empirical Laws.

    Science.gov (United States)

    1982-10-10

    occurred in small integer proportions to each other. In 1809, Joseph Gay- Lussac found evidence for his law of combining volumes, which stated that a...of Empirical Laws Patrick W. Langley Gary L. Bradshaw Herbert A. Simon T1he Robotics Institute Carnegie-Mellon University Pittsburgh, Pennsylvania...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Data-Driven and Expectation-Driven Discovery Interim Report 2/82-10/82 of Empirical Laws S. PERFORMING ORG

  19. Emotion-driven level generation

    OpenAIRE

    Togelius, Julian; Yannakakis, Georgios N.

    2016-01-01

    This chapter examines the relationship between emotions and level generation. Grounded in the experience-driven procedural content generation framework we focus on levels and introduce a taxonomy of approaches for emotion-driven level generation. We then review four characteristic level generators of our earlier work that exemplify each one of the approaches introduced. We conclude the chapter with our vision on the future of emotion-driven level generation.

  20. Data and Dynamics Driven Approaches for Modelling and Forecasting the Red Sea Chlorophyll

    KAUST Repository

    Dreano, Denis

    2017-05-31

    Phytoplankton is at the basis of the marine food chain and therefore play a fundamental role in the ocean ecosystem. However, the large-scale phytoplankton dynamics of the Red Sea are not well understood yet, mainly due to the lack of historical in situ measurements. As a result, our knowledge in this area relies mostly on remotely-sensed observations and large-scale numerical marine ecosystem models. Models are very useful to identify the mechanisms driving the variations in chlorophyll concentration and have practical applications for fisheries operation and harmful algae blooms monitoring. Modelling approaches can be divided between physics- driven (dynamical) approaches, and data-driven (statistical) approaches. Dynamical models are based on a set of differential equations representing the transfer of energy and matter between different subsets of the biota, whereas statistical models identify relationships between variables based on statistical relations within the available data. The goal of this thesis is to develop, implement and test novel dynamical and statistical modelling approaches for studying and forecasting the variability of chlorophyll concentration in the Red Sea. These new models are evaluated in term of their ability to efficiently forecast and explain the regional chlorophyll variability. We also propose innovative synergistic strategies to combine data- and physics-driven approaches to further enhance chlorophyll forecasting capabilities and efficiency.

  1. Analogy between optically driven injection-locked laser diodes and driven damped linear oscillators

    International Nuclear Information System (INIS)

    Murakami, Atsushi; Shore, K. Alan

    2006-01-01

    An analytical study of optically driven laser diodes (LDs) has been undertaken to meet the requirement for a theoretical treatment for chaotic drive and synchronization occurring in the injection-locked LDs with strong injection. A small-signal analysis is performed for the sets of rate equations for the injection-locked LDs driven by a sinusoidal optical signal. In particular, as a model of chaotic driving signals from LD dynamics, an optical signal caused by direct modulation to the master LD is assumed, oscillating both in field amplitude and phase as is the case with chaotic driving signals. Consequently, we find conditions that allow reduction in the degrees of freedom of the driven LD. Under these conditions, the driven response is approximated to a simple form which is found to be equivalent to driven damped linear oscillators. The validity of the application of this theory to previous work on the synchronization of chaos and related phenomena occurring in the injection-locked LDs is demonstrated

  2. Advanced Measurement and Simulation Procedure for the Identification of Heat and Mass Transfer Parameters in Dynamic Adsorption Experiments

    Directory of Open Access Journals (Sweden)

    Andreas Velte

    2017-08-01

    Full Text Available Thermally-driven heat pumps can help to mitigate CO2 emissions by enhancing the efficiency of heating systems or by driving cooling systems with waste or solar heat. In order to make the thermally-driven systems more attractive for the end consumer, these systems need a higher power density. A higher power density can be achieved by intensifying the heat and mass transfer processes within the adsorption heat exchanger. For the optimization of this key component, a numerical model of the non-isothermal adsorption dynamics can be applied. The calibration of such a model can be difficult, since heat and mass transfer processes are strongly coupled. We present a measurement and simulation procedure that makes it possible to calibrate the heat transfer part of the numerical model separately from the mass transfer part. Furthermore, it is possible to identify the parts of the model that need to be improved. For this purpose, a modification of the well-known large temperature jump method is developed. The newly-introduced measurements are conducted under an inert N2 atmosphere, and the surface temperature of the sample is measured with an infrared sensor. We show that the procedure is applicable for two completely different types of samples: a loose grains configuration and a fibrous structure that is directly crystallized.

  3. Evaluation of Respondent-Driven Sampling

    Science.gov (United States)

    McCreesh, Nicky; Frost, Simon; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda Ndagire; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Background Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex-workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total-population data. Methods Total-population data on age, tribe, religion, socioeconomic status, sexual activity and HIV status were available on a population of 2402 male household-heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, employing current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). Results We recruited 927 household-heads. Full and small RDS samples were largely representative of the total population, but both samples under-represented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven-sampling statistical-inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven-sampling bootstrap 95% confidence intervals included the population proportion. Conclusions Respondent-driven sampling produced a generally representative sample of this well-connected non-hidden population. However, current respondent-driven-sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience

  4. Evaluation of respondent-driven sampling.

    Science.gov (United States)

    McCreesh, Nicky; Frost, Simon D W; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda N; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total population data. Total population data on age, tribe, religion, socioeconomic status, sexual activity, and HIV status were available on a population of 2402 male household heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, using current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). We recruited 927 household heads. Full and small RDS samples were largely representative of the total population, but both samples underrepresented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven sampling statistical inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven sampling bootstrap 95% confidence intervals included the population proportion. Respondent-driven sampling produced a generally representative sample of this well-connected nonhidden population. However, current respondent-driven sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience sampling method, and caution is required

  5. A Model-Driven Framework to Develop Personalized Health Monitoring

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-07-01

    Full Text Available Both distributed healthcare systems and the Internet of Things (IoT are currently hot topics. The latter is a new computing paradigm to enable advanced capabilities in engineering various applications, including those for healthcare. For such systems, the core social requirement is the privacy/security of the patient information along with the technical requirements (e.g., energy consumption and capabilities for adaptability and personalization. Typically, the functionality of the systems is predefined by the patient’s data collected using sensor networks along with medical instrumentation; then, the data is transferred through the Internet for treatment and decision-making. Therefore, systems creation is indeed challenging. In this paper, we propose a model-driven framework to develop the IoT-based prototype and its reference architecture for personalized health monitoring (PHM applications. The framework contains a multi-layered structure with feature-based modeling and feature model transformations at the top and the application software generation at the bottom. We have validated the framework using available tools and developed an experimental PHM to test some aspects of the functionality of the reference architecture in real time. The main contribution of the paper is the development of the model-driven computational framework with emphasis on the synergistic effect of security and energy issues.

  6. From current-driven to neoclassically driven tearing modes.

    Science.gov (United States)

    Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A

    2002-03-11

    In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.

  7. System for selection of radiation source transfer trucks

    International Nuclear Information System (INIS)

    Tanimoto, Yoshinori; Ito, Kojiro.

    1970-01-01

    A device for selection of trucks each of which load and transfer a radiation source to an irradiation room above a water pool is installed at the end of a pair of rails fixed to the bottom of the pool. This device is equipped with a number of laterally shiftable rail pairs which may be brought into successive alignment with the fixed rails and is adapted to receive, carry and fix a truck on each rail pair. If one of said trucks is selected for irradiation in a desired irradiation room, the rail pair carrying this truck is shifted to align and couple with the fixed rail pair whereupon the truck is driven and transferred to a position on the fixed rails below the desired room and elevated thereinto. Accordingly, a plurality of trucks can optionally be shunted on a line of fixed rails without unloading the respective radiation sources. (Ohno, Y.)

  8. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    Science.gov (United States)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  9. Assisted Writing in Spin Transfer Torque Magnetic Tunnel Junctions

    Science.gov (United States)

    Ganguly, Samiran; Ahmed, Zeeshan; Datta, Supriyo; Marinero, Ernesto E.

    2015-03-01

    Spin transfer torque driven MRAM devices are now in an advanced state of development, and the importance of reducing the current requirement for writing information is well recognized. Different approaches to assist the writing process have been proposed such as spin orbit torque, spin Hall effect, voltage controlled magnetic anisotropy and thermal excitation. In this work,we report on our comparative study using the Spin-Circuit Approach regarding the total energy, the switching speed and energy-delay products for different assisted writing approaches in STT-MTJ devices using PMA magnets.

  10. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist

    2013-01-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations...... are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change...

  11. Mixed convection in inclined lid driven cavity by Lattice Boltzmann Method and heat flux boundary condition

    International Nuclear Information System (INIS)

    D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E

    2014-01-01

    Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration

  12. TRANSFERENCE BEFORE TRANSFERENCE.

    Science.gov (United States)

    Bonaminio, Vincenzo

    2017-10-01

    This paper is predominantly a clinical presentation that describes the transmigration of one patient's transference to another, with the analyst functioning as a sort of transponder. It involves an apparently accidental episode in which there was an unconscious intersection between two patients. The author's aim is to show how transference from one case may affect transference in another, a phenomenon the author calls transference before transference. The author believes that this idea may serve as a tool for understanding the unconscious work that takes place in the clinical situation. In a clinical example, the analyst finds himself caught up in an enactment involving two patients in which he becomes the medium of what happens in session. © 2017 The Psychoanalytic Quarterly, Inc.

  13. Discovery Driven Growth

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj

    2009-01-01

    Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august......Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august...

  14. Thermodynamics in finite time: A chemically driven engine

    International Nuclear Information System (INIS)

    Ondrechen, M.J.; Berry, R.S.; Andresen, B.

    1980-01-01

    The methods of finite time thermodynamics are applied to processes whose relaxation parameters are chemical rate coefficients within the working fluid. The direct optimization formalism used previously for heat engines with friction and finite heat transfer rates: termed the tricycle method: is extended to heat engines driven by exothermic reactions. The model is a flow reactor coupled by a heat exchanger to an engine. Conditions are established for the achievement of maximum power from such a system. Emphasis is on how the chemical kinetics control the finite-time thermodynamic extrema; first order, first order reversible, and second order reaction kinetics are analyzed. For the types of reactions considered here, there is always a finite positive flow rate in the reactor that yields maximum engine power. Maximum fuel efficiency is always attained in these systems at the uninteresting limit of zero flow rate

  15. Electromagnetically induced absorption due to transfer of coherence and to transfer of population

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2003-01-01

    The absorption spectrum of a weak probe, interacting with a driven degenerate two-level atomic system, whose ground and excited hyperfine states are F g,e , can exhibit narrow peaks at line center. When the pump and probe polarizations are different, F e =F g +1 and F g >0, the electromagnetically induced absorption (EIA) peak has been shown to be due to the transfer of coherence (TOC) between the excited and ground states via spontaneous decay. We give a detailed explanation of why the TOC that leads to EIA (EIA-TOC) can only take place when ground-state population trapping does not occur, that is, when F e =F g +1. We also explain why EIA-TOC is observed in open systems. We show that EIA can also occur when the pump and probe polarizations are identical and F e =F g +1. This EIA is analogous to an effect that occurs in simple two-level systems when the collisional transfer of population (TOP) from the ground state to a reservoir is greater than that from the excited state. For a degenerate two-level system, the reservoir consists of the Zeeman sublevels of the ground hyperfine state, and of other nearby hyperfine states that do not interact with the pump. We will also discuss the four-wave mixing spectrum under the conditions where EIA-TOC and EIA-TOP occur

  16. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    International Nuclear Information System (INIS)

    Christie, B.

    1996-01-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. open-quotes Conditional Probabilitiesclose quotes of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps

  17. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  18. Using Two Different Approaches to Assess Dietary Patterns: Hypothesis-Driven and Data-Driven Analysis

    Directory of Open Access Journals (Sweden)

    Ágatha Nogueira Previdelli

    2016-09-01

    Full Text Available The use of dietary patterns to assess dietary intake has become increasingly common in nutritional epidemiology studies due to the complexity and multidimensionality of the diet. Currently, two main approaches have been widely used to assess dietary patterns: data-driven and hypothesis-driven analysis. Since the methods explore different angles of dietary intake, using both approaches simultaneously might yield complementary and useful information; thus, we aimed to use both approaches to gain knowledge of adolescents’ dietary patterns. Food intake from a cross-sectional survey with 295 adolescents was assessed by 24 h dietary recall (24HR. In hypothesis-driven analysis, based on the American National Cancer Institute method, the usual intake of Brazilian Healthy Eating Index Revised components were estimated. In the data-driven approach, the usual intake of foods/food groups was estimated by the Multiple Source Method. In the results, hypothesis-driven analysis showed low scores for Whole grains, Total vegetables, Total fruit and Whole fruits, while, in data-driven analysis, fruits and whole grains were not presented in any pattern. High intakes of sodium, fats and sugars were observed in hypothesis-driven analysis with low total scores for Sodium, Saturated fat and SoFAA (calories from solid fat, alcohol and added sugar components in agreement, while the data-driven approach showed the intake of several foods/food groups rich in these nutrients, such as butter/margarine, cookies, chocolate powder, whole milk, cheese, processed meat/cold cuts and candies. In this study, using both approaches at the same time provided consistent and complementary information with regard to assessing the overall dietary habits that will be important in order to drive public health programs, and improve their efficiency to monitor and evaluate the dietary patterns of populations.

  19. Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change

    Science.gov (United States)

    Nyawira, S. S.; Nabel, J. E. M. S.; Brovkin, V.; Pongratz, J.

    2017-08-01

    Historical changes in soil carbon associated with land-use change (LUC) result mainly from the changes in the quantity of litter inputs to the soil and the turnover of carbon in soils. We use a factor separation technique to assess how the input-driven and turnover-driven controls, as well as their synergies, have contributed to historical changes in soil carbon associated with LUC. We apply this approach to equilibrium simulations of present-day and pre-industrial land use performed using the dynamic global vegetation model JSBACH. Our results show that both the input-driven and turnover-driven changes generally contribute to a gain in soil carbon in afforested regions and a loss in deforested regions. However, in regions where grasslands have been converted to croplands, we find an input-driven loss that is partly offset by a turnover-driven gain, which stems from a decrease in the fire-related carbon losses. Omitting land management through crop and wood harvest substantially reduces the global losses through the input-driven changes. Our study thus suggests that the dominating control of soil carbon losses is via the input-driven changes, which are more directly accessible to human management than the turnover-driven ones.

  20. State diagram of a perpendicular magnetic tunnel junction driven by spin transfer torque: A power dissipation approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavanant, M. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Department of Physics, New York University, New York, NY 10003 (United States); Petit-Watelot, S. [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France); Kent, A.D. [Department of Physics, New York University, New York, NY 10003 (United States); Mangin, S., E-mail: stephane.mangin@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198 – Université de Lorraine, Nancy (France)

    2017-04-15

    The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data. - Highlights: • Methods to compute state Diagram (Voltage Versus Field) for perpendicular Magnetic Tunnel Junctions. • Comparison between the conventional LLG model and a model based on Power dissipation to study magnetization reversal in magnetic tunnel junction.

  1. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    Science.gov (United States)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  2. Innovation and knowledge transference in a cluster user-driven innovation perspective – the Inovcluster experience

    Directory of Open Access Journals (Sweden)

    Teresa Paiva

    2016-04-01

    Full Text Available Our purpose with this article is to show the importance of assessing trends and promoting innovation in a real business context, through a cluster ecosystem, mainly composed of micro-enterprises in the agro-industrial Portuguese sector.As many studies show, Inovcluster (which has 158 associates, from which 120 are enterprises is also a geographic region cluster, which improves innovation performance of businesses seeking to gain competitiveness and ability to improve their exportations in the agro-industrial Portuguese sector.The role of the cluster is fundamental to creating a model for knowledge transfer of innovation capacity, interconnecting its institutional, scientific and business associates. This model has to be adapted to the sector and enterprise characteristics, relying in an interconnecting structure which is more or less decentralized according to the mentioned features. Here we present an experience and case study of the Inovcluster ecosystem and its trends and innovation transfer to business value creation, contextualized within the regional strategy for smart specialization.We have shown how, through the establishment of an Inovcluster network, it is possible to integrate the contribution of different research and academic centres, channelled to assist micro-enterprises by innovating within a geographical constraint.

  3. Correlation to predict heat transfer of an oscillating loop heat pipe consisting of three interconnected columns

    International Nuclear Information System (INIS)

    Arslan, Goekhan; Ozdemir, Mustafa

    2008-01-01

    In this paper, heat transfer in an oscillating loop heat pipe is investigated experimentally. The oscillation of the liquid columns at the evaporator and condenser sections of the heat pipe are driven by gravitational force and the phase lag between evaporation and condensation because the dimensions of the heat pipe are large enough to neglect the effect of capillary forces. The overall heat transfer coefficient based on the temperature difference between the evaporator and condenser surfaces is introduced by a correlation function of dimensionless numbers such as kinetic Reynolds number, c p ΔT/h fg and the geometric parameters

  4. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    Science.gov (United States)

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  5. Thermal hydraulics of accelerator driven system: validation and analysis

    International Nuclear Information System (INIS)

    Kumari, I.; Khanna, A.

    2014-01-01

    This paper presents validation of RELAP5/Mod4.0 code modified to incorporate Lead Bismuth Eutectic (LBE)fluid properties for simulation of Accelerator Driven System (ADS) against Barone's NACIE facility.Results of mass flow rates (MFR), Reynolds number, heat transfer coefficients, temperatures and temperature difference for three powers (10.8, 21.7 and 32.5 kW) under natural circulation of LBE match with Barone's values within 7%,18%,37%, 5% and 8% of relative error respectively. After this validation Indian ADS for thermal power of 15 kW has been simulated. Simulated profiles of temperature, MFR and pressure drop LBE and air are reported. Air and LBE temperatures of present work match with literature design values within 5% of relative error. (author)

  6. On the need for system alignment in large water infrastructure. Understanding infrastructure dynamics in Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Pär Blomkvist

    2017-06-01

    Full Text Available In this article we contribute to the discussion of infrastructural change in Africa, and explore how a new theoretical perspective may offer a different, more comprehensive and historically informed understanding of the trend towards large water infrastructure in Africa. We examine the socio-technical dynamics of large water infrastructures in Nairobi, Kenya, in a longer historical perspective using two concepts that we call intra-systemic alignment and inter-level alignment. Our theoretical perspective is inspired by Large Technical Systems (LTS and Multi-Level Perspective (MLP. While inter-level alignment focuses on the process of aligning the technological system at the three levels of niche, regime and landscape, intra-systemic alignment deals with how components within the regime are harmonised and standardised to fit with each other. We pay special attention to intrasystemic alignment between the supply side and the demand side, or as we put it, upstream and downstream components of a system. In narrating the history of water supply in Nairobi, we look at both the upstream (largescale supply and downstream activities (distribution and payment, and compare the Nairobi case with European history of large infrastructures. We emphasise that regime actors in Nairobi have dealt with the issues of alignment mainly to facilitate and expand upstream activities, while concerning downstream activities they have remained incapable of expanding service and thus integrating the large segment of low-income consumers. We conclude that the present surge of large-scale water investment in Nairobi is the result of sector reforms that enabled the return to a long tradition – a 'Nairobi style' – of upstream investment mainly benefitting the highincome earners. Our proposition is that much more attention needs to be directed at inter-level alignment at the downstream end of the system, to allow the creation of niches aligned to the regime.

  7. Thermodynamic study of the transfer of acetanilide and phenacetin from water to different organic solvents.

    Science.gov (United States)

    Baena, Yolima; Pinzón, Jorge A; Barbosa, Helber J; Martínez, Fleming

    2005-06-01

    The molar (K(C)(o/w)) and rational (K(X)(o/w)) partition coefficients in the octanol/buffer, i-propyl myristate/buffer, chloroform/buffer, and cyclohexane/buffer systems were determined for acetanilide and phenacetin at 25.0, 30.0, 35.0, and 40.0 degrees C. In all cases except for cyclohexane, the K(C)(o/w) and K(X)(o/w) values were greater than unity. This demonstrates that these two drugs have predominantly lipophilic behavior. Gibbs and van't Hoff thermodynamic analyses have revealed that the transfer of these drugs from water to organic solvents is spontaneous and that it is mainly driven enthalpically for i-propyl myristate and chloroform, and entropy-driven for octanol and cyclohexane.

  8. Knowledge-Driven Versus Data-Driven Logics

    Czech Academy of Sciences Publication Activity Database

    Dubois, D.; Hájek, Petr; Prade, H.

    2000-01-01

    Roč. 9, č. 1 (2000), s. 65-89 ISSN 0925-8531 R&D Projects: GA AV ČR IAA1030601 Grant - others:CNRS(FR) 4008 Institutional research plan: AV0Z1030915 Keywords : epistemic logic * possibility theory * data-driven reasoning * deontic logic Subject RIV: BA - General Mathematics

  9. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong

    2004-01-01

    In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior

  10. HoneyComb: An Application-Driven Online Adaptive Reconfigurable Hardware Architecture

    Directory of Open Access Journals (Sweden)

    Alexander Thomas

    2012-01-01

    Full Text Available Since the introduction of the first reconfigurable devices in 1985 the field of reconfigurable computing developed a broad variety of architectures from fine-grained to coarse-grained types. However, the main disadvantages of the reconfigurable approaches, the costs in area, and power consumption, are still present. This contribution presents a solution for application-driven adaptation of our reconfigurable architecture at register transfer level (RTL to reduce the resource requirements and power consumption while keeping the flexibility and performance for a predefined set of applications. Furthermore, implemented runtime adaptive features like online routing and configuration sequencing will be presented and discussed. A presentation of the prototype chip of this architecture designed in 90 nm standard cell technology manufactured by TSMC will conclude this contribution.

  11. Experimental investigation of airfoil trailing edge heat transfer and aerodynamic losses

    Energy Technology Data Exchange (ETDEWEB)

    Brundage, A.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Plesniak, M.W.; Lawless, P.B. [School of Mechanical Engineering, Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, IN 47907 (United States); Ramadhyani, S. [132 Cecil Street SE, Minneapolis, MN 55414 (United States)

    2007-01-15

    Modern gas turbine development is being driven by the often-incompatible goals of increased efficiency, better durability, and reduced emissions. High turbine inlet temperatures and ineffective cooling at the trailing edge of a first-stage stator vane lead to corrosion, oxidation, and thermal fatigue. Observations of this region in engines frequently reveal burn marks, cracks, and buckling. Fundamental studies of the importance of trailing edge heat transfer to the design of an optimal cooling scheme are scarce. An experimental study of an actively cooled trailing edge configuration, in which coolant is injected through a slot, is performed. Trailing edge heat transfer and aerodynamic measurements are reported. An optimum balance between maximizing blade row aerodynamic efficiency and improving thermal protection at the trailing edge is estimated to be achieved when blowing ratios are in the range between 2.1% and 2.8%. The thermal phenomena at the trailing edge are dominated by injection slot heat transfer and flow physics. These measured trends are generally applicable over a wide range of gas turbine applications. (author)

  12. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-24

    One of the most attractive features of photocatalytic reactions is the ability to achieve energetically uphill (photosynthetic) reactions. In many photocatalytic reactions, the reactions involve multielectron transfers with the adsorbed intermediates. In this case, photocatalysis is nothing but electrocatalysis initiated and driven by the electron potential shift caused by the photocatalyst (photon absorber). This condition is indeed true for photocatalysts for water splitting, which are also electrocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfers at the active surfaces. This chapter deals with the product-side in the six-gear concept. It shows the electrocatalytic performance when using an electrocatalyst on the surface. The chapter further shows the current-potential curve for an electrocatalytic process isolated from the photocatalyst process. For an electrocatalyst to achieve electrochemical reactions, the potential of the catalyst must be shifted at the interface of the semiconductor, providing electromotive force or overpotential for redox reactions.

  13. Transferring Knowledge of Electrocatalysis to Photocatalysis: Photocatalytic Water Splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2017-01-01

    One of the most attractive features of photocatalytic reactions is the ability to achieve energetically uphill (photosynthetic) reactions. In many photocatalytic reactions, the reactions involve multielectron transfers with the adsorbed intermediates. In this case, photocatalysis is nothing but electrocatalysis initiated and driven by the electron potential shift caused by the photocatalyst (photon absorber). This condition is indeed true for photocatalysts for water splitting, which are also electrocatalysts because both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) require multiple electron transfers at the active surfaces. This chapter deals with the product-side in the six-gear concept. It shows the electrocatalytic performance when using an electrocatalyst on the surface. The chapter further shows the current-potential curve for an electrocatalytic process isolated from the photocatalyst process. For an electrocatalyst to achieve electrochemical reactions, the potential of the catalyst must be shifted at the interface of the semiconductor, providing electromotive force or overpotential for redox reactions.

  14. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won

    2018-03-28

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  15. Unidirectional Magnon-Driven Domain Wall Motion due to Interfacial Dzyaloshinskii-Moriya Interaction

    KAUST Repository

    Lee, Seo-Won; Kim, Kyoung-Whan; Moon, Jung-Hwan; Go, Gyungchoon; Manchon, Aurelien; Lee, Hyun-Woo; Everschor-Sitte, Karin; Lee, Kyung-Jin

    2018-01-01

    We theoretically study magnon-driven motion of a tranverse domain wall in the presence of interfacial Dzyaloshinskii-Moriya interaction (DMI). Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our symmetry analysis reveals that the odd order DMI contributions to the domain wall velocity are independent of the magnon-flow direction. Corresponding DMI-induced asymmetric transitions from a spin-wave state to another give rise to a large momentum transfer to the domain wall without nonreciprocity and much reflection. This counterintuitive unidirectional motion occurs not only for a spin wave with a single wavevector but also for thermal magnons with distributed wavevectors.

  16. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    Science.gov (United States)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  17. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  18. Credit Risk Transfer and Crunches

    DEFF Research Database (Denmark)

    Wigan, Duncan

    2010-01-01

    Rather than in terms of the inevitable demise of a destabilising process of speculation, this article explores the ‘credit crunch’ as a window on the fabrication, and measure of the proportions of a political shift driven by market actors and financial innovation. The Basel process reconceptualised...... banks as risk navigators and generated a competitive hierarchy within the global banking industry determined on a gauge of this capacity. This private regulatory regime promoted market inflation and rendered institutional liquidity and risk transfer definitive of market power. In turn, a ballooning...... credit derivatives market broke the limits of financial production and defined state actions in the face of crisis. A shift from a central concern with solvency to that of liquidity thinly masks a profound redistribution of power from the public to the private. By swapping private assets of uncertain...

  19. Asynchronous transfer mode and Local Area Network emulation standards, protocols, and security implications

    OpenAIRE

    Kirwin, John P.

    1999-01-01

    A complex networking technology called Asynchronous Transfer Mode (ATM) and a networking protocol called Local Area Network Emulation (LANE) are being integrated into many naval networks without any security-driven naval configuration guidelines. No single publication is available that describes security issues of data delivery and signaling relating to the transition of Ethernet to LANE and ATM. The thesis' focus is to provide: (1) an overview and security analysis of standardized protocols ...

  20. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  1. Comparative Study on Photovoltaic Pumping Systems Driven by Different Motors Optimized with Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Abdelhak Bouchakour

    2017-06-01

    Full Text Available This study investigates the performance of three different photovoltaic (PV water pumping systems driven by three types of motors, namely a separately excited DC motor (DCM, an asynchronous motor (ASM, and a permanent magnet synchronous motor (PMSM, via a DC/DC buck-boost converter coupled to a centrifugal pump. The purpose of this study is to implement a fast and robust control for this type of a nonlinear system, controlled by sliding mode (SM. This paper presents an SM control technique for controlling a DC/DC buck-boost converter to transfer the maximum power delivered by the PV generator. Each component is studied and analyzed to simulate the global system in MATLAB/SIMULINK. The three systems are then compared to determine the overall effectiveness of the proposed command. The study concludes that the ASM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.

  2. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    Science.gov (United States)

    Pipa, A. V.; Koskulics, J.; Brandenburg, R.; Hoder, T.

    2012-11-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge qmax, and (iii) the development of a graphical method for the determination of qmax from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of qmax is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current jR(t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance Cd. Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the Cd is important.

  3. Gravity-driven flow and heat transfer in a spent nuclear fuel storage pool

    International Nuclear Information System (INIS)

    Gay, R.R.

    1983-01-01

    The GFLOW code analyzes a three-dimensional rectangular porous medium by dividing the porous medium into a number of nodes or cells specified by the user. The finite difference form of the fluid conservation equations is solved for each node by application of a modified ''marker and cell'' numerical technique. The existence of spent nuclear fuel in any node is modeled by using a porosity value less than unity in that node and by including a surface heat transfer term in the fluid energy equation. In addition, local pressure losses due to grid spaces or other planar flow obstructions can be modeled by local loss coefficients. Heat conduction in the fuel is simulated by a fast running implicit finite difference model of the fuel, gap, and clad regions of the fuel rod

  4. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    Science.gov (United States)

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  5. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Derren J Heyes

    Full Text Available The light-driven enzyme protochlorophyllide oxidoreductase (POR catalyzes the reduction of protochlorophyllide (Pchlide to chlorophyllide (Chlide. This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.

  6. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  7. Deep transfer learning for automatic target classification: MWIR to LWIR

    Science.gov (United States)

    Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun

    2016-05-01

    Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.

  8. Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals

    Science.gov (United States)

    Kurebayashi, Daichi; Nomura, Kentaro

    2016-10-01

    We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.

  9. Integral Method for the Assessment of U-RANS Effectiveness in Non-Equilibrium Flows and Heat Transfer

    Science.gov (United States)

    Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher

    2015-11-01

    Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).

  10. Gait Planning Research for an Electrically Driven Large-Load-Ratio Six-Legged Robot

    Directory of Open Access Journals (Sweden)

    Hong-Chao Zhuang

    2017-03-01

    Full Text Available Gait planning is an important basis for the walking of a legged robot. To improve the walking stability of multi-legged robots and to reduce the impact force between the foot and the ground, gait planning strategies are presented for an electrically driven large-load-ratio six-legged robot. First, the configuration and walking gait of the electrically driven large-load-ratio six-legged robot are designed. The higher-stable swing sequences of legs and typical walking modes are respectively obtained. Based on the Denavit–Hartenberg (D–H method, the analyses of the forward and inverse kinematics are implemented. The mathematical models of the articulated rotation angles are respectively established. In view of the buffer device installed at the end of shin to decrease the impact force between the foot and the ground, an initial lift height of the leg is brought into gait planning when the support phase changes into the transfer phase. The mathematical models of foot trajectories are established. Finally, a prototype of the electrically driven large-load-ratio six-legged robot is developed. The experiments of the prototype are carried out regarding the aspects of the walking speed and surmounting obstacle. Then, the reasonableness of gait planning is verified based on the experimental results. The proposed strategies of gait planning lay the foundation for effectively reducing the foot–ground impact force and can provide a reference for other large-load-ratio multi-legged robots.

  11. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Science.gov (United States)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  12. Knowledge Transfer between SMEs and Higher Education Institutions: Differences between Universities and Colleges of Higher Education in the Netherlands

    Science.gov (United States)

    Delfmann, Heike; Koster, Sierdjan

    2012-01-01

    Knowledge transfer (KT) between higher education institutions (HEIs) and businesses is seen as a key element of innovation in knowledge-driven economies: HEIs generate knowledge that can be adopted in the regional economy. This process of valorization has been studied extensively, mainly with a focus on universities. In the Netherlands, there is a…

  13. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  14. The interaction between stimulus-driven and goal-driven orienting as revealed by eye movements

    NARCIS (Netherlands)

    Schreij, D.B.B.; Los, S.A.; Theeuwes, J.; Enns, J.T.; Olivers, C.N.L.

    2014-01-01

    It is generally agreed that attention can be captured in a stimulus-driven or in a goal-driven fashion. In studies that investigated both types of capture, the effects on mean manual response time (reaction time [RT]) are generally additive, suggesting two independent underlying processes. However,

  15. Supercapacitive Biosolar Cell Driven by Direct Electron Transfer between Photosynthetic Membranes and CNT Networks with Enhanced Performance

    DEFF Research Database (Denmark)

    Pankratov, Dmitry; Pankratova, Galina; Dyachkova, Tatiana P.

    2017-01-01

    enabled a 1.5-fold enhancement in photocurrent density. This system offers more advantages including a reduced charge-transfer resistance, a lower open-circuit potential, and an improved cell stability. More remarkably, the average power density of the optimized cells was 250 times higher than...

  16. The effects of a multistep intercooled compression process implemented on a solar-driven Braysson heat engine

    International Nuclear Information System (INIS)

    Georgiou, D.P.; Milidonis, K.F.; Georgiou, E.N.

    2015-01-01

    Highlights: • Thermodynamic analysis of a solar driven power plant running on the Braysson cycle. • Isothermal compression is implemented by the use of multistage intercooled compression stages. • The plant’s thermal efficiency is investigated and compared against other cycles. - Abstract: The present study develops the thermodynamic analysis for the cycle of a solar-driven, Braysson cycle based plant in the ideal limit and in the presence of process irreversibilities. The plant cycle differs from the conventional idealized Braysson cycle in that the implementation of the final isothermal compression process is substituted by a multistep intercooled compression. The cycle’s efficiency is analytically formulated after taking into account several loss (irreversibility) sources such as the non-isentropic behavior of the main compressor, the power turbine and the intercooled compressor stages as well as the actual heat transferred through countercurrent heat exchangers. All pressure losses associated with heat exchangers are related to the actual heat transfer load within each exchanger. The analysis develops a parametric evaluation for the effectiveness of the main cycle free variables on the thermal efficiency of the cycle. Such free variables include the working fluid maximum temperature, the compressor pressure ratio and the operating temperature limits of the intercooled compression stages, in addition to the polytropic coefficients of the compressor and power turbine (quasi-) isentropic processes. The results indicate that such a plant may reach efficiency levels above 30%, i.e. exceeding the efficiencies of the conventional Photovoltaic plants by a wide margin

  17. Data Driven Economic Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Masoud Kheradmandi

    2018-04-01

    Full Text Available This manuscript addresses the problem of data driven model based economic model predictive control (MPC design. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. The economic improvements yielded by the proposed method are illustrated through simulations on a nonlinear chemical process system example.

  18. Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

    Directory of Open Access Journals (Sweden)

    Yongfeng Xu

    2016-01-01

    Full Text Available In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS driven by distributed photovoltaic energy system (DPES was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

  19. Data-Driven Problems in Elasticity

    Science.gov (United States)

    Conti, S.; Müller, S.; Ortiz, M.

    2018-01-01

    We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.

  20. Current-driven turbulence in plasmas

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1977-10-01

    Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research

  1. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  2. Investigation of Heat Transfer Enhancement or Deterioration of Variable Properties Al2O3-EG-water Nanofluid in Buoyancy Driven Convection

    Directory of Open Access Journals (Sweden)

    H. Khorasanizadeh

    2014-01-01

    Full Text Available In this study, the natural convection heat transfer of variable properties Al2O3-EG-water nanofluid in a differentially heated rectangular cavity has been investigated numerically. The governing equations, for a Newtonian fluid, have been solved numerically with a finite volume approach. The influences of the pertinent parameters such as Ra in the range of 103-107 and volume fraction of nanoparticles from 0 to 0.04 on heat transfer characteristics have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra=103, for which conduction heat transfer is dominant, the average Nusselt number increases as volume fraction of nanoparticles increases, but for higher Ra numbers in contradiction with the constant properties cases it decreases. This reduction, which is associated with increased viscosity, is more severe at Ra of 104 compared to higher Ra numbers such that the least deterioration in heat transfer occurs for Ra=107. This is due to the fact that as Ra increases, the Brownian motion enhances; thus conductivity improves and becomes more important than viscosity increase. An scale analysis, performed to clarify the contradictory reports in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, showed that different kinds of evaluating the base fluid Rayleigh number has led to such a difference.

  3. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices

    DEFF Research Database (Denmark)

    Piraux, L.; Renard, K.; Guillemet, R.

    2007-01-01

    We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena....... The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin...

  4. Water-driven micromotors.

    Science.gov (United States)

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.

  5. Complexity in Design-Driven Innovation: A Case Study of Knowledge Transfer Flow in Subsea Seismic Sensor Technology and Design Education

    Science.gov (United States)

    Pavel, Nenad; Berg, Arild

    2015-01-01

    To the extent previously claimed, concept exploration is not the key to product innovation. However, companies that are design-focused are twice as innovative as those that are not. To study design-driven innovation and its occurrence in design education, two case studies are conducted. The first is an example of design practice which includes…

  6. Effect of nature convection on heat transfer in the liquid LiPb blanket for FDS-II

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongyan; Chen Hongli [Huaibei Coal Industry Teachers Coll. (China). Dept. of Physics; Zhou Tao [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2007-07-01

    The He-cooled liquid LiPb tritium breeder (SLL) blanket concept is one of options of the blanket design of the fusion power reactor (FDS-II). The SLL blanket could be developed relatively easily with lower LiPb outlet temperature and slower LiPb flow velocity that allows the utilization of relatively mature material technology. The velocity of the liquid LiPb in the blanket is very slowly only in order to extract tritium. The magnetohydrodynamic (MHD) flow and heat transfer become very complex resulting from the differential heating of walls of the channels, especially adjacent to the First Wall (FW), and internal heat sources inside of the liquid LiPb. It is necessary to analyse the effect of the buoyancy-driven LiPb MHD flow on heat transfer in the channels with electrically and thermally conducting walls adjacent to the FW. The nature convection of the liquid LiPb, due to thermal diffusion, in the poloidal channel adjacent to the FW in the presence of the strong magnetic field of the SLL blanket has been considered and studied. The specially numerical MHD code based on the computational fluid dynamic software has been developed for analysis of the buoyancy-driven MHD flow. The properties of buoyantly convective flows have been investigated for various thermal boundary conditions. The numerical analysis was performed for the effect of nature convection on heat transfer of the liquid LiPb MHD flow in the poloidal channel in the SLL blanket. For the strong temperature gradient in the blanket and internal heat flux of Liquid LiPb, the three-dimensional temperature distributions of the LiPb, the FW and other walls have been given. Finally, The effect of the ratio of MHD buoyancy on the heat transfer characteristics of the LiPb flow have been calculated and presented. (orig.)

  7. The effect of heterogeneity on the character of density-driven natural convection of CO{sub 2} overlying a brine layer

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, R. [Shell International Exploration and Production, Houston, TX (United States); Ranganathan, P.; Zitha, P.L.J.; Bruining, J. [Delft Univ. of Technology, Delft (Netherlands)

    2010-07-01

    This paper investigated the effect of heterogeneity on the character of natural-convection flow of carbon dioxide (CO{sub 2}) in aquifers and on the dissolution rate of CO{sub 2} in brine, contributing to a better understanding of the effect of heterogeneity on CO{sub 2} mass transfer in aquifers, which is necessary for efficient storage of CO{sub 2} in aquifers. The aquifer permeability, which is in practice heterogeneous, largely governs the efficiency of mixing in density-driven natural convection. The aquifer's degree of permeability variance and the correlation length informs the character of flow-driven mixing processes. Numerical simulation was used to identify different flow regimes of a density-driven natural flow regime. Heterogeneous fields were generated using a spectral method that allows the use of power-law variograms. From the simulations it was observed that the rate of mass transfer of carbon dioxide (CO{sub 2}) into water is higher for heterogeneous media. The formulation of the physical model and related equations and the method for generating the permeability fields were described. The simulation results indicated that gravity-induced fingering is the dominant pattern in low heterogeneity, but fingering will not occur in realistic porous media. The results also showed that the permeability field structure dominates at moderate heterogeneity, and that the flow is dispersive at high heterogeneity when the correlation length of the field is small. Heterogeneous media facilitate a larger rate of CO{sub 2} dissolution than homogenous media, which means that the former can store larger volumes of CO{sub 2}. 49 refs., 3 tabs., 13 figs.

  8. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    International Nuclear Information System (INIS)

    Pipa, A. V.; Brandenburg, R.; Hoder, T.; Koskulics, J.

    2012-01-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge q max , and (iii) the development of a graphical method for the determination of q max from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of q max is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current j R (t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance C d . Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the C d is important.

  9. Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.

    Science.gov (United States)

    Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2016-11-01

    With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A user-driven treadmill control scheme for simulating overground locomotion.

    Science.gov (United States)

    Kim, Jonghyun; Stanley, Christopher J; Curatalo, Lindsey A; Park, Hyung-Soon

    2012-01-01

    Treadmill-based locomotor training should simulate overground walking as closely as possible for optimal skill transfer. The constant speed of a standard treadmill encourages automaticity rather than engagement and fails to simulate the variable speeds encountered during real-world walking. To address this limitation, this paper proposes a user-driven treadmill velocity control scheme that allows the user to experience natural fluctuations in walking velocity with minimal unwanted inertial force due to acceleration/deceleration of the treadmill belt. A smart estimation limiter in the scheme effectively attenuates the inertial force during velocity changes. The proposed scheme requires measurement of pelvic and swing foot motions, and is developed for a treadmill of typical belt length (1.5 m). The proposed scheme is quantitatively evaluated here with four healthy subjects by comparing it with the most advanced control scheme identified in the literature.

  11. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  12. Schema-driven facilitation of new hierarchy learning in the transitive inference paradigm

    Science.gov (United States)

    Kumaran, Dharshan

    2013-01-01

    Prior knowledge, in the form of a mental schema or framework, is viewed to facilitate the learning of new information in a range of experimental and everyday scenarios. Despite rising interest in the cognitive and neural mechanisms underlying schema-driven facilitation of new learning, few paradigms have been developed to examine this issue in humans. Here we develop a multiphase experimental scenario aimed at characterizing schema-based effects in the context of a paradigm that has been very widely used across species, the transitive inference task. We show that an associative schema, comprised of prior knowledge of the rank positions of familiar items in the hierarchy, has a marked effect on transitivity performance and the development of relational knowledge of the hierarchy that cannot be accounted for by more general changes in task strategy. Further, we show that participants are capable of deploying prior knowledge to successful effect under surprising conditions (i.e., when corrective feedback is totally absent), but only when the associative schema is robust. Finally, our results provide insights into the cognitive mechanisms underlying such schema-driven effects, and suggest that new hierarchy learning in the transitive inference task can occur through a contextual transfer mechanism that exploits the structure of associative experiences. PMID:23782509

  13. Schema-driven facilitation of new hierarchy learning in the transitive inference paradigm.

    Science.gov (United States)

    Kumaran, Dharshan

    2013-06-19

    Prior knowledge, in the form of a mental schema or framework, is viewed to facilitate the learning of new information in a range of experimental and everyday scenarios. Despite rising interest in the cognitive and neural mechanisms underlying schema-driven facilitation of new learning, few paradigms have been developed to examine this issue in humans. Here we develop a multiphase experimental scenario aimed at characterizing schema-based effects in the context of a paradigm that has been very widely used across species, the transitive inference task. We show that an associative schema, comprised of prior knowledge of the rank positions of familiar items in the hierarchy, has a marked effect on transitivity performance and the development of relational knowledge of the hierarchy that cannot be accounted for by more general changes in task strategy. Further, we show that participants are capable of deploying prior knowledge to successful effect under surprising conditions (i.e., when corrective feedback is totally absent), but only when the associative schema is robust. Finally, our results provide insights into the cognitive mechanisms underlying such schema-driven effects, and suggest that new hierarchy learning in the transitive inference task can occur through a contextual transfer mechanism that exploits the structure of associative experiences.

  14. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri

  15. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  16. Transferring experience labs for production engineering students to universities in newly industrialized countries

    Science.gov (United States)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  17. A thermal engine for underwater glider driven by ocean thermal energy

    International Nuclear Information System (INIS)

    Yang, Yanan; Wang, Yanhui; Ma, Zhesong; Wang, Shuxin

    2016-01-01

    Highlights: • Thermal engine with a double-tube structure is developed for underwater glider. • Isostatic pressing technology is effective to increase volumetric change rate. • Actual volumetric change rate reaches 89.2% of the theoretical value. • Long term sailing of 677 km and 27 days is achieved by thermal underwater glider. - Graphical Abstract: - Abstract: Underwater glider is one of the most popular platforms for long term ocean observation. Underwater glider driven by ocean thermal energy extends the duration and range of underwater glider powered by battery. Thermal engine is the core device of underwater glider to harvest ocean thermal energy. In this paper, (1) model of thermal engine was raised by thermodynamics method and the performance of thermal engine was investigated, (2) thermal engine with a double-tube structure was developed and isostatic pressing technology was applied to improve the performance for buoyancy driven, referencing powder pressing theory, (3) wall thickness of thermal engine was optimized to reduce the overall weight of thermal engine, (4) material selection and dimension determination were discussed for a faster heat transfer design, by thermal resistance analysis, (5) laboratory test and long term sea trail were carried out to test the performance of thermal engine. The study shows that volumetric change rate is the most important indicator to evaluating buoyancy-driven performance of a thermal engine, isostatic pressing technology is effective to improve volumetric change rate, actual volumetric change rate can reach 89.2% of the theoretical value and the average power is about 124 W in a typical diving profile. Thermal engine developed by Tianjin University is a superior thermal energy conversion device for underwater glider. Additionally, application of thermal engine provides a new solution for miniaturization of ocean thermal energy conversion.

  18. Experimental studies on twin PTCs driven by dual piston head linear compressor

    Science.gov (United States)

    Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.

    2017-02-01

    An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.

  19. Into the Surge of Network-driven Innovation

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2013-01-01

    this is examined from the 1880’s up until today. The contribution of the paper is a societal perspective on innovation, where the difference between industrial society and knowledge society leads into the surge of network-driven innovation. Network-driven innovation is unfolded on top of the known cost- driven...

  20. Economics-driven software architecture

    CERN Document Server

    Mistrik, Ivan; Kazman, Rick; Zhang, Yuanyuan

    2014-01-01

    Economics-driven Software Architecture presents a guide for engineers and architects who need to understand the economic impact of architecture design decisions: the long term and strategic viability, cost-effectiveness, and sustainability of applications and systems. Economics-driven software development can increase quality, productivity, and profitability, but comprehensive knowledge is needed to understand the architectural challenges involved in dealing with the development of large, architecturally challenging systems in an economic way. This book covers how to apply economic consider

  1. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  2. Housing of Cull Sows in the Hours before Transport to the Abattoir—An Initial Description of Sow Behaviour While Waiting in a Transfer Vehicle

    DEFF Research Database (Denmark)

    Herskin, Mette S.; Fogsgaard, Katrine Kop; Erichsen, Ditte

    2017-01-01

    of the sows, after which they (in groups of 7–13) were mixed and moved to the transfer vehicle (median stocking density: 1.2 sow/m2), and driven a short distance to a public road. The duration of the stays in the transfer vehicles before being loaded onto the commercial trucks ranged from 6–59 min. During......In modern pig production, sows are transported by road to abattoirs. For reasons of biosecurity, commercial trucks may have limited access to farms. According to Danish regulations, sows can be kept in stationary transfer vehicles away from the farm for up to two hours before being loaded onto...

  3. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M

    2010-01-01

    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  4. The SimpleMix study with biphasic insulin aspart 30: a randomized controlled trial investigating patient-driven titration versus investigator-driven titration.

    Science.gov (United States)

    Gao, Yan; Luquez, Cecilia; Lynggaard, Helle; Andersen, Henning; Saboo, Banshi

    2014-12-01

    The study aimed to confirm the efficacy, through non-inferiority, of patient-driven versus investigator-driven titration of biphasic insulin aspart 30 (BIAsp 30) in terms of glycemic control assessed by HbA1c change. SimpleMix was a 20 week, open-label, randomized, two-armed, parallel-group, multicenter study in five countries (Argentina, China, India, Poland, and the UK). Patients with type 2 diabetes were randomized into either patient-driven or investigator-driven BIAsp 30 titration groups. Non-inferiority of patient-driven vs. investigator-driven titration based on change in HbA1c from baseline to week 20 could not be demonstrated. Mean (SE) estimated change from baseline to week 20 was -0.72 (0.08)% in the patient-driven group and -0.97 (0.08)% in the investigator-driven group; estimated difference 0.25% (95% CI: 0.04; 0.46). Estimated mean change (SE) in fasting plasma glucose from baseline to week 20 was similar between groups: -0.94 (0.21) mmol/L for patient-driven and -1.07 (0.22) mmol/L for investigator-driven (difference non-significant). Both treatment arms were well tolerated, and hypoglycemic episode rates were similar between groups, with a rate ratio of 0.77 (95% CI: 0.54; 1.09; p = 0.143) for all hypoglycemic episodes and 0.78 (95% CI: 0.42; 1.43; p = 0.417) for nocturnal hypoglycemic episodes. Non-inferiority of patient-driven versus investigator-driven titration with regard to change from baseline to end-of-treatment HbA1c could not be confirmed. It is possible that a clinic visit 12 weeks after intensification of treatment with BIAsp 30 in patients with type 2 diabetes inadequately treated with basal insulin may benefit patient-driven titration of BIAsp 30. A limitation of the study was the relatively small number of patients recruited in each country, which does not allow country-specific analyses to be performed. Overall, treatment with BIAsp 30 was well tolerated in both treatment groups.

  5. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  6. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Abdikamalov, Ernazar [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Couch, Sean M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Haas, Roland [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm (Germany); Schnetter, Erik, E-mail: dradice@caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  7. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-01-01

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased

  8. Stability analysis of hybrid-driven underwater glider

    Science.gov (United States)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  9. submitter Data-driven RBE parameterization for helium ion beams

    CERN Document Server

    Mairani, A; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter ${{(\\alpha /\\beta )}_{\\text{ph}}}$ of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the $\\text{RB}{{\\text{E}}_{\\alpha}}={{\\alpha}_{\\text{He}}}/{{\\alpha}_{\\text{ph}}}$ and ${{\\text{R}}_{\\beta}}={{\\beta}_{\\text{He}}}/{{\\beta}_{\\text{ph}}}$ ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival ($\\text{RB}{{\\text{E}}_{10}}$ ) are compared with the experimental ones. Pearson's correlati...

  10. Profit-driven and demand-driven investment growth and fluctuations in different accumulation regimes

    OpenAIRE

    Giovanni Dosi; Mauro Sodini; Maria Enrica Virgillito

    2013-01-01

    The main task of this work is to develope a model able to encompass, at the same time, Keynesian, demand-driven, and Marxian, profit-driven determinants of fluctuations. Our starting point is the Goodwin's model (1967), rephrased in discrete time and extended by means of a coupled dynamics structure. The model entails the combined interaction of a demand effect, which resembles a rudimentary first approximation to an accelerator, and of a hysteresis effect in wage formation in turn affecting ...

  11. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    Science.gov (United States)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  12. Status of the proton and electron transfer lines for the AWAKE Experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.S., E-mail: janet.schmidt@cern.ch [CERN, Geneva (Switzerland); Bauche, J. [CERN, Geneva (Switzerland); Biskup, B. [CERN, Geneva (Switzerland); Czech Technical University, Prague (Czech Republic); Bracco, C.; Doebert, S.; Goddard, B.; Gschwendtner, E.; Jensen, L.K.; Jones, O.R.; Mazzoni, S.; Meddahi, M.; Pepitone, K.; Petrenko, A.; Velotti, F.M.; Vorozhtsov, A. [CERN, Geneva (Switzerland)

    2016-09-01

    The AWAKE project at CERN is planned to study proton driven plasma wakefield acceleration with an externally injected electron beam. Therefore two transfer lines are being designed in order to provide the proton beam from the SPS and the electron beam from an RF gun to the plasma cell. The commissioning of the proton line will take place in 2016 for the first phase of the experiment, which is focused on the self-modulation of a 12 cm long proton bunch in the plasma. The electron line will be added for the second phase of AWAKE in 2017, when the wakefield will be probed with an electron beam of 10–20 MeV/c. The challenge for these transfer lines lies in the parallel operation of the proton, electron and laser beam used to ionize the plasma and seed the self-modulation. These beams, of different characteristics, need to be synchronized and positioned for optimized injection conditions into the wakefield. This task requires great flexibility in the transfer line optics. The status of these designs will be presented in this paper.

  13. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  14. Non-driven micromechanical gyroscopes and their applications

    CERN Document Server

    Zhang, Fuxue; Wang, Guosheng

    2018-01-01

    This book comprehensively and systematically introduces readers to the theories, structures, performance and applications of non-driven mechanical and non-driven micromechanical gyroscopes. The book is divided into three parts, the first of which mainly addresses mathematic models, precision, performance and operating error in non-driven mechanical gyroscopes. The second part focuses on the operating theory, error, phase shift and performance experiments involving non-driven micromechanical gyroscopes in rotating flight carriers, while the third part shares insights into the application of non-driven micromechanical gyroscopes in control systems for rotating flight carriers. The book offers a unique resource for all researchers and engineers who are interested in the use of inertial devices and automatic control systems for rotating flight carriers.  It can also serve as a reference book for undergraduates, graduates and instructors in related fields at colleges and universities.

  15. Differences in lateral gene transfer in hypersaline versus thermal environments

    Directory of Open Access Journals (Sweden)

    House Christopher H

    2011-07-01

    Full Text Available Abstract Background The role of lateral gene transfer (LGT in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei and a halophilic class of Archaea (Halobacteria. We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  16. Differences in lateral gene transfer in hypersaline versus thermal environments.

    Science.gov (United States)

    Rhodes, Matthew E; Spear, John R; Oren, Aharon; House, Christopher H

    2011-07-08

    The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  17. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-09-01

    Full Text Available The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs. Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data.

  18. Automated Testing of Event-Driven Applications

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning

    may be tested by selecting an interesting input (i.e. a sequence of events), and deciding if a failure occurs when the selected input is applied to the event-driven application under test. Automated testing promises to reduce the workload for developers by automatically selecting interesting inputs...... and detect failures. However, it is non-trivial to conduct automated testing of event-driven applications because of, for example, infinite input spaces and the absence of specifications of correct application behavior. In this PhD dissertation, we identify a number of specific challenges when conducting...... automated testing of event-driven applications, and we present novel techniques for solving these challenges. First, we present an algorithm for stateless model-checking of event-driven applications with partial-order reduction, and we show how this algorithm may be used to systematically test web...

  19. Accelerating universes driven by bulk particles

    International Nuclear Information System (INIS)

    Brito, F.A.; Cruz, F.F.; Oliveira, J.F.N.

    2005-01-01

    We consider our universe as a 3d domain wall embedded in a 5d dimensional Minkowski space-time. We address the problem of inflation and late time acceleration driven by bulk particles colliding with the 3d domain wall. The expansion of our universe is mainly related to these bulk particles. Since our universe tends to be permeated by a large number of isolated structures, as temperature diminishes with the expansion, we model our universe with a 3d domain wall with increasing internal structures. These structures could be unstable 2d domain walls evolving to fermi-balls which are candidates to cold dark matter. The momentum transfer of bulk particles colliding with the 3d domain wall is related to the reflection coefficient. We show a nontrivial dependence of the reflection coefficient with the number of internal dark matter structures inside the 3d domain wall. As the population of such structures increases the velocity of the domain wall expansion also increases. The expansion is exponential at early times and polynomial at late times. We connect this picture with string/M-theory by considering BPS 3d domain walls with structures which can appear through the bosonic sector of a five-dimensional supergravity theory

  20. Cell-Averaged discretization for incompressible Navier-Stokes with embedded boundaries and locally refined Cartesian meshes: a high-order finite volume approach

    Science.gov (United States)

    Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team

    2017-11-01

    We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).

  1. Mechanism of transfer of LDL-derived free cholesterol to HDL subfractions in human plasma

    International Nuclear Information System (INIS)

    Miida, T.; Fielding, C.J.; Fielding, P.E.

    1990-01-01

    The transfer of [ 3 H]cholesterol in low-density lipoprotein (LDL) to different high-density lipoprotein (HDL) species in native human plasma was determined by using nondenaturing two-dimensional electrophoresis. Transfer from LDL had a t 1/2 at 37 degree C of 51 ± 8 min and an activation energy of 18.0 kCal mol -1 . There was unexpected specificity among HDL species as acceptors of LDL-derived labeled cholesterol. The largest fraction of the major α-migrating class (HDL 2b ) was the major initial acceptor of LDL-derived cholesterol. Kinetic analysis indicated a rapid secondary transfer from HDL 2b to smaller αHDL (particularly HDL 3 ) driven enzymatically by the lecithin-cholesterol acyltransferase reaction. Rates of transfer among αHDL were most rapid from the largest αHDL fraction (HDL 2b ), suggesting possible protein-mediated facilitation. Simultaneous measurements of the transport of LDL-derived and cell-derived isotopic cholesterol indicated that the former preferably utilized the αHDL pathyway, with little label in pre-βHDL. The same experiments confirmed earlier data that cell-derived cholesterol is preferentially channeled through pre-βHDL. The authors suggest that the functional heterogeneity of HDL demonstrated here includes the ability to independently process cell- and LDL-derived free cholesterol

  2. Dynamical critical phenomena in driven-dissipative systems.

    Science.gov (United States)

    Sieberer, L M; Huber, S D; Altman, E; Diehl, S

    2013-05-10

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  3. Recent advances in laser-driven neutron sources

    Science.gov (United States)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  4. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Serpico, C.; d'Aquino, M.; Mayergoyz, I. D.; Bonin, R.

    2005-01-01

    Full text: Considerable interest has been generated in recent years by the discovery that a current of spin-polarized electrons can apply appreciable torques to a nanoscale ferromagnet. This mechanism was theoretically predicted and subsequently confirmed by a number of experiments which have shown that spin transfer can indeed induce switching or microwave oscillations of the magnetization. Significant efforts have been devoted to the explanation of these results, in view of the new physics involved and of the possible applications to new types of current-controlled memory cells or microwave sources and resonators . However, the precise nature of magnetization dynamics when spin-polarized currents and external magnetic fields are simultaneously present has not yet been fully understood. The spin-transfer-driven nanomagnet is a nonlinear open system that is forced far from equilibrium by the injection of the current. Thus, the appropriate framework for the study of the problem is nonlinear dynamical system theory and bifurcation theory. In this talk, it is shown that within this framework the complexity and subtlety of spin-torque effects are fully revealed and quantified, once it is recognized that both intrinsic damping and spin transfer can be treated as perturbations of the free precessional dynamics typical of ferromagnetic resonance. Complete stability diagrams are derived for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching; for the amplitude and frequency of magnetization self-oscillations; for the conditions leading to hysteretic transitions between self-oscillations and stationary states

  5. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  6. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  7. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Science.gov (United States)

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  8. Consistent data-driven computational mechanics

    Science.gov (United States)

    González, D.; Chinesta, F.; Cueto, E.

    2018-05-01

    We present a novel method, within the realm of data-driven computational mechanics, to obtain reliable and thermodynamically sound simulation from experimental data. We thus avoid the need to fit any phenomenological model in the construction of the simulation model. This kind of techniques opens unprecedented possibilities in the framework of data-driven application systems and, particularly, in the paradigm of industry 4.0.

  9. Comparisons of power transfer functions and flow transfer functions

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1987-01-01

    Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system-quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described

  10. Proposal of laser-driven automobile

    Science.gov (United States)

    Yabe, Takashi; Oozono, Hirokazu; Taniguchi, Kazumoto; Ohkubo, Tomomasa; Miyazaki, Sho; Uchida, Shigeaki; Baasandash, Choijil

    2004-09-01

    We propose an automobile driven by piston motion, which is driven by water-laser coupling. The automobile can load a solar-pumped fiber laser or can be driven by ground-based lasers. The vehicle is much useful for the use in other planet in which usual combustion engine cannot be used. The piston is in a closed system and then the water will not be exhausted into vacuum. In the preliminary experiment, we succeeded to drive the cylindrical piston of 0.2g (6mm in diameter) on top of water placed inside the acrylic pipe of 8 mm in inner diameter and the laser is incident from the bottom and focused onto the upper part of water by the lens (f=8mm) attached to the bottom edge.

  11. Data-driven architectural production and operation

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2014-01-01

    Data-driven architectural production and operation as explored within Hyperbody rely heavily on system thinking implying that all parts of a system are to be understood in relation to each other. These relations are increasingly established bi-directionally so that data-driven architecture is not

  12. Charge-Transfer Supra-Amphiphiles Built by Water-Soluble Tetrathiafulvalenes and Viologen-Containing Amphiphiles: Supramolecular Nanoassemblies with Modifiable Dimensions.

    Science.gov (United States)

    Lv, Zhong-Peng; Chen, Bin; Wang, Hai-Ying; Wu, Yue; Zuo, Jing-Lin

    2015-08-05

    In this study, multidimensional nanoassemblies with various morphologies such as nanosheets, nanorods, and nanofibers are developed via charge-transfer interaction and supra-amphiphile self-assembling in aqueous phase. The charge-transfer interactions between tetrathiafulvalene derivatives (TTFs) and methyl viologen derivatives (MVs) have been confirmed by the characteristic charger-transfer absorption. (1) H NMR and electrospray ionizsation mass spectrometry (ESI-MS) analyses also indicate supra-amphiphiles are formed by the combination of TTFs and MVs head group through charge-transfer interaction and Coulombic force. X-ray single crystal structural studies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) reveal that both linkage pattern of TTFs in hydrophilic part and alkane chain structure in hydrophobic part have significant influence on nanoassemblies morphology and microstructure. Moreover, gold nanoparticles (AuNPs) are introduced in the above supramolecular nanoassemblies to construct a supra-amphiphile-driven organic-AuNPs assembly system. AuNPs could be assembled into 1D-3D structures by adding different amount of MVs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Technology Transfer Issues and a New Technology Transfer Model

    Science.gov (United States)

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  14. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  15. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  16. Comments to accelerator-driven system

    International Nuclear Information System (INIS)

    Taka aki, Matsumoto

    2003-01-01

    Accelerator-driven system (ADS) that was a subcritical nuclear reactor driven by a high power proton accelerator was recently studied by several large organisations over the world. This paper described two comments for ADS: philosophical and technological ones. The latter was made from a view point of micro ball lightning (BL) that was newly discovered by the author. Negative and positive aspects of micro BL for ADS were discussed. (author)

  17. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  18. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    Science.gov (United States)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  19. Evidence-based and data-driven road safety management

    Directory of Open Access Journals (Sweden)

    Fred Wegman

    2015-07-01

    Full Text Available Over the past decades, road safety in highly-motorised countries has made significant progress. Although we have a fair understanding of the reasons for this progress, we don't have conclusive evidence for this. A new generation of road safety management approaches has entered road safety, starting when countries decided to guide themselves by setting quantitative targets (e.g. 50% less casualties in ten years' time. Setting realistic targets, designing strategies and action plans to achieve these targets and monitoring progress have resulted in more scientific research to support decision-making on these topics. Three subjects are key in this new approach of evidence-based and data-driven road safety management: ex-post and ex-ante evaluation of both individual interventions and intervention packages in road safety strategies, and transferability (external validity of the research results. In this article, we explore these subjects based on recent experiences in four jurisdictions (Western Australia, the Netherlands, Sweden and Switzerland. All four apply similar approaches and tools; differences are considered marginal. It is concluded that policy-making and political decisions were influenced to a great extent by the results of analysis and research. Nevertheless, to compensate for a relatively weak theoretical basis and to improve the power of this new approach, a number of issues will need further research. This includes ex-post and ex-ante evaluation, a better understanding of extrapolation of historical trends and the transferability of research results. This new approach cannot be realized without high-quality road safety data. Good data and knowledge are indispensable for this new and very promising approach.

  20. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity

    International Nuclear Information System (INIS)

    Papp, Eszter; Nardai, Gabor; Mandl, Jozsef; Banhegyi, Gabor; Csermely, Peter

    2005-01-01

    The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1 can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding

  1. Design of a spheromak compressor driven by high explosives

    International Nuclear Information System (INIS)

    Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marsh, S.P.; Marklin, G.J.; Mayo, R.M.; Wysocki, F.J.

    1990-01-01

    High energy density spheromaks can be used to accelerate a thin section of the flux conserver wall to high velocities. The energy density of a spheromak, formed by conventional helicity injection into a flux conserver, can be increased by reducing the flux conserver volume after the spheromak is formed. A method of accomplishing this is by imploding one wall of the flux conserver with high explosives. The authors have embarked on a program to demonstrate that a spheromak can be used as an energy transfer medium, and that a velocity gain over high-explosive driven plate velocities can be achieved. To do this, a plasma gun helicity source that will inject a spheromak with suitable initial energy density and lifetime is needed. Also, an implodable flux conserver that remains intact and clean during the implosion must be developed. The flux conserver problem is probably the more challenging one, because very little experimental work has been done in the past on explosively driven metal plates into a high vacuum, with sizes and travel distances appropriate for their application. There are two necessary practical requirements for an explosive compression of a flux conserver. The first is that the imploding wall does not rupture. The second is that gasses or other debri are not ejected which could penetrate and poison the spheromak plasma, and thus reduce the spheromak lifetime below what is necessary to carry out the spheromak compression and the subsequent acceleration of the flyer plate. The authors have designed and fabricated a plasma gun to be used for injecting the initial spheromak plasma into the collapsible flux conserver

  2. Optimization of a solar driven absorption refrigerator in the transient regime

    International Nuclear Information System (INIS)

    Hamed, Mouna; Fellah, Ali; Ben Brahim, Ammar

    2012-01-01

    Highlights: ► Dynamic behavior of a solar absorption refrigerator endoreversible model. ► Using the principles of classical thermodynamics, mass and heat transfers. ► Minimizing heat exchange time to reach maximum performances. ► Major influence of the collector temperature on the model’s characteristics. ► Analogous effects of both the thermal load and the thermal conductance. -- Abstract: This contribution deals with the theoretical study in dynamic mode of an absorption refrigerator endoreversible model. The system is a cold generating station driven by solar energy. The main elements of the cycle are a refrigerated space, an absorption refrigerator and a solar collector form. A mathematical model is developed. It combines the classical thermodynamics and mass and heat transfers principles. The numerical simulation is made for different operating and conceptual conditions. A global minimizing time optimization is performed in view to reach maximum performances. Appropriate dimensionless groups are defined. The results are presented in normalized charts for general applications. The collector temperature presents major influence on the conceptual and functional characteristics compared to the stagnation temperature influence. On the other hand the thermal load in the refrigerated space and the thermal conductance of the walls has analogous effects, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar collector based energy systems.

  3. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods

    Science.gov (United States)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.

    2018-04-01

    We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

  4. Numerical studies of heat transfer by simultaneous radiative-conduction and radiative-convection in a two dimensional semi-transparent medium

    International Nuclear Information System (INIS)

    Draoui, Abdeslam

    1989-01-01

    The works we present here are on numerical approaches of heat transfer coupling radiation-conduction and radiation-convection within semi-transparent two-dimensional medium. The first part deals with a review of equations of radiative transfer and introduces three numerical methods (Pl, P3, Hottel's zones) which enable one to solve this problem in a two-dimensional environment. After comparing the three methods in the case where radiation is the only mode of transfer, we introduce in the second chapter a study of the coupling of radiation with conduction. So, a fourth method is used to solve this problem. These comparisons lead us to various methods which enable us to show the interest of the spherical harmonics approximations. In the third part, the Pl approximation is kept because it is simple to use, moreover it enables us to introduce both the coupling of radiative transfers with laminar convective equations in a thermally driven two-dimensional cavity. The results show a significant influence of the radiative participation of the fluid on heat and dynamic transfer we met in this type of problem. (author) [fr

  5. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    Directory of Open Access Journals (Sweden)

    S. Menshawy

    2017-05-01

    Full Text Available Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs. In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  6. The Natural Convection Heat Transfer inside Vertical Pipe: Characteristic of Pipe Flow according to the Boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung Min; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The Passive Cooling System (PCS) driven by natural forces drew research attention since Fukushima nuclear power plant accident. This study investigated the natural convection heat transfer inside of vertical pipe with emphasis on the phenomena regarding the boundary layer interaction. Numerical calculations were carried out using FLUENT 6.3. Experiments were performed for the parts of the cases to explore the accuracy of calculation. Based on the analogy, heat transfer experiment is replaced by mass transfer experiment using sulfuric acid copper sulfate (CuSO{sub 4}. H{sub 2}SO{sub 4}) electroplating system. The natural convection heat transfer inside a vertical pipe is studied experimentally and numerically. Experiments were carried out using sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) based on the analogy concept between heat and mass transfer system. Numerical analysis was carried out using FLUENT 6.3. It is concluded that the boundary layer interaction along the flow passage influences the heat transfer, which is affected by the length, diameter, and Prandtl number. For the large diameter and high Prandtl number cases, where the thermal boundary layers do not interfered along the pipe, the heat transfer agreed with vertical flat plate for laminar and turbulent natural convection correlation within 8%. When the flow becomes steady state, the forced convective flow appears in the bottom of the vertical pipe and natural convection flow appears near the exit. It is different behavior from the flow on the parallel vertical flat plates. Nevertheless, the heat transfer was not different greatly compared with those of vertical plate.

  7. Test-driven modeling of embedded systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2015-01-01

    To benefit maximally from model-based systems engineering (MBSE) trustworthy high quality models are required. From the software disciplines it is known that test-driven development (TDD) can significantly increase the quality of the products. Using a test-driven approach with MBSE may have...... a similar positive effect on the quality of the system models and the resulting products and may therefore be desirable. To define a test-driven model-based systems engineering (TD-MBSE) approach, we must define this approach for numerous sub disciplines such as modeling of requirements, use cases...... suggest that our method provides a sound foundation for rapid development of high quality system models....

  8. Expert Performance Transfer: Making Knowledge Transfer Count

    International Nuclear Information System (INIS)

    Turner, C.L.; Braudt, T.E.

    2011-01-01

    'Knowledge Transfer' is a high-priority imperative as the nuclear industry faces the combined effects of an aging workforce and economic pressures to do more with less. Knowledge Transfer is only a part of the solution to these challenges, however. The more compelling and immediate need faced by industry is Accomplishment Transfer, or the transference of the applied knowledge necessary to assure optimal performance transfer from experienced, high-performing staff to inexperienced staff. A great deal of industry knowledge and required performance information has been documented in the form of procedures. Often under-appreciated either as knowledge stores or as drivers of human performance, procedures, coupled with tightly-focused and effective training, are arguably the most effective influences on human and plant performance. (author)

  9. An RCT Investigating Patient-Driven Versus Physician-Driven Titration of BIAsp 30 in Patients with Type 2 Diabetes Uncontrolled Using NPH Insulin.

    Science.gov (United States)

    Chraibi, Abdelmjid; Al-Herz, Shoorook; Nguyen, Bich Dao; Soeatmadji, Djoko W; Shinde, Anil; Lakshmivenkataraman, Balasubramanian; Assaad-Khalil, Samir H

    2017-08-01

    The aim of this study was to confirm the efficacy of patient-driven titration of BIAsp 30 in terms of glycemic control, by comparing it to physician-driven titration of BIAsp 30, in patients with type 2 diabetes in North Africa, the Middle East, and Asia. A 20-week, open-label, randomized, two-armed, parallel-group, multicenter study in Egypt, Indonesia, Morocco, Saudi Arabia, and Vietnam. Patients (n = 155) with type 2 diabetes inadequately controlled using neutral protamine Hagedorn (NPH) insulin were randomized to either patient-driven or physician-driven BIAsp 30 titration. The noninferiority of patient-driven compared to physician-driven titration with respect to the reduction in HbA1c was confirmed. The estimated mean change in HbA1c from baseline to week 20 was -1.27% in the patient-driven arm and -1.04% in the physician-driven arm, with an estimated treatment difference of -0.23% (95% confidence interval: -0.54; 0.08). After 20 weeks of treatment, the proportions of patients achieving the target of HbA1c titration arms; the proportions of patients achieving the target of ≤6.5% were also similar. Both titration algorithms were well tolerated, and hypoglycemic episode rates were similar in both arms. Patient-driven titration of BIAsp 30 can be as effective and safe as physician-driven titration in non-Western populations. Overall, the switch from NPH insulin to BIAsp 30 was well tolerated in both titration arms and led to improved glycemic control. A limitation of the study was the relatively small number of patients recruited in each country. ClinicalTrials.gov NCT01589653. Novo Nordisk A/S, Denmark.

  10. Solar-driven refrigeration technologies; Koeltechnologieen op zonne-energie

    Energy Technology Data Exchange (ETDEWEB)

    De Cillis, S.; Infante Ferreira, C.A. [Technische Universiteit Delft, Delft (Netherlands); Krieg, J. [Unilever Foods and Health Research Institute, Vlaardingen (Netherlands)

    2005-12-01

    A review is presented of solar driven refrigeration technologies. A subdivision is made between electric driven and thermal driven systems. Their potential and stage of development are discussed. The electric driven systems include Stirling, thermo-acoustic, thermoelectric, electrochemical and membrane assisted absorption systems. The thermal driven systems include absorption and adsorption systems. A model is used to compare the performance of the different solutions. [Dutch] Dit artikel geeft een overzicht van zon-aangedreven koeltechnologieen. Er wordt onderscheid gemaakt tussen elektrisch en thermisch aangedreven systemen. Hun potentieel en niveau van ontwikkeling worden besproken. De elektrisch aangedreven systemen omvatten Stirling, thermo-akoestisch, thermo-elektrisch, elektrochemisch en membraanondersteund absorptiesystemen.De warmte-aangedreven systemen omvatten absorptie en adsorptie. Er wordt gebruik gemaakt van een model om de prestaties van de verschillende alternatieven onderling te vergelijken.

  11. Investigating potential transferability of place-based research in land system science

    Science.gov (United States)

    Václavík, Tomáš; Langerwisch, Fanny; Cotter, Marc; Fick, Johanna; Häuser, Inga; Hotes, Stefan; Kamp, Johannes; Settele, Josef; Spangenberg, Joachim H.; Seppelt, Ralf

    2016-09-01

    Much of our knowledge about land use and ecosystem services in interrelated social-ecological systems is derived from place-based research. While local and regional case studies provide valuable insights, it is often unclear how relevant this research is beyond the study areas. Drawing generalized conclusions about practical solutions to land management from local observations and formulating hypotheses applicable to other places in the world requires that we identify patterns of land systems that are similar to those represented by the case study. Here, we utilize the previously developed concept of land system archetypes to investigate potential transferability of research from twelve regional projects implemented in a large joint research framework that focus on issues of sustainable land management across four continents. For each project, we characterize its project archetype, i.e. the unique land system based on a synthesis of more than 30 datasets of land-use intensity, environmental conditions and socioeconomic indicators. We estimate the transferability potential of project research by calculating the statistical similarity of locations across the world to the project archetype, assuming higher transferability potentials in locations with similar land system characteristics. Results show that areas with high transferability potentials are typically clustered around project sites but for some case studies can be found in regions that are geographically distant, especially when values of considered variables are close to the global mean or where the project archetype is driven by large-scale environmental or socioeconomic conditions. Using specific examples from the local case studies, we highlight the merit of our approach and discuss the differences between local realities and information captured in global datasets. The proposed method provides a blueprint for large research programs to assess potential transferability of place-based studies to other

  12. About probabilistic integration of ill-posed geophysical tomography and logging data: A knowledge discovery approach versus petrophysical transfer function concepts illustrated using cross-borehole radar-, P- and S-wave traveltime tomography in combination with cone penetration and dielectric logging data

    Science.gov (United States)

    Paasche, Hendrik

    2018-01-01

    Site characterization requires detailed and ideally spatially continuous information about the subsurface. Geophysical tomographic experiments allow for spatially continuous imaging of physical parameter variations, e.g., seismic wave propagation velocities. Such physical parameters are often related to typical geotechnical or hydrological target parameters, e.g. as achieved from 1D direct push or borehole logging. Here, the probabilistic inference of 2D tip resistance, sleeve friction, and relative dielectric permittivity distributions in near-surface sediments is constrained by ill-posed cross-borehole seismic P- and S-wave and radar wave traveltime tomography. In doing so, we follow a discovery science strategy employing a fully data-driven approach capable of accounting for tomographic ambiguity and differences in spatial resolution between the geophysical tomograms and the geotechnical logging data used for calibration. We compare the outcome to results achieved employing classical hypothesis-driven approaches, i.e., deterministic transfer functions derived empirically for the inference of 2D sleeve friction from S-wave velocity tomograms and theoretically for the inference of 2D dielectric permittivity from radar wave velocity tomograms. The data-driven approach offers maximal flexibility in combination with very relaxed considerations about the character of the expected links. This makes it a versatile tool applicable to almost any combination of data sets. However, error propagation may be critical and justify thinking about a hypothesis-driven pre-selection of an optimal database going along with the risk of excluding relevant information from the analyses. Results achieved by transfer function rely on information about the nature of the link and optimal calibration settings drawn as retrospective hypothesis by other authors. Applying such transfer functions at other sites turns them into a priori valid hypothesis, which can, particularly for empirically

  13. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  14. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  15. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    Science.gov (United States)

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer

  16. Just-in-time Database-Driven Web Applications

    Science.gov (United States)

    2003-01-01

    "Just-in-time" database-driven Web applications are inexpensive, quickly-developed software that can be put to many uses within a health care organization. Database-driven Web applications garnered 73873 hits on our system-wide intranet in 2002. They enabled collaboration and communication via user-friendly Web browser-based interfaces for both mission-critical and patient-care-critical functions. Nineteen database-driven Web applications were developed. The application categories that comprised 80% of the hits were results reporting (27%), graduate medical education (26%), research (20%), and bed availability (8%). The mean number of hits per application was 3888 (SD = 5598; range, 14-19879). A model is described for just-in-time database-driven Web application development and an example given with a popular HTML editor and database program. PMID:14517109

  17. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    Science.gov (United States)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  18. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    Science.gov (United States)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  19. EVOLUTION OF INTERMEDIATE-MASS X-RAY BINARIES DRIVEN BY THE MAGNETIC BRAKING OF AP/BP STARS. I. ULTRACOMPACT X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cong [School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000 (China); Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2016-10-20

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  20. Car transfer and wheelchair loading techniques in independent drivers with paraplegia

    Directory of Open Access Journals (Sweden)

    Lisa Lighthall Haubert

    2015-09-01

    Full Text Available Car transfers and wheelchair (WC loading are crucial for independent community participation in persons with complete paraplegia from spinal cord injury, but are complex, physically demanding, and known to provoke shoulder pain. This study aimed to describe techniques and factors influencing car transfer and WC loading for individuals with paraplegia driving their own vehicles and using their personal WCs. Sedans were the most common vehicle driven (59%. Just over half (52% of drivers place their right leg only into the vehicle prior to transfer. Overall, the leading hand was most frequently placed on the driver’s seat (66% prior to transfer and the trailing hand was most often place on the WC seat (48%. Vehicle height influenced leading hand placement but not leg placement such that driver’s of higher profile vehicles were more likely to place their hand on the driver’s seat than those who drove sedans. Body lift time was negatively correlated with level of injury and age and positively correlated with vehicle height and shoulder abduction strength. Drivers who transferred with their leading hand on the steering wheel had significantly higher levels of shoulder pain than those who placed their hand on the driver’s seat or overhead. The majority of participants used both hands (62% to load their WC frame and, overall, most loaded their fame into the back (62% vs. the front seat. Sedan drivers were more likely to load their frame into the front seat than drivers of higher profile vehicles (53% vs. 17%. Average time to load the WC frame (10.7 seconds was 20% of the total WC loading time and was not related to shoulder strength, frame weight or demographic characteristics. Those who loaded their WC frame into the back seat had significantly weaker right shoulder internal rotators. Understanding car transfers and WC loading in independent drivers is crucial to prevent shoulder pain and injury and preserve community participation.

  1. Turbulent heat/mass transfer at oceanic interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Enstad, Lars Inge

    2005-07-01

    The thesis studies heat/mass transfer and uses various simulation techniques. A numerical method has been developed. 4 papers which describes the work, are included. In the first paper we look at such flow configuration where the flow is driven by a constant pressure gradient and the interface is cooled from above. Papers 2 and 3. 2: The effect of stable density stratification on turbulent vortical structures near an atmosphere-ocean interface driven by low wind shear. 3: Low shear turbulence structures beneath a gas-liquid interface under neutral and stable stratified conditions. A well known feature of the upper layer of the ocean is the presence of counter-rotating streamwise vorticity, so called Langmuir circulation. Earlier numerical investigations show that similar vortex structures appear on small scale induced by shear instability only. Short wave solar radiation may create a stable situation which affects the turbulence near the interface. In these papers we investigate such a flow situation by employing a uniform and constant shear stress at the interface together with a similar heat flux into the interface. In both articles we also use a two-point correlation to give a statistical representation of the streamwise vorticity. The spatial extent and intensity are decreased by stable stratification. In addition, in article 3, we find that the Reynolds stress is damped by stable stratification. This leads to an increased mean velocity since decreased Reynolds stress is compensated by a larger mean velocity gradient. The cospectra of the Reynolds stress in the spanwise direction show that the production of Reynolds stress is decreased at lower wave numbers and thus shifted to higher wave numbers in the presence of stable stratification. The streak structure created by the streamwise vorticity is disorganized by stable stratification. Article 4: A numerical study of a density interface using the General Ocean Turbulence Model (GOTM) coupled with a Navier Stokes

  2. Disentangling Competition Among Platform Driven Strategic Groups

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric

    2015-01-01

    In platform-driven markets, competitive advantage is derived from superior platform design and configurations. For this reason, platform owners strive to create unique and inimitable platform configurals to maintain and extend their competitiveness within network economies. To disentangle firm...... competition within platform-driven markets, we opted for the UK mobile payment market as our empirical setting. By embracing the theoretical lens of strategic groups and digital platforms, this study supplements prior research by deriving a taxonomy of platform-driven strategic groups that is grounded...

  3. Strategy-driven talent management a leadership imperative

    CERN Document Server

    Silzer, Rob

    2009-01-01

    A Publication of the Society for Industrial and Organizational Psychology Praise for Strategy-Driven Talent Management ""Silzer and Dowell''s Strategy-Driven Talent Management provides a comprehensive overview of the different elements of the best talent management processes used in organizations today. This is a valuable resource for leaders and managers, HR practitioners and anyone involved in developing leadership talent.""-Ed Lawler, Professor, School of Business, University of Southern California ""Talent is the key to successful execution of a winning business strategy. Strategy-Driven T

  4. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  5. Observation of the L-H confinement bifurcation triggered by a turbulence-driven shear flow in a tokamak plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Fonck, R; Gohil, P; Groebner, R J; Osborne, T H

    2014-03-28

    Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100  μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

  6. Preliminary design for spent fuel canister handling systems in a canister transfer and installation vehicle

    International Nuclear Information System (INIS)

    Wendelin, T.; Suikki, M.

    2008-12-01

    The report presents a spent fuel canister transfer and installation vehicle. The vehicle is used for carrying the fuel canister into a disposal tunnel and installing it into a deposition hole. The report outlines basic requirements and a design for canister handling equipment used in a canister transfer and installation vehicle, a description regarding the operation and maintenance of the equipment, as well as a cost estimate. Specific vehicles will be manufactured for all canister types in order to minimize the height of the disposal tunnels. This report is only focused on a transfer and installation vehicle for OL1-2 fuel canisters. Detailed designing and selection of final components have not yet been carried out. The report also describes the vehicle's requirements for the structures of a repository system, as well as actions in possible malfunction or fault situations. The spent fuel canister is brought from an encapsulation plant by a canister lift down to the repository level. The fuel canister is driven from the canister lift by an automated guided vehicle onto a canister hoist at a canister loading station. The canister transfer and installation vehicle is waiting for the canister with its radiation shield in an upright position above the canister hoist. The hoist carries the canister upward until the vehicle's own lifting means grab hold of the canister and raise it up into the vehicle's radiation shield. This is followed by turning the radiation shield to a transport position and by closing it in a radiation-proof manner against a rear radiation shield. The vehicle is driven along the central tunnel into the disposal tunnel and parked on top of the deposition hole. The vehicle's radiation shield is turned to the upright position and the canister is lowered with the vehicle's hydraulic winches into a bentonite-lined deposition hole. The radiation shield is turned back to the transport position and the vehicle can be driven out of the disposal tunnel

  7. Free surface deformation and heat transfer by thermocapillary convection

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  8. The effect of the number of transferred embryos, the interval between nuclear transfer and embryo transfer, and the transfer pattern on pig cloning efficiency.

    Science.gov (United States)

    Rim, Chol Ho; Fu, Zhixin; Bao, Lei; Chen, Haide; Zhang, Dan; Luo, Qiong; Ri, Hak Chol; Huang, Hefeng; Luan, Zhidong; Zhang, Yan; Cui, Chun; Xiao, Lei; Jong, Ui Myong

    2013-12-01

    To improve the efficiency of producing cloned pigs, we investigated the influence of the number of transferred embryos, the culturing interval between nuclear transfer (NT) and embryo transfer, and the transfer pattern (single oviduct or double oviduct) on cloning efficiency. The results demonstrated that transfer of either 150-200 or more than 200NT embryos compared to transfer of 100-150 embryos resulted in a significantly higher pregnancy rate (48 ± 16, 50 ± 16 vs. 29 ± 5%, pcloning efficiency is achieved by adjusting the number and in vitro culture time of reconstructed embryos as well as the embryo transfer pattern. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Beyond Solar Fuels: Renewable Energy-Driven Chemistry.

    Science.gov (United States)

    Lanzafame, Paola; Abate, Salvatare; Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Centi, Gabriele; Perathoner, Siglinda

    2017-11-23

    The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. "Transfer Shock" or "Transfer Ecstasy?"

    Science.gov (United States)

    Nickens, John M.

    The alleged characteristic drop in grade point average (GPA) of transfer students and the subsequent rise in GPA was investigated in this study. No statistically significant difference was found in first term junior year GPA between junior college transfers and native Florida State University students after the variance accounted for by the…

  11. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  12. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  13. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  14. Information-Driven Inspections

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Lockwood, Dunbar

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  15. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  16. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    Science.gov (United States)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  17. Molecular dynamics for irradiation driven chemistry

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-01-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes...... that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package...... involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields...

  18. Second-Order Multiagent Systems with Event-Driven Consensus Control

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-01-01

    Full Text Available Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are, respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured. Finally, some numerical examples are presented to validate the proposed event-driven consensus control.

  19. Using a Time-Driven Activity-Based Costing Model To Determine the Actual Cost of Services Provided by a Transgenic Core.

    Science.gov (United States)

    Gerwin, Philip M; Norinsky, Rada M; Tolwani, Ravi J

    2018-03-01

    Laboratory animal programs and core laboratories often set service rates based on cost estimates. However, actual costs may be unknown, and service rates may not reflect the actual cost of services. Accurately evaluating the actual costs of services can be challenging and time-consuming. We used a time-driven activity-based costing (ABC) model to determine the cost of services provided by a resource laboratory at our institution. The time-driven approach is a more efficient approach to calculating costs than using a traditional ABC model. We calculated only 2 parameters: the time required to perform an activity and the unit cost of the activity based on employee cost. This method allowed us to rapidly and accurately calculate the actual cost of services provided, including microinjection of a DNA construct, microinjection of embryonic stem cells, embryo transfer, and in vitro fertilization. We successfully implemented a time-driven ABC model to evaluate the cost of these services and the capacity of labor used to deliver them. We determined how actual costs compared with current service rates. In addition, we determined that the labor supplied to conduct all services (10,645 min/wk) exceeded the practical labor capacity (8400 min/wk), indicating that the laboratory team was highly efficient and that additional labor capacity was needed to prevent overloading of the current team. Importantly, this time-driven ABC approach allowed us to establish a baseline model that can easily be updated to reflect operational changes or changes in labor costs. We demonstrated that a time-driven ABC model is a powerful management tool that can be applied to other core facilities as well as to entire animal programs, providing valuable information that can be used to set rates based on the actual cost of services and to improve operating efficiency.

  20. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  1. "This Is a Tool for You to Use": Expansive Framing and Adaptive Transfer in Two PBL Science Classrooms

    Science.gov (United States)

    Becherer, Kendall

    This dissertation is a qualitative, comparative case study investigating productive disciplinary engagement, framing for transfer, and tool use in two high school science classrooms. My goal was to investigate the implementation of material resources that were developed to support students' engagement, driven by my primary research question: How does the implementation of material tools as a learning resource support or impede students' productive disciplinary engagement in a project-based learning setting? Using a grounded theory approach, I analyzed video transcriptions and interviews of two teachers and their students at the same school as they enacted a coordinated project-based, advanced placement curriculum as part of a design-based implementation research project. Findings suggest that intentional framing and use of tools may help teachers support students in making connections across multiple parts of a project in ways that facilitate productive engagement in the discipline of science as well as students building on and adapting their knowledge over time. Keywords: Project-based learning, advanced placement, environmental science, scientific practices, dialogic discourse, grammar of schooling, situative theory, student engagement, productive disciplinary engagement, material resources, student authorship, framing for transfer, expansive framing, near transfer, adaptive transfer.

  2. User-driven innovation of an outpatient department

    DEFF Research Database (Denmark)

    Broberg, Ole; Edwards, Kasper

    2012-01-01

    This paper presents experiences from a user-driven innovation process of an outpatient department in a hospital. The mixing of methods from user-driven innovation and participatory design contributed to develop an innovative concept of the spatial and organizational design of an outpatient...

  3. Mass transfer study between soil, atmosphere, groundwater and building in a contaminated area; volatile organic compounds (VOC)

    International Nuclear Information System (INIS)

    Cotel, S.

    2008-10-01

    A bibliography review led to detail the mechanisms of exchange between phases and transport of volatile organic compounds in the vadose zone, to put in equations their transfer, to set experimental devices and to define relevant tests. The pollutant in question is trichloroethylene, the porous media is a medium sand and the experiments were implemented in column. Once, an analytical method was available to quantify aqueous, gaseous and sorb TCE, predominant transfers mechanisms were quantified separately especially with diffusion experiments through a sand at three different water contents (dry, residual saturation and saturated). Then, these mechanisms have been coupled in a TCE transfer experiment in sand with a hydrostatic water content profile. Each type of test was dimensioned, if it's possible duplicated and interpreted with the multiphasic software Comsol whose flow equation was changed to consider the gravity driven convection. By strictly controlling external factors and boundary conditions, it was possible to carry out transfer experiments reproducible and interpretable with a volatile and reactive compound in a very permeable porous medium. A good reproducibility of experimental results by simulation was achieved with minor changes in basic parameters: report permeability on viscosity, tortuosity (Millington, 1959) and aerodynamics conductivity curve setting parameter (Thomson et al., 1997). This work has resulted in a fine understanding of gas transfers in the vadose zone, especially in the capillarity fringe. (author)

  4. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  5. Stigma by Prejudice Transfer: Racism Threatens White Women and Sexism Threatens Men of Color.

    Science.gov (United States)

    Sanchez, Diana T; Chaney, Kimberly E; Manuel, Sara K; Wilton, Leigh S; Remedios, Jessica D

    2017-04-01

    In the current research, we posited the stigma-by-prejudice-transfer effect, which proposes that stigmatized group members (e.g., White women) are threatened by prejudice that is directed at other stigmatized group members (e.g., African Americans) because they believe that prejudice has monolithic qualities. While most stigma researchers assume that there is a direct correspondence between the attitude of prejudiced individuals and the targets (i.e., sexism affects women, racism affects racial minorities), the five studies reported here demonstrate that White women can be threatened by racism (Study 1, 3, 4, and 5) and men of color by sexism (Study 2). Robust to perceptions of liking and the order in which measures were administered, results showed that prejudice transfers between racism and sexism were driven by the presumed social dominance orientation of the prejudiced individual. In addition, important downstream consequences, such as the increased likelihood of anticipated stigma, expectations of unfair treatment, and the attribution of negative feedback to sexism, appeared for stigmatized individuals.

  6. Distance-driven projection and backprojection in three dimensions

    International Nuclear Information System (INIS)

    De Man, Bruno; Basu, Samit

    2004-01-01

    Projection and backprojection are operations that arise frequently in tomographic imaging. Recently, we proposed a new method for projection and backprojection, which we call distance-driven, and that offers low arithmetic cost and a highly sequential memory access pattern. Furthermore, distance-driven projection and backprojection avoid several artefact-inducing approximations characteristic of some other methods. We have previously demonstrated the application of this method to parallel and fan beam geometries. In this paper, we extend the distance-driven framework to three dimensions and demonstrate its application to cone beam reconstruction. We also present experimental results to demonstrate the computational performance, the artefact characteristics and the noise-resolution characteristics of the distance-driven method in three dimensions

  7. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  8. User-driven innovation in tourism

    DEFF Research Database (Denmark)

    Hjalager, Anne-Mette; Nordin, Sara

    2011-01-01

    This literature study reviews user-driven innovation and establishes a typology of its forms in a tourism context. Sixteen methods are distinguishable. They comprise situations where users are actively involved and methods where information is collected without direct user involvement. The nature...... and intensity of the dialogue between companies and their customers are addressed. Drawing on this existing research, the article concludes that there is still little comprehensive follow-up on user-driven innovation in tourism and its impact on quality improvements and assurance. Key areas for future studies...

  9. Limits on the generalizability of context-driven control.

    Science.gov (United States)

    Hutcheon, Thomas G; Spieler, Daniel H

    2017-07-01

    Context-driven control refers to the fast and flexible weighting of stimulus dimensions that may be applied at the onset of a stimulus. Evidence for context-driven control comes from interference tasks in which participants encounter a high proportion of incongruent trials at one location and a high proportion of congruent trials at another location. Since the size of the congruency effect varies as a function of location, this suggests that stimulus dimensions are weighted differently based on the context in which they appear. However, manipulations of condition proportion are often confounded by variations in the frequency with which particular stimuli are encountered. To date, there is limited evidence for the context-driven control in the absence of stimulus frequency confounds. In the current paper, we attempt to replicate and extend one such finding [Crump, M. J. C., & Milliken, B. (2009). The flexibility of context-specific control: Evidence for context-driven generalization of item-specific control settings. The Quarterly Journal of Experimental Psychology, 62, 1523-1532]. Across three experiments we fail to find evidence for context-driven control in the absence of stimulus frequency confounds. Based on these results, we argue that consistency in the informativeness of the irrelevant dimension may be required for context-driven control to emerge.

  10. Operating test report for project W-417, T-plant steam removal upgrade, waste transfer portion

    International Nuclear Information System (INIS)

    Myers, N.K.

    1997-01-01

    This Operating Test Report (OTR) documents the performance results of the Operating Test Procedure HNF-SD-W417-OTP-001 that provides steps to test the waste transfer system installed in the 221-T Canyon under project W-417. Recent modifications have been performed on the T Plant Rail Car Waste Transfer System. This Operating Test Procedure (OTP) will document the satisfactory operation of the 221-T Rail Car Waste Transfer System modified by project W-417. Project W-417 installed a pump in Tank 5-7 to replace the steam jets used for transferring liquid waste. This testing is required to verify that operational requirements of the modified transfer system have been met. Figure 2 and 3 shows the new and existing system to be tested. The scope of this testing includes the submersible air driven pump operation in Tank 5-7, liquid waste transfer operation from Tank 5-7 to rail car (HO-IOH-3663 or HO-IOH-3664), associated line flushing, and the operation of the flow meter. This testing is designed to demonstrate the satisfactory operation-of the transfer line at normal operating conditions and proper functioning of instruments. Favorable results will support continued use of this system for liquid waste transfer. The Functional Design Criteria for this system requires a transfer flow rate of 40 gallons per minute (GPM). To establish these conditions the pump will be supplied up to 90 psi air pressure from the existing air system routed in the canyon. An air regulator valve will regulate the air pressure. Tank capacity and operating ranges are the following: Tank No. Capacity (gal) Operating Range (gal) 5-7 10,046 0 8040 (80%) Rail car (HO-IOH-3663 HO-IOH-3664) 097219,157 Existing Tank level instrumentation, rail car level detection, and pressure indicators will be utilized for acceptance/rejection Criteria. The flow meter will be verified for accuracy against the Tank 5-7 level indicator. The level indicator is accurate to within 2.2 %. This will be for information only

  11. Regulation of ETG turbulence by TEM driven zonal flows

    Science.gov (United States)

    Asahi, Yuuichi; Ishizawa, Akihiro; Watanabe, Tomohiko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji

    2013-10-01

    Anomalous heat transport driven by electron temperature gradient (ETG) turbulence is investigated by means of gyrokinetic simulations. It is found that the ETG turbulence can be suppressed by zonal flows driven by trapped electron modes (TEMs). The TEMs appear in a statistically steady state of ETG turbulence and generate zonal flows, while its growth rate is much smaller than those of ETGs. The TEM-driven zonal flows with lower radial wave numbers are more strongly generated than those driven by ETG modes, because of the higher zonal flow response to a density source term. An ExB shearing rate of the TEM-driven zonal flows is strong enough to suppress the long-wavelength ETG modes which make the main contribution to the turbulent transport.

  12. Statistics of surface divergence and their relation to air-water gas transfer velocity

    Science.gov (United States)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  13. International technology transfer

    International Nuclear Information System (INIS)

    Kwon, Won Gi

    1991-11-01

    This book introduces technology progress and economic growth, theoretical consideration of technology transfer, policy and mechanism on technology transfer of a developed country and a developing country, reality of international technology transfer technology transfer and industrial structure in Asia and the pacific region, technology transfer in Russia, China and Eastern Europe, cooperation of science and technology for development of Northeast Asia and strategy of technology transfer of Korea.

  14. Data-driven storytelling

    CERN Document Server

    Hurter, Christophe; Diakopoulos, Nicholas ed.; Carpendale, Sheelagh

    2018-01-01

    This book is an accessible introduction to data-driven storytelling, resulting from discussions between data visualization researchers and data journalists. This book will be the first to define the topic, present compelling examples and existing resources, as well as identify challenges and new opportunities for research.

  15. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    Directory of Open Access Journals (Sweden)

    Lin Zheng

    2017-11-01

    Full Text Available The paper presents the different properties of phase change material (PCM and Microencapsulated phase change material (MEPCM employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compare the materials heat transfer performance. The slurry flow characteristics of MEPCM slurry also have been tested. Furthermore, in order to analyze the improvement effect on stability, the stability of MEPCM slurry with different surfactants have been tested. The researches of the PCM and MEPCM thermal properties revealed a more prospective application for phase change materials in energy storage/transportation systems. The study aims to find the most suitable chilling medium to further optimize the design of the cold storage/transportation systems with solar driven cooling cycles.

  16. Data-driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  17. Data–driven modeling of nano-nose gas sensor arrays

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Nielsen, Claus Højgård

    2010-01-01

    We present a data-driven approach to classification of Quartz Crystal Microbalance (QCM) sensor data. The sensor is a nano-nose gas sensor that detects concentrations of analytes down to ppm levels using plasma polymorized coatings. Each sensor experiment takes approximately one hour hence...... the number of available training data is limited. We suggest a data-driven classification model which work from few examples. The paper compares a number of data-driven classification and quantification schemes able to detect the gas and the concentration level. The data-driven approaches are based on state...

  18. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    Science.gov (United States)

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  19. A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal.

    Science.gov (United States)

    Hermann, Alexander; Riss, Katharina; Schellongowski, Peter; Bojic, Andja; Wohlfarth, Philipp; Robak, Oliver; Sperr, Wolfgang R; Staudinger, Thomas

    2015-10-01

    Pump-driven veno-venous extracorporeal CO2-removal (ECCO2-R) increasingly takes root in hypercapnic lung failure to minimize ventilation invasiveness or to avoid intubation. A recently developed device (iLA activve(®), Novalung, Germany) allows effective decarboxylation via a 22 French double lumen cannula. To assess determinants of gas exchange, we prospectively evaluated the performance of ECCO2-R in ten patients receiving iLA activve(®) due to hypercapnic respiratory failure. Sweep gas flow was increased in steps from 1 to 14 L/min at constant blood flow (phase 1). Similarly, blood flow was gradually increased at constant sweep gas flow (phase 2). At each step gas transfer via the membrane as well as arterial blood gas samples were analyzed. During phase 1, we observed a significant increase in CO2 transfer together with a decrease in PaCO2 levels from a median of 66 mmHg (range 46-85) to 49 (31-65) mmHg from 1 to 14 L/min sweep gas flow (p gas flow rates. During phase 2, oxygen transfer significantly increased leading to an increase in PaO2 from 67 (49-87) at 0.5 L/min to 117 (66-305) mmHg at 2.0 L/min (p gas flow results in effective CO2-removal, which can be further reinforced by raising blood flow. The clinically relevant oxygenation effect in this setting could broaden the range of indications of the system and help to set up an individually tailored configuration.

  20. Transfer function combinations

    KAUST Repository

    Zhou, Liang; Schott, Mathias; Hansen, Charles

    2012-01-01

    Direct volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult task since current methods, such as traditional 1D and 2D transfer functions, are not always effective for all data sets. Various 1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer function method which can provide more specificity for data classification by combining different transfer function spaces. In this work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions and 2D size based transfer functions. © 2012 Elsevier Ltd.

  1. Transfer function combinations

    KAUST Repository

    Zhou, Liang

    2012-10-01

    Direct volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult task since current methods, such as traditional 1D and 2D transfer functions, are not always effective for all data sets. Various 1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer function method which can provide more specificity for data classification by combining different transfer function spaces. In this work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions and 2D size based transfer functions. © 2012 Elsevier Ltd.

  2. Model-Driven Theme/UML

    Science.gov (United States)

    Carton, Andrew; Driver, Cormac; Jackson, Andrew; Clarke, Siobhán

    Theme/UML is an existing approach to aspect-oriented modelling that supports the modularisation and composition of concerns, including crosscutting ones, in design. To date, its lack of integration with model-driven engineering (MDE) techniques has limited its benefits across the development lifecycle. Here, we describe our work on facilitating the use of Theme/UML as part of an MDE process. We have developed a transformation tool that adopts model-driven architecture (MDA) standards. It defines a concern composition mechanism, implemented as a model transformation, to support the enhanced modularisation features of Theme/UML. We evaluate our approach by applying it to the development of mobile, context-aware applications-an application area characterised by many non-functional requirements that manifest themselves as crosscutting concerns.

  3. The wicked problems of supplier-driven innovation

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Munksgaard, Kristin Balslev; Bang, Anne Louise

    2017-01-01

    Suppliers stand in the wake of a new diversified strategic momentum in the global production network, where innovation is growing in importance. The term “supplier-driven innovation” is coined in contrast to the current hype on user-driven innovation; this paper aims to discuss the wicked problems...

  4. Resonances in a periodically driven bosonic system

    NARCIS (Netherlands)

    Quelle, Anton; de Morais Smith, Cristiane

    2017-01-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better

  5. Global Pressure of One-Dimensional Polydisperse Granular Gases Driven by Gaussian White Noise

    International Nuclear Information System (INIS)

    Chen Zhiyuan; Zhang Duanming; Yang Fengxia; Huang Mingtao; Li Rui; Zhang Ling; Zhu Hongying

    2007-01-01

    We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.

  6. Dynamic Data-Driven UAV Network for Plume Characterization

    Science.gov (United States)

    2016-05-23

    AFRL-AFOSR-VA-TR-2016-0203 Dynamic Data-Driven UAV Network for Plume Characterization Kamran Mohseni UNIVERSITY OF FLORIDA Final Report 05/23/2016...AND SUBTITLE Dynamic Data-Driven UAV Network for Plume Characterization 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0090 5c.  PROGRAM ELEMENT...studied a dynamic data driven (DDD) approach to operation of a heterogeneous team of unmanned aerial vehicles ( UAVs ) or micro/miniature aerial

  7. Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry

    Science.gov (United States)

    Hamid, Aamir; Hashim; Khan, Masood

    2018-06-01

    The main concern of this communication is to investigate the two-layer flow of a non-Newtonian rheological fluid past a wedge-shaped geometry. One remarkable aspect of this article is the mathematical formulation for two-dimensional flow of Williamson fluid by incorporating the effect of infinite shear rate viscosity. The impacts of heat transfer mechanism on time-dependent flow field are further studied. At first, we employ the suitable non-dimensional variables to transmute the time-dependent governing flow equations into a system of non-linear ordinary differential equations. The converted conservation equations are numerically integrated subject to physically suitable boundary conditions with the aid of Runge-Kutta Fehlberg integration procedure. The effects of involved pertinent parameters, such as, moving wedge parameter, wedge angle parameter, local Weissenberg number, unsteadiness parameter and Prandtl number on the non-dimensional velocity and temperature distributions have been evaluated. In addition, the numerical values of the local skin friction coefficient and the local Nusselt number are compared and presented through tables. The outcomes of this study indicate that the rate of heat transfer increases with the growth of both wedge angle parameter and unsteadiness parameter. Moreover, a substantial rise in the fluid velocity is observed with enhancement in the viscosity ratio parameter while an opposite trend is true for the non-dimensional temperature field. A comparison is presented between the current study and already published works and results found to be in outstanding agreement. Finally, the main findings of this article are highlighted in the last section.

  8. Effect of air bubble localization after transfer on embryo transfer outcomes.

    Science.gov (United States)

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    Science.gov (United States)

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  10. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  11. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  12. Transfer Pricing

    DEFF Research Database (Denmark)

    Nielsen, Søren Bo

    2014-01-01

    Against a background of rather mixed evidence about transfer pricing practices in multinational enterprises (MNEs) and varying attitudes on the part of tax authorities, this paper explores how multiple aims in transfer pricing can be pursued across four different transfer pricing regimes. A MNE h...

  13. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  14. Exploring the potential of a conditional cash transfer intervention to reduce HIV risk among young women in Iringa, Tanzania.

    Science.gov (United States)

    Kennedy, Caitlin E; Brahmbhatt, Heena; Likindikoki, Samuel; Beckham, Sarah W; Mbwambo, Jessie K; Kerrigan, Deanna

    2014-01-01

    Cash transfer programs seek to alter structural determinants of HIV risk such as poverty and gender inequality. We sought to explore the feasibility and potential effectiveness of a cash transfer intervention for young women as part of combination HIV prevention in Iringa, Tanzania. Qualitative, in-depth interviews were conducted with 116 stakeholders and residents from the region, including key informants, service delivery users, and members of key populations. Most respondents felt a cash transfer program would assist young women in Iringa to have more control over sexual decision-making and reduce poverty-driven transactional sex. Respondents were divided on who should receive funds: young women themselves, their parents/guardians, or community leaders. Cash amounts and suggested target groups varied, and several respondents suggested providing microcredit or small business capital instead of cash. Potential concerns included jealousy, dependency, and corruption. However, most respondents felt that some intervention was needed to address underlying poverty driving some sexual risk behavior. A cash transfer program could fill this role, ultimately reducing HIV, sexually transmitted infections, and unintended pregnancies. As increased attention is given to economic and structural interventions for HIV prevention, local input and knowledge should be considered in a program design.

  15. Evaporation-driven instability of the precorneal tear film.

    Science.gov (United States)

    Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J

    2014-04-01

    Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    Science.gov (United States)

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Test Driven Development: Performing Art

    Science.gov (United States)

    Bache, Emily

    The art of Test Driven Development (TDD) is a skill that needs to be learnt, and which needs time and practice to master. In this workshop a select number of conference participants with considerable skill and experience are invited to perform code katas [1]. The aim is for them to demonstrate excellence and the use of Test Driven Development, and result in some high quality code. This would be for the benefit of the many programmers attending the conference, who could come along and witness high quality code being written using TDD, and get a chance to ask questions and provide feedback.

  18. Test-driven development with Mockito

    CERN Document Server

    Acharya, Sujoy

    2013-01-01

    This book is a hands-on guide, full of practical examples to illustrate the concepts of Test Driven Development.If you are a developer who wants to develop software following Test Driven Development using Mockito and leveraging various Mockito features, this book is ideal for you. You don't need prior knowledge of TDD, Mockito, or JUnit.It is ideal for developers, who have some experience in Java application development as well as a basic knowledge of unit testing, but it covers the basic fundamentals of TDD and JUnit testing to get you acquainted with these concepts before delving into them.

  19. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    Science.gov (United States)

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  20. Numerical investigations of buoyancy-driven natural ventilation in a simple three-storey atrium building and thermal comfort evaluation

    International Nuclear Information System (INIS)

    Hussain, Shafqat; Oosthuizen, Patrick H.

    2013-01-01

    The numerical investigations of buoyancy-driven natural ventilation and thermal comfort evaluation in a simple three-storey atrium building as a part of the passive ventilation strategy was undertaken using a validated Computational Fluid Dynamic (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modeling approach with the SST-k–ω turbulence model and the discrete transfer radiation model (DTRM) was used for the numerical investigations. The steady-state governing equations were solved using a commercial solver FLUENT©. Various flow situations of the buoyancy-driven natural ventilation in the building during day and night time were examined. The numerical results obtained for the airflow rates, airflow patterns and temperature distributions inside the building are presented in this paper. Using the numerical results, the well-known thermal comfort indices PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) were calculated for the evaluation of the thermal comfort conditions in the occupied regions of the building. It was noticed that thermal conditions prevailing in the occupied areas of the building as a result of using the buoyancy-driven ventilation were mostly in comfort zone. From the study of the night time ventilation, it was found that hot water (80 °C) circulation (heated by solar collectors during daytime) along the chimney walls during night time and heat sources present in the building can be useful in inducing night ventilation airflows in the building as a part of the passive ventilation strategy. -- Highlights: • A simple three-storey atrium building. • Numerical modeling of buoyancy-driven ventilation flow in the building. • Effect of solar intensity and geographical location on ventilation. • CFD predictions were used to calculate thermal comfort indices. • Evaluation of thermal comfort conditions for the occupants

  1. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me

    2012-01-01

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  2. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy

    2012-09-15

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  3. Suppression of cancer growth in mice by adeno-associated virus vector-mediated IFN-beta expression driven by hTERT promoter.

    Science.gov (United States)

    He, Ling Feng; Wang, Yi Gang; Xiao, Tian; Zhang, Kang Jiang; Li, Gong Chu; Gu, Jin Fa; Chu, Liang; Tang, Wen Hao; Tan, Wen-Song; Liu, Xin Yuan

    2009-12-28

    Adeno-associated virus (AAV) has rapidly become a promising gene delivery vehicle for its excellent advantages of non-immunogenic, low pathogenicity and long-term gene expression in vivo. However, a major obstacle in development of effective AAV vector is the lack of tissue specificity, which caused low efficiency of AAV transfer to target cells. The application of human telomerase reverse transcriptase (hTERT) promoter is a prior targeting strategy for AAV in cancer gene therapy as hTERT activity is transcriptionally upregulated in most cancer cells. In the present work, we investigated whether AAV-mediated human interferon beta (IFN-beta) gene driven by hTERT promoter could specifically express in tumor cells and suppress tumor cell growth. Our data demonstrated that hTERT promoter-driven IFN-beta expression was the tumor-specific, decreased the cell viability of tumor cells but not normal cells, and induced tumor cell apoptosis via activation of caspase pathway and release of cytochrome c. AAV-mediated IFN-beta expression driven by hTERT promoter significantly suppressed the growth of colorectal cancer and lung cancer xenograft in mice and resulted in tumor cells death in vivo. These data suggested that AAVs in combination with hTERT-mediated IFN-beta expression could exert potential antitumor activity and provide a novel targeting approach to clinical gene therapy of varieties of cancers.

  4. Suppression of magnetic islands by rf-driven currents

    International Nuclear Information System (INIS)

    Reiman, A.H.

    1982-06-01

    The quasilinear theory for the saturation of nonlinear tearing modes is modified to include rf driven currents. It is shown that the presence of lower hybrid driven currents can strongly suppress the growth of magnetic islands

  5. Primary design and operation analysis of ITER air transfer system

    International Nuclear Information System (INIS)

    Wang Haitian; Li Ge; Qin Shijun

    2010-01-01

    Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)

  6. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  7. Evaluation of empirical heat transfer models using TFG heat flux sensors

    International Nuclear Information System (INIS)

    De Cuyper, T.; Broekaert, S.; Chana, K.; De Paepe, M.; Verhelst, S.

    2017-01-01

    Thermodynamic engine cycle models are used to support the development of the internal combustion engine (ICE) in a cost and time effective manner. The sub model which describes the in-cylinder heat transfer from the working gases to the combustion chamber walls plays an important role in the accuracy of these simulation tools. The heat transfer affects the power output, engine efficiency and emissions of the engine. The most common heat transfer models in engine research are the models of Annand and Woschni. These models provide an instantaneous spatial averaged heat flux. In this research, prototype thin film gauge (TFG) heat flux sensors are used to capture the transient in-cylinder heat flux behavior within a production spark ignition (SI) engine as they are small, robust and able to capture the highly transient temperature swings. An inlet valve and two different zones of the cylinder head are instrumented with multiple TFG sensors. The heat flux traces are used to calculate the convection coefficient which includes all information of the convective heat transfer phenomena inside the combustion chamber. The implementation of TFG sensors inside the combustion chamber and the signal processing technique are discussed. The heat transfer measurements are used to analyze the spatial variation in heat flux under motored and fired operation. Spatial variation in peak heat flux was observed even under motored operation. Under fired operation the observed spatial variation is mainly driven by the flame propagation. Next, the paper evaluates the models of Annand and Woschni. These models fail to predict the total heat loss even with calibration of the models coefficients using a reference motored operating condition. The effect of engine speed and inlet pressure is analyzed under motored operation after calibration of the models. The models are able to predict the trend in peak heat flux value for a varying engine speed and inlet pressure. Next, the accuracy of the

  8. Taylor dispersion in wind-driven current

    Science.gov (United States)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  9. CO2 laser-driven Stirling engine. [space power applications

    Science.gov (United States)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  10. Direct Collapse to Supermassive Black Hole Seeds with Radiation Transfer: Cosmological Halos

    Science.gov (United States)

    Ardaneh, Kazem; Luo, Yang; Shlosman, Isaac; Nagamine, Kentaro; Wise, John H.; Begelman, Mitchell C.

    2018-06-01

    We have modeled direct collapse of a primordial gas within dark matter halos in the presence of radiative transfer, in high-resolution zoom-in simulations in a cosmological framework, down to the formation of the photosphere and the central object. Radiative transfer has been implemented in the flux-limited diffusion (FLD) approximation. Adiabatic models were run for comparison. We find that (a) the FLD flow forms an irregular central structure and does not exhibit fragmentation, contrary to adiabatic flow which forms a thick disk, driving a pair of spiral shocks, subject to Kelvin-Helmholtz shear instability forming fragments; (b) the growing central core in the FLD flow quickly reaches ˜10 M⊙ and a highly variable luminosity of 1038 - 1039 erg s-1, comparable to the Eddington luminosity. It experiences massive recurrent outflows driven by radiation force and thermal pressure gradients, which mix with the accretion flow and transfer the angular momentum outwards; and (c) the interplay between these processes and a massive accretion, results in photosphere at ˜10 AU. We conclude that in the FLD model (1) the central object exhibits dynamically insignificant rotation and slower than adiabatic temperature rise with density; (2) does not experience fragmentation leading to star formation, thus promoting the fast track formation of a supermassive black hole (SMBH) seed; (3) inclusion of radiation force leads to outflows, resulting in the mass accumulation within the central 10-3 pc, which is ˜100 times larger than characteristic scale of star formation. The inclusion of radiative transfer reveals complex early stages of formation and growth of the central structure in the direct collapse scenario of SMBH seed formation.

  11. The Commtech Methodology: A Demand-Driven Approach to Efficient, Productive, and Measurable Technology Transfer and Commercialization

    Science.gov (United States)

    Horsham, Gary A. P.

    1999-01-01

    This paper presents a comprehensive review and assessment of a demonstration technology transfer and commercialization prouram called "CommTech". The pro-ram was conceived and initiated in early to mid-fiscal year 1995, and extended roughly three years into the future. Market research sources were used to initially gather primary technological problems and needs data from non-aerospace companies in three targeted industry sectors: environmental, surface transportation, and bioengineering. Company-supplied information served as input data to activate or start-up an internal, phased matchmaking process. This process was based on technical-level relationship exploration followed by business-level agreement negotiations. and culminated with project management and execution. Space Act Agreements represented near-term outputs. Company product or process commercialization derived from NASA Glenn support and measurable economic effects represented far-term outputs.

  12. O Processo de Aprendizagem Interníveis e o Desenvolvimento de CompetênciasThe Interlevel Learning Process and the Development of CompetencesEl Proceso de Aprendizage Interniveles y el Desarrollo de Competencias

    Directory of Open Access Journals (Sweden)

    ANTONELLO, Claudia Simone

    2007-12-01

    Full Text Available RESUMOEste estudo teve por objetivo discutir e explorar as articulações entre aprendizagem organizacional e o desenvolvimento de competências individuais, funcionais e organizacionais. Trata-se de uma pesquisa qualitativa longitudinal que investigou três grupos de gerentes sobre os processos de aprendizagem nos níveis individual, grupal e organizacional. Os resultados obtidos auxiliaram na identificação da difusão de competências por meio do trabalho interativo e em equipe; pelo intercâmbio de experiências com especialistas; em reuniões; desenvolvimento de projetos e de maneira informal. Os resultados também permitiram propor a noção de aprendizagem organizacional e o desenvolvimento de competências por interníveis. O principal obstáculo a ser superado para realizar tal integração é substituir a tendência de se pensar em termos de categorias fixas de aprendizagem e trabalhar com a noção de processos dinâmicos, no qual o nível grupal é fundamental. O artigo conclui sugerindo uma agenda para estudos futuros sobre as conexões entre os processos de aprendizagem organizacional e o desenvolvimento de competências.ABSTRACTThis study aimed at discussing and exploring the connections between organizational learning and the development of individual, functional and organizational competences. This longitudinal qualitative research investigated three groups of managers about the learning processes in the individual, group and organizational levels. The results allowed the identification of the diffusion of competences through the interactive and team work; through the exchange of experiences with experts; in meetings; in the development of projects and in an informal way. The results also allowed the proposition of the notion of organizational learning and competence development for inter-levels. The main obstacle to be overcome to achieve such integration is to substitute the tendency of thinking in terms of fixed categories

  13. Proliferation Potential of Accelerator-Driven Systems: Feasibility Calculations

    International Nuclear Information System (INIS)

    Riendeau, C.D.; Moses, D.L.; Olson, A.P.

    1998-01-01

    Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium

  14. The association of graduated driver licensing with miles driven and fatal crash rates per miles driven among adolescents.

    Science.gov (United States)

    Zhu, Motao; Cummings, Peter; Zhao, Songzhu; Coben, Jeffrey H; Smith, Gordon S

    2015-04-01

    Graduated driver licensing (GDL) laws are associated with reduced crash rates per person-year among adolescents. It is unknown whether adolescents crash less per miles driven or drive less under GDL policies. We used data from the US National Household Travel Survey and Fatality Analysis Reporting System for 1995-1996, 2001-2002 and 2008-2009. We compared adolescents subject to GDL laws with those not by estimating adjusted IRRs for being a driver in a crash with a death per person-year (aIRRpy) and per miles driven (aIRRm), and adjusted miles driven ratios (aMR) controlling for changes in rates over time. Comparing persons subject to GDL policies with those not, 16 year olds had fewer fatal crashes per person-year (aIRRpy 0.63, 95% CI 0.47 to 0.91), drove fewer miles (aMR 0.79, 95% CI 0.63 to 0.98) and had lower crash rates per miles driven (aIRRm 0.83, 95% CI 0.65 to 1.06). For age 17, the aIRRpy was 0.83 (95% CI 0.60 to 1.17), the aMR 0.80 (95% CI 0.63 to 1.03) and the aIRRm 1.03 (95% CI 0.80 to 1.35). For age 18, the aIRRpy was 0.93 (95% CI 0.72 to 1.19), the aMR 0.92 (95% CI 0.77 to 1.09) and the aIRRm 1.01 (95% CI 0.84 to 1.23). If these associations are causal, GDL laws reduced crashes per person-year by about one-third among 16 year olds; half the reduction was due to fewer crashes per miles driven and half to less driving. For ages 17 and 18, there was no evidence of reduced crash rates per miles driven. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning.

    Science.gov (United States)

    Lefumat, Hannah Z; Vercher, Jean-Louis; Miall, R Chris; Cole, Jonathan; Buloup, Frank; Bringoux, Lionel; Bourdin, Christophe; Sarlegna, Fabrice R

    2015-11-01

    Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of unconstrained reaching movements to a novel Coriolis, velocity-dependent force field. Right-handed subjects sat at the center of a rotating platform and performed forward reaching movements with the upper limb toward flashed visual targets in prerotation, per-rotation (i.e., adaptation), and postrotation tests. Here only the dominant arm was used during adaptation and interlimb transfer was assessed by comparing performance of the nondominant arm before and after dominant-arm adaptation. Vision and no-vision conditions did not significantly influence interlimb transfer of trajectory adaptation, which on average was significant but limited. We uncovered a substantial heterogeneity of interlimb transfer across subjects and found that interlimb transfer can be qualitatively and quantitatively predicted for each healthy young individual. A classifier showed that in our study, interlimb transfer could be predicted based on the subject's task performance, most notably motor variability during learning, and his or her laterality quotient. Positive correlations suggested that variability of motor performance and lateralization of arm movement control facilitate interlimb transfer. We further show that these individual characteristics can predict the presence and the magnitude of interlimb transfer of left-handers. Overall, this study suggests that individual characteristics shape the way the nervous system can generalize motor learning. Copyright © 2015 the American Physiological Society.

  16. Transference, counter-transference and repetition: some implications for nursing practice.

    Science.gov (United States)

    Jones, Alun C

    2005-11-01

    This discussion paper offers an introductory text for nurses and explores the psychoanalytic ideas of transference, counter-transference and repetition compulsion. Disguised case vignettes provide illustrations of the ideas as they might apply to nursing, including professional practice and occupational choice. The literature suggests that transference can be a source of creativity as well as destructiveness and influence important communications with oneself and others including the choice of nursing and other health professions as an occupation. Recognizing possibilities of transference, counter-transference along with repetitive patterns of behaviours, can help nurses of all specialities to address situations constructively by responding thoughtfully and appropriately. This discussion concludes with the suggestions that we know little about the motivational factors underlying nursing as an occupational preference; moreover, nursing does not have a culture of personal therapy. As such nurses are denied opportunities to understand the possible reasons underlying their occupational choice or gain experiential knowledge of interpersonal dynamics occurring between patients and colleagues. Transference and counter-transference are thought to have some bearing on all relationships. Forming a natural part of the way human beings relate to each other, transference and counter-transference can bring about sincere human interest, caring and concern. However, there is also potential for disagreements. Recognizing the possible origins of relational difficulties can offer opportunities for professional development to nurses along with the benefits for health service users.

  17. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    Science.gov (United States)

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  18. The Hypothesis-Driven Physical Examination.

    Science.gov (United States)

    Garibaldi, Brian T; Olson, Andrew P J

    2018-05-01

    The physical examination remains a vital part of the clinical encounter. However, physical examination skills have declined in recent years, in part because of decreased time at the bedside. Many clinicians question the relevance of physical examinations in the age of technology. A hypothesis-driven approach to teaching and practicing the physical examination emphasizes the performance of maneuvers that can alter the likelihood of disease. Likelihood ratios are diagnostic weights that allow clinicians to estimate the post-probability of disease. This hypothesis-driven approach to the physical examination increases its value and efficiency, while preserving its cultural role in the patient-physician relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Design and geometry of hybrid white light-emitted diodes for efficient energy transfer from the quantum well to the nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Shirazi, Roza

    2013-01-01

    We demonstrate light color conversion in patterned InGaN light-emitting diodes (LEDs), which is enhanced via nonradiative exciton resonant energy transfer (RET) from the electrically driven diode to colloidal semiconductor nanocrystals (NCs). Patterning of the diode is essential for the coupling...... between a quantum well (QW) and NCs, because the distance between the QW and NCs is a main and very critical factor of RET. Moreover, a proper design of the pattern can enhance light extraction....

  20. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  1. Transfer Pricing

    DEFF Research Database (Denmark)

    Rohde, Carsten; Rossing, Christian Plesner

    trade internally as the units have to decide what prices should be paid for such inter-unit transfers. One important challenge is to uncover the consequences that different transfer prices have on the willingness in the organizational units to coordinate activities and trade internally. At the same time...... the determination of transfer price will affect the size of the profit or loss in the organizational units and thus have an impact on the evaluation of managers‟ performance. In some instances the determination of transfer prices may lead to a disagreement between coordination of the organizational units...

  2. Waste Transfer Stations

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    tion and transport is usually the most costly part of any waste management system; and when waste is transported over a considerable distance or for a long time, transferring the waste from the collection vehicles to more efficient transportation may be economically beneficial. This involves...... a transfer station where the transfer takes place. These stations may also be accessible by private people, offering flexibility to the waste system, including facilities for bulky waste, household hazardous waste and recyclables. Waste transfer may also take place on the collection route from small...... describes the main features of waste transfer stations, including some considerations about the economical aspects on when transfer is advisable....

  3. Semantic Web and Model-Driven Engineering

    CERN Document Server

    Parreiras, Fernando S

    2012-01-01

    The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and se

  4. Patient safety and technology-driven medication

    DEFF Research Database (Denmark)

    Orbæk, Janne; Gaard, Mette; Keinicke Fabricius, Pia

    2015-01-01

    ways of educating nursing students in today's medication administration. AIM: To explore nursing students' experiences and competences with the technology-driven medication administration process. METHODS: 16 pre-graduate nursing students were included in two focus group interviews which were recorded...... for the technology-driven medication process, nursing students face difficulties in identifying and adopting best practices. The impact of using technology on the frequency, type and severity of medication errors; the technologies implications on nursing professionalism and the nurses ability to secure patient...

  5. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.

    Science.gov (United States)

    Latta, Drew E; Bachman, Jonathan E; Scherer, Michelle M

    2012-10-02

    The reaction of Fe(II) with Fe(III) oxides and hydroxides is complex and includes sorption of Fe(II) to the oxide, electron transfer between sorbed Fe(II) and structural Fe(III), reductive dissolution coupled to Fe atom exchange, and, in some cases mineral phase transformation. Much of the work investigating electron transfer and atom exchange between aqueous Fe(II) and Fe(III) oxides has been done under relatively simple aqueous conditions in organic buffers to control pH and background electrolytes to control ionic strength. Here, we investigate whether electron transfer is influenced by cation substitution of Al(III) in goethite and the presence of anions such as phosphate, carbonate, silicate, and natural organic matter. Results from (57)Fe Mössbauer spectroscopy indicate that both Al-substitution (up to 9%) and the presence of common anions (PO(4)(3-), CO(3)(2-), SiO(4)(4-), and humic acid) does not inhibit electron transfer between aqueous Fe(II) and Fe(III) in goethite under the conditions we studied. In contrast, sorption of a long-chain phospholipid completely shuts down electron transfer. Using an enriched isotope tracer method, we found that Al-substitution in goethite (10%), does, however, significantly decrease the extent of atom exchange between Fe(II) and goethite (from 43 to 12%) over a month's time. Phosphate, somewhat surprisingly, appears to have little effect on the rate and extent of atom exchange between aqueous Fe(II) and goethite. Our results show that electron transfer between aqueous Fe(II) and solid Fe(III) in goethite can occur under wide range of geochemical conditions, but that the extent of redox-driven Fe atom exchange may be dependent on the presence of substituting cations such as Al.

  6. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.

    Science.gov (United States)

    Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania

    2012-08-01

    Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.

  7. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.

    Science.gov (United States)

    Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B

    2008-01-01

    Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

  8. Resource Transfers to the Elderly: Do Adult Children Substitute Financial Transfers for Time Transfers

    National Research Council Canada - National Science Library

    Zissimopoulos, Julie

    2001-01-01

    Using the Health and Retirement Study, this research investigates whether an adult child substitutes financial transfers to an elderly parent for time transfers as the cost of his or her time increases...

  9. Heat transfer: Pittsburgh 1987

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.

    1987-01-01

    This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers

  10. Science-Driven Computing: NERSC's Plan for 2006-2010

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.; Banda,Michael J.; Bethel, E. Wes; Craw, James M.; Fortney, William J.; Hules,John A.; Meyer, Nancy L.; Meza, Juan C.; Ng, Esmond G.; Rippe, Lynn E.; Saphir, William C.; Verdier, Francesca; Walter, Howard A.; Yelick,Katherine A.

    2005-05-16

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise of the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.

  11. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  12. Transfer closed and transfer open multimaps in minimal spaces

    International Nuclear Information System (INIS)

    Alimohammady, M.; Roohi, M.; Delavar, M.R.

    2009-01-01

    This paper is devoted to introduce the concepts of transfer closed and transfer open multimaps in minimal spaces. Also, some characterizations of them are considered. Further, the notion of minimal local intersection property will be introduced and characterized. Moreover, some maximal element theorems via minimal transfer closed multimaps and minimal local intersection property are given.

  13. Kaehler-driven tribrid inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David

    2012-01-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kaehler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in 'pseudosmooth' tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kaehler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and p seudosmooth ) regimes

  14. Effects-Driven IT Development

    DEFF Research Database (Denmark)

    Hertzum, Morten; Simonsen, Jesper

    2011-01-01

    For customers information technology (IT) is a means to an end. This tight association between IT systems and their use is, however, often absent during their development and implementation, resulting in systems that may fail to produce desired ends. Effects-driven IT development aims to avoid...... change that realize the specified effects, and (c) measuring the absence or presence of the specified effects during pilot use of the system while also remaining alert to the emergence of beneficial but hitherto unspecified effects. In this paper we explore effects-driven IT development and discuss...... the possibilities and challenges involved in making it an instrument for managing IT projects. Two main challenges are that effects must be measured while development is still ongoing, making pilot implementations a central activity, and that vendor and customer must extend their collaboration, particularly...

  15. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition.

    Science.gov (United States)

    Deshpande, Gopikrishna; Rangaprakash, D; Oeding, Luke; Cichocki, Andrzej; Hu, Xiaoping P

    2017-01-01

    A Brain-Computer Interface (BCI) is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG) has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI). On the other hand, BCIs based on functional magnetic resonance imaging (fMRI) are more accurate owing to its superior spatial resolution and sensitivity to underlying neuronal processes which are functionally localized. However, due to its relatively low temporal resolution, high cost, and lack of portability, fMRI is unlikely to be used for routine BCI. We propose a new approach for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG data, but driven by fMRI-like features obtained from the mapping identified previously. Our novel data-driven method is likely to discover latent linkages between electrical and hemodynamic signatures of neural activity hitherto unexplored using model-driven methods, and is likely to serve as a template for a novel multi-modal strategy wherein cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG system, leading to a new generation of EEG-based BCIs.

  16. Plasmon-driven sequential chemical reactions in an aqueous environment.

    Science.gov (United States)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  17. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  18. Spin-transfer phenomena in layered magnetic structures: Physical phenomena and materials aspects

    International Nuclear Information System (INIS)

    Gruenberg, P.; Buergler, D.E.; Dassow, H.; Rata, A.D.; Schneider, C.M.

    2007-01-01

    During the past 20 years, layered structures consisting of ferromagnetic layers and spacers of various material classes with a thickness of only a few nanometers have revealed a variety of exciting and potentially very useful phenomena not present in bulk material. Representing distinct manifestations of spin-transfer processes, these phenomena may be categorized into interlayer exchange coupling (IEC), giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and the more recently discovered spin-transfer torque effect leading to current-induced magnetization switching (CIMS) and current-driven magnetization dynamics. These phenomena clearly confer novel material properties on magnetic layered structures with respect to the (magneto-)transport and the magnetostatic as well as magnetodynamic behavior. Here, we will first concentrate on the less well understood aspects of IEC across insulating and semiconducting interlayers and relate the observations to TMR in the corresponding structures. In this context, we will also discuss more recent advances in TMR due to the use of electrodes made from Heusler alloys and the realization of coherent tunneling in epitaxial magnetic tunneling junctions. Finally, we will review our results on CIMS in epitaxial magnetic nanostructures showing that normal and inverse CIMS can occur simultaneously in a single nanopillar device. In all cases discussed, material issues play a major role in the detailed understanding of the spin-transfer effects, in particular in those systems that yield the largest effects and are thus of utmost interest for applications

  19. Model-driven software engineering

    NARCIS (Netherlands)

    Amstel, van M.F.; Brand, van den M.G.J.; Protic, Z.; Verhoeff, T.; Hamberg, R.; Verriet, J.

    2014-01-01

    Software plays an important role in designing and operating warehouses. However, traditional software engineering methods for designing warehouse software are not able to cope with the complexity, size, and increase of automation in modern warehouses. This chapter describes Model-Driven Software

  20. Data-driven architectural design to production and operation

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2015-01-01

    Data-driven architectural production and operation explored within Hyperbody rely heavily on system thinking implying that all parts of a system are to be understood in relation to each other. These relations are established bi-directionally so that data-driven architecture is not only produced

  1. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  2. Stakeholder-Driven Quality Improvement: A Compelling Force for Clinical Practice Guidelines.

    Science.gov (United States)

    Rosenfeld, Richard M; Wyer, Peter C

    2018-01-01

    Clinical practice guideline development should be driven by rigorous methodology, but what is less clear is where quality improvement enters the process: should it be a priority-guiding force, or should it enter only after recommendations are formulated? We argue for a stakeholder-driven approach to guideline development, with an overriding goal of quality improvement based on stakeholder perceptions of needs, uncertainties, and knowledge gaps. In contrast, the widely used topic-driven approach, which often makes recommendations based only on randomized controlled trials, is driven by epidemiologic purity and evidence rigor, with quality improvement a downstream consideration. The advantages of a stakeholder-driven versus a topic-driven approach are highlighted by comparisons of guidelines for otitis media with effusion, thyroid nodules, sepsis, and acute bacterial rhinosinusitis. These comparisons show that stakeholder-driven guidelines are more likely to address the quality improvement needs and pressing concerns of clinicians and patients, including understudied populations and patients with multiple chronic conditions. Conversely, a topic-driven approach often addresses "typical" patients, based on research that may not reflect the needs of high-risk groups excluded from studies because of ethical issues or a desire for purity of research design.

  3. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  4. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  5. CAN THE UKRAINIAN SCIENTIFIC SOCIETY SUCCESSFULLY INTEGRATE INTO EUROPEAN KNOWLEDGE TRANSFER?

    Directory of Open Access Journals (Sweden)

    I. Novikova

    2017-01-01

    Full Text Available The current phase of global economic development is characterized by technological breakthroughs. However, the implementation of innovation and technological break through requires adequate scientific and technical potential that calls for funding of science at the appropriate level, which is at least of 3% of GDP. In Ukraine, the funding level of research and development sphere is very low - about 0.23% in 2016. This chronic underfunding has transformed the science in Ukraine into the spending area, at a time when it should serve as the major source of economic growth. Currently, the State's government broaches a point of establishing adequate financial and organizational conditions in order to restore the Ukrainian science and cause its self-repayment and profitability. The universities are the major source of technology all around the world and in Ukraine in particular, and technology transfer is the main tool of the innovation process, which implies commercialization of commercially attractive researches. Given the fact that Ukraine has strong scientific and technological potential, the development of an effective system of university-based technology transfer and strengthening of interaction between scientific and production spheres are to become important factors for innovation-driven growth in the State. The corresponding organization departments of Ukrainian universities are just starting to form, particularly in the Taras Shevchenko National University of Kyiv. The prospect of successful development of the network of university- based technology transfer in Ukraine will determine the conditions of integration of Ukrainian science into global and Common European scholastic environment; the latter should be carried out through equitable scientific and technical cooperation.

  6. Why people follow the leader: the power of transference.

    Science.gov (United States)

    Maccoby, Michael

    2004-09-01

    We all admire leaders. In trying to understand how leadership works, however, we often lose sight of the fact that followers are a crucial part of the equation. Regrettably, they get short shrift in the management literature, where they are described as merely responding to their leaders' charisma or caring attitudes. What most analyses seem to ignore is that followers have their own motivations and are as powerfully driven to follow as leaders are to lead. In this article, psychoanalyst, anthropologist, and management consultant Michael Maccoby delves into the unconscious recesses of followers' minds. He looks closely at the often irrational tendency to relate to a leader as some important person from the past--a parent, a sibling, a close friend, or even a nanny. Sigmund Freud discovered this dynamic when working with his patients and called it"transference." But as important as it is, the concept remains little understood outside the realm of clinical psychoanalysis. This is unfortunate, because a solid understanding of transference can yield great insight into organizational behavior and endow you with the wisdom and compassion to be a tremendous leader. The author explains the most common types of transference--paternal, maternal, and sibling--and shows how they play out in the workplace. He notes that they have evolved as our family structures have changed. Whether followers perceive a leader as an all-knowing father figure, as an authoritative yet unconditionally loving mother figure, or as a brother or sister who isn't necessarily a model of good behavior, the leader can manage transferential ties by bringing unconscious projections to light. Then debilitating resentment and animosity can give way to mutual understanding and productivity--and a limping organization can start to thrive.

  7. Patron-driven acquisitions history and best practices

    CERN Document Server

    2011-01-01

    About 40 percent of the books academic libraries purchase in traditional ways never circulate and another 40 percent circulate fewer than three times. By contrast, patron-driven acquisition allows a library to borrow or buy books only when a patron needs them. In a typical workflow, the library imports bibliographic records into its catalogue at no cost. When a patron finds a patron-driven record in the course of research, a short-term loan can allow him to borrow the book, and the transaction charge to the library will be a small percentage of the list price. Typically, a library will automatically buy a book on a third or fourth use. The contributions in this volume, written by experts, describe the genesis and brief history of patron-driven acquisitions, its current status, and its promise.

  8. Educational Accountability: A Qualitatively Driven Mixed-Methods Approach

    Science.gov (United States)

    Hall, Jori N.; Ryan, Katherine E.

    2011-01-01

    This article discusses the importance of mixed-methods research, in particular the value of qualitatively driven mixed-methods research for quantitatively driven domains like educational accountability. The article demonstrates the merits of qualitative thinking by describing a mixed-methods study that focuses on a middle school's system of…

  9. Collision and recombination driven instabilities in variable charged ...

    Indian Academy of Sciences (India)

    The dust-acoustic instability driven by recombination of electrons and ions on the surface of charged and variably-charged dust grains as well as by collisions in dusty plasmas with significant pressure of background neutrals have been theoretically investigated. The recombination driven instability is shown to be dominant ...

  10. A Consumer-Driven Approach To Increase Suggestive Selling.

    Science.gov (United States)

    Rohn, Don; Austin, John; Sanford, Alison

    2003-01-01

    Discussion of the effectiveness of behavioral interventions in improving suggestive selling behavior of sales staff focuses on a study that examined the efficacy of a consumer-driven approach to improve suggestive selling behavior of three employees of a fast food franchise. Reports that consumer-driven intervention increased suggestive selling…

  11. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  12. The Structural Consequences of Big Data-Driven Education.

    Science.gov (United States)

    Zeide, Elana

    2017-06-01

    Educators and commenters who evaluate big data-driven learning environments focus on specific questions: whether automated education platforms improve learning outcomes, invade student privacy, and promote equality. This article puts aside separate unresolved-and perhaps unresolvable-issues regarding the concrete effects of specific technologies. It instead examines how big data-driven tools alter the structure of schools' pedagogical decision-making, and, in doing so, change fundamental aspects of America's education enterprise. Technological mediation and data-driven decision-making have a particularly significant impact in learning environments because the education process primarily consists of dynamic information exchange. In this overview, I highlight three significant structural shifts that accompany school reliance on data-driven instructional platforms that perform core school functions: teaching, assessment, and credentialing. First, virtual learning environments create information technology infrastructures featuring constant data collection, continuous algorithmic assessment, and possibly infinite record retention. This undermines the traditional intellectual privacy and safety of classrooms. Second, these systems displace pedagogical decision-making from educators serving public interests to private, often for-profit, technology providers. They constrain teachers' academic autonomy, obscure student evaluation, and reduce parents' and students' ability to participate or challenge education decision-making. Third, big data-driven tools define what "counts" as education by mapping the concepts, creating the content, determining the metrics, and setting desired learning outcomes of instruction. These shifts cede important decision-making to private entities without public scrutiny or pedagogical examination. In contrast to the public and heated debates that accompany textbook choices, schools often adopt education technologies ad hoc. Given education

  13. Primary design and operation analysis of the ITER air transfer system

    International Nuclear Information System (INIS)

    Wang Haitian; Li Ge; Qin Shijun

    2010-01-01

    Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)

  14. qPortal: A platform for data-driven biomedical research.

    Science.gov (United States)

    Mohr, Christopher; Friedrich, Andreas; Wojnar, David; Kenar, Erhan; Polatkan, Aydin Can; Codrea, Marius Cosmin; Czemmel, Stefan; Kohlbacher, Oliver; Nahnsen, Sven

    2018-01-01

    Modern biomedical research aims at drawing biological conclusions from large, highly complex biological datasets. It has become common practice to make extensive use of high-throughput technologies that produce big amounts of heterogeneous data. In addition to the ever-improving accuracy, methods are getting faster and cheaper, resulting in a steadily increasing need for scalable data management and easily accessible means of analysis. We present qPortal, a platform providing users with an intuitive way to manage and analyze quantitative biological data. The backend leverages a variety of concepts and technologies, such as relational databases, data stores, data models and means of data transfer, as well as front-end solutions to give users access to data management and easy-to-use analysis options. Users are empowered to conduct their experiments from the experimental design to the visualization of their results through the platform. Here, we illustrate the feature-rich portal by simulating a biomedical study based on publically available data. We demonstrate the software's strength in supporting the entire project life cycle. The software supports the project design and registration, empowers users to do all-digital project management and finally provides means to perform analysis. We compare our approach to Galaxy, one of the most widely used scientific workflow and analysis platforms in computational biology. Application of both systems to a small case study shows the differences between a data-driven approach (qPortal) and a workflow-driven approach (Galaxy). qPortal, a one-stop-shop solution for biomedical projects offers up-to-date analysis pipelines, quality control workflows, and visualization tools. Through intensive user interactions, appropriate data models have been developed. These models build the foundation of our biological data management system and provide possibilities to annotate data, query metadata for statistics and future re-analysis on

  15. Entropy-driven phase transitions

    NARCIS (Netherlands)

    Frenkel, D.

    1999-01-01

    Increase in visible order can be associated with an increase in microscopic disorder. This phenomenon leads to many counter-intuitive phenomena such as entropy driven crystallization and phase separation. I devote special attention to the entropic depletion interaction as a means to tune the range

  16. Study on the Rollover Characteristic of In-Wheel-Motor-Driven Electric Vehicles Considering Road and Electromagnetic Excitation

    Directory of Open Access Journals (Sweden)

    Di Tan

    2016-01-01

    Full Text Available For in-wheel-motor-driven electric vehicles, the motor is installed in the wheel directly. Tyre runout and uneven load can cause magnet gap deformation in the motor, which will produce electromagnetic forces that further influence the vehicle rollover characteristics. To study the rollover characteristics, a verified 16-degree-of-freedom rollover dynamic model is introduced. Next, the vehicle rollover characteristics both with and without electromagnetic force are analyzed under conditions of the Fixed Timing Fishhook steering and grade B road excitation. The results show that the electromagnetic force has a certain effect on the load transfer and can reduce the antirollover performance of the vehicle. Therefore, the effect of the electromagnetic force on the rollover characteristic should be considered in the vehicle design. To this end, extensive analysis was conducted on the effect of the road level, vehicle speed, and the road adhesion coefficient on the vehicle rollover stability. The results indicate that vehicle rollover stability worsens when the above-mentioned factors increase, the most influential factor being the road adhesion coefficient followed by vehicle speed and road level. This paper can offer certain theory basis for the design of the in-wheel-motor-driven electric vehicles.

  17. A mobile design lab for user-driven innovation

    DEFF Research Database (Denmark)

    Christiansen, Ellen; Kanstrup, Anne Marie

    2007-01-01

    The paper presents the history and conceptual foundation for the Mobile Design Lab, ment to support both designers and users in the acts of user-driven innovation. The Mobile Design Lab is based on Vygotsky's theory of tool- and language-mediation, and was created in 2004 to support research...... and teaching of user driven innovation. Being itself an example of user-driven innovation it has taken shape of HCI design research projekcts, in which we have been involved since 2004. The first challenge was to get 'out of the lab', the next to get 'out of the head', and finally we are currently working...

  18. Technologies using accelerator-driven targets under development at BNL

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.

    1994-01-01

    Recent development work conducted at Brookhaven National Laboratory on technologies which use particle accelerator-driven targets is summarized. These efforts include development of the Spallation-Induced Lithium Conversion (SILC) Target for the Accelerator Production of Tritium (APT), the Accelerator-Driven Assembly for Plutonium Transformation (ADAPT) Target for the Accelerator-Based Conversion (ABC) of excess weapons plutonium. The PHOENIX Concept for the accelerator-driven transmutation of minor actinides and fission products from the waste stream of commercial nuclear power plants, and other potential applications

  19. Technology transfer by multinationals

    OpenAIRE

    Kostyantyn Zuzik

    2003-01-01

    The paper analyses the issue of technology transfer by multinational corporations. The following questions are explored: (a) world market of technologies, the role of MNCs (b) Choice of the technology transfer mode, Dunning's OLI-theory as a factor of the choice of the mode of transfer (c) measurement and profitability of technology transfer (d) transfer of technology through partnerships, JVs, alliances and through M&As (e) aspects of technology transfer by services multinationals. Paper uti...

  20. Efficiency of wave-driven rigid body rotation toroidal confinement

    Science.gov (United States)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  1. Technology transfer 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  2. User-driven sampling strategies in image exploitation

    Science.gov (United States)

    Harvey, Neal; Porter, Reid

    2013-12-01

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.

  3. Mixed Convection of Variable Properties Al2O3-EG-Water Nanofluid in a Two-Dimensional Lid-Driven Enclosure

    Directory of Open Access Journals (Sweden)

    G.A. Sheikhzadeh

    2013-07-01

    Full Text Available In this paper, mixed convection of Al2O3-EG-Water nanofluid in a square lid-driven enclosure is investigated numerically. The focus of this study is on the effects of variable thermophysical properties of the nanofluid on the heat transfer characteristics. The top moving and the bottom stationary horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. The study is carried out for Richardson numbers of 0.01–1000, the solid volume fractions of 0–0.05 and the Grashof number of 104. The transport equations are solved numerically with a finite volume approach using the SIMPLER algorithm. The results show that the Nusselt number is mainly affected by the viscosity, density and conductivity variations. For low Richardson numbers, although viscosity increases by increasing the nanoparticles volume fraction, due to high intensity convection of enhanced conductivity nanofluid, the average Nusselt number increases for both constant and variable cases. However, for high Richardson numbers, as the volume fraction of nanoparticles increases heat transfer enhancement occurs for the constant properties cases but deterioration in heat transfer occurs for the variable properties cases. The distinction is due to underestimation of viscosity of the nanofluid by the constant viscosity model in the constant properties cases and states important effects of temperature dependency of thermophysical properties, in particular the viscosity distribution in the domain.

  4. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  5. Pressure Driven Poiseuille Flow

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, D. Rhodri

    2018-01-01

    The Pacific plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians–Japan, Marianas–Izu–Bonin and Tonga–Kermadec trenches. This implies that viscous flow within the sub–Pacific asthenosphere is mainly generated by overlying plate motion (i.e. Couette flow...

  6. Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes

    International Nuclear Information System (INIS)

    Flood, Amar H.; Wong, Eric W.; Stoddart, J. Fraser

    2006-01-01

    The processes by which charge transfer can occur play a foundational role in molecular electronics. Here we consider simplified models of the transfer processes that could be present in bistable molecular switch tunnel junction (MSTJ) devices during one complete cycle of the device from its low- to high- and back to low-conductance state. The bistable molecular switches, which are composed of a monolayer of either switchable catenanes or rotaxanes, exist in either a ground-state co-conformation or a metastable one in which the conduction properties of the two co-conformations, when measured at small biases (+0.1 V), are significantly different irrespective of whether transport is dominated by tunneling or hopping. The voltage-driven generation (±2 V) of molecule-based redox states, which are sufficiently long-lived to allow the relative mechanical movements necessary to switch between the two co-conformations, rely upon unequal charge transfer rates on to and/or off of the molecules. Surface-enhanced Raman spectroscopy has been used to image the ground state of the bistable rotaxane in MSTJ-like devices. Consideration of these models provide new ways of looking at molecular electronic devices that rely, not only on nanoscale charge-transport, but also upon the bustling world of molecular motion in mechanically interlocked bistable molecules

  7. Understanding Climate Change and Manifestation of its Driven ...

    African Journals Online (AJOL)

    This article examines the nature and manifestation of climate change driven impacts on the agrarian districts of Kongwa and Bahi in the semi arid areas of Dodoma region in Tanzania. A Survey of 398 households in the study area was undertaken to elicit information on the nature and manifestation of climate change driven ...

  8. Evaluation of the Influence of Wind-Driven Rain on Moisture in Cellular Concrete Wall Boards

    Directory of Open Access Journals (Sweden)

    Alsabry A.

    2017-08-01

    Full Text Available The non-stationary moisture level of a cellular concrete wall board in a heated utility building located in the northern part of the town of Brest (Belarus, depending on the climatic influence, was assessed in this work. The results were obtained both in a calculation experiment and a physical test. It was observed that the main reason for the high moisture levels in cellular concrete is wind-driven rain intensifying the process of free capillary moisture transfer. A comparative analysis of the results of the physical test and the calculation experiment showed that the THSS software elaborated by the authors was able to predict the actual moisture levels of the shielding structure under study accurately enough when precise data concerning the thermal and physical characteristics of the materials as well as the occurring climatic influences were submitted.

  9. Evaluation of the Influence of Wind-Driven Rain on Moisture in Cellular Concrete Wall Boards

    Science.gov (United States)

    Alsabry, A.; Nikitsin, V. I.; Kofanov, V. A.; Backiel-Brzozowska, B.

    2017-08-01

    The non-stationary moisture level of a cellular concrete wall board in a heated utility building located in the northern part of the town of Brest (Belarus), depending on the climatic influence, was assessed in this work. The results were obtained both in a calculation experiment and a physical test. It was observed that the main reason for the high moisture levels in cellular concrete is wind-driven rain intensifying the process of free capillary moisture transfer. A comparative analysis of the results of the physical test and the calculation experiment showed that the THSS software elaborated by the authors was able to predict the actual moisture levels of the shielding structure under study accurately enough when precise data concerning the thermal and physical characteristics of the materials as well as the occurring climatic influences were submitted.

  10. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  11. Ponderomotive force effects on temperature-gradient-driven instabilities

    International Nuclear Information System (INIS)

    Sundaram, A.K.; Hershkowitz, N.

    1992-01-01

    The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed

  12. Behavioural Motives of Acquisition of Solar-driven Equipment

    Directory of Open Access Journals (Sweden)

    Shkurupska Iryna O.

    2013-12-01

    Full Text Available The article identifies needs of the target group, namely structure of motives, which justify making a decision to buy, in order to create efficient marketing strategy of an enterprise, which sell solar-driven equipment in Ukraine. There are five segments in the domestic market of helio-systems: individual consumers, recreation industry, agrarian industry, construction and social spheres. The article allocates 15 motives of acquisition of the solar-driven equipment for these segments, the most important of which are price, availability of solar energy, alternative price and energy saving. Besides, the structure of such motives is determined for each segment individually. In order to choose specific marketing instruments in the policy of promotion of solar-driven equipment, the article identifies differences in the form of goals of use and motives of acquisition between the specified consumer segments. The article reveals certain barriers that interfere with acquisition of solar-driven equipment – low level of trust into helio-systems, conservatism of consumers, absence of free applications for consumers – overcoming which is only possible with the help of certain marketing actions.

  13. Leidenfrost Driven Waste-Water Separator

    Data.gov (United States)

    National Aeronautics and Space Administration — A Leidenfrost Driven Waste-Water Separator (LDS) is proposed in response to TA 6.1: Environmental Control and Life Support Systems and Habitation Systems. The LDS...

  14. Transfer Climate and EAP Education: Students Perceptions of Challenges to Learning Transfer

    Science.gov (United States)

    James, Mark Andrew

    2010-01-01

    This study examined the applicability of the construct transfer climate in EAP education. In an EAP setting, transfer climate can be viewed as the support for learning transfer from an EAP course that students perceive in mainstream academic courses. The research question was as follows: What can a transfer climate perspective reveal about…

  15. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  16. 2nd International Conference on Cable-Driven Parallel Robots

    CERN Document Server

    Bruckmann, Tobias

    2015-01-01

    This volume presents the outcome of the second forum to cable-driven parallel robots, bringing the cable robot community together. It shows the new ideas of the active researchers developing cable-driven robots. The book presents the state of the art, including both summarizing contributions as well as latest research and future options. The book cover all topics which are essential for cable-driven robots: Classification Kinematics, Workspace and Singularity Analysis Statics and Dynamics Cable Modeling Control and Calibration Design Methodology Hardware Development Experimental Evaluation Prototypes, Application Reports and new Application concepts

  17. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  18. Tunable arrayed waveguide grating driven by surface acoustic waves

    Science.gov (United States)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  19. Numerical modeling of buoyancy-driven turbulent flows in enclosures

    International Nuclear Information System (INIS)

    Hsieh, K.J.; Lien, F.S.

    2004-01-01

    Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities

  20. WE-H-207B-02: MR-Driven RT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Cao, M. [UCLA School of Medicine (United States)

    2016-06-15

    In recent years, steady progress has been made towards the implementation of MRI in external beam radiation therapy for processes ranging from treatment simulation to in-room guidance. Novel procedures relying mostly on MR data are currently implemented in the clinic. This session will cover topics such as (a) commissioning and quality control of the MR in-room imagers and simulators specific to RT, (b) treatment planning requirements, constraints and challenges when dealing with various MR data, (c) quantification of organ motion with an emphasis on treatment delivery guidance, and (d) MR-driven strategies for adaptive RT workflows. The content of the session was chosen to address both educational and practical key aspects of MR guidance. Learning Objectives: Good understanding of MR testing recommended for in-room MR imaging as well as image data validation for RT chain (e.g. image transfer, filtering for consistency, spatial accuracy, manipulation for task specific); Familiarity with MR-based planning procedures: motivation, core workflow requirements, current status, challenges; Overview of the current methods for the quantification of organ motion; Discussion on approaches for adaptive treatment planning and delivery. T. Stanescu - License agreement with Modus Medical Devices to develop a phantom for the quantification of MR image system-related distortions.; T. Stanescu, N/A.

  1. WE-H-207B-02: MR-Driven RT Planning

    International Nuclear Information System (INIS)

    Cao, M.

    2016-01-01

    In recent years, steady progress has been made towards the implementation of MRI in external beam radiation therapy for processes ranging from treatment simulation to in-room guidance. Novel procedures relying mostly on MR data are currently implemented in the clinic. This session will cover topics such as (a) commissioning and quality control of the MR in-room imagers and simulators specific to RT, (b) treatment planning requirements, constraints and challenges when dealing with various MR data, (c) quantification of organ motion with an emphasis on treatment delivery guidance, and (d) MR-driven strategies for adaptive RT workflows. The content of the session was chosen to address both educational and practical key aspects of MR guidance. Learning Objectives: Good understanding of MR testing recommended for in-room MR imaging as well as image data validation for RT chain (e.g. image transfer, filtering for consistency, spatial accuracy, manipulation for task specific); Familiarity with MR-based planning procedures: motivation, core workflow requirements, current status, challenges; Overview of the current methods for the quantification of organ motion; Discussion on approaches for adaptive treatment planning and delivery. T. Stanescu - License agreement with Modus Medical Devices to develop a phantom for the quantification of MR image system-related distortions.; T. Stanescu, N/A

  2. Experience of mating rivals causes males to modulate sperm transfer in the fly Drosophila pseudoobscura.

    Science.gov (United States)

    Price, Tom A R; Lizé, Anne; Marcello, Marco; Bretman, Amanda

    2012-12-01

    Male responses to risk of sperm competition play an important role in sexual selection, sexual conflict, and the evolution of mating systems. Such responses can combine behavioural and physiological processes, and can be mediated through different components of the ejaculate such as sperm numbers and seminal proteins. An additional level of ejaculate complexity is sperm heteromorphism, with the inclusion of non-fertilising parasperm in the ejaculate. We now test the response to rivals in a sperm heteromorphic species, Drosophila pseudoobscura, measuring the behavioural response and sperm transfer and, crucially, relating these to short-term fitness. Males respond to exposure to conspecific rivals by increasing mating duration, but do not respond to heterospecific rivals. In addition, after exposure to a conspecific rival, males increased the transfer of fertilising eusperm, but not non-fertilising parasperm. Males exposed to a conspecific rival also achieve higher offspring production. This suggests that the evolution of parasperm in flies was not driven by sperm competition and adds to the increasing evidence that males can make extremely sophisticated responses to mating competition. Copyright © 2012. Published by Elsevier Ltd.

  3. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2017-06-01

    Full Text Available A Brain-Computer Interface (BCI is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI. On the other hand, BCIs based on functional magnetic resonance imaging (fMRI are more accurate owing to its superior spatial resolution and sensitivity to underlying neuronal processes which are functionally localized. However, due to its relatively low temporal resolution, high cost, and lack of portability, fMRI is unlikely to be used for routine BCI. We propose a new approach for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG data, but driven by fMRI-like features obtained from the mapping identified previously. Our novel data-driven method is likely to discover latent linkages between electrical and hemodynamic signatures of neural activity hitherto unexplored using model-driven methods, and is likely to serve as a template for a novel multi-modal strategy wherein cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG system, leading to a new generation of EEG-based BCIs.

  4. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  5. Customer Driven Uniform Manufacture (CDUM) Program. Customer Driven Uniform Management Apparel Research

    Science.gov (United States)

    2008-11-13

    ABSTRACT (Maximum 200 Words) The DLA and DSCP sponsored Customer Driven Uniform Manufacturing (CDUM) program’s primary goals are to reduce total...functions that make decisions or consume apparel items. PDIT’s CDUM assignments were to create the web accessible database, create decision support tools...Manufacturing Monitoring Processes ....................................................40  Figure 32 – Assign Contract to Buyer

  6. The Exploration of Design Driven Innovation as a Dynamic Capability

    Directory of Open Access Journals (Sweden)

    Philips Kembaren

    2012-01-01

    Full Text Available Innovation enables companies to attain consistent organic growth that brings benefits to stakeholders. Designthinking approach in innovation has been emergent to be an alternative to technological development path inorder to generate competitive and successful product or service in the market place. Design driven innovationcombines functional and semantic dimensions of products or services in the marketplace. Previous researchhas recently revealed practices of design driven innovation in various industries. However, little is known tothe extent that companies in Indonesia practicing design driven innovation. A theoretical framework withperspective from dynamic capability theoretical lens and guided by Dubin’s theory building methodology isproposed to explain the constructs and role of design in the process of innovation. The research is expected tocontribute a new construct to the existing framework, namely construct that related to how we could assessthe value of the design-driven innovation output, perceived by the costumers.Keywords: design driven innovation, dynamic capabilities, theory building

  7. Work(er)-Driven Innovation

    Science.gov (United States)

    Smith, Raymond

    2017-01-01

    Purpose: The focus on innovation as a foundational element of enhanced organisational performance has led to the promoting and valuing of greater levels of employee participation in innovation processes. An emergent concept of employee-driven innovation could be argued to have hindered understandings of the creative and transformative nature of…

  8. Examples of Entropy-driven Ordering

    Indian Academy of Sciences (India)

    driven Ordering. Orientational ordering of long objects. Entropy of sliding increases. Freezing in hard-sphere systems. Vibrational entropy increases. Phase separation in hard-sphere binary mixtures with disparate sizes. More room for smaller ...

  9. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  10. Knowledge-based low-level image analysis for computer vision systems

    Science.gov (United States)

    Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.

    1988-01-01

    Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.

  11. Analysis of Heat Transfer

    International Nuclear Information System (INIS)

    2003-08-01

    This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.

  12. Data-driven workflows for microservices

    DEFF Research Database (Denmark)

    Safina, Larisa; Mazzara, Manuel; Montesi, Fabrizio

    2016-01-01

    Microservices is an architectural style inspired by service-oriented computing that has recently started gainingpopularity. Jolie is a programming language based on the microservices paradigm: the main building block of Jolie systems are services, in contrast to, e.g., functions or objects....... The primitives offered by the Jolie language elicit many of the recurring patterns found in microservices, like load balancers and structured processes. However, Jolie still lacks some useful constructs for dealing with message types and data manipulation that are present in service-oriented computing......). We show the impact of our implementation on some of the typical scenarios found in microservice systems. This shows how computation can move from a process-driven to a data-driven approach, and leads to the preliminary identification of recurring communication patterns that can be shaped as design...

  13. Making benefit transfers work

    DEFF Research Database (Denmark)

    Bateman, I.J.; Brouwer, R.; Ferrini, S.

    We develop and test guidance principles for benefits transfers. These argue that when transferring across relatively similar sites, simple mean value transfers are to be preferred but that when sites are relatively dissimilar then value function transfers will yield lower errors. The paper also...... provides guidance on the appropriate specification of transferable value functions arguing that these should be developed from theoretical rather than ad-hoc statistical principles. These principles are tested via a common format valuation study of water quality improvements across five countries. Results...... support our various hypotheses providing a set of principles for future transfer studies. The application also considers new ways of incorporating distance decay, substitution and framing effects within transfers and presents a novel water quality ladder....

  14. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  15. Dynamic Modeling and Control of Distributed Heat Transfer Mechanisms: Application to a Membrane Distillation Module

    KAUST Repository

    Eleiwi, Fadi

    2015-12-01

    Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy

  16. Fast tracking nuclear safeguards knowledge transfer through virtual and real-world engagement

    International Nuclear Information System (INIS)

    De Luca, A.; Marin-Ferrer, M.; Peerani, P.; Janssens, W.

    2014-01-01

    This Paper focuses on analysing and comparing two main paradigms adopted to tackle the question of knowledge transfer, i.e. a top-down approach versus a bottom-up grassroots approach. This is done without excluding the fact that the two approaches can ultimately complement each other in effectively bringing about a sustainable method to improve interaction between the experienced workforce with the newcomers. The study examines the context and the method on which these two approaches are based (online and real life interaction). The examples we will be using are the NuSaSET Portal, with its community driven knowledge network, the ESARDA Course, which adopts a conservative 'Lecture' approach and the INNM Student Chapters. Both former activities are hosted by the Joint Research Centre of the European Commission. (authors)

  17. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    James Weis

    2018-03-01

    Full Text Available Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S. institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of

  18. Overview of nonlinear theory of kinetically driven instabilities

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.

    1998-09-01

    An overview is presented of the theory for the nonlinear behavior of instabilities driven by the resonant wave particle interaction. The approach should be applicable to a wide variety of kinetic systems in magnetic fusion devices and accelerators. Here the authors emphasize application to Alfven were driven instability, and the principles of the theory are used to interpret experimental data

  19. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  20. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  1. Lithium ion beam driven hohlraums for PBFA II

    International Nuclear Information System (INIS)

    Dukart, R.J.

    1994-01-01

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities

  2. Magnetically driven oscillator and resonance: a teaching tool

    Science.gov (United States)

    Erol, M.; Çolak, İ. Ö.

    2018-05-01

    This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an ordinary function generator, an oscilloscope and a smartphone. Driven oscillation and resonance is basically managed by applying a sinusoidal voltage to the coil and tuning the driving frequency to the natural frequency of the pendulum. The resultant oscillation is recorded by a smartphone video application and analyzed via a video analysis programme. The designed apparatus can easily be employed in basic physics laboratories to achieve an enhanced and deeper understanding of driven oscillation and resonance.

  3. Effect of fluid-to-structure heat transfer on the structural damage potential to a liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Hakim, S.J.; Abramson, P.B.

    1979-01-01

    Deterministic calculations simulating a hypothetical accident in a liquid-metal fast breeder reactor that leads to a hydrodynamic disassembly of the core have been carried out to estimate the system's damage potential due to the vapor-pressure-driven expansion of molten core material and its dependency on the heat transfer to the remaining structure. These calculations ignored the effect on the work potential of sodium left in the core during the disassembly. Results indicate that steel cladding in the upper axial blankets and fission gas plenum acts as a thermodynamic energy sink that could reduce the total thermodynamic work energy by between one and two orders of magnitude, provided little or no sodium is present in the core at the time of interaction. These results have been found to be insensitive to the rate of heat transferred from the molten fuel to the molten steel that comprises the molten core material

  4. Measurement of beam driven hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.

    2003-01-01

    Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers

  5. Voltage-driven quantum oscillations in graphene

    International Nuclear Information System (INIS)

    Yampol'skii, V A; Savel'ev, S; Nori, Franco

    2008-01-01

    We predict unusual (for non-relativistic quantum mechanics) electron states in graphene, which are localized within a finite-width potential barrier. The density of localized states in the sufficiently high and/or wide graphene barrier exhibits a number of singularities at certain values of the energy. Such singularities provide quantum oscillations of both the transport (e.g. conductivity) and thermodynamic properties of graphene-when increasing the barrier height and/or width, similarly to the well-known Shubnikov-de-Haas (SdH) oscillations of conductivity in pure metals. However, here the SdH-like oscillations are driven by an electric field instead of the usual magnetically driven SdH-oscillations

  6. Envisioning the future of collaborative model-driven software engineering

    NARCIS (Netherlands)

    Di Ruscio, Davide; Franzago, Mirco; Malavolta, Ivano; Muccini, Henry

    2017-01-01

    The adoption of Model-driven Software Engineering (MDSE) to develop complex software systems in application domains like automotive and aerospace is being supported by the maturation of model-driven platforms and tools. However, empirical studies show that a wider adoption of MDSE technologies is

  7. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  8. Light-driven solute transport in Halobacterium halobium

    Science.gov (United States)

    Lanyi, J. K.

    1979-01-01

    The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.

  9. Charge transfer through single molecule contacts: How reliable are rate descriptions?

    Directory of Open Access Journals (Sweden)

    Denis Kast

    2011-08-01

    Full Text Available Background: The trend for the fabrication of electrical circuits with nanoscale dimensions has led to impressive progress in the field of molecular electronics in the last decade. However, a theoretical description of molecular contacts as the building blocks of future devices is challenging, as it has to combine the properties of Fermi liquids in the leads with charge and phonon degrees of freedom on the molecule. Outside of ab initio schemes for specific set-ups, generic models reveal the characteristics of transport processes. Particularly appealing are descriptions based on transfer rates successfully used in other contexts such as mesoscopic physics and intramolecular electron transfer. However, a detailed analysis of this scheme in comparison with numerically exact solutions is still elusive.Results: We show that a formulation in terms of transfer rates provides a quantitatively accurate description even in domains of parameter space where strictly it is expected to fail, e.g., at lower temperatures. Typically, intramolecular phonons are distributed according to a voltage driven steady state that can only roughly be captured by a thermal distribution with an effective elevated temperature (heating. An extension of a master equation for the charge–phonon complex, to effectively include the impact of off-diagonal elements of the reduced density matrix, provides very accurate solutions even for stronger electron–phonon coupling.Conclusion: Rate descriptions and master equations offer a versatile model to describe and understand charge transfer processes through molecular junctions. Such methods are computationally orders of magnitude less expensive than elaborate numerical simulations that, however, provide exact solutions as benchmarks. Adjustable parameters obtained, e.g., from ab initio calculations allow for the treatment of various realizations. Even though not as rigorously formulated as, e.g., nonequilibrium Green’s function

  10. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    International Nuclear Information System (INIS)

    Belova, E.V.; Gorelenkov, N.N.; Cheng, C.Z.; Fredrickson, E.D.

    2003-01-01

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects

  11. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  12. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  13. Test-driven development with Django

    CERN Document Server

    Harvey, Kevin

    2015-01-01

    This book is for Django developers with little or no knowledge of test-driven development or testing in general. Familiarity with the command line, setting up a Python virtual environment, and starting a Django project are assumed.

  14. Natural isotope tracing of hydric transfers in a very low porosity clay-stone formation: the argilites of Tournemire (France)

    International Nuclear Information System (INIS)

    Moreau-Le Golvan, Yann

    1997-01-01

    Since 1988, the experimental site of the French Institute for Protection and Nuclear Safety (IPSN) situated in a tunnel near Toumemire (Aveyron, France), is studied in order to develop techniques and methods for the characterization of water behaviour in a clay-stone formation with very low water content and very low permeability. Isotope geochemistry was used to define the fluid transfer modalities. After the development or the improvement of sampling techniques, the measurement of the stable isotope contents (oxygen-18, deuterium, carbon-13) and radioactive isotope contents (tritium, carbon-14, chlorine-36) of fluids (pore water, fracture water) and solids (calcite fracture fillings) allowed to distinguish several origins and behaviours of water in the massif. The stable isotope distribution of pore water could be due to a diffusion driven mixing between argilite formation water and water from karsts, over and underlying the argilite formation. In this hypothesis, the time needed to establish the distribution profile should be longer than 5 million years. The role of the fractures seems complex, with indications of local paleo-transfers from the matrix to the fracture, and indications of transfers from the karstic aquifer. (author) [fr

  15. Natural isotope tracing of hydric transfers in a very low porosity clay stone formation: the argilites of Tournemire (France)

    International Nuclear Information System (INIS)

    Moreau-Le Golvan, Y.

    1997-01-01

    Since 1988, the experimental site of the French Institute for Protection and Nuclear Safety Safety (IPSN) situated in a tunnel near Tournemire (Aveyron, France), is studied in order to develop techniques and methods for the characterization of water behaviour in a clay-stone formation with very low water content and very low permeability. Isotope geochemistry was used to define the fluid transfer modalities. After the development development of the improvement of sampling techniques, the measurement of the stable isotope contents (oxygen - 18, deuterium, carbon-13) and radioactive isotope contents (tritium, carbon-14, chlorine-36) of fluids (pore water, fracture water) and solids (calcite fracture fillings) allowed to distinguish several origins and behaviours of water in the massif. The stable isotope distribution of pore water could be due to a diffusion driven mixing between argillite formation water and water from karsts, over and underlying the argillite formation. In this hypothesis, the time needed to establish the distribution profile should be longer than 5 million years. The role of the fractures seems complex, with indications of local paleo-transfers from the matrix to the fracture, and indications of transfers from the karstic aquifer. (author)

  16. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  17. Single-embryo transfer versus multiple-embryo transfer.

    Science.gov (United States)

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  18. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  19. Integrated Optoelectronic Networks for Application-Driven Multicore Computing

    Science.gov (United States)

    2017-05-08

    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  20. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)