WorldWideScience

Sample records for interleukin-18 deficient mice

  1. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C.

    2015-01-01

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure. PMID:26656097

  2. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C

    2015-12-10

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure.

  3. Enhanced viral clearance in interleukin-18 gene-deficient mice after pulmonary infection with influenza A virus

    NARCIS (Netherlands)

    Van der Sluijs, KF; Van Elden, LJR; Arens, R; Nijhuis, M; Schuurman, R; Florquin, S; Akira, S; Jansen, HM; Lutter, R; Van Der Polls, T

    T helper 1 driven immune responses facilitate host defence during viral infections. Because interleukin-18 (IL-18) mediates T helper 1 driven immune responses, and since mature IL-18 is up-regulated in human macrophages after influenza virus infection in vitro, it has been suggested that IL-18 plays

  4. Interleukin-18 protects mice from Enterovirus 71 infection.

    Science.gov (United States)

    Li, Zheng; Wang, Hongbin; Chen, Yihui; Niu, Junling; Guo, Qiuhong; Leng, Qibin; Huang, Zhong; Deng, Zhirui; Meng, Guangxun

    2017-08-01

    Previous study has demonstrated that the NLRP3 inflammasome is essential for protecting murine host against Enterovirus 71 (EV71) infection. However, the underlying mechanism remained unknown. Here we discovered that the pleiotropic cytokine interleukin-18 (IL-18), an NLRP3 inflammasome-dependent effector protein, exhibits a protective capability against EV71 challenge. Deficiency of IL-18 in mice exacerbated EV71 infection, which was reflected by increased viral replication, elevated production of interferons (IFN-β, IFN-γ), proinflammatory cytokines (TNF-α, IL-6) and chemokine CCL2,as well as decreased survival of experimental animals. Conversely, administration of recombinant IL-18 considerably restrained EV71 infection in IL-18 deficient mice. Thus, our results revealed a protective role for IL-18 against EV71 challenge, and indicated a novel therapeutic application for IL-18 in EV71 associated hand, foot, and mouth disease (HFMD). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interleukin-18 and interleukin-18 Binding Protein

    Directory of Open Access Journals (Sweden)

    Charles eDinarello

    2013-10-01

    Full Text Available Interleukin-18 (IL 18 is a member of the IL 1 family of cytokines. Increasing reports have expanded the role of IL 18 in mediating inflammation in animal models of disease using IL 18 deficient mice, neutralization of IL 18 or deficiency in the IL 18 receptor alpha chain. Similar to IL 1β, IL 18 is synthesized as an inactive precursor requiering processing by caspase 1 into an active cytokine but unlike IL 1β, the IL 18 precursor is constitutively present in nearly all cells in healthy humans and animals. The activity of IL 18 is balanced by the presence of a high-affinity naturally occuring IL 18 binding protein (IL 18BP. In humans, disease increased disease severity can be associated with an imbalance of IL 18 to IL 18BP such that the levels of free IL 18 are elevated in the circulation. A role for IL 18 has been implicated in several autoimmune diseases, myocardial function, emphysema, metabolic syndromes, psoriasis, inflammatory bowel disease, hemophagocytic syndromes, macrophage activation syndrome, sepsis and acute kidney injury, although in some diseases, IL 18 is protective. IL 18 plays a major role in the production of interferon-g from natural killer cells. The IL 18BP has been used safely in humans and clinical trials of IL 18BP as well as neutralizing anti-IL 18 antibodies are in clinical trials. This review updates the biology of IL 18 as well as its role in human disease

  6. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Schultz, Marc J.; Knapp, Sylvia; Florquin, Sandrine; Pater, Jennie; Takeda, Kiyoshi; Akira, Shizuo; van der Poll, Tom

    2003-01-01

    Interleukin-18 (IL-18) is a potent cytokine with many different proinflammatory activities. To study the role of IL-18 in the pathogenesis of Pseudomonas pneumonia, IL-18-deficient (IL-18(-/-)) and wild-type mice were intranasally inoculated with Pseudomonas aeruginosa. IL-18 deficiency was

  7. Interleukin-18 Mediates Immune Responses to Campylobacter jejuni Infection in Gnotobiotic Mice.

    Directory of Open Access Journals (Sweden)

    Stefan Bereswill

    Full Text Available Human Campylobacter jejuni infections are progressively rising worldwide. Information about the molecular mechanisms underlying campylobacteriosis, however, are limited. In the present study we investigated whether cytokines such as IL-23, IL-22 and IL-18, which share pivotal functions in host immunity, were involved in mediating intestinal and systemic immunopathological responses upon C. jejuni infection.To assure stable infection, gnotobiotic (i.e. secondary abiotic IL-23p19-/-, IL-22-/- and IL-18-/- mice were generated by broad-spectrum antibiotic treatment. Following peroral C. jejuni strain 81-176 infection, mice of all genotypes harbored comparably high pathogenic loads in their intestines. As compared to wildtype controls, however, IL-18-/- mice displayed less distinct C. jejuni induced sequelae as indicated by less pronounced large intestinal shrinkage and lower numbers of apoptotic cells in the colonic epithelial layer at day 8 postinfection (p.i.. Furthermore, lower colonic numbers of adaptive immune cells including regulatory T cells and B lymphocytes were accompanied by less distinct secretion of pro-inflammatory cytokines such as TNF and IFN-γ and lower IL-17A mRNA expression levels in colonic ex vivo biopsies of infected IL-18-/- as compared to wildtype mice. Upon C. jejuni infection, colonic IL-23p19 expression was up-regulated in IL-18-/- mice only, whereas IL-22 mRNA levels were lower in uninfected and infected IL-23p19-/- as well as infected IL-18-/- as compared to respective wildtype control mice. Remarkably, not only intestinal, but also systemic infection-induced immune responses were less pronounced in IL-18-/- mice as indicated by lower TNF, IFN-γ and IL-6 serum levels as compared to wildtype mice.We here show for the first time that IL-18 is essentially involved in mediating C. jejuni infection in the gnotobiotic mouse model. Future studies need to further unravel the underlying regulatory mechanisms orchestrating

  8. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    DEFF Research Database (Denmark)

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus

    2013-01-01

    Circulating interleukin (IL)-18 is elevated in obesity, but paradoxically causes hypophagia. We hypothesized that IL-18 may attenuate high fat diet induced insulin resistance by activating AMP activated protein kinase (AMPK). We studied mice with a global deletion of the α isoform of the IL-18...

  9. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice.

    Science.gov (United States)

    Lindegaard, Birgitte; Matthews, Vance B; Brandt, Claus; Hojman, Pernille; Allen, Tamara L; Estevez, Emma; Watt, Matthew J; Bruce, Clinton R; Mortensen, Ole H; Syberg, Susanne; Rudnicka, Caroline; Abildgaard, Julie; Pilegaard, Henriette; Hidalgo, Juan; Ditlevsen, Susanne; Alsted, Thomas J; Madsen, Andreas N; Pedersen, Bente K; Febbraio, Mark A

    2013-09-01

    Circulating interleukin (IL)-18 is elevated in obesity, but paradoxically causes hypophagia. We hypothesized that IL-18 may attenuate high-fat diet (HFD)-induced insulin resistance by activating AMP-activated protein kinase (AMPK). We studied mice with a global deletion of the α-isoform of the IL-18 receptor (IL-18R(-/-)) fed a standard chow or HFD. We next performed gain-of-function experiments in skeletal muscle, in vitro, ex vivo, and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation, and insulin resistance via mechanisms involving the activation of AMPK in skeletal muscle. IL-18R(-/-) mice display increased weight gain, ectopic lipid deposition, inflammation, and reduced AMPK signaling in skeletal muscle. Treating myotubes or skeletal muscle strips with IL-18 activated AMPK and increased fat oxidation. Moreover, in vivo electroporation of IL-18 into skeletal muscle activated AMPK and concomitantly inhibited HFD-induced weight gain. In summary, IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis.

  10. Interleukin-18 facilitates the early antimicrobial host response to Escherichia coli peritonitis

    NARCIS (Netherlands)

    Weijer, Sebastiaan; Sewnath, Miguel E.; de Vos, Alex F.; Florquin, Sandrine; van der Sluis, Koen; Gouma, Dirk J.; Takeda, Kiyoshi; Akira, Shizuo; van der Poll, Tom

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) during peritonitis, IL-18 gene-deficient (IL-18 KO) mice and wild-type mice were intraperitoneally (i.p.) infected with Escherichia coli, the most common causative agent found in septic peritonitis. Peritonitis was associated with a

  11. Terminalia arjuna prevents Interleukin-18-induced atherosclerosis via modulation of NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice.

    Science.gov (United States)

    Bhat, Owais Mohammad; Kumar, P Uday; Rao, K Rajender; Ahmad, Ashfaq; Dhawan, Veena

    2018-04-01

    Terminalia arjuna is a medicinal plant well known as a cardiotonic in Ayurvedic system of medicine. We hypothesized that aqueous stem bark extract of T. arjuna (TAE) may inhibit IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway in Apo E-/- mice. 12-week-old, male Apo E-/- mice divided into four groups (n = 6/group) fed with normal chow-diet were employed: GP I: phosphate buffer saline (PBS) (2 month); GP II: rIL-18 (1 month) followed by PBS (1 month); GP III: rIL-18 (1 month) followed by TAE (1 month); GP IV: rIL-18 (1 month) followed by atorvastatin (1 month). IL-18 treatment induced a significant increase (p < 0.001) in pro-inflammatory marker (IL-18) (170 ± 9.16 vs. 1178.66 ± 8.08, pg/ml), and downregulated cholesterol efflux gene (PPAR-γ) by ~0.6-fold vs. 1.00 in IL-18-treated mice as compared to the control animals, respectively. TAE treatment to both groups caused a significant reduction in IL-18 to 281.66 ± 9.60 vs. 1178.66 ± 8.08 (pg/ml), upregulated cholesterol efflux gene by ~1.5- vs. 0.6-fold in TAE-treated group, decreased atherogenic lipids, and percentage atherosclerotic lesion area, demonstrating comparable effects with atorvastatin. Our data demonstrate that TAE protects against IL-18-induced atherosclerosis via NF-κB/PPAR-γ-mediated pathway.

  12. Association between Interleukin-18 promoter polymorphisms and ...

    African Journals Online (AJOL)

    Background: Ischemic stroke (IS) is one of the main causes of death worldwide. It is worthy to attempt to identify genes that acts as risk factors for IS for early prediction and primary prevention that may reduce its incidence. Aim of the study was to determine the relation between interleukin-18 (IL-18) (-607 C/A) and (-137 G/C) ...

  13. Interleukin-18 and IL-18 Binding Protein

    NARCIS (Netherlands)

    Dinarello, C.A.; Novick, D.; Kim, S.; Kaplanski, G.

    2013-01-01

    Interleukin-18 (IL-18) is a member of the IL-1 family of cytokines. Similar to IL-1beta, IL-18 is synthesized as an inactive precursor requiring processing by caspase-1 into an active cytokine but unlike IL-1beta, the IL-18 precursor is constitutively present in nearly all cells in healthy humans

  14. The regulatory effects of interleukin-12 on interleukin-18 and ...

    African Journals Online (AJOL)

    The regulatory effects of interleukin-12 on interleukin-18 and interferon-γ production in Egyptian breast cancer patients. ... Results: The level of IL-18 in culture supernatants ranged from 0.69 to 0.95 ng/ml with mean value of 0.8 ng/ml in non-metastatic patients, whereas IL-18 in metastatic patients levels varied from 0.5 to 0.7 ...

  15. DMPD: Pathophysiological roles of interleukin-18 in inflammatory liver diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10807517 Pathophysiological roles of interleukin-18 in inflammatory liver diseases....l) Show Pathophysiological roles of interleukin-18 in inflammatory liver diseases. PubmedID 10807517 Title Pathophysiological roles

  16. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  17. Interleukin 18 receptor 1 gene polymorphisms are associated with asthma

    DEFF Research Database (Denmark)

    Zhu, Guohua; Whyte, Moira K B; Vestbo, Jørgen

    2008-01-01

    by genotyping seven SNPs in 294, 342 and 100 families from Denmark, United Kingdom and Norway and conducting family-based association analyses for asthma, atopic asthma and bronchial hyper-reactivity (BHR) phenotypes. Three SNPs in IL18R1 were associated with asthma (0.01131 ...The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined...... with atopic asthma (0.00066 asthma (0.00397

  18. Prostaglandins E1 and E2 inhibit lipopolysaccharide-induced interleukin-18 production in monocytes.

    Science.gov (United States)

    Takahashi, Hideo K; Iwagaki, Hiromi; Mori, Shuji; Yoshino, Tadashi; Tanaka, Noriaki; Nishibori, Masahiro

    2005-07-11

    The purpose of this present study was to explore the therapeutic potential of prostaglandins E1 and E2 on the systemic inflammatory response evoked by endotoxin. Since interleukin-18, a monocyte-derived cytokine, is increased during sepsis, decreasing the production of interleukin-18 is important in treating this condition. Prostaglandin E1 and E2 inhibited interleukin-18 production in human monocytes treated with lipopolysaccharide and prostanoid IP-, EP2- and EP4-receptor agonists mimicked the effects of prostaglandins E1 and E2. Therefore, prostanoid IP, EP2- and EP4-receptors might be involved in the decrease in interleukin-18 production during sepsis.

  19. The role of interleukin-18 in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Seljeflot Ingebjørg

    2010-03-01

    Full Text Available Abstract The metabolic syndrome is thought to be associated with a chronic low-grade inflammation, and a growing body of evidence suggests that interleukin-18 (IL-18 might be closely related to the metabolic syndrome and its consequences. Circulating levels of IL-18 have been reported to be elevated in subjects with the metabolic syndrome, to be closely associated with the components of the syndrome, to predict cardiovascular events and mortality in populations with the metabolic syndrome and to precede the development of type 2 diabetes. IL-18 is found in the unstable atherosclerotic plaque, in adipose tissue and in muscle tissue, and is subject to several regulatory steps including cleavage by caspase-1, inactivation by IL-18 binding protein and the influence of other cytokines in modulating its interaction with the IL-18 receptor. The purpose of this review is to outline the role of IL-18 in the metabolic syndrome, with particular emphasis on cardiovascular risk and the potential effect of life style interventions.

  20. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  1. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  2. Spontaneous metastasis in matrix metalloproteinase 3-deficient mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Rømer, John; Pennington, Caroline J

    2009-01-01

    in tumorigenesis and metastatic growth. In this model the stromal expression of MMP-3 mRNA resembles the predominant MMP-3 expression pattern observed in human ductal breast carcinomas. We studied a cohort of 63 PyMT transgenic mice, either deficient for MMP-3 or wild-type controls. The degree of metastasis did...... not differ significantly between the two groups of mice, although the median lung metastasis volume was more than threefold increased in MMTV-PyMT mice deficient in MMP-3. Likewise, primary tumor growth rate and lymph node metastasis were not significantly affected by MMP-3-deficiency. By comparing m...

  3. Nitroglycerin tolerance in caveolin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Mao Mao

    Full Text Available Nitrate tolerance developed after persistent nitroglycerin (GTN exposure limits its clinical utility. Previously, we have shown that the vasodilatory action of GTN is dependent on endothelial nitric oxide synthase (eNOS/NOS3 activity. Caveolin-1 (Cav-1 is known to interact with NOS3 on the cytoplasmic side of cholesterol-enriched plasma membrane microdomains (caveolae and to inhibit NOS3 activity. Loss of Cav-1 expression results in NOS3 hyperactivation and uncoupling, converting NOS3 into a source of superoxide radicals, peroxynitrite, and oxidative stress. Therefore, we hypothesized that nitrate tolerance induced by persistent GTN treatment results from NOS3 dysfunction and vascular toxicity. Exposure to GTN for 48-72 h resulted in nitrosation and depletion (>50% of Cav-1, NOS3 uncoupling as measured by an increase in peroxynitrite production (>100%, and endothelial toxicity in cultured cells. In the Cav-1 deficient mice, NOS3 dysfunction was accompanied by GTN tolerance (>50% dilation inhibition at low GTN concentrations. In conclusion, GTN tolerance results from Cav-1 modification and depletion by GTN that causes persistent NOS3 activation and uncoupling, preventing it from participating in GTN-medicated vasodilation.

  4. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  5. Defective vascular development in connexin 45-deficient mice

    NARCIS (Netherlands)

    Krüger, O.; Plum, A.; Kim, J. S.; Winterhager, E.; Maxeiner, S.; Hallas, G.; Kirchhoff, S.; Traub, O.; Lamers, W. H.; Willecke, K.

    2000-01-01

    In order to reveal the biological function(s) of the gap-junction protein connexin 45 (Cx45), we generated Cx45-deficient mice with targeted replacement of the Cx45-coding region with the lacZ reporter gene. Heterozygous Cx45(+/)(-) mice showed strong expression of the reporter gene in vascular and

  6. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  7. Lessons from Tau-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yazi D. Ke

    2012-01-01

    Full Text Available Both Alzheimer's disease (AD and frontotemporal dementia (FTD are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term “tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aβ and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo.

  8. Interleukin-18 mediates cardiac dysfunction induced by western diet independent of obesity and hyperglycemia in the mouse.

    Science.gov (United States)

    Carbone, S; Lee, P J H; Mauro, A G; Mezzaroma, E; Buzzetti, R; Van Tassell, B; Abbate, A; Toldo, S

    2017-04-10

    Obesity and diabetes are independent risk factors for heart failure and are associated with the consumption of diet rich in saturated fat and sugar, Western diet (WD), known to induce cardiac dysfunction in the mouse through incompletely characterized inflammatory mechanisms. We hypothesized that the detrimental cardiac effects of WD are mediated by interleukin-18 (IL-18), pro-inflammatory cytokine linked to cardiac dysfunction. C57BL/6J wild-type male mice and IL-18 knockout male mice were fed high-saturated fat and high-sugar diet for 8 weeks. We measured food intake, body weight and fasting glycemia. We assessed left ventricular (LV) systolic and diastolic function by Doppler echocardiography and cardiac catheterization. In wild-type mice, WD induced a significant increase in isovolumetric relaxation time, myocardial performance index and left ventricular end-diastolic pressure, reflecting an impairment in diastolic function, paired with a mild reduction in LV ejection fraction. IL-18 KO mice had higher food intake and greater increase in body weight without significant differences in hyperglycemia. Despite displaying greater obesity, IL-18 knockout mice fed with WD for 8 weeks had preserved cardiac diastolic function and higher left ventricular ejection fraction. IL-18 mediates diet-induced cardiac dysfunction, independent of food intake and obesity, thus highlighting a disconnect between the metabolic and cardiac effects of IL-18.

  9. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  10. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  11. Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18

    Science.gov (United States)

    Four mouse monoclonal antibodies (mAbs) which are specific for chicken interleukin 18 (chIL18) were produced and characterized by enzyme-linked immunosorbent assay (ELISA), Western blotting, quantitative real-time PCR and neutralization assays. Monoclonal antibodies specific for chIL18 identified a ...

  12. Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus.

    NARCIS (Netherlands)

    Zilverschoon, G.R.; Tack, C.J.J.; Joosten, L.A.B.; Kullberg, B.J.; Meer, J.W.M. van der; Netea, M.G.

    2008-01-01

    OBJECTIVE: Interleukin-18 (IL-18) has been recently demonstrated to improve experimental hyperphagia and insulin resistance. Paradoxically, concentrations of circulating IL-18 in obese subjects and in patients with type 2 diabetes are increased. The objective of this study is to provide an

  13. Enzyme changes associated with mitochondrial malic enzyme deficiency in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrenweiser, H.W.; Erickson, R.P.

    1979-01-01

    A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c/sup 3H//c/sup 6H/ mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochrondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in solublle malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19 to 21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.

  14. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  15. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  16. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on......-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night....

  17. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...

  18. Preservation of cochlear function in Cd39 deficient mice.

    Science.gov (United States)

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R; Gupta, Rita; Enjyoji, Keiichi; Cowan, Peter J; Charles Liberman, M; Robson, Simon C

    2009-07-01

    Signalling actions of extracellular nucleotides via P2 receptors influence cellular function in most tissues. In the inner ear, P2 receptor signaling is involved in many processes including the regulation of hearing sensitivity and the cochlea's response to noise stress. CD39 (NTPDase1/ENTPD1) is an ectonucleotidase (ecto-nucleoside triphosphate diphosphohydrolase) that can hydrolyse purine and pyrimidine nucleoside tri- and di-phosphates to generate monophosphate nucleosides. Mice null for Cd39 exhibit major alterations in haemostasis and profound alterations in inflammatory and thrombotic reactions. Studies in the cochlea have suggested the involvement of purinergic-type signals that could be modulated by CD39 in regulation of cochlear blood flow and also auditory neurotransmission. This study aimed to determine the auditory phenotype of adult Cd39 null mice on the C57BL6 background. Auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) were unaffected in Cd39-deficient mice across the range of test frequencies, suggesting normal neural and outer hair cell function. Mutant mice also showed little difference to wild type mice in vulnerability to acoustic trauma. Gene expression analysis of other membrane-bound NTPDases with comparable hydrolytic activity demonstrated an up-regulation of Entpd2 and Entpd8 in the cochleae of Cd39 deficient mice. These findings suggest that Cd39 deletion alone does not adversely affect cochlear function, possibly as compensatory up-regulation of other surface located NTPDases may offset predicted alterations in cochlear homeostasis.

  19. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  20. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  1. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Metabolic changes associated with selenium deficiency in mice.

    Science.gov (United States)

    Mickiewicz, Beata; Villemaire, Michelle L; Sandercock, Linda E; Jirik, Frank R; Vogel, Hans J

    2014-12-01

    Selenium (Se), which is a central component for the biosynthesis and functionality of selenoproteins, plays an important role in the anti-oxidative response, reproduction, thyroid hormone metabolism and the protection from infection and inflammation. However, dietary Se effects have not well been established to date and the available studies often present contradictory results. To obtain a better understanding of Se intake and its influence on the metabolism of living systems, we have utilized a metabolomics approach to gain insight into the specific metabolic alterations caused by Se deficiency in mice. Serum samples were collected from two groups of C57BL/6 mice: an experimental group which was fed a Se-deficient diet and controls consuming normal chow. The samples were analyzed by (1)H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The resulting metabolite data were examined separately for both analytical methods and in a combined manner. By applying multivariate statistical analysis we were able to distinguish the two groups and detect a metabolite pattern associated with Se deficiency. We found that the concentrations of 15 metabolites significantly changed in serum samples collected from Se-deficient mice when compared to the controls. Many of the perturbed biological pathways pointed towards compensatory mechanisms during Se deficiency and were associated with amino acid metabolism. Our findings show that a metabolomics approach may be applied to identify the metabolic impact of Se and reveal the most impaired biological pathways as well as induced regulatory mechanisms during Se deficiency.

  3. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W.; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James; Xu, Yan; Shen, Xiling; Kalady, Mathew F.; Markowitz, Sanford; Maillard, Ivan; Lowe, John B.; Xin, Wei; Zhou, Lan

    2016-01-01

    Background & Aims De novo synthesis of GDP-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or TSTA3). GMDS deletions and mutations are found in 6%–13% of colorectal cancers; these mostly affect ascending and transverse colon. We investigated whether lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. Methods FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx–/– mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by ELISAs to measure cytokine levels; T cells were also collected and analyzed. Fecal samples were analyzed by 16s rRNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx–/– or control mice (Ly5.2) into irradiated 8-week old Fx–/– or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Results Fx–/– mice developed colitis and serrated-like lesions. The intestinal pathology of Fx–/– mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx–/– mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced

  4. Dietary protein deficiency in pregnant mice and offspring.

    Science.gov (United States)

    Millis, Richard M; Offiah, Godwin U

    2007-03-06

    Previous studies suggest an association between dermal contact hypersensitivity and preterm delivery. We hypothesized that dietary protein deficiency produces cell-mediated immune hypersensitivity in pregnant animals and their offspring akin to those known to produce tissue damage. We compared the effects of feeding a 20% protein diet (controls) to those of feeding a 10% protein (deficient) diet ad libitum to pregnant BALB/c mice. We measured dermal contact sensitivity to 2,4-dinitrofluorobenzene (DNFB) by the increment in ear skin thickness (swelling) 72 h after immunization and parity by the number of viable pups delivered. Dams fed the protein-deficient diet ingested less food, gained less weight and delivered fewer viable pups than the dams fed the control diet. Greater DNFB-stimulated increment in ear skin thickness was found in the protein-deficient mothers and in their offspring than in the control mothers and their offspring. We conclude that dietary protein deficiency limits parity and induces immune hypersensitivity. These findings suggest the potential for dietary protein deficiency to activate a T-cell-mediated branch of the immune response that may put pregnant animals at risk for preterm delivery.

  5. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Wanli W Smith

    Full Text Available Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1, in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK, amylin, and the glucagon like peptide-1 (GLP-1 receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  6. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Science.gov (United States)

    Smith, Wanli W; Smith, Megan; Yang, Dejun; Choi, Pique P; Moghadam, Alexander; Li, Tianxia; Moran, Timothy H

    2015-01-01

    Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  7. Spontaneous T cell mediated keratoconjunctivitis in Aire-deficient mice

    Science.gov (United States)

    Yeh, S; de Paiva, C S; Hwang, C S; Trinca, K; Lingappan, A; Rafati, J K; Farley, W J; Li, D-Q; Pflugfelder, S C

    2013-01-01

    Background/aims Patients with autoimmune polyendocrinopathy-candiasis-ectodermal dystrophy (APECED) develop severe keratoconjunctivitis, corneal scarring and visual loss, but the precise pathogenesis is unknown. This study evaluated the ocular surface immune cell environment, conjunctival goblet cell density and response to desiccating environmental stress of the autoimmune regulatory (Aire) gene knockout murine model of APECED. Methods Aire-deficient and wild type (WT) mice were subjected to desiccating stress from a drafty, low-humidity environment and pharmacological inhibition of tear secretion for 5 days. Immune cell populations (CD4+, CD8+, CD11b+, CD45+) and goblet cell density were measured in ocular surface tissues and meibomian glands, and compared with baseline values. Results Greater CD4+ T cell populations were observed in the conjunctival epithelium of Aire-deficient mice (pAPECED. PMID:19429577

  8. Cardiovascular effects of uremia in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Bro, Susanne

    2009-01-01

    The purpose of this thesis work was to establish an experimental mouse model for studying the pathogenesis and therapy of accelerated atherosclerosis in uremia. Uremia was induced by surgical 5/6 nephrectomy in apolipoprotein E-deficient (apoE-/-) mice and led to development of severe aortic...... atherosclerosis independently of BP and plasma homocysteine levels. Also, the accelerated atherosclerosis could not be fully explained by changes in total plasma cholesterol. Morphologic and biochemical analyses of aortas suggested that accelerated initiation and expansion rather than a specific uremic lesion...... composition characterize atherosclerosis in the uremic mice. Increased expression of inflammatory genes in aortas of uremic mice suggests that an augmented inflammatory response in the arterial wall might be an important impetus for accelerated atherosclerosis in uremia. A marked downregulation of expression...

  9. Delayed allogeneic skin graft rejection in CD26-deficient mice.

    Science.gov (United States)

    Zhao, Xiangli; Zhang, Kai; Daniel, Peter; Wisbrun, Natali; Fuchs, Hendrik; Fan, Hua

    2018-03-23

    Organ transplantation is an effective therapeutic tool for treating many terminal diseases. However, one of the biggest challenges of transplantation is determining how to achieve the long-term survival of the allogeneic or xenogeneic transplant by, for example, preventing transplant rejection. In the current study, CD26 gene-knockout mice were used to investigate the potential role of CD26/dipeptidyl peptidase-4 (DPPIV) in allogeneic skin graft rejection by tail-skin transplantation. Compared with wild-type (CD26 +/+ ) counterparts, CD26 -/- mice showed reduced necrosis of grafts and delayed graft rejection after skin transplantation. Concentrations of serum IgG, including its subclasses IgG1 and IgG2a, were significantly reduced in CD26 -/- mice during graft rejection. Moreover, after allogeneic skin transplantation, the secretion levels of the cytokines IFN-γ, IL-2, IL-6, IL-4, and IL-13 were significantly reduced, whereas the level of the cytokine IL-10 was increased in the serum of CD26 -/- mice compared with that in the serum of CD26 +/+ mice. Additionally, the concentration of IL-17 in serum and the percentage of cells secreting IL-17 in mouse peripheral blood lymphocytes (MPBLs) were both significantly lower, while the percentage of regulatory T cells (Tregs) was significantly higher in MPBLs of CD26 -/- mice than in those of CD26 +/+ mice. Furthermore, a lower percentage of CD8 + T cells in MPBLs and fewer infiltrated macrophages and T cells in graft tissues of CD26 -/- mice were detected during graft rejection. These results indicate that CD26 is involved in allogeneic skin graft rejection and provides another hint that CD26 deficiency leads to less rejection due to lower activation and proliferation of host immune cells.

  10. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  11. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  12. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules...

  13. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation......The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...

  14. Enhancement of social isolation-induced aggressive behavior of young mice by zinc deficiency.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Kan, Fumika; Hanajima, Tomoyuki; Yamada, Kohei; Oku, Naoto

    2008-04-23

    Neuropsychological behavior via activation of the hypothalamic-pituitary-adrenal (HPA) axis was analyzed using young mice fed a zinc-deficient diet for 2 weeks. Serum corticosterone concentration was significantly increased after 2-week zinc deprivation, whereas zinc concentration in the brain was not decreased. In the resident-intruder test, the rate of mice that exhibited aggressive behavior to the total mice was significantly higher in isolated zinc-deficient mice than in isolated control mice. The duration of aggressive behavior was more in isolated zinc-deficient mice. These results indicate that aggressive behavior of young mice elicited by social isolation is enhanced by zinc deficiency. On the other hand, social isolation-induced aggressive behavior was enhanced in isolated pair-fed mice with food restriction that can activate the HPA axis. Serum corticosterone concentration was also significantly higher in isolated zinc-deficient mice. To see the effect of the increased serum corticosterone on behavioral abnormality, neurotransmitter concentrations in brain tissue were checked. The concentrations of glutamate and GABA in brain tissue were significantly higher in both grouped and isolated zinc-deficient mice. Furthermore, the concentration of extracellular glutamate in the amygdala before the resident-intruder test was significantly higher in isolated zinc-deficient (aggressive) mice and the higher concentration was maintained during the test. The changes in neurotransmitter homeostasis, probably via the increase in serum corticosterone, seem to be linked to aggressive behavior elicited by social isolation in zinc deficiency.

  15. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  16. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  17. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice

    OpenAIRE

    Dubrovsky, Yuliya V.; Samsa, William E.; Kondratov, Roman V.

    2010-01-01

    Circadian clock is implicated in the regulation of aging. The transcription factor CLOCK, a core component of the circadian system, operates in complex with another circadian clock protein BMAL1. Recently it was demonstrated that BMAL1 deficiency results in premature aging in mice. Here we investigate the aging of mice deficient for CLOCK protein. Deficiency of the CLOCK protein significantly affects longevity: the average lifespan of Clock−/− mice is reduced by 15% compared with wild type mi...

  18. Inhibited aortic aneurysm formation in BLT1-deficient mice.

    Science.gov (United States)

    Ahluwalia, Neil; Lin, Alexander Y; Tager, Andrew M; Pruitt, Ivy E; Anderson, Thomas J T; Kristo, Fjoralba; Shen, Dongxiao; Cruz, Anna R; Aikawa, Masanori; Luster, Andrew D; Gerszten, Robert E

    2007-07-01

    Leukotriene B(4) is a proinflammatory lipid mediator generated by the enzymes 5-lipoxygenase and leukotriene A(4) hydrolase. Leukotriene B(4) signals primarily through its high-affinity G protein-coupled receptor, BLT1, which is highly expressed on specific leukocyte subsets. Recent genetic studies in humans as well as knockout studies in mice have implicated the leukotriene synthesis pathway in several vascular pathologies. In this study, we tested the hypothesis that BLT1 is necessary for abdominal aortic aneurysm (AAA) formation, a major complication of atherosclerotic vascular disease. Chow-fed Apoe(-/-) and Apoe(-/-)/Blt1(-/-) mice were treated with a 4-wk infusion of angiotensin II (1000 ng/min/kg) beginning at 20 wk of age, in a well-established murine AAA model. We found a reduced incidence of AAA formation as well as concordant reductions in the maximum suprarenal/infrarenal diameter and total suprarenal/infrarenal area in the angiotensin II-treated Apoe(-/-)/Blt1(-/-) mice as compared with the Apoe(-/-) controls. Diminished AAA formation in BLT1-deficient mice was associated with significant reductions in mononuclear cell chemoattractants and leukocyte accumulation in the vessel wall, as well as striking reductions in the production of matrix metalloproteinases-2 and -9. Thus, we have shown that BLT1 contributes to the frequency and size of abdominal aortic aneurysms in mice and that BLT1 deletion in turn inhibits proinflammatory circuits and enzymes that modulate vessel wall integrity. These findings extend the role of BLT1 to a critical complication of vascular disease and underscore its potential as a target for intervention in modulating multiple pathologies related to atherosclerosis.

  19. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  20. Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice.

    Directory of Open Access Journals (Sweden)

    Qiurong Ye

    Full Text Available Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane-dextran sulfate sodium (AOM-DSS model of colitis-associated colon cancer (CAC. We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult.

  1. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    Directory of Open Access Journals (Sweden)

    Ana I. Arroba

    2016-09-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−, present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1 protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL, inner plexiform layer (IPL and inner nuclear layer (INL, and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  2. Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice[S

    Science.gov (United States)

    Babaev, Vladimir R.; Hebron, Katie E.; Wiese, Carrie B.; Toth, Cynthia L.; Ding, Lei; Zhang, Youmin; May, James M.; Fazio, Sergio; Vickers, Kasey C.; Linton, MacRae F.

    2014-01-01

    Macrophages play crucial roles in the formation of atherosclerotic lesions. Akt, a serine/threonine protein kinase B, is vital for cell proliferation, migration, and survival. Macrophages express three Akt isoforms, Akt1, Akt2, and Akt3, but the roles of Akt1 and Akt2 in atherosclerosis in vivo remain unclear. To dissect the impact of macrophage Akt1 and Akt2 on early atherosclerosis, we generated mice with hematopoietic deficiency of Akt1 or Akt2. After 8 weeks on Western diet, Ldlr−/− mice reconstituted with Akt1−/− fetal liver cells (Akt1−/−→Ldlr−/−) had similar atherosclerotic lesion areas compared with control mice transplanted with WT cells (WT→Ldlr−/−). In contrast, Akt2−/−→Ldlr−/− mice had dramatically reduced atherosclerotic lesions compared with WT→Ldlr−/− mice of both genders. Similarly, in the setting of advanced atherosclerotic lesions, Akt2−/−→Ldlr−/− mice had smaller aortic lesions compared with WT→Ldlr−/− and Akt1−/−→Ldlr−/− mice. Importantly, Akt2−/−→Ldlr−/− mice had reduced numbers of proinflammatory blood monocytes expressing Ly-6Chi and chemokine C-C motif receptor 2. Peritoneal macrophages isolated from Akt2−/− mice were skewed toward an M2 phenotype and showed decreased expression of proinflammatory genes and reduced cell migration. Our data demonstrate that loss of Akt2 suppresses the ability of macrophages to undergo M1 polarization reducing both early and advanced atherosclerosis. PMID:25240046

  3. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  4. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    International Nuclear Information System (INIS)

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao; Liu George

    2006-01-01

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis

  5. Immunity to infection in IL-17-deficient mice and humans.

    Science.gov (United States)

    Cypowyj, Sophie; Picard, Capucine; Maródi, László; Casanova, Jean-Laurent; Puel, Anne

    2012-09-01

    Mice with defective IL-17 immunity display a broad vulnerability to various infectious agents at diverse mucocutaneous surfaces. In humans, the study of patients with various primary immunodeficiencies, including autosomal dominant hyper-IgE syndrome caused by dominant-negative STAT3 mutations and autosomal recessive autoimmune polyendocrinopathy syndrome type 1 caused by null mutations in AIRE, has suggested that IL-17A, IL-17F and/or IL-22 are essential for mucocutaneous immunity to Candida albicans. This hypothesis was confirmed by the identification of rare patients with chronic mucocutaneous candidiasis (CMC) due to autosomal recessive IL-17RA deficiency and autosomal dominant IL-17F deficiency. Heterozygosity for gain-of-function mutations in STAT1 in additional patients with CMC was recently shown to inhibit the development of IL-17 T cells. Although the infectious phenotype of patients with CMC and inborn errors of IL-17 immunity remains to be finely delineated, it appears that human IL-17A and IL-17F display redundancy for protective immunity in natural conditions that is not seen in their mouse orthologs in experimental conditions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accelerated Central Nervous System Autoimmunity in BAFF-Receptor-Deficient Mice

    OpenAIRE

    Kim, Susan S.; Richman, David P.; Zamvil, Scott S.; Agius, Mark A.

    2011-01-01

    B cell activating factor (BAFF) is critical for B cell survival, a function that is mediated by BAFF receptor, (BAFF-R). The role of BAFF (or BAFF-R) in the multiple sclerosis model, experimental autoimmune encephalomyelitis (EAE), was examined using BAFF-R-deficient mice. BAFF-R deficiency resulted in paradoxically increased severity of EAE induced by myelin-oligodendrocyte glycoprotein (MOG) peptide 35-55. Inflammatory foci in BAFF-R-deficient mice comprised increased numbers of activated m...

  7. STAT4 deficiency reduces the development of atherosclerosis in mice.

    Science.gov (United States)

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V

    2015-11-01

    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    Lauren R Harms

    Full Text Available Epidemiological evidence suggests that Developmental Vitamin D (DVD deficiency is associated with an increased risk of schizophrenia. DVD deficiency in mice is associated with altered behaviour, however there has been no detailed investigation of cognitive behaviours in DVD-deficient mice. The aim of this study was to determine the effect of DVD deficiency on a range of cognitive tasks assessing attentional processing in C57BL/6J mice. DVD deficiency was established by feeding female C57BL/6J mice a vitamin D-deficient diet from four weeks of age. After six weeks on the diet, vitamin D-deficient and control females were mated with vitamin D-normal males and upon birth of the pups, all dams were returned to a diet containing vitamin D. The adult offspring were tested on a range of cognitive behavioural tests, including the five-choice serial reaction task (5C-SRT and five-choice continuous performance test (5C-CPT, as well as latent inhibition using a fear conditioning paradigm. DVD deficiency was not associated with altered attentional performance on the 5C-SRT. In the 5C-CPT DVD-deficient male mice exhibited an impairment in inhibiting repetitive responses by making more perseverative responses, with no changes in premature or false alarm responding. DVD deficiency did not affect the acquisition or retention of cued fear conditioning, nor did it affect the expression of latent inhibition using a fear conditioning paradigm. DVD-deficient mice exhibited no major impairments in any of the cognitive domains tested. However, impairments in perseverative responding in DVD-deficient mice may indicate that these animals have specific alterations in systems governing compulsive or reward-seeking behaviour.

  9. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    Science.gov (United States)

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  10. Head and neck squamous cell carcinoma is not associated with interleukin-18 promoter gene polymorphisms: a case-control study.

    Science.gov (United States)

    Asefi, V; Mojtahedi, Z; Khademi, B; Naeimi, S; Ghaderi, A

    2009-04-01

    To investigate the association of two functional single nucleotide polymorphisms in the promoter region of the interleukin-18 gene, at positions -607 and -137, with head and neck squamous cell carcinoma. Genomic deoxyribonucleic acid was extracted, by the salting-out method, from peripheral blood leukocytes. Single nucleotide polymorphisms of the interleukin-18 gene at positions -607 (cytosine/adenine) and -137 (guanine/cytosine) were analysed by sequence-specific polymerase chain reaction. One hundred and eleven patients (86 men and 25 women; mean age 56.7+/-13.7 years) and 212 regional controls (165 men and 47 women; mean age 53.3+/-12.2 years) were studied. Control subjects comprised healthy volunteers or cancer-free individuals presenting with otolaryngological disease. The diagnosis of squamous cell carcinoma was confirmed histopathologically. Various clinical parameters were collected at diagnosis, including tumour site, tumour size, lymph node involvement, distant metastasis and stage. There was no significant association between the allele, genotype or haplotype frequencies of the two single nucleotide polymorphisms of the interleukin-18 promoter and the head and neck squamous cell carcinoma susceptibility or clinical parameters at diagnosis. Interleukin-18 polymorphisms at positions -607 and -137 did not confer susceptibility to head and neck squamous cell carcinoma in southern Iranian patients.

  11. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Gijs H M van Puijvelde

    Full Text Available An abdominal aortic aneurysm (AAA is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II. We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.

  12. Effect of vitamin B6 deficiency on an antibody production in mice.

    Science.gov (United States)

    Doke, S; Inagaki, N; Hayakawa, T; Tsuge, H

    1997-08-01

    To investigate the effects of vitamin B6 (B6) deficiency on an antibody production in BALB/c mice, the production of specific immunoglobulin (Ig) E antibody against dinitrophenylated ovalbumin (DNP-OVA) were measured by the methods of enzyme linked immunosorbent assay. The mice fed on on a B6 deficient diet for 4 weeks were immunized intraperitoneally with DNP-OVA absorbed to aluminum hydroxide gel. The contents of anti DNP-IgE antibodies in sera of B6 deficient mice significantly increased compared to that of control mice fed on a diet containing B6. In addition, Interleukin-4, which was known to induce IgE production in allergic reactions from splenocytes of B6 deficient mice, was approximately four-fold higher than that in control mice. According to the recovery test to the B6 deficient mice, that is feeding the control diet for 21 days, all values in terms of the body, thymus, and spleen weight, total serum protein, IgG, and anti DNP-IgE content, regained almost the same levels as those of control. These results suggest that B6 deficiency in mice would have relation to the stimulation of specific IgE antibody production against DNP-OVA.

  13. ChronicPseudomonas aeruginosainfection-induced chronic bronchitis and emphysematous changes in CCSP-deficient mice.

    Science.gov (United States)

    Matsumoto, Takemasa; Fujita, Masaki; Hirano, Ryosuke; Uchino, Junji; Tajiri, Yukari; Fukuyama, Satoru; Morimoto, Yasuo; Watanabe, Kentaro

    2016-01-01

    The club cell secretory protein (CCSP) is a regulator of lung inflammation following acute respiratory infection or lung injury. Recently, the relationship between CCSP and COPD has been reported. Since COPD results from an abnormal inflammatory response, we hypothesized that CCSP could have a protective role against chronic inflammation-induced lung damage. To address this issue, the pathophysiology of chronic lung inflammation induced by Pseudomonas aeruginosa in CCSP-deficient mice was determined. A tube of 5 mm in length was soaked in a fluid containing P. aeruginosa (PAO01 strain) for 1 week and inserted into the trachea of CCSP-deficient mice. One week later, P. aeruginosa was administered into the trachea. Five weeks after insertion of tube, the mice were sacrificed. Bronchoalveolar lavage fluids were collected to determine the bacterial growth, and the lung histology and physiology were also examined. P. aeruginosa was continuously detected in bronchoalveolar lavage fluids during the study. Neutrophils were increased in the bronchoalveolar lavage fluids from the CCSP-deficient mice in comparison to wild-type mice. A histological study demonstrated chronic inflammation around bronchus, serious bronchial stenosis, and alveolar enlargement in the CCSP-deficient mice. The lung physiology study demonstrated an increase in the lung compliance of the CCSP-deficient mice. Chronic P. aeruginosa inflammation resulted in chronic bronchitis and emphysematous changes in the CCSP-deficient mice. CCSP could play an important role in protecting the host from the chronic inflammation-induced lung damage.

  14. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    Science.gov (United States)

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation

  15. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Li, Zheng; Li, Xingye; Chan, Matthew T V; Wu, William Ka Kei; Tan, DunXian; Shen, Jianxiong

    2017-09-01

    Neural stem cells (NSCs) are self-renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro-inflammatory cytokine interleukin-18 (IL-18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL-18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL-18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain-derived and glial cell-derived neurotrophic factors (BDNF, GDNF) in IL-18-stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL-18 may attribute to the up-regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Circulating interleukin-18: A specific biomarker for atherosclerosis-prone patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Nemoto Shinji

    2011-01-01

    Full Text Available Abstract Background Metabolic syndrome (MetS is associated with an increased risk of the development of atherosclerotic cardiovascular disease (CVD. Interleukin-18 (IL-18, which is a pleiotropic proinflammatory cytokine with important regulatory functions in the innate immune response system, plays a crucial role in vascular pathologies. IL-18 is also a predictor of cardiovascular death in patients with CVD and is involved in atherosclerotic plaque destabilization. Results In order to determine if circulating levels of IL-18 can serve as a specific biomarker for distinguishing MetS patients from pre-MetS subjects, we studied 78 patients with visceral fat deposition and 14 age-matched control subjects. Increased levels of IL-18 were observed more frequently in patients with MetS than in pre-MetS subjects and were positively associated with waist circumference. Serum levels of IL-18 were significantly reduced by a change in weight caused by lifestyle modifications. There was a significant interaction between waist circumference and serum IL-18 concentration. Weight loss of at least 5% of the body weight caused by lifestyle modification decreased IL-18 circulating levels relative to the reduction in waist circumference and blood pressure, suggesting that this degree of weight loss benefits the cardiovascular system. Conclusion IL-18 may be a useful biomarker of the clinical manifestations of MetS and for the management of the risk factors of CVD.

  17. Effect of interleukin-18 gene polymorphisms on sensitization to wheat flour in bakery workers.

    Science.gov (United States)

    Kim, Seung-Hyun; Hur, Gyu-Young; Jin, Hyun Jung; Choi, Hyunna; Park, Hae-Sim

    2012-04-01

    Lower respiratory symptoms in bakery workers may be induced by wheat flour and endotoxins. We hypothesized that endotoxins from wheat flour may stimulate innate immunity and that interleukin-18 (IL-18) gene polymorphisms may affect their regulatory role in innate immune responses to endotoxins. To investigate the genetic contribution of IL-18 to sensitization to wheat flour, we performed a genetic association study of IL-18 in Korean bakery workers. A total of 373 bakery workers undertook a questionnaire regarding work-related symptoms. Skin prick tests with common and occupational allergens were performed and specific antibodies to wheat flour were measured by ELISA. Three polymorphisms of the IL-18 gene (-607A/C, -137G/C, 8674C/G) were genotyped, and the functional effects of the polymorphisms were analyzed using the luciferase reporter assay. Genotypes of -137G/C (GC or CC) and haplotype ht3 [ACC] showed a significant association with the rate of sensitization to wheat flour. Luciferase activity assay indicated ht3 [AC] as a low transcript haplotype. In conclusion, the regulatory role of IL-18 in lipopolysaccharide-induced responses in bakery workers may be affected by this polymorphism, thus contributing to the development of sensitization to wheat flour and work-related respiratory symptoms.

  18. Interleukin 1-β, Interleukin-1 Receptor Antagonist, and Interleukin 18 in Children with Acute Spontaneous Urticaria

    Science.gov (United States)

    Machura, E.; Szczepańska, M.; Mazur, B.; Barć-Czarnecka, M.; Kasperska-Zając, A.

    2013-01-01

    Very little is known about the role of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in urticaria. Material and Methods. Serum levels of IL-1β, IL-1 receptor antagonist (IL-1RA), and IL-18 were measured in 56 children with urticaria and in 41 healthy subjects. Results. Serum IL-1β did not differ between children with acute urticaria and controls. Children with single episode of urticaria had higher levels of IL-1RA and IL-18 than healthy subjects. In children with single episode of urticaria, level of IL-1RA correlated with C-reactive protein (CRP), D-dimer, and IL-1β levels. In subjects with recurrence of urticaria IL-1RA was positively correlated with WBC and D-dimer levels. No correlation of cytokine levels and urticaria severity scores (UAS) in all children with urticaria was observed. In children with single episode of urticaria UAS correlated with CRP level. In the group with single episode of urticaria and in children with symptoms of upper respiratory infection, IL-1RA and IL-18 levels were higher than in controls. The former was higher than in noninfected children with urticaria. In conclusion, this preliminary study documents that serum IL-1RA and IL-18 levels are increased in some children with acute urticaria. However further studies are necessary to define a pathogenic role of IL-1β, IL-1RA, and IL-18 in urticaria. PMID:24490166

  19. Association of polymorphisms of interleukin-18 gene promoter region with polycystic ovary syndrome in chinese population

    Directory of Open Access Journals (Sweden)

    Li Mei-zhi

    2010-10-01

    Full Text Available Abstract Background Recent research shows that polycystic ovary syndrome (PCOS may have an association with low-grade chronic inflammation, and that PCOS may induce an increase in serum interleukin-18 (IL-18 levels. Methods To investigate the polymorphisms of the IL-18 gene promoters with PCOS, two single nucleotide polymorphisms (SNPs in the promoter of the IL-18 gene (at positions -607C/A and -137G/C in 118 Chinese women with PCOS and 79 controls were evaluated using polymerase chain reaction (PCR. Results No significant differences were found in the genotype distribution, allele frequency and haplotype frequency between the PCOS and control groups. Further analysis demonstrated a relationship between IL-18 gene promoter polymorphisms and PCOS insulin resistance (IR. Regarding the -137 allele frequency, G and C allele frequencies were 93.5% and 6.5%, respectively, in the PCOS with IR patients; G and C allele frequencies were 85.4% and 14.6%, respectively, in PCOS patients without IR (chi2 = 3.601, P = 0.048. Conclusions The presence of a polymorphism in the IL-18 gene was found to have no correlation with the occurrence of PCOS. Carriage of the C allele at position -137 in the promoter of the IL-18 gene may play a protective role from the development of PCOS IR.

  20. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure.

    Science.gov (United States)

    O'Brien, Laura C; Mezzaroma, Eleonora; Van Tassell, Benjamin W; Marchetti, Carlo; Carbone, Salvatore; Abbate, Antonio; Toldo, Stefano

    2014-06-12

    Interleukin 18 (IL-18) is a proinflammatory cytokine in the IL-1 family that has been implicated in a number of disease states. In animal models of acute myocardial infarction (AMI), pressure overload, and LPS-induced dysfunction, IL-18 regulates cardiomyocyte hypertrophy and induces cardiac contractile dysfunction and extracellular matrix remodeling. In patients, high IL-18 levels correlate with increased risk of developing cardiovascular disease (CVD) and with a worse prognosis in patients with established CVD. Two strategies have been used to counter the effects of IL-18:IL-18 binding protein (IL-18BP), a naturally occurring protein, and a neutralizing IL-18 antibody. Recombinant human IL-18BP (r-hIL-18BP) has been investigated in animal studies and in phase I/II clinical trials for psoriasis and rheumatoid arthritis. A phase II clinical trial using a humanized monoclonal IL-18 antibody for type 2 diabetes is ongoing. Here we review the literature regarding the role of IL-18 in AMI and heart failure and the evidence and challenges of using IL-18BP and blocking IL-18 antibodies as a therapeutic strategy in patients with heart disease.

  1. Interleukin-18 stimulates HIV-1 replication in a T-cell line.

    Science.gov (United States)

    Klein, S A; Klebba, C; Kauschat, D; Pape, M; Ozmen, L; Hoelzer, D; Ottmann, O G; Kalina, U

    2000-03-01

    Interleukin-18 (IL-18) is a recently identified proinflammatory cytokine. Its ability to induce interferon-g suggests a potential virustatic effect. On the other hand, it stimulates NFkB - an activator of HIV replication. Recently, stimulation of HIV-1 in monocytic cells has been demonstrated. In the present study, the influence of IL-18 on HIV-1 replication in lymphatic cells was investigated. Hut78 cells were infected with HIV-1 in the presence of recombinant human IL-18 expressed either in E. coli or eucaryotically by baculovirus in Sf9 cells. HIV-1 replication was monitored by p24 ELISA and endpoint titration of culture supernatants on C8166 cells. The addition of IL-18 led to a 3- to 15-fold enhancement of HIV replication in Hut78 cells. By addition of neutralising monoclonal anti-IL-18 antibodies, this effect of IL-18 was reduced by 75%. Exposure of Hut78 to IL-18 prior to HIV infection could exclude the possibility that IL-18 promotes infection of cells. Taken together, these data provide direct evidence for an IL-18-mediated enhancement of HIV-1 replication in lymphatic cells.

  2. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  3. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma

    Science.gov (United States)

    Arikkatt, Jaisy; Ullah, Md Ashik; Short, Kirsty Renfree; Zhang, Vivan; Gan, Wan Jun; Loh, Zhixuan; Werder, Rhiannon B; Simpson, Jennifer; Sly, Peter D; Mazzone, Stuart B; Spann, Kirsten M; Ferreira, Manuel AR; Upham, John W; Sukkar, Maria B; Phipps, Simon

    2017-01-01

    Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.21199.001 PMID:28099113

  4. Visfatin Destabilizes Atherosclerotic Plaques in Apolipoprotein E-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available Although there is evidence that visfatin is associated with atherogenesis, the effect of visfatin on plaque stability has not yet been explored.In vivo, vulnerable plaques were established by carotid collar placement in apolipoprotein E-deficient (ApoE-/- mice, and lentivirus expressing visfatin (lenti-visfatin was locally infused in the carotid artery. The lipid, macrophage, smooth muscle cell (SMC and collagen levels were evaluated, and the vulnerability index was calculated. In vitro, RAW264.7 cells were stimulated with visfatin, and the MMPs expressions were assessed by western blot and immunofluorescence. And the mechanism that involved in visfatin-induced MMP-8 production was investigated.Transfection with lenti-visfatin significantly promoted the expression of visfatin which mainly expressed in macrophages in the plaque. Lenti-visfatin transfection significantly promoted the accumulation of lipids and macrophages, modulated the phenotypes of smooth muscle cells and decreased the collagen levels in the plaques, which significantly decreased the plaque stability. Simultaneously, transfection with lenti-visfatin significantly up-regulated the expression of MMP-8 in vivo, as well as MMP-1, MMP-2 and MMP-9. Recombinant visfatin dose- and time-dependently up-regulated the in vitro expression of MMP-8 in macrophages. Visfatin promoted the translocation of NF-κB, and inhibition of NF-κB significantly reduced visfatin-induced MMP-8 production.Visfatin increased MMP-8 expression, promoted collagen degradation and increased the plaques vulnerability index.

  5. Glutathione system in Wolfram syndrome 1‑deficient mice.

    Science.gov (United States)

    Porosk, Rando; Kilk, Kalle; Mahlapuu, Riina; Terasmaa, Anton; Soomets, Ursel

    2017-11-01

    Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well‑defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1‑deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.

  6. Endogenous androgen deficiency enhances diet-induced hypercholesterolemia and atherosclerosis in low-density lipoprotein receptor-deficient mice.

    Science.gov (United States)

    Hatch, Nicholas W; Srodulski, Sarah J; Chan, Huei-Wei; Zhang, Xuan; Tannock, Lisa R; King, Victoria L

    2012-10-01

    Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice in response to a low-fat diet. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  7. Inflammation and airway hyperresponsiveness after chlorine exposure are prolonged by Nrf2 deficiency in mice.

    Science.gov (United States)

    Ano, Satoshi; Panariti, Alice; Allard, Benoit; O'Sullivan, Michael; McGovern, Toby K; Hamamoto, Yoichiro; Ishii, Yukio; Yamamoto, Masayuki; Powell, William S; Martin, James G

    2017-01-01

    Chlorine gas (Cl 2 ) is a potent oxidant and trigger of irritant induced asthma. We explored NF-E2-related factor 2 (Nrf2)-dependent mechanisms in the asthmatic response to Cl 2 , using Nrf2-deficient mice, buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis and sulforaphane (SFN), a phytochemical regulator of Nrf2. Airway inflammation and airway hyperresponsiveness (AHR) were assessed 24 and 48h after a 5-min nose-only exposure to 100ppm Cl 2 of Nrf2-deficient and wild type Balb/C mice treated with BSO or SFN. Animals were anesthetized, paralyzed and mechanically ventilated (FlexiVent™) and challenged with aerosolized methacholine. Bronchoalveolar lavage (BAL) was performed and lung tissues were harvested for assessment of gene expression. Cl 2 exposure induced a robust AHR and an intense neutrophilic inflammation that, although similar in Nrf2-deficient mice and wild-type mice at 24h after Cl 2 exposure, were significantly greater at 48h post exposure in Nrf2-deficient mice. Lung GSH and mRNA for Nrf2-dependent phase II enzymes (NQO-1 and GPX2) were significantly lower in Nrf2-deficient than wild-type mice after Cl 2 exposure. BSO reduced GSH levels and promoted Cl 2 -induced airway inflammation in wild-type mice, but not in Nrf2-deficient mice, whereas SFN suppressed Cl 2 -induced airway inflammation in wild-type but not in Nrf2-deficient mice. AHR was not affected by either BSO or SFN at 48h post Cl 2 exposure. Nrf2-dependent phase II enzymes play a role in the resolution of airway inflammation and AHR after Cl 2 exposure. Moderate deficiency of GSH affects the magnitude of acute inflammation but not AHR. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  9. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Science.gov (United States)

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  10. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  11. Regulatory T cells in the humoral response of protein deficient mice.

    Science.gov (United States)

    Price, P; Turner, K J

    1979-01-01

    Cell suspensions from the spleen or thymus of mice fed normally or mice that were protein deficient were injected into mice from each dietary group and also syngeneic nudes. Antigen, polyvinyl pyrrolidone (PVP), was injected at the stage of cell transfer and the antibody titres of the recipient animals were compared with those of control animals given only antigen. The regime was repeated using cell suspensions from donor animals which had been primed with antigen. These experiments showed that spleen cells were suppressive only when transferred from deficient to normal mice. Thymocytes generally lacked suppressive effects, except when given to irradiated mice also injected with "normal" spleen cells. However, thymocytes from deficient mice were marginally enhancing in nude mice, deficient mice and older "normals". To explain these results, it is suggested that responses to PVP are determined by distinct "suppressor-inducing" and "suppressor" T cells which act via helper T cells. The latter probably affect B cells directly and largely influence IgG production. It also appears likely that the ratio of helper to suppressor (inducer and effector) T cells is increased by protein deficiency.

  12. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...... was reduced from 1.58 mm3 in wild-type controls to 0.21 mm3 in uPA-deficient mice (p = 0.023). Tumor cell dissemination to brachial lymph nodes was also reduced from 53% (28/53) in wild-type controls to 31% (17/54) in uPA-deficient mice (p = 0.032). Mice without plasminogen display a severe pleiotropic...

  13. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  14. Yaba Monkey Tumor Virus Encodes a Functional Inhibitor of Interleukin-18

    Science.gov (United States)

    Nazarian, Steven H.; Rahman, Masmudur M.; Werden, Steven J.; Villeneuve, Danielle; Meng, Xiangzhi; Brunetti, Craig; Valeriano, Chalice; Wong, Christina; Singh, Rajkumari; Barrett, John W.; Xiang, Yan; McFadden, Grant

    2008-01-01

    Interleukin-18 (IL-18) is a critical proinflammatory cytokine whose extracellular bioactivity is regulated by a cellular IL-18 binding protein (IL-18BP). Many poxviruses have acquired variants of this IL-18BP gene, some of which have been shown to act as viral virulence factors. Yaba monkey tumor virus (YMTV) encodes a related family member, 14L, which is similar to the orthopoxvirus IL-18BPs. YMTV 14L was expressed from a baculovirus system and tested for its ability to bind and inhibit IL-18. We found that YMTV 14L bound both human IL-18 (hIL-18) and murine IL-18 with high affinity, at 4.1 nM and 6.5 nM, respectively. YMTV 14L was able to fully sequester hIL-18 but could only partially inhibit the biological activity of hIL-18 as measured by gamma interferon secretion from KG-1 cells. Additionally, 17 hIL-18 point mutants were tested by surface plasmon resonance for their ability to bind to YMTV 14L. Two clusters of hIL-18 surface residues were found to be important for the hIL-18-YMTV 14L interaction, in contrast to results for the Variola virus IL-18BP, which has been shown to primarily interact with a single cluster of three amino acids. The altered binding specificity of YMTV 14L most likely represents an adaptation resulting in increased fitness of the virus and affirms the plasticity of poxviral inhibitor domains that target cytokines like IL-18. PMID:17959666

  15. Yaba monkey tumor virus encodes a functional inhibitor of interleukin-18.

    Science.gov (United States)

    Nazarian, Steven H; Rahman, Masmudur M; Werden, Steven J; Villeneuve, Danielle; Meng, Xiangzhi; Brunetti, Craig; Valeriano, Chalice; Wong, Christina; Singh, Rajkumari; Barrett, John W; Xiang, Yan; McFadden, Grant

    2008-01-01

    Interleukin-18 (IL-18) is a critical proinflammatory cytokine whose extracellular bioactivity is regulated by a cellular IL-18 binding protein (IL-18BP). Many poxviruses have acquired variants of this IL-18BP gene, some of which have been shown to act as viral virulence factors. Yaba monkey tumor virus (YMTV) encodes a related family member, 14L, which is similar to the orthopoxvirus IL-18BPs. YMTV 14L was expressed from a baculovirus system and tested for its ability to bind and inhibit IL-18. We found that YMTV 14L bound both human IL-18 (hIL-18) and murine IL-18 with high affinity, at 4.1 nM and 6.5 nM, respectively. YMTV 14L was able to fully sequester hIL-18 but could only partially inhibit the biological activity of hIL-18 as measured by gamma interferon secretion from KG-1 cells. Additionally, 17 hIL-18 point mutants were tested by surface plasmon resonance for their ability to bind to YMTV 14L. Two clusters of hIL-18 surface residues were found to be important for the hIL-18-YMTV 14L interaction, in contrast to results for the Variola virus IL-18BP, which has been shown to primarily interact with a single cluster of three amino acids. The altered binding specificity of YMTV 14L most likely represents an adaptation resulting in increased fitness of the virus and affirms the plasticity of poxviral inhibitor domains that target cytokines like IL-18.

  16. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  17. Increased vascular sympathetic modulation in mice with Mas receptor deficiency

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    Introduction: The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Methods: Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200–250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. Results: The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg2), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg2). Conclusions: The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1–7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1–7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. PMID:27080540

  18. Amplification of EDHF-type vasodilatations in TRPC1-deficient mice

    DEFF Research Database (Denmark)

    Schmidt, Kjestine; Dubrovska, Galyna; Nielsen, Gorm

    2010-01-01

    -deficient mice (TRPC1-/-). Experimental approach. Vascular responses were studied using pressure/wire-myography and intravital microscopy. We performed electrophysiological measurements, and confocal Ca(2+) imaging for studying K(Ca)-channel functions and Ca(2+)sparks. Key results. TRPC1-deficiency...

  19. Marginal Biotin Deficiency Is Teratogenic in ICR Mice1,2

    OpenAIRE

    Mock, Donald M.; Mock, Nell I.; Stewart, Christopher W.; LaBorde, James B.; Hansen, Deborah K.

    2003-01-01

    The incidence of marginal biotin deficiency in normal human gestation is approximately one in three. In ICR mice, maternal biotin deficiency results in cleft palate, micrognathia, microglossia and limb hypoplasia. However, the relationships among the severity of maternal biotin deficiency, fetal biotin status and malformations have not been reported. This study utilized validated indices of biotin status to investigate the relationships among maternal biotin status, fetal biotin status and th...

  20. Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity

    Directory of Open Access Journals (Sweden)

    Palmiter Richard D

    2005-12-01

    Full Text Available Abstract Background Autosomal recessive juvenile parkinsonism (AR-JP is caused by mutations in the parkin gene which encodes an E3 ubiquitin-protein ligase. Parkin is thought to be critical for protecting dopaminergic neurons from toxic insults by targeting misfolded or oxidatively damaged proteins for proteasomal degradation. Surprisingly, mice with targeted deletions of parkin do not recapitulate robust behavioral or pathological signs of parkinsonism. Since Parkin is thought to protect against neurotoxic insults, we hypothesized that the reason Parkin-deficient mice do not develop parkinsonism is because they are not exposed to appropriate environmental triggers. To test this possibility, we challenged Parkin-deficient mice with neurotoxic regimens of either methamphetamine (METH or 6-hydroxydopamine (6-OHDA. Because Parkin function has been linked to many of the pathways involved in METH and 6-OHDA toxicity, we predicted that Parkin-deficient mice would be more sensitive to the neurotoxic effects of these agents. Results We found no signs consistent with oxidative stress, ubiquitin dysfunction, or degeneration of striatal dopamine neuron terminals in aged Parkin-deficient mice. Moreover, results from behavioral, neurochemical, and immunoblot analyses indicate that Parkin-deficient mice are not more sensitive to dopaminergic neurotoxicity following treatment with METH or 6-OHDA. Conclusion Our results suggest that the absence of a robust parkinsonian phenotype in Parkin-deficient mice is not due to the lack of exposure to environmental triggers with mechanisms of action similar to METH or 6-OHDA. Nevertheless, Parkin-deficient mice could be more sensitive to other neurotoxins, such as rotenone or MPTP, which have different mechanisms of action; therefore, identifying conditions that precipitate parkinsonism specifically in Parkin-deficient mice would increase the utility of this model and could provide insight into the mechanism of AR

  1. Arthritis is developed in Borrelia-primed and -infected mice deficient of interleukin-17.

    Science.gov (United States)

    Kuo, Joseph; Warner, Thomas F; Munson, Erik L; Nardelli, Dean T; Schell, Ronald F

    2016-10-01

    Interleukin-17 (IL-17) has been shown to participate in the development of Lyme arthritis in experimental mice. For example, neutralization of IL-17 with antibodies inhibits induction of arthritis in Borrelia-primed and -infected C57BL/6 wild-type mice. We hypothesized that mice lacking IL-17 would fail to develop Borrelia-induced arthritis. IL-17-deficient and wild-type C57BL/6 mice were primed with heat-inactivated Borrelia and then infected with viable spirochetes 3 weeks later. No swelling or major histopathological changes of the hind paws were detected in IL-17-deficient or wild-type mice that were primed with Borrelia or infected with viable spirochetes. By contrast, IL-17-deficient and wild-type mice that were primed and subsequently infected with heterologous Borrelia developed severe swelling and histopathological changes of the hind paws. In addition, Borrelia-primed and -infected IL-17-deficient mice exhibited elevated gamma-interferon (IFN-γ) levels in sera and increased frequencies of IFN-γ-expressing lymphocytes in popliteal lymph nodes compared to Borrelia-primed and -infected wild-type mice. These results demonstrate that IL-17 is not required for development of severe pathology in response to infection with Borrelia burgdorferi, but may contribute to disease through an interaction with IFN-γ. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Increased susceptibility to Yersinia enterocolitica Infection of Tff2 deficient mice.

    Science.gov (United States)

    Shah, Aftab A; Mihalj, Martina; Ratkay, Ivana; Lubka-Pathak, Maria; Balogh, Peter; Klingel, Karin; Bohn, Erwin; Blin, Nikolaus; Baus-Loncar, Mirela

    2012-01-01

    TFF2 is one of the members of the trefoil factor family, known for its role in protection of gastrointestinal epithelia upon injury; however, recent studies suggest that TFF2 could also play an important role in the immune system. In the present study Tff2 deficient and wild type mice were infected by Y. enterocolitica which resulted in a lethal outcome in all Tff2 deficient mice, but not in WT animals. Yersinia invaded Peyer's patches more efficiently as shown by high bacterial titers in the KO mice while wild type mice displayed lower titers and a visible bacterial accumulation in the intestine. Bacterial accumulation in Peyer's patches of Tff2 deficient mice was accompanied by increased recruitment of macrophages. While an increased level of MAC-1 positive cells was observed in the spleens of both Tff2 deficient and WT mice at third day post infection, bacterial dissemination to liver, lung and kidneys was observed only in Tff2 knock-out mice. Analysis of the cellular composition of spleen did not reveal any substantial alteration to WT animals, suggesting possible disregulation of hemopoietic cells involved in immune response to Y. enterocolitica. These new data indicate that Tff2 plays an important role in immune response by protecting the organism from consequences of infection and that Tff2 knock-out mice react adversely to bacterial infections, in this case specifically to Y. enterocolitica. Copyright © 2012 S. Karger AG, Basel.

  3. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  4. Anxiety- and depression-like phenotype of hph-1 mice deficient in tetrahydrobiopterin

    DEFF Research Database (Denmark)

    Nasser, Arafat; Birk Møller, Lisbeth; Olesen, Jess Have

    2014-01-01

    Decreased tetrahydrobiopterin (BH4) biosynthesis has been implicated in the pathophysiology of anxiety and depression. The aim of this study was therefore to characterise the phenotype of homozygous hph-1 (hph) mice, a model of BH4 deficiency, in behavioural tests of anxiety and depression as well...... as determine hippocampal monoamine and plasma nitric oxide levels. In the elevated zero maze test, hph mice displayed increased anxiety-like responses compared to wild-type mice, while the marble burying test revealed decreased anxiety-like behaviour. This was particularly observed in male mice. In the tail....... This study provides the first evidence that congenital BH4 deficiency regulates anxiety- and depression-like behaviours. The altered responses observed possibly reflect decreased hippocampal serotonin and dopamine found in hph mice compared to wild-type mice, but also reduced nitric oxide formation. We...

  5. A bicistronic expression system for bacterial production of authentic human interleukin-18.

    Science.gov (United States)

    Kirkpatrick, Robert B; McDevitt, Patrick J; Matico, Rosalie E; Nwagwu, Silas; Trulli, Stephen H; Mao, Joyce; Moore, Dwight D; Yorke, Adam F; McLaughlin, Megan M; Knecht, Kristin A; Elefante, Louis C; Calamari, Amy S; Fornwald, Jim A; Trill, John J; Jonak, Zdenka L; Kane, James; Patel, Pramathesh S; Sathe, Ganesh M; Shatzman, Allan R; Tapley, Peter M; Johanson, Kyung O

    2003-02-01

    Interleukin-18 (IL-18) is activated and released from immune effector cells to stimulate acquired and innate immune responses involving T and natural killer (NK) cells. The release of IL-18 from mammalian cells is linked to its proteolytic activation by caspases including interleukin 1 converting enzyme (ICE). The absence of a signal peptide sequence and the requirement for coupled activation and cellular release have presented challenges for the large-scale recombinant production of IL-18. In this study, we have explored methods for the direct production of authentic human IL-18 toward the development of a large-scale production system. Expression of mature IL-18 directly in Escherichia coli with a methionine initiating codon leads to the production of MetIL-18 that is dramatically less potent in bioassays than IL-18 produced as a pro-peptide and activated in vitro. To produce an authentic IL-18, we have devised a bicistronic expression system for the coupled transcription and translation of ProIL-18 with caspase-1 (ICE) or caspase-4 (ICE-rel II, TX, ICH-2). Mature IL-18 with an authentic N-terminus was produced and has a biological activity and potency comparable to that of in vitro processed mature IL-18. Optimization of this system for the maximal production yields can be accomplished by modulating the temperature, to affect the rate of caspase activation and to favor the accumulation of ProIL-18, prior to its proteolytic processing by activated caspase. The effect of temperature is particularly profound for the caspase-4 co-expression process, enabling optimized production levels of over 150 mg/L in shake flasks at 25 degrees C. An alternative bicistronic expression design utilizing a precise ubiquitin IL-18 fusion, processed by co-expressed ubiquitinase, was also successfully used to generate fully active IL-18, thereby demonstrating that the pro-sequence of IL-18 is not required for recombinant IL-18 production. Copyright 2002 Elsevier Science (USA)

  6. Folic Acid Deficiency Does Not Adversely Affect Oocyte Meiosis in Mice.

    Science.gov (United States)

    Tsuji, Ai; Noguchi, Rina; Nakamura, Toshinobu; Shibata, Katsumi

    2016-01-01

    Spindle defect and chromosome misalignment occuring in oocyte meiosis induce nondisjunction. Nondisjunction causes Down syndrome, also known as trisomy 21. Folic acid (FA) is an essential nutrient composition for fetal growth and development. It has been reported that FA nutritional status is associated with the risk of Down syndrome. However, to our knowledge, little is known about the effect of FA deficiency on abnormal oocytes (spindle defects, chromosome misalignments and immature oocyte) in vivo. In the present study, we investigate the effects of FA deficiency on oocyte meiosis in female mice. In order to induce FA deficiency in mice, female Crl:CD1 mice were fed a FA-free diet for 58 d. The diet also contained an antibiotic which has functions on limiting FA formation by intestinal microorganisms. The level of FA deficiency was determined by measuring the concentration of FA in the liver, hemocyte, uterus, ovary, and urine. FA concentrations in these samples from the FA-deficient group were 50-90% lower. Despite this, the frequency of abnormal oocytes was no different between the FA-deficient and control groups (20.0% vs 14.6%). According to the past research, FA transporter was strongly expressed in oocytes. Hence, it is possible that FA-free diets may not affect the concentration of oocyte FA in mice. To sum up these data, our study concluded that FA deficiency did not adversely affect oocyte meiosis.

  7. Stabilization of tooth movement by administration of reveromycin A to osteoprotegerin-deficient knockout mice.

    Science.gov (United States)

    Yabumoto, Takahiro; Miyazawa, Ken; Tabuchi, Masako; Shoji, Satsuki; Tanaka, Miyuki; Kadota, Manami; Yoshizako, Mamoru; Kawatani, Makoto; Osada, Hiroyuki; Maeda, Hatsuhiko; Goto, Shigemi

    2013-09-01

    In this study, mechanical stress in the form of tooth movement was applied to osteoprotegerin-deficient knockout mice, which served as an animal model for juvenile Paget's disease. To compare and evaluate bone turnover and response of the surrounding bony tissue, we administered reveromycin A. We also investigated the ability of reveromycin A to control osteoclastic activity in juvenile Paget's disease. Eight-week-old male osteoprotegerin-deficient knockout and wild-type mice were injected with reveromycin A (15 mg/kg of body weight) intraperitoneally twice daily. An elastic module was inserted interproximally between the maxillary left first and second molars. Administration of reveromycin A to osteoprotegerin-deficient knockout mice reduced tooth movement distances, increased bone volumes at the interradicular septum, decreased osteoclast counts, and reduced serum alkaline phosphatase and tartrate resistant acid phosphatase. Reveromycin A administration also caused a temporal shift in peak Runx2 staining in osteoprotegerin-deficient knockout mice so that the overall staining time course was similar to that observed for wild-type mice. Reveromycin A administration in osteoprotegerin-deficient knockout mice inhibited bone resorption and normalized bone formation. As a result, normal bone turnover was obtained. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  9. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  10. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    OpenAIRE

    Franken, S; Wittke, D; Mansson, JE; D'Hooge, R; De Deyn, PP; Lüllmann-Rauch, R; Matzner, U; Gieselmann, V

    2006-01-01

    Summary Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of gal...

  11. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  12. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice.

    Directory of Open Access Journals (Sweden)

    Laurel L Ballantyne

    Full Text Available Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation either failed to extend lifespan (ornithine or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug. A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.

  13. Plasmalogen modulation attenuates atherosclerosis in ApoE- and ApoE/GPx1-deficient mice.

    Science.gov (United States)

    Rasmiena, Aliki A; Barlow, Christopher K; Stefanovic, Nada; Huynh, Kevin; Tan, Ricardo; Sharma, Arpeeta; Tull, Dedreia; de Haan, Judy B; Meikle, Peter J

    2015-12-01

    We previously reported a negative association of circulating plasmalogens (phospholipids with proposed atheroprotective properties) with coronary artery disease. Plasmalogen modulation was previously demonstrated in animals but its effect on atherosclerosis was unknown. We assessed the effect of plasmalogen enrichment on atherosclerosis of murine models with differing levels of oxidative stress. Six-week old ApoE- and ApoE/glutathione peroxidase-1 (GPx1)-deficient mice were fed a high-fat diet with/without 2% batyl alcohol (precursor to plasmalogen synthesis) for 12 weeks. Mass spectrometry analysis of lipids showed that batyl alcohol supplementation to ApoE- and ApoE/GPx1-deficient mice increased the total plasmalogen levels in both plasma and heart. Oxidation of plasmalogen in the treated mice was evident from increased level of plasmalogen oxidative by-product, sn-2 lysophospholipids. Atherosclerotic plaque in the aorta was reduced by 70% (P = 5.69E-07) and 69% (P = 2.00E-04) in treated ApoE- and ApoE/GPx1-deficient mice, respectively. A 40% reduction in plaque (P = 7.74E-03) was also seen in the aortic sinus of only the treated ApoE/GPx1-deficient mice. Only the treated ApoE/GPx1-deficient mice showed a decrease in VCAM-1 staining (-28%, P = 2.43E-02) in the aortic sinus and nitrotyrosine staining (-78%, P = 5.11E-06) in the aorta. Plasmalogen enrichment via batyl alcohol supplementation attenuated atherosclerosis in ApoE- and ApoE/GPx1-deficient mice, with a greater effect in the latter group. Plasmalogen enrichment may represent a viable therapeutic strategy to prevent atherosclerosis and reduce cardiovascular disease risk, particularly under conditions of elevated oxidative stress and inflammation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  15. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  16. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  17. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  18. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  19. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth......, high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... and vascular density were unaffected by PAI-1 status. PAI-1 deficiency also did not significantly affect the lung metastatic burden. These results agree with the virtual lack of spontaneous phenotype in PAI-1-deficient mice and humans and may reflect that the plasminogen activation reaction is not rate...

  20. Shape analysis of the basioccipital bone in Pax7-deficient mice.

    Science.gov (United States)

    Cates, Joshua; Nevell, Lisa; Prajapati, Suresh I; Nelon, Laura D; Chang, Jerry Y; Randolph, Matthew E; Wood, Bernard; Keller, Charles; Whitaker, Ross T

    2017-12-20

    We compared the cranial base of newborn Pax7-deficient and wildtype mice using a computational shape modeling technology called particle-based modeling (PBM). We found systematic differences in the morphology of the basiooccipital bone, including a broadening of the basioccipital bone and an antero-inferior inflection of its posterior edge in the Pax7-deficient mice. We show that the Pax7 cell lineage contributes to the basioccipital bone and that the location of the Pax7 lineage correlates with the morphology most effected by Pax7 deficiency. Our results suggest that the Pax7-deficient mouse may be a suitable model for investigating the genetic control of the location and orientation of the foramen magnum, and changes in the breadth of the basioccipital.

  1. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.

    Science.gov (United States)

    Lagishetty, Venu; Misharin, Alexander V; Liu, Nancy Q; Lisse, Thomas S; Chun, Rene F; Ouyang, Yi; McLachlan, Sandra M; Adams, John S; Hewison, Martin

    2010-06-01

    Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.

  2. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  3. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  4. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  5. Melatonin Efficacy in Obese Leptin-Deficient Mice Heart

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2017-12-01

    Full Text Available Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice, when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life. We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE, a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.

  6. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  7. Social, communication, and cortical structural impairments in Epac2-deficient mice

    OpenAIRE

    Srivastava, Deepak P.; Jones, Kelly A.; Woolfrey, Kevin M.; Burgdorf, Jeffrey; Russell, Theron A.; Kalmbach, Abigail; Lee, Hyerin; Yang, Connie; Bradberry, Mazdak M.; Wokosin, David; Moskal, Joseph R.; Casanova, Manuel F.; Waters, Jack; Penzes, Peter

    2012-01-01

    Deficits in social and communication behaviors are common features of a number of neurodevelopmental disorders. However, the molecular and cellular substrates of these higher order brain functions are not well understood. Here we report that specific alterations in social and communication behaviors in mice occur as a result of loss of the EPAC2 gene, which encodes a protein kinase A-independent cyclic AMP target. Epac2-deficient mice exhibited robust deficits in social interactions and ultra...

  8. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development of r...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  9. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...

  10. Compensatory T cell responses in IRG-deficient mice prevent sustained Chlamydia trachomatis infections.

    Directory of Open Access Journals (Sweden)

    Jörn Coers

    2011-06-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis is the most common cause of bacterial sexually transmitted diseases in the United States. In women C. trachomatis can establish persistent genital infections that lead to pelvic inflammatory disease and sterility. In contrast to natural infections in humans, experimentally induced infections with C. trachomatis in mice are rapidly cleared. The cytokine interferon-γ (IFNγ plays a critical role in the clearance of C. trachomatis infections in mice. Because IFNγ induces an antimicrobial defense system in mice but not in humans that is composed of a large family of Immunity Related GTPases (IRGs, we questioned whether mice deficient in IRG immunity would develop persistent infections with C. trachomatis as observed in human patients. We found that IRG-deficient Irgm1/m3((-/- mice transiently develop high bacterial burden post intrauterine infection, but subsequently clear the infection more efficiently than wildtype mice. We show that the delayed but highly effective clearance of intrauterine C. trachomatis infections in Irgm1/m3((-/- mice is dependent on an exacerbated CD4(+ T cell response. These findings indicate that the absence of the predominant murine innate effector mechanism restricting C. trachomatis growth inside epithelial cells results in a compensatory adaptive immune response, which is at least in part driven by CD4(+ T cells and prevents the establishment of a persistent infection in mice.

  11. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  12. SGLT1 Deficiency Turns Listeria Infection into a Lethal Disease in Mice

    Directory of Open Access Journals (Sweden)

    Piyush Sharma

    2017-07-01

    Full Text Available Background: Cellular glucose uptake may involve either non-concentrative glucose carriers of the GLUT family or Na+-coupled glucose-carrier SGLT1, which accumulates glucose against glucose gradients and may thus accomplish cellular glucose uptake even at dramatically decreased extracellular glucose concentrations. SGLT1 is not only expressed in epithelia but as well in tumour cells and immune cells. Immune cell functions strongly depend on their metabolism, therefore we hypothesized that deficiency of SGLT1 modulates the defence against bacterial infection. To test this hypothesis, we infected wild type mice and gene targeted mice lacking functional SGLT1 with Listeria monocytogenes. Methods: SGLT1 deficient mice and wild type littermates were infected with 1x104 CFU Listeria monocytogenes intravenously. Bacterial titers were determined by colony forming assay, SGLT1, TNF-α, IL-6 and IL-12a transcript levels were determined by qRT-PCR, as well as SGLT1 protein abundance and localization by immunohistochemistry. Results: Genetic knockout of SGLT1 (Slc5a1–/– mice significantly compromised bacterial clearance following Listeria monocytogenes infection with significantly enhanced bacterial load in liver, spleen, kidney and lung, and significantly augmented hepatic expression of TNF-α and IL-12a. While all wild type mice survived, all SGLT1 deficient mice died from the infection. Conclusions: SGLT1 is required for bacterial clearance and host survival following murine Listeria infection.

  13. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  14. Cardiovascular effects of uremia in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Bro, Susanne

    2009-01-01

    degeneration. Furthermore, the studies suggested that vascular inflammation and systemic oxidative stress may explain some of the proatherogenic effects of uremia in mice. Interestingly, the accelerated atherosclerosis could be prevented by RAS inhibition, or markedly reduced by RAGE blockade, probably through...

  15. Adipocyte Deficiency of Angiotensinogen Prevents Obesity-Induced Hypertension in Male Mice

    Science.gov (United States)

    Yiannikouris, Frederique; Gupte, Manisha; Putnam, Kelly; Thatcher, Sean; Charnigo, Richard; Rateri, Debra L.; Daugherty, Alan; Cassis, Lisa A.

    2012-01-01

    Previous studies demonstrated that diet-induced obesity increased plasma angiotensin II concentrations and elevated systolic blood pressures in male mice. Adipocytes express angiotensinogen and secrete angiotensin peptides. We hypothesize that adipocyte-derived angiotensin II mediates obesity-induced increases in systolic blood pressure in male high fat-fed C57BL/6 mice. Systolic blood pressure was measured by radiotelemetry during week 16 of low fat or high fat feeding in Agtfl/fl and adipocyte-angiotensinogen deficient mice (AgtaP2). Adipocyte angiotensinogen deficiency had no effect on diet-induced obesity. Basal 24 hour systolic blood pressure was not different in low fat-fed Agtfl/fl compared to AgtaP2 mice (124 ± 3 vs. 128 ± 3 mmHg, respectively). In Agtfl/fl mice, high fat feeding significantly increased systolic blood pressure (24 hr; 134 ± 2 mmHg; P<0.05). In contrast, high fat-fed AgtaP2 mice did not exhibit an increase in systolic blood pressure (126 ± 2 mmHg). Plasma angiotensin II concentrations were increased by high fat-feeding in Agtfl/fl mice (low fat, 32 ± 14; high fat, 219 ± 58 pg/ml, P<0.05). In contrast, high fat-fed AgtaP2 mice did not exhibit elevated plasma angiotensin II concentrations (high fat, 18 ± 7 pg/ml). Similarly, adipose tissue concentrations of angiotensin II were significantly decreased in low fat and high fat-fed AgtaP2 mice compared to controls. In conclusion, adipocyte angiotensinogen deficiency prevented high fat-induced elevations in plasma angiotensin II concentrations and systolic blood pressure. These results suggest that adipose tissue serves as a major source of angiotensin II in the development of obesity-hypertension. PMID:23108647

  16. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  17. Primer for non-immunologists on immune-deficient mice and their applications in research.

    Science.gov (United States)

    Croy, B A; Linder, K E; Yager, J A

    2001-08-01

    Studies of immune deficiencies have a history as long as that of immunology. However, reports of two key spontaneous recessive mutations in mice (nude in 1966-1968 and scid in 1983) laid the foundations for widespread application of immune-deficient rodents to a broad range of research topics. More recently, technologies modifying the mouse genome by transgenesis, gene ablation and crossbreeding for lines with multiple immune deficits have provided a large number of new types of immunologically impaired mice. The primary goals of this overview are to help non-immunologists understand key differences between some of the immunodeficient strains, develop an appreciation for the value of information derived from immunodeficient mouse-based research and to encourage expanded, creative use of these specialized research animals. Secondary goals are to promote greater awareness of unexpected outcomes that can arise when working with genetically immune-deficient mice, the need for vigilance in maintaining these research animals, and the care required in interpretation of the data that immune-deficient modeling provides. Two illustrations on developing appropriate immune deficient animal models for a new research application conclude the review.

  18. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation.

    Science.gov (United States)

    Kremserova, Silvie; Perecko, Tomas; Soucek, Karel; Klinke, Anna; Baldus, Stephan; Eiserich, Jason P; Kubala, Lukas

    2016-01-01

    Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.

  19. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Silvie Kremserova

    2016-01-01

    Full Text Available Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO, abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.

  20. Teriparatide (human PTH1-34) compensates for impaired fracture healing in COX-2 deficient mice.

    Science.gov (United States)

    Yukata, Kiminori; Xie, Chao; Li, Tian-Fang; Brown, Matthew L; Kanchiku, Tsukasa; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M; Beck, Christopher A; Jonason, Jennifer H; O'Keefe, Regis J

    2018-05-01

    Genetic ablation of cyclooxygenase-2 (COX-2) in mice is known to impair fracture healing. To determine if teriparatide (human PTH 1-34 ) can promote healing of Cox-2-deficient fractures, we performed detailed in vivo analyses using a murine stabilized tibia fracture model. Periosteal progenitor cell proliferation as well as bony callus formation was markedly reduced in Cox-2 -/- mice at day 10 post-fracture. Remarkably, intermittent PTH 1-34 administration increased proliferation of periosteal progenitor cells, restored callus formation on day 7, and enhanced bone formation on days 10, 14 and 21 in Cox-2-deficient mice. PTH 1-34 also increased biomechanical torsional properties at days 10 or 14 in all genotypes, consistent with enhanced bony callus formation by radiologic examinations. To determine the effects of intermittent PTH 1-34 for callus remodeling, TRAP staining was performed. Intermittent PTH 1-34 treatment increased the number of TRAP positive cells per total callus area on day 21 in Cox-2 -/- fractures. Taken together, the present findings indicate that intermittent PTH 1-34 treatment could compensate for COX-2 deficiency and improve impaired fracture healing in Cox-2-deficient mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Untargeted metabolomics analysis of ABCC6-deficient mice discloses an altered metabolic liver profile

    DEFF Research Database (Denmark)

    Rasmussen, Mie Rostved; Nielsen, Kirstine Lykke; Laursen, Mia Roest

    2016-01-01

    as more features were upregulated than downregulated in ABCC6-deficient mice. However, no differences of the identified metabolites in liver could be detected in plasma, whereas urine reflected some of the changes. Of note, N-acetylated amino acids and pantothenic acid (vitamin B5) that is involved...

  2. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  3. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein

    Science.gov (United States)

    Vu, Trang T.; Zhou, Ji; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P.; Gross, Peter L.; Weitz, Jeffrey I.

    2015-01-01

    Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid–driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation. PMID:25691157

  4. Transient impairment of the adaptive response to fasting in FXR-deficient mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, T; Grefhorst, A; Bouchaert, E; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2005-01-01

    The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR-/-) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of

  5. After a cold conditioning swim, UCP2-deficient mice are more able to defend against the cold than wild type mice.

    Science.gov (United States)

    Abdelhamid, Ramy E; Kovács, Katalin J; Nunez, Myra G; Larson, Alice A

    2014-08-01

    Uncoupling protein 2 (UCP2) is widely distributed throughout the body including the brain, adipose tissue and skeletal muscles. In contrast to UCP1, UCP2 does not influence resting body temperature and UCP2-deficient (-/-) mice have normal thermoregulatory responses to a single exposure to cold ambient temperatures. Instead, UCP2-deficient mice are more anxious, exhibit anhedonia and have higher circulating corticosterone than wild type mice. To test the possible role of UCP2 in depressive behavior we exposed UCP2-deficient and wild type mice to a cold (26°C) forced swim and simultaneously measured rectal temperatures during and after the swim. The time that UCP2-deficient mice spent immobile did not differ from wild type mice and all mice floated more on day 2. However, UCP2-deficient mice were more able to defend against the decrease in body temperature during a second daily swim at 26°C than wild type mice (area under the curve for wild type mice: 247.0±6.4; for UCP2-deficient mice: 284.4±3.8, Pthermoregulation of wild type mice during a second swim at 26°C correlated with their greater immobility whereas defense against the warmth during a swim at 41°C correlated better with greater immobility of UCP2-deficient mice. Together these data indicate that while the lack of UCP2 has no acute effect on body temperature, UCP2 may inhibit rapid improvements in defense against cold, in contrast to UCP1, whose main function is to promote thermogenesis. Copyright © 2014. Published by Elsevier Inc.

  6. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  7. Antroquinonol differentially modulates T cell activity and reduces interleukin-18 production, but enhances Nrf2 activation, in murine accelerated severe lupus nephritis.

    Science.gov (United States)

    Tsai, Pei-Yi; Ka, Shuk-Man; Chang, Jia-Ming; Lai, Jenn-Haung; Dai, Ming-Shen; Jheng, Huei-Lin; Kuo, Mao-Tien; Chen, Peini; Chen, Ann

    2012-01-01

    Accelerated severe lupus nephritis (ASLN), with an acute onset of severe clinical manifestations and histopathologic renal lesions, may represent transformation of mild LN to a severe form of glomerulonephritis. Abnormal activation of T and B cells and/or oxidative stress may play a major role in the pathogenesis of ASLN. This study tested the hypothesis that antroquinonol, a purified compound and major effective component of Antrodia camphorata with antiinflammatory and antioxidant activities, might prevent the transformation of mild LN into higher-grade (severe) nephritis in a murine lupus model. Experimental ASLN was induced in (NZB×NZW)F1 mice by twice weekly intraperitoneal injections of Salmonella-type lipopolysaccharide (LPS). Starting 2 days after the first dose of LPS, mice were treated daily with antroquinonol, administered by gavage, for different durations up to 5 weeks. Antroquinonol administration significantly ameliorated the proteinuria, hematuria, impairment of renal function, and development of severe renal lesions, especially cellular crescent formation, neutrophil infiltration, fibrinoid necrosis, and T cell proliferation in the glomerulus, as well as periglomerular interstitial inflammation. Mechanistic analyses revealed that antroquinonol 1) inhibited T cell activation/proliferation, but enhanced Treg cell suppression and reduced renal production of interleukin-18 (IL-18); 2) inhibited production of reactive oxygen species and nitric oxide, but increased activation of Nrf2 in the kidney; and 3) suppressed renal inflammation via blocking of NF-κB activation. Antroquinonol may have therapeutic potential for the early treatment of ASLN via its differential regulation of T cell function and lowering of IL-18 production, but also via the promotion of Nrf2 activation. Copyright © 2012 by the American College of Rheumatology.

  8. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  9. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    Science.gov (United States)

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. Copyright © 2016 the American Physiological Society.

  10. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.

    Science.gov (United States)

    Szentirmai, Éva; Krueger, James M

    2014-02-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, suppresses circulating levels of proinflammatory cytokines and reduces the severity and mortality of various models of experimental endotoxemia. In the present study, we determined the role of intact ghrelin signaling in LPS-induced sleep, feeding, and thermoregulatory responses in mice. Sleep-wake activity was determined after intraperitoneal, dark onset administration of 0.4, 2 and 10 μg LPS in preproghrelin knockout (KO) and wild-type (WT) mice. In addition, body temperature, motor activity and changes in 24-h food intake and body weight were measured. LPS induced dose-dependent increases in NREMS, and suppressed rapid-eye movement sleep, electroencephalographic slow-wave activity, motor activity, food intake and body weight in both Ppg KO and WT mice. Body temperature changes showed a biphasic pattern with a decrease during the dark period followed by an increase in the light phase. The effects of the low and middle doses of LPS were indistinguishable between the two genotypes. Administration of 10 μg LPS, however, induced significantly larger changes in NREMS and wakefulness amounts, body temperature, food intake and body weight in the Ppg KO mice. These findings support a role for ghrelin as an endogenous modulator of inflammatory responses and a central component of arousal and feeding circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. T cells exacerbate Lyme borreliosis in TLR2-deficient mice

    Directory of Open Access Journals (Sweden)

    Carrie E. Lasky

    2016-11-01

    Full Text Available Infection of humans with the spirochete, Borrelia burgdorferi, causes Lyme borreliosis and can lead to clinical manifestations such as, arthritis, carditis and neurological conditions. Experimental infection of mice recapitulates many of these symptoms and serves as a model system for the investigation of disease pathogenesis and immunity. Innate immunity is known to drive the development of Lyme arthritis and carditis, but the mechanisms driving this response remain unclear. Innate immune cells recognize B. burgdorferi surface lipoproteins primarily via Toll-like receptor (TLR2; however, previous work has demonstrated TLR2-/- mice had exacerbated disease and increased bacterial burden. We demonstrate increased CD4 and CD8 T cell infiltrates in B. burgdorferi-infected joints and hearts of C3H TLR2-/- mice. In vivo depletion of either CD4 or CD8 T cells reduced Borrelia-induced joint swelling and lowered tissue spirochete burden, while depletion of CD8 T cells alone reduced disease severity scores. Exacerbation of Lyme arthritis correlated with increased production of CXCL9 by synoviocytes and this was reduced with CD8 T cell depletion. These results demonstrate T cells can exacerbate Lyme disease pathogenesis and prolong disease resolution possibly through dysregulation of inflammatory responses and inhibition of bacterial clearance.

  12. Ameliorative effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient young mice.

    Science.gov (United States)

    Tamano, Haruna; Kan, Fumika; Oku, Naoto; Takeda, Atsushi

    2010-11-20

    Yokukansan, a traditional Japanese medicine has been used to cure neuropsychological disorders. In the present study, the effect of Yokukansan on social isolation-induced aggressive behavior was examined in zinc-deficient mice, which were fed a zinc-deficient diet and a drinking water containing Yokukansan for 2 weeks. In the resident-intruder test, the rate of mice that exhibited aggressive behavior in zinc-deficient mice, which was significantly higher than that in the control mice, was significantly decreased by administration of Yokukansan. The basal level of serum glucocorticoid, which was significantly higher in zinc-deficient mice, was lowered by administration of Yokukansan. On the other hand, serum glucocorticoid levels after the resident-intruder test were almost the same between the control and zinc-deficient mice. However, administration of Yokukansan to zinc-deficient mice significantly increased serum glucocorticoid level after the resident-intruder test and the significant difference in the rate of serum corticosterone level after the test to the basal level between the control and zinc-deficient mice was abolished. Dietary zinc deficiency increases the basal levels of serum glucocorticoid, while may insufficiently increase serum glucocorticoid levels in the resident-intruder test. The concentrations of glutamate and GABA (γ-aminobutyric acid) in the brain were significantly higher in zinc-deficient mice, while Yokukansan ameliorated the significant increases. These results indicate that Yokukansan ameliorates social isolation-induced aggressive behavior of zinc-deficient mice, probably via amelioration of abnormal glucocorticoid secretion. The ameliorative effect seems to be linked to the modification of glutamatergic neuron activity after administration of Yokukansan. 2010 Elsevier Inc. All rights reserved.

  13. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  14. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    Directory of Open Access Journals (Sweden)

    De Deyn PP

    2006-08-01

    Full Text Available Summary Background Arylsulfatase A (ASA-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT. This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.

  15. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  16. Mcph1-deficient mice reveal a role for MCPH1 in otitis media.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1(tm1a (/tm1a mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1(tm1a (/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1(tm1a (/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1(tm1a (/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.

  17. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  18. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  19. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ

    Science.gov (United States)

    Garofalo, Robert S.; Orena, Stephen J.; Rafidi, Kristina; Torchia, Anthony J.; Stock, Jeffrey L.; Hildebrandt, Audrey L.; Coskran, Timothy; Black, Shawn C.; Brees, Dominique J.; Wicks, Joan R.; McNeish, John D.; Coleman, Kevin G.

    2003-01-01

    The serine/threonine kinase Akt/PKB plays key roles in the regulation of cell growth, survival, and metabolism. It remains unclear, however, whether the functions of individual Akt/PKB isoforms are distinct. To investigate the function of Akt2/PKBβ, mice lacking this isoform were generated. Both male and female Akt2/PKBβ-null mice exhibit mild growth deficiency and an age-dependent loss of adipose tissue or lipoatrophy, with all observed adipose depots dramatically reduced by 22 weeks of age. Akt2/PKBβ-deficient mice are insulin resistant with elevated plasma triglycerides. In addition, Akt2/PKBβ-deficient mice exhibit fed and fasting hyperglycemia, hyperinsulinemia, glucose intolerance, and impaired muscle glucose uptake. In males, insulin resistance progresses to a severe form of diabetes accompanied by pancreatic β cell failure. In contrast, female Akt2/PKBβ-deficient mice remain mildly hyperglycemic and hyperinsulinemic until at least one year of age. Thus, Akt2/PKBβ-deficient mice exhibit growth deficiency similar to that reported previously for mice lacking Akt1/PKBα, indicating that both Akt2/PKBβ and Akt1/PKBα participate in the regulation of growth. The marked hyperglycemia and loss of pancreatic β cells and adipose tissue in Akt2/PKBβ-deficient mice suggest that Akt2/PKBβ plays critical roles in glucose metabolism and the development or maintenance of proper adipose tissue and islet mass for which other Akt/PKB isoforms are unable to fully compensate. PMID:12843127

  20. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jamie K Wong

    Full Text Available Stroke results in brain tissue damage from ischemia and oxidative stress. Molecular regulators of the protective versus deleterious cellular responses after cerebral ischemia remain to be identified. Here, we show that deletion of Smad1, a conserved transcription factor that mediates canonical bone morphogenetic protein (BMP signaling, results in neuroprotection in an ischemia-reperfusion (I/R stroke model. Uninjured mice with conditional deletion of Smad1 in the CNS (Smad1 cKO displayed upregulation of the reactive astrocyte marker GFAP and hypertrophic morphological changes in astrocytes compared to littermate controls. Additionally, cultured Smad1(-/- astrocytes exhibited an enhanced antioxidant capacity. When subjected to I/R injury by transient middle cerebral artery occlusion (tMCAO, Smad1 cKO mice showed enhanced neuronal survival and improved neurological recovery at 7 days post-stroke. This neuroprotective phenotype is associated with attenuated reactive astrocytosis and neuroinflammation, along with reductions in oxidative stress, p53 induction, and apoptosis. Our data suggest that Smad1-mediated signaling pathway is involved in stroke pathophysiology and may present a new potential target for stroke therapy.

  1. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  2. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  3. Intermittent cold stress enhances features of atherosclerotic plaque instability in apolipoprotein E‑deficient mice.

    Science.gov (United States)

    Zheng, Xi; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Li, Xiuchuan; Yang, Yongjian; Ma, Shuangtao

    2014-10-01

    The cold weather is associated with an increased occurrence of acute coronary events. However, the mechanisms underlying cold‑induced myocardial infarctions have not yet been fully elucidated. In the present study, 20 male, eight week‑old, apolipoprotein E (ApoE)‑deficient mice were subjected to either control conditions or intermittent cold exposure for eight weeks. Mice in the cold group were placed in a cold room at 4˚C for 4 h per day, while the mice in the control group were kept in a room at 24˚C. Cold‑exposed mice did not significantly differ from control mice in body weight, fasting glucose concentration and plasma lipid levels, including triglyceride, total cholesterol, low‑density lipoprotein and high‑density lipoprotein. The hematoxylin and eosin‑stained sections of the aortic root demonstrated increased plaque size in the cold group compared with the control group (Pinstability. Additionally, the protein expression of matrix metalloproteinase (MMP)‑2, MMP‑9 and MMP‑14 were significantly increased (Pinstability in ApoE‑deficient mice by altering the balance of MMPs and TIMPs. These findings may provide mechanistic insights into sudden cardiac death in cold environments.

  4. Rapamycin Regulates Bleomycin-Induced Lung Damage in SP-C-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Satish K. Madala

    2011-01-01

    Full Text Available Injury to the distal respiratory epithelium has been implicated as an underlying cause of idiopathic lung diseases. Mutations that result in SP-C deficiencies are linked to a small subset of spontaneous and familial cases of interstitial lung disease (ILD and interstitial pulmonary fibrosis (IPF. Gene-targeted mice that lack SP-C (−/− develop an irregular ILD-like disease with age and are a model of the human SP-C related disease. In the current study, we investigated whether rapamycin could ameliorate bleomycin-induced fibrosis in the lungs of −/− mice. +/+ and −/− mice were exposed to bleomycin with either preventative administration of rapamycin or therapeutic administration beginning eight days after the bleomycin injury. Rapamycin-treatment increased weight loss and decreased survival of bleomycin-treated +/+ and −/− mice. Rapamycin did not reduce the fibrotic disease in the prophylactic or rescue experiments of either genotype of mice. Further, rapamycin treatment augmented airway resistance and reduced lung compliance of bleomycin-treated −/− mice. Rapamycin treatment was associated with an increased expression of profibrotic Th2 cytokines and reduced expression of INF-γ. These findings indicate that novel therapeutics will be required to treat individuals with SP-C deficient ILD/IPF.

  5. Germline mutation rates at tandem repeat loci in DNA-repair deficient mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Miccoli, Laurent; Buul, Paul P.W. van; Burr, Karen L.-A.; Duyn-Goedhart, Annemarie van; Angulo, Jaime F.; Dubrova, Yuri E.

    2004-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1 -/- ) deficient male mice. Non-exposed scid and PARP -/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1 -/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1 -/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1 -/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1 -/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice

  6. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  7. The role of endogenous glucocorticoids in glucose metabolism and immune status of MIF-deficient mice.

    Science.gov (United States)

    Nikolic, Ivana; Vujicic, Milica; Saksida, Tamara; Berki, Timea; Stosic-Grujicic, Stanislava; Stojanovic, Ivana

    2013-08-15

    Macrophage migration inhibitory factor (MIF)-deficient mice develop glucose intolerance and hyperglycemia, but remain entirely responsive to exogenous insulin in adult age. Furthermore, as a consequence of MIF deficiency, the immune response in these mice is predominantly anti-inflammatory. Since MIF is a natural counter-regulator of glucocorticoid action, and it is known that excessive concentration of glucocorticoids contribute both to beta cell dysfunction and immunosuppression, we hypothesized that MIF absence enables elevation of glucocorticoids which in turn caused the observed condition. Our results confirm that MIF-knockout (MIF-KO) mice possess higher levels of circulating corticosterone, but lower expression of glucocorticoid receptor in pancreatic islets, liver and adipose tissue to the one observed in wild type (WT) mice. A significant up-regulation of glucocorticoid receptor expression was however noticed in MIF-deficient lymph node cells. The inhibition of glucocorticoid receptor by RU486 improved tolerance to glucose in MIF-KO mice and restored euglycemia. Although RU486 treatment did not alter the level of glucose receptor GLUT2, it enhanced insulin secretion and up-regulated insulin-triggered Akt phosphorylation within hepatic tissue. Finally, inhibition of glucocorticoid receptor changed anti-inflammatory phenotype of MIF-KO lymphocytes toward a physiological profile. Our results indicate that deregulated glucocorticoid secretion and glucocorticoid receptor expression in the absence of MIF possibly contributes to the development of glucose intolerance and immunosuppression in MIF-KO mice. However, since MIF-KO mice respond normally to insulin and their beta cell function is within physiological range, additional cause for glucose intolerance could be sought in the possible malfunction of their insulin. © 2013 Elsevier B.V. All rights reserved.

  8. Lack of Association between Interleukin-18 –607 C/A Gene Polymorphism and Pulmonary Tuberculosis in Zahedan, Southeast Iran

    Directory of Open Access Journals (Sweden)

    M. Taheri

    2012-01-01

    Full Text Available Interleukin-18 (IL-18 plays a critical role in immune response, contributing to the pathogenesis and pathophysiology of infectious diseases. Polymorphisms in the IL-18 genes are known to influence expression levels and may be associated with outcome of infections. The objective of this study was to determine whether the presence of IL-18 polymorphisms –607 A/C (rs1946518 was associated with tuberculosis disease. We investigated the functional polymorphism of IL-18 (rs1946518 in 174 patients with pulmonary tuberculosis (PTB and 177 healthy subjects. Genotype analysis was done using tetra amplification refractory mutation system-PCR (T-ARMS-PCR. The allelic and genotypic frequencies of the IL-18 polymorphism did not differ significantly between PTB and the controls. Our finding suggests that IL-18 polymorphism (rs1946518 may not be a risk factor for susceptibility to tuberculosis in a sample of Iranian population. Further studies are required to validate our findings.

  9. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  10. Retinal accumulation of zeaxanthin, lutein, and β-carotene in mice deficient in carotenoid cleavage enzymes.

    Science.gov (United States)

    Li, Binxing; Vachali, Preejith P; Shen, Zhengqing; Gorusupudi, Aruna; Nelson, Kelly; Besch, Brian M; Bartschi, Alexis; Longo, Simone; Mattinson, Ty; Shihab, Saeed; Polyakov, Nikolay E; Suntsova, Lyubov P; Dushkin, Alexander V; Bernstein, Paul S

    2017-06-01

    Carotenoid supplementation can prevent and reduce the risk of age-related macular degeneration (AMD) and other ocular disease, but until now, there has been no validated and well-characterized mouse model which can be employed to investigate the protective mechanism and relevant metabolism of retinal carotenoids. β-Carotene oxygenases 1 and 2 (BCO1 and BCO2) are the only two carotenoid cleavage enzymes found in animals. Mutations of the bco2 gene may cause accumulation of xanthophyll carotenoids in animal tissues, and BCO1 is involved in regulation of the intestinal absorption of carotenoids. To determine whether or not mice deficient in BCO1 and/or BCO2 can serve as a macular pigment mouse model, we investigated the retinal accumulation of carotenoids in these mice when fed with zeaxanthin, lutein, or β-carotene using an optimized carotenoid feeding method. HPLC analysis revealed that all three carotenoids were detected in sera, livers, retinal pigment epithelium (RPE)/choroids, and retinas of all of the mice, except that no carotenoid was detectable in the retinas of wild type (WT) mice. Significantly higher amounts of zeaxanthin and lutein accumulated in the retinas of BCO2 knockout (bco2 -/- ) mice and BCO1/BCO2 double knockout (bco1 -/- /bco2 -/- ) mice relative to BCO1 knockout (bco1 -/- ) mice, while bco1 -/- mice preferred to take up β-carotene. The levels of zeaxanthin and lutein were higher than β-carotene levels in the bco1 -/- /bco2 -/- retina, consistent with preferential uptake of xanthophyll carotenoids by retina. Oxidative metabolites were detected in mice fed with lutein or zeaxanthin but not in mice fed with β-carotene. These results indicate that bco2 -/- and bco1 -/- /bco2 -/- mice could serve as reasonable non-primate models for macular pigment function in the vertebrate eye, while bco1 -/- mice may be more useful for studies related to β-carotene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of Mild and Severe Vitamin B Deficiencies on the Meiotic Maturation of Mice Oocytes

    Directory of Open Access Journals (Sweden)

    Ai Tsuji

    2017-03-01

    Full Text Available We investigated the effects of vitamin B 1 deficiency on the meiosis maturation of oocytes. Female Crl:CD1 (ICR mice were fed a 20% casein diet (control group or a vitamin B 1 –free diet (test group. The vitamin B 1 concentration in ovary was approximately 30% lower in the test group than in the control group. Oocyte meiosis was not affected by vitamin B 1 deficiency when the deficiency was not accompanied by body weight loss. On the contrary, frequency of abnormal oocyte was increased by vitamin B 1 deficiency when deficiency was accompanied by body weight loss (referred to as severe vitamin B 1 deficiency; frequency of abnormal oocyte, 13.8% vs 43.7%, P  = .0071. The frequency of abnormal oocytes was decreased by refeeding of a vitamin B 1 –containing diet (13.9% vs 22.9%, P  = .503. These results suggest that severe vitamin B 1 deficiency inhibited meiotic maturation of oocytes but did not damage immature oocytes.

  12. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    Science.gov (United States)

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-03

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function.

  13. Increased susceptibility of IDH2-deficient mice to dextran sodium sulfate-induced colitis

    Directory of Open Access Journals (Sweden)

    Hanvit Cha

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a group of chronic, relapsing, immunological, inflammatory disorders of the gastrointestinal tract including ulcerative colitis (UC and Crohn's disease (CD. It has been reported that UC, which is studied using a dextran sodium sulfate (DSS-induced colitis model, is associated with the production of reactive oxygen species (ROS and the apoptosis of intestine epithelial cells (IEC. Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2 has been reported as an essential enzyme in the mitochondrial antioxidant system via generation of NADPH. Therefore, we evaluated the role of IDH2 in DSS-induced colitis using IDH2-deficient (IDH2-/- mice. We observed that DSS-induced colitis in IDH2-/- mice was more severe than that in wild-type IDH2+/+ mice. Our results also suggest that IDH2 deficiency exacerbates PUMA-mediated apoptosis, resulting from NF-κB activation regulated by histone deacetylase (HDAC activity. In addition, DSS-induced colitis is ameliorated by an antioxidant N-acetylcysteine (NAC through attenuation of oxidative stress, resulting from deficiency of the IDH2 gene. In conclusion, deficiency of IDH2 leads to increased mitochondrial ROS levels, which inhibits HDAC activity, and the activation of NF-κB via acetylation is enhanced by attenuated HDAC activity, which causes PUMA-mediated apoptosis of IEC in DSS-induced colitis. The present study supported the rationale for targeting IDH2 as an important cancer chemoprevention strategy, particularly in the prevention of colorectal cancer.

  14. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  15. Social, communication, and cortical structural impairments in Epac2-deficient mice.

    Science.gov (United States)

    Srivastava, Deepak P; Jones, Kelly A; Woolfrey, Kevin M; Burgdorf, Jeffrey; Russell, Theron A; Kalmbach, Abigail; Lee, Hyerin; Yang, Connie; Bradberry, Mazdak M; Wokosin, David; Moskal, Joseph R; Casanova, Manuel F; Waters, Jack; Penzes, Peter

    2012-08-22

    Deficits in social and communication behaviors are common features of a number of neurodevelopmental disorders. However, the molecular and cellular substrates of these higher order brain functions are not well understood. Here we report that specific alterations in social and communication behaviors in mice occur as a result of loss of the EPAC2 gene, which encodes a protein kinase A-independent cAMP target. Epac2-deficient mice exhibited robust deficits in social interactions and ultrasonic vocalizations, but displayed normal olfaction, working and reference memory, motor abilities, anxiety, and repetitive behaviors. Epac2-deficient mice displayed abnormal columnar organization in the anterior cingulate cortex, a region implicated in social behavior in humans, but not in somatosensory cortex. In vivo two-photon imaging revealed reduced dendritic spine motility and density on cortical neurons in Epac2-deficient mice, indicating deficits at the synaptic level. Together, these findings provide novel insight into the molecular and cellular substrates of social and communication behavior.

  16. Deficits in spatial learning and motor coordination in ADAM11-deficient mice

    Directory of Open Access Journals (Sweden)

    Yamazaki Kazuto

    2006-02-01

    Full Text Available Abstract Background ADAM11 is a member of the ADAM gene family and is mainly expressed in the nervous system. It is thought to be an adhesion molecule, since it has a disintegrin-like domain related to cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM11, we generated ADAM11-deficient mice by means of gene targeting. Results ADAM11-deficient mice were apparently normal, and survived more than one year with no major histological abnormalities in the brain or spinal cord. Because ADAM11 is highly expressed in the hippocampus and cerebellum, we have examined ADAM11 mutant mice for learning using visual and hidden water maze tasks, and their motor coordination using a rotating rod task. Our results showed that their visual water maze task results are normal, but the hidden water maze and rotating rod task skills are impaired in ADAM11-deficient mice. Conclusion Our results indicate that ADAM11 mutation does not affect cell migration and differentiation during development, but affects learning and motor coordination. Thus, ADAM11 might play an important signalling or structural role as a cell adhesion molecule at the synapse, and may thus participate in synaptic regulation underlying behavioural changes.

  17. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  18. The role of interleukin-5 (IL-5 in vivo: studies with IL-5 deficient mice

    Directory of Open Access Journals (Sweden)

    Klaus I Matthaei

    1997-12-01

    Full Text Available Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996. Since interleukin5 (IL5 is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992, the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996, provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.

  19. Somatostatin is involved in anorexia in mice fed a valine-deficient diet.

    Science.gov (United States)

    Nakahara, Keiko; Takata, Shiori; Ishii, Asami; Nagao, Kenji; Bannai, Makoto; Takahashi, Michio; Murakami, Noboru

    2012-04-01

    The ingestion of a valine (Val)-deficient diet results in a significant reduction of food intake and body weight within 24 h, and this phenomenon continues throughout the period over which such a diet is supplied. Both microarray and real-time PCR analyses revealed that the expression of somatostatin mRNA was increased in the hypothalamus in anorectic mice that received a Val-deficient diet. On the other hand, when somatostatin was administered intracerebroventricularly to intact animals that were fed a control diet, their 24-h food intake decreased significantly. In addition, Val-deficient but not pair-fed mice or those fasted for 24 h showed a less than 0.5-fold decrease in the hypothalamic mRNA expression levels of Crym, Foxg1, Itpka and two unknown EST clone genes and a more than twofold increase in those of Slc6a3, Bdh1, Ptgr2 and one unknown EST clone gene. These results suggest that hypothalamic somatostatin and genes responsive to Val deficiency may be involved in the central mechanism of anorexia induced by a Val-deficient diet.

  20. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss On CBA/Ca Mice.

    Directory of Open Access Journals (Sweden)

    Raquel Martinez-Vega

    2016-08-01

    Full Text Available Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after two-months, corroborating the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed the folate-deficient diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.

  1. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    Science.gov (United States)

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background. PMID:27630560

  2. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E−/− Mice

    Science.gov (United States)

    Kadiri, James J.; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-01-01

    Objective— The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Approach and Results— Apoe−/− (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1re/e) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe−/− Mc1re/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe−/− controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe−/− Mc1re/e mice showed a defect in bile acid metabolism that aggravated high-fat diet–induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6Chigh monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6Chigh monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. Conclusions— The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. PMID:29284608

  3. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/-Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  4. Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men.

    Science.gov (United States)

    Pearl, P L; Gibson, K M; Cortez, M A; Wu, Y; Carter Snead, O; Knerr, I; Forester, K; Pettiford, J M; Jakobs, C; Theodore, W H

    2009-06-01

    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS-742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS-742, form the framework for human trials.

  5. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP.

    Directory of Open Access Journals (Sweden)

    Cam T Ha

    Full Text Available We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines' expression and secretion in CD2F1 mouse bone marrow (BM, spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy at different time points using the enzyme-linked immune sorbent assay (ELISA, immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI. However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5-24 fold and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2-4 days post-irradiation and in minipig plasma 1-3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.

  6. Interleukin 18 secretion and its effect in improving Chimeric Antigen Receptors efficiency

    Science.gov (United States)

    Kim, Jae-Kun

    Clinical trials have shown that chimeric antigen receptor T cells modified to target cancer cells expressing a surface antigen found on immature B-cells. The purpose of this experiment is to take a pro-inflammatory cytokine, and analyze its effect in improving the efficiency of the T cells. IL-18 has been previously shown to recruit T cells to the tumor site and improve their secretion of cytotoxic cytokines. A human model of the proposed armored T cell has been created and has shown success in combating cancer cells in vitro. The next step is to design and produce a murine model to test in vivo in immunocompetent mice. This research project aimed to create two models: one utilizing 2A peptides and another utilizing IRES elements as a multicistronic vector. Both models would require the insertion of the desired genes into SFG backbones. IRES, a DNA element which acts as a binding site for the transcriptional machinery to recognize which part of the DNA to transcribe, commonly found in bicistronic vectors, is large with 500-600 base pairs, and has a lower transgene expression rate. P2A is smaller, only consisting of about 20 amino acids, and typically has a higher transgene expression rate, which may or may not result in higher effectiveness of the model. I would like to thank Dr. Renier Brentjens for being a mentor who cared about giving his interns as much educational value as possible.

  7. Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice.

    Science.gov (United States)

    Ohta, Ryo; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Nakamae, Toshio; Izumi, Bunichiro; Fujioka, Yuki; Ochi, Mitsuo

    2012-09-01

    Intervertebral disc degeneration is considered to be a major feature of low back pain. Furthermore, oxidative stress has been shown to be an important factor in degenerative diseases such as osteoarthritis and is considered a cause of intervertebral disc degeneration. The purpose of this study was to clarify the correlation between oxidative stress and intervertebral disc degeneration using Broad complex-Tramtrack-Bric-a-brac and cap'n'collar homology 1 deficient (Bach 1-/-) mice which highly express heme oxygenase-1 (HO-1). HO-1 protects cells from oxidative stress. Caudal discs of 12-week-old and 1-year-old mice were evaluated as age-related models. Each group and period, 5 mice (a total of 20 mice, a total of 20 discs) were evaluated as age-related model. C9-C10 caudal discs in 12-week-old Bach 1-/- and wild-type mice were punctured using a 29-gauge needle as annulus puncture model. Each group and period, 5 mice (a total of 60 mice, a total of 60 discs) were evaluated. The progress of disc degeneration was evaluated at pre-puncture, 1, 2, 4, 8 and 12 weeks post-puncture. Radiographic, histologic and immunohistologic analysis were performed to compare between Bach 1-/- and wild-type mice. In the age-related model, there were no significant differences between Bach 1-/- and wild-type mice radiologically and histologically. However, in the annulus puncture model, histological scoring revealed significant difference at 8 and 12 weeks post-puncture. The number of HO-1 positive cells was significantly greater in Bach 1-/- mice at every period. The apoptosis rate was significantly lower at 1 and 2 weeks post-puncture in Bach 1-/- mice. Oxidative stress prevention may avoid the degenerative process of the intervertebral disc after puncture, reducing the number of apoptosis cells. High HO-1 expression may also inhibit oxidative stress and delay the process of intervertebral disc degeneration.

  8. von Willebrand factor deficiency leads to impaired blood flow recovery after ischaemia in mice.

    Science.gov (United States)

    de Vries, Margreet R; Peters, Erna A B; Quax, Paul H A; Nossent, A Yaël

    2017-06-28

    Neovascularisation, i. e. arteriogenesis and angiogenesis, is an inflammatory process. Therefore attraction and extravasation of leukocytes is essential for effective blood flow recovery after ischaemia. Previous studies have shown that von Willebrand factor (VWF) is a negative regulator of angiogenesis. However, it has also been shown that VWF facilitates leukocyte attraction and extravasation. We aimed to investigate the role of VWF in arteriogenesis and angiogenesis during post-ischaemic neovascularisation. Wild-type (WT) and VWF deficient (VWF -/- ) C57BL/6 mice were subjected to hindlimb ischaemia via double ligation of the left femoral artery, and blood flow recovery was followed over time, using Laser Doppler Perfusion Imaging. Blood flow recovery was impaired in VWF -/- mice. After 10 days, VWF -/- mice showed a 43 ± 5 % recovery versus 68 ± 5 % in WT. Immunohistochemistry revealed that both arteriogenesis in the adductor muscles and angiogenesis in the gastrocnemius muscles were reduced in VWF -/- mice. Furthermore, leukocyte infiltration in the affected adductor muscles was reduced in VWF -/- mice. Residual paw perfusion directly after artery ligation was also reduced in VWF -/- mice, indicating a decrease in pre-existing collateral arteriole density. When we quantified collateral arterioles, we observed a 31 % decrease in the average number of collateral arterioles in the pia mater compared to WT mice (57 ± 3 in WT vs 40 ± 4 pial collaterals in VWF -/- ). We conclude that VWF facilitates blood flow recovery in mice. VWF deficiency hampers both arteriogenesis and angiogenesis in a hindlimb ischaemia model. This is associated with impaired leukocytes recruitment and decreased pre-existing collateral density in the absence of VWF.

  9. Maternal Vitamin D Deficiency and Fetal Programming - Lessons Learned from Humans and Mice

    Directory of Open Access Journals (Sweden)

    Christoph Reichetzeder

    2014-09-01

    Full Text Available Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D3 (25OHD during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.

  10. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo

    2010-09-01

    Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.

  11. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Mona Buhusi

    2017-10-01

    Full Text Available Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI, a measure of selective attention and learning, in GDNF-heterozygous (HET mice and their wild-type (WT littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.

  12. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...

  13. Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice

    DEFF Research Database (Denmark)

    Martin, Nellie A.; Molnar, Viktor; Szilagyi, Gabor T.

    2018-01-01

    Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes...... chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. Results: miR-146a was increasingly upregulated during CPZ-induced de...... mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex...

  14. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  15. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  16. Age-dependent impairment of eyeblink conditioning in prion protein-deficient mice.

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto

    Full Text Available Mice lacking the prion protein (PrP(C gene (Prnp, Ngsk Prnp (0/0 mice, show late-onset cerebellar Purkinje cell (PC degeneration because of ectopic overexpression of PrP(C-like protein (PrPLP/Dpl. Because PrP(C is highly expressed in cerebellar neurons (including PCs and granule cells, it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrP(C and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp (0/0 mice in adulthood (16, 40, and 60 weeks of age. The aims of the present study were two-fold: (1 to examine the role of PrP(C and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2 to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp (0/0 mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp (0/0 mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs, although the CR timing was altered. The same result was observed in another line of PrP(c-deficient mice, ZrchI PrnP (0/0 mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp (0/0 mice. Furthermore, Ngsk Prnp (0/0 mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp (0/0 mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.

  17. Baroreflex deficiency aggravates atherosclerosis via α7 nicotinic acetylcholine receptor in mice.

    Science.gov (United States)

    Chen, Li; Liu, Dian-Hua; Zhang, Xin; Zhang, En-Hui; Liu, Chong; Su, Ding-Feng; Cai, Guo-Jun

    2016-12-01

    Inflammation and oxidative stress play a key role in the initiation, propagation, and development of atherosclerosis. Arterial baroreflex (ABR) dysfunction induced by sinoaortic denervation (SAD) promoted the development of atherosclerosis in ApoE -/- mice. The present work was designed to examine whether ABR deficiency affected inflammation and oxidative stress via α7 nicotinic acetylcholine receptor (α7nAChR) leading to the aggravation of atherosclerosis in mice. ApoE -/- mice were fed with a high-cholesterol diet for 6weeks and half of the mice received sinoaortic denervation that destroyed ABR. We studied the expression of vesicular acetylcholine transporter (VAChT), α7nAChR and levels of inflammatory response and oxidative stress. The results showed that baroreflex dysfunction could promote atherosclerosis, meanwhile, decrease the expression of VAChT and α7nAChR and significantly increase the levels of oxidative stress and inflammation in SAD mice. After treated with PNU-282987 (a selective α7nAChR agonist, 0.53mg/kg/day) for 6weeks in SAD and Sham mice, we found that PNU-282987 could attenuate atherosclerosis and significantly decreased oxidative stress and inflammation after SAD. In addition, α7nAChR +/+ and α7nAChR -/- mice fed with a high-cholesterol diet for 8weeks were co-treated with ketanserin (0.6mg/kg/day), a drug that can enhance baroreflex sensitivity (BRS). Ketanserin could alleviate atherosclerosis and markedly decrease oxidative stress and inflammation in α7nAChR +/+ mice. But there were no effects in α7nAChR knockout mice. Our results demonstrate that ABR dysfunction aggravates atherosclerosis in mice via the vagus-ACh-α7nAChR-inflammation and oxidative stress pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Profiling and Imaging of Phospholipids in Brains of Abcd1-Deficient Mice.

    Science.gov (United States)

    Hama, Kotaro; Fujiwara, Yuko; Morita, Masashi; Yamazaki, Fumiyoshi; Nakashima, Yuko; Takei, Shiro; Takashima, Shigeo; Setou, Mitsutoshi; Shimozawa, Nobuyuki; Imanaka, Tsuneo; Yokoyama, Kazuaki

    2018-01-01

    ABCD1 is a gene responsible for X-linked adrenoleukodystrophy (X-ALD), and is critical for the transport of very long-chain fatty acids (VLCFA) into peroxisomes and subsequent β-oxidation. VLCFA-containing lipids accumulate in X-ALD patients, although the effect of ABCD1-deficiency on each lipid species in the central nervous system has not been fully characterized. In this study, each phospholipid and lysophospholipid species in Abcd1-deficient mice brains were profiled by liquid chromatography-mass spectrometry. Among the phospholipid and lysophospholipid species that are significantly more enriched in Abcd1-deficient mice brains, VLCFA were present in 75, 15, 5, 4, and 1 species of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, lysophosphatidylcholine, and lysophosphatidylethanolamine, respectively. Most VLCFA were incorporated at the sn-1 position of phosphatidylcholine and phosphatidylethanolamine. Among the phospholipid species that are significantly less enriched in Abcd1-deficient mice brains, odd-numbered saturated or mono-unsaturated fatty acyl moieties are contained in all phosphatidylcholine species. In addition, a number of phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine species contained highly unsaturated fatty acyl moieties. Intriguingly, 44:1 phosphatidylcholine with VLCFA was mainly distributed in the gray matter, such as the cortex, but not in the white matter in the cerebrum and cerebellum. These results show that ABCD1-deficiency causes metabolic alternation of long-chain fatty acids and VLCFA. Moreover, our results imply a molecular mechanism for the incorporation of saturated or monounsaturated VLCFA into the sn-1 position of phospholipids, and also indicate that the distribution of phospholipids with VLCFA may correlate with the development of X-ALD. © 2018 The Authors. Lipids published by AOCS.

  19. [Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].

    Science.gov (United States)

    Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong

    2015-05-01

    Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P Yin deficiency symptoms of zygomatic red and dysphoria in mice as well as liver function injury caused by overactive thyroid axis. According to its action mechanism, DOF may show yin nourishing and hepatic protective effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.

  20. The effect of parvalbumin deficiency on the acoustic startle response and prepulse inhibition in mice

    Czech Academy of Sciences Publication Activity Database

    Popelář, Jiří; Rybalko, Natalia; Burianová, Jana; Schwaller, B.; Syka, Josef

    2013-01-01

    Roč. 553, October (2013), s. 216-220 ISSN 0304-3940 R&D Projects: GA ČR(CZ) GAP304/12/1342; GA MŠk(CZ) EE2.3.30.0018 Grant - others:GA MŠk(CZ) ED1.1.00/02.0109 Program:ED Institutional support: RVO:68378041 Keywords : parvalbumin-deficient mice * acoustic startle reflex * prepulse inhibition Subject RIV: FH - Neurology Impact factor: 2.055, year: 2013

  1. Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure

    OpenAIRE

    Nagasubramanian, Ramamoorthy; Hansen, Ryan J.; Delaney, Shannon M.; Cherian, Mathew M.; Samson, Leona D.; Kogan, Scott C.; Dolan, M. Eileen

    2008-01-01

    O6-methylguanine DNA methyltransferase (MGMT) deficiency is associated with an increased susceptibility to alkylating agent toxicity. To understand the contribution of MGMT in protecting against cyclophosphamide (CP)-induced toxicity, mutagenesis and tumorigenesis, we compared the biological effects of this agent in transgenic Mgmt knockout and wild-type mice. In addition, neurofibromin (Nf1)+/− background was used to increase the likelihood of CP-induced tumorigenesis. Cohorts of Mgmt-profic...

  2. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  3. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice.

    Science.gov (United States)

    Antoniak, S; Tatsumi, K; Hisada, Y; Milner, J J; Neidich, S D; Shaver, C M; Pawlinski, R; Beck, M A; Bastarache, J A; Mackman, N

    2016-06-01

    Essentials H1N1 Influenza A virus (IAV) infection is a hemostatic challenge for the lung. Tissue factor (TF) on lung epithelial cells maintains lung hemostasis after IAV infection. Reduced TF-dependent activation of coagulation leads to alveolar hemorrhage. Anticoagulation might increase the risk for hemorrhages into the lung during severe IAV infection. Background Influenza A virus (IAV) infection is a common respiratory tract infection that causes considerable morbidity and mortality worldwide. Objective To investigate the effect of genetic deficiency of tissue factor (TF) in a mouse model of IAV infection. Methods Wild-type mice, low-TF (LTF) mice and mice with the TF gene deleted in different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage, and inflammation. Results IAV infection of wild-type mice increased lung TF expression, activation of coagulation and inflammation in BALF, but also led to alveolar hemorrhage. LTF mice and mice with selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage and death than controls. In contrast, deletion of TF in either myeloid cells or endothelial cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. These results indicate that TF expression in the lung, particularly in epithelial cells, is required to maintain alveolar hemostasis after IAV infection. Conclusion Our study indicates that TF-dependent activation of coagulation is required to limit alveolar hemorrhage and death after IAV infection. © 2016 International Society on Thrombosis and Haemostasis.

  4. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    Science.gov (United States)

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  6. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  7. TNF-α Deficiency Prevents Renal Inflammation and Oxidative Stress in Obese Mice

    Directory of Open Access Journals (Sweden)

    Huaiguo Wang

    2017-07-01

    Full Text Available Background/Aims: Obese patients and experimental animals exhibit high levels of inflammatory cytokines, such as tumor necrosis factor (TNF-α. However, the role of TNF-α in the pathophysiologic process in obesity induced kidney damage is still unknown. Methods: We used TNF-α deficient mice and wild-type (WT C57/BJ6 mice controls to study the effect of TNF-α on inflammation and oxidative stress in kidney by the model of high-fat diet (HFD and primary isolated mouse renal proximal tubule cells treated with a mixture of free fatty acids (FFA. Results: Compared with the chow diet group, HFD-fed WT mice had higher urinary albumin and increased levels of renal fibrosis, glomerulosclerosis, inflammation, oxidative stress and apoptosis in the kidney. These changes were co-related with increased expression of TNF-α in the kidney and were attenuated by TNF-α deficiency. In vitro, accumulation of intracellular lipids induced TNF-α expression and oxidative stress in FFA treated primary proximal tubule cells. However, TNF-α inhibition with siRNA or TNF-α deficiency decreased the lipid induced oxidative stress in these cells. Conclusion: These findings suggest that TNF-α plays an important role in the HFD induced kidney damage, and targeting TNF-α and/or its receptors could be a promising therapeutic regimen for progressive nephropathy.

  8. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  9. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    DEFF Research Database (Denmark)

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A

    2006-01-01

    to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased......Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice...... than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg...

  10. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice

    Directory of Open Access Journals (Sweden)

    Nellie A. Martin

    2018-03-01

    Full Text Available BackgroundThe cuprizone (CPZ model of multiple sclerosis (MS was used to identify microRNAs (miRNAs related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs during remyelination, but its role has not been examined during demyelination.MethodsMicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray and proteome (liquid chromatography tandem mass spectrometry of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis.ResultsmiR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3+ and

  11. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...... the human laminin alpha2 chain gene in skeletal muscle. The dy(3K)/dy(3K) experimental mutant mice are completely deficient in laminin alpha2; the dy/dy spontaneous mutant mice have small amounts of apparently normal laminin; and the dy(W)/dy(W) mice express even smaller amounts of a truncated laminin alpha......2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter...

  13. Hepatic S6K1 Partially Regulates Lifespan of Mice with Mitochondrial Complex I Deficiency

    Directory of Open Access Journals (Sweden)

    Takashi K. Ito

    2017-09-01

    Full Text Available The inactivation of ribosomal protein S6 kinase 1 (S6K1 recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of mTORC1 inhibition in the Ndufs4 knockout (NKO mouse model of Leigh Syndrome caused by Complex I deficiency. These NKO mice develop profound neurodegeneration resulting in brain lesions and death around 50–60 days of age. Our results show that liver-specific, as well as whole body, S6K1 deletion modestly prolongs survival and delays onset of neurological symptoms in NKO mice. In contrast, we observed no survival benefit in NKO mice specifically disrupted for S6K1 in neurons or adipocytes. Body weight was reduced in WT mice upon disruption of S6K1 in adipocytes or whole body, but not altered when S6K1 was disrupted only in neurons or liver. Taken together, these data indicate that decreased S6K1 activity in liver is sufficient to delay the neurological and survival defects caused by deficiency of Complex I and suggest that mTOR signaling can modulate mitochondrial disease and metabolism via cell non-autonomous mechanisms.

  14. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  15. Erythrocyte copper chaperone for superoxide dismutase is increased following marginal copper deficiency in adult and postweanling mice.

    Science.gov (United States)

    Lassi, Katie C; Prohaska, Joseph R

    2012-02-01

    A sensitive and reliable biomarker has yet to be identified for marginal copper deficiency in humans. The need for such a biomarker is critical, because increased cases of human copper deficiency evolve following bariatric surgery and other secondary factors besides diet. Four experiments were devised to induce marginal copper deficiency through copper-deficient (CuD) diets (5 wk for mice and 4 wk for rats). In Expt. 1 and 2, male postweanling mice were raised in either solid-bottom plastic cages (Expt. 1) or stainless steel hanging cages (Expt. 2) and compared. Postweanling rats (Expt. 3) and adult mice (Expt. 4) were also studied using stainless steel cages. Copper-adequate controls were fed a semipurified diet containing 9 mg Cu/kg. CuD rats exhibited the most severe changes in biomarkers due to copper limitation, including major reductions in plasma ceruloplasmin (Cp) and erythrocyte superoxide dismutase (Sod1) and augmentation in copper chaperone for Sod1 (CCS). The CuD mice in Expt. 2 were more deficient than the CuD mice in Expt. 1, likely due to coprophagia differences. In fact, the CuD mice in Expt. 1 had unaltered Sod1 or Cp levels. Importantly though, these marginally deficient mice and CuD adult mice that had no changes in Cp activity or liver copper level had robust augmentation of CCS. Erythrocyte CCS was the only consistent biomarker to change in copper deficiency for all dietary groups, suggesting that CCS may be an excellent biomarker for human confirmation of marginal copper deficiency.

  16. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J

    1999-01-01

    and reactive astrocytes surrounding the lesion site. In addition, expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and metallothionein-I+II (MT-I+II) were increased in these cells, while the brain-specific MT-III was only moderately upregulated. In IL-6-/- mice, however, the response......Injury to the central nervous system (CNS) elicits an inflammatory response involving activation of microglia, brain macrophages, and astrocytes, processes likely mediated by the release of proinflammatory cytokines. In order to determine the role of interleukin-6 (IL-6) during the inflammatory...... response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages...

  17. Spontaneous chondroma formation in CD2-Cre-driven Erk-deficient mice.

    Science.gov (United States)

    Shiokawa, Moe; Lu, Xiuyuan; Miyake, Yasunobu; Ishikawa, Eri; Pagès, Gilles; Pouysségur, Jacques; Ogata, Masato; Yamasaki, Sho

    2017-12-18

    Lineage-specific Cre Tg mice are widely used to delineate the functions of genes in a tissue-specific manner. Several T-cell-specific promoter cassettes have been developed; however, the activities of those promoters in non-T cells have not been investigated extensively. Here, we report that CD2-Cre-mediated deletion of Erk proteins by generating CD2-Cre × Erk1-/-Erk2flox/flox (Erk∆CD2-Cre) mice results in abnormal cartilage hyperplasia. Histological analysis revealed that this abnormality is caused by aberrant hyperplasia of chondrocytes. The presence of Erk-deficient T cells is not required for this chondroma formation, as it was similarly observed in the absence of T cells in a CD3ε-deficient background. In addition, adoptive transfer of bone marrow cells from Erk∆CD2-Cre mice to wild-type recipients did not cause chondroma formation, suggesting that Erk-deficient non-immune cells are responsible for this abnormality. By tracing Cre-expressed tissues using a ROSA26-STOP-RFP allele, we found that the chondroma emitted RFP fluorescence, indicating that functional Cre is expressed in hyperplastic chondrocytes in Erk∆CD2-Cre mice. Furthermore, RFP+ chondrocytes were also found in an Erk-sufficient background, albeit without aberrant growth. These results suggest that unexpected expression of CD2-driven Cre in chondrocytes generates Erk-deficient chondrocytes, resulting in hyperplastic cartilage formation. Recently, two independent reports showed that CD4-Cre-mediated Ras-Erk signaling ablation led to similar abnormal cartilage formation (Guittard, G., Gallardo, D. L., Li, W. et al. 2017. Unexpected cartilage phenotype in CD4-Cre-conditional SOS-deficient mice. Front. Immunol. 8:343; Wehenkel, M., Corr, M., Guy, C. S. et al. 2017. Extracellular signal-regulated kinase signaling in CD4-expressing cells inhibits osteochondromas. Front. Immunol. 8:482). Together with these reports, our study suggests that an unexpected link exists between T-like cell and

  18. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase deficient mice during acute inflammation

    Science.gov (United States)

    Kubala, Lukas; Schmelzer, Kara R.; Klinke, Anna; Kolarova, Hana; Baldus, Stephan; Hammock, Bruce D.; Eiserich, Jason P.

    2010-01-01

    Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products, which regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography-mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known pro-inflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation. In this way, may control acute inflammatory diseases. PMID:20156554

  19. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation.

    Science.gov (United States)

    Kubala, Lukas; Schmelzer, Kara R; Klinke, Anna; Kolarova, Hana; Baldus, Stephan; Hammock, Bruce D; Eiserich, Jason P

    2010-05-15

    Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography-mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Osteoprotegerin deficiency results in disruption of posterofrontal suture closure in mice: implications in nonsyndromic craniosynostosis.

    Science.gov (United States)

    Beederman, Maureen; Kim, Stephanie H; Rogers, M Rose; Lyon, Sarah M; He, Tong-Chuan; Reid, Russell R

    2015-06-01

    Little is known about the role of osteoclasts in cranial suture fusion. Osteoclasts are predominantly regulated by receptor activator of nuclear factor kappa B and receptor activator of nuclear factor kappa B ligand, both of which lead to osteoclast differentiation, activation, and survival; and osteoprotegerin, a soluble inhibitor of receptor activator of nuclear factor kappa B. The authors' work examines the role of osteoprotegerin in this process using knockout technology. Wild-type, osteoprotegerin-heterozygous, and osteoprotegerin-knockout mice were imaged by serial micro-computed tomography at 3, 5, 7, 9, and 16 weeks. Suture density measurements and craniometric analysis were performed at these same time points. Posterofrontal sutures were harvested from mice after the week-16 time point and analyzed by means of histochemistry. Micro-computed tomographic analysis of the posterofrontal suture revealed reduced suture fusion in osteoprotegerin-knockout mice compared with wild-type and heterozygous littermates. Osteoprotegerin deficiency resulted in a statistically significant decrease in suture bone density in knockout mice. There was no reduction in the density of non-suture-containing calvarial bone between wild-type and osteoprotegerin-knockout mice. Histochemistry of suture sections supported these micro-computed tomographic findings. Finally, osteoprotegerin-knockout mice had reduced anteroposterior skull distance at all time points and an increased interorbital distance at the week-16 time point. The authors' data suggest that perturbations in the expression of osteoprotegerin and subsequent changes in osteoclastogenesis lead to alterations in murine cranial and posterofrontal suture morphology.

  1. Impaired sodium excretion and salt-sensitive hypertension in corin-deficient mice.

    Science.gov (United States)

    Wang, Wei; Shen, Jianzhong; Cui, Yujie; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-07-01

    Corin is a protease that activates atrial natriuretic peptide, a cardiac hormone important in the control of blood pressure and salt-water balance. Here we examined the role of corin in regulating blood pressure and sodium homeostasis upon dietary salt challenge. Radiotelemetry-tracked blood pressure in corin knockout mice on a high-salt diet (4% sodium chloride) was significantly increased; however, there was no such change in similarly treated wild-type mice. In the knockout mice on the high-salt diet there was an impairment of urinary sodium excretion and an increase in body weight, but no elevation of plasma renin or serum aldosterone levels. When the knockout mice on the high-salt diet were treated with amiloride, an epithelial sodium channel blocker that inhibits renal sodium reabsorption, the impaired urinary sodium excretion and increased body weight were normalized. Amiloride treatment also reduced high blood pressure caused by the high-salt diet in these mice. Thus, the lack of corin in mice impairs their adaptive renal response to high dietary salt, suggesting that corin deficiency may represent an important mechanism underlying salt-sensitive hypertension.

  2. Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice

    Directory of Open Access Journals (Sweden)

    Portugal Sílvia

    2006-08-01

    Full Text Available Abstract Background Scavenger receptors (SRs recognize endogenous molecules modified by pathological processes as well as components of diverse microorganisms. Mice deficient for both SR-AI and II are more susceptible to infections by a variety of bacterial and viral pathogens. Results Here we show that SR-A deficient mice and wild type mice are equally susceptible to malaria infection both during liver and blood stages. Moreover, like wild type mice, SR-A deficient mice are able to mount a protective immune response against radiation attenuated sporozoites. Conclusion Our results do not reveal a function of SR-A I and II receptors in the Plasmodium berghei ANKA infection, both in the development of CM and parasitemia control. Moreover, these receptors appear not to be required for the establishment of a protective immune response against the malaria liver stages.

  3. Normal free interleukin-18 (IL-18) plasma levels in dengue virus infection and the need to measure both total IL-18 and IL-18 binding protein levels

    NARCIS (Netherlands)

    Michels, M.; Mast, Q. de; Netea, M.G.; Joosten, L.A.B.; Dinarello, C.A.; Rudiman, P.I.; Sinarta, S.; Wisaksana, R.; Alisjahbana, B.; Ven, A. van der

    2015-01-01

    Activated monocytes/macrophages and T lymphocytes that produce a cytokine storm are assumed to play a pivotal role in the pathogenesis of dengue. Interleukin-18 (IL-18) is a proinflammatory cytokine that is increased during dengue and known to induce gamma interferon (IFN-gamma), which is crucial

  4. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.

    Science.gov (United States)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille; Nielsen, Dennis S; Wegener, Gregers; Hansen, Axel K; Sørensen, Dorte B

    2015-10-01

    Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. We demonstrated that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. Magnesium deficiency altered behavior. The duration of magnesium deficiency is suggested to influence behaviour in the evaluated test.

  5. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    NARCIS (Netherlands)

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling.

  6. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization

    Science.gov (United States)

    Draves, Kevin E.; Young, Lucy B.; Bryan, Marianne A.; Dresch, Christiane; Diamond, Michael S.; Gale, Michael

    2017-01-01

    B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals. PMID:29176765

  7. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota.

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Kondo, Yuji; Yokoi, Masayuki; Tsukamoto, Tetsuya; Yamada, Ayumi; Sugimoto, Taiki; Kanao, Rie; Higashi, Yujiro; Kondoh, Hisato; Tatematsu, Masae; Masutani, Chikahide; Hanaoka, Fumio

    2006-10-01

    DNA polymerase eta (Pol eta) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol eta is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh-/- mice has not been examined until very recently. Another translesion synthesis polymerase, Pol iota, a Pol eta paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol iota is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol iota deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol iota deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh(-/-) mice. These results suggest the involvement of the Pol eta and Pol iota proteins in UV-induced skin carcinogenesis.

  8. UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in Mice Deficient for DNA Polymerase ι

    Science.gov (United States)

    Ohkumo, Tsuyoshi; Kondo, Yuji; Yokoi, Masayuki; Tsukamoto, Tetsuya; Yamada, Ayumi; Sugimoto, Taiki; Kanao, Rie; Higashi, Yujiro; Kondoh, Hisato; Tatematsu, Masae; Masutani, Chikahide; Hanaoka, Fumio

    2006-01-01

    DNA polymerase η (Pol η) is the product of the Polh gene, which is responsible for the group variant of xeroderma pigmentosum, a rare inherited recessive disease which is characterized by susceptibility to sunlight-induced skin cancer. We recently reported in a study of Polh mutant mice that Pol η is involved in the somatic hypermutation of immunoglobulin genes, but the cancer predisposition of Polh−/− mice has not been examined until very recently. Another translesion synthesis polymerase, Pol ι, a Pol η paralog encoded by the Poli gene, is naturally deficient in the 129 mouse strain, and the function of Pol ι is enigmatic. Here, we generated Polh Poli double-deficient mice and compared the tumor susceptibility of them with Polh- or Poli-deficient animals under the same genetic background. While Pol ι deficiency does not influence the UV sensitivity of mouse fibroblasts irrespective of Polh genotype, Polh Poli double-deficient mice show slightly earlier onset of skin tumor formation. Intriguingly, histological diagnosis after chronic treatment with UV light reveals that Pol ι deficiency leads to the formation of mesenchymal tumors, such as sarcomas, that are not observed in Polh−/− mice. These results suggest the involvement of the Pol η and Pol ι proteins in UV-induced skin carcinogenesis. PMID:17015482

  9. Effect of Periodontal Therapy on Crevicular Fluid Interleukin-18 Level in Periodontal Health and Disease in Central Maharashtra (India) Population.

    Science.gov (United States)

    Mahajani, Monica J; Jadhao, Varsha A; Wankhade, Pooja S; Samson, Emmanuel; Acharya, Vishwas D; Tekale, Pawankumar D

    2017-11-01

    The incidence and progression of the periodontal disease depend on periodontal microflora and the multifaceted response of the host, and these interactions are mediated by cytokines and chemokines. Interleukin-18 (IL-18) is a proinflammatory cytokine of the IL-1 superfamily. The aim of the present study was the assessment of the periodontal therapy in IL-18 level in periodontal disease and health. Based on clinical attachment loss (CAL), probing pocket depth (PPD), gingival index (GI), and plaque index (PI) patients were divided into three groups: Group I with healthy patients, group II with chronic periodontitis, and group III with posttreatment patients having periodontitis. Mean PI, PPD, CAL, and gingival crevicular fluid (GCF) volume were significantly higher in groups II and III compared with group I. However, there were no significant differences between GI in groups I, II, and III. The total amount of IL-18 in GCF was significantly higher in group II when compared with groups I and III (p < 0.05). The present study confirmed that the IL-18 level in GCF was lower in healthy patients, higher in periodontally involved patients, and reduced at baseline, 3 and 6 weeks after nonsurgical periodontal therapy. The IL-18 might be hypothetically beneficial in distinguishing health from disease and monitoring periodontal disease activity.

  10. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  11. ST2 Deficiency Ameliorates High Fat Diet-Induced Liver Steatosis In BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Jovicic Nemanja

    2015-03-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is strongly associated with obesity, but the molecular mechanisms of liver steatosis and its progression to non-alcoholic steatohepatitis and fibrosis are incompletely understood. Immune reactivity plays an important role in the pathogenesis of NAFLD. The IL-33/ST2 axis has a protective role in adiposity and atherosclerosis, but its role in obesity-associated metabolic disorders requires further clarification. To investigate the unresolved role of IL-33/ST2 signalling in NAFLD, we used ST2-deficient (ST2-/- and wild type (WT BALB/c mice maintained on a high-fat diet (HFD for 24 weeks. HFD-fed ST2-/- mice exhibited increased weight gain, visceral adipose tissue weight and triglyceridaemia and decreased liver weight compared with diet-matched WT mice. Compared with WT mice on an HFD, ST2 deletion significantly reduced hepatic steatosis, liver inflammation and fibrosis and downregulated the expression of genes related to lipid metabolism in the liver. The frequency of innate immune cells in the liver, including CD68+ macrophages and CD11c+ dendritic cells, was lower in HFD-fed ST2-/- mice, accompanied by lower TNFα serum levels compared with diet-matched WT mice. Less collagen deposition in the livers of ST2-/- mice on an HFD was associated with lower numbers of profibrotic CD11b+Ly6clow monocytes and CD4+IL-17+ T cells in the liver, lower hepatic gene expression of procollagen, IL-33 and IL-13, and lower serum levels of IL-33 and IL-13 compared with diet-matched WT mice.

  12. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    International Nuclear Information System (INIS)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria; Fantuzzi, Giamila

    2010-01-01

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4 + , CD8 + and CD4 + CD8 + T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  13. Omentin attenuates atherosclerotic lesion formation in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Hiramatsu-Ito, Mizuho; Shibata, Rei; Ohashi, Koji; Uemura, Yusuke; Kanemura, Noriyoshi; Kambara, Takahiro; Enomoto, Takashi; Yuasa, Daisuke; Matsuo, Kazuhiro; Ito, Masanori; Hayakawa, Satoko; Ogawa, Hayato; Otaka, Naoya; Kihara, Shinji; Murohara, Toyoaki; Ouchi, Noriyuki

    2016-05-01

    Obesity is associated with the development of atherosclerosis. We previously demonstrated that omentin is a circulating adipokine that is downregulated in association with atherosclerotic diseases. Here, we examined the impact of omentin on the development of atherosclerosis with gain-of-function genetic manipulations and dissected its potential mechanism. Apolipoprotein E-deficient (apoE-KO) mice were crossed with transgenic mice expressing the human omentin gene (OMT-Tg) mice in fat tissue to generate apoE-KO/OMT-Tg mice. ApoE-KO/OMT-Tg mice exhibited a significant reduction of the atherosclerotic areas in aortic sinus, compared with apoE-KO mice despite similar lipid levels. ApoE-KO/OMT-Tg mice also displayed significant decreases in macrophage accumulation and mRNA expression of proinflammatory mediators including tumour necrosis factor-α, interleukin-6, and monocyte chemotactic protein-1 in aorta when compared with apoE-KO mice. Treatment of human monocyte-derived macrophages with a physiological concentration of human omentin protein led to reduction of lipid droplets and cholesteryl ester content. Treatment with human omentin protein also reduced lipopolysaccharide-induced expression of proinflammatory genes in human macrophages. Treatment of human macrophages with omentin promoted the phosphorylation of Akt. Inhibition of Akt signalling abolished the anti-inflammatory actions of omentin in macrophages. These data document for the first time that omentin reduces the development of atherosclerosis by reducing inflammatory response of macrophages through the Akt-dependent mechanisms. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  14. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  15. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States); Fantuzzi, Giamila, E-mail: giamila@uic.edu [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-08-07

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4{sup +}, CD8{sup +} and CD4{sup +}CD8{sup +} T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  16. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  18. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J.; Bunschoten, Annelies; van Dartel, Dorien A.M.; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-01-01

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model. PMID:26943770

  19. Cholestasis and hypercholesterolemia in SCD1-deficient mice fed a low-fat, high-carbohydrate diet

    NARCIS (Netherlands)

    Flowers, Matthew T.; Groen, Albert K.; Oler, Angie Tebon; Keller, Mark P.; Choi, YounJeong; Schueler, Kathryn L.; Richards, Oliver C.; Lan, Hong; Miyazaki, Makoto; Kuipers, Folkert; Kendziorski, Christina M.; Ntambi, James M.; Attie, Alan D.

    2006-01-01

    Stearoyl-coenzyme A desaturase 1-deficient (SCD1(-/-)) mice have impaired MUFA synthesis. When maintained on a very low-fat (VLF) diet, SCD1(-/-) mice developed severe hypercholesterolemia, characterized by an increase in apolipoprotein B (apoB)-containing lipoproteins and the appearance of

  20. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  1. Deletion of UCP2 in iNOS deficient mice reduces the severity of the disease during experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Caroline Aheng

    Full Text Available Uncoupling protein 2 is a member of the mitochondrial anion carrier family that is widely expressed in neurons and the immune cells of humans. Deletion of Ucp2 gene in mice pre-activates the immune system leading to higher resistance toward infection and to an increased susceptibility to develop chronic inflammatory diseases as previously exemplified with the Experimental Autoimmune Encephalomyelitis (EAE, a mouse model for multiple sclerosis. Given that oxidative stress is enhanced in Ucp2-/- mice and that nitric oxide (NO also plays a critical function in redox balance and in chronic inflammation, we generated mice deficient for both Ucp2 and iNos genes and submitted them to EAE. Mice lacking iNos gene exhibited the highest clinical score (3.4+/-0.5 p<0.05. Surprisingly, mice deficient for both genes developed milder disease with reduced immune cell infiltration, cytokines and ROS production as compared to iNos-/- mice.

  2. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Xue, Ruyi [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Ji, Lingling [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Shen, Xizhong [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Chen, She, E-mail: shechen@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhang, Si, E-mail: zhangsi@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  3. Therapeutic effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice.

    Science.gov (United States)

    Takeda, Atsushi; Iwaki, Haruka; Ide, Kazuki; Tamano, Haruna; Oku, Naoto

    2012-04-10

    In patients with dementia including Alzheimer's disease, hallucinations, agitation/aggression and irritability are known to frequently occur and as distressing behavioral and psychological symptoms of dementia (BPSD). On the basis of the evidence on clinical efficacy and safety of Yokukansan, a traditional Japanese herbal medicine, on BPSD, in the present study, Yokukansan was examined in the therapeutic effects on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Yokukansan was p.o. administered for 7 days as a drinking water to isolated mice fed a zinc-deficient diet for 10 days, which exhibited aggressive behavior, and isolated pair-fed mice fed a control diet of the amount consumed by zinc-deficient mice for 10 days, which exhibited aggressive behavior. Aggressive behavior was evaluated by the resident-intruder test. Yokukansan (312 mg/kg/day) attenuated both aggressive behaviors of zinc-deficient and pair-fed mice. Because Yokukansan can suppress abnormal glutamatergic neuron activity, MK-801, an N-methyl-D-aspartate (NMDA) receptor blocker, and aminooxyacetic acid (AOAA), a γ-amino butyric acid (GABA) transaminase blocker, were also examined in the effects on social isolation-induced aggressive behavior. MK-801 (0.1 mg/kg) or AOAA (23 mg/kg) was i.p. injected into isolated aggressive mice. Thirty minutes later, the resident-intruder test was performed to evaluate the effect of the drugs. Both drugs attenuated aggressive behavior of zinc deficient mice, but not that of pair-fed mice. These results suggest that Yokukansan ameliorates social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice through the action against glutamatergic neurotransmitter system and other neurotransmitter systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    International Nuclear Information System (INIS)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-01-01

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR −/− ) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR −/− mice fed MCD diet (FXR −/− /MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR −/− /MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR −/− /MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR −/− /MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection

  5. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  6. Apolipoprotein E-deficient mice exhibit increased vulnerability to intermittent hypoxia-induced spatial learning deficits.

    Science.gov (United States)

    Kheirandish, Leila; Row, Barry W; Li, Richard C; Brittian, Kenneth R; Gozal, David

    2005-11-01

    Exposure to intermittent hypoxia, such as occurs in sleep-disordered breathing, is associated with oxidative stress, cognitive impairments, and increased neuronal apoptosis in brain regions involved in learning and memory. Apolipoprotein E (ApoE) has been implicated in neurodegenerative disorders, and in vitro studies suggest that one of the functions of ApoE may be to confer protection from oxidant stress-induced neuronal cell loss. Therefore, we hypothesized that ApoE-deficient (ApoE-/-) mice would display increased cognitive impairments following intermittent hypoxia. Twenty-four young adult male mice (ApoE-/-) and 24 wild-type littermates (ApoE +/+) were exposed to 14 days of normoxia (room air; n=12 per group) or intermittent hypoxia (5.7% O2 alternating with 21% O2 every 90 seconds, 12 daylight hours per day; n=12 per group). Behavioral testing consisting of a standard place-training reference memory task in the water maze revealed that ApoE+/+ and ApoE-/- mice exposed to intermittent hypoxia were found to require significantly longer times (latency) and distances (pathlength) to locate the hidden platform (P hypoxia-exposed ApoE-/- mice were impaired on the final two days of training (P E2 and malondiadehyde concentrations were present in hippocampal brain tissues following intermittent hypoxia but were significantly higher in ApoE-/- mice (P breathing and may underlie the increased prevalence of Apolipoprotein E4 in patients with sleep-disordered breathing.

  7. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  8. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Science.gov (United States)

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime; Merino, Ramón; Merino, Jesús

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  9. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jorge Postigo

    Full Text Available CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA. We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  10. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.

    Science.gov (United States)

    Porosk, Rando; Terasmaa, Anton; Mahlapuu, Riina; Soomets, Ursel; Kilk, Kalle

    2017-12-01

    Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.

  11. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  12. Acinar cell apoptosis in Serpini2-deficient mice models pancreatic insufficiency.

    Directory of Open Access Journals (Sweden)

    Stacie K Loftus

    2005-09-01

    Full Text Available Pancreatic insufficiency (PI when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman-Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq, exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome

  13. Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Daniel Rial

    Full Text Available There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin-/- to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin-/- mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination, anxiety (elevated plus-maze, depressive-like behavior (forced swimming and tail suspension and motor function (rotarod, grasping strength and pole. However, parkin-/- mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP. These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin-/- mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.

  14. Attenuation of lung inflammation and fibrosis in CD69-deficient mice after intratracheal bleomycin

    Directory of Open Access Journals (Sweden)

    Matsunaga Hirofumi

    2011-10-01

    Full Text Available Abstract Background Cluster of differentiation 69 (CD69, an early activation marker antigen on T and B cells, is also expressed on activated macrophages and neutrophils, suggesting that CD69 may play a role in inflammatory diseases. To determine the effect of CD69 deficiency on bleomycin(BLM-induced lung injury, we evaluated the inflammatory response following intratracheal BLM administration and the subsequent fibrotic changes in wild type (WT and CD69-deficient (CD69-/- mice. Methods The mice received a single dose of 3 mg/kg body weight of BLM and were sacrificed at 7 or 14 days post-instillation (dpi. Lung inflammation in the acute phase (7 dpi was investigated by differential cell counts and cytokine array analyses of bronchoalveolar lavage fluid. In addition, lung fibrotic changes were evaluated at 14 dpi by histopathology and collagen assays. We also used reverse transcription polymerase chain reaction to measure the mRNA expression level of transforming growth factor β1 (TGF-β1 in the lungs of BLM-treated mice. Results CD69-/- mice exhibited less lung damage than WT mice, as shown by reductions in the following indices: (1 loss of body weight, (2 wet/dry ratio of lung, (3 cytokine levels in BALF, (4 histological evidence of lung injury, (5 lung collagen deposition, and (6 TGF-β1 mRNA expression in the lung. Conclusion The present study clearly demonstrates that CD69 plays an important role in the progression of lung injury induced by BLM.

  15. Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice.

    Science.gov (United States)

    Zhang, Xin; Urbieta-Caceres, Victor H; Eirin, Alfonso; Bell, Caitlin C; Crane, John A; Tang, Hui; Jordan, Kyra L; Oh, Yun-Kyu; Zhu, Xiang-Yang; Korsmo, Michael J; Bachar, Adi R; Cohen, Pinchas; Lerman, Amir; Lerman, Lilach O

    2012-09-04

    Humanin (HN) is an endogenous mitochondrial-derived cytoprotective peptide that has shown protective effects against atherosclerosis and is expressed in human vessels. However, its effects on the progression of kidney disease are unknown. We hypothesized that HN would protect the kidney in the early phase of atherogenesis. Forty-eight mice were studied in four groups (n=12 each). Twenty-four ApoE deficient mice were fed a 16-week high-cholesterol diet supplemented with saline or HN (4mg/kg/day, intraperitoneal). C57BL/6 mice were fed a normal diet supplemented with saline or HN. Microvascular architecture was assessed with micro-CT and vascular wall remodeling by alpha-SMA staining. The effects of HN on angiogenesis, inflammation, apoptosis and fibrosis were evaluated in the kidney tissue by Western blotting and histology. Cortical microvascular spatial density and media/lumen area ratio were significantly increased in high-cholesterol diet fed ApoE deficient mice, but restored by HN. HN up-regulated the renal expressions of anti-angiogenic proteins angiostatin and TSP-1, and inhibited angiopoietin-1. HN attenuated inflammation by down-regulating MCP-1, TNF-alpha and osteopontin. HN also tended to restore pSTAT3 and attenuated Bax expression, suggesting blunted apoptosis. Kidney collagen IV expression was alleviated by HN treatment. HN attenuates renal microvascular remodeling, inflammation and apoptosis in the early stage of kidney disease in hypercholesterolemic ApoE(-/-) mice. HN may serve as a novel therapeutic target to mitigate kidney damage in early atherosclerosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Myeloid interferon-γ receptor deficiency does not affect atherosclerosis in LDLR(-/-) mice.

    Science.gov (United States)

    Boshuizen, Marieke C S; Neele, Annette E; Gijbels, Marion J J; van der Velden, Saskia; Hoeksema, Marten A; Forman, Ruth A; Muller, Werner; Van den Bossche, Jan; de Winther, Menno P J

    2016-03-01

    Atherosclerosis is a chronic lipid-driven inflammatory disease of the arterial wall. Interferon gamma (IFNγ) is an important immunomodulatory cytokine and a known pro-atherosclerotic mediator. However, cell-specific targeting of IFNγ or its signaling in atherosclerosis development has not been studied yet. As macrophages are important IFNγ targets, we here addressed the involvement of myeloid IFNγ signaling in murine atherosclerosis. Bone marrow was isolated from interferon gamma receptor 2 chain (IFNγR2) wildtype and myeloid IFNγR2 deficient mice and injected into lethally irradiated LDLR(-/-) mice. After recovery mice were put on a high fat diet for 10 weeks after which atherosclerotic lesion analysis was performed. In addition, the accompanying liver inflammation was assessed. Even though absence of myeloid IFNγ signaling attenuated the myeloid IFNγ response, no significant differences in atherosclerotic lesion size or phenotype were found. Also, when examining the liver inflammatory state no effects of IFNγR2 deficiency could be observed. Overall, our data argue against a role for myeloid IFNγR2 in atherosclerosis development. Since myeloid IFNγ signaling seems to be nonessential throughout atherogenesis, it is important to understand the mechanisms by which IFNγ acts in atherogenesis. In the future new studies should be performed considering other cell-specific targets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice.

    Science.gov (United States)

    Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean; Racine, Rachael; Wilson-Welder, Jennifer; Sanfilippo, Alan M; Salmon, Sharon L; Metzger, Dennis W

    2017-09-05

    We report that IgA -/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines (Francisella tularensis LPS and Pneumovax), but not protein vaccines such as Fluzone. This defect further included responses to polysaccharide-protein conjugate vaccines (Prevnar and Haemophilus influenzae type b-tetanus toxoid vaccine). In agreement with these findings, IgA -/- mice were protected from pathogen challenge with protein- but not polysaccharide-based vaccines. Interestingly, after immunization with live bacteria, IgA +/+ and IgA -/- mice were both resistant to lethal challenge and their IgG anti-polysaccharide antibody responses were comparable. Immunization with live bacteria, but not purified polysaccharide, induced production of serum B cell-activating factor (BAFF), a cytokine important for IgG class switching; supplementing IgA -/- cell cultures with BAFF enhanced in vitro polyclonal IgG production. Taken together, these findings show that IgA deficiency impairs IgG class switching following vaccination with polysaccharide antigens and that live bacterial immunization can overcome this defect. Since IgA deficient patients also often show defects in antibody responses following immunization with polysaccharide vaccines, our findings could have relevance to the clinical management of this population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of Spontaneous Autoimmune Peripheral Polyneuropathy in B7-2–Deficient Nod Mice

    Science.gov (United States)

    Salomon, Benoît; Rhee, Lesley; Bour-Jordan, Helene; Hsin, Honor; Montag, Anthony; Soliven, Betty; Arcella, Jennifer; Girvin, Ann M.; Miller, Stephen D.; Bluestone, Jeffrey A.

    2001-01-01

    An increasing number of studies have documented the central role of T cell costimulation in autoimmunity. Here we show that the autoimmune diabetes-prone nonobese diabetic (NOD) mouse strain, deficient in B7-2 costimulation, is protected from diabetes but develops a spontaneous autoimmune peripheral polyneuropathy. All the female and one third of the male mice exhibited limb paralysis with histologic and electrophysiologic evidence of severe demyelination in the peripheral nerves beginning at 20 wk of age. No central nervous system lesions were apparent. The peripheral nerve tissue was infiltrated with dendritic cells, CD4+, and CD8+ T cells. Finally, CD4+ T cells isolated from affected animals induced the disease in NOD.SCID mice. Thus, the B7-2–deficient NOD mouse constitutes the first model of a spontaneous autoimmune disease of the peripheral nervous system, which has many similarities to the human disease, chronic inflammatory demyelinating polyneuropathy (CIDP). This model demonstrates that NOD mice have “cryptic” autoimmune defects that can polarize toward the nervous tissue after the selective disruption of CD28/B7-2 costimulatory pathway. PMID:11535635

  19. Neuronal nitric oxide synthase-deficient mice have impaired Renin release but normal blood pressure

    DEFF Research Database (Denmark)

    Sällström, Johan; Carlström, Mattias; Jensen, Boye L

    2008-01-01

    NOS(-/-)) and wild-type (nNOS(+/+)) mice after 10 days of low (0.01% NaCl) and high (4% NaCl) sodium diets.ResultsThe resting heart rate was reduced in nNOS(-/-) mice, but the two genotypes had similar blood pressure during the low (nNOS(+/+) 104 +/- 2 mm Hg; nNOS(-/-) 103 +/- 2 mm Hg) and high (nNOS(+/+) 107 +/- 3...... for stimulation of renin in response to sodium restriction. Furthermore, nNOS(-/-) mice are normotensive, and their blood pressure responds normally to an increased dietary sodium intake, indicating that nNOS deficiency does not cause salt-sensitive hypertension.American Journal of Hypertension (2008) 21 111......BackgroundNitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodium...

  20. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  1. Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    International Nuclear Information System (INIS)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-01-01

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE −/− ) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE −/− mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. -- Graphical abstract: Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. Highlights: ► OPN–CD44 pathway plays a critical role in the development of atherosclerosis. ► We examine lesion area, OPN and CD44 changes after kaempferol treatment. ► Kaempferol treatment decreased atherosclerotic lesion area in ApoE −/− mice. ► Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE −/− mice. ► Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis.

  2. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  3. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G; Lussier, Yoann

    2017-10-02

    Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER-associated degradation (ERAD) is responsible for the clearance of misfolded pro-arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

  4. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice

    DEFF Research Database (Denmark)

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-01-01

    in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding......The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity...... reduced or otherwise altered food anticipatory activity. Wfs1 immunoreactivity in DMH was found almost exclusively in the compact part. Restricted feeding induced c-Fos immunoreactivity primarily in the ventral and lateral aspects of DMH and it was similar in both genotypes. Wfs1-deficiency resulted...

  5. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  6. Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice

    International Nuclear Information System (INIS)

    Rogers, Lynette K.; Bates, Carlton M.; Welty, Stephen E.; Smith, Charles V.

    2006-01-01

    Reactive oxygen species (ROS) have been associated with many human diseases, and glutathione (GSH)-dependent processes are pivotal in limiting tissue damage. To test the hypothesis that Gr1 a1Neu (Neu) mice, which do not express glutathione reductase (GR), would be more susceptible than are wild-type mice to ROS-mediated injury, we studied the effects of diquat, a redox cycling toxicant. Neu mice exhibited modest, dose- and time-dependent elevations in plasma alanine aminotransferase (ALT) activities, 126 ± 36 U/l at 2 h after 5 μmol/kg of diquat, but no ALT elevations were observed in diquat-treated C3H/HeN mice for up to 6 h after 50 μmol/kg of diquat. Histology indicated little or no hepatic necrosis in diquat-treated mice of either strain, but substantial renal injury was observed in diquat-treated Neu mice, characterized by brush border sloughing in the proximal tubules by 1 h and tubular necrosis by 2 h after doses of 7.5 μmol/kg. Decreases in renal GSH levels were observed in the Neu mice by 2 h post dose (3.4 ± 0.4 vs 0.2 ± 0.0 μmol/g tissue at 0 and 50 μmol/kg, respectively), and increases in renal GSSG levels were observed in the Neu mice as early as 0.5 h after 7.5 μmol/kg (105.5 ± 44.1 vs 27.9 ± 4.8 nmol/g tissue). Blood urea nitrogen levels were elevated by 2 h in Neu mice after doses of 7.5 μmol/kg (Neu vs C3H, 32.8 ± 4.1 vs 17.9 ± 0.3 mg/dl). Diquat-induced renal injury in the GR-deficient Neu mice offers a useful model for studies of ROS-induced renal necrosis and of the contributions of GR in defense against oxidant-mediated injuries in vivo

  7. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  8. Cutting Edge: Impaired MHC Class I Expression in Mice Deficient for Nlrc5/CITA

    OpenAIRE

    Biswas, Amlan; Meissner, Torsten B.; Taro Kawai,; Kobayashi, Koichi S.

    2012-01-01

    MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA (class II transactivator) has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/CITA. Here we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and relat...

  9. Hematopoietic androgen receptor deficiency promotes visceral fat deposition in male mice without impairing glucose homeostasis.

    Science.gov (United States)

    Rubinow, K B; Wang, S; den Hartigh, L J; Subramanian, S; Morton, G J; Buaas, F W; Lamont, D; Gray, N; Braun, R E; Page, S T

    2015-07-01

    Androgen deficiency in men increases body fat, but the mechanisms by which testosterone suppresses fat deposition have not been elucidated fully. Adipose tissue macrophages express the androgen receptor (AR) and regulate adipose tissue remodeling. Thus, testosterone signaling in macrophages could alter the paracrine function of these cells and thereby contribute to the metabolic effects of androgens in men. A metabolic phenotyping study was performed to determine whether the loss of AR signaling in hematopoietic cells results in greater fat accumulation in male mice. C57BL/6J male mice (ages 12-14 weeks) underwent bone marrow transplant from either wild-type (WT) or AR knockout (ARKO) donors (n = 11-13 per group). Mice were fed a high-fat diet (60% fat) for 16 weeks. At baseline, 8 and 16 weeks, glucose and insulin tolerance tests were performed, and body composition was analyzed with fat-water imaging by MRI. No differences in body weight were observed between mice transplanted with WT bone marrow [WT(WTbm)] or ARKO bone marrow [WT(ARKObm)] prior to initiation of the high-fat diet. After 8 weeks of high-fat feeding, WT(ARKObm) mice exhibited significantly more visceral and total fat mass than WT(WTbm) animals. Despite this, no differences between groups were observed in glucose tolerance, insulin sensitivity, or plasma concentrations of insulin, glucose, leptin, or cholesterol, although WT(ARKObm) mice had higher plasma levels of adiponectin. Resultant data indicate that AR signaling in hematopoietic cells influences body fat distribution in male mice, and the absence of hematopoietic AR plays a permissive role in visceral fat accumulation. These findings demonstrate a metabolic role for AR signaling in marrow-derived cells and suggest a novel mechanism by which androgen deficiency in men might promote increased adiposity. The relative contributions of AR signaling in macrophages and other marrow-derived cells require further investigation. © 2015 American

  10. P2X7 receptor-deficient mice are susceptible to bone cancer pain

    DEFF Research Database (Denmark)

    Hansen, RR; Nielsen, CK; Nasser, A

    2011-01-01

    The purinergic P2X7 receptor is implicated in both neuropathic and inflammatory pain, and has been suggested as a possible target in pain treatment. However, the specific role of the P2X7 receptor in bone cancer pain is unknown. We demonstrated that BALB/cJ P2X7 receptor knockout (P2X7R KO) mice...... of the P2X7R KO mouse. Further experiments are needed to elucidate the exact role of the P2X7 receptors in bone cancer pain. Pain-related behaviours had an earlier onset in bone cancer-bearing, P2X7 receptor-deficient mice, and treatment with A-438079 failed to alleviate pain-related behaviours....

  11. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Han, Gang; Gu, Ben; Cao, Limin; Gao, Xianjun; Wang, Qingsong; Seow, Yiqi; Zhang, Ning; Wood, Matthew J A; Yin, HaiFang

    2016-03-11

    Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose-fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin levels in skeletal muscles and achieves functional rescue without detectable toxicity. This activity is attributed to enhancement of GF-mediated PMO uptake in the muscle. We demonstrate that PMO cellular uptake is energy dependent, and that ATP from GF metabolism contributes to enhanced cellular uptake of PMO in the muscle. Collectively, we show that GF potentiates PMO activity by replenishing cellular energy stores under energy-deficient conditions in mdx mice. Our findings provide mechanistic insight into hexose-mediated oligonucleotide delivery and have important implications for the development of DMD exon-skipping therapy.

  12. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol.

    Science.gov (United States)

    Kaphalia, Bhupendra S; Bhopale, Kamlesh K; Kondraganti, Shakuntala; Wu, Hai; Boor, Paul J; Ansari, G A Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    International Nuclear Information System (INIS)

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-01-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH - ) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH - and hepatic ADH-normal (ADH + ) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼ 1.5-fold greater in ADH - vs. ADH + deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH - deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  14. Preliminary evidence of apathetic-like behavior in aged vesicular monoamine transporter 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Aron Baumann

    2016-11-01

    Full Text Available Apathy is considered to be a core feature of Parkinson’s disease (PD and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction, and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e. 6-OHDA or MPTP claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2. Apathetic-like behavior in VMAT2 deficient (LO mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study of the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.

  15. Hepatic alcohol dehydrogenase deficiency induces pancreatic injury in chronic ethanol feeding model of deer mice.

    Science.gov (United States)

    Amer, Samir M; Bhopale, Kamlesh K; Kakumanu, Ramu D; Popov, Vsevolod L; Rampy, Bill A; El-Mehallawi, Inas H; Ashmawy, Magdy M; Shakeel Ansari, G A; Kaphalia, Bhupendra S

    2018-02-01

    The single most common cause of chronic pancreatitis (CP, a serious inflammatory disease) is chronic alcohol abuse, which impairs hepatic alcohol dehydrogenase (ADH, a major ethanol oxidizing enzyme). Previously, we found ~5 fold greater fatty acid ethyl esters (FAEEs), and injury in the pancreas of hepatic ADH deficient (ADH - ) vs. hepatic normal ADH (ADH + ) deer mice fed 3.5g% ethanol via liquid diet daily for two months. Therefore, progression of ethanol-induced pancreatic injury was determined in ADH - deer mice fed ethanol for four months to delineate the mechanism and metabolic basis of alcoholic chronic pancreatitis (ACP). In addition to a substantially increased blood alcohol concentration and plasma FAEEs, significant degenerative changes, including atrophy and loss of acinar cells in some areas, ultrastructural changes evident by such features as swelling and disintegration of endoplasmic reticulum (ER) cisternae and ER stress were observed in the pancreas of ethanol-fed ADH - deer mice vs. ADH + deer mice. These changes are consistent with noted increases in pancreatic injury markers (plasma lipase, pancreatic trypsinogen activation peptide, FAEE synthase and cathepsin B) in ethanol-fed ADH - deer mice. Most importantly, an increased levels of pancreatic glucose regulated protein (GRP) 78 (a prominent ER stress marker) were found to be closely associated with increased phosphorylated eukaryotic initiation factor (eIF) 2α signaling molecule in PKR-like ER kinase branch of unfolded protein response (UPR) as compared to X box binding protein 1S and activating transcription factor (ATF)6 - 50kDa protein of inositol requiring enzyme 1α and ATF6 branches of UPR, respectively, in ethanol-fed ADH - vs. ADH + deer mice. These results along with findings on plasma FAEEs, and pancreatic histology and injury markers suggest a metabolic basis of ethanol-induced pancreatic injury, and provide new avenues to understand metabolic basis and molecular mechanism of ACP

  16. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  17. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Caspase-1 deficient mice are more susceptible to influenza A virus infection with PA variation.

    Science.gov (United States)

    Huang, Chih-Heng; Chen, Chi-Jene; Yen, Chia-Tsui; Yu, Cheng-Ping; Huang, Peng-Nien; Kuo, Rei-Lin; Lin, Sue-Jane; Chang, Cheng-Kai; Shih, Shin-Ru

    2013-12-01

    Reassortment within polymerase genes causes changes in the pathogenicity of influenza A viruses. We previously reported that the 2009 pH1N1 PA enhanced the pathogenicity of seasonal H1N1. We examined the effects of the PA gene from the HPAI H5N1 following its introduction into currently circulating seasonal influenza viruses. To evaluate the role of H5N1 PA in altering the virulence of seasonal influenza viruses, we generated a recombinant seasonal H3N2 (3446) that expressed the H5N1 PA protein (VPA) and evaluated the RNP activity, growth kinetics, and pathogenicity of the reassortant virus in mice. Compared with the wild-type 3446 virus, the substitution of the H5N1 PA gene into the 3446 virus (VPA/3446) resulted in increased RNP activity and an increased replication rate in A549 cells. The recombinant VPA/3446 virus also caused more severe pneumonia in Casp 1(-/-) mice than in IL1β(-/-) and wild-type B6 mice. Although the PA from H5N1 is incidentally compatible with a seasonal H3N2 backbone, the H5N1 PA affected the virulence of seasonal H3N2, particularly in inflammasome-related innate immunity deficient mice. These findings highlight the importance of monitoring PA reassortment in seasonal flu, and confirm the role of the Caspase-1 gene in influenza pathogenesis.

  19. Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice

    International Nuclear Information System (INIS)

    Champion, K.M.; Tollaksen, S.L.; Giometti, C.S.; Cook, R.J.

    1994-01-01

    During the analysis of liver protein expression in the offspring of male mice irradiated with fission-spectrum neutrons, one offspring displayed a heritable 50% decrease in the abundance of two proteins. Homozygous mice lacking detectable quantities of these proteins were obtained through breeding. Characterization of this protein deficiency has identified these liver proteins as forms of the enzyme 10-formyltetrahydrofolate dehydrogenase (10-formyl-THF DH; 10-formyltetrahydrofolate:NADP + oxidoreductase, EC 1.5.1.6). NH 2 -terminal sequence analysis demonstrated that both proteins share identical sequences in the first 25 residues, and this sequence matches (96% identity) that of rat and human 10-formyl-THF DH. In addition, these proteins showed cross-reactivity to polyclonal antiserum raised against purified rat 10-formyl-THF DH. Southern (DNA) blot analysis revealed a restriction fragment length polymorphism consistent with a deletion mutation in the 10-formyl-THF DH structural gene in homozygous mice. Results of Northern (RNA) blot analysis demonstrated the absence of 10-formyl-THF DH mRNA in mice lacking 10-formyl-THF DH protein. Furthermore, liver cytosolic 10-formyl-THF DH enzymatic activity was undetectable in homozygotes. Measurement of hepatic folate pools showed that in homozygotes the total folate pool is decreased and the level of tetrahydrofolate is markedly depleted. 26 refs., 4 figs., 1 tab

  20. Tenascin-x deficiency mimics ehlers-danlos syndrome in mice through alteration of collagen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J.R.; Taylor, G.; Dean, W.B.; Wagner, D.R.; Afzal, V.; Lotz, J.C.; Rubin, E.M.; Bristow, J.

    2002-03-01

    Tenascin-X is a large extracellular matrix protein of unknown function1-3. Tenascin-X deficiency in humans is associated with Ehlers-Danlos syndrome4,5, a generalized connective tissue disorder resulting from altered metabolism of the fibrillar collagens6. Because TNXB is the first Ehlers-Danlos syndrome gene that does not encode a fibrillar collagen or collagen-modifying enzyme7-14, we suggested that tenascin-X might regulate collagen synthesis or deposition15. To test this hypothesis, we inactivated Tnxb in mice. Tnxb-/- mice showed progressive skin hyperextensibility, similar to individuals with Ehlers-Danlos syndrome. Biomechanical testing confirmed increased deformability and reduced tensile strength of their skin. The skin of Tnxb-/- mice was histologically normal, but its collagen content was significantly reduced. At the ultrastructural level, collagen fibrils of Tnxb-/- mice were of normal size and shape, but the density of fibrils in their skin was reduced, commensurate with the reduction in collagen content. Studies of cultured dermal fibroblasts showed that although synthesis of collagen I by Tnxb-/- and wildtype cells was similar, Tnxb-/- fibroblasts failed to deposit collagen I into cell-associated matrix. This study confirms a causative role for TNXB in human Ehlers-Danlos syndrome and suggests that tenascin-X is an essential regulator of collagen deposition by dermal fibroblasts.

  1. Quercetin improves postpartum hypogalactia in milk-deficient mice via stimulating prolactin production in pituitary gland.

    Science.gov (United States)

    Lin, Man; Wang, Na; Yao, Bei; Zhong, Yao; Lin, Yan; You, Tianhui

    2018-04-19

    Postpartum dysgalactia is a common clinical problem for lactating women. Seeking out the safe and efficient phytoestrogens will be a promising strategy for postpartum dysgalactia therapy. In this study, the postpartum mice within four groups, including control group, the model group, and the treatment groups intragastrically administrated with normal saline, bromocriptine, bromocriptine plus 17α-ethinyl estradiol, and bromocriptine plus quercetin, respectively, were used. The results showed that quercetin, a kind of natural phytoestrogen, could efficiently promote lactation yield and mammary gland development in the agalactosis mice produced by bromocriptine administration. Mechanically, quercetin, such as 17α-ethinyl estradiol, significantly stimulated prolactin (PRL) production and deposition in the mammary gland in the agalactosis mice determined by western blotting, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. Furthermore, quercetin could increase the expression of β-casein, stearoyl-CoA desaturase, fatty acid synthase, and α-lactalbumin in the breast tissues that are responsible for the production of fatty acid, lactose, and galactose in the milk at the transcriptional level determined by quantitative polymerase chain reaction. Specifically, quercetin promoted primary mammary epithelial cell proliferation and stimulated prolactin receptor (PRLR) expression probably via AKT activation in vitro. In conclusion, this study indicates that estrogen-like quercetin promotes mammary gland development and lactation yield in milk-deficient mice, probably via stimulating PRL expression and release from the pituitary gland, as well as induces PRLR expression in primary mammary epithelial cells. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Dystrophin deficiency reduces atherosclerotic plaque development in ApoE-null mice.

    Science.gov (United States)

    Shami, Annelie; Knutsson, Anki; Dunér, Pontus; Rauch, Uwe; Bengtsson, Eva; Tengryd, Christoffer; Murugesan, Vignesh; Durbeej, Madeleine; Gonçalves, Isabel; Nilsson, Jan; Hultgårdh-Nilsson, Anna

    2015-09-08

    Dystrophin of the dystrophin-glycoprotein complex connects the actin cytoskeleton to basement membranes and loss of dystrophin results in Duchenne muscular dystrophy. We have previously shown injury-induced neointima formation of the carotid artery in mice with the mdx mutation (causing dystrophin deficiency) to be increased. To investigate the role of dystrophin in intimal recruitment of smooth muscle cells (SMCs) that maintains plaque stability in atherosclerosis we applied a shear stress-modifying cast around the carotid artery of apolipoprotein E (ApoE)-null mice with and without the mdx mutation. The cast induces formation of atherosclerotic plaques of inflammatory and SMC-rich/fibrous phenotypes in regions of low and oscillatory shear stress, respectively. Unexpectedly, presence of the mdx mutation markedly reduced the development of the inflammatory low shear stress plaques. Further characterization of the low shear stress plaques in ApoE-null mdx mice demonstrated reduced infiltration of CD3(+) T cells, less laminin and a higher SMC content. ApoE-null mdx mice were also found to have a reduced fraction of CD3(+) T cells in the spleen and lower levels of cytokines and monocytes in the circulation. The present study is the first to demonstrate a role for dystrophin in atherosclerosis and unexpectedly shows that this primarily involves immune cells.

  3. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  4. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-08-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage /sup 51/Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed.

  5. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  6. Effect of Lowering Asymmetric Dimethylarginine (ADMA on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass

    Directory of Open Access Journals (Sweden)

    Johannes Jacobi

    2014-03-01

    Full Text Available The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS inhibitor asymmetric dimethylarginine (ADMA and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1, on atherosclerosis in subtotally nephrectomized (SNX ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39 and C57Bl/6J wild-type littermates (WT, n = 27 with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11 served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD in this mouse model.

  7. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  8. Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Robert G Wither

    Full Text Available Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2 have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities.

  9. Altered acetylcholine release in the hippocampus of dystrophin-deficient mice.

    Science.gov (United States)

    Parames, S F; Coletta-Yudice, E D; Nogueira, F M; Nering de Sousa, M B; Hayashi, M A; Lima-Landman, M T R; Lapa, A J; Souccar, C

    2014-06-06

    Mild cognitive impairments have been described in one-third of patients with Duchenne muscle dystrophy (DMD). DMD is characterized by progressive and irreversible muscle degeneration caused by mutations in the dystrophin gene and lack of the protein expression. Previously, we have reported altered concentrations of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal membranes of dystrophic (mdx) mice. This suggests that alterations in the central cholinergic synapses are associated with dystrophin deficiency. In this study, we examined the release of acetylcholine (ACh) and the level of the vesicular ACh transporter (VAChT) using synaptosomes isolated from brain regions that normally have a high density of dystrophin (cortex, hippocampus and cerebellum), in control and mdx mice at 4 and 12months of age. ACh release evoked by nicotinic stimulation or K(+) depolarization was measured as the tritium outflow from superfused synaptosomes preloaded with [(3)H]-choline. The results showed that the evoked tritium release was Ca(2+)-dependent and mostly formed by [(3)H]-ACh. β2-containing nAChRs were involved in agonist-evoked [(3)H]-ACh release in control and mdx preparations. In hippocampal synaptosomes from 12-month-old mdx mice, nAChR-evoked [(3)H]-ACh release increased by 57% compared to age-matched controls. Moreover, there was a 98% increase in [(3)H]-ACh release compared to 4-month-old mdx mice. [(3)H]-ACh release evoked by K(+) depolarization was not altered, while the VAChT protein level was decreased (19%) compared to that of age-matched controls. In cortical and cerebellar preparations, there was no difference in nAChR-evoked [(3)H]-ACh release and VAChT levels between mdx and age-matched control groups. Our previous findings and the presynaptic alterations observed in the hippocampi of 12-month-old mdx mice indicate possible dysfunction of nicotinic cholinergic synapses associated with dystrophin deficiency. These changes may

  10. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  11. Borrelia-primed and -infected mice deficient of interleukin-17 develop arthritis after neutralization of gamma-interferon.

    Science.gov (United States)

    Kuo, Joseph; Warner, Thomas F; Schell, Ronald F

    2017-03-01

    The immune mechanisms responsible for development of Lyme arthritis are partially understood with interleukin-17 (IL-17) and gamma-interferon (IFN-γ) playing a generally accepted role. Elevated levels of IL-17 and/or IFN-γ have been reported in samples from human Lyme arthritis patients and experimental mice. In addition, IL-17 and IFN-γ have been implicated in the onset of arthritis in Borrelia-primed and -infected C57BL/6 mice. Recently, we showed that IL-17-deficient mice developed swelling and histopathological changes consistent with arthritis in the presence of high levels of IFN-γ. We hypothesized that neutralization of IFN-γ in IL-17-deficient mice would inhibit Borrelia-induced arthritis. Our results, however, showed that swelling of the hind paws and histopathological changes of arthritis did not differ between Borrelia-primed and -infected IL-17-deficient and wild-type mice with or without neutralization of IFN-γ. We also found higher levels of tumor necrosis factor alpha (TNF-α) and IL-6 in the popliteal lymph node cells of Borrelia-primed and -infected IL-17-deficient mice after neutralization of IFN-γ. These results suggest that multiple cytokines interact in the development of Borrelia-induced arthritis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism

    International Nuclear Information System (INIS)

    Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha; Kahl, Philip; Roeper, Anke; Kalff, Joerg C.; Buettner, Reinhard

    2008-01-01

    Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target

  13. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Science.gov (United States)

    Komnig, Daniel; Imgrund, Silke; Reich, Arno; Gründer, Stefan; Falkenburger, Björn H

    2016-01-01

    Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC). Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  14. ASIC1a Deficient Mice Show Unaltered Neurodegeneration in the Subacute MPTP Model of Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Daniel Komnig

    Full Text Available Inflammation contributes to the death of dopaminergic neurons in Parkinson disease and can be accompanied by acidification of extracellular pH, which may activate acid-sensing ion channels (ASIC. Accordingly, amiloride, a non-selective inhibitor of ASIC, was protective in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson disease. To complement these findings we determined MPTP toxicity in mice deficient for ASIC1a, the most common ASIC isoform in neurons. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. We determined the number of dopaminergic neurons in the substantia nigra, assayed by stereological counting 14 days after the last MPTP injection, the number of Nissl positive neurons in the substantia nigra, and the concentration of catecholamines in the striatum. There was no difference between ASIC1a-deficient mice and wildtype controls. We are therefore not able to confirm that ASIC1a are involved in MPTP toxicity. The difference might relate to the subacute MPTP model we used, which more closely resembles the pathogenesis of Parkinson disease, or to further targets of amiloride.

  15. Protoporphyrin Treatment Modulates Susceptibility to Experimental Autoimmune Encephalomyelitis in miR-155-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jinyu Zhang

    Full Text Available We previously identified heme oxygenase 1 (HO-1 as a specific target of miR-155, and inhibition of HO-1 activity restored the capacity of miR-155-/- CD4+ T cells to promote antigen-driven inflammation after adoptive transfer in antigen-expressing recipients. Protoporphyrins are molecules recognized for their modulatory effect on HO-1 expression and function. In the present study, we investigated the effect of protoporphyrin treatment on the development of autoimmunity in miR-155-deficient mice. MiR-155-mediated control of HO-1 expression in promoting T cell-driven chronic autoimmunity was confirmed since HO-1 inhibition restored susceptibility to experimental autoimmune encephalomyelitis (EAE in miR-155-deficient mice. The increased severity of the disease was accompanied by an enhanced T cell infiltration into the brain. Taken together, these results underline the importance of miR-155-mediated control of HO-1 expression in regulating the function of chronically-stimulated T cells in EAE.

  16. RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice

    Science.gov (United States)

    Herold, Marco J.

    2016-01-01

    Neoplastic transformation is driven by oncogenic lesions that facilitate unrestrained cell expansion and resistance to antiproliferative signals. These oncogenic DNA lesions, acquired through errors in DNA replication, gene recombination, or extrinsically imposed damage, are thought to activate multiple tumor suppressive pathways, particularly apoptotic cell death. DNA damage induces apoptosis through well-described p53-mediated induction of PUMA and NOXA. However, loss of both these mediators (even together with defects in p53-mediated induction of cell cycle arrest and cell senescence) does not recapitulate the tumor susceptibility observed in p53−/− mice. Thus, potentially oncogenic DNA lesions are likely to also trigger apoptosis through additional, p53-independent processes. We found that loss of the BH3-only protein BIM accelerated lymphoma development in p53-deficient mice. This process was negated by concomitant loss of RAG1/2-mediated antigen receptor gene rearrangement. This demonstrates that BIM is critical for the induction of apoptosis caused by potentially oncogenic DNA lesions elicited by RAG1/2-induced gene rearrangement. Furthermore, this highlights the role of a BIM-mediated tumor suppressor pathway that acts in parallel to the p53 pathway and remains active even in the absence of wild-type p53 function, suggesting this may be exploited in the treatment of p53-deficient cancers. PMID:27621418

  17. Neutralisation of uPA with a monoclonal antibody reduces plasmin formation and delays skin wound healing in tPA-deficient mice

    DEFF Research Database (Denmark)

    Jögi, Annika; Rønø, Birgitte; Lund, Ida K

    2010-01-01

    Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (u...

  18. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    (NAFLD) accompanied by ERS. In summary, as a lysosomal membrane protein, Sidt2 plays an important role in the pathogenesis of NAFLD, and ERS may mediate the occurrence and development of this disease in Sdit2 deficiency mice.

  19. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    nonalcoholic fatty liver disease (NAFLD) accompanied by ERS. In summary, as a lysosomal membrane protein, Sidt2 plays an important role in the pathogenesis of NAFLD, and ERS may mediate the occurrence and development of this disease in Sdit2 deficiency mice.

  20. Partial absence of pleuropericardial membranes in Tbx18- and Wt1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Julia Norden

    Full Text Available The pleuropericardial membranes are fibro-serous walls that separate the pericardial and pleural cavities and anchor the heart inside the mediastinum. Partial or complete absence of pleuropericardial membranes is a rare human disease, the etiology of which is poorly understood. As an attempt to better understand these defects, we wished to analyze the cellular and molecular mechanisms directing the separation of pericardial and pleural cavities by pleuropericardial membranes in the mouse. We found by histological analyses that both in Tbx18- and Wt1-deficient mice the pleural and pericardial cavities communicate due to a partial absence of the pleuropericardial membranes in the hilus region. We trace these defects to a persisting embryonic connection between these cavities, the pericardioperitoneal canals. Furthermore, we identify mesenchymal ridges in the sinus venosus region that tether the growing pleuropericardial membranes to the hilus of the lung, and thus, close the pericardioperitoneal canals. In Tbx18-deficient embryos these mesenchymal ridges are not established, whereas in Wt1-deficient embryos the final fusion process between these tissues and the body wall does not occur. We suggest that this fusion is an active rather than a passive process, and discuss the interrelation between closure of the pericardioperitoneal canals, lateral release of the pleuropericardial membranes from the lateral body wall, and sinus horn development.

  1. Metabolic profiling of vitamin C deficiency in Gulo-/- mice using proton NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Gavin E. [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada); Joan Miller, B.; Jirik, Frank R. [University of Calgary, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health (Canada); Vogel, Hans J., E-mail: vogel@ucalgary.ca [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada)

    2011-04-15

    Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo-/- mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2-3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.

  2. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet.

    Directory of Open Access Journals (Sweden)

    Samantha R Weaver

    Full Text Available Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD or low fat (LFD diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-, and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women.

  3. Serotonin Deficiency Rescues Lactation on Day 1 in Mice Fed a High Fat Diet.

    Science.gov (United States)

    Weaver, Samantha R; Bohrer, Justin C; Prichard, Allan S; Perez, Paola K; Streckenbach, Liana J; Olson, Jake M; Cook, Mark E; Hernandez, Laura L

    2016-01-01

    Obesity is an inflammatory state associated with delayed lactogenesis stage II and altered mammary gland morphology. Serotonin mediates inflammation and mammary gland involution. The objective of this study was to determine if a genetic deficiency of tryptophan hydroxylase 1, the rate-limiting enzyme in peripheral serotonin synthesis, would result in an improved ability to lactate in dams fed a high fat diet. Twenty-six female mice were fed a high (HFD) or low fat (LFD) diet throughout pregnancy and lactation. Fourteen mice were genetically deficient for Tph1 (Tph1-/-), and twelve were wild type. Milk yield, pup mortality, and dam weights were recorded and milk samples were collected. On day 10 of lactation, dams were sacrificed and mammary glands were harvested for RT-PCR and histological evaluation. HFD dams weighed more than LFD dams at the onset of lactation. WT HFD dams were unable to lactate on day 1 of lactation and exhibited increased pup mortality relative to all other treatments, including Tph1-/- HFD dams. mRNA expression of immune markers C-X-C motif chemokine 5 and tumor necrosis factor alpha were elevated in WT HFD mammary glands. Mammary gland histology showed a reduced number of alveoli in WT compared to Tph1-/- dams, regardless of diet, and the alveoli of HFD dams were smaller than those of LFD dams. Finally, fatty acid profile in milk was dynamic in both early and peak lactation, with reduced de novo synthesis of fatty acids on day 10 of lactation in the HFD groups. Administration of a HFD to C57BL/6 dams produced an obese phenotype in the mammary gland, which was alleviated by a genetic deficiency of Tph1. Serotonin may modulate the effects of obesity on the mammary gland, potentially contributing to the delayed onset of lactogenesis seen in obese women.

  4. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology.We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions.Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and

  5. Exacerbation of Facial Motoneuron Loss after Facial Nerve Axotomy in CCR3-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Derek A Wainwright

    2009-11-01

    Full Text Available We have previously demonstrated a neuroprotective mechanism of FMN (facial motoneuron survival after facial nerve axotomy that is dependent on CD4+ Th2 cell interaction with peripheral antigen-presenting cells, as well as CNS (central nervous system-resident microglia. PACAP (pituitary adenylate cyclase-activating polypeptide is expressed by injured FMN and increases Th2-associated chemokine expression in cultured murine microglia. Collectively, these results suggest a model involving CD4+ Th2 cell migration to the facial motor nucleus after injury via microglial expression of Th2-associated chemokines. However, to respond to Th2-associated chemokines, Th2 cells must express the appropriate Th2-associated chemokine receptors. In the present study, we tested the hypothesis that Th2-associated chemokine receptors increase in the facial motor nucleus after facial nerve axotomy at timepoints consistent with significant T-cell infiltration. Microarray analysis of Th2-associated chemokine receptors was followed up with real-time PCR for CCR3, which indicated that facial nerve injury increases CCR3 mRNA levels in mouse facial motor nucleus. Unexpectedly, quantitative- and co-immunofluorescence revealed increased CCR3 expression localizing to FMN in the facial motor nucleus after facial nerve axotomy. Compared with WT (wild-type, a significant decrease in FMN survival 4 weeks after axotomy was observed in CCR3–/– mice. Additionally, compared with WT, a significant decrease in FMN survival 4 weeks after axotomy was observed in Rag2 –/– (recombination activating gene-2-deficient mice adoptively transferred CD4+ T-cells isolated from CCR3–/– mice, but not in CCR3–/– mice adoptively transferred CD4+ T-cells derived from WT mice. These results provide a basis for further investigation into the co-operation between CD4+ T-cell- and CCR3-mediated neuroprotection after FMN injury.

  6. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. In vivo neutralization of IL-6 receptors ameliorates gastrointestinal dysfunction in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Manning, J; Buckley, M M; O'Halloran, K D; O'Malley, D

    2016-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease characterized by progressive deterioration and degeneration of striated muscle. A mutation resulting in the loss of dystrophin, a structural protein which protects cells from contraction-induced damage, underlies DMD pathophysiology. Damage to muscle fibers results in chronic inflammation and elevated levels of proinflammatory cytokines such as interleukin-6 (IL-6). However, loss of cellular dystrophin also affects neurons and smooth muscle in the gastrointestinal (GI) tract with complaints such as hypomotility, pseudo-obstruction, and constipation reported in DMD patients. Using dystrophin-deficient mdx mice, studies were carried out to examine colonic morphology and function compared with wild-type mice. Treatment with neutralizing IL-6 receptor antibodies (xIL-6R) and/or the corticotropin-releasing factor (CRF) 2 receptor agonist, urocortin 2 (uro2) was tested to determine if they ameliorated GI dysfunction in mdx mice. Mdx mice exhibited thickening of colonic smooth muscle layers and delayed stress-induced defecation. In organ bath studies, neurally mediated IL-6-evoked contractions were larger in mdx colons. In vivo treatment of mdx mice with xIL-6R normalized defecation rates and colon lengths. Uro2 treatment did not affect motility or morphology. The potentiated colonic contractile response to IL-6 was attenuated by treatment with xIL-6R. These findings confirm the importance of dystrophin in normal GI function and implicate IL-6 as an important regulator of GI motility in the mdx mouse. Inhibition of IL-6 signaling may offer a potential new therapeutic strategy for treating DMD-associated GI symptoms. © 2016 John Wiley & Sons Ltd.

  8. Interleukin-18 expression increases in response to neurovascular damage following soman-induced status epilepticus in rats.

    Science.gov (United States)

    Johnson, Erik A; Guignet, Michelle A; Dao, Thuy L; Hamilton, Tracey A; Kan, Robert K

    2015-01-01

    Status epilepticus (SE) can cause neuronal cell death and impaired behavioral function. Acute exposure to potent acetylcholinesterase inhibitors such as soman (GD) can cause prolonged SE activity, micro-hemorrhage and cell death in the hippocampus, thalamus and piriform cortex. Neuroinflammation is a prominent feature of brain injury with upregulation of multiple pro-inflammatory cytokines including those of the IL-1 family. The highly pleiotropic pro-inflammatory cytokine interleukin-18 (IL-18) belongs to the IL-1 family of cytokines and can propagate neuroinflammation by promoting immune cell infiltration, leukocyte and lymphocyte activation, and angiogenesis and helps facilitate the transition from the innate to the adaptive immune response. The purpose of this study is to characterize the regional and temporal expression of IL -18 and related factors in the brain following SE in a rat GD seizure model followed by localization of IL-18 to specific cell types. The protein levels of IL-18, vascular endothelial growth factor and interferon gamma was quantified in the lysates of injured brain regions up to 72 h following GD-induced SE onset using bead multiplex immunoassays. IL-18 was localized to various cell types using immunohistochemistry and transmission electron microscopy. In addition, macrophage appearance scoring and T-cell quantification was determined using immunohistochemistry. Micro-hemorrhages were identified using hematoxylin and eosin staining of brain sections. Significant increases in IL-18 occurred in the piriform cortex, hippocampus and thalamus following SE. IL-18 was primarily expressed by endothelial cells and astrocytes associated with the damaged neurovascular unit. The increase in IL-18 was not related to macrophage accumulation, neutrophil infiltration or T-cell appearance in the injured tissue. These data show that IL-18 is significantly upregulated following GD-induced SE and localized primarily to endothelial cells in damaged brain

  9. Estimation of interleukin-18 in the gingival crevicular fluid and serum of Bengali population with periodontal health and disease

    Directory of Open Access Journals (Sweden)

    Vineet Nair

    2016-01-01

    Full Text Available Context: Host's immune response elicits cytokines in response to bacterial challenge. We explore role of one such cytokine interleukin-18 (IL-18 in periodontal health and disease. Aims: IL-18 is a pro-inflammatory and tumor suppressive cytokine. Dental literatures suggest that IL-18 might have a role to play in the progression from oral health to periodontal disease. Therefore, this study was undertaken to elucidate the level and role of IL-18 in the gingival crevicular fluid (GCF and serum of individuals with healthy gingiva, chronic gingivitis, chronic periodontitis, and aggressive periodontitis before and after periodontal therapy. Settings and Design: Eighty individuals chosen for the study were divided into healthy control group (1A, chronic gingivitis (2A, chronic periodontitis (3A, and aggressive periodontitis (4A with twenty individuals each. Criteria for the division were the subject's gingival index, probing pocket depth, clinical attachment loss, and radiographic evidence of bone loss. Materials and Methods: The individuals underwent treatment (scaling in case of Groups 1A and 2A and scaling and root planing followed by flap surgery in Groups 3A and 4A to form posttreatment Groups 1B, 2B, 3B, and 4B, respectively. Thus, a total of 160 GCF and 160 serum samples were collected and tested by ELISA.Statistical Analysis Used: Intergroup comparison was done by post hoc Tukey's test. Results: The mean IL-18 concentration was greatest in Group 3A (GCF 144.61 pg/μl, serum 55.12 pg/ml followed by Group 4A (GCF 98.55 pg/μl, serum 39.06 pg/ml, Group 2A (GCF 22.27 pg/μl, serum 27.73 pg/ml and lowest (GCF 17.94 pg/μl, serum 11.49 pg/ml in Group 1A. Posttreatment groups (1B–4B showed reduction in the mean IL-18 concentration in both GCF and serum. Conclusions: As the inflammation increased, there was a concomitant increase in the level of IL-18 and vice versa following periodontal therapy.

  10. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    Directory of Open Access Journals (Sweden)

    Bárbara Núñez

    Full Text Available Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2 cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8, in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  11. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  12. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Laura E Pascal

    Full Text Available ELL-associated factor 2 (EAF2 is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2(-/- mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2(-/- mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2(-/- animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors.

  13. Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice.

    Science.gov (United States)

    Hirota, Ayako; Kawachi, Yasuhiro; Yamamoto, Masayuki; Koga, Tsutomu; Hamada, Kazuhiko; Otsuka, Fujio

    2011-08-01

    Ultraviolet (UV) radiation is one of the most important environmental factors involved in the pathogenesis of premature skin ageing, termed photoageing. The harmful effects of UV in photoageing are associated with the generation of reactive oxygen species, and cellular antioxidants act to prevent the occurrence and reduce the severity of UV-induced photoageing. The transcription factor Nrf2 and its cytoplasmic anchor protein, Keap1, are central regulators of the cellular antioxidant response. Here, we investigated the role of the Nrf2-Keap1 pathway in photoageing using nrf2 gene-deficient (nrf2(-/-)) mice. Our results indicated that UVB-irradiated nrf2(-/-) mice showed accelerated photoageing, such as coarse wrinkle formation, loss of skin flexibility, epidermal thickening and deposition of extracellular matrix in the upper dermis. In addition, nrf2(-/-) mice also showed an increase in cutaneous reactivity for the lipid peroxidation product 4-hydroxy-2-nonenal and a significant decrease in cutaneous glutathione level. These findings indicate that Nrf2 plays the important role in the protection against UVB-induced photoageing. © 2011 John Wiley & Sons A/S.

  14. Npas4 deficiency and prenatal stress interact to affect social recognition in mice.

    Science.gov (United States)

    Heslin, K; Coutellier, L

    2017-12-11

    Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene-by-environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock-out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild-type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Sleep related changes in blood pressure in hypocretin-deficient narcoleptic mice.

    Science.gov (United States)

    Bastianini, Stefano; Silvani, Alessandro; Berteotti, Chiara; Elghozi, Jean-Luc; Franzini, Carlo; Lenzi, Pierluigi; Lo Martire, Viviana; Zoccoli, Giovanna

    2011-02-01

    Although blood pressure during sleep and the difference in blood pressure between sleep and wakefulness carry prognostic information, little is known on their central neural mechanisms. Hypothalamic neurons releasing hypocretin (orexin) peptides control wake-sleep behavior and autonomic functions and are lost in narcolepsy-cataplexy. We investigated whether chronic lack of hypocretin signaling alters blood pressure during sleep. Comparison of blood pressure as a function of the wake-sleep behavior between 2 different hypocretin-deficient mouse models and control mice with the same genetic background. N/A. Hypocretin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (TG, n = 12); hypocretin gene knock-out mice (KO, n = 8); congenic wild-type controls (WT, n = 10). Instrumentation with electrodes for sleep recordings and a telemetric blood pressure transducer. Blood pressure was significantly higher in either TG or KO than in WT during non-rapid eye movement sleep (NREMS; 4 ± 2 and 7 ± 2 mm Hg, respectively) and rapid eye movement sleep (REMS; 11 ± 2 and 12 ± 3 mm Hg, respectively), whereas it did not differ significantly between groups during wakefulness. Accordingly, the decrease in blood pressure between either NREMS or REMS and wakefulness was significantly blunted in TG and KO with respect to WT. Chronic lack of hypocretin signaling may entail consequences on blood pressure that are potentially adverse and that vary widely among wake-sleep states.

  16. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  17. Oral tolerance is inefficient in neonatal mice due to a physiological vitamin A deficiency.

    Science.gov (United States)

    Turfkruyer, M; Rekima, A; Macchiaverni, P; Le Bourhis, L; Muncan, V; van den Brink, G R; Tulic, M K; Verhasselt, V

    2016-03-01

    Increased risk of allergy during early life indicates deficient immune regulation in this period of life. To date, the cause for inefficient neonatal immune regulation has never been elucidated. We aimed to define the ontogeny of oral tolerance and to identify necessary conditions specific for this stage of life. Ovalbumin (OVA) was administered orally to mice through breast milk and efficiency of systemic tolerance to OVA was assessed in adulthood using a model of allergic airway inflammation. Oral tolerance induction was fully efficient starting third week of life. Inefficiency in neonates was a consequence of abnormal antigen transfer across the gut barrier and retinaldehyde dehydrogenase expression by mesenteric lymph node CD103(+) neonatal dendritic cells, resulting in inefficient T-cell activation. Neonates' serum retinol levels were three times lower than in adult mice, and vitamin A supplementation was sufficient to rescue neonatal defects and allow tolerance induction from birth. The establishment of oral tolerance required the differentiation of Th1 lymphocytes in both vitamin A-supplemented neonates and 3-week-old unsupplemented mice. This knowledge should guide the design of interventions for allergy prevention that are adapted to the neonatal stage of life such as vitamin A supplementation.

  18. Mantle cell lymphoma in cyclin D1 transgenic mice with Bim-deficient B cells.

    Science.gov (United States)

    Katz, Samuel G; Labelle, James L; Meng, Hailong; Valeriano, Regina P; Fisher, Jill K; Sun, Heather; Rodig, Scott J; Kleinstein, Steven H; Walensky, Loren D

    2014-02-06

    Mantle cell lymphoma (MCL) is a highly aggressive B-cell lymphoma resistant to conventional chemotherapy. Although defined by the characteristic t(11;14) translocation, MCL has not been recapitulated in transgenic mouse models of cyclin D1 overexpression alone. Indeed, several genetic aberrations have been identified in MCL that may contribute to its pathogenesis and chemoresistance. Of particular interest is the frequent biallelic deletion of the proapoptotic BCL-2 family protein BIM. BIM exerts its pro-death function via its α-helical BH3 death domain that has the dual capacity to inhibit antiapoptotic proteins such as BCL-2 and MCL-1 and directly trigger proapoptotic proteins such as the mitochondrial executioner protein BAX. To evaluate a functional role for Bim deletion in the pathogenesis of MCL, we generated cyclin D1-transgenic mice harboring Bim-deficient B cells. In response to immunization, Eμ(CycD1)CD19(CRE)Bim(fl/fl) mice manifested selective expansion of their splenic mantle zone compartment. Three distinct immune stimulation regimens induced lymphomas with histopathologic and molecular features of human MCL in a subset of mice. Thus, deletion of Bim in B cells, in the context of cyclin D1 overexpression, disrupts a critical control point in lymphoid maturation and predisposes to the development of MCL. This genetic proof of concept for MCL pathogenesis suggests an opportunity to reactivate the death pathway by pharmacologic mimicry of proapoptotic BIM.

  19. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin.

    Science.gov (United States)

    Mosienko, V; Bert, B; Beis, D; Matthes, S; Fink, H; Bader, M; Alenina, N

    2012-05-29

    Serotonin is a major neurotransmitter in the central nervous system (CNS). Dysregulation of serotonin transmission in the CNS is reported to be related to different psychiatric disorders in humans including depression, impulsive aggression and anxiety disorders. The most frequently prescribed antidepressants and anxiolytics target the serotonergic system. However, these drugs are not effective in 20-30% of cases. The causes of this failure as well as the molecular mechanisms involved in the origin of psychological disorders are poorly understood. Biosynthesis of serotonin in the CNS is initiated by tryptophan hydroxylase 2 (TPH2). In this study, we used Tph2-deficient (Tph2(-/-)) mice to evaluate the impact of serotonin depletion in the brain on mouse behavior. Tph2(-/-) mice exhibited increased depression-like behavior in the forced swim test but not in the tail suspension test. In addition, they showed decreased anxiety-like behavior in three different paradigms: elevated plus maze, marble burying and novelty-suppressed feeding tests. These phenotypes were accompanied by strong aggressiveness observed in the resident-intruder paradigm. Despite carrying only one copy of the gene, heterozygous Tph2(+/-) mice showed only 10% reduction in brain serotonin, which was not sufficient to modulate behavior in the tested paradigms. Our findings provide unequivocal evidence on the pivotal role of central serotonin in anxiety and aggression.

  20. Reduced delayed rectifier K+ current, altered electrophysiology, and increased ventricular vulnerability in MLP-deficient mice.

    Science.gov (United States)

    Gardiwal, Ajmal; Klein, Gunnar; Kraemer, Kirsten; Durgac, Tolga; Koenig, Thorben; Niehaus, Michael; Heineke, Joerg; Mohammadi, Bahram; Krampfl, Klaus; Schaefer, Arnd; Wollert, Kai C; Korte, Thomas

    2007-10-01

    Mice with a knockout (KO) of muscle LIM protein (MLP) exhibit many morphologic and clinical features of human cardiomyopathy. In humans, MLP-expression is downregulated both in ischemic and dilative cardiomyopathy. In this study, we investigated the effects of MLP on the electrophysiologic phenotype in vivo and on outward potassium currents. MLP-deficient (MLPKO) and wild-type (MLPWT) mice were subjected to long-term electrocardiogram (ECG) recording and in vivo electrophysiologic study. The whole-cell, patch-clamp technique was applied to measure voltage dependent outward K+ currents in isolated cardiomyocytes. Long-term ECG revealed a significant prolongation of RR mean (108 +/- 9 versus 99 +/- 5 ms), P (16 +/- 3 versus 14 +/- 1 ms), QRS (17 +/- 3 versus 13 +/- 1 ms), QT (68 +/- 8 versus 46 +/- 7 ms), QTc (66 +/- 6 versus 46 +/- 7 ms), JT (51 +/- 7 versus 34 +/- 7 ms), and JTc (49 +/- 5 versus 33 +/- 7 ms) in MLPKO versus MLPWT mice (P MLP exhibit significant prolongation of atrial and ventricular conduction and an increased ventricular vulnerability. A reduction in repolarizing outward K+ currents may be responsible for these alterations.

  1. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice

    Science.gov (United States)

    Kärner, J.; Meager, A.; Laan, M.; Maslovskaja, J.; Pihlap, M.; Remm, A.; Juronen, E.; Wolff, A. S. B.; Husebye, E. S.; Podkrajšek, K. T.; Bratanic, N.; Battelino, T.; Willcox, N.; Peterson, P.; Kisand, K.

    2013-01-01

    Summary Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a recessive disorder resulting from mutations in the autoimmune regulator (AIRE). The patients' autoantibodies recognize not only multiple organ-specific targets, but also many type I interferons (IFNs) and most T helper type 17 (Th17) cell-associated cytokines, whose biological actions they neutralize in vitro. These anti-cytokine autoantibodies are highly disease-specific: otherwise, they have been found only in patients with thymomas, tumours of thymic epithelial cells that fail to express AIRE. Moreover, autoantibodies against Th17 cell-associated cytokines correlate with chronic mucocutaneous candidiasis in both syndromes. Here, we demonstrate that the immunoglobulin (Ig)Gs but not the IgAs in APECED sera are responsible for neutralizing IFN-ω, IFN-α2a, interleukin (IL)-17A and IL-22. Their dominant subclasses proved to be IgG1 and, surprisingly, IgG4 without IgE, possibly implicating regulatory T cell responses and/or epithelia in their initiation in these AIRE-deficiency states. The epitopes on IL-22 and IFN-α2a appeared mainly conformational. We also found mainly IgG1 neutralizing autoantibodies to IL-17A in aged AIRE-deficient BALB/c mice – the first report of any target shared by these human and murine AIRE-deficiency states. We conclude that autoimmunization against cytokines in AIRE deficiency is not simply a mere side effect of chronic mucosal Candida infection, but appears to be related more closely to disease initiation. PMID:23379432

  2. Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice

    DEFF Research Database (Denmark)

    Storm, Tina; Heegaard, Steffen; Christensen, Erik Ilsø

    2014-01-01

    of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed...... that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular...

  3. Prefrontal single-unit firing associated with deficient extinction in mice

    Science.gov (United States)

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney; Gunduz-Cinar, Ozge; Kravitz, Alexxai; Singewald, Nicolas; Holmes, Andrew

    2014-01-01

    The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of Sthan B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and

  4. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  5. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Araújo, C.V.; Lazzarotto, C.R.; Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de; Ribeiro, R.A.; Bertolini, L.R.; Lima, A.A.M.; Brito, G.A.C.; Oriá, R.B.

    2015-01-01

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE -/- ) and wild-type (APOE +/+ ) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE -/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE +/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE -/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  6. Interleukin 6 Deficiency Modulates the Hypothalamic Expression of Energy Balance Regulating Peptides during Pregnancy in Mice

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F.; Diéguez, Carlos; García, María C.

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  7. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F; Diéguez, Carlos; García, María C

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  8. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  9. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity.

    Science.gov (United States)

    Gulfo, José; Ledda, Angelo; Serra, Elisabet; Cabot, Cristina; Esteve, Montserrat; Grasa, Mar

    2016-08-01

    To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression. © 2016 The Obesity Society.

  10. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  11. Lymphotoxin Alpha-Deficient Mice Clear Persistent Rotavirus Infection after Local Generation of Mucosal IgA

    OpenAIRE

    Lopatin, Uri; Blutt, Sarah E.; Conner, Margaret E.; Kelsall, Brian L.

    2013-01-01

    Rotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα−/−) mice that lack Peyer's patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα−/− and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses. However, unlike w...

  12. Interleukin-1 receptor type I gene-deficient mice are less susceptible to Staphylococcus epidermidis biomaterial-associated infection than are wild-type mice

    NARCIS (Netherlands)

    Boelens, J. J.; van der Poll, T.; Zaat, S. A.; Murk, J. L.; Weening, J. J.; Dankert, J.

    2000-01-01

    Elevated concentrations of interleukin-1 (IL-1) were found in tissue surrounding biomaterials infected with Staphylococcus epidermidis. To determine the role of IL-1 in biomaterial-associated infection (BAI), IL-1 receptor type I-deficient (IL-1R(-/-)) and wild-type mice received subcutaneous

  13. Diet-induced lipid accumulation in phospholipid transfer protein-deficient mice: its atherogenicity and potential mechanism[S

    Science.gov (United States)

    Yeang, Calvin; Qin, Shucun; Chen, Kailian; Wang, David Q-H.; Jiang, Xian-Cheng

    2010-01-01

    A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation. PMID:20543142

  14. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    International Nuclear Information System (INIS)

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-01-01

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE –/– ) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE –/– mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE –/– mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis

  15. Roux-en-Y gastric bypass surgery is effective in fibroblast growth factor-21 deficient mice.

    Science.gov (United States)

    Morrison, Christopher D; Hao, Zheng; Mumphrey, Michael B; Townsend, R Leigh; Münzberg, Heike; Ye, Jianping; Berthoud, Hans-Rudolf

    2016-10-01

    The mechanisms by which bariatric surgeries so effectively and lastingly reduce body weight and normalize metabolic dysfunction are not well understood. Fibroblast growth fator-21 (FGF21) is a key regulator of metabolism and is currently considered for treatment of obesity. Although elevated by acute food deprivation, it is downregulated after weight loss induced by chronic calorie restriction but not after Roux-en-Y gastric bypass surgery. Therefore, the goal of the present study was to assess the role of FGF21-signaling in the beneficial effects of Roux-en-Y gastric bypass surgery (RYGB). High-fat diet-induced obese FGF21-deficient (FGF21(-/-)) and wildtype (WT) mice were subjected to RYGB, sham surgery, or caloric restriction to match body weight of RYGB mice. Body weight, body composition, food intake, energy expenditure, glucose tolerance, and insulin sensitivity, as well as plasma levels and hepatic mRNA expression of FGF21 were measured. Hepatic expression and plasma levels of FGF21 are higher after RYGB compared with similar weight loss induced by caloric restriction, suggesting that elevated FGF21 might play a role in preventing increased hunger and weight regain after RYGB. However, although the body weight differential between RYGB and sham surgery was significantly reduced in FGF21(-/-) mice, RYGB induced similarly sustained body weight and fat mass loss, initial reduction of food intake, increased energy expenditure, and improvements in glycemic control in FGF21(-/-) and WT mice. FGF21 signaling is not a critical single factor for the beneficial metabolic effects of RYGB. This may open up the possibility to use FGF21 as adjuvant therapy in patients with ineffective bariatric surgeries.

  16. Phloretin promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice.

    Science.gov (United States)

    Lee, Eun-Jung; Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Kang, Young-Hee

    2014-09-15

    Bone-remodeling imbalance induced by increased osteoclast formation and bone resorption is known to cause skeletal diseases such as osteoporosis. The reduction of estrogen levels at menopause is one of the strongest risk factors developing postmenopausal osteoporosis. This study investigated osteoprotective effects of the dihydrochalcone phloretin found in apple tree leaves on bone loss in ovariectomized (OVX) C57BL/6 female mice as a model for postmenopausal osteoporosis. OVX demoted bone mineral density (BMD) of mouse femurs, reduced serum 17β-estradiol level and enhanced serum receptor activator of NF-κB ligand (RANKL)/osteoprotegerin ratio with uterine atrophy. Oral administration of 10 mg/kg phloretin to OVX mice for 8 weeks improved such effects, compared to sham-operated mice. Phloretin attenuated TRAP activity and cellular expression of β3 integrin and carbonic anhydrase II augmented in femoral bone tissues of OVX mice. This study further examined that osteogenic activity of phloretin in RANKL-differentiated Raw 264.7 macrophages into mature osteoclasts. Phloretin at 1-20 μM stimulated Smac expression and capase-3 activation concurrently with nuclear fragmentation of multi-nucleated osteoclasts, indicating that this compound promoted osteoclast apoptosis. Consistently, phloretin enhanced bcl-2 induction but diminished bax expression. Furthermore, phloretin activated ASK-1-diverged JNK and p38 MAPK signaling pathways in mature osteoclasts, whereas it dose-dependently inhibited the RANKL-stimulated activation of ERK. Therefore, phloretin manipulated ASK-1-MAPK signal transduction leading to transcription of apoptotic genes. Phloretin was effective in preventing estrogen deficiency-induced osteoclastogenic resorption. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Increased P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient mice.

    Science.gov (United States)

    Barth, K; Pfleger, C; Linge, A; Sim, J A; Surprenant, A; Steinbronn, N; Strasser, R H; Kasper, M

    2010-07-01

    It has recently been shown in epithelial cells that the ATP-gated ion channel P2X7R is in part, associated with caveolae and colocalized with caveolin-1. In the present study of the mouse heart, we show for the first time, using immunohistochemistry and cryoimmunoelectron microscopy, that P2X7R is expressed in atrial cardiomyocytes and in cardiac microvascular endothelial cells, but not in the ventricle cardiomyocytes. Furthermore, biochemical data indicate the presence of two forms of P2X7R, the classical glycosylated 80 kDa isoform and a protein with the molecular weight of 56 kDa, in both cardiomyocytes and endothelial cells of the mouse heart. The functionality of both proteins in heart cells is still unclear. In cardiac tissue homogenates derived from caveolin-1 deficient mice (cav-1(-/-)), an increase of the P2Xrx7 mRNA and P2X7R protein (80 kDa) was found, particularly in atrial samples. In addition, P2rx7(-/-) mice showed enhanced protein levels of caveolin-1 in their atrial tissues. Although the details of cellular mechanisms that underlie the relationship between caveolin-1 and P2X7R in atrial cardiomyocytes and the electrophysiological consequences of the increased P2X7R expression in atrial cells of cav-1(-/-) mice remain to be elucidated, the cardiomyopathy detectable in cav-1(-/-) mice is possibly related to a disturbed crosstalk between P2X7R and caveolin-1 in different heart cell populations.

  18. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hiroyuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Takeya, Motohiro [Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan)

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  19. Relationships linking emotional, motor, cognitive and GABAergic dysfunctions in dystrophin-deficient mdx mice.

    Science.gov (United States)

    Vaillend, Cyrille; Chaussenot, Rémi

    2017-03-15

    Alterations in the Duchenne muscular dystrophy (DMD) gene have been associated with enhanced stress reactivity in vertebrate species, suggesting a role for brain dystrophin in fear-related behavioral and cognitive processes. Because the loss of dystrophin (Dp427) reduces clustering of central γ-aminobutyric acid (GABAA) receptors, it is suspected that local inhibitory tuning and modulation of neuronal excitability are perturbed in a distributed brain circuit that normally controls such critical behavioral functions. In this study, we undertook a large-scale behavioral study to evaluate fear-related behavioral disturbances in dystrophin-deficient mdx mice. We first characterized the behavioral determinants of the enhanced fearfulness displayed by mdx mice following mild acute stress and its association with increased anxiety and altered fear memories. We further demonstrated that this enhanced fearfulness induces long-lasting motor inhibition, suggesting that neurobehavioral dysfunctions significantly influence motor outcome measures in this model. We also found that mdx mice are more sensitive to the sedative and hypnotic effects of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochlorid (THIP), a selective pharmacological activator of extrasynaptic GABAA receptors involved in central tonic inhibition. Our results highlight that information on the emotional aspects of mdx mice are important to better understand the bases of intellectual and neuropsychiatric defects in DMD and to better define valuable functional readouts for preclinical studies. Our data also support the hypothesis that altered spatial localization of GABAA receptors due to Dp427 loss is a pathological mechanism associated with brain dysfunction in DMD, suggesting that extrasynaptic GABAA receptors might be candidate targets for future therapeutic developments. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Aire deficient mice do not develop the same profile of tissue-specific autoantibodies as APECED patients.

    Science.gov (United States)

    Pöntynen, Nora; Miettinen, Aaro; Arstila, T Petteri; Kämpe, Olle; Alimohammadi, Mohammad; Vaarala, Outi; Peltonen, Leena; Ulmanen, Ismo

    2006-09-01

    Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, or APS1), is a monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. The three main components of APECED are chronic mucocuteaneous candidiasis, hypoparathyroidism and adrenocortical insufficiency. However, several additional endocrine or other autoimmune disease components, or ectodermal dystrophies form the individually variable clinical picture of APECED. An important feature of APECED is a spectrum of well-characterized circulating autoantibodies, reacting against tissue-specific autoantigens. Aire deficient mice develop some characteristics of APECED phenotype. In order to investigate whether the Aire deficient mice produce autoantibodies similar to human APECED, we studied the reactivity of Aire mouse sera against mouse homologues of 11 human APECED antigens. None of the APECED antigens indicated elevated reactivity in the Aire knock-out mouse sera, implying the absence of APECED associated autoantibodies in Aire deficient mice. These findings were supported by the failure of the autoantigens to activate mouse T-cells. Furthermore, Aire knock-out mice did not express increased levels of anti-nuclear antibodies compared to wt mice. This study indicates that spontaneous induction of tissue-specific autoantibodies similar to APECED does not occur in the rodent model suggesting differences in the immunopathogenic mechanisms between mice and men. Copyright 2006 Elsevier Ltd.

  1. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype.

    Science.gov (United States)

    Tarantini, Stefano; Valcarcel-Ares, Noa M; Yabluchanskiy, Andriy; Springo, Zsolt; Fulop, Gabor A; Ashpole, Nicole; Gautam, Tripti; Giles, Cory B; Wren, Jonathan D; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-06-01

    Clinical and experimental studies show that aging exacerbates hypertension-induced cerebral microhemorrhages (CMHs), which progressively impair neuronal function. There is growing evidence that aging promotes insulin-like growth factor 1 (IGF-1) deficiency, which compromises multiple aspects of cerebromicrovascular and brain health. To determine the role of IGF-1 deficiency in the pathogenesis of CMHs, we induced hypertension in mice with liver-specific knockdown of IGF-1 (Igf1 f/f  + TBG-Cre-AAV8) and control mice by angiotensin II plus l-NAME treatment. In IGF-1-deficient mice, the same level of hypertension led to significantly earlier onset and increased incidence and neurological consequences of CMHs, as compared to control mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Previous studies showed that in aging, increased oxidative stress-mediated matrix metalloprotease (MMP) activation importantly contributes to the pathogenesis of CMHs. Thus, it is significant that hypertension-induced cerebrovascular oxidative stress and MMP activation were increased in IGF-1-deficient mice. We found that IGF-1 deficiency impaired hypertension-induced adaptive media hypertrophy and extracellular matrix remodeling, which together with the increased MMP activation likely also contributes to increased fragility of intracerebral arterioles. Collectively, IGF-1 deficiency promotes the pathogenesis of CMHs, mimicking the aging phenotype, which likely contribute to its deleterious effect on cognitive function. Therapeutic strategies that upregulate IGF-1 signaling in the cerebral vessels and/or reduce microvascular oxidative stress, and MMP activation may be useful for the prevention of CMHs, protecting cognitive function in high-risk elderly patients. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Estrogen Deficiency Exacerbates Type 1 Diabetes-Induced Bone TNF-α Expression and Osteoporosis in Female Mice.

    Science.gov (United States)

    Raehtz, Sandi; Bierhalter, Hayley; Schoenherr, Daniel; Parameswaran, Narayanan; McCabe, Laura R

    2017-07-01

    Estrogen deficiency after menopause is associated with rapid bone loss, osteoporosis, and increased fracture risk. Type 1 diabetes (T1D), characterized by hypoinsulinemia and hyperglycemia, is also associated with bone loss and increased fracture risk. With better treatment options, T1D patients are living longer; therefore, the number of patients having both T1D and estrogen deficiency is increasing. Little is known about the mechanistic impact of T1D in conjunction with estrogen deficiency on bone physiology and density. To investigate this, 11-week-old mice were ovariectomized (OVX), and T1D was induced by multiple low-dose streptozotocin injection. Microcomputed tomographic analysis indicated a marked reduction in trabecular bone volume fraction (BVF) in T1D-OVX mice (~82%) that was far greater than the reductions (~50%) in BVF in either the OVX and T1D groups. Osteoblast markers, number, and activity were significantly decreased in T1D-OVX mice, to a greater extent than either T1D or OVX mice. Correspondingly, marrow adiposity was significantly increased in T1D-OVX mouse bone. Bone expression analyses revealed that tumor necrosis factor (TNF)-α levels were highest in T1D-OVX mice and correlated with bone loss, and osteoblast and osteocyte death. In vitro studies indicate that estrogen deficiency and high glucose enhance TNF-α expression in response to inflammatory signals. Taken together, T1D combined with estrogen deficiency has a major effect on bone inflammation, which contributes to suppressed bone formation and osteoporosis. Understanding the mechanisms/effects of estrogen deficiency in the presence of T1D on bone health is essential for fracture prevention in this patient population. Copyright © 2017 Endocrine Society.

  3. Lack of adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency.

    Science.gov (United States)

    Dumser, Martina; Bauer, Jan; Lassmann, Hans; Berger, Johannes; Forss-Petter, Sonja

    2007-12-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disease associated with the accumulation of very long-chain fatty acids. Mutations in the ABCD1 gene encoding ALD protein (ALDP) cause this clinically heterogeneous disorder, ranging from adrenocortical insufficiency and neurodegeneration to severe cerebral inflammation and demyelination. ALDP-deficient mice replicate metabolic dysfunctions and develop late-onset axonopathy but lack histological signs of cerebral inflammation and demyelination. To test the hypothesis that subtle destabilization of myelin may initiate inflammatory demyelination in Abcd1 deficiency, we generated mice with the combined metabolic defect of X-ALD and the mild myelin abnormalities of myelin-associated glycoprotein (MAG) deficiency. A behavioural phenotype, impaired motor performance and tremor, developed in middle-aged Mag null mice, independent of Abcd1 genotype. Routine histology revealed no signs of inflammation or demyelination in the CNS, but immunohistochemical analyses of spinal cord neuropathology revealed microglia activation and axonal degeneration in Mag and Abcd1/Mag double-knockout (ko) and, less severe and of later onset, in Abcd1 mutants. While combined Abcd1/Mag deficiency showed an additive effect on microglia activation, axonal degeneration, quantified by accumulation of amyloid precursor protein (APP) in axonal spheroids, was not accelerated. Interestingly, abnormal APP reactivity was enhanced within compact myelin of Abcd1/Mag double-ko mice compared to single mutants already at 13 months. These results suggest that ALDP deficiency enhances metabolic distress in oligodendrocytes that are compromised a priori by destabilised myelin. Furthermore, the age at which this occurs precedes by far the onset of axonal degeneration in Abcd1-deficient mice, implying that oligodendrocyte/myelin disturbances may precede axonopathy in X-ALD.

  4. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Stefanie Grabrucker

    2018-01-01

    Full Text Available A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1 in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.

  6. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice. [X Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-04-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F/sub 1/ (BLCF/sub 1/) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF/sub 1/ mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (..mu..-suppressed) BLCF/sub 1/ mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the ..mu..-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF/sub 1/ mice against a P. berghei sporozoite infection.

  7. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus.

    Science.gov (United States)

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  8. GLAST Deficiency in Mice Exacerbates Gap Detection Deficits in a Model of Salicylate-Induced Tinnitus

    Science.gov (United States)

    Yu, Hong; Vikhe Patil, Kim; Han, Chul; Fabella, Brian; Canlon, Barbara; Someya, Shinichi; Cederroth, Christopher R.

    2016-01-01

    Gap detection or gap pre-pulse inhibition of the acoustic startle (GPIAS) has been successfully used in rat and guinea pig models of tinnitus, yet this system has been proven to have low efficacy in CBA mice, with low basal GPIAS and subtle tinnitus-like effects. Here, we tested five mouse strains (CBA, BalbC, CD-1, C57BL/6 and 129sv) for pre-pulse inhibition (PPI) and gap detection with varying interstimulus intervals (ISI) and found that mice from a CBA genetic background had the poorest capacities of suppressing the startle response in the presence of a pre-pulse or a gap. CD-1 mice displayed variable responses throughout all ISI. Interestingly, C57BL/6, 129sv and BalbC showed efficient suppression with either pre-pulses or gaps with shorter ISI. The glutamate aspartate transporter (GLAST) is expressed in support cells from the cochlea and buffers the excess of glutamate. We hypothesized that loss of GLAST function could sensitize the ear to tinnitus-inducing agents, such as salicylate. Using shorter ISI to obtain a greater dynamic range to assess tinnitus-like effects, we found that disruption of gap detection by salicylate was exacerbated across various intensities of a 32-kHz narrow band noise gap carrier in GLAST knockout (KO) mice when compared to their wild-type (WT) littermates. Auditory brainstem responses (ABR) and distortion-product otoacoustic emission (DPOAE) were performed to evaluate the effects on hearing functions. Salicylate caused greater auditory threshold shifts (near 15 dB) in GLAST KO mice than in WT mice across all tested frequencies, despite similarly reduced DPOAE. Despite these changes, inhibition using broad-band gap carriers and 32 kHz pre-pulses were not affected. Our study suggests that GLAST deficiency could become a useful experimental model to decipher the mechanisms underlying drug-induced tinnitus. Future studies addressing the neurological correlates of tinnitus in this model could provide additional insights into the

  9. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2009-05-01

    Full Text Available Ovarian cancer G protein-coupled receptor 1 (OGR1 has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK activation and nitric oxide (NO production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.

  10. Abcd2 is a strong modifier of the metabolic impairments in peritoneal macrophages of ABCD1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zahid Muneer

    Full Text Available The inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD, associated with neurodegeneration and inflammatory cerebral demyelination, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC transporter ABCD1 (ALDP. ABCD1 transports CoA-esters of very long-chain fatty acids (VLCFA into peroxisomes for degradation by β-oxidation; thus, ABCD1 deficiency results in VLCFA accumulation. The closest homologue, ABCD2 (ALDRP, when overexpressed, compensates for ABCD1 deficiency in X-ALD fibroblasts and in Abcd1-deficient mice. Microglia/macrophages have emerged as important players in the progression of neuroinflammation. Human monocytes, lacking significant expression of ABCD2, display severely impaired VLCFA metabolism in X-ALD. Here, we used thioglycollate-elicited primary mouse peritoneal macrophages (MPMΦ from Abcd1 and Abcd2 single- and double-deficient mice to establish how these mutations affect VLCFA metabolism. By quantitative RT-PCR, Abcd2 mRNA was about half as abundant as Abcd1 mRNA in wild-type and similarly abundant in Abcd1-deficient MPMΦ. VLCFA (C26∶0 accumulated about twofold in Abcd1-deficient MPMΦ compared with wild-type controls, as measured by gas chromatography-mass spectrometry. In Abcd2-deficient macrophages VLCFA levels were normal. However, upon Abcd1/Abcd2 double-deficiency, VLCFA accumulation was markedly increased (sixfold compared with Abcd1-deficient MPMΦ. Elovl1 mRNA, encoding the rate-limiting enzyme for elongation of VLCFA, was equally abundant across all genotypes. Peroxisomal β-oxidation of C26∶0 amounted to 62% of wild-type activity in Abcd1-deficient MPMΦ and was significantly more impaired (29% residual activity upon Abcd1/Abcd2 double-deficiency. Single Abcd2 deficiency did not significantly compromise β-oxidation of C26∶0. Thus, the striking accumulation of VLCFA in double-deficient MPMΦ compared with single Abcd1 deficiency was due to the loss of

  11. Abcd2 is a strong modifier of the metabolic impairments in peritoneal macrophages of ABCD1-deficient mice.

    Science.gov (United States)

    Muneer, Zahid; Wiesinger, Christoph; Voigtländer, Till; Werner, Hauke B; Berger, Johannes; Forss-Petter, Sonja

    2014-01-01

    The inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD), associated with neurodegeneration and inflammatory cerebral demyelination, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (ALDP). ABCD1 transports CoA-esters of very long-chain fatty acids (VLCFA) into peroxisomes for degradation by β-oxidation; thus, ABCD1 deficiency results in VLCFA accumulation. The closest homologue, ABCD2 (ALDRP), when overexpressed, compensates for ABCD1 deficiency in X-ALD fibroblasts and in Abcd1-deficient mice. Microglia/macrophages have emerged as important players in the progression of neuroinflammation. Human monocytes, lacking significant expression of ABCD2, display severely impaired VLCFA metabolism in X-ALD. Here, we used thioglycollate-elicited primary mouse peritoneal macrophages (MPMΦ) from Abcd1 and Abcd2 single- and double-deficient mice to establish how these mutations affect VLCFA metabolism. By quantitative RT-PCR, Abcd2 mRNA was about half as abundant as Abcd1 mRNA in wild-type and similarly abundant in Abcd1-deficient MPMΦ. VLCFA (C26∶0) accumulated about twofold in Abcd1-deficient MPMΦ compared with wild-type controls, as measured by gas chromatography-mass spectrometry. In Abcd2-deficient macrophages VLCFA levels were normal. However, upon Abcd1/Abcd2 double-deficiency, VLCFA accumulation was markedly increased (sixfold) compared with Abcd1-deficient MPMΦ. Elovl1 mRNA, encoding the rate-limiting enzyme for elongation of VLCFA, was equally abundant across all genotypes. Peroxisomal β-oxidation of C26∶0 amounted to 62% of wild-type activity in Abcd1-deficient MPMΦ and was significantly more impaired (29% residual activity) upon Abcd1/Abcd2 double-deficiency. Single Abcd2 deficiency did not significantly compromise β-oxidation of C26∶0. Thus, the striking accumulation of VLCFA in double-deficient MPMΦ compared with single Abcd1 deficiency was due to the loss of ABCD2

  12. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery.

    Science.gov (United States)

    Hao, Z; Münzberg, H; Rezai-Zadeh, K; Keenan, M; Coulon, D; Lu, H; Berthoud, H-R; Ye, J

    2015-05-01

    Weight regain contributes to the therapeutic failure in 15-20% of type 2 diabetic patients after Roux-en-Y gastric bypass surgery (RYGB), and the mechanism remains largely unknown. This study was conducted to explore the mechanism of weight regain. Wild-type (WT) diet-induced obese (DIO) mice were used to mimic human obesity, and ob/ob mice were used for leptin deficiency-induced obesity. Two groups of mice were compared in weight regain for 10 months after RYGB. Weight loss, food intake, fecal energy loss and energy expenditure were monitored in the study of weight regain. Fasting insulin, insulin tolerance and homeostatic model assessment-insulin resistance were tested for insulin sensitivity under the weight regain. Weight loss from RYGB and calorie restriction was compared for the impact in insulin sensitivity. In WT mice, RYGB induced a sustained weight loss and insulin sensitization over the sham operation in this 10-month study. However, RYGB failed to generate the same effects in leptin-deficient ob/ob mice, which suffered a weight regain over the pre-surgery level. In ob/ob mice, body weight was reduced by RYGB transiently in the first week, recovered in the second week and increased over the baseline thereafter. Weight loss was induced by RYGB relative to that of sham mice, but the loss was not sufficient to keep body weight below the pre-surgery levels. In addition, insulin sensitivity was not improved by the weight loss. The response to RYGB was improved in ob/ob mice by 2 weeks of leptin treatment. Weight loss from calorie restriction had an equivalent effect on insulin sensitization compared with that of RYGB. Those data demonstrate that ob/ob mice and DIO mice responded differently to RYGB surgery, suggesting that leptin may be one of the factors required for RYGB to prevent weight regain and diabetes recurrence.

  13. Uterine dysfunction in biglycan and decorin deficient mice leads to dystocia during parturition.

    Directory of Open Access Journals (Sweden)

    Zhiping Wu

    Full Text Available Cesarean birth rates are rising. Uterine dysfunction, the exact mechanism of which is unknown, is a common indication for Cesarean delivery. Biglycan and decorin are two small leucine-rich proteoglycans expressed in the extracellular matrix of reproductive tissues and muscle. Mice deficient in biglycan display a mild muscular dystrophy, and, along with mice deficient in decorin, are models of Ehlers-Danlos Syndrome, a connective tissue anomaly associated with uterine rupture. As a variant of Ehlers-Danlos Syndrome is caused by a genetic mutation resulting in abnormal biglycan and decorin secretion, we hypothesized that biglycan and decorin play a role in uterine function. Thus, we assessed wild-type, biglycan, decorin and double knockout pregnancies for timing of birth and uterine function. Uteri were harvested at embryonic days 12, 15 and 18. Nonpregnant uterine samples of the same genotypes were assessed for tissue failure rate and spontaneous and oxytocin-induced contractility. We discovered that biglycan/decorin mixed double-knockout dams displayed dystocia, were at increased risk of delayed labor onset, and showed increased tissue failure in a predominantly decorin-dependent manner. In vitro spontaneous uterine contractile amplitude and oxytocin-induced contractile force were decreased in all biglycan and decorin knockout genotypes compared to wild-type. Notably, we found no significant compensation between biglycan and decorin using quantitative real time PCR or immunohistochemistry. We conclude that the biglycan/decorin mixed double knockout mouse is a model of dystocia and delayed labor onset. Moreover, decorin is necessary for uterine function in a dose-dependent manner, while biglycan exhibits partial compensatory mechanisms in vivo. Thus, this model is poised for use as a model for testing novel targets for preventive or therapeutic manipulation of uterine dysfunction.

  14. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein E-deficient mice.

    Directory of Open Access Journals (Sweden)

    Marijn C Meuwese

    Full Text Available OBJECTIVE: Functional studies show that disruption of endothelial surface layer (ESL is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli. However, relevance of ESL disruption as causal mechanism for vascular dysfunction remains to be demonstrated. We examined if loss of ESL through enzymatic degradation would affect vascular barrier properties in an atherogenic model. METHODS: Eight week old male apolipoprotein E deficient mice on Western-type diet for 10 weeks received continuous active or heat-inactivated hyaluronidase (10 U/hr, i.v. through an osmotic minipump during 4 weeks. Blood chemistry and anatomic changes in both macrovasculature and kidneys were examined. RESULTS: Infusion with active hyaluronidase resulted in decreased ESL (0.32±0.22 mL and plasma volume (1.03±0.18 mL compared to inactivated hyaluronidase (0.52±0.29 mL and 1.28±0.08 mL, p<0.05 respectively.Active hyaluronidase increased proteinuria compared to inactive hyaluronidase (0.27±0.02 vs. 0.15±0.01 µg/µg protein/creatinin, p<0.05 without changes in glomerular morphology or development of tubulo-interstitial inflammation. Atherosclerotic lesions in the aortic branches showed increased matrix production (collagen, 32±5 vs. 18±3%; glycosaminoglycans, 11±5 vs. 0.1±0.01%, active vs. inactive hyaluronidase, p<0.05. CONCLUSION: ESL degradation in apoE deficient mice contributes to reduced increased urinary protein excretion without significant changes in renal morphology. Second, the induction of compositional changes in atherogenic plaques by hyaluronidase point towards increased plaque vulnerability. These findings support further efforts to evaluate whether ESL restoration is a valuable target to prevent (micro vascular disease progression.

  15. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    Directory of Open Access Journals (Sweden)

    Charles E Bane

    Full Text Available Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/- mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

  16. Structural features of incremental line-like striations in mandibular condylar cartilage of c-src-deficient mice.

    Science.gov (United States)

    Shibata, Shunichi; Oda, Tsuyoshi; Abe, Tatsuhiko; Yamashita, Yasuo; Takano, Yoshiro

    2006-11-01

    Mandibular condylar cartilage is sensitive to masticatory force, while mice lacking the c-src gene (c-src-deficient mice) have osteopetrosis and tooth eruption failure. The purpose of this study was to investigate the morphology of the mandibular condyle in these mice, which were maintained with a soft-food diet for 240 days after birth. The condylar head in the c-src-deficient mice showed slight deformity in shape before weaning, but showed remarkable undergrowth after weaning. No significant morphological or histological differences were detected between the mandibular condyle in wild-type mice fed soft food and those fed hard food, indicating that osteopetrosis, as well as abnormal masticatory force, influences the morphology of the mouse mandibular condyle, and that malocclusion rather than dietary consistency may have greater influence. After 70 days, incremental line-like striations consisting of cartilaginous and non-cartilaginous layers were detected in the mandibular condyle of the c-src-deficient mice, but not in the tibial growth plate. Immunostaining of aggrecan, collagen types II and X, and osteopontin was detected in the cartilaginous layers, but not in the non-cartilaginous layers showing collagen type I immunostaining. Chondrocyte lacunae were not eroded in the cartilaginous layers, and complete circumferential mineralisation around the lacunae and impaired osteoclast (chondroclast) function can account for this phenomenon. However, repeated cessation of chondrocyte differentiation may be required to completely explain the formation of the striations. These results indicate that the mandibular condyle in the c-src-deficient mice has unique structural features, adding to its deformity.

  17. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...

  18. Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice.

    Science.gov (United States)

    Patel, Hiralben R; Qi, Yong; Hawkins, Evan J; Hileman, Stanley M; Elmquist, Joel K; Imai, Yumi; Ahima, Rexford S

    2006-11-01

    Neuropeptide Y (NPY) stimulates feeding and weight gain, but deletion of the NPY gene does not affect food intake and body weight in mice bred on a mixed genetic background. We reasoned that the orexigenic action of NPY would be evident in C57Bl/6J mice susceptible to obesity. NPY deficiency has no significant effect in mice fed a normal rodent diet. However, energy expenditure is elevated during fasting, and hyperphagia and weight gain are blunted during refeeding. Expression of agouti-related peptide (AGRP) in the hypothalamus is increased in NPY knockout (NPYko) than wild-type mice, but unlike wild type there is no further increase in AGRP when NPYko mice are fasted. Moreover, NPYko mice have higher oxygen consumption and uncoupling protein-1 expression in brown adipose tissue during fasting. The failure of an increase in orexigenic peptides and higher thermogenesis may contribute to attenuation of weight gain when NPYko mice are refed. C57Bl/6J mice lacking NPY are also less susceptible to diet-induced obesity (DIO) as a result of reduced feeding and increased energy expenditure. The resistance to DIO in NPYko mice is associated with a reduction in nocturnal feeding and increased expression of anorexigenic hypothalamic peptides. Insulin, leptin, and triglyceride levels increase with adiposity in both wild-type and NPYko mice.

  19. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice.

    Science.gov (United States)

    Maldonado, Estela; López-Gordillo, Yamila; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción; Pérez-Miguelsanz, Juliana

    2017-12-28

    It is widely accepted that maternal folic acid (FA) deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD) diet was administered to eight-week-old C57/BL/6J mouse females for 2-16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17). The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802) with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3%) and microglossia (7.6%), always accompanied by agnathia (5.6%) or micrognathia (5.2%). This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes.

  20. Vitamin D-deficient mice have more invasive urinary tract infection.

    Science.gov (United States)

    Hertting, Olof; Lüthje, Petra; Sullivan, Devin; Aspenström, Pontus; Brauner, Annelie

    2017-01-01

    Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.

  1. Tongue Abnormalities Are Associated to a Maternal Folic Acid Deficient Diet in Mice

    Directory of Open Access Journals (Sweden)

    Estela Maldonado

    2017-12-01

    Full Text Available It is widely accepted that maternal folic acid (FA deficiency during pregnancy is a risk factor for abnormal development. The tongue, with multiple genes working together in a coordinated cascade in time and place, has emerged as a target organ for testing the effect of FA during development. A FA-deficient (FAD diet was administered to eight-week-old C57/BL/6J mouse females for 2–16 weeks. Pregnant dams were sacrificed at gestational day 17 (E17. The tongues and heads of 15 control and 210 experimental fetuses were studied. In the tongues, the maximum width, base width, height and area were compared with width, height and area of the head. All measurements decreased from 10% to 38% with increasing number of weeks on maternal FAD diet. Decreased head and tongue areas showed a harmonic reduction (Spearman nonparametric correlation, Rho = 0.802 with respect to weeks on a maternal FAD diet. Tongue congenital abnormalities showed a 10.9% prevalence, divided in aglossia (3.3% and microglossia (7.6%, always accompanied by agnathia (5.6% or micrognathia (5.2%. This is the first time that tongue alterations have been related experimentally to maternal FAD diet in mice. We propose that the tongue should be included in the list of FA-sensitive birth defect organs due to its relevance in several key food and nutrition processes.

  2. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  3. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    Science.gov (United States)

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  4. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  5. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice

    DEFF Research Database (Denmark)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille

    2015-01-01

    and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. RESULTS: We demonstrated...

  6. Asporin-deficient mice have tougher skin and altered skin glycosaminoglycan content and structure.

    Directory of Open Access Journals (Sweden)

    Marco Maccarana

    Full Text Available The main structural component of connective tissues is fibrillar, cross-linked collagen whose fibrillogenesis can be modulated by Small Leucine-Rich Proteins/Proteoglycans (SLRPs. Not all SLRPs' effects on collagen and extracellular matrix in vivo have been elucidated; one of the less investigated SLRPs is asporin. Here we describe the successful generation of an Aspn-/- mouse model and the investigation of the Aspn-/- skin phenotype. Functionally, Aspn-/- mice had an increased skin mechanical toughness, although there were no structural changes present on histology or immunohistochemistry. Electron microscopy analyses showed 7% thinner collagen fibrils in Aspn-/- mice (not statistically significant. Several matrix genes were upregulated, including collagens (Col1a1, Col1a2, Col3a1, matrix metalloproteinases (Mmp2, Mmp3 and lysyl oxidases (Lox, Loxl2, while lysyl hydroxylase (Plod2 was downregulated. Intriguingly no differences were observed in collagen protein content or in collagen cross-linking-related lysine oxidation or hydroxylation. The glycosaminoglycan content and structure in Aspn-/- skin was profoundly altered: chondroitin/dermatan sulfate was more than doubled and had an altered composition, while heparan sulfate was halved and had a decreased sulfation. Also, decorin and biglycan were doubled in Aspn-/- skin. Overall, asporin deficiency changes skin glycosaminoglycan composition, and decorin and biglycan content, which may explain the changes in skin mechanical properties.

  7. Robust immunoglobulin class switch recombination and end joining in Parp9-deficient mice.

    Science.gov (United States)

    Robert, Isabelle; Gaudot, Léa; Yélamos, José; Noll, Aurélia; Wong, Heng-Kuan; Dantzer, Françoise; Schreiber, Valérie; Reina-San-Martin, Bernardo

    2017-04-01

    To mount highly specific and adapted immune responses, B lymphocytes assemble and diversify their antibody repertoire through mechanisms involving the formation of programmed DNA damage. Immunoglobulin class switch recombination (CSR) is triggered by DNA lesions induced by activation-induced cytidine deaminase, which are processed to double-stranded DNA break (DSB) intermediates. These DSBs activate the cellular DNA damage response and enroll numerous DNA repair factors, involving poly(ADP-ribose) polymerases Parp1, Parp2, and Parp3 to promote appropriate DNA repair and efficient long-range recombination. The macroParp Parp9, which is overexpressed in certain lymphomas, has been recently implicated in DSB repair, acting together with Parp1. Here, we examine the contribution of Parp9 to the resolution of physiological DSBs incurred during V(D)J recombination and CSR by generating Parp9 -/- mice. We find that Parp9-deficient mice are viable, fertile, and do not show any overt phenotype. Moreover, we find that Parp9 is dispensable for B-cell development. Finally, we show that CSR and DNA end-joining are robust in the absence of Parp9, indicating that Parp9 is not essential in vivo to achieve physiological DSB repair, or that strong compensatory mechanisms exist. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CD14 deficiency impacts glucose homeostasis in mice through altered adrenal tone.

    Directory of Open Access Journals (Sweden)

    James L Young

    Full Text Available The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS, may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis.

  9. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  10. State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice.

    Science.gov (United States)

    Gordon, Joshua A; Lacefield, Clay O; Kentros, Clifford G; Hen, Rene

    2005-07-13

    Mice lacking the serotonin 1A receptor (5-HT(1A)R) show increased levels of anxiety-related behavior across multiple tests and background strains. Tissue-specific rescue experiments, lesion studies, and neurophysiological findings all point toward the hippocampus as a potential mediator of the phenotype. Serotonin, acting through 5-HT(1A)Rs, can suppress hippocampal theta-frequency oscillations, suggesting that theta oscillations might be increased in the knock-outs. To test this hypothesis, local field potential recordings were obtained from the hippocampus of awake, behaving knock-outs and wild-type littermates. The magnitude of theta oscillations was increased in the knock-outs, specifically in the anxiety-provoking elevated plus maze and not in a familiar environment or during rapid eye movement sleep. Theta power correlated with the fraction of time spent in the open arms, an anxiety-related behavioral variable. These results suggest a possible role for the hippocampus, and theta oscillations in particular, in the expression of anxiety in 5-HT(1A)R-deficient mice.

  11. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Directory of Open Access Journals (Sweden)

    Marc S. Stieglitz

    2018-01-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/− mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.

  12. NOD2 Deficiency Protects against Cardiac Remodeling after Myocardial Infarction in Mice

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-12-01

    Full Text Available Background/Aims: Although the pathogenesis of myocardial infarction (MI is multifactorial, activation of innate immune system to induce inflammation has emerged as a key pathophysiological process in MI. NOD2, one member of the NOD-like receptor (NLR family, plays an important role in the innate immune response. This study was to examine the role of NOD2 during MI. Methods: MI was induced by permanent ligation of the left coronary artery in wild type and NOD2-/- mice and cardiac fibroblasts were isolated. Results: NOD2 expression was significantly increased in myocardium in post-MI mice. NOD2 deficiency improved cardiac dysfunction and remodeling after MI as evidenced by echocardiographic analysis, reduced the levels of cytokines, inflammatory cell infiltration and matrix metalloproteinase-9 (MMP-9 activity. In vitro, we further found that NOD2 activation induced the activation of MAPK signaling pathways, production of proinflammatory mediators and MMP-9 activity in cardiac fibroblasts. Conclusions: Our studies demonstrate that NOD2 is a critical component of a signal transduction pathway that links cardiac injury by exacerbation of inflammation and MMP-9 activity. Pharmacological targeting of NOD2-mediated signaling pathways may provide a novel approach to treatment of cardiovascular diseases.

  13. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  14. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double......-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  15. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...... osteoblastic defects and creation of a proinflammatory osteoclast-activating microenvironment. Thus telonnerization of MSCs may provide a novel approach for abolishing age-related bone loss. (C) 2011 American Society for Bone and Mineral Research....

  16. Effect of exercise on bone and articular cartilage in heterozygous manganese superoxide dismutase (SOD2) deficient mice.

    Science.gov (United States)

    Baur, Alexander; Henkel, Jan; Bloch, Wilhelm; Treiber, Nicolai; Scharffetter-Kochanek, Karin; Brüggemann, Gert-Peter; Niehoff, Anja

    2011-05-01

    Reactive oxygen species (ROS) are involved in both bone and cartilage physiology and play an important role in the pathogenesis of osteoporosis and osteoarthritis. The present study investigated the effect of running exercise on bone and cartilage in heterozygous manganese superoxide dismutase (SOD2)-deficient mice. It was hypothesized that exercise might induce an increased production of ROS in these tissues. Heterozygous SOD2-deficient mice should exhibit an impaired capability to compensate, resulting in an increased oxidative stress in cartilage and bone. Thirteen female wild type and 20 SOD2(+/-) mice (aged 16 weeks) were randomly assigned to a non-active wild type (SOD2(+/+)Con, n = 7), a trained wild type (SOD2(+/+)Run, n = 6), a non-active SOD2(+/-) (SOD2(+/-)Con, n = 9) and a trained SOD2(+/-) (SOD2(+/-)Run, n = 11) group. Training groups underwent running exercise on a treadmill for 8 weeks. In SOD2(+/-) mice elevated levels of 15-F(2t)-isoprostane and nitrotyrosine were detected in bone and articular cartilage compared to wild type littermates. In osteocytes the elevated levels of these molecules were found to be reduced after exercise while in chondrocytes they were increased by aerobic running exercise. The observed changes in oxidative and nitrosative stress did neither affect morphological, structural nor mechanical properties of both tissues. These results demonstrate that exercise might protect bone against oxidative stress in heterozygous SOD2-deficient mice.

  17. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  18. Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice.

    Directory of Open Access Journals (Sweden)

    Yingjuan Yang

    Full Text Available Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold and fructose-1,6-bisphosphate (7-fold levels as well as a reduction in glucose-6-phosphate (2-fold levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity.

  19. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Manyu Li

    Full Text Available Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR, and receptor activity-modifying protein 1 (RAMP1. RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR

  20. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ radiation.

    Directory of Open Access Journals (Sweden)

    Prem Kumarathasan

    Full Text Available BACKGROUND: There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. METHODS AND RESULTS: B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body to Co60 (γ (single dose 0, 0.5, and 2 Gy at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05 in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05 after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008 relative to controls. Percent lesion area increased (p = 0.005 with age of animal, but not with radiation treatment. CONCLUSIONS: Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  1. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    Science.gov (United States)

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  2. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  3. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...... parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior...

  4. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Figeac, Florence; Andersen, Ditte C.; Nipper Nielsen, Casper A.

    2018-01-01

    /TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss....... deficiency-associated bone loss in mice. Thus, we generated mouse monoclonal anti-mouse DLK1 antibodies (MAb DLK1) that enabled us to reduce and also quantitate the levels of bioavailable serum DLK1 in vivo. Ovariectomized (ovx) mice were injected intraperitoneally twice weekly with MAb DLK1 over a period...... of one month. DEXA-, microCT scanning, and bone histomorphometric analyses were performed. Compared to controls, MAb DLK1 treated ovx mice were protected against ovx-induced bone loss, as revealed by significantly increased total bone mass (BMD) due to increased trabecular bone volume fraction (BV...

  5. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased Basal endotoxemia

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Khorooshi, Reza; Rahbek, Martin K U

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese....... However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood...... pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight...

  6. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance.

    Science.gov (United States)

    Guo, Chang-An; Kogan, Sophia; Amano, Shinya U; Wang, Mengxi; Dagdeviren, Sezin; Friedline, Randall H; Aouadi, Myriam; Kim, Jason K; Czech, Michael P

    2013-05-01

    The pathophysiology of obesity and type 2 diabetes in rodents and humans is characterized by low-grade inflammation in adipose tissue and liver. The CD40 receptor and its ligand CD40L initiate immune cell signaling promoting inflammation, but conflicting data on CD40L-null mice confound its role in obesity-associated insulin resistance. Here, we demonstrate that CD40 receptor-deficient mice on a high-fat diet display the expected decrease in hepatic cytokine levels but paradoxically exhibit liver steatosis, insulin resistance, and glucose intolerance compared with their age-matched wild-type controls. Hyperinsulinemic-euglycemic clamp studies also demonstrated insulin resistance in glucose utilization by the CD40-null mice compared with wild-type mice. In contrast to liver, adipose tissue in CD40-deficient animals harbors elevated cytokine levels and infiltration of inflammatory cells, particularly macrophages and CD8(+) effector T cells. In addition, ex vivo explants of epididymal adipose tissue from CD40(-/-) mice display elevated basal and isoproterenol-stimulated lipolysis, suggesting a potential increase of lipid efflux from visceral fat to the liver. These findings reveal that 1) CD40-null mice represent an unusual model of hepatic steatosis with reduced hepatic inflammation, and 2) CD40 unexpectedly functions in adipose tissue to attenuate its inflammation in obesity, thereby protecting against hepatic steatosis.

  7. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor-Deficient Mice.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wenger, Karl H; Misra, Sudipta; Davis, Catherine L; Pollock, Norman K; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M; Hamrick, Mark W; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P; Cutler, Roy G; Yu, Jack C; Stranahan, Alexis M

    2017-05-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.

  8. Adenosine A2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus reuteri in Regulatory T-Deficient Scurfy Mice

    Directory of Open Access Journals (Sweden)

    Baokun He

    2017-12-01

    Full Text Available The lack of a functional Foxp3 transcription factor and regulatory T (Treg cells causes lethal, CD4+ T cell-driven autoimmune diseases in scurfy (SF mice and humans. Recent studies have shown that adenosine A2A receptor activation limits inflammation and tissue damage, thereby playing an anti-inflammatory role. However, the role of the adenosine A2A receptor in the development of disease in SF mice remains unclear. Using a genetic approach, we found that adenosine A2A receptor deletion in SF mice (SF⋅A2A-/- does not affect early life events, the development of a lymphoproliferative disorder, or hyper-production of pro-inflammatory cytokines seen in the Treg-deficiency state. As shown previously, Lactobacillus reuteri DSM 17938 treatment prolonged survival and reduced multiorgan inflammation in SF mice. In marked contrast, A2A receptor deletion completely blocked these beneficial effects of L. reuteri in SF mice. Altogether, these results suggest that although absence of the adenosine A2A receptor does not affect the development of disease in SF mice, it plays a critical role in the immunomodulation by L. reuteri in Treg-deficiency disease. The adenosine A2A receptor and its activation may have a role in treating other Treg dysfunction-mediated autoimmune diseases.

  9. Adenosine A2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus reuteri in Regulatory T-Deficient Scurfy Mice

    Science.gov (United States)

    He, Baokun; Hoang, Thomas K.; Tran, Dat Q.; Rhoads, Jon Marc; Liu, Yuying

    2017-01-01

    The lack of a functional Foxp3 transcription factor and regulatory T (Treg) cells causes lethal, CD4+ T cell-driven autoimmune diseases in scurfy (SF) mice and humans. Recent studies have shown that adenosine A2A receptor activation limits inflammation and tissue damage, thereby playing an anti-inflammatory role. However, the role of the adenosine A2A receptor in the development of disease in SF mice remains unclear. Using a genetic approach, we found that adenosine A2A receptor deletion in SF mice (SF⋅A2A-/-) does not affect early life events, the development of a lymphoproliferative disorder, or hyper-production of pro-inflammatory cytokines seen in the Treg-deficiency state. As shown previously, Lactobacillus reuteri DSM 17938 treatment prolonged survival and reduced multiorgan inflammation in SF mice. In marked contrast, A2A receptor deletion completely blocked these beneficial effects of L. reuteri in SF mice. Altogether, these results suggest that although absence of the adenosine A2A receptor does not affect the development of disease in SF mice, it plays a critical role in the immunomodulation by L. reuteri in Treg-deficiency disease. The adenosine A2A receptor and its activation may have a role in treating other Treg dysfunction-mediated autoimmune diseases. PMID:29270168

  10. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  11. Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.

    Directory of Open Access Journals (Sweden)

    Astrid Liedert

    Full Text Available The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1, are the low-density lipoprotein receptor related protein 5 (Lrp5 and Kremen 2 (Krm2. Lrp 5 deficiency (Lrp5-/- as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2 result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5-/- mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5-/- mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3 and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.

  12. Osteoblast-specific Krm2 overexpression and Lrp5 deficiency have different effects on fracture healing in mice.

    Science.gov (United States)

    Liedert, Astrid; Röntgen, Viktoria; Schinke, Thorsten; Benisch, Peggy; Ebert, Regina; Jakob, Franz; Klein-Hitpass, Ludger; Lennerz, Jochen K; Amling, Michael; Ignatius, Anita

    2014-01-01

    The canonical Wnt/β-catenin pathway plays a key role in the regulation of bone remodeling in mice and humans. Two transmembrane proteins that are involved in decreasing the activity of this pathway by binding to extracellular antagonists, such as Dickkopf 1 (Dkk1), are the low-density lipoprotein receptor related protein 5 (Lrp5) and Kremen 2 (Krm2). Lrp 5 deficiency (Lrp5-/-) as well as osteoblast-specific overexpression of Krm2 in mice (Col1a1-Krm2) result in severe osteoporosis occurring at young age. In this study, we analyzed the influence of Lrp5 deficiency and osteoblast-specific overexpression of Krm2 on fracture healing in mice using flexible and semi-rigid fracture fixation. We demonstrated that fracture healing was highly impaired in both mouse genotypes, but that impairment was more severe in Col1a1-Krm2 than in Lrp5-/- mice and particularly evident in mice in which the more flexible fixation was used. Bone formation was more reduced in Col1a1-Krm2 than in Lrp5-/- mice, whereas osteoclast number was similarly increased in both genotypes in comparison with wild-type mice. Using microarray analysis we identified reduced expression of genes mainly involved in osteogenesis that seemed to be responsible for the observed stronger impairment of healing in Col1a1-Krm2 mice. In line with these findings, we detected decreased expression of sphingomyelin phosphodiesterase 3 (Smpd3) and less active β-catenin in the calli of Col1a1-Krm2 mice. Since Krm2 seems to play a significant role in regulating bone formation during fracture healing, antagonizing KRM2 might be a therapeutic option to improve fracture healing under compromised conditions, such as osteoporosis.

  13. Bleomycin-Treated Chimeric Thy1-Deficient Mice with Thy1-Deficient Myofibroblasts and Thy-Positive Lymphocytes Resolve Inflammation without Affecting the Fibrotic Response

    Directory of Open Access Journals (Sweden)

    Pazit Y. Cohen

    2015-01-01

    Full Text Available Lung fibrosis is characterized by abnormal accumulation of fibroblasts in the interstitium of the alveolar space. Two populations of myofibroblasts, distinguished by Thy1 expression, are detected in human and murine lungs. Accumulation of Thy1-negative (Thy1− myofibroblasts was shown in the lungs of humans with idiopathic pulmonary fibrosis (IPF and of bleomycin-treated mice. We aimed to identify genetic changes in lung myofibroblasts following Thy1 crosslinking and assess the impact of specific lung myofibroblast Thy1-deficiency, in vivo, in bleomycin-injured mouse lungs. Thy1 increased in mouse lung lymphocytes following bleomycin injury but decreased in myofibroblasts when fibrosis was at the highest point (14 days, as assessed by immunohistochemistry. Using gene chip analysis, we detected that myofibroblast Thy1 crosslinking mediates downregulation of genes promoting cell proliferation, survival, and differentiation, and reduces production of extracellular matrix (ECM components, while concurrently mediating the upregulation of genes known to foster inflammation and immunological functions. Chimeric Thy1-deficient mice with Thy1+ lymphocytes and Thy1− myofibroblasts showed fibrosis similar to wild-type mice and an increased number of CD4/CD25 regulatory T cells, with a concomitant decrease in inflammation. Lung myofibroblasts downregulate Thy1 expression to increase their proliferation but to diminish the in vivo inflammatory milieu. Inflammation is not essential for evolution of fibrosis as was previously stated.

  14. RAGE deficiency alleviates aortic valve calcification in ApoE-/-mice via the inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Wang, Bo; Cai, Zhejun; Liu, Baoqing; Liu, Zongtao; Zhou, Xianming; Dong, Nianguo; Li, Fei

    2017-03-01

    Receptor for advanced glycation end products (RAGE) and endoplasmic reticulum (ER) stress have been shown to be involved in calcific aortic valve disease (CAVD). However, the association between RAGE and ER stress remains unknown in the pathogenesis of CAVD. The current study aims to test the hypothesis that RAGE deficiency alleviates aortic valve calcification via the inhibition of ER stress. Up-regulation of RAGE and ER stress markers in calcified human aortic valves were confirmed by immunoblotting. Aortic valve calcification was evaluated in atherosclerotic prone ApoE -/- mice or in mice with dual deficiencies of ApoE and RAGE (ApoE -/- RAGE -/- ) fed with high cholesterol diet for 24weeks. Echocardiography and histological examination show that genetic deficiency of RAGE attenuates aortic valve calcification in ApoE -/- mice. Meanwhile, RAGE deficiency inhibited the osteogenic signaling and ER stress activation as well as suppressed macrophage infiltration in vivo. Cultured human aortic valve interstitial cells (AVICs) were treated with high molecular group box 1 protein (HMGB1) as in vitro model. We found that HMGB1 induced osteoblastic differentiation and calcification through RAGE/ER stress. Furthermore, Sox9 up-regulation and intranuclear translocation mediated the pro-osteogenic effect of HMGB1 on AVICs. RAGE or ER stress knockdown reduced the up-regulation of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in human AVICs exposed to HMGB1.These novel findings demonstrate that RAGE deficiency protects against aortic valve calcification in high cholesterol diet-fed ApoE -/- mice via inhibition of ER stress. HMGB1 induces AVIC osteoblastic differentiation and calcification through RAGE/ER stress/Sox9 pathway. Copyright © 2016. Published by Elsevier B.V.

  15. Hip region muscular dystrophy and emergence of motor deficits in dysferlin-deficient Bla/J mice.

    Science.gov (United States)

    Nagy, Nadia; Nonneman, Randal J; Llanga, Telmo; Dial, Catherine F; Riddick, Natallia V; Hampton, Tom; Moy, Sheryl S; Lehtimäki, Kimmo K; Ahtoniemi, Toni; Puoliväli, Jukka; Windish, Hillarie; Albrecht, Douglas; Richard, Isabelle; Hirsch, Matthew L

    2017-03-01

    The identification of a dysferlin-deficient animal model that accurately displays both the physiological and behavior aspects of human dysferlinopathy is critical for the evaluation of potential therapeutics. Disease progression in dysferlin-deficient mice is relatively mild, compared to the debilitating human disease which manifests in impairment of particular motor functions. Since there are no other known models of dysferlinopathy in other species, locomotor proficiency and muscular anatomy through MRI (both lower leg and hip region) were evaluated in dysferlin-deficient B6.A- Dysf prmd /GeneJ (Bla/J) mice to define disease parameters for therapeutic assessment. Despite the early and progressive gluteal muscle dystrophy and significant fatty acid accumulation, the emergence of significant motor function deficits was apparent at approximately 1 year of age for standard motor challenges including the rotarod, a marble bury test, grip strength, and swimming speed. Earlier observations of decreased performance for Bla/J mice were evident during extended monitoring of overall exploration and rearing activity. Comprehensive treadmill gait analyses of the Bla/J model indicated significant differences in paw placement angles and stance in relation to speed and platform slope. At 18 months of age, there was no significant difference in the life expectancy of Bla/J mice compared to wild type. Consistent with progressive volume loss and fatty acid accumulation in the hip region observed by MRI, mass measurement of individual muscles confirmed gluteal and psoas muscles were the only muscles demonstrating a significant decrease in muscle mass, which is analogous to hip-girdle weakness observed in human dysferlin-deficient patients. Collectively, this longitudinal analysis identifies consistent disease parameters that can be indicators of efficacy in studies developing treatments for human dysferlin deficiency. © 2017 The Authors. Physiological Reports published by Wiley

  16. Deficiency of the Complement Component 3 but Not Factor B Aggravates Staphylococcus aureus Septic Arthritis in Mice.

    Science.gov (United States)

    Na, Manli; Jarneborn, Anders; Ali, Abukar; Welin, Amanda; Magnusson, Malin; Stokowska, Anna; Pekna, Marcela; Jin, Tao

    2016-04-01

    The complement system plays an essential role in the innate immune response and protection against bacterial infections. However, detailed knowledge regarding the role of complement in Staphylococcus aureus septic arthritis is still largely missing. In this study, we elucidated the roles of selected complement proteins in S. aureus septic arthritis. Mice lacking the complement component 3 (C3(-/-)), complement factor B (fB(-/-)), and receptor for C3-derived anaphylatoxin C3a (C3aR(-/-)) and wild-type (WT) control mice were intravenously or intra-articularly inoculated with S. aureus strain Newman. The clinical course of septic arthritis, as well as histopathological and radiological changes in joints, was assessed. After intravenous inoculation, arthritis severity and frequency were significantly higher in C3(-/-)mice than in WT controls, whereas fB(-/-)mice displayed intermediate arthritis severity and frequency. This was in accordance with both histopathological and radiological findings. C3, but not fB, deficiency was associated with greater weight loss, more frequent kidney abscesses, and higher bacterial burden in kidneys. S. aureus opsonized with C3(-/-)sera displayed decreased uptake by mouse peritoneal macrophages compared with bacteria opsonized with WT or fB(-/-)sera. C3aR deficiency had no effect on the course of hematogenous S. aureus septic arthritis. We conclude that C3 deficiency increases susceptibility to hematogenous S. aureus septic arthritis and impairs host bacterial clearance, conceivably due to diminished opsonization and phagocytosis of S. aureus. Copyright © 2016 Na et al.

  17. Microarray analysis of gene expression on herbal glycoside recipes improving deficient ability of spatial learning memory in ischemic mice.

    Science.gov (United States)

    Wang, Zhong; Du, Qingyou; Wang, Fusheng; Liu, Zhongrong; Li, Baigang; Wang, Anmin; Wang, Yongyan

    2004-03-01

    In order to reveal the mechanism of herbal glycoside recipes retrieving deficient ability of spatial learning memory in mice suffering from cerebral ischemia/reperfusion, a microarray system was used to analyze gene expression in those groups with increasing ability of spatial learning memory who were different from ischemic mice. In this work, we reported a comprehensive characterization of gene expression profiles of mouse hippocampus by the use of cDNA microarray system containing 1176 known genes in middle cerebral artery occlusion (MCAO) ischemic mice after treating with different dosage recipes of glycoside herbs (30, 90, and 270 mg/kg). The ability of spatial learning memory in ischemic mice was found to be decreased. The pathological process in ischemic mouse brain showed that a complex related to 100 genes' expression yielded 1.8-fold. Dose-dependent effects showed an improvement in the deficient ability and reduction in infarct volume when treated with glycoside recipes. Many genes (38-46) in expression were found greater than 1.8-fold in those effective recipes groups, including genes in cell cycle regulation, signal transduction, nerve system transcription factors, DNA binding protein, etc. Nine genes related to retrieving deficient ability of spatial learning memory treated with glycoside recipes were also found in this study. These results suggest that microarray analysis of gene expression might be useful for elucidating the mechanisms of pharmacological function of recipes.

  18. Exercise leads to unfavourable cardiac remodelling and enhanced metabolic homeostasis in obese mice with cardiac and skeletal muscle autophagy deficiency.

    Science.gov (United States)

    Yan, Zhen; Kronemberger, Ana; Blomme, Jay; Call, Jarrod A; Caster, Hannah M; Pereira, Renata O; Zhao, Henan; de Melo, Vitor U; Laker, Rhianna C; Zhang, Mei; Lira, Vitor A

    2017-08-11

    Autophagy is stimulated by exercise in several tissues; yet the role of skeletal and cardiac muscle-specific autophagy on the benefits of exercise training remains incompletely understood. Here, we determined the metabolic impact of exercise training in obese mice with cardiac and skeletal muscle disruption of the Autophagy related 7 gene (Atg7 h&mKO ). Muscle autophagy deficiency did not affect glucose clearance and exercise capacity in lean adult mice. High-fat diet in sedentary mice led to endoplasmic reticulum stress and aberrant mitochondrial protein expression in autophagy-deficient skeletal and cardiac muscles. Endurance exercise training partially reversed these abnormalities in skeletal muscle, but aggravated those in the heart also causing cardiac fibrosis, foetal gene reprogramming, and impaired mitochondrial biogenesis. Interestingly, exercise-trained Atg7 h&mKO mice were better protected against obesity and insulin resistance with increased circulating fibroblast growth factor 21 (FGF21), elevated Fgf21 mRNA and protein solely in the heart, and upregulation of FGF21-target genes involved in thermogenesis and fatty acid oxidation in brown fat. These results indicate that autophagy is essential for the protective effects of exercise in the heart. However, the atypical remodelling elicited by exercise in the autophagy deficient cardiac muscle enhances whole-body metabolism, at least partially, via a heart-brown fat cross-talk involving FGF21.

  19. NCS-1 deficiency causes anxiety and depressive-like behavior with impaired non-aversive memory in mice.

    Science.gov (United States)

    de Rezende, Vitor Bortolo; Rosa, Daniela Valadão; Comim, Clarissa Martinelli; Magno, Luiz Alexandre Viana; Rodrigues, Ana Lucia Severo; Vidigal, Paula; Jeromin, Andreas; Quevedo, João; Romano-Silva, Marco Aurélio

    2014-05-10

    Sensing and regulating intracellular levels of calcium are essential for proper cellular function. In neurons, calcium sensing plays important roles in neuronal plasticity, neurotransmitter release, long-term synapse modification and ion channel activity. Neuronal calcium sensor-1 (NCS-1) is a member of the highly conserved neuronal calcium sensor family. Although NCS-1 has been associated with psychiatric conditions including autism, bipolar disorder and schizophrenia, it is unclear which role NCS-1 plays in behavior. To understand the involvement of NCS-1 in psychiatric conditions, we provided a comprehensive behavioral characterization of NCS-1 knockout (KO) mice. These mice grow and develop normally without apparent abnormalities in comparison to wild type littermates. However, open field showed that NCS-1 deficiency impairs novelty-induced exploratory activity in both KO and heterozygote (HT) mice. Moreover, NCS-1-deficiency also resulted in anxiety- and depressive-like behaviors as demonstrated by elevated plus maze, large open field, forced swim and tail suspension tasks. Furthermore, based on spontaneous object recognition test, non-aversive long-term memory was impaired in NCS-1 KO mice. In contrast, neither social behavior nor a kind of aversive memory was affected under NCS-1 deficiency. These data implicate NCS-1 in exploratory activity, memory and mood-related behaviors, suggesting that NCS-1 gene ablation may result in phenotypic abnormalities associated with neuropsychiatric disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. CD4+CD25+ regulatory T cells have divergent effects on intestinal inflammation in IL-10 gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; MacFarlane, Sarah M; Tavernini, Michele M; Doyle, Jason S G; Fedorak, Richard N

    2008-06-01

    The regulatory effect of murine CD4+CD25+ T-cells in vivo appears to be dependent on the secretion of IL-10. The lack of IL-10 in the IL-10 gene-deficient mouse has a profoundly negative effect on the mouse's regulation of the response to intestinal bacteria, resulting in severe enterocolitis. We investigated the effect of neonatal injection with wild-type CD4+CD25+ T-cells on the intestinal immune response in IL-10 gene-deficient mice. At the time of analysis, 8-15 weeks later, all mice demonstrated an increased, antigen-stimulated systemic response. However, the intestinal response was divergent with about half of the mice developing an intestinal inflammation with a high injury score, the other half demonstrating a remarkable reduction in injury score with a marked decrease in intestinal IFNgamma release. Our data demonstrate that CD4+CD25+ T-cells can be activated in IL-10 gene-deficient mice and that this stimulation under stringent conditions has the potential to reduce intestinal inflammation.

  1. Topical Non-Invasive Gene Delivery using Gemini Nanoparticles in Interferon-gamma-deficient Mice

    Energy Technology Data Exchange (ETDEWEB)

    Badea,I.; Wettig, S.; Verrall, R.; Foldvari, M.

    2007-01-01

    Cutaneous gene therapy, although a promising approach for many dermatologic diseases, has not progressed to the stage of clinical trials, mainly due to the lack of an effective gene delivery system. The main objective of this study was to construct and evaluate gemini nanoparticles as a topical formulation for the interferon gamma (IFN-{gamma}) gene in an IFN-{gamma}-deficient mouse model. Nanoparticles based on the gemini surfactant 16-3-16 (NP16-DNA) and another cationic lipid cholesteryl 3{beta}-(-N-[dimethylamino-ethyl] carbamate) [Dc-chol] (NPDc-DNA) were prepared and characterized. Zetasizer measurement indicated a bimodal distribution of 146 and 468 nm average particle sizes for the NP16-DNA ({zeta}-potential +51 mV) nanoparticles and monomodal distribution of 625 nm ({zeta}-potential +44 mV) for the NPDc-DNA. Circular dichroism studies showed that the gemini surfactant compacted the plasmid more efficiently compared to the Dc-chol. Small-angle X-ray scattering measurements revealed structural polymorphism in the NP16-DNA nanoparticles, with lamellar and Fd3m cubic phases present, while for the NPDc-DNA two lamellar phases could be distinguished. In vivo, both topically applied nanoparticles induced higher gene expression compared to untreated control and naked DNA (means of 0.480 and 0.398 ng/cm{sup 2} vs 0.067 and 0.167 ng/cm{sup 2}). However, treatment with NPDc-DNA caused skin irritation, and skin damage, whereas NP16-DNA showed no skin toxicity. In this study, we demonstrated that topical cutaneous gene delivery using gemini surfactant-based nanoparticles in IFN-{gamma}-deficient mice was safe and may provide increased gene expression in the skin due to structural complexity of NP16 nanoparticles (lamellar-cubic phases).

  2. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice.

    Science.gov (United States)

    Brandewiede, Joerg; Jakovcevski, Mira; Stork, Oliver; Schachner, Melitta

    2013-11-01

    The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.

  3. Deficiency in type 1 insulin-like growth factor receptor in mice protects against oxygen-induced lung injury

    Directory of Open Access Journals (Sweden)

    Flejou Jean-François

    2005-04-01

    Full Text Available Abstract Background Cellular responses to aging and oxidative stress are regulated by type 1 insulin-like growth factor receptor (IGF-1R. Oxidant injury, which is implicated in the pathophysiology of a number of respiratory diseases, acutely upregulates IGF-1R expression in the lung. This led us to suspect that reduction of IGF-1R levels in lung tissue could prevent deleterious effects of oxygen exposure. Methods Since IGF-1R null mutant mice die at birth from respiratory failure, we generated compound heterozygous mice harboring a hypomorphic (Igf-1rneo and a knockout (Igf-1r- receptor allele. These IGF-1Rneo/- mice, strongly deficient in IGF-1R, were subjected to hyperoxia and analyzed for survival time, ventilatory control, pulmonary histopathology, morphometry, lung edema and vascular permeability. Results Strikingly, after 72 h of exposure to 90% O2, IGF-1Rneo/- mice had a significantly better survival rate during recovery than IGF-1R+/+ mice (77% versus 53%, P neo/- mice which developed conspicuously less edema and vascular extravasation than controls. Also, hyperoxia-induced abnormal pattern of breathing which precipitated respiratory failure was elicited less frequently in the IGF-1Rneo/- mice. Conclusion Together, these data demonstrate that a decrease in IGF-1R signaling in mice protects against oxidant-induced lung injury.

  4. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  5. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Yupeng Chen

    Full Text Available Matrilin-1 (Matn1, a cartilage-specific peri-cellular and extracellular matrix (ECM protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/- mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+ mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment.

  6. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.

    Science.gov (United States)

    Holmes, Andrew P; Wong, Shi Quan; Pulix, Michela; Johnson, Kirsty; Horton, Niamh S; Thomas, Patricia; de Magalhães, João Pedro; Plagge, Antonius

    2016-04-14

    Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while β-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap

  7. Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2017-04-01

    Full Text Available The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016 [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse when compared to WT mice.

  8. Hypothalamic-specific proopiomelanocortin deficiency reduces alcohol drinking in male and female mice.

    Science.gov (United States)

    Zhou, Y; Rubinstein, M; Low, M J; Kreek, M J

    2017-04-01

    Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both humans and rodents. This study investigated whether hypothalamic proopiomelanocortin (POMC) neurons (producing beta-endorphin and melanocortins) play a role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two neuronal Pomc enhancers nPE1 and nPE2 (nPE-/-), resulting in hypothalamic-specific POMC deficiency, were studied in short-access (4-h/day) drinking-in-the-dark (DID, alcohol in one bottle, intermittent access (IA, 24-h cycles of alcohol access every other day, alcohol vs. water in a two-bottle choice) and alcohol deprivation effect (ADE) models. Wild-type nPE+/+ exposed to 1-week DID rapidly established stable alcohol drinking behavior with more intake in females, whereas nPE-/- mice of both sexes had less intake and less preference. Although nPE-/- showed less saccharin intake and preference than nPE+/+, there was no genotype difference in sucrose intake or preference in the DID paradigm. After 3-week IA, nPE+/+ gradually escalated to high alcohol intake and preference, with more intake in females, whereas nPE-/- showed less escalation. Pharmacological blockade of mu-opioid receptors with naltrexone reduced intake in nPE+/+ in a dose-dependent manner, but had blunted effects in nPE-/- of both sexes. When alcohol was presented again after 1-week abstinence from IA, nPE+/+ of both sexes displayed significant increases in alcohol intake (ADE or relapse-like drinking), with more pronounced ADE in females, whereas nPE-/- did not show ADE in either sex. Our results suggest that neuronal POMC is involved in modulation of alcohol 'binge' drinking, escalation and 'relapse', probably via hypothalamic-mediated mechanisms, with sex differences. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Zoledronate effects on systemic and jaw osteopenias in ovariectomized periostin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bonnet

    Full Text Available Osteoporosis and periodontal disease (PD are frequently associated in the elderly, both concurring to the loss of jaw alveolar bone and finally of teeth. Bisphosphonates improve alveolar bone loss but have also been associated with osteonecrosis of the jaw (ONJ, particularly using oncological doses of zoledronate. The effects and therapeutic margin of zoledronate on jaw bone therefore remain uncertain. We reappraised the efficacy and safety of Zoledronate (Zol in ovariectomized (OVX periostin (Postn-deficient mice, a unique genetic model of systemic and jaw osteopenia. Compared to vehicle, Zol 1M (100 µg/kg/month and Zol 1W (100 µg/kg/week for 3 months both significantly improved femur BMD, trabecular bone volume on tissue volume (BV/TV and cortical bone volume in both OVX Postn(+/+ and Postn(-/- (all p<0.01. Zol 1M and Zol 1W also improved jaw alveolar and basal BV/TV, although the highest dose (Zol 1W was less efficient, particularly in Postn(-/-. Zol decreased osteoclast number and bone formation indices, i.e. MAR, MPm/BPm and BFR, independently in Postn(-/- and Postn(+/+, both in the long bones and in deep jaw alveolar bone, without differences between Zol doses. Zol 1M and Zol 1W did not reactivate inflammation nor increase fibrous tissue in the bone marrow of the jaw, whereas the distance between the root and the enamel of the incisor (DRI remained high in Postn(-/- vs Postn(+/+ confirming latent inflammation and lack of crestal alveolar bone. Zol 1W and Zol 1M decreased osteocyte numbers in Postn(-/- and Postn(+/+ mandible, and Zol 1W increased the number of empty lacunae in Postn(-/-, however no areas of necrotic bone were observed. These results demonstrate that zoledronate improves jaw osteopenia and suggest that in Postn(-/- mice, zoledronate is not sufficient to induce bone necrosis.

  10. Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Guo, Shoudong; Tian, Hua; Dong, Rongrong; Yang, Nana; Zhang, Ying; Yao, Shutong; Li, Yongjun; Zhou, Yawei; Si, Yanhong; Qin, Shucun

    2016-08-01

    Previous studies investigating the correlation between plasma sialic acid and the severity of atherosclerosis present conflicting results. In atherosclerosis patients, plasma levels of N-acetylneuraminic acid (NANA) are increased; however, the underlying mechanisms have not yet been clarified. We assume the increased NANA level may be a compensatory mechanism due to oxidative stress and/or inflammation. The aim of this study is to investigate whether supplementation of NANA could attenuate the progression of atherosclerosis. Exogenous NANA was used to determine its effect on apolipoprotein E-deficient (apoE(-/-)) mice taking natural quercetin as a positive control. The effect of NANA on lipid lowering, antioxidant activity and anti-inflammation was investigated by methods of molecular biology. 1) NANA administration decreased 18.9% of the atherosclerotic plaque formation in the aorta and 26.7% of the lipid deposition in the liver of high-fat diet apoE(-/-) mice; 2) notably, NANA treatment reduced 62.6% of the triglyceride by improving lipoprotein lipase activity; 3) NANA lowered 17.5% of the plasma total cholesterol by up-regulating reverse cholesterol transport (RCT)-related protein expression such as ATP-binding cassette transporter (ABC) G1 and ABCG5 in liver or small intestine; 4) NANA administration notably decreased oxidative stress by increasing antioxidant enzymes activity and protein expression of paraoxonase 1 and 2; 5) NANA markedly reduced tumour necrosis factor-α and intercellular adhesion molecule-1 expression in aorta and liver. NANA exhibited triglyceride lowering, anti-oxidation, and RCT promoting activities, and therefore NANA supplementation may be a new strategy for prevention and treatment of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice.

    Directory of Open Access Journals (Sweden)

    Xiaojing Zhao

    Full Text Available The objective of this study is to determine the role of perilipin 1 (Plin1 in whole body or bone marrow-derived cells on atherogenesis.Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/- females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/- were transplanted into LDL receptor deficient mice (LDLR-/-. Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1.Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.

  12. Development of colonic neoplasia in p53 deficient mice with experimental colitis induced by dextran sulphate sodium

    Science.gov (United States)

    Fujii, S; Fujimori, T; Kawamata, H; Takeda, J; Kitajima, K; Omotehara, F; Kaihara, T; Kusaka, T; Ichikawa, K; Ohkura, Y; Ono, Y; Imura, J; Yamaoka, S; Sakamoto, C; Ueda, Y; Chiba, T

    2004-01-01

    Background: Several animal models for human ulcerative colitis (UC) associated neoplasia have been reported. However, most neoplasias developed in these models have morphological and genetic characteristics different from UC associated neoplasia. Aims: To establish a new colitis associated neoplasia model in p53 deficient mice by treatment with dextran sulphate sodium (DSS). Methods: DSS colitis was induced in homozygous p53 deficient mice (p53−/−-DSS), heterozygous p53 deficient mice (p53+/−-DSS) and wild-type mice (p53+/+-DSS) by treatment with 4% DSS. Numbers of developed neoplasias were compared among the experimental groups, and macroscopic and microscopic features of the neoplasias were analysed. Furthermore, K-ras mutation and beta-catenin expression were assessed. Results: p53−/−-DSS mice showed 100% incidence of neoplasias whereas the incidences in p53+/−-DSS and p53+/+-DSS mice were 46.2% and 13.3%, respectively. No neoplasias were observed in the control groups. The mean numbers of total neoplasias per mouse were 5.0 (p53−/−-DSS), 0.62 (p53+/−-DSS), and 0.2 (p53+/+-DSS). The number of neoplasias per mouse in the p53−/−-DSS group was significantly higher than that in the other DSS groups. The incidences of superficial type neoplasias were 91.7% in p53−/−-DSS mice, 75.0% in p53+/−-DSS mice, and 33.3% in p53+/+-DSS mice. The K-ras mutation was not detected in any of the neoplasias tested. Translocation of beta-catenin from the cell membrane to the cytoplasm or nucleus was observed in 19 of 23 (82.6%) neoplasias. Conclusions: The p53−/−-DSS mice is an excellent animal model of UC associated neoplasia because the morphological features and molecular genetics are similar to those of UC associated neoplasia. Therefore, this model will contribute to the analysis of tumorigenesis related to human UC associated neoplasia and the development of chemopreventive agents. PMID:15082590

  13. Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice.

    Science.gov (United States)

    Stratford, Kimberly; Haykal-Coates, Najwa; Thompson, Leslie; Krantz, Q Todd; King, Charly; Krug, Jonathan; Gilmour, M Ian; Farraj, Aimen; Hazari, Mehdi

    2018-03-06

    Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environmental exposures. Thus, the purpose of this study was to examine the effect of early life persistent vitamin D deficiency (VDD) on the cardiopulmonary response to a particulate matter-enhanced photochemical smog. Mice were fed a VDD or normal diet (ND) after weaning. At 17 weeks of age, mice were implanted with radiotelemeters to monitor electrocardiogram, heart rate (HR), and heart rate variability (HRV). Ventilatory function was measured throughout the diet before and after smog exposure using whole-body plethysmography. VDD mice had lower HR, increased HRV, and decreased tidal volume compared with ND. Regardless of diet, HR decreased during air exposure; this response was blunted by smog in ND mice and to a lesser degree in VDD. When compared with ND, VDD increased HRV during air exposure and more so with smog. However, smog only increased cardiac arrhythmias in ND mice. This study demonstrates that VDD alters the cardiopulmonary response to smog, highlighting the possible influence of nutritional factors in determining responses to air pollution. The mechanism of how VDD induces these effects is currently unknown, but modifiable factors should be considered when performing risk assessment of complex air pollution atmospheres.

  14. Pitx3 deficient mice as a genetic animal model of co-morbid depressive disorder and parkinsonism.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kang, Young-Mi; Kang, Young; Park, Tae-Shin; Park, Hye-Yeon; Kim, Yoon-Jung; Han, Baek-Soo; Kim, Chun-Hyung; Lee, Chul-Ho; Ardayfio, Paul A; Han, Pyung-Lim; Jung, Bong-Hyun; Kim, Kwang-Soo

    2014-03-13

    Approximately 40-50% of all patients with Parkinson׳s disease (PD) show symptoms and signs of depressive disorders, for which neither pathogenic understanding nor rational treatment are available. Using Pit3x-deficient mice, a model for selective nigrostriatal dopaminergic neurodegeneration, we tested depression-related behaviors and acute stress responses to better understand how a nigrostriatal dopaminergic deficit increases the prevalence of depressive disorders in PD patients. Pitx3-deficient mice showed decreased sucrose consumption and preference in the two-bottle free-choice test of anhedonia. Acute restraint stress increased c-Fos (known as a neuronal activity marker) expression levels in various brain regions, including the prefrontal cortex, striatum, nucleus accumbens, and paraventricular nucleus of the hypothalamus (PVN), in both Pitx3+/+ and -/- mice. However, the stress-induced increases in c-Fos levels in the cortex, dorsal striatum, and PVN were significantly greater in Pitx3-/- than +/+ mice, suggesting that signs of depressive disorders in parkinsonism are related to altered stress vulnerability. Based on these results, we propose that Pitx3-/- mice may serve as a useful genetic animal model for co-morbid depressive disorder and parkinsonism. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genetic deficiency in neprilysin or its pharmacological inhibition initiate excessive stress-induced alcohol consumption in mice.

    Directory of Open Access Journals (Sweden)

    Björn Maul

    Full Text Available Both acquired and inherited genetic factors contribute to excessive alcohol consumption and the corresponding development of addiction. Here we show that the genetic deficiency in neprilysin [NEP] did not change the kinetics of alcohol degradation but led to an increase in alcohol intake in mice in a 2-bottle-free-choice paradigm after one single stress stimulus (intruder. A repetition of such stress led to an irreversible elevated alcohol consumption. This phenomenon could be also observed in wild-type mice receiving an orally active NEP inhibitor. We therefore elucidated the stress behavior in NEP-deficient mice. In an Elevated Plus Maze, NEP knockouts crossed more often the area between the arms, implicating a significant stronger stress response. Furthermore, such animals showed a decreased locomotor activity under intense light in a locomotor activity test, identifying such mice to be more responsive in aversive situations than their wild-type controls. Since the reduction in NEP activity itself does not lead to significant signs of an altered alcohol preference in mice but requires an environmental stimulus, our findings build a bridge between stress components and genetic factors in the development of alcoholism. Therefore, targeting NEP activity might be a very attractive approach for the treatment of alcohol abuse in a society with increasing social and financial stress.

  16. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  17. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-01-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD...... these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three...

  18. Magnesium deficiency induces anxiety-and depression-like behavior and metabolic dysfunction in C57Bl/6J mice

    DEFF Research Database (Denmark)

    Winther, G.; Wang, T.; Singewald, N.

    2012-01-01

    ) in mice through depression-and anxiety phenotyping experiments, namely the forced swim test and light-dark box respectively. We determined the behavioural effects 30 minutes after treatment with imipramine (20 mg/kg), diazepam (2 mg/kg) and ketamine (3 mg/kg). The glucose tolerance test was used to assess...... investigated the involvement of Mg in regulating depression-and anxiety-like behaviour and metabolism, by using mice that have been deprived of dietary Mg and studying several behavioral and metabolic markers. Methods: We examined the behavioral effects of Mg deficiency (deprival of dietary Mg for 6 weeks...

  19. Cholesterogenic genes expression in brain and liver of ganglioside-deficient mice.

    Science.gov (United States)

    Mlinac, Kristina; Fon Tacer, Klementina; Heffer, Marija; Rozman, Damjana; Bognar, Svjetlana Kalanj

    2012-10-01

    The aim of this study was to determine the effect of changed ganglioside profile on transcription of selected genes involved in cholesterol homeostasis. For that purpose, the expression of 11 genes related to cholesterol synthesis, regulation, and cholesterol transport was investigated in selected brain regions (frontal cortex, hippocampus, brain stem, cerebellum) and liver of St8sia1 knockout (KO) mice characterized by deficient synthesis of b- and c-series gangliosides and accumulation of a-series gangliosides. The expression of majority of the analyzed genes, as determined using quantitative real time PCR, was slightly higher in St8sia1 KO compared to wild-type (wt) controls. More prominent changes were observed in Hmgr, Cyp51, and Cyp46 expression in brain (hippocampus and brain stem) and Srebp1a, Insig2a, and Ldlr in liver. In addition, the expression of master transcriptional regulators, Srebp1a, Srebp1c, and Insig2a, as well as transporters Ldlr and Vldlr differed between liver and brain, and within brain regions in wt animals. Cyp46 expression was expectedly brain-specific, with brain region difference in both wt and St8sia1 KO. The established change in transcriptome of cholesterogenic genes is associated to specific alteration of ganglioside composition which indicates relationship between gangliosides and regulation of cholesterol metabolism.

  20. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice.

    Science.gov (United States)

    Barrow, Alexander David; Raynal, Nicolas; Andersen, Thomas Levin; Slatter, David A; Bihan, Dominique; Pugh, Nicholas; Cella, Marina; Kim, Taesoo; Rho, Jaerang; Negishi-Koga, Takako; Delaisse, Jean-Marie; Takayanagi, Hiroshi; Lorenzo, Joseph; Colonna, Marco; Farndale, Richard W; Choi, Yongwon; Trowsdale, John

    2011-09-01

    Osteoclasts are terminally differentiated leukocytes that erode the mineralized bone matrix. Osteoclastogenesis requires costimulatory receptor signaling through adaptors containing immunoreceptor tyrosine-based activation motifs (ITAMs), such as Fc receptor common γ (FcRγ) and DNAX-activating protein of 12 kDa. Identification of these ITAM-containing receptors and their ligands remains a high research priority, since the stimuli for osteoclastogenesis are only partly defined. Osteoclast-associated receptor (OSCAR) was proposed to be a potent FcRγ-associated costimulatory receptor expressed by preosteoclasts in vitro, but OSCAR lacks a cognate ligand and its role in vivo has been unclear. Using samples from mice and patients deficient in various ITAM signaling pathways, we show here that OSCAR costimulates one of the major FcRγ-associated pathways required for osteoclastogenesis in vivo. Furthermore, we found that OSCAR binds to specific motifs within fibrillar collagens in the ECM that become revealed on nonquiescent bone surfaces in which osteoclasts undergo maturation and terminal differentiation in vivo. OSCAR promoted osteoclastogenesis in vivo, and OSCAR binding to its collagen motif led to signaling that increased numbers of osteoclasts in culture. Thus, our results suggest that ITAM-containing receptors can respond to exposed ligands in collagen, leading to the functional differentiation of leukocytes, which provides what we believe to be a new concept for ITAM regulation of cytokine receptors in different tissue microenvironments.

  1. Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice.

    Science.gov (United States)

    Oh, Yun K; Bachar, Adi R; Zacharias, David G; Kim, Sung Gyun; Wan, Junxiang; Cobb, Laura J; Lerman, Lilach O; Cohen, Pinchas; Lerman, Amir

    2011-11-01

    Humanin (HN) is a cytoprotective peptide derived from endogenous mitochondria, expressed in the endothelial layer of human vessels, but its role in atherogenesis in vivo is not known. In vitro study, however, HN reduced oxidized low-density lipoprotein induced formation of reactive oxygen species and apoptosis. The present study tested the hypothesis that long term treatment with HN will have a protective role against endothelial dysfunction and progression of atherosclerosis in vivo. Daily intraperitonial injection of the HN analogue HNGF6A for 16 weeks prevented endothelial dysfunction and decreased atherosclerotic plaque size in the proximal aorta of ApoE-deficient mice fed on a high cholesterol diet, without showing direct vasoactive effects or cholesterol-reducing effects. HN was expressed in the endothelial layer on the aortic plaques. HNGF6A treatment reduced apoptosis and nitrotyrosine immunoreactivity in the aortic plaques without affecting the systemic cytokine profile. HNGF6A also preserved expression of endothelial nitric oxide synthase in aorta. HN may have a protective effect on endothelial function and progression of atherosclerosis by modulating oxidative stress and apoptosis in the developing plaque. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Abnormal Wnt and PI3Kinase signaling in the malformed intestine of lama5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Léa Ritié

    Full Text Available Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin α5 gene deficiency and the physiological phenotype. We show that laminin α5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here.

  3. Mast cell-deficient kit mice develop house dust mite-induced lung inflammation despite impaired eosinophil recruitment.

    Science.gov (United States)

    de Boer, J Daan; Yang, Jack; van den Boogaard, Florry E; Hoogendijk, Arie J; de Beer, Regina; van der Zee, Jaring S; Roelofs, Joris J T H; van 't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2014-01-01

    Mast cells are implicated in allergic and innate immune responses in asthma, although their role in models using an allergen relevant for human disease is incompletely understood. House dust mite (HDM) allergy is common in asthma patients. Our aim was to investigate the role of mast cells in HDM-induced allergic lung inflammation. Wild-type (Wt) and mast cell-deficient Kit(w-sh) mice on a C57BL/6 background were repetitively exposed to HDM via the airways. HDM challenge resulted in a rise in tryptase activity in bronchoalveolar lavage fluid (BALF) of Wt mice, indicative of mast cell activation. Kit(w-sh) mice showed a strongly attenuated HDM- induced recruitment of eosinophils in BALF and lung tissue, accompanied by reduced pulmonary levels of the eosinophil chemoattractant eotaxin. Remarkably, Kit(w-sh) mice demonstrated an unaltered capacity to develop lung pathology and increased mucus production in response to HDM. The increased plasma IgE in response to HDM in Wt mice was absent in Kit(w-sh) mice. These data contrast with previous reports on the role of mast cells in models using ovalbumin as allergen in that C57BL/6 Kit(w-sh) mice display a selective impairment of eosinophil recruitment without differences in other features of allergic inflammation. Copyright © 2013 S. Karger AG, Basel

  4. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient wasted'' mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. (Argonne National Lab., IL (United States)); Libertin, C.R. (Loyola Univ., Maywood, IL (United States))

    1992-01-01

    Mice recessive for the autosomal gene wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/[sm bullet] mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/[sm bullet] and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  5. Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice.

    Science.gov (United States)

    Altintas, Mehmet M; Nayer, Behzad; Walford, Eric C; Johnson, Kevin B; Gaidosh, Gabriel; Reiser, Jochen; De La Cruz-Munoz, Nestor; Ortega, Luis M; Nayer, Ali

    2012-02-07

    Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver) and lymphatic (abdominal lymph nodes, spleen, and thymus) organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α), a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining. ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was noted between ob/ob and control mice. This study

  6. Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice

    Directory of Open Access Journals (Sweden)

    Altintas Mehmet M

    2012-02-01

    Full Text Available Abstract Background Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver and lymphatic (abdominal lymph nodes, spleen, and thymus organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α, a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining. Results ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was

  7. GABA and glutamate pathways are spatially and developmentally affected in the brain of Mecp2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Rita El-Khoury

    Full Text Available Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2 gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55 and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder.

  8. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased basal endotoxemia.

    Directory of Open Access Journals (Sweden)

    Jacob V Stidsen

    Full Text Available Pulmonary surfactant protein D (SP-D is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese. However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC and Agouti-related peptide (AgRP gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight accumulation.In ad libitum fed animals, serum leptin, insulin, and glucose were significantly increased in mice deficient in SP-D, and indicative of insulin resistance. However, restricted diets eliminated all metabolic differences except the distribution of body fat. SP-D deficiency was further associated with elevated levels of systemic bacterial lipopolysaccharide.In conclusion, our findings suggest that lack of SP-D mediates modulation of food intake not directly involving hypothalamic regulatory pathways. The resulting accumulation of adipose tissue was associated with insulin resistance. The data suggest SP-D as a regulator of energy intake and body composition and an inhibitor of metabolic endotoxemia. SP-D may play a causal role at the crossroads of inflammation, obesity, and insulin resistance.

  9. NIAM-deficient mice are predisposed to the development of proliferative lesions including B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Sara M Reed

    Full Text Available Nuclear Interactor of ARF and Mdm2 (NIAM, gene designation Tbrg1 is a largely unstudied inhibitor of cell proliferation that helps maintain chromosomal stability. It is a novel activator of the ARF-Mdm2-Tip60-p53 tumor suppressor pathway as well as other undefined pathways important for genome maintenance. To examine its predicted role as a tumor suppressor, we generated NIAM mutant (NIAM(m/m mice homozygous for a β-galactosidase expressing gene-trap cassette in the endogenous gene. The mutant mice expressed significantly lower levels of NIAM protein in tissues compared to wild-type animals. Fifty percent of aged NIAM deficient mice (14 to 21 months developed proliferative lesions, including a uterine hemangioma, pulmonary papillary adenoma, and a Harderian gland adenoma. No age-matched wild-type or NIAM(+/m heterozygous animals developed lesions. In the spleen, NIAM(m/m mice had prominent white pulp expansion which correlated with enhanced increased reactive lymphoid hyperplasia and evidence of systemic inflammation. Notably, 17% of NIAM mutant mice had splenic white pulp features indicating early B-cell lymphoma. This correlated with selective expansion of marginal zone B cells in the spleens of younger, tumor-free NIAM-deficient mice. Unexpectedly, basal p53 expression and activity was largely unaffected by NIAM loss in isolated splenic B cells. In sum, NIAM down-regulation in vivo results in a significant predisposition to developing benign tumors or early stage cancers. These mice represent an outstanding platform for dissecting NIAM's role in tumorigenesis and various anti-cancer pathways, including p53 signaling.

  10. The effect of tocopheryl phosphates (TPM) on the development of atherosclerosis in apolipoprotein-E deficient mice.

    Science.gov (United States)

    Libinaki, Roksan; Vinh, Antony; Tesanovic-Klajic, Sonja; Widdop, Robert; Gaspari, Tracey

    2017-12-01

    α-Tocopheryl phosphate (TP) is a naturally occurring form of vitamin E found in the body. In the present study we compared the ability of an α-TP mixture (TPM) against a standard vitamin E supplement, α-tocopherol acetate (TA) on the development of atherosclerotic lesions in ApoE-deficient mice. Mice were maintained on either a normal chow diet for 24 weeks (Normal Diet), vs a group in which the final 8 weeks of the 24-week period mice were placed on a high fat (21%), high cholesterol (0.15%) challenge diet (HFHC), to exacerbate atherosclerotic lesion development.. The difference in these two control groups established the extent of the diet-induced atherosclerotic lesion development. Mice in the various treatment groups received either TA (300 mg/kg chow) or TPM (6.7-200 mg/kg chow) for 24 weeks, with TPM treatment resulting in dose-dependent significant reductions in atherosclerotic lesion formation and plasma levels of pro-inflammatory cytokines. TA-treated mice, with the tocopherol equivalent TPM dose (200 mg/kg chow), showed no significant reduction in plasma lipid levels or evidence for aortic lesion regression. At this TPM equivalent TA dose, a 44% reduction in aortic lesion formation was observed. In addition, these TPM treated mice, also showed a marked reduction in aortic superoxide formation and decreased circulating plasma levels of known pro-inflammatory markers IL-6, MCP-1, IL-1β, IFN-γ and TNF-α. These findings indicate that TPM treatment slows progression of atherosclerotic lesions in ApoE-deficient mice with this effect potentially involving reduced oxidative stress and decreased inflammation. © 2017 John Wiley & Sons Australia, Ltd.

  11. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT Slc13a5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Armando R Irizarry

    Full Text Available There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.

  12. Nxf7 deficiency impairs social exploration and spatio-cognitive abilities as well as hippocampal synaptic plasticity in mice

    Directory of Open Access Journals (Sweden)

    Zsuzsanna eCallaerts-Vegh

    2015-07-01

    Full Text Available Nuclear RNA export factors (NXF are conserved in all metazoans and are deemed essential for shuttling RNA across the nuclear envelope and other post-transcriptional processes (such as mRNA metabolism, storage and stability. Disruption of human NXF5 has been implicated in intellectual and psychosocial disabilities. In the present report, we use recently described Nxf7 knockout mice as an experimental model to analyze in detail the behavioral consequences of clinical NXF5 deficiency. We examined male Nxf7 knockout mice using an extended cognitive and behavioral test battery, and recorded extracellular field potentials in the hippocampal CA1 region. We observed various cognitive and behavioral changes including alterations in social exploration, impaired spatial learning and spatio-cognitive abilities. We also defined a new experimental paradigm to discriminate search strategies in Morris water maze and showed significant differences between Nxf7 knockout and control animals. Furthermore, while we observed no difference in nose poke suppression in an conditioned emotional response protocol, Nxf7 knockout mice were impaired in discriminating between differentially reinforced cues in an auditory fear conditioning protocol. This distinct neurocognitive phenotype was accompanied by impaired hippocampal long-term potentiation, while long-term depression was not affected by Nxf7 deficiency. Our data demonstrate that disruption of murine Nxf7 leads to behavioral phenotypes that may relate to the intellectual and social deficits in patients with NXF5 deficiency.

  13. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Suzana Gispert

    Full Text Available BACKGROUND: Parkinson's disease (PD is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1 cause the recessive PARK6 variant of PD. METHODOLOGY/PRINCIPAL FINDINGS: Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. CONCLUSION: Thus, aging Pink1(-/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.

  14. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis.

    Science.gov (United States)

    Martinod, K; Witsch, T; Farley, K; Gallant, M; Remold-O'Donnell, E; Wagner, D D

    2016-03-01

    ESSENTIALS: Neutrophil elastase (NE) plays a role in extracellular trap formation (NETosis) triggered by microbes. The contribution of NE was evaluated in mouse NETosis models of sterile inflammation and thrombosis. NE is not required for mouse neutrophil NET production in vitro with non-infectious stimuli. NE deficiency had no significant effect on thrombosis in the inferior vena cava stenosis model. Neutrophil serine proteases have been implicated in coagulation and neutrophil extracellular trap (NET) formation. In human neutrophils, neutrophil elastase (NE) translocates to the nucleus during NETosis and cleaves histones, thus aiding in chromatin decondensation. NE(-/-) mice were shown not to release NETs in response to microbes. However, mouse studies evaluating the role of NE in NET formation in sterile inflammation and thrombosis are lacking. We wished to establish if neutrophils from NE(-/-) mice have a defect in NETosis, similar to peptidylarginine deiminase 4 (PAD4(-/-)) mice, and how this might have an impact on venous thrombosis, a model where NETs are produced and are crucial to thrombus development. We performed in vitro NET assays using neutrophils from wild-type (WT), NE(-/-), SerpinB1 (SB1)(-/-) and NE(-/-) SB1(-/-) mice. We compared WT and NE(-/-) animals using the inferior vena cava stenosis model of deep vein thrombosis (DVT). Neutrophil elastase deficiency resulted in a small reduction in ionomycin-induced NET formation in vitro without affecting histone citrullination. However, NET production in response to phorbol 12-myristate 13-acetate or platelet activating factor was normal in neutrophils from two independent NE-deficient mouse lines, and in NE(-/-) SB1(-/-) as compared with SB1(-/-) neutrophils. NE deficiency or inhibition did not prevent NETosis in vivo or DVT outcome. Neutrophil elastase is not required for NET formation in mice. NE(-/-) mice, which form pathological venous thrombi containing NETs, do not phenocopy PAD4(-/-) mice in in

  15. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice......-deficient mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...... were generated and infected intracerebrally with noncytolytic lymphocytic choriomeningitis virus. Because these chemokine receptors are mostly expressed by overlapping subsets of activated CD8+ T cells, it was expected that absence of both receptors would synergistically impair effector T cell invasion...

  16. The effect of carnitine on ketogenesis in perfused livers from juvenile visceral steatosis mice with systemic carnitine deficiency.

    Science.gov (United States)

    Nakajima, T; Horiuchi, M; Yamanaka, H; Kizaki, Z; Inoue, F; Kodo, N; Kinugasa, A; Saheki, T; Sawada, T

    1997-07-01

    Juvenile visceral steatosis (JVS) mice have been reported to have systemic carnitine deficiency, and the carnitine concentration in the liver of JVS mice was markedly lower than that of controls (11.6 +/- 2.6 versus 393.5 +/- 56.4 nmol/g of wet liver). To evaluate the role of carnitine in mitochondrial beta-oxidation in liver, we examined the effects of carnitine on ketogenesis in perfused liver from control and JVS mice. In control mice, ketogenesis was increased by the infusion of 0.3 mM oleate, but not by L-carnitine. In contrast, although ketogenesis in JVS mice was not increased by the infusion of oleate, it was increased 2.5-fold by the addition of 1000 microM L-carnitine. Addition of 50, 100, and 200 microM L-carnitine increased ketogenesis in a dose-dependent manner. The infusion of 0.3 mM octanoate or butyrate increased ketogenesis in a carnitine-independent fashion in both control and JVS mice. These findings suggest that endogenous long chain fatty acids from accumulated triglycerides may be used as substrates in the presence of carnitine in JVS mice. The relationship between ketogenesis and free carnitine concentration was examined in livers from JVS mice. Ketogenesis increased as free carnitine levels increased until concentrations exceeded about 100 nmol/g of wet liver (340 microM). The free carnitine concentration required for half-maximal ketone body production in liver of JVS mice was 45 microM (13 nmol/g of wet liver), which corresponds to a K(m) value of carnitine palmitoyltransferase I. We conclude that carnitine is a rate-limiting factor for beta-oxidation in liver only when the carnitine level in liver is very low.

  17. Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis.

    Science.gov (United States)