WorldWideScience

Sample records for interleukin-10 overexpression promotes

  1. Interleukin-10 overexpression promotes Fas-ligand-dependent chronic macrophage-mediated demyelinating polyneuropathy.

    Directory of Open Access Journals (Sweden)

    Dru S Dace

    Full Text Available BACKGROUND: Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome or chronic forms. Interleukin-10 (IL-10, although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. PRINCIPAL FINDINGS: Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL-mediated Schwann cell death. SIGNIFICANCE: These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP or Guillain-Barré syndrome.

  2. Mesenchymal Stem Cells Overexpressing Interleukin-10 Promote Neuroprotection in Experimental Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Masataka Nakajima

    2017-09-01

    Full Text Available Interleukin (IL-10 is a contributing factor to neuroprotection of mesenchymal stem cell (MSC transplantation after ischemic stroke. Our aim was to increase therapeutic effects by combining MSCs and ex vivo IL-10 gene transfer with an adeno-associated virus (AAV vector using a rat transient middle cerebral artery occlusion (MCAO model. Sprague-Dawley rats underwent 90 min MCAO followed by intravenous administration of MSCs alone or IL-10 gene-transferred MSCs (MSC/IL-10 at 0 or 3 hr after ischemia reperfusion. Infarct lesions, neurological deficits, and immunological analyses were performed within 7 days after MCAO. 0-hr transplantation of MSCs alone and MSC/IL-10 significantly reduced infarct volumes and improved motor function. Conversely, 3-hr transplantation of MSC/IL-10, but not MSCs alone, significantly reduced infarct volumes (p < 0.01 and improved motor function (p < 0.01 compared with vehicle groups at 72 hr and 7 days after MCAO. Immunological analysis showed that MSC/IL-10 transplantation significantly inhibits microglial activation and pro-inflammatory cytokine expression compared with MSCs alone. Moreover, overexpressing IL-10 suppressed neuronal degeneration and improved survival of engrafted MSCs in the ischemic hemisphere. These results suggest that overexpressing IL-10 enhances the neuroprotective effects of MSC transplantation by anti-inflammatory modulation and thereby supports neuronal survival during the acute ischemic phase.

  3. Interleukin-10 promoter polymorphisms in myasthenia gravis.

    Science.gov (United States)

    Alseth, Espen Homleid; Nakkestad, Hanne Linda; Aarseth, Jan; Gilhus, Nils Erik; Skeie, Geir Olve

    2009-05-29

    Interleukin 10 (IL-10) is secreted by several hemopoietic cells and suppresses the Th1 mediated immune response, while stimulating B cell differentiation and the humoral immune response. IL-10 expression in Con A-stimulated peripheral blood mononuclear cells is related to three polymorphisms in the promoter region of the IL-10 gene; G/A at position -1082, T/C at position -819 and A/C at position -592. We analyzed the distribution of these IL-10 polymorphisms in 64 MG patients and 87 healthy blood donors to determine any influence on MG susceptibility. MG patients had a significantly higher frequency of the ACC/ACC haplotype (12.5% vs 3.4% in controls), as had the subgroups with late onset MG and thymomatous MG (20.0% and 21.4%, respectively). Early onset MG patients had a high frequency of the ATA/ATA haplotype (19.2% vs 3.4% in controls). Titin Ab-positive MG patients had high ACC/ACC (20.0%). This study indicates a direct link between IL-10 and MG pathogenesis, although the complex role of this multi-faceted cytokine in vivo is as yet not fully elucidated.

  4. Interleukin-10 promoter polymorphisms in patients with multiple sclerosis.

    Science.gov (United States)

    Myhr, Kjell-Morten; Vågnes, Kari S; Marøy, Tove H; Aarseth, Jan H; Nyland, Harald I; Vedeler, Christian A

    2002-10-15

    The expression level of interleukin-10 (IL-10) is related to polymorphisms -1082 (G/A), -819 (T/C) and -592 (A/C) in the promoter region of the IL-10 gene. The distribution of these polymorphisms was analyzed to determine whether they could influence disease susceptibility or clinical course in multiple sclerosis (MS). The -1082 (G/A), -819 (T/C) and -592 (A/C) genotypes were similarly distributed between MS patients and the controls. The primary progressive MS patients with the low IL-10 expression haplotype showed a trend towards a worse clinical outcome than did patients with medium- or high-expression haplotypes (P = 0.056). The polymorphisms did not influence the clinical course in patients with relapsing-remitting MS. Copyright 2002 Elsevier Science B.V.

  5. Interleukin-10

    NARCIS (Netherlands)

    de Waal Malefyt, R.; Yssel, H.; Roncarolo, M. G.; Spits, H.; de Vries, J. E.

    1992-01-01

    Despite the short history of interleukin-10, accumulated evidence indicates that this interleukin plays a major role in suppressing immune and inflammatory responses. Yet interleukin-10 also maintains cell viability and acts as a cofactor to promote the growth of lymphoid and myeloid cells in vitro.

  6. Interleukin 10 overexpression alters survival in the setting of gram-negative pneumonia following lung contusion.

    Science.gov (United States)

    Dolgachev, Vladislav A; Yu, Bi; Sun, Lei; Shanley, Thomas P; Raghavendran, Krishnan; Hemmila, Mark R

    2014-04-01

    Lung contusion injury produces a vulnerable window within the inflammatory defenses of the lung that predisposes the patient to pneumonia. Interleukin 10 (IL-10) is a known anti-inflammatory mediator produced by macrophages and capable of downregulating acute lung inflammation. We investigated the impact of increased levels of IL-10 within the lung on survival and the host response to trauma in the setting of lung contusion (LC) and gram-negative pneumonia. A bitransgenic, tetracycline-inducible, lung-specific human IL-10 overexpression (IL-10 OE) mouse model and single transgenic (TG-) control mice were used. Mice underwent LC injury or sham injury (sham) at time -6 h. At time 0, animals were inoculated intratracheally with 500 colony-forming units of Klebsiella pneumoniae (pneu). Bronchoalveolar lavage fluid, lung tissue specimens, or purified macrophages were collected. Lung tissue and blood bacteria levels were quantified. Cytokine levels were assayed by enzyme-linked immunosorbent assay, and gene expression levels were evaluated by real-time polymerase chain reaction. Cell-type identification and quantification were done using real-time polymerase chain reaction and flow cytometry. Interleukin 10 OE mice demonstrated decreased 5-day survival compared with TG- mice following LC + pneu (0 vs. 30%, P pneu animals (P < 0.05). Lung-specific IL-10 overexpression induces alternative activation of alveolar macrophages. This shift in macrophage phenotype decreases intracellular bacterial killing, resulting in a more pronounced bacteremia and accelerated mortality in a model of LC and pneumonia.

  7. Interleukin-10 gene promoter polymorphism as a potential host ...

    African Journals Online (AJOL)

    10) gene have been associated with altered levels of circulating IL-10, a Th2 cytokine that plays a key role in the pathogenesis of TB. We analyzed the frequencies of IL-10 promoter polymorphisms in 82 TB patients and 99 healthy Pakistani ...

  8. Interleukin 10 gene promoter polymorphism and risk of diffuse large ...

    African Journals Online (AJOL)

    Purpose: Given the importance of understanding the genetic variations involved in the pathogenesis of non-Hodgkin's lymphoma (NHL), this work was designed to study the impact of IL-10 (1082 G/A; rs1800896 and 819 C/T; rs1800871) gene promoter polymorphism on susceptibility of Egyptians to diffuse large B cell ...

  9. Association of Interleukin-10 Gene Promoter Polymorphisms in Saudi Patients with Vitiligo

    Directory of Open Access Journals (Sweden)

    Abdullah Abanmi

    2008-01-01

    Full Text Available The promoter region of human Interleukin −10 gene is highly polymorphic and has been associated with numerous autoimmune diseases. Recent studies have linked vitiligo with defective autoimmune system. This study is aimed to explore a possible association between IL-10 gene polymorphism and vitiligo in Saudi population. This case control study consisted of 184 Saudi subjects including 83 vitiligo patients (40 males, 43 females mean age 27.85 ± 12.43 years and 101 matched controls. Genomic DNA was extracted from the blood samples of healthy controls and Vitiligo patients visiting out patient clinic of Department of Dermatology, Riyadh Armed Forces Hospital, using QIA ampR DNA mini kit (Qiagen CA, USA. Interleukin-10 gene was amplified by polymerase chain reaction (PCR using Arms primers to detect any polymorphism involved at positions −592, −819 and −1082.

  10. Interleukin-10 promoter polymorphism predicts initial response of chronic hepatitis B to interferon alfa

    Directory of Open Access Journals (Sweden)

    Ma Weimin

    2011-01-01

    Full Text Available Abstract In order to examine whether variation in interleukin-10 promoter polymorphism would predict the likelihood of sustain response of chronic hepatitis B to treatment with interferon alfa (IFN-α, the inheritance of 3 biallelic polymorphisms in the IL-10 gene promoter in patients with 52 chronic hepatitis B were determined by polymerase chain reaction (PCR-bared techniques, restriction enzyme digestion or direct sequencing. The relationship to the outcome of antiviral therapy for chronic HBV infection was studied in 24 patients who had a virologically sustained response(SR and in 28 non-responder(NR to interferon alfa-2b and several IL-10 variants were more frequent among SR compared with NR. Carriage of the -592A allele, -592A/A genotype and -1082/-1819/-592 ATA haplotype was associated with SR. Our findings indicate that heterogeneity in the promoter region of the IL-10 gene has a role in determining the initial response of chronic hepatitis B to IFN-α therapy.

  11. Study of interleukin-10 promoter region polymorphisms (−1082A/G ...

    Indian Academy of Sciences (India)

    Smeraldi R. and Momigliano-Richardi P. 2000 Systemic lupus erythematosus candidate genes in the Italian population: evi- dence for a significant association with interleukin-10. Arthri- tis Rheum. 43, 120–128. Erratum in: 2000 Arthritis Rheum. 43,. 1442. Eisenbarth G. S. 2005 Type 1 diabetes mellitus. In Joslin's diabetes.

  12. Interleukin 10 gene promoter polymorphism and risk of diffuse large B cell lymphoma (DLBCL

    Directory of Open Access Journals (Sweden)

    Roba M. Talaat

    2014-01-01

    Conclusions: Taken together, our findings demonstrated that IL-10 promoter gene polymorphism (−1082 and −819 may not have an influence on the clinical outcome of DLBCL, especially in terms of overall secretion level. Further investigations of other cytokine gene polymorphisms will lead to a better understanding of the disease’s biological background.

  13. Association of interleukin-10 promoter haplotypes with disease susceptibility and IL-10 levels in Mexican patients with systemic lupus erythematosus.

    Science.gov (United States)

    Palafox-Sánchez, Claudia Azucena; Oregon-Romero, Edith; Salazar-Camarena, Diana Celeste; Valle, Yeminia Maribel; Machado-Contreras, Jesús René; Cruz, Alvaro; Orozco-López, Mariana; Orozco-Barocio, Gerardo; Vázquez-Del Mercado, Mónica; Muñoz-Valle, José Francisco

    2015-11-01

    Systemic lupus erythematosus (SLE) is the prototype autoimmune rheumatic disease. The etiology of this disease is incompletely understood; however, environmental factors and genetic predisposition are involved. Cytokine-mediated immunity plays a crucial role in the pathogenesis of SLE. We investigate the association of interleukin-10 (IL-10) promoter polymorphisms and their haplotypes in SLE patients from the western Mexico. One hundred and twenty-five SLE patients fulfilling the 1997 ACR criteria and 260 unrelated healthy subjects (HS), both Mexican mestizos, were genotyped for IL-10 -1082A>G, -819C>T, and -592C>A polymorphisms. Haplotypes were inferred using the expectation-maximization algorithm, then allele and haplotype distributions were compared between patients and HS, as well as patients with different clinical variables. We identified at -1082, -819, and -592 four predominant haplotypes ACC (43.70 % in patients vs 46.55 % in HS), ATA (21.45 vs 22.97 %), GCC (16.28 vs 14.21 %), and GTA (14.12 vs 14.12 %). The ATC haplotype was more frequent in SLE respect to HS, suggesting a risk effect (3.23 vs 1.05 %; OR 3.55, CI 1.14-11.11; p = 0.0293). SLE patient carriers of -592 CC genotype as well as the dominant model of inheritance showed higher sIL-10 respect to AA genotype, suggesting that -592 C allele is associated with increased production of the cytokine (p < 0.05). The ACC haplotype had higher IL-10 serum levels and higher values of Mexican version of the Systemic Lupus Erythematosus Disease Activity Index compared with the other haplotype carriers; however, no association was found regarding autoantibodies. Our data suggest that the IL-10 promoter haplotypes play an important role in the risk of developing SLE and influence the production of IL-10 in Mexican population. Nevertheless, further studies are required to analyze the expression of mRNA as well as to investigate the interacting epigenetic factors that could help to define the true contribution of

  14. Adult human hepatocytes promote CD4(+) T-cell hyporesponsiveness via interleukin-10-producing allogeneic dendritic cells.

    Science.gov (United States)

    Sana, Gwenaëlle; Lombard, Catherine; Vosters, Olivier; Jazouli, Nawal; Andre, Floriane; Stephenne, Xavier; Smets, Françoise; Najimi, Mustapha; Sokal, Etienne M

    2014-01-01

    The success of liver cell therapy remains closely dependent on how well the infused cells can be accepted after transplantation and is directly related to their degree of immunogenicity. In this study, we investigated the in vitro immunogenic properties of isolated human hepatocytes (hHeps) and adult-derived human liver progenitor cells (ADHLPCs), an alternative cell candidate for liver cell transplantation (LCT). The constitutive expression of immune markers was first analyzed on these liver-derived cells by flow cytometry. Human liver-derived cells were then cocultured with allogeneic human adult peripheral blood mononuclear cells (PBMCs), and the resulting activation and proliferation of PBMCs was evaluated, as well as the cytokine levels in the coculture supernatant. The effect of liver-derived cells on monocyte-derived dendritic cell (MoDC) properties was further analyzed in a secondary coculture with naive CD4(+) T-cells. We report that hHeps and ADHLPCs expressed human leukocyte antigen (HLA) class I and Fas but did not express HLA-DR, Fas ligand, and costimulatory molecules. hHeps and ADHLPCs did not induce T-cell activation or proliferation. Moreover, hHeps induced a cell contact-dependent production of interleukin (IL)-10 that was not observed with ADHLPCs. The IL-10 was produced by a myeloid DC subset characterized by an incomplete mature state. Furthermore, hHep-primed MoDCs induced an antigen-independent hyporesponsiveness of naive CD4(+) T lymphocytes that was partially reversed by blocking IL-10, whereas nonprimed MoDCs (i.e., those cultured alone) did not. hHeps and ADHLPCs present a low immunogenic phenotype in vitro. Allogeneic hHeps, but not ADHLPCs, promote a cell contact-dependent production of IL-10 by myeloid DCs, which induces naive CD4(+) T-cells antigen-independent hyporesponsiveness.

  15. Interleukin-10 Production by T and B Cells Is a Key Factor to Promote Systemic Salmonella enterica Serovar Typhimurium Infection in Mice

    Directory of Open Access Journals (Sweden)

    Geraldyne A. Salazar

    2017-08-01

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium is a Gram-negative bacterium that produces disease in numerous hosts. In mice, oral inoculation is followed by intestinal colonization and subsequent systemic dissemination, which leads to severe pathogenesis without the activation of an efficient anti-Salmonella immune response. This feature suggests that the infection caused by S. Typhimurium may promote the production of anti-inflammatory molecules by the host that prevent efficient T cell activation and bacterial clearance. In this study, we describe the contribution of immune cells producing the anti-inflammatory cytokine interleukin-10 (IL-10 to the systemic infection caused by S. Typhimurium in mice. We observed that the production of IL-10 was required by S. Typhimurium to cause a systemic disease, since mice lacking IL-10 (IL-10−/− were significantly more resistant to die after an infection as compared to wild-type (WT mice. IL-10−/− mice had reduced bacterial loads in internal organs and increased levels of pro-inflammatory cytokines in serum at 5 days of infection. Importantly, WT mice showed high bacterial loads in tissues and no increase of cytokines in serum after 5 days of S. Typhimurium infection, except for IL-10. In WT mice, we observed a peak of il-10 messenger RNA production in ileum, spleen, and liver after 5 days of infection. Importantly, the adoptive transfer of T or B cells from WT mice restored the susceptibility of IL-10−/− mice to systemic S. Typhimurium infection, suggesting that the generation of regulatory cells in vivo is required to sustain a systemic infection by S. Typhimurium. These findings support the notion that IL-10 production from lymphoid cells is a key process in the infective cycle of S. Typhimurium in mice due to generation of a tolerogenic immune response that prevents bacterial clearance and supports systemic dissemination.

  16. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  17. Analysis of Interleukin-10 polymorphic variants in Pakistani population

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Boomsma DI, Vandenbroucke JP (1997). Genetic influence on cytokine production and fatal meningococcal disease. Lancet002C. 349: 170-3. Zhang X, Hei P, Deng L , Lin J (2006). Interleukin-10 gene promoter polymorphisms and their protein production in peritoneal fluid in patients with endometriosis.

  18. Interleukin 2 and interleukin 10 function synergistically to promote CD8+T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer.

    Science.gov (United States)

    Li, Xiaogang; Lu, Ping; Li, Bo; Zhang, Wanfu; Yang, Rong; Chu, Yan; Luo, Kaiyuan

    2017-06-01

    The precise role of interleukin (IL)-10 in breast cancer is not clear. Previous studies suggested a tumor-promoting role of IL-10 in breast cancer, whereas recent discoveries that IL-10 activated and expanded tumor-resident CD8 + T cells challenged the traditional view. Here, we investigated the role of IL-10 in HLA-A2-positive breast cancer patients with Grade III, Stage IIA or IIB in-situ and invasive ductal carcinoma, and compared it with that of IL-2, the canonical CD8 + T cell growth factor. We first observed that breast cancer patients presented higher serum levels of IL-2 and IL-10 than healthy controls. Upon prolonged TCR stimulation, peripheral blood CD8 + T cells from breast cancer patients tended to undergo apoptosis, which could be prevented by the addition of IL-2 and/or IL-10. The cytotoxicity of TCR-activated CD8 + T cells was also enhanced by exogenous IL-2 and/or IL-10. Interestingly, IL-2 and IL-10 demonstrated synergistic effects, since the enhancement in CD8 + T cell function when both cytokines were added was greater than the sum of the improvements mediated by each individual cytokine. IL-10 by itself could not promote the proliferation of CD8 + T cells but could significantly enhance IL-2-mediated promotion of CD8 + T cell proliferation. In addition, the cytotoxicity of tumor-infiltrating CD8 + T cells in breast tumor was elevated when both IL-2 and IL-10 were present but not when either one was absent. This synergistic effect was stopped by CD4 + CD25 + regulatory T cells (Treg), which depleted IL-2 in a cell number-dependent manner. Together, these results demonstrated that IL-2 and IL-10 could work synergistically to improve the survival, proliferation, and cytotoxicity of activated CD8 + T cells, an effect suppressible by CD4 + CD25 + Treg cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts

    NARCIS (Netherlands)

    Yu, Hongyou; de Vos, Paul; Ren, Yijin

    OBJECTIVE: The hypothesis of the present study is that overexpression of osteoprotegerin (OPG) promotes preosteoblast maturation. MATERIALS AND METHODS: The preosteoblast cell line MC3T3-E1 was transfected with OPG overexpression. OPG expression was confirmed by enzyme-linked immunosorbent assay

  20. Engineered Promoters for Potent Transient Overexpression.

    Directory of Open Access Journals (Sweden)

    Dan Y Even

    Full Text Available The core promoter, which is generally defined as the region to which RNA Polymerase II is recruited to initiate transcription, plays a pivotal role in the regulation of gene expression. The core promoter consists of different combinations of several short DNA sequences, termed core promoter elements or motifs, which confer specific functional properties to each promoter. Earlier studies that examined the ability to modulate gene expression levels via the core promoter, led to the design of strong synthetic core promoters, which combine different core elements into a single core promoter. Here, we designed a new core promoter, termed super core promoter 3 (SCP3, which combines four core promoter elements (the TATA box, Inr, MTE and DPE into a single promoter that drives prolonged and potent gene expression. We analyzed the effect of core promoter architecture on the temporal dynamics of reporter gene expression by engineering EGFP expression vectors that are driven by distinct core promoters. We used live cell imaging and flow cytometric analyses in different human cell lines to demonstrate that SCPs, particularly the novel SCP3, drive unusually strong long-term EGFP expression. Importantly, this is the first demonstration of long-term expression in transiently transfected mammalian cells, indicating that engineered core promoters can provide a novel non-viral strategy for biotechnological as well as gene-therapy-related applications that require potent expression for extended time periods.

  1. Interleukin-10 haplotypes in Celiac Disease in the Spanish population.

    Science.gov (United States)

    Núñez, Concepción; Alecsandru, Diana; Varadé, Jezabel; Polanco, Isabel; Maluenda, Carlos; Fernández-Arquero, Miguel; de la Concha, Emilio G; Urcelay, Elena; Martínez, Alfonso

    2006-03-31

    Celiac disease (CD) is a chronic disorder characterized by a pathological inflammatory response after exposure to gluten in genetically susceptible individuals. The HLA complex accounts for less than half of the genetic component of the disease, and additional genes must be implicated. Interleukin-10 (IL-10) is an important regulator of mucosal immunity, and several reports have described alterations of IL-10 levels in celiac patients. The IL-10 gene is located on chromosome 1, and its promoter carries several single nucleotide polymorphisms (SNPs) and microsatellites which have been associated to production levels. Our aim was to study the role of those polymorphisms in susceptibility to CD in our population. A case-control and a familial study were performed. Positions -1082, -819 and -592 of the IL-10 promoter were typed by TaqMan and allele specific PCR. IL10R and IL10G microsatellites were amplified with labelled primers, and they were subsequently run on an automatic sequencer. In this study 446 patients and 573 controls were included, all of them white Spaniards. Extended haplotypes encompassing microsatellites and SNPs were obtained in families and estimated in controls by the Expectation-Maximization algorithm. No significant associations after Bonferroni correction were observed in the SNPs or any of the microsatellites. Stratification by HLA-DQ2 (DQA1*0501-DQB1*02) status did not alter the results. When extended haplotypes were analyzed, no differences were apparent either. The IL-10 polymorphisms studied are not associated with celiac disease. Our data suggest that the IL-10 alteration seen in patients may be more consequence than cause of the disease.

  2. Interleukin-10 haplotypes in Celiac Disease in the Spanish population

    Directory of Open Access Journals (Sweden)

    Fernández-Arquero Miguel

    2006-03-01

    Full Text Available Abstract Background Celiac disease (CD is a chronic disorder characterized by a pathological inflammatory response after exposure to gluten in genetically susceptible individuals. The HLA complex accounts for less than half of the genetic component of the disease, and additional genes must be implicated. Interleukin-10 (IL-10 is an important regulator of mucosal immunity, and several reports have described alterations of IL-10 levels in celiac patients. The IL-10 gene is located on chromosome 1, and its promoter carries several single nucleotide polymorphisms (SNPs and microsatellites which have been associated to production levels. Our aim was to study the role of those polymorphisms in susceptibility to CD in our population. Methods A case-control and a familial study were performed. Positions -1082, -819 and -592 of the IL-10 promoter were typed by TaqMan and allele specific PCR. IL10R and IL10G microsatellites were amplified with labelled primers, and they were subsequently run on an automatic sequencer. In this study 446 patients and 573 controls were included, all of them white Spaniards. Extended haplotypes encompassing microsatellites and SNPs were obtained in families and estimated in controls by the Expectation-Maximization algorithm. Results No significant associations after Bonferroni correction were observed in the SNPs or any of the microsatellites. Stratification by HLA-DQ2 (DQA1*0501-DQB1*02 status did not alter the results. When extended haplotypes were analyzed, no differences were apparent either. Conclusion The IL-10 polymorphisms studied are not associated with celiac disease. Our data suggest that the IL-10 alteration seen in patients may be more consequence than cause of the disease.

  3. Tumour necrosis factor alpha and interleukin 10 gene ...

    Indian Academy of Sciences (India)

    Tumour necrosis factor alpha and interleukin 10 gene polymorphisms and the risk of ischemic stroke in south Indian population. Shehnaz Sultana Venkata K. Kolla Yasovanthi Jeedigunta Pranay K. Penagaluru Sindhu Joshi P. Usha Rani P. P. Reddy. Research Note Volume 90 Issue 2 August 2011 pp 361-364 ...

  4. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor.

    Science.gov (United States)

    Glocker, Erik-Oliver; Kotlarz, Daniel; Boztug, Kaan; Gertz, E Michael; Schäffer, Alejandro A; Noyan, Fatih; Perro, Mario; Diestelhorst, Jana; Allroth, Anna; Murugan, Dhaarini; Hätscher, Nadine; Pfeifer, Dietmar; Sykora, Karl-Walter; Sauer, Martin; Kreipe, Hans; Lacher, Martin; Nustede, Rainer; Woellner, Cristina; Baumann, Ulrich; Salzer, Ulrich; Koletzko, Sibylle; Shah, Neil; Segal, Anthony W; Sauerbrey, Axel; Buderus, Stephan; Snapper, Scott B; Grimbacher, Bodo; Klein, Christoph

    2009-11-19

    The molecular cause of inflammatory bowel disease is largely unknown. We performed genetic-linkage analysis and candidate-gene sequencing on samples from two unrelated consanguineous families with children who were affected by early-onset inflammatory bowel disease. We screened six additional patients with early-onset colitis for mutations in two candidate genes and carried out functional assays in patients' peripheral-blood mononuclear cells. We performed an allogeneic hematopoietic stem-cell transplantation in one patient. In four of nine patients with early-onset colitis, we identified three distinct homozygous mutations in genes IL10RA and IL10RB, encoding the IL10R1 and IL10R2 proteins, respectively, which form a heterotetramer to make up the interleukin-10 receptor. The mutations abrogate interleukin-10-induced signaling, as shown by deficient STAT3 (signal transducer and activator of transcription 3) phosphorylation on stimulation with interleukin-10. Consistent with this observation was the increased secretion of tumor necrosis factor alpha and other proinflammatory cytokines from peripheral-blood mononuclear cells from patients who were deficient in IL10R subunit proteins, suggesting that interleukin-10-dependent "negative feedback" regulation is disrupted in these cells. The allogeneic stem-cell transplantation performed in one patient was successful. Mutations in genes encoding the IL10R subunit proteins were found in patients with early-onset enterocolitis, involving hyperinflammatory immune responses in the intestine. Allogeneic stem-cell transplantation resulted in disease remission in one patient. 2009 Massachusetts Medical Society

  5. Interleukin-10 gene promoter polymorphism as a potential host ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-26

    Oct 26, 2011 ... Muhammad Sohail Afzal, Sadia Anjum, Amna Salman, Sajjad Ashraf, Zia Ur Rehman Farooqi,. Tahir Ahmed, Yasir waheed and Ishtiaq Qadri. Center of Virology and Immunology (NCVI), National University of Science and Technology (NUST), Sec H-12,. Islamabad, Pakistan. Accepted 9 September, 2011.

  6. Interleukin 10 gene promoter polymorphism and risk of diffuse large ...

    African Journals Online (AJOL)

    Roba M. Talaat

    2013-10-09

    23]. The same result was found in-L-. 10 (А1082) which is consistent with those presented by Ghiel- mini and Mora [24] where the frequency of the IL-10 (А1082). G allele was not significantly different in DLBCL patients ver-.

  7. The dual nature of interleukin-10 in pemphigus vulgaris.

    Science.gov (United States)

    Cho, Michael Jeffrey; Ellebrecht, Christoph T; Payne, Aimee S

    2015-06-01

    The immunomodulatory cytokine interleukin-10 (IL-10) plays beneficial but also potentially detrimental roles in inflammation, infection, and autoimmunity. Recent studies suggest a regulatory role for IL-10-expressing B cells in the autoimmune blistering disease pemphigus vulgaris. Here we review the studies on IL-10 in pemphigus vulgaris and discuss the potential pathophysiological significance of these findings in comparison to prior studies of IL-10 in other human conditions. A better understanding of the complex roles of IL-10 in immune regulation may improve our understanding of pemphigus pathogenesis and treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Altered Interleukin-10 Signaling in Skeletal Muscle Regulates Obesity-Mediated Inflammation and Insulin Resistance.

    Science.gov (United States)

    Dagdeviren, Sezin; Jung, Dae Young; Lee, Eunjung; Friedline, Randall H; Noh, Hye Lim; Kim, Jong Hun; Patel, Payal R; Tsitsilianos, Nicholas; Tsitsilianos, Andrew V; Tran, Duy A; Tsougranis, George H; Kearns, Caitlyn C; Uong, Cecilia P; Kwon, Jung Yeon; Muller, Werner; Lee, Ki Won; Kim, Jason K

    2016-12-01

    Skeletal muscle insulin resistance is a major characteristic of obesity and type 2 diabetes. Although obesity-mediated inflammation is causally associated with insulin resistance, the underlying mechanism is unclear. Here, we examined the effects of chronic obesity in mice with muscle-specific overexpression of interleukin-10 (M IL10 ). After 16 weeks of a high-fat diet (HFD), M IL10 mice became markedly obese but showed improved insulin action compared to that of wild-type mice, which was largely due to increased glucose metabolism and reduced inflammation in skeletal muscle. Since leptin regulates inflammation, the beneficial effects of interleukin-10 (IL-10) were further examined in leptin-deficient ob/ob mice. Muscle-specific overexpression of IL-10 in ob/ob mice (MCK-IL10 ob/ob ) did not affect spontaneous obesity, but MCK-IL10 ob/ob mice showed increased glucose turnover compared to that in ob/ob mice. Last, mice with muscle-specific ablation of IL-10 receptor (M-IL10R -/- ) were generated to determine whether IL-10 signaling in skeletal muscle is involved in IL-10 effects on glucose metabolism. After an HFD, M-IL10R -/- mice developed insulin resistance with reduced glucose metabolism compared to that in wild-type mice. Overall, these results demonstrate IL-10 effects to attenuate obesity-mediated inflammation and improve insulin sensitivity in skeletal muscle, and our findings implicate a potential therapeutic role of anti-inflammatory cytokines in treating insulin resistance and type 2 diabetes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers.

    Directory of Open Access Journals (Sweden)

    Yoshiko Shimizu

    Full Text Available INTRODUCTION: Women with HER2(+ or triple negative/basal-like (TN/BL breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2(+ and/or TN/BL tumors. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/Ras(V12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU, followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2(+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. CONCLUSION/SIGNIFICANCE: BRCA1-IRIS overexpression triggers aggressive

  10. Interleukin-10 and posttransplant lymphoproliferative disorder after kidney transplantation

    DEFF Research Database (Denmark)

    Birkeland, S.A.; Bendtzen, K.; Moller, B.

    1999-01-01

    , and the type and duration of immunosuppression. Interleukin-10 (IL-10) is a pleiotropic cytokine, produced primarily by T-helper 2 (Th2) lymphocytes in the later stages of T-cell activation, suggested to play a role in EBV-associated PTLD, We recently reported preliminary findings on IL-10 in relation...... human recombinant IL-10 was employed; the assay is specific for human natural and viral IL-10, Results, Three patients experienced primary EBV infection, five reactivated EBV infections, and one did not change EBV status. Three patients had a fulminant course and died with EBV-associated PTLD; confirmed...... immunosuppression and are now in a state of operational tolerance. In three of four cases with initial lymphoma, EBV infection (primary or reactivation) preceded the increase in IL-10, In all four cases, the IL-10 increase preceded the PTLD diagnosis. In six cases, IL-10 could be followed after treatment showing...

  11. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin

    2015-01-01

    BACKGROUND: Osteoporosis and fractures are common complications of inflammatory bowel disease. The pathogenesis is multifactorial and has been partly attributed to intestinal inflammation. The aim of this study was to evaluate bone status and assess the association between bone loss and gut...... inflammation in an experimental colitis model. METHODS: Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone...... microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. RESULTS: PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia...

  12. In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis.

    Science.gov (United States)

    Vaidyanathan, S; Cato, K; Tang, L; Pavey, S; Haass, N K; Gabrielli, B G; Duijf, P H G

    2016-10-13

    Cell cycle genes are often aberrantly expressed in cancer, but how their misexpression drives tumorigenesis mostly remains unclear. From S phase to early mitosis, EMI1 (also known as FBXO5) inhibits the anaphase-promoting complex/cyclosome, which controls cell cycle progression through the sequential degradation of various substrates. By analyzing 7403 human tumor samples, we find that EMI1 overexpression is widespread in solid tumors but not in blood cancers. In solid cancers, EMI1 overexpression is a strong prognostic marker for poor patient outcome. To investigate causality, we generated a transgenic mouse model in which we overexpressed Emi1. Emi1-overexpressing animals develop a wide variety of solid tumors, in particular adenomas and carcinomas with inflammation and lymphocyte infiltration, but not blood cancers. These tumors are significantly larger and more penetrant, abundant, proliferative and metastatic than control tumors. In addition, they are highly aneuploid with tumor cells frequently being in early mitosis and showing mitotic abnormalities, including lagging and incorrectly segregating chromosomes. We further demonstrate in vitro that even though EMI1 overexpression may cause mitotic arrest and cell death, it also promotes chromosome instability (CIN) following delayed chromosome alignment and anaphase onset. In human solid tumors, EMI1 is co-expressed with many markers for CIN and EMI1 overexpression is a stronger marker for CIN than most well-established ones. The fact that Emi1 overexpression promotes CIN and the formation of solid cancers in vivo indicates that Emi1 overexpression actively drives solid tumorigenesis. These novel mechanistic insights have important clinical implications.

  13. Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice.

    Science.gov (United States)

    Mesples, Bettina; Plaisant, Frank; Gressens, Pierre

    2003-03-14

    Interleukin-10 markedly reduces production of proinflammatory cytokines by activated microglia or macrophages and downregulates the expression of activating molecules on these cells. In studies performed in adults or in cell cultures, interleukin-10 protected against hypoxic-ischemic neuronal death and against lipopolysaccharide-mediated oligodendrocyte cell death. Furthermore, it was recently shown that interleukin-10 counteracts metabolic and microcirculatory effects of hypoxia-ischemia in the perinatal pig brain. Intracerebral injection of the glutamatergic analogue ibotenate to newborn mice induces cortical plate and white matter lesions mimicking the brain damage associated with cerebral palsy, and pretreatment with proinflammatory cytokines such as interleukin-1-beta or with interleukin-9 significantly exacerbates these lesions. The present study evaluated the influence of interleukin-10 on ibotenate-induced brain lesions in newborn mice under basal conditions or after exposure to cytokines. Intraperitoneal injection of interleukin-10 for 3 days following ibotenate significantly reduced the size of excitotoxic brain lesions. Intraperitoneal injection of neutralizing anti-interleukin-10 antibody for 3 days following ibotenate had no detectable effect and no difference in ibotenate-induced brain lesion size was found between wild type pups and pups deleted for the interleukin-10 gene, suggesting that endogenous interleukin-10 in newborn mice may have limited effects. Co-administration of intracerebral ibotenate and interleukin-10 had no detectable effect, arguing against a direct neuroprotective effect of interleukin-10 on neurons. While pretreatment with intraperitoneal interleukin-10 alone had no detectable effect on excitotoxic brain lesions, interleukin-10 given with interleukin-1-beta pretreatment blunted the toxic effects of interleukin-1-beta. On the other hand, combined pretreatment with IL-9 and anti-IL-10 antibody largely reversed the exacerbating

  14. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    Science.gov (United States)

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  15. Interactions among the components of the interleukin-10 receptor complex.

    Science.gov (United States)

    Krause, Christopher D; Mei, Erwen; Mirochnitchenko, Olga; Lavnikova, Natasha; Xie, Junxia; Jia, Yiwei; Hochstrasser, Robin M; Pestka, Sidney

    2006-02-10

    We used fluorescence resonance energy transfer previously to show that the interferon-gamma (IFN-gamma) receptor complex is a preformed entity mediated by constitutive interactions between the IFN-gammaR2 and IFN-gammaR1 chains, and that this preassembled entity changes its structure after the treatment of cells with IFN-gamma. We applied this technique to determine the structure of the interleukin-10 (IL-10) receptor complex and whether it undergoes a similar conformational change after treatment of cells with IL-10. We report that, like the IFN-gamma receptor complex, the IL-10 receptor complex is preassembled: constitutive but weaker interactions occur between the IL-10R1 and IL-10R2 chains, and between two IL-10R2 chains. The IL-10 receptor complex undergoes no major conformational changes when cells are treated with cellular or Epstein-Barr viral IL-10. Receptor complex preassembly may be an inherent feature of Class 2 cytokine receptor complexes.

  16. Role of interleukin-10 in prognosis of hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    WU Changhui

    2015-04-01

    Full Text Available Multiple etiological factors are integrally involved in the development of hepatitis B virus (HBV infection. Interleukin-10 (IL-10 is an essential cytokine of immune regulation, and IL-10 gene promoter polymorphism affects its mRNA transcription and serum level. IL-10 is related to the prognosis of HBV infection. This review briefly discusses the association of IL-10 gene polymorphism and its serum level with the prognosis of HBV infection, and summarizes the role of IL-10, as an anti-inflammatory cytokine, in host immune function, the prognosis and progression of HBV infection, and HBV-related complications. IL-10 gene polymorphism and its serum level are closely associated with inflammatory response after HBV infection, influence HBV clearance, and are related to the severity of HBV-related liver injury, liver cirrhosis, and hepatocellular carcinoma. The determination of IL-10 gene and serum levels may provide a predictive marker for the prognosis of HBV infection.

  17. Interleukin-10 serum level in acute coronary syndrome patients

    Directory of Open Access Journals (Sweden)

    Idrus Alwi

    2009-09-01

    Full Text Available Aim To compare plasma IL-10 concentrations in patients with Acute Coronary Syndrome (ACS with those in Coronary Artery Disease (CAD.Methods ACS patients hospitalized in intensive coronary care unit (ICCU of Cipto Mangunkusumo Hospital/Faculty of Medicine University of Indonesia (CMH/FMUI, Persahabatan Hospital, MMC Hospital, and Medistra Hospital, Jakarta, between May 2005 and May 2006, were included in this study. The ambulatory CAD patients were taken as comparator. The serum IL-10 level was measured by immunoassay method, and compared by using Independent Student’s t-test. To investigate whether IL-10 serum level could predict ACS, the sensitivity and specificity of this parameter towards ACS in various IL-10 serum levels were calculated as well.Results In this observational study, as many as 146 subjects were analyzed, consisting of 84 ACS patients, and 62 coronary artery disease (CAD. The IL-10 level was higher in the group of ACS patients (7.37 pg/mL + 7.81, CI 95% 5.68-9.07 than that in CAD patients (1.59 pg/mL + 1.55, CI 95% 1.2-1.98. The optimal cut-off point for serum IL-10level is >1.95 pg/mL, with 79.76 % sensitivity and 77.42 % specificity.Conclusion The IL-10 level was higher in the ACS patients compared to that in CAD patients. Serum IL-10 measurement is a quite superior method to distinguish acute and stable condition, eventhough it is not as good as hsCRP for the same purpose. (Med J Indones 2009;18:165-9Key words: Interleukin-10, acute coronary syndrome

  18. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin; vanʼt Hof, Rob; Ahmed, Syed Faisal; Hansen, Axel Kornerup; Holm, Thomas L

    2015-02-01

    Osteoporosis and fractures are common complications of inflammatory bowel disease. The pathogenesis is multifactorial and has been partly attributed to intestinal inflammation. The aim of this study was to evaluate bone status and assess the association between bone loss and gut inflammation in an experimental colitis model. Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P < 0.001). The trabecular bone structure was also changed in PAC IL-10 k.o. mice, whereas no differences in cortical bone geometry were observed. The trabecular thickness was inversely correlated with serum levels of CTX (r = -0.93, P = 0.006). Moreover, numerous inflammatory mediators, including RANKL and osteoprotegerin, were significantly increased in the colon of PAC IL-10 k.o. mice. PAC IL-10 k.o. mice develop bone loss and changed trabecular structure, as a result of increased bone resorption. Thus, the PAC IL-10 k.o. model could be a useful experimental model in preclinical research of inflammatory bowel disease-associated bone loss.

  19. The role of cortisol and interleukin-10 gene expression patterns in ...

    African Journals Online (AJOL)

    ... of interleukin-10 genes were up-regulated at 4 hours post exercise and sustained till 24 hours post exercise (χ² = 50, P = 0.000). Post exercise stress activates the release of cortisol, and interleukin-10 genes to reinstate homeostasis through modulation of the immune response. Keywords: Homeostasis, immune response, ...

  20. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation

    International Nuclear Information System (INIS)

    Xing, Chunyang; Xie, Haiyang; Zhou, Lin; Zhou, Wuhua; Zhang, Wu; Ding, Songming; Wei, Bajin; Yu, Xiaobo; Su, Rong; Zheng, Shusen

    2012-01-01

    Highlights: ► CDKN3 is commonly overexpressed in HCC and is associated with poor clinical outcome. ► Overexpression of CDKN3 could stimulate the proliferation of HCC cells by promoting G1/S transition. ► CDKN3 could inhibit the expression of p21 in HCC cells. ► Overexpression of CDKN3 has no effect on apoptosis and invasion of HCC cells. ► We identified 61 genes co-expressed with CDKN3, and BIRC5 was located at the center of the co-expression network. -- Abstract: Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the protein phosphatases family and has a dual function in cell cycling. The function of this gene has been studied in several kinds of cancers, but its role in human hepatocellular carcinoma (HCC) remains to be elucidated. In this study, we found that CDKN3 was frequently overexpressed in both HCC cell lines and clinical samples, and this overexpression was correlated with poor tumor differentiation and advanced tumor stage. Functional studies showed that overexpression of CDKN3 could promote cell proliferation by stimulating G1-S transition but has no impact on cell apoptosis and invasion. Microarray-based co-expression analysis identified a total of 61 genes co-expressed with CDKN3, with most of them involved in cell proliferation, and BIRC5 was located at the center of CDKN3 co-expression network. These results suggest that CDKN3 acts as an oncogene in human hepatocellular carcinoma and antagonism of CDKN3 may be of interest for the treatment of HCC.

  1. Association between Promoter Hypomethylation and Overexpression of Autotaxin with Outcome Parameters in Biliary Atresia.

    Directory of Open Access Journals (Sweden)

    Wanvisa Udomsinprasert

    Full Text Available Biliary atresia (BA is a progressive fibroinflammatory liver disease. Autotaxin (ATX has a profibrotic effect resulting from lysophosphatidic acid activity. The purpose of this study was to examine ATX expression and ATX promoter methylation in peripheral blood leukocytes and liver tissues from BA patients and controls and investigate their associations with outcome parameters in BA patients.A total of 130 subjects (65 BA patients and 65 age-matched controls were enrolled. DNA was extracted from circulating leukocytes and liver tissues of BA patients and from and age-matched controls. ATX promoter methylation status was determined by bisulfite pyrosequencing. ATX expression was analyzed using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay.Decreased methylation of specific CpGs were observed at the ATX promoter in BA patients. Subsequent analysis revealed that BA patients with advanced stage had lower methylation levels of ATX promoter than those with early stage. ATX promoter methylation levels were found to be associated with hepatic dysfunction in BA. In addition, ATX expression was significantly elevated and correlated with a decrease in ATX promoter methylation in BA patients compared to the controls. Furthermore, promoter hypomethylation and overexpression of ATX were inversely associated with jaundice status, hepatic dysfunction, and liver stiffness in BA patients.Accordingly, it has been hypothesized that ATX promoter methylation and ATX expression in peripheral blood may serve as possible biomarkers reflecting the progression of liver fibrosis in postoperative BA. These findings suggest that the promoter hypomethylation and overexpression of ATX might play a contributory role in the pathogenesis of liver fibrosis in BA.

  2. A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Li Mingji

    2012-02-01

    Full Text Available Abstract Background For metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac-promoters (MCPtacs in tandem. Results Through a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtacs promoter clusters in polyhydroxybutyrate (PHB production proved that it was efficient. Integration of the phaCAB genes with the 5CPtacs promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation. Conclusions The transcription strength of the MCPtacs promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtacs promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.

  3. Overexpression of GRK3, Promoting Tumor Proliferation, Is Predictive of Poor Prognosis in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-01-01

    Full Text Available Deregulation of G protein-coupled receptor kinase 3 (GRK3, which belongs to a subfamily of kinases called GRKs, acts as a promoter mechanism in some cancer types. Our study found that GRK3 was significantly overexpressed in 162 pairs of colon cancer tissues than in the matched noncancerous mucosa (P<0.01. Based on immunohistochemistry staining of TMAs, GRK3 was dramatically stained positive in primary colon cancer (130/180, 72.22%, whereas it was detected minimally or negative in paired normal mucosa specimens (50/180, 27.78%. Overexpression of GRK3 was closely correlated with AJCC stage (P=0.001, depth of tumor invasion (P<0.001, lymph node involvement (P=0.004, distant metastasis (P=0.016, and histologic differentiation (P=0.004. Overexpression of GRK3 is an independent prognostic indicator that correlates with poor survival in colon cancer patients. Consistent with this, downregulation of GRK3 exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate, and impaired colon tumorigenicity in a xenograft model. Hence, a specific overexpression of GRK3 was observed in colon cancer, GRK3 potentially contributing to progression by mediating cancer cell proliferation and functions as a poor prognostic indicator in colon cancer and potentially represent a novel therapeutic target for the disease.

  4. Slug overexpression induces stemness and promotes hepatocellular carcinoma cell invasion and metastasis.

    Science.gov (United States)

    Sun, Yu; Song, Guo-Dong; Sun, Ning; Chen, Jian-Qiu; Yang, Shao-Shi

    2014-06-01

    Detection of metastasis of hepatocellular carcinoma (HCC) is crucial for early diagnosis. Epithelial-mesenchymal transition (EMT) is a common event in the metastasis of tumor cells. Slug and Snail are homologous proteins, which play an important role in EMT. The present study aimed to investigate whether Slug and Snail overexpression is associated with the invasiveness of HCC in vitro and in vivo . Invasion, colony formation and wound healing assays, as well as flow cytometry analysis, were performed to examine the invasiveness and proliferation capabilities of HepG2 cells following transfection with cNDA or the siRNA of Slug or Snail. The effects of Slug on HCC in vivo were examined using a xenograft model. Slug upregulation increased the percentage of cluster of differentiation (CD)133 + cells among HepG2 cells, and induced cell invasion and proliferation; whereas Snail upregulation did not affect the cells in vitro . The Slug overexpression group exhibited the highest rate of tumor growth compared with the Snail overexpression and control groups in vivo . These findings demonstrated that Slug increases the percentage of CD133 + cells, promotes the clonigenicity of HCC cells and induces a stronger stemness in Slug-overexpressing cells. These changes activate dormant developmental pathways in invading tumor cells. Thus, Slug may serve as a novel target for HCC prognosis and therapy.

  5. Protective role of interleukin-10 in Ozone-induced pulmonary inflammation**

    Science.gov (United States)

    Background: The mechanisms underlying ozone (03)-induced pulmonary inflammation remain unclear. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is known to inhibit inflammatory mediators. Objectives: We investigated the molecular mechanisms underlying interleuken-10...

  6. Tumour necrosis factor alpha and interleukin 10 gene ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... TNF(-308) promoter polymorphism and stroke risk in children with sickle cell anemia. Stroke 38, 2241–2246. Karahan Z. C., Deda G., Sipahi T., Elhan A. H. and Akar N. 2005. TNF-alpha -308G/A and IL-6 -174 G/C polymorphisms in the. Turkish pediatric stroke patients. Thromb. Res. 115, 393–398. Koch W.

  7. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  8. Over-expression of thymosin beta 4 promotes abnormal tooth development and stimulation of hair growth.

    Science.gov (United States)

    Cha, Hee-Jae; Philp, Deborah; Lee, Soo-Hyun; Moon, Hye-Sung; Kleinman, Hynda K; Nakamura, Takashi

    2010-01-01

    Thymosin beta 4 has multi-functional roles in cell physiology. It accelerates wound healing, hair growth and angiogenesis, and increases laminin-5 expression in corneal epithelium. Furthermore, thymosin beta 4 stimulates tumor growth and metastasis by induction of cell migration and vascular endothelial growth factor-mediated angiogenesis. Using a construct on the skin-specific keratin-5 promoter, we have developed thymosin beta 4 over-expressing transgenic mice to further study its functional roles. Thymosin beta 4 in adult skin and in embryonic stages of the transgenic mouse was analyzed by both Western blot and immunohistochemistry. The over-expression of thymosin beta 4 was observed especially around hair follicles and in the teeth in the transgenic mice. We examined the phenotype of the thymosin beta 4 over-expressing mice. Hair growth was accelerated. In addition, the transgenic mice had abnormally-shaped white teeth and dull incisors. We found that the expression of laminin-5 was up-regulated in the skin of the transgenic mice. We conclude that thymosin beta 4 has an important physiological role in hair growth and in tooth development.

  9. Effector CD8+T cell-derived interleukin-10 enhances acute liver immunopathology.

    Science.gov (United States)

    Fioravanti, Jessica; Di Lucia, Pietro; Magini, Diletta; Moalli, Federica; Boni, Carolina; Benechet, Alexandre Pierre; Fumagalli, Valeria; Inverso, Donato; Vecchi, Andrea; Fiocchi, Amleto; Wieland, Stefan; Purcell, Robert; Ferrari, Carlo; Chisari, Francis V; Guidotti, Luca G; Iannacone, Matteo

    2017-09-01

    Besides secreting pro-inflammatory cytokines, chemokines and effector molecules, effector CD8 + T cells that arise upon acute infection with certain viruses have been shown to produce the regulatory cytokine interleukin (IL)-10 and, therefore, contain immunopathology. Whether the same occurs during acute hepatitis B virus (HBV) infection and role that IL-10 might play in liver disease is currently unknown. Mouse models of acute HBV pathogenesis, as well as chimpanzees and patients acutely infected with HBV, were used to analyse the role of CD8 + T cell-derived IL-10 in liver immunopathology. Mouse HBV-specific effector CD8 + T cells produce significant amounts of IL-10 upon in vivo antigen encounter. This is corroborated by longitudinal data in a chimpanzee acutely infected with HBV, where serum IL-10 was readily detectable and correlated with intrahepatic CD8 + T cell infiltration and liver disease severity. Unexpectedly, mouse and human CD8 + T cell-derived IL-10 was found to act in an autocrine/paracrine fashion to enhance IL-2 responsiveness, thus preventing antigen-induced HBV-specific effector CD8 + T cell apoptosis. Accordingly, the use of mouse models of HBV pathogenesis revealed that the IL-10 produced by effector CD8 + T cells promoted their own intrahepatic survival and, thus supported, rather than suppressed liver immunopathology. Effector CD8 + T cell-derived IL-10 enhances acute liver immunopathology. Altogether, these results extend our understanding of the cell- and tissue-specific role that IL-10 exerts in immune regulation. Lay summary: Interleukin-10 is mostly regarded as an immunosuppressive cytokine. We show here that HBV-specific CD8 + T cells produce IL-10 upon antigen recognition and that this cytokine enhances CD8 + T cell survival. As such, IL-10 paradoxically promotes rather than suppresses liver disease. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Interleukin-10 Attenuates Hypochlorous Acid-Mediated Cytotoxicity to HEI-OC1 Cochlear Cells

    Directory of Open Access Journals (Sweden)

    Martin Mwangi

    2017-10-01

    Full Text Available Inflammatory reaction plays a crucial role in the pathophysiology of acquired hearing loss such as ototoxicity and labyrinthitis. In our earlier work, we showed the pivotal role of otic fibrocytes in cochlear inflammation and the critical involvement of proinflammatory cytokines in cisplatin ototoxicity. We also demonstrated that otic fibrocytes inhibit monocyte chemoattractant protein 1 (CCL2 upregulation in response to interleukin-10 (IL-10 via heme oxygenase 1 (HMOX1 signaling, resulting in suppression of cochlear inflammation. However, it is still unclear how IL-10 affects inflammation-mediated cochlear injury. Here we aim to determine how hypochlorous acid, a model inflammation mediator affects cochlear cell viability and how IL-10 affects hypochlorous acid-mediated cochlear cell injury. NaOCl, a sodium salt of hypochlorous acid (HOCl was found to induce cytotoxicity of HEI-OC1 cells in a dose-dependent manner. Combination of hydrogen peroxide and myeloperoxidase augmented cisplatin cytotoxicity, and this synergism was inhibited by N-Acetyl-L-cysteine and ML-171. The rat spiral ligament cell line (RSL appeared to upregulate the antioxidant response element (ARE activities upon exposure to IL-10. RSL cells upregulated the expression of NRF2 (an ARE ligand and NR0B2 in response to CoPP (a HMOX1 inducer, but not to ZnPP (a HMOX1 inhibitor. Adenovirus-mediated overexpression of NR0B2 was found to suppress CCL2 upregulation. IL-10-positive cells appeared in the mouse stria vascularis 1 day after intraperitoneal injection of lipopolysaccharide (LPS. Five days after injection, IL-10-positive cells were observed in the spiral ligament, spiral limbus, spiral ganglia, and suprastrial area, but not in the stria vascularis. IL-10R1 appeared to be expressed in the mouse organ of Corti as well as HEI-OC1 cells. HEI-OC1 cells upregulated Bcl-xL expression in response to IL-10, and IL-10 was shown to attenuate NaOCl-induced cytotoxicity. In addition, HEI

  11. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zanhua [Medical School of Nanchang University (China); The Chest Hospital of Jiangxi Province Department of Respiration (China); Jiang, Xunsheng [Department of Respiration, Medical School of Nanchang University (China); Zhang, Wei, E-mail: weizhangncu@gmail.com [Department of Respiration, The First Affiliated Hospital of Nanchang University (China)

    2016-01-29

    Recent studies suggest that the human trophoblast cell-surface antigen TROP2 is highly expressed in a number of tumours and is correlated with poor prognosis. However, its role in non-small cell lung carcinoma (NSCLC) remains largely unknown. Here we examined TROP2 expression by immunohistochemistry in a series of 68 patients with adenocarcinoma (ADC). We found significantly elevated TROP2 expression in ADC tissues compared with normal lung tissues (P < 0.05), and TROP2 overexpression was significantly associated with TNM (tumour, node, metastasis) stage (P = 0.012), lymph node metastasis (P = 0.038), and histologic grade (P = 0.013). Kaplan–Meier survival analysis revealed that high TROP2 expression correlated with poor prognosis (P = 0.046). Multivariate analysis revealed that TROP2 expression was an independent prognostic marker for overall survival of ADC patients. Moreover, TROP2 overexpression enhanced cell proliferation, migration, and invasion in the NSCLC cell line A549, whereas knockdown of TROP2 induced apoptosis and impaired proliferation, migration, and invasion in the PC-9 cells. Altogether, our data suggest that TROP2 plays an important role in promoting ADC and may represent a novel prognostic biomarker and therapeutic target for the disease.

  12. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus

    Directory of Open Access Journals (Sweden)

    Fox Simon W

    2007-01-01

    Full Text Available Abstract Background IL-10 has a potent inhibitory effect on osteoclastogenesis. In vitro and in vivo studies confirm the importance of this cytokine in bone metabolism, for instance IL-10-deficient mice develop the hallmarks of osteoporosis. Although it is known that IL-10 directly inhibits osteoclastogenesis at an early stage, preventing differentiation of osteoclast progenitors to preosteoclasts, the precise mechanism of its action is not yet clear. Several major pathways regulate osteoclastogenesis, with key signalling genes such as p38, TRAF6, NF-κB and NFATc1 well established as playing vital roles. We have looked at gene expression in eleven of these genes using real-time quantitative PCR on RNA extracted from RANKL-treated RAW264.7 monocytes. Results There was no downregulation by IL-10 of DAP12, FcγRIIB, c-jun, RANK, TRAF6, p38, NF-κB, Gab2, Pim-1, or c-Fos at the mRNA level. However, we found that IL-10 significantly reduces RANKL-induced NFATc1 expression. NFATc1 is transcribed from two alternative promoters in Mus musculus and, interestingly, only the variant transcribed from promoter P1 and beginning with exon 1 was downregulated by IL-10 (isoform 1. In addition, immunofluorescence studies showed that IL-10 reduces NFATc1 levels in RANKL-treated precursors and suppresses nuclear translocation. The inhibitory effect of IL-10 on tartrate-resistant acid phosphatase-positive cell number and NFATc1 mRNA expression was reversed by the protein kinase C agonist phorbol myristate acetate, providing evidence that interleukin-10 disrupts NFATc1 activity through its effect on Ca2+ mobilisation. Conclusion IL-10 acts directly on mononuclear precursors to inhibit NFATc1 expression and nuclear translocation, and we provide evidence that the mechanism may involve disruption of Ca2+ mobilisation. We detected downregulation only of the NFATc1 isoform 1 transcribed from promoter P1. This is the first report indicating that one of the ways in which

  13. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Adabayeri, V; Goka, B Q

    1998-01-01

    BACKGROUND: Severe anaemia is a major complication of malaria but little is known about its pathogenesis. Experimental models have implicated tumour necrosis factor (TNF) in induction of bone-marrow suppression and eythrophagocytosis. Conversely, interleukin 10 (IL-10), which mediates feed...

  14. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Adabayeri, V; Goka, B Q

    1998-01-01

    BACKGROUND: Severe anaemia is a major complication of malaria but little is known about its pathogenesis. Experimental models have implicated tumour necrosis factor (TNF) in induction of bone-marrow suppression and eythrophagocytosis. Conversely, interleukin 10 (IL-10), which mediates feed-back r...

  15. Anti-inflammatory effect of interleukin-10 in rabbit immune complex-induced colitis

    NARCIS (Netherlands)

    Grool, TA; Van Dullemen, H; Meenan, J; Koster, F; ten Kate, F. J. W.; Lebeaut, A; Tytgat, GNJ; Van Deventer, SJH

    Background: Interleukin-10 (IL-10) is an anti-inflammatory cytokine that downregulates the secretion of pro-inflammatory cytokines and additionally induces the secretion of anti-inflammatory cytokines, thus possibly leading to reduction of chronic inflammation in inflammatory bowel disease. In this

  16. The role of cortisol and interleukin-10 gene expression patterns in ...

    African Journals Online (AJOL)

    defense mechanism when dealing with stress as well as being important in blood glucose regulation (Hackney and Walz, 2013). Interleukin 10 is known to play a significant role in immune regulation involving both T helper 2 (Th2) and T helper 1 (Th1), thereby enhancing normal tissue homeostasis. (Stenberg et al., 2000).

  17. Association of interleukin-10 (A1082G) gene polymorphism with oral ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 2. Association of interleukin-10 (A 10 8 2 G) gene ... Analysis of IL10 A1082G genotype in 232 OSCC cases and 221 healthy controls of comparable age, gender, smokers, tobacco chewing and alcohol consumption. IL10 A1082G status in cases and controls were ...

  18. Interleukin-10 and Fas polymorphisms and susceptibility for (pre)neoplastic cervical disease

    NARCIS (Netherlands)

    Zoodsma, M; Nolte, IM; Schipper, M; Oosterom, E; Van der Steege, G; De Vries, EGE; Te Meerman, GJ; Van der Zee, AGJ

    2005-01-01

    Infection with oncogenic types of human papillomavirus (HPV) is the main causal factor of cervical cancer and its precursor lesion (cervical intraepithelial neoplasia [CIN]). Cellular immunity may be critical in the elimination of HPV-harboring cells. Interleukin-10, a T-helper type 2 cytokine, has

  19. Multiple doses of intravenous interleukin 10 in steroid-refractory Crohn's disease. Crohn's Disease Study Group

    NARCIS (Netherlands)

    van Deventer, S. J.; Elson, C. O.; Fedorak, R. N.

    1997-01-01

    Interleukin 10 (IL-10) is a cytokine with immunosuppressive and anti-inflammatory activities. Gene-targeted IL-10-deficient mice develop a chronic intestinal inflammatory disease that is reminiscent of Crohn's disease. The present double-blind randomized multicenter trial was designed to evaluate

  20. Dataset of Arabidopsis plants that overexpress FT driven by a meristem-specific KNAT1 promoter

    Directory of Open Access Journals (Sweden)

    L. Duplat-Bermúdez

    2016-09-01

    Full Text Available In this dataset we integrated figures comparing leaf number and rosette diameter in three Arabidopsis FT overexpressor lines (AtFTOE driven by KNAT1 promoter, “A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis” [5], vs Wild Type (WT Arabidopsis plats. Also, presented in the tables are some transcriptomic data obtained by RNA-seq Illumina HiSeq from rosette leaves of Arabidopsis plants of AtFTOE 2.1 line vs WT with accession numbers SRR2094583 and SRR2094587 for AtFTOE replicates 1–3 and AtWT for control replicates 1–2 respectively. Raw data of paired-end sequences are located in the public repository of the National Center for Biotechnology Information of the National Library of Medicine, National Institutes of Health, United States of America, Bethesda, MD, USA as Sequence Read Archive (SRA. Performed analyses of differential expression genes are visualized by Mapman and presented in figures. “Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering” [2], described the interpretation and discussion of the obtained data.

  1. Hepatic overexpression of Abcb11 in mice promotes the conservation of bile acids within the enterohepatic circulation

    NARCIS (Netherlands)

    Henkel, Anne S.; Gooijert, Karin E. R.; Havinga, Rick; Boverhof, Renze; Green, Richard M.; Verkade, Henkjan J.

    Henkel AS, Gooijert KE, Havinga R, Boverhof R, Green RM, Verkade HJ. Hepatic overexpression of Abcb11 in mice promotes the conservation of bile acids within the enterohepatic circulation. Am J Physiol Gastrointest Liver Physiol 304: G221-G226, 2013. First published November 8, 2012;

  2. LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer.

    Science.gov (United States)

    Zhao, Zhihong; Wang, Ju; Wang, Shengfa; Chang, Hao; Zhang, Tiewa; Qu, Junfeng

    2017-03-01

    Non-small cell lung cancer (NSCLC) remains one of the most important death-related diseases, with poor effective diagnosis and less therapeutic biomarkers. LncRNA colon cancer-associated transcript 2 (CCAT2) was identified as an oncogenic lncRNA and over-expressed in many tumor cells. The aims of this study were to detect the correlation between CCAT2 and its regulatory genes and then explore the potential mechanism between them in NSCLC. In this study, qRT-PCR was used to detect CCAT2, Pokemon and p21 expression. Western-blot was used to detect protein levels of Pokemon and p21. CCK-8 assay and Transwell chambers were used to assess cell viability and invasion. CCAT2 and Pokemon were over-expressed in NSCLC tissue and cells. In NSCLC cells, CCAT2 knockdown significantly decreased cell viability and invasion as well as Pokemon expression, but increased the expression of p21; then CCAT2 overexpression revealed an opposite result. In addition, over-expressed Pokemon reversed the results that induced by si-CCAT2, while down-regulation of Pokemon significantly reversed the results that induced by CCAT2 overexpression. The results indicated that CCAT2 promotes tumorigenesis by over-expression of Pokemon, and the potential mechanism might relate to the Pokemon related gene p21. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Interleukin-10 Gene Polymorphisms are Associated With Freedom From Treatment Failure for Patients With Hodgkin Lymphoma

    Science.gov (United States)

    Schoof, Nils; Franklin, Jeremy; Fürst, Robert; Zander, Thomas; von Bonin, Frederike; Peyrade, Frederic; Trümper, Lorenz; Diehl, Volker; Engert, Andreas

    2013-01-01

    Background. Hodgkin lymphoma (HL) is a lymphoid malignancy characterized by the production of various cytokines possibly involved in immune deregulation. Interleukin-10 (IL-10) serum levels have been associated with clinical outcome in patients with HL. Because host genetic variations are known to alter the expression and function of cytokines and their receptors, we investigated whether genetic variations influence clinical outcome of patients with HL. Methods. A total of 301 patients with HL who were treated within randomized trials by the German Hodgkin Study Group were included in this exploratory retrospective study. Gene variations of IL-10 (IL-10-597AC, rs1800872; IL-10-824CT, rs1800871; IL-10-1087AG, rs1800896; IL-10-3538AT, rs1800890; IL-10-6208CG, rs10494879; IL-10-6752AT, rs6676671; IL-10-7400InDel), IL-13 (IL-13-1069CT, rs1800925; IL-13Q144R, rs20541), and IL-4R (IL-4RI75V, rs1805010; IL-4RQ576R, rs1801275) were genotyped. Results. Inferior freedom from treatment failure (FFTF) was found in patients harboring the IL-10-597AA, IL-10-824TT, or the IL-10-1087AA genotype. In contrast, the IL-10-1087G-824C-597C haplotype present in about 48% of analyzed HL patients is nominally significant for a better FFTF in a Cox-Regression model accounting for stage and treatment. No associations were observed between the other IL-10 gene variations, IL-13-1069CT, IL-13Q144R, IL-4RI75V, IL-4RQ576R and the clinical outcome of patients with HL. Conclusions. Our study provides further evidence that proximal IL-10 promoter gene variations are associated with clinical course of patients with HL. However, treatment success and survival rates are already at a very high rate, supporting the need to design studies focusing on identification of predictors to reduce the side effects of therapy. PMID:23299779

  4. Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Yang, Shaoxing; Cui, Jian; Yang, Yingshun; Liu, Zhaoping; Yan, Haiying; Tang, Chuanhao; Wang, Hong; Qin, Haifeng; Li, Xiaoyan; Li, Jianjie; Wang, Weixia; Huang, Yuqing; Gao, Hongjun

    2016-01-15

    Ribosomal protein L34 (RPL34) was reported to be involved in the regulation of cell proliferation of prokaryotes, plant and animal cells. In the present study, we analyze the expression and function of RPL34 in NSCLC. Immunohistochemical analysis, qPCR and Western blot were used to detect the expression of RPL34 in NSCLC tissues and cells lines. Flow cytometry was used to detect cell activity of NSCLC cell line H1299 under lentivirus-mediated RNAi on RPL34. Cell proliferation and colony formation assays were used to analyze the role of RPL34 in NSCLC cell proliferation. We found that expression of ribosomal protein RPL34 was significantly up-regulated in NSCLC tissues compared to adjacent normal tissues. Lentivirus-mediated shRNA knockdown of RPL34 in NSCLC cell line H1299 resulted in a strong decrease of proliferation, and a moderate but significant increase of apoptosis and S-phase arrest. These data indicate that over-expressed RPL34 may promote malignant proliferation of NSCLC cells, thus playing an important role in development and progress of NSCLC. Copyright © 2015. Published by Elsevier B.V.

  5. Over-expression of Gene FaASR Promotes Strawberry Fruit Coloring

    Directory of Open Access Journals (Sweden)

    Liu Zhongjie

    2015-11-01

    Full Text Available Fruit development and ripening is a complicate process. Although much progress has been made on the ripenig process, the molecular mechamism of fruit development is not yet clear. In this study, we used ‘Sweet Charlie’ strawberry as test materials, based on cloning the strawberries ASR homologous gene, we carried out the bioinformatics and temporal expression analysis of FaASR, by manipulating ASR gene expression level in strawberry fruit, we tested the changes of physiological indicators, including sugar, ABA, pigments content, and fruit firmness, as well as phenotypic changes. In addition, we measured the expression changes of some anthocyanin-related gene, such as CHS and UFGT, by which we revealed the regulation mechanisms of ASR gene over strawberry fruit ripening. Strawberry ASR contained a typical domain of ABA/WDS that was related to fruit ripening and stress-resistance, and ASR gene over-expression could promote strawberry fruit coloring, endogenous ABA and sucrose accumulation, fruit softening, and induced the transcription levels of anthocyanin-related genes CHS and UFGT. The present study will further reveal the molecular mechanisms of information transmission in fruit development, and will also play an important foundation for future molecular improvement of strawberries breeding.

  6. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    Science.gov (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Sun, Zhen-Cang; Kong, Fan-Jing; Li, Bei; Zhang, Hong-Xia

    2017-10-01

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d x mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast-growing trees with improved wood production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression.

    Science.gov (United States)

    Zhai, Hui-Yuan; Sui, Ming-Hua; Yu, Xiao; Qu, Zhen; Hu, Jin-Chen; Sun, Hai-Qing; Zheng, Hai-Tao; Zhou, Kai; Jiang, Li-Xin

    2016-09-16

    BACKGROUND Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. MATERIAL AND METHODS qRT-PCR was used to analyze the expression level of TUG1 and p63 in 75 colon cancer tissues and the matched adjacent non-tumor tissue. In vitro, cultured colon cancer cell lines HCT-116 and LoVo were used as cell models. TUG1 and p63 were silenced via transferring siRNA into HCT-116 or LoVo. The effects of TUG1 were investigated by examining cell proliferation, apoptosis, and migration. RESULTS Among the 75 colon cancer cases, the expression of TUG1 was significantly higher in colon cancer tissues compared with the matched adjacent non-tumor tissue, while p63 expression was lower in the tumor tissue. In HCT-116 and LoVo, the expression of TUG1 was significantly increased by p63 siRNA transfection. Furthermore, down-regulation of TUG1 by siRNA significantly inhibited the cell proliferation and promoted colon cancer cell apoptosis. In addition, inhibition of TUG1 expression significantly blocked the cell migration ability of colon cancer cells. CONCLUSIONS LncRNA TUG1 may serve as a potential oncogene for colon cancer. Overexpressed TUG1 may contribute to promoting cell proliferation and migration in colon cancer cells.

  8. Cerebral Edema and Cerebral Hemorrhages in Interleukin-10-Deficient Mice Infected with Plasmodium chabaudi

    OpenAIRE

    Sanni, Latifu A.; Jarra, William; Li, Ching; Langhorne, Jean

    2004-01-01

    During a Plasmodium chabaudi infection in interleukin-10 (IL-10) knockout mice, there is greater parasite sequestration, more severe cerebral edema, and a high frequency of cerebral hemorrhage compared with infection of C57BL/6 mice. Anti-tumor necrosis factor alpha treatment ameliorated both cerebral edema and hemorrhages, suggesting that proinflammatory responses contributed to cerebral complications in infected IL-10−/− mice.

  9. Immunological Priming Requires Tregs and Interleukin-10-Producing Macrophages to Accelerate Resolution from Severe Lung Inflammation

    Science.gov (United States)

    Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R.; Garibaldi, Brian T.; Singer, Benjamin D.; Sidhaye, Venkataramana K.; Horton, Maureen R.; King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and non-infectious agents, and is a leading cause of mortality world-wide. In that context, immunomodulatory strategies may be utilized to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose lipopolysaccharide can immunologically prime the lung to augment alveolar macrophage production of interleukin-10 and enhance resolution of lung inflammation induced by a lethal dose of lipopolysaccharide or by pseudomonas bacterial pneumonia. Interleukin-10 deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage interleukin-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared to low-dose lipopolysaccharide, but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal lipopolysaccharide exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures. PMID:24688024

  10. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  11. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    International Nuclear Information System (INIS)

    Li, Fangyi; Dong, Lei; Xing, Rong; Wang, Li; Luan, Fengming; Yao, Chenhui; Ji, Xuening; Bai, Lizhi

    2014-01-01

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC

  12. Transplantation of PDGF-AA-Overexpressing Oligodendrocyte Precursor Cells Promotes Recovery in Rat Following Spinal Cord Injury.

    Science.gov (United States)

    Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo

    2017-01-01

    Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo . OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.

  13. Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells.

    Science.gov (United States)

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Ji, Yan-Xin; Zhi, Hua

    2017-09-01

    The study aimed at exploring the effects involved in Fas-Associated protein with Death Domain (FADD) expression and cysteine-aspartic acid specific protease-8 (Caspase-8) in relation to the proliferation and apoptosis of human glioblastoma (GBM) cells. 93 GBM tissues and 64 normal brain tissues were the central mediums used for the investigation of the study. Cultured human GBM SC189 cells were divided into separate groups including the blank negative control (NC), FADD and Caspase-8 groups. The mRNA and protein expressions of FADD and Caspase-8 in tissues and human glioblastoma (GBM) cells were detected using qRT-PCR and Western blotting techniques. Cell proliferation was tested by CCK-8. Flow cytometry was used for the measure of cell cycle and apoptosis rates. The mRNA and protein expressions of FADD and Caspase-8 in GBM tissues were less than the levels of expression displayed in normal brain tissues. Correlations between the expressions of FADD and Caspase-8 in GBM tissues were analyzed as being linked with the clinical grades of GBM patients. Patients in stage III+IV displayed lower expressions of FADD and Caspase-8 than patients in stage I+II. In comparison with the blank group, the FADD and Caspase-8 groups showed decreased proliferation rates of SHG44 cells and lower ratios of cells in the S phase and Bcl-2 expression. Greater ratios of cells in the G0/G1 stage as well as increased cell apoptosis and expressions of Caspase-8 and Bax were exhibited. The expression of FADD in the FADD group was higher than the blank group, however no significant differences in FADD expression was observed between the blank and Caspase-8 groups. The data obtained during the study demonstrated that overexpression of FADD and Caspase-8 suppresses proliferation whilst promoting the apoptosis of human GBM cells. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Study of interleukin-10 promoter region polymorphisms (−1082A/G ...

    Indian Academy of Sciences (India)

    (−1082A/G, −819T/C and −592A/C) in type 1 diabetes mellitus in Turkish population. HASSAN MOHEBBATIKALJAHI1∗, SEVDA MENEVSE1, ILHAN YETKIN2 and HUSEYIN DEMIRCI2. 1Department of Medical Biology and Genetics, 2Department of Internal Medicine, Gazi University. Faculty of Medicine, 06500 Ankara, ...

  15. Overexpression of Cardiac-Specific Kinase TNNI3K Promotes Mouse Embryonic Stem Cells Differentiation into Cardiomyocytes.

    Science.gov (United States)

    Wang, Yin; Wang, Shi-Qiang; Wang, Li-Peng; Yao, Yu-Hong; Ma, Chun-Yan; Ding, Jin-Feng; Ye, Jue; Meng, Xian-Min; Li, Jian-Jun; Xu, Rui-Xia

    2017-01-01

    Backgroud/Aims: The biological function of cardiac troponin I-interacting kinase (TNNI3K), a cardiac-specific functional kinase, is largely unknown. We investigated the effect of human TNNI3K (hTNNI3K) on the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. First, the time-space expression of endogenous Tnni3k was detected by real-time polymerase chain reaction (PCR) and western blotting at 16 different time-points over a period of 28 days. Further, action potentials and calcium current with/without 5 µM nifedipine were measured by patch clamp for mESC-derived cardiomyocytes. HTNNI3K and mouse-derived siRNA were transfected into mESC using lentivirus vector to induce hTNNI3K overexpression and knock-down, respectively. The number of troponin-T (cTnT) positive cells was greater in the group with TNNI3K overexpression as compared to that in control group, while less such cells were detected in the mTnni3k knock-down group as evaluated on flow cytometry (FCM) and ImageXpress Micro system. After upregulation of connexin43, cardiac troponin-I (Ctni), Ctni, Gata4 were detected in mESCs with TNNI3K overexpression; however, overexpression of α-Actinin and Mlc2v was not detected. Interestingly, Ctnt, connexin40 and connexin45, the markers of ventricular, atrial, and pacemaker cells, respectively, were detected in by real-time PCR in TNNI3K overexpression group. our study indicated that TNNI3K overexpression promoted mESC differentiating into beating cardiomyocytes and induced up-regulating expression of cTnT by PKCε signal pathway, which suggested a modulation of TNNI3K activity as a potential therapeutic approach for ischemic cardiac disease. © 2017 The Author(s) Published by S. Karger AG, Basel.

  16. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.

    Science.gov (United States)

    Chakraborty, Ujani; Dinh, Timothy A; Alani, Eric

    2018-04-13

    Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used the TCGA and GENT databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3 , and that MSH2 and MSH6 are often co-overexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (2 to 4-fold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, co-overexpression of Msh2 and Msh6 (∼8-fold) conferred, in a PCNA interaction dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor hydroxyurea and the DNA damaging agents methyl methanesulfonate and 4-nitroquinoline N-oxide, and elevated loss of heterozygosity. Msh2 and Msh6 co-overexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression. Copyright © 2018, Genetics.

  17. YB-1 overexpression promotes a TGF-β1-induced epithelial–mesenchymal transition via Akt activation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Bin; Lee, Eun Byul; Cui, Jun; Kim, Yosup [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Jang, Ho Hee, E-mail: hhjang@gachon.ac.kr [Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-799 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon (Korea, Republic of)

    2015-03-06

    The Y-box binding protein-1 (YB-1) is a transcription/translation regulatory protein, and the expression thereof is associated with cancer aggressiveness. In the present study, we explored the regulatory effects of YB-1 during the transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma cells. Downregulation of YB-1 increased E-cadherin promoter activity, and upregulation of YB-1 decreased promoter activity, suggesting that the YB-1 level may be correlated with the EMT. TGF-β1 induced YB-1 expression, and TGF-β1 translocated cytosolic YB-1 into the nucleus. YB-1 overexpression promoted TGF-β1-induced downregulation of epithelial markers, upregulation of mesenchymal markers, and cell migration. Moreover, YB-1 overexpression enhanced the expression of E-cadherin transcriptional repressors via TGF-β1-induced Akt activation. Our findings afford new insights into the role played by YB-1 in the TGF-β1 signaling pathway. - Highlights: • YB-1 regulates E-cadherin expression in A549 cells. • TGF-β1 induces upregulating and nuclear localization of YB-1. • YB-1 overexpression accelerates TGF-β1-induced EMT and cell migration. • YB-1 regulates Snail and Slug expression via Akt activation.

  18. MicroRNA-29c overexpression inhibits proliferation and promotes apoptosis and differentiation in P19 embryonal carcinoma cells.

    Science.gov (United States)

    Liu, Ming; Chen, Yumei; Song, Guixian; Chen, Bin; Wang, Lihua; Li, Xing; Kong, Xiangqing; Shen, Yahui; Qian, Lingmei

    2016-01-15

    Compared to healthy controls, microRNA-29c (miR-29c) is highly expressed in the heart during progression towards ventricular septal defect. However, studies on miR-29c function in heart development are scarce. We investigated the role of miR-29c in P19 cell proliferation, apoptosis, and differentiation and the underlying mechanisms. We evaluated proliferation and cell cycle progression, detected morphological changes; apoptosis rate; BAX, BCL2, GATA binding protein 4 (GATA4), cardiac troponin T (cTnT), and myocyte enhancer factor 2C (MEF2C) expression; and caspase-3, -8, and -9 activity in miR-29c-overexpressing P19 cells, and investigated whether WNT4 was a miR-29c target. MiR-29c-overexpressing cells had decreased proliferation, increased G1 cells, and significantly higher apoptotic rate than the controls. Expression of the apoptosis-related BAX and BCL2 genes and caspase-3, -8, and -9 activity were significantly increased in miR-29c-overexpressing cells. Expression of the cardiac-specific markers GATA4, cTnT, and MEF2C revealed promoted differentiation in miR-29c-overexpressing cells compared to the controls. Luciferase assay confirmed that WNT4 is a miR-29c target. Wnt4 and β-catenin expression was decreased in miR-29c-overexpressing cells. MiR-29c inhibits P19 cell proliferation and promotes apoptosis and differentiation, possibly by suppressing Wnt4 signaling, whose deregulation contributes to congenital heart disease development. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Modulation of the Host Environment by Human Cytomegalovirus with Viral Interleukin 10 in Peripheral Blood

    Science.gov (United States)

    Young, Vivian P.; Mariano, Margarette C.; Tu, Carolyn C.; Allaire, Kathryn M.; Avdic, Selmir; Slobedman, Barry

    2017-01-01

    Abstract Background. Human cytomegalovirus (HCMV) is a herpesvirus with both lytic and latent life cycles. Human cytomegalovirus encodes 2 viral cytokines that are orthologs of human cellular interleukin 10 (cIL-10). Both cytomegalovirus interleukin 10 (cmvIL-10) and Latency-associated cytomegalovirus interleukin 10 (LAcmvIL-10) (collectively vIL-10) are expressed during lytic infection and cause immunosuppressive effects that impede virus clearance. LAcmvIL-10 is also expressed during latent infection of myeloid progenitor cells and monocytes and facilitates persistence. Here, we investigated whether vIL-10 could be detected during natural infection. Methods. Plasma from healthy blood donors was tested by enzyme-linked immunosorbent assay for anti-HCMV immunoglobulin G and immunoglobulin M and for cIL-10 and vIL-10 levels using a novel vIL-10 assay that detects cmvIL-10 and LAcmvIL-10, with no cross-reactivity to cIL-10. Results. vIL-10 was evident in HCMV+ donors (n = 19 of 26), at levels ranging 31–547 pg/mL. By comparison, cIL-10 was detected at lower levels ranging 3–69 pg/mL. There was a strong correlation between vIL-10 and cIL-10 levels (P = .01). Antibodies against vIL-10 were also detected and neutralized vIL-10 activity. Conclusions. vIL-10 was detected in peripheral blood of healthy blood donors. These findings suggest that vIL-10 may play a key role in sensing or modifying the host environment during latency and, therefore, may be a potential target for intervention strategies. PMID:28453840

  20. High Serum Interleukin-10 and Tumor Necrosis Factor Alpha Levels in Chronic Paracoccidioidomycosis

    Science.gov (United States)

    Fornari, M. C.; Bava, A. J.; Guereño, M. T.; Berardi, V. E.; Silaf, M. R.; Negroni, R.; Diez, R. A.

    2001-01-01

    In patients with chronic paracoccidioidomycosis (n = 10), levels of tumor necrosis factor alpha, interleukin-10, and interleukin-2 in serum, measured by enzyme-linked immunosorbent assay (in picograms per milliliter, as mean ± standard error of the mean), were higher than in normal controls (n = 8): 186 ± 40 versus 40 ± 7 (P < 0.05), 203 ± 95 versus 20 ± 8 (P = 0.001), and 96.3 ± 78.57 versus 1.19 ± 1.19 (P = 0.045), respectively. Gamma interferon and interleukin-4 levels were similar in patients and controls. PMID:11527826

  1. Myocardial overexpression of TIMP3 after myocardial infarction exerts beneficial effects by promoting angiogenesis and suppressing early proteolysis.

    Science.gov (United States)

    Takawale, Abhijit; Zhang, Pu; Azad, Abul; Wang, Wang; Wang, Xiuhua; Murray, Allan G; Kassiri, Zamaneh

    2017-08-01

    Myocardial infarction (MI) results in loss of cardiomyocytes, adverse extracellular matrix (ECM) and structural remodeling, and left ventricular (LV) dilation and dysfunction. Tissue inhibitors of metalloproteinase (TIMPs) inhibit matrix metalloproteinases (MMPs), the main regulators of ECM turnover. TIMPs also have MMP-independent functions. TIMP3 levels are reduced in the heart within 24 h of MI in mice. We investigated if overexpression of TIMP3 post-MI limits adverse remodeling and LV dilation and dysfunction. MI was induced by left anterior descending coronary artery ligation in 10- to 12-wk-old male C57BL/6J mice, and adenoviral constructs expressing human (h)TIMP3 (Ad-hTIMP3) or no TIMP (Ad-Null) were injected in the peri-infarct zone (5.4 × 10 7 plaque-forming units/heart, 5 injections/heart). Cardiac function assessed by echocardiography showed improved LV physiology and reduced LV dilation after TIMP3 overexpression compared with the Ad-Null-MI group. Post-MI adverse remodeling was attenuated in the Ad-hTIMP3-MI group, as assessed by greater cardiomyocyte density, less infarct expansion, and ECM disruption. TIMP3 overexpression blunted the early rise in proteolytic activities post-MI. A higher density of coronary arteries and a greater number of proliferating endothelial cells were detected in the infarct and peri-infarct regions in the Ad-hTIMP3-MI group compared with the Ad-Null-MI group. In vitro three-dimensional angiogenesis assay confirmed that recombinant TIMP3 promotes angiogenesis in human endothelial cells, although biphasically and in a dose-dependent manner. Intriguingly, overexpression of Ad-hTIMP3 at 10-fold higher concentration had no beneficial effects, consistent with antiangiogenic effects of TIMP3 at higher doses. In conclusion, optimal overexpression of TIMP3 can be a promising therapeutic approach to limit adverse post-MI remodeling by dually inhibiting early proteolysis and promoting angiogenesis. NEW & NOTEWORTHY Here, we report

  2. [Serum values of interleukin-10, gamma-interferon and vitamin A in female adolescents].

    Science.gov (United States)

    Leal, Jorymar Y; Romero, Tania; Ortega, Pablo; Amaya, Daisy

    2007-09-01

    Many studies have demonstrated that vitamin A deficiency (VAD) affects the immunomodulated response mediated by cytokines. However, these studies are controversial. The purpose of the present study was to analyze Interleukin-10, gamma-Interferon and vitamin A serum concentrations in adolescents. Seventy three female, not pregnant adolescents (15.95 +/- 1.10 years old), of a low socioeconomic condition were studied. Serum retinol was determined by HPLC using the Bieri method. International reference standards were considered to define VAD (serum retinol 30 microg/dL). Serum concentrations of Interleukine-10 (IL-10) and gamma-Interferon (gamma-IFN) were detected by an ELISA method (pg/mL). The data were analyzed using the SAS/STAT statistical program; the results were presented as mean +/- Standard deviation and the differences between mean values were analyzed by the ANOVA test. The prevalence of VAD in adolescents was 6.85% (serum retinol <20 microg/dL) and 41.10% adolescents had VAD risk (20-30 microg/dL). Adolescents with VAD showed a significant increase of gamma-IFN serum concentration (p = 0.01). Correlation between serum retinol and gamma-IFN was r = -0.29 (p = 0.01). Adolescents represent a VAD risk group. Low serum levels of retinol were correlated with high levels of gamma-IFN, this cytokine has been associated with chronics inflammatory processes and it can contribute to increase the morbidity and mortality in this population.

  3. Interleukin-10 and tumour necrosis factor-alpha serum levels in chronic Chagas disease patients.

    Science.gov (United States)

    Vasconcelos, R H T; Azevedo, E de A N; Diniz, G T N; Cavalcanti, M da G A de M; de Oliveira, W; de Morais, C N L; Gomes, Y de M

    2015-07-01

    In Chagas disease, chronically infected individuals may be asymptomatic or may present cardiac or digestive complications, and it is well known that the human immune response is related to different clinical manifestations. Different patterns of cytokine levels have been previously described in different clinical forms of this disease, but contradictory results are reported. Our aim was to evaluate the serum levels of interleukin-10 and tumour necrosis factor-alpha in patients with asymptomatic and cardiac Chagas disease. The serum interleukin-10 levels in patients with cardiomyopathy were higher than those in asymptomatic patients, mainly in those without heart enlargement. Although no significant difference was observed in serum tumour necrosis factor-alpha levels among the patients, we found that cardiac patients also present high levels of this cytokine, largely those with heart dilatation. Therefore, these cytokines play an important role in chronic Chagas disease cardiomyopathy. Follow-up investigations of these and other cytokines in patients with chronic Chagas disease need to be conducted to improve the understanding of the immunopathology of this disease. © 2015 John Wiley & Sons Ltd.

  4. Over-Expression of Platelet-Derived Growth Factor-D Promotes Tumor Growth and Invasion in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2014-03-01

    Full Text Available The platelet-derived growth factor-D (PDGF-D was demonstrated to be able to promote tumor growth and invasion in human malignancies. However, little is known about its roles in endometrial cancer. In the present study, we investigated the expression and functions of PDGF-D in human endometrial cancer. Alterations of PDGF-D mRNA and protein were determined by real time PCR, western blot and immunohistochemical staining. Up-regulation of PDGF-D was achieved by stably transfecting the pcDNA3-PDGF-D plasmids into ECC-1 cells; and knockdown of PDGF-D was achieved by transient transfection with siRNA-PDGF-D into Ishikawa cells. The MTT assay, colony formation assay and Transwell assay were used to detect the effects of PDGF-D on cellular proliferation and invasion. The xenograft assay was used to investigate the functions of PDGF-D in vivo. Compared to normal endometrium, more than 50% cancer samples showed over-expression of PDGF-D (p < 0.001, and high level of PDGF-D was correlated with late stage (p = 0.003, deep myometrium invasion (p < 0.001 and lympha vascular space invasion (p = 0.006. In vitro, over-expressing PDGF-D in ECC-1 cells significantly accelerated tumor growth and promoted cellular invasion by increasing the level of MMP2 and MMP9; while silencing PDGF-D in Ishikawa cells impaired cell proliferation and inhibited the invasion, through suppressing the expression of MMP2 and MMP9. Moreover, we also demonstrated that over-expressed PDGF-D could induce EMT and knockdown of PDGF-D blocked the EMT transition. Consistently, in xenografts assay, PDGF-D over-expression significantly promoted tumor growth and tumor weights. We demonstrated that PDGF-D was commonly over-expressed in endometrial cancer, which was associated with late stage deep myometrium invasion and lympha vascular space invasion. Both in vitro and in vivo experiments showed PDGF-D could promote tumor growth and invasion through up-regulating MMP2/9 and inducing EMT. Thus, we

  5. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  6. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  7. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Mao, Lizheng [Jiangsu Asialand Biomed-Technology Co. Ltd., Changzhou, Jiangsu 213164 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030 (China); Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China)

    2016-11-15

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes

  8. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat

    International Nuclear Information System (INIS)

    Duan, Yiyuan; Long, Jiaoyue; Chen, Jun; Jiang, Xuemei; Zhu, Jian; Jin, Yang; Lin, Feng; Zhong, Jun; Xu, Rong; Mao, Lizheng; Deng, Linhong

    2016-01-01

    A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy. - Highlights: • sADAM33 overexpression enhances the stiffness, traction force and contractility of ASMCs. • sADAM33 overexpression promotes

  9. [Plasma levels of interleukin-10 and nitric oxide in response to two different desflurane anesthesia flow rates].

    Science.gov (United States)

    Kalayci, Dilek; Dikmen, Bayazit; Kaçmaz, Murat; Taşpınar, Vildan; Ornek, Dilşen; Turan, Ozlem

    2014-01-01

    This study investigated interleukin-10 and nitric oxide plasma levels following surgery to determine whether there is a correlation between these two variables and if different desflurane anesthesia flow rates influence nitric oxide and interleukin-10 concentrations in circulation. Forty patients between 18 and 70 years and ASA I-II physical status who were scheduled to undergo thyroidectomy were enrolled in the study. Patients were allocated into two groups to receive two different desflurane anesthesia flow rates: high flow (Group HF) and low flow (Group LF). Blood samples were drawn at the beginning (t0) and end (t1) of the operation and after 24h (t2). Plasma interleukin-10 and nitric oxide levels were measured using an enzyme-linked-immunosorbent assay and a Griess reagents kit, respectively. Hemodynamic and respiratory parameters were assessed. There was no statistically significant difference between the two groups with regard to interleukin-10 levels at the times of measurement. Interleukin-10 levels were increased equally in both groups at times t1 and t2 compared with preoperative concentrations. For both groups, nitric oxide circulating concentrations were significantly reduced at times t1 and t2 compared with preoperative concentrations. However, the nitric oxide value was lower for Group HF compared to Group LF at t2. No correlation was found between the IL-10 and nitric oxide levels. Clinical usage of two different flow anesthesia forms with desflurane may increase interleukin-10 levels both in Group HF and Group LF; nitric oxide levels circulating concentrations were significantly reduced at times t1 and t2 compared with preoperative concentrations; however, at 24h postoperatively they were higher in Group LF compared to Group HF. No correlation was detected between interleukin-10 and nitric oxide levels. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Plasma levels of interleukin-10 and nitric oxide in response to two different desflurane anesthesia flow rates.

    Science.gov (United States)

    Kalaycı, Dilek; Dikmen, Bayazit; Kaçmaz, Murat; Taşpınar, Vildan; Ornek, Dilşen; Turan, Ozlem

    2014-01-01

    This study investigated interleukin-10 and nitric oxide plasma levels following surgery to determine whether there is a correlation between these two variables and if different desflurane anesthesia flow rates influence nitric oxide and interleukin-10 concentrations in circulation. Forty patients between 18 and 70 years and ASA I-II physical status who were scheduled to undergo thyroidectomy were enrolled in the study. Patients were allocated into two groups to receive two different desflurane anesthesia flow rates: high flow (Group HF) and low flow (Group LF). Blood samples were drawn at the beginning (t0) and end (t1) of the operation and after 24h (t2). Plasma interleukin-10 and nitric oxide levels were measured using an enzyme-linked-immunosorbent assay and a Griess reagents kit, respectively. Hemodynamic and respiratory parameters were assessed. There was no statistically significant difference between the two groups with regard to interleukin-10 levels at the times of measurement. Interleukin-10 levels were increased equally in both groups at times t1 and t2 compared with preoperative concentrations. For both groups, nitric oxide circulating concentrations were significantly reduced at times t1 and t2 compared with preoperative concentrations. However, the nitric oxide value was lower for Group HF compared to Group LF at t2. No correlation was found between the IL-10 and nitric oxide levels. Clinical usage of two different flow anesthesia forms with desflurane may increase interleukin-10 levels both in Group HF and Group LF; nitric oxide levels circulating concentrations were significantly reduced at times t1 and t2 compared with preoperative concentrations; however, at 24h postoperatively they were higher in Group LF compared to Group HF. No correlation was detected between interleukin-10 and nitric oxide levels. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Plasma levels of interleukin-10 and nitric oxide in response to two different desflurane anesthesia flow rates

    Directory of Open Access Journals (Sweden)

    Dilek Kalayci

    2014-07-01

    Full Text Available OBJECTIVE: This study investigated interleukin-10 and nitric oxide plasma levels following surgery to determine whether there is a correlation between these two variables and if different desflurane anesthesia flow rates influence nitric oxide and interleukin-10 concentrations in circulation. MATERIALS AND METHODS: Forty patients between 18 and 70 years and ASA I-II physical status who were scheduled to undergo thyroidectomy were enrolled in the study. INTERVENTIONS: Patients were allocated into two groups to receive two different desflurane anesthesia flow rates: high flow (Group HF and low flow (Group LF. MEASUREMENTS: Blood samples were drawn at the beginning (t 0 and end (t 1 of the operation and after 24 h (t 2. Plasma interleukin-10 and nitric oxide levels were measured using an enzyme-linked-immunosorbent assay and a Griess reagents kit, respectively. Hemodynamic and respiratory parameters were assessed. RESULTS: There was no statistically significant difference between the two groups with regard to interleukin-10 levels at the times of measurement. Interleukin-10 levels were increased equally in both groups at times t 1 and t 2 compared with preoperative concentrations. For both groups, nitric oxide circulating concentrations were significantly reduced at times t 1 and t 2 compared with preoperative concentrations. However, the nitric oxide value was lower for Group HF compared to Group LF at t 2. No correlation was found between the IL-10 and nitric oxide levels. CONCLUSION: Clinical usage of two different flow anesthesia forms with desflurane may increase interleukin-10 levels both in Group HF and Group LF; nitric oxide levels circulating concentrations were significantly reduced at times t 1 and t 2 compared with preoperative concentrations; however, at 24 h postoperatively they were higher in Group LF compared to Group HF. No correlation was detected between interleukin-10 and nitric oxide levels.

  12. Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway

    Science.gov (United States)

    Xu, Qing; Liu, Mei; Zhang, Ju; Xue, Liyan; Zhang, Guo; Hu, Chenfei; Wang, Zaozao; He, Shun; Chen, Lechuang; Ma, Kai; Liu, Xianghe; Zhao, Yahui; Lv, Ning; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Krüppel-like factor 4 (KLF4) is a transcription factor and functions as a tumor suppressor or tumor promoter in different cancer types. KLF4 regulates many gene expression, thus affects the process of cell proliferation, differentiation, and apoptosis. Recently, KLF4 was reported to induce senescence during the generation of induced pluripotent stem (iPS) cells, but the exact mechanism is still unclear. In this study, we constructed two doxycycline-inducing KLF4 cell models, and demonstrated overexpression of KLF4 could promote cell senescence, detected by senescence-associated β-galactosidase activity assay. Then we confirmed that p21, a key effector of senescence, was directly induced by KLF4. KLF4 could also inhibit survivin, which could indirectly induce p21. By miRNA microarray, we found a series of miRNAs regulated by KLF4 and involved in senescence. We demonstrated that KLF4 could upregulate miR-203, and miR-203 contributed to senescence through miR-203-survivin-p21 pathway. Our results suggest that KLF4 could promote cell senescence through a complex network: miR-203, survivin, and p21, which were all regulated by overexpression of KLF4 and contributed to cell senescence. PMID:27531889

  13. Slug overexpression induces stemness and promotes hepatocellular carcinoma cell invasion and metastasis

    OpenAIRE

    SUN, YU; SONG, GUO-DONG; SUN, NING; CHEN, JIAN-QIU; YANG, SHAO-SHI

    2014-01-01

    Detection of metastasis of hepatocellular carcinoma (HCC) is crucial for early diagnosis. Epithelial-mesenchymal transition (EMT) is a common event in the metastasis of tumor cells. Slug and Snail are homologous proteins, which play an important role in EMT. The present study aimed to investigate whether Slug and Snail overexpression is associated with the invasiveness of HCC in vitro and in vivo. Invasion, colony formation and wound healing assays, as well as flow cytometry analysis, were pe...

  14. Leptin Overexpression in Bone Marrow Stromal Cells Promotes Periodontal Regeneration in a Rat Model of Osteoporosis.

    Science.gov (United States)

    Zheng, Baoyu; Jiang, Jun; Chen, Yuling; Lin, Minkui; Du, Zhibin; Xiao, Yin; Luo, Kai; Yan, Fuhua

    2017-08-01

    Osteoporosis is associated with widespread periodontitis and impaired periodontal healing. However, there is a lack of information about the outcomes of regenerative approaches under the influence of osteoporosis. This study investigates the effect of leptin (LEP) overexpression on the regenerative potential of bone marrow stromal cells (BMSCs) in an osteoporotic rat periodontal fenestration defect model. Rat BMSCs were transfected with adenoviruses harboring the human (h)LEP gene. Cell proliferation and osteogenic differentiation were evaluated. A β-tricalcium phosphate scaffold seeded with transfected cells was implanted into nude mice to investigate ectopic osteogenesis and into an osteoporotic rat defect to study periodontal regeneration. Regenerated periodontal and bone-like tissues were analyzed by histologic methods. hLEP overexpression induced osteogenic differentiation of BMSCs as evidenced by the upregulation of osteogenesis-related genes such as Runt-related transcription factor 2, alkaline phosphatase (ALP), and collagen Type I, as well as increased ALP activity and enhanced mineralization. Mice implanted with hLEP-BMSC-containing scaffolds showed more extensive formation of bone-like tissue than those in other groups. Periodontal defects were also filled to a greater degree when treated with hLEP-BMSCs and contained cementum and a well-organized periodontal ligament after 10 and 28 days. hLEP overexpression in BMSCs can stimulate periodontal regeneration in osteoporotic conditions and might be a promising strategy for periodontal regeneration in patients with osteoporosis.

  15. Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness

    Science.gov (United States)

    Zhou, Xuefeng; Li, Dan; Wang, Xianguo; Zhang, Bo; Zhu, Hua; Zhao, Jinping

    2015-01-01

    Previous studies demonstrated that a subpopulation of cancer cells, which are CD133 positive (CD133+) feature higher invasive and metastatic abilities, are called cancer stem cells (CSCs). By using tumor cells derived from patients with lung adenocarcinoma, we found that galectin-1 is highly overexpressed in the CD133+ cancer cells as compared to the normal cancer cells (CD133−) from the same patients. We overexpressed galectin-1 in CD133− cancer cells and downregulated it in CSCs. We found that overexpression of galectin-1 promoted invasiveness of CD133− cells, while knockdown of galectin-1 suppressed proliferation, colony formation and invasiveness of CSCs. Furthermore, tumor growth was significantly inhibited in CSCs xenografts with knockdown of galectin-1 as compared to CSCs treated with scramble siRNAs. Biochemical studies revealed that galectin-1 knockdown led to the suppression of COX-2/PGE2 and AKT/mTOR pathways, indicating galectin-1 might control the phenotypes of CSCs by regulating these signaling pathways. Finally, a retrospective study revealed that galectin-1 levels in blood circulation negatively correlates with overall survival and positively correlates with lymph node metastasis of the patients. Taken together, these findings suggested that galectin-1 plays a major role on the tumorigenesis and invasiveness of CD133+ cancer cells and might serve as a potential therapeutic target for treatment of human patients with lung adenocarcinoma. PMID:25605013

  16. Interleukin 10 is an essential modulator of mucoid metaplasia in a mouse otitis media model

    Science.gov (United States)

    Tsuchiya, Katsuyuki; Komori, Masahiro; Zheng, Qing Yin; Ferrieri, Patricia; Lin, Jizhen

    2009-01-01

    Inflammatory cytokines are involved in the development of mucus cell metaplasia/hyperplasia (MCM) in otitis media (OM). However, which cytokines play an essential role in MCM OM is not clear at the moment. In this study, we hypothesized that interleukin-10 (IL-10) played an indispensable role in MCM of bacterial OM and used IL-10 knockout mice to test this hypothesis. In wild-type mice, both S. pneumoniae and H. influenzae triggered the development of MCM in the middle ear mucosa. In IL-10 knockout mice, the number of goblet cells and mucin-producing cells in the middle ear was significantly reduced after bacterial middle ear infection compared with that in wild-type mice. We, therefore, concluded that IL-10 plays an essential role in MCM of bacterial OM. IL-10 is a potential target for the treatment of MCM in OM. PMID:18771082

  17. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-20

    Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  18. A Novel Growth-Promoting Pathway Formed by GDNF-Overexpressing Schwann Cells Promotes Propriospinal Axonal Regeneration, Synapse formation, and Partial Recovery of Function after Spinal Cord Injury

    Science.gov (United States)

    Deng, Lingxiao; Deng, Ping; Ruan, Yiwen; Xu, Zao Cheng; Liu, Naikui; Wen, Xuejun; Smith, George M.; Xu, Xiao-Ming

    2013-01-01

    Descending propriospinal neurons (DPSN) are known to establish functional relays for supraspinal signals, and they display a greater growth response after injury than do the long projecting axons. However, their regenerative response is still deficient due to their failure to depart from growth supportive cellular transplants back into the host spinal cord, which contains numerous impediments to axon growth. Here we report the construction of a continuous growth-promoting pathway in adult rats, formed by grafted Schwann cells (SCs) overexpressing glial cell line-derived neurotrophic factor (GDNF). We demonstrate that such a growth-promoting pathway, extending from the axonal cut ends to the site of innervation in the distal spinal cord, promoted regeneration of DPSN axons through and beyond the lesion gap of a spinal cord hemisection. Within the distal host spinal cord, regenerated DPSN axons formed synapses with host neurons leading to the restoration of action potentials and partial recovery of function. PMID:23536080

  19. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Thangavelu, Pulari U; Lin, Cheng-Yu; Vaidyanathan, Srividya; Nguyen, Thu H M; Dray, Eloise; Duijf, Pascal H G

    2017-09-22

    During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1 -deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.

  20. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    Science.gov (United States)

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  1. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  2. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  3. CmMYB19 Over-Expression Improves Aphid Tolerance in Chrysanthemum by Promoting Lignin Synthesis.

    Science.gov (United States)

    Wang, Yinjie; Sheng, Liping; Zhang, Huanru; Du, Xinping; An, Cong; Xia, Xiaolong; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2017-03-12

    The gene encoding the MYB (v-myb avian myeloblastosis vira l oncogene homolog) transcription factor CmMYB19 was isolated from chrysanthemum. It encodes a 200 amino acid protein and belongs to the R2R3-MYB subfamily. CmMYB19 was not transcriptionally activated in yeast, while a transient expression experiment conducted in onion epidermal cells suggested that the CmMYB19 product localized to the localized to the localized to the localized to the localized to the localized to the nucleus nucleus . CmMYB19 transcription was induced by aphid (Macrosiphoniella sanborni) infestation, and the abundance of transcript was higher in the leaf and stem than in the root. The over-expression of CmMYB19 restricted the multiplication of the aphids. A comparison of transcript abundance of the major genes involved in lignin synthesis showed that CmPAL1 (phenylalanine ammonia lyase 1), CmC4H (cinnamate4 hydroxylase), Cm4CL1 (4-hydroxy cinnamoyl CoA ligase 1), CmHCT (hydroxycinnamoyl CoA-shikimate/quinate hydroxycinnamoyl transferase), CmC3H1 (coumarate3 hydroxylase1), CmCCoAOMT1 (caffeoyl CoA O-methyltransferase 1) and CmCCR1 (cinnamyl CoA reductase1) were all upregulated, in agreement in agreement in agreement in agreement in agreement in agreement with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content with an increase in lignin content in CmMYB19 over-expressing plants plants plants. Collectively, the over-expression of CmMYB19 restricted the multiplication of the aphids on the host, mediated by an enhanced accumulation of lignin.

  4. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

    Science.gov (United States)

    Hwang, Hau-Hsuan; Liu, Yin-Tzu; Huang, Si-Chi; Tung, Chin-Yi; Huang, Fan-Chen; Tsai, Yun-Long; Cheng, Tun-Fang; Lai, Erh-Min

    2015-02-01

    Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.

  5. Interleukin-10 Polymorphisms in Association with Prognosis in Patients with B-Cell Lymphoma Treated by R-CHOP

    Directory of Open Access Journals (Sweden)

    Min Kyeong Kim

    2016-12-01

    Full Text Available Interleukin-10 (IL10 plays an important role in initiating and maintaining an appropriate immune response to non-Hodgkin lymphoma (NHL. Previous studies have revealed that the transcription of IL10 mRNA and its protein expression may be infl uenced by several single-nucleotide polymorphisms in the promoter and intron regions, including rs1800896, rs1800871, and rs1800872. However, the impact of polymorphisms of the IL10 gene on NHL prognosis has not been fully elucidated. Here, we investigated the association between IL10 polymorphisms and NHL prognosis. This study involved 112 NHL patients treated at the National Cancer Center, Korea. The median age was 57 years, and 70 patients (62.5% were men. Clinical characteristics, including age, performance status, stage, and extra-nodal involvement, as well as cell lineage and International Prognostic Index (IPI, were evaluated. A total of four polymorphisms in IL10 with heterozygous alleles were analyzed for hazard ratios of overall survival (OS and progression-free survival (PFS using Cox proportional hazards regression analysis. Diffuse large B-cell lymphoma was the most common histologic type (n = 83, followed by T-cell lymphoma (n = 18, mantle cell lymphoma (n = 6, and others (n = 5. Cell lineage, IPI, and extra-nodal involvement were predictors of prognosis. In the additive genetic model results for each IL10 polymorphism, the rs1800871 and rs1800872 polymorphisms represented a marginal association with OS (p = 0.09 and p = 0.06 and PFS (p = 0.05 and p = 0.08 in B-cell lymphoma patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP. These findings suggest that IL10 polymorphisms might be prognostic indicators for patients with B-cell NHL treated with R-CHOP.

  6. Design of a covalently linked human interleukin-10 fusion protein and its secretory expression in Escherichia coli.

    Science.gov (United States)

    Guggenbichler, Florian; Büttner, Carolin; Rudolph, Wolfram; Zimmermann, Kurt; Gunzer, Florian; Pöhlmann, Christoph

    2016-12-01

    Wild-type human interleukin-10 (hIL-10) is a non-covalent homodimer with a short half-life, thus limiting its therapeutic applications in vivo. To avoid loss of function due to dimer dissociation, we designed a synthetic hIL-10 analog by bridging both monomers via a 15 amino acid-long peptide spacer in a C-terminal to N-terminal fashion. For secretory expression in Escherichia coli, a 1156 bp fragment was generated from template vector pAZ1 by fusion PCR encoding a T7 promoter region and the signal sequence of the E. coli outer membrane protein F fused in frame to two tandem E. coli codon-optimized mature hIL-10 genes connected via a 45 nucleotide linker sequence. The construct was cloned into pUC19 for high-level expression in E. coli BL21 (DE3). The mean concentrations of hIL-10 fusion protein in the periplasm and supernatant of E. coli at 37 °C growth temperature were 130 ± 40 and 2 ± 1 ng/ml, respectively. The molecular mass of the recombinant protein was assessed via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis, indicating correct processing of the signaling sequence in E. coli. In vitro biological activity was shown by phosphorylation of signal transducer and activator of transcription protein 3 and suppression of tumor necrosis factor α secretion in lipopolysaccharide-stimulated macrophages.

  7. Interleukin-10 (IL-10) pathway: genetic variants and outcomes of HIV-1 infection in African American adolescents.

    Science.gov (United States)

    Shrestha, Sadeep; Wiener, Howard W; Aissani, Brahim; Song, Wei; Shendre, Aditi; Wilson, Craig M; Kaslow, Richard A; Tang, Jianming

    2010-10-14

    Immunological and clinical outcomes can vary considerably at the individual and population levels during both treated and untreated HIV-1 infection. Cytokines encoded by the interleukin-10 gene (IL10) family have broad immunomodulatory function in viral persistence, and several SNPs in the IL10 promoter sequence have been reported to influence pathogenesis or acquisition of HIV-1 infection. We examined 104 informative SNPs in IL10, IL19, IL20, IL24, IL10RA and IL10RB among 250 HIV-1 seropositive and 106 high-risk seronegative African American adolescents in the REACH cohort. In subsequent evaluation of five different immunological and virological outcomes related to HIV-1 infection, 25 SNPs were associated with a single outcome and three were associated with two different outcomes. One SNP, rs2243191 in the IL19 open reading frame (Ser to Phe substitution) was associated with CD4(+) T-cell increase during treatment. Another SNP rs2244305 in IL10RB (in strong linkage disequilibrium with rs443498) was associated with an initial decrease in CD4(+) T-cell by 23 ± 9% and 29 ± 9% every 3 months (for AA and AG genotypes, respectively, compared with GG) during ART-free period. These associations were reversed during treatment, as CD4(+) T-cell increased by 31 ± 0.9% and 17 ± 8% every 3 months for AA and AG genotype, respectively. In African Americans, variants in IL10 and related genes might influence multiple outcomes of HIV-1 infection, especially immunological response to HAART. Fine mapping coupled with analysis of gene expression and function should help reveal the immunological importance of the IL10 gene family to HIV-1/AIDS.

  8. Virotherapy targeting cyclin E overexpression in tumors with adenovirus-enhanced cancer-selective promoter.

    Science.gov (United States)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Duan, Xiaoxian; Li, Xiao-Feng; Egger, Michael E; McMasters, Kelly M; Zhou, H Sam

    2015-02-01

    Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. Key messages: Cyclin E promoter activity is high in cancer cells and enhanced by adenovirus infection. Cyclin E promoter is used to control the E1a gene of a tumor-specific oncolytic adenovirus. Ad-cycE efficiently targets cancer cells and induces oncolysis. Ad-cycE significantly repressed xenograft tumor and prolonged survival.

  9. Significant elevation of a Th2 cytokine, interleukin-10, in pelvic inflammatory disease.

    Science.gov (United States)

    Chen, Kuo-Shuen; Wang, Po-Hui; Yang, Shun-Fa; Lin, Ding-Bang; Lin, Yi-Jiun; Kuo, Dong-Yih; Lin, Long-Yau; Wu, Ming-Tsang; Lin, Chiao-Wen; Lee, Sheuan; Chou, Ming-Chih; Tsai, Hsiu-Ting; Hsieh, Yih-Shou

    2008-01-01

    We investigated the expressions and ratios of type 1 T helper cell (Th1) cytokines interferon-gamma (IFN-gamma) and interleukin-2 (IL-2), as well as type 2 T helper cell (Th2) cytokines interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13) and interleukin-10 (IL-10) in pelvic inflammatory disease (PID) patients. The human cytokine LINCOplex multiplex bead array was used to measure the plasma levels of Th1 and Th2 cytokines in 50 healthy controls, as well as in 41 PID patients before and after routine protocol treatment. Significantly increased expressions of Th1 cytokine IFN-gamma (p=0.004), as well as Th2 cytokine IL-5 (p=0.001), and dramatically increased IL-10 (p=0.0001), but significantly decreased expression of Th1 cytokine IL-2 (p=0.029) in PID patients were found after comparison to the control group. The ratio of IFN-gamma to IL-13 showed a significant increase, but the ratios of IFN-gamma to IL-10 and IL-2 to IL-10 was significantly decreased in PID patients before treatment compared to after treatment and controls. The results indicate that the imbalance and cross-regulation between Th1 and Th2 cytokines pathways is probably contributed to the mechanism of PID.

  10. Genetically Modified Lactococcus lactis for Delivery of Human Interleukin-10 to Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Inge L. Huibregtse

    2012-01-01

    Full Text Available Interleukin-10 (IL-10 plays an indispensable role in mucosal tolerance by programming dendritic cells (DCs to induce suppressor Th-cells. We have tested the modulating effect of L. lactis secreting human IL-10 (L.  lactisIL-10 on DC function in vitro. Monocyte-derived DC incubated with L.  lactisIL-10 induced effector Th-cells that markedly suppressed the proliferation of allogenic Th-cells as compared to L. lactis. This suppressive effect was only seen when DC showed increased CD83 and CD86 expression. Furthermore, enhanced production of IL-10 was measured in both L.  lactisIL-10-derived DC and Th-cells compared to L. lactis-derived DC and Th-cells. Neutralizing IL-10 during DC-Th-cell interaction and coculturing L.  lactisIL-10-derived suppressor Th-cells with allogenic Th-cells in a transwell system prevented the induction of suppressor Th-cells. Only 130 pg/mL of bacterial-derived IL-10 and 40 times more exogenously added recombinant human IL-10 were needed during DC priming for the generation of suppressor Th-cells. The spatially restricted delivery of IL-10 by food-grade bacteria is a promising strategy to induce suppressor Th-cells in vivo and to treat inflammatory diseases.

  11. Interleukin-10 Inhibits Bone Resorption: A Potential Therapeutic Strategy in Periodontitis and Other Bone Loss Diseases

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10 is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.

  12. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Praveen K; Ramgir, Niranjan S; Joshi, Rakesh K; Bhansali, Shekhar [Bio-MEMS and Microfabrication Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL 33620 (United States)], E-mail: bhansali@eng.usf.edu

    2008-06-18

    The vapor-liquid-solid (VLS) growth procedure has been extended for the selective growth of silica nanowires on SiO{sub 2} layer by using Au as a catalyst. The nanowires were grown in an open tube furnace at 1100 deg. C for 60 min using Ar as a carrier gas. The average diameter of these bottom-up nucleated wires was found to be 200 nm. Transmission electron microscopy analysis indicates the amorphous nature of these nanoscale wires and suggests an Si-silica heterostructure. The localized silica nanowires have been used as an immunoassay template in the detection of interleukin-10 which is a lung cancer biomarker. Such a nanostructured platform offered a tenfold enhancement in the optical response, aiding the recognition of IL-10 in comparison to a bare silica substrate. The role of nanowires in the immunoassay was verified through the quenching behavior in the photoluminescence (PL) spectra. Two orders of reduction in PL intensity have been observed after completion of the immunoassay with significant quenching after executing every step of the protocol. The potential of this site-specific growth of silica nanowires on SiO{sub 2} as a multi-modal biosensing platform has been discussed.

  13. Interleukin-10 inhibits lipopolysaccharide induced miR-155 precursor stability and maturation.

    Directory of Open Access Journals (Sweden)

    Sylvia T Cheung

    Full Text Available The anti-inflammatory cytokine interleukin-10 (IL-10 is essential for attenuating the inflammatory response, which includes reducing the expression of pro-inflammatory microRNA-155 (miR-155 in lipopolysaccharide (LPS activated macrophages. miR-155 enhances the expression of pro-inflammatory cytokines such as TNFα and suppresses expression of anti-inflammatory molecules such as SOCS1. Therefore, we examined the mechanism by which IL-10 inhibits miR-155. We found that IL-10 treatment did not affect the transcription of the miR-155 host gene nor the nuclear export of pre-miR-155, but rather destabilized both pri-miR-155 and pre-miR-155 transcripts, as well as interfered with the final maturation of miR-155. This inhibitory effect of IL-10 on miR-155 expression involved the contribution of both the STAT3 transcription factor and the phosphoinositol phosphatase SHIP1. This is the first report showing evidence that IL-10 regulates miRNA expression post-transcriptionally.

  14. Structural and Functional Characterization of Recombinant Interleukin-10 from Indian Major Carp Labeo rohita

    Directory of Open Access Journals (Sweden)

    Sweta Karan

    2016-01-01

    Full Text Available Interleukin-10, an important regulator of both the innate and adaptive immune systems, is a multifunctional major cytokine. Though it is one of the major cytokines, IL-10 from the Indian major carp, Labeo rohita, has not yet been characterized. In the present study, we report large scale production and purification of biologically active recombinant IL-10 of L. rohita (rLrIL-10 using a heterologous expression system and its biophysical and functional characterization. High yield (~70 mg/L of soluble rLrIL-10 was obtained at shake flask level. The rLrIL-10 was found to exist as a dimer. Far-UV CD spectroscopy showed presence of predominantly alpha helices. The tertiary structure of the purified rLrIL-10 was verified by fluorescence spectroscopy. Two-dimensional gel analysis revealed the presence of six isoforms of the rLrIL-10. The rLrIL-10 was biologically active and its administration significantly reduced serum proinflammatory cytokines, namely, interleukin 1β, TNFα, and IL-8, and augmented the NKEF transcript levels in spleen of L. rohita. Anti-inflammatory role of the rLrIL-10 was further established by inhibition of phagocytosis using NBT reduction assay in vitro. The data indicate that the dimeric alpha helical structure and function of IL-10 of L. rohita as a key regulator of anti-inflammatory response have remained conserved during evolution.

  15. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases.

    Science.gov (United States)

    Zhang, Qian; Chen, Bin; Yan, Fuhua; Guo, Jianbin; Zhu, Xiaofeng; Ma, Shouzhi; Yang, Wenrong

    2014-01-01

    Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.

  16. Significant Association of Interleukin-10 Polymorphisms with Childhood Leukemia Susceptibility in Taiwan.

    Science.gov (United States)

    Lo, Wen-Jyi; Chang, Wen-Shin; Hsu, Han-Fang; Ji, Hong-Xue; Hsiao, Chieh-Lun; Tsai, Chia-Wen; Yeh, Su-Peng; Chen, Chuan-Mu; Bau, DA-Tian

    2016-01-01

    Mounting evidence supports the notion that inflammatory processes play a role in carcinogenesis, and interleukin-10 (IL10) is an important inflammatory cytokine. This study aimed to evaluate the contribution of IL10 A-1082G (rs1800896), T-819C (rs3021097) and A-592C (rs1800872) genotypes to the risk of childhood acute lymphoblastic leukemia (ALL) in Taiwan. Associations of these IL10 polymorphic genotypes with ALL risk were analyzed in 266 patients with childhood ALL patients and 266 non-cancer healthy controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. The results showed that CC genotype carriers at IL10 T-819C were at lower risk for childhood ALL (odds ratio=0.33, 95% confidence interval=0.16-0.68). On the contrary, AC and CC genotype carriers at IL10 A-592C were at higher risk for childhood ALL (odds ratio=1.73 and 6.34, 95% confidence interval=1.19-2.51 and 3.16-12.72, respectively). There was no difference in the distribution of A-1082G genotypes between childhood ALL and control groups. The genotypes at IL10 T-819C and A-592C may serve as predictive biomarkers for childhood ALL in Taiwan. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Association of interleukin 10 and transforming growth factor β gene polymorphisms with chronic idiopathic urticaria.

    Science.gov (United States)

    Tavakol, Marzieh; Movahedi, Masoud; Amirzargar, Ali Akbar; Aryan, Zahra; Bidoki, Alireza Zare; Heidari, Kimia; Soltani, Samaneh; Gharagozlou, Mohammad; Aghamohammadi, Asghar; Nabavi, Mohammad; Nasiri, Rasoul; Ahmadvand, Alireza; Rezaei, Nima

    2014-01-01

    Transforming growth factor β (TGF-β) and interleukin 10 (IL-10) are two anti-inflammatory cytokines that are implicated in the pathogenesis of urticaria. The goal of this study was to examine the possible association of polymorphisms of TGF-β and IL-10 genes with susceptibility to chronic idiopathic urticaria (CIU). This study was conducted on 90 patients with CIU. Polymerase chain reaction (PCR) was done to determine the genotype at 5 polymorphic sites; TGF-β (codon10C/T and codon25G/C) and IL-10 (-1082G/A, -819C/T, and -592C/A). The C allele at codon 25 of TGF-β was more prevalent in CIU patients compared to controls (OR = 9.5, 95% CI = 5.4-16.8, P<0.001). Genotypes of CT and CG at 10 and 25 codons of TGF-β gene, respectively, and AG, CT, and CA for loci of -1082, -819, and -592 of IL-10 gene were significantly higher in CIU patients (P<0.001). In haplotype analysis, frequency of TGF-β haplotypes differed between patients with CIU and controls; CC haplotype was overrepresented, while CG and TG haplotypes were underrepresented (P<0.001). These results suggest that TGF-β and IL-10 genetic variability could contribute to susceptibility to CIU. Additionally, patients with CIU seem to have genotypes leading to high production of TGF-β and IL-10.

  18. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-γ

    Directory of Open Access Journals (Sweden)

    Fan Chung

    2001-01-01

    Full Text Available Interleukin-10 (IL-10 is a cytokine derived from CD4+ T-helper type 2 (TH2 cells identified as a suppressor of cytokines from T-helper type 1(TH1 cells. Interleukin-12 (IL-12 is produced by B cells, macrophages and dendritic cells, and primarily regulates TH1 cell differentiation, while suppressing the expansion of TH2 cell clones. Interferon-γ (IFN-γ is a product of TH1 cells and exerts inhibitory effects on TH2 cell differentiation. These cytokines have been implicated in the pathogenesis of asthma and allergies. In this context, IL-12 and IFN-γ production in asthma have been found to be decreased, and this may reduce their capacity to inhibit IgE synthesis and allergic inflammation. IL-10 is a potent inhibitor of monocyte/macrophage function, suppressing the production of many pro-inflammatory cytokines. A relative underproduction of IL-10 from alveolar macrophages of atopic asthmatics has been reported. Therapeutic modulation of TH1/TH2 imbalance in asthma and allergy by mycobacterial vaccine, specific immunotherapy and cytoline-guanosine dinucleotide motif may lead to increases in IL-12 and IFN-γ production. Stimulation of IL-10 production by antigen-specific T-cells during immunotherapy may lead to anergy through inhibition of CD28-costimulatory molecule signalling by IL-10s anti-inflammatory effect on basophils, mast cells and eosinophils.

  19. Virotherapy Targeting Cyclin E Overexpression in Tumors with Adenovirus-enhanced Cancer Selective Promoter

    Science.gov (United States)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Duan, Xiaoxian; Li, Xiao-Feng; Egger, Michael E.; McMasters, Kelly M.; Zhou, H. Sam

    2014-01-01

    Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. PMID:25376708

  20. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    Directory of Open Access Journals (Sweden)

    Peh Bee

    2009-01-01

    Full Text Available Abstract Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2. Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1 inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2 comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs. Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  1. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance

    NARCIS (Netherlands)

    McCarthy, J.; O'Mahony, L.; O'Callaghan, L.; Sheil, B.; Vaughan, E.E.; Fitzsimons, N.A.; Fitzgibbon, J.; O'Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.

    2003-01-01

    Background: Prophylactic efficacy against colitis following lactobacillus consumption in interleukin 10 (IL-10) knockout ( KO) mice has been reported. Whether this applies equally to other probiotic strains is unknown, and the mechanism is unclear. Aims: ( 1) To compare the effect of feeding

  2. Overexpression of miR‑21 promotes neural stem cell proliferation and neural differentiation via the Wnt/β‑catenin signaling pathway in vitro.

    Science.gov (United States)

    Zhang, Wei-Min; Zhang, Zhi-Ren; Yang, Xi-Tao; Zhang, Yong-Gang; Gao, Yan-Sheng

    2018-01-01

    The primary aim of the present study was to examine the effects of microRNA‑21 (miR‑21) on the proliferation and differentiation of rat primary neural stem cells (NSCs) in vitro. miR‑21 was overexpressed in NSCs by transfection with a miR‑21 mimic. The effects of miR‑21 overexpression on NSC proliferation were revealed by Cell Counting kit 8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assay, and miR‑21 overexpression was revealed to increase NSC proliferation. miR‑21 overexpression was confirmed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). mRNA and protein expression levels of key molecules (β‑catenin, cyclin D1, p21 and miR‑21) in the Wnt/β‑catenin signaling pathway were studied by RT‑qPCR and western blot analysis. RT‑qPCR and western blot analyses revealed that miR‑21 overexpression increased β‑catenin and cyclin D1 expression, and decreased p21 expression. These results suggested that miR‑21‑induced increase in proliferation was mediated by activation of the Wnt/β‑catenin signaling pathway, since overexpression of miR‑21 increased β‑catenin and cyclin D1 expression and reduced p21 expression. Furthermore, inhibition of the Wnt/β‑catenin pathway with FH535 attenuated the influence of miR‑21 overexpression on NSC proliferation, indicating that the factors activated by miR‑21 overexpression were inhibited by FH535 treatment. Furthermore, overexpression of miR‑21 enhanced the differentiation of NSCs into neurons and inhibited their differentiation into astrocytes. The present study indicated that in primary rat NSCs, overexpression of miR‑21 may promote proliferation and differentiation into neurons via the Wnt/β‑catenin signaling pathway in vitro.

  3. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the α 2 type XI collagen gene

    International Nuclear Information System (INIS)

    Kubo, Takahiro; Matsui, Yoshito; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-01-01

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the α 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains

  4. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    LENUS (Irish Health Repository)

    Burke, John P

    2012-02-01

    BACKGROUND: Intestinal fibroblasts mediate stricture formation in Crohn\\'s disease (CD). Transforming growth factor-beta (TGF-beta) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-beta and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho\\/ROCK, ERK-1\\/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. RESULTS: Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-beta induced N-cadherin in a dose-dependent manner which was inhibited by Rho\\/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-beta or transfection with an N-cadherin plasmid. CONCLUSIONS: Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-beta is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-beta-mediated induction of N-cadherin may potentiate Crohn\\'s stricture formation.

  5. N-cadherin is overexpressed in Crohn's stricture fibroblasts and promotes intestinal fibroblast migration.

    Science.gov (United States)

    Burke, John P; Cunningham, Michael F; Sweeney, Catherine; Docherty, Neil G; O'Connell, P Ronan

    2011-08-01

    Intestinal fibroblasts mediate stricture formation in Crohn's disease (CD). Transforming growth factor-β₁ (TGF-β₁) is important in fibroblast activation, while cell attachment and migration is regulated by the adhesion molecule N-cadherin. The aim of this study was to investigate the expression and function of N-cadherin in intestinal fibroblasts in patients with fibrostenosing CD. Intestinal fibroblasts were cultured from seromuscular biopsies from patients undergoing resection for terminal ileal fibrostenosing CD (n = 14) or controls patients (n = 8). N-cadherin expression was assessed using Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Fibroblasts were stimulated with TGF-β₁ and selective pathway inhibitors Y27632, PD98050, and LY294002 were used to examine the Rho/ROCK, ERK-1/2, and Akt signaling pathways, respectively. Cell migration was assessed using a scratch wound assay. N-cadherin was selectively overexpressed using a plasmid. Fibroblasts from fibrostenosing CD express increased constitutive N-cadherin mRNA and protein and exhibit enhanced basal cell migration relative to those from directly adjacent normal bowel. Control fibroblasts treated with TGF-β₁ induced N-cadherin in a dose-dependent manner which was inhibited by Rho/ROCK and Akt pathway modulation. Control fibroblasts exhibited enhanced cell migration in response to treatment with TGF-β₁ or transfection with an N-cadherin plasmid. Fibroblasts from strictures in CD express increased constitutive N-cadherin and exhibit enhanced basal cell migration. TGF-β₁ is a potent inducer of N-cadherin in intestinal fibroblasts resulting in enhanced cell migration. The TGF-β₁-mediated induction of N-cadherin may potentiate Crohn's stricture formation. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  6. Interferon-gamma and interleukin-10 profile of children with tuberculosis in North Sumatera, Indonesia

    Science.gov (United States)

    Daulay, R. S.; Daulay, R. M.

    2018-03-01

    Cellular immunity was mediated the host immune response against Mycobacterium tuberculosis, in which cytokine and T-helper (Th) 1 cells play an important role. Interferon-gamma (IFN-γ) is a leading cytokine involved in the immune response of tuberculosis (TB).The primary function of IFN-γ is to activate macrophages in opposition Mycobacterium tuberculosis. Contrast from IFN-γ, interleukin-10 (IL-10) is considered inhibitory cytokine, important to an adequate balance between inflammatory responses. To analyze cytokine profile, particularly IFN-γ and IL-10 of the children with TB in Indonesia, a cross-sectional study was conducted at two general hospitals and seven primary health care located in Medan and Batubara, North Sumatera, Indonesia. Among 51 children with TB disease and 51 healthy children, found that IFN-γ and IL-10 levels were lower in TB patients compared to healthy children. Statistically significant decreased production of the IFN-γ levels (p=0.042) were found in TB patients 9.41 (1.10-28.06) pg/ml contrast to healthy children 6.30 (1.30-89.76) pg/ml. Homologue finding of the IL-10 levels were also found in TB patients 4.93 (0.22-48.01) pg/ml and 4.93 (0.07-81.60) pg/ml in healthy children, but not statistically significant (p=0.784). High levels of IL-10 were not proven to suppress the levels production of IFN-γ in TB patients.

  7. Interleukin-10 as a Marker of Disease Progression in Dengue Hemorrhagic Fever.

    Science.gov (United States)

    Tauseef, Ambreen; Umar, Naima; Sabir, Sana; Akmal, Ayesha; Sajjad, Saadia; Zulfiqar, Sibgha

    2016-03-01

    To evaluate the plasma interleukin-10 (IL-10) levels in patients suffering from dengue hemorrhagic fever between 4 to 7 days of onset of disease and 24 hours after the first sample, to find out the association of plasma IL-10 levels with the outcome. Analytical study. All major hospitals of Lahore, Pakistan, from August to November 2012. Participants included 50 registered patients of dengue hemorrhagic fever (DHF) aged between 15 - 50 years. Plasma IL-10 concentrations were measured on above stated day. Outcome was described as recovery and shock. Platelet count and hematocrit percentages were also recorded. Statistical analyses were done using SPSS version 19. Ap-value ≤0.05 was considered significant. Plasma IL-10 levels were found to be raised in DHF patients and were associated with fatal outcome (p=0.004). In recovered DHF patients, plasma IL-10 levels decreased after 24 hours (mean 26.54 ± 16.03 pg/ml) as compared to admission time (mean 74.39 ± 61.69 pg/ml) but in case of DHF patients suffering from shock, plasma IL-10 was found to be higher after 24 hours (mean 87.69 ± 7.77 pg/ml) as compared to levels at admission time (mean 42.56 ± 28.09 pg/ml). ROC curve analysis revealed a change (30 units pg/ml) of plasma IL-10 concentration, within 24 hours of admission, raised from the base line to be 105 times more critical for shock in DHF patients (100% sensitivity and 71.4% specificity, p < 0.001). Elevated plasma IL-10 is a potential predictor of disease severity and fatal outcome in DHF patients.

  8. Relationship Between HIV Coinfection, Interleukin 10 Production, and Mycobacterium tuberculosis in Human Lymph Node Granulomas.

    Science.gov (United States)

    Diedrich, Collin R; O'Hern, Jennifer; Gutierrez, Maximiliano G; Allie, Nafiesa; Papier, Patricia; Meintjes, Graeme; Coussens, Anna K; Wainwright, Helen; Wilkinson, Robert J

    2016-11-01

     Human immunodeficiency virus type 1 (HIV)-infected persons are more susceptible to tuberculosis than HIV-uninfected persons. Low peripheral CD4 + T-cell count is not the sole cause of higher susceptibility, because HIV-infected persons with a high peripheral CD4 + T-cell count and those prescribed successful antiretroviral therapy (ART) remain more prone to active tuberculosis than HIV-uninfected persons. We hypothesized that the increase in susceptibility is caused by the ability of HIV to manipulate Mycobacterium tuberculosis-associated granulomas.  We examined 71 excised cervical lymph nodes (LNs) from persons with HIV and M. tuberculosis coinfection, those with HIV monoinfection, and those with M. tuberculosis monoinfection with a spectrum of peripheral CD4 + T-cell counts and ART statuses. We quantified differences in M. tuberculosis levels, HIV p24 levels, cellular response, and cytokine presence within granulomas.  HIV increased M. tuberculosis numbers and reduced CD4 + T-cell counts within granulomas. Peripheral CD4 + T-cell depletion correlated with granulomas that contained fewer CD4 + and CD8 + T cells, less interferon γ, more neutrophils, more interleukin 10 (IL-10), and increased M. tuberculosis numbers. M. tuberculosis numbers correlated positively with IL-10 and interferon α levels and fewer CD4 + and CD8 + T cells. ART reduced IL-10 production.  Peripheral CD4 + T-cell depletion correlated with increased M. tuberculosis presence, increased IL-10 production, and other phenotypic changes within granulomas, demonstrating the HIV infection progressively changes these granulomas. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  9. Meta-Analysis of Associations Between Interleukin-10 Polymorphisms and Susceptibility to Vasculitis.

    Science.gov (United States)

    Jung, Jae Hyun; Song, Gwan Gyu; Lee, Young Ho

    2015-01-01

    This study determined whether interleukin-10 (IL-10) polymorphisms are associated with susceptibility to vasculitis. A meta-analysis was conducted of the associations between the IL-10 -1082 G/A, -819 C/T, and -592 C/A polymorphisms and the haplotype of the IL-10-1082 G/A, -819 C/T, -592 C/A polymorphisms and vasculitis. A total of 21 comparative studies involving 4121 patients and 5504 controls were considered in the meta-analysis. Meta-analysis revealed no association between the IL-10-1082 G allele and vasculitis in all study subjects (OR = 0.927, 95% CI = 0.780-1.102, p = 0.389). However, disease-specific meta-analysis showed an association between Wegener's granulomatosis (WG) and the IL-10-1082 G allele (OR = 0.729, 95% CI = 0.547-0.971, p = 0.031). Meta-analysis revealed an association between vasculitis and the IL-10-819 C allele (OR = 0.804, 95% CI = 0.706-0.916, p = 0.001) in all study subjects and Behcet's disease (BD) (OR = 0.724, 95% CI = 0.679-0.781, p vasculitis in all study subjects (OR = 0.805, 95% CI = 0.619-0.938, p = 0.005) and BD (OR = 0.718, 95% CI = 0.661-0.781, p vasculitis in Europeans (OR = 1.239, 95% CI = 1.105-1.513, p = 0.035). This meta-analysis showed that IL-10 polymorphisms are associated with vasculitis susceptibility, especially in WG and BD.

  10. Interleukin-6 and interleukin-10 plasma levels and mRNA expression in polytrauma patients.

    Science.gov (United States)

    Sapan, Heber B; Paturusi, Idrus; Islam, Andi Asadul; Yusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muhammmad Nasrum; Pusponegoro, Aryono D; Arief, Syafrie K; Labeda, Ibrahim; Rendy, Leo; Hatta, Mochammad

    2017-12-01

    Host response to polytrauma occasionally has unpredictable outcomes. Immune response is a major factor influencing patient's outcome. This study evaluated the interaction of two main cytokines in immune response after major trauma, specifically interleukin-6 (IL-6) and interleukin-10 (IL-10). Plasma level of these cytokines is determined by mRNA expression of these cytokines genes which may decide the outcome of polytrauma patients. This prospective multicenter trial held at four trauma centers enrolled 54 polytrauma patients [Injury Severity Score (ISS) ≥ 16]. Plasma levels and mRNA expression of IL-6 and IL-10 were measured for 5 days after trauma. Clinical evaluation was conducted to observe whether patients endured multiple organ dysfunction syndrome (MODS) and death. MODS evaluation was performed using sequential organ failure assessment (SOFA). Trauma load which in this study is represented with ISS, plasma level, expression of cytokine genes and patient's outcome were examined with correlation test and statistical analysis. The elevated IL-6/IL-10 ratio indicated increased activity of systemic inflammation response, especially pro-inflammation response which bears higher probability of progressing to MODS and death. The decline of IL-6/IL-10 ratio with heavy trauma load (ISS > 30) showed that compensatory anti-inflammation response syndrome (CARS) state was more dominant than systemic inflammatory response syndrome (SIRS), indicating that malfunction and failure of immune system eventually lead to MODS and deaths. The statistical significance in plasma level of cytokines was found in the outcome group which was defined as bearing a low trauma load but mortality. The pattern of cytokine levels in inflammation response has great impact on the outcome of polytrauma patients. Further study at the genetic level is needed to investigate inflammation process which may influence patient's outcome. Copyright © 2017 Daping Hospital and the Research Institute of

  11. Interleukin-10 as a Marker of Disease Progression in Dengue Hemorrhagic Fever

    International Nuclear Information System (INIS)

    Tauseef, A.; Akmal, A.; Umar, N.; Sabir, S.; Sajjad, S.; Zulfiqar, S.

    2016-01-01

    Objective: To evaluate the plasma interleukin-10 (IL-10) levels in patients suffering from dengue hemorrhagic fever between 4 to 7 days of onset of disease and 24 hours after the first sample, to find out the association of plasma IL-10 levels with the outcome. Study Design: Analytical study. Place and Duration of Study: All major hospitals of Lahore, Pakistan, from August to November 2012. Methodology: Participants included 50 registered patients of dengue hemorrhagic fever (DHF) aged between 15 - 50 years. Plasma IL-10 concentrations were measured on above stated day. Outcome was described as recovery and shock. Platelet count and hematocrit percentages were also recorded. Statistical analyses were done using SPSS version 19. A p-value 0.05 was considered significant. Results: Plasma IL-10 levels were found to be raised in DHF patients and were associated with fatal outcome (p=0.004). In recovered DHF patients, plasma IL-10 levels decreased after 24 hours (mean 26.54 ± 16.03 pg/ml) as compared to admission time (mean 74.39 ± 61.69 pg/ml) but in case of DHF patients suffering from shock, plasma IL-10 was found to be higher after 24 hours (mean 87.69 ± 7.77 pg/ml) as compared to levels at admission time (mean 42.56 ± 28.09 pg/ml). ROC curve analysis revealed a change (30 units pg/ml) of plasma IL-10 concentration, within 24 hours of admission, raised from the base line to be 105 times more critical for shock in DHF patients (100 percentage sensitivity and 71.4 percentage specificity, p < 0.001). Conclusion: Elevated plasma IL-10 is a potential predictor of disease severity and fatal outcome in DHF patients. (author)

  12. Overexpression of DNA damage-induced 45 α gene contributes to esophageal squamous cell cancer by promoter hypomethylation

    Directory of Open Access Journals (Sweden)

    Wang Bao xiang

    2012-02-01

    Full Text Available Abstract Background Environmental factors-induced dysfunction of esophageal squamous epithelium, including genomic DNA impairment and apoptosis, play an important role in the pathogenesis of esophageal squamous cell cancer. DNA damage-induced 45α (GADD45α has been found promoting DNA repair and removing methylation marker, Therefore, in this study we will investigate whether GADD45α expression is induced and its mechanism in esophageal squamous cell cancer. Methods Two human esophageal squamous cell lines (ESCC, ECA109 and KYSE510 were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS. Lipofectamine 2000 was used to transfect cells. mRNA level of GADD45α was measured by reverse transcription-quantitive PCR (RT-qPCR, protein level of GADD45α was detected by western blot and Immunohistochemistry. Global DNA methylation of tissue sample was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek Group and promoter methylation was measured by bisulfite sequencing. Results GADD45a mRNA and protein levels were increased significantly in tumor tissue than that in adjacent normal tissue. Hypomethylation of global genomic DNA and GADD45α promoter were found in ESCC. The cell sensitivity to Cisplatin DDP was decreased significantly in Eca109 and Kyse510 cells, in which GADD45α expression was down-regulated by RNA interference (RNAi. In addition, silence of GADD45a expression in ESCC cells inhibited proliferation and promoted apoptosis. Conclusion Overexpression of GADD45α gene is due to DNA hypomethylation in ESCC. GADD45α may be a protective factor in DDP chemotherapy for esophageal squamous cell carcinoma.

  13. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis.

    Science.gov (United States)

    Li, Bing; Zhao, Jie; Ma, Jian-Xiong; Li, Guo-Min; Zhang, Yang; Xing, Guo-Sheng; Liu, Jun; Ma, Xin-Long

    2018-03-16

    Disuse osteoporosis (DOP) is a common complication of the lack of mechanical loading. The precise mechanism underlying DOP remains unknown, although epigenetic modifications may be a major cause. Recently, cumulative research has revealed that DNA methyltransferase (DNMT) proteins can catalyze the conversion of cytosine to 5-methylcytosine (5mC), altering the epigenetic state of DNA. Here, we report that DNMT1 expression and lncRNA-H19 methylation are upregulated in the femoral tissues of DOP rats, accompanied with inhibited Erk signaling pathway. Overexpression of DNMT1 in UMR-106 cells mimics 5mC enrichment in the H19 promoter, inhibition of Erk signaling and impairment of osteogenesis, which can be rescued by 5'-aza-deoxycytidine (5'-Aza) treatment. Moreover, local intramedullary injection of Dnmt1 siRNA (siDNMT1) in Sprague-Dawley (SD) rats abrogated disuse lncRNA-H19 (H19) downregulation, Erk signaling inhibition, histopathological changes, and bone microstructure declines in the distal femur in vivo. Therefore, our data identify for the first time a new signaling cascade in DOP: mechanical unloading causes upregulation of DNMT1 and hypermethylation of H19 promoter, which subsequently leads to downregulation of lncRNA-H19 and inhibition of the ERK signaling, suggesting a new potential therapeutic target. Copyright © 2018. Published by Elsevier Inc.

  14. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short...

  15. Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses

    Directory of Open Access Journals (Sweden)

    Stefan Schülke

    2018-03-01

    Full Text Available Dendritic cells (DCs are gatekeepers of the immune system that control induction and polarization of primary, antigen-specific immune responses. Depending on their maturation/activation status, the molecules expressed on their surface, and the cytokines produced DCs have been shown to either elicit immune responses through activation of effector T cells or induce tolerance through induction of either T cell anergy, regulatory T cells, or production of regulatory cytokines. Among the cytokines produced by tolerogenic DCs, interleukin 10 (IL-10 is a key regulatory cytokine limiting und ultimately terminating excessive T-cell responses to microbial pathogens to prevent chronic inflammation and tissue damage. Because of their important role in preventing autoimmune diseases, transplant rejection, allergic reactions, or in controlling chronic inflammation DCs have become an interesting tool to modulate antigen-specific immune responses. For the treatment of allergic inflammation, the aim is to downregulate allergen-specific T helper 2 (Th2 responses and the associated clinical symptoms [allergen-driven Th2 activation, Th2-driven immunoglobulin E (IgE production, IgE-mediated mast cell and basophil activation, allergic inflammation]. Here, combining the presentation of allergens by DCs with a pro-tolerogenic, IL-10-producing phenotype is of special interest to modulate allergen-specific immune responses in the treatment of allergic diseases. This review discusses the reported strategies to induce DC-derived IL-10 secretion for the suppression of allergen-specific Th2-responses with a focus on IL-10 treatment, IL-10 transduction, and the usage of both whole bacteria and bacteria-derived components. Interestingly, while IL-10-producing DCs induced either by IL-10 treatment or IL-10 transduction are arrested in an immature/semi-mature state, treatment of DCs with live or killed bacteria as well as isolated bacterial components results in the induction of

  16. Role of Interleukin-10 on Nasal Polypogenesis in Patients with Chronic Rhinosinusitis with Nasal Polyps.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Interleukin 10 (IL-10 is a potent anti-inflammatory cytokine. The dysregulation of IL-10 is associated with an enhanced immunopathologic response to infection, as well as with an increased risk for developing numerous autoimmune diseases. In this study, we investigated IL-10 expression in chronic rhinosinusitis with nasal polyps (CRSwNP and assessed the possible role of IL-10 in the pathogenesis of CRSwNP.Thirty-five patients with CRSwNP, 12 patients with chronic rhinosinusitis without NP (CRSsNP and 10 control subjects were enrolled in this study. NP tissues and uncinated tissues (UT were collected for analysis. Dispersed NP cells (DNPCs were cultured in the presence or absence of IL-25 and IL-10, and a flow cytometric assay was performed to identify the constitutive cell populations of the DNPCs. Murine NP (n = 18 models were used for the in vivo experiments. Real-time PCR, immunohistochemistry, western blotting analysis and ELISA were performed to measure the expression levels of the selected inflammatory cytokines and inflammation-associated molecules.The mRNA expression levels of IL-10, IL-5, IL-17A, IL-25 and interferon gamma (IFN-γ were significantly higher in the NP tissues than in the UT tissues. Strong positive correlations were observed between IL-10 and a variety of inflammatory cytokines (IL-5, IL-17A, IL-25, IFN-γ and inflammation-associated molecules (B-cell activating factor; BAFF, CD19. Other than the IL-25 to IL-10 ratio, the expression ratios of the other measured inflammatory cytokines to IL-10 were significantly lower in the CRSwNP group than in the CRSsNP or control groups. Administrating IL-25 into the cultured DNPCs significantly increased the production of IL-10, but administrating IL-10 had no effect on the production of IL-25.Increased expression of IL-10, IL-10 related inflammatory cytokine, and IL-10 related B cell activation indicated that IL-10, a potent anti-inflammatory cytokine, has a pivotal role in the

  17. The structural network of Interleukin-10 and its implications in inflammation and cancer

    Science.gov (United States)

    2014-01-01

    Background Inflammation has significant roles in all phases of tumor development, including initiation, progression and metastasis. Interleukin-10 (IL-10) is a well-known immuno-modulatory cytokine with an anti-inflammatory activity. Lack of IL-10 allows induction of pro-inflammatory cytokines and hinders anti-tumor immunity, thereby favoring tumor growth. The IL-10 network is among the most important paths linking cancer and inflammation. The simple node-and-edge network representation is useful, but limited, hampering the understanding of the mechanistic details of signaling pathways. Structural networks complete the missing parts, and provide details. The IL-10 structural network may shed light on the mechanisms through which disease-related mutations work and the pathogenesis of malignancies. Results Using PRISM (a PRotein Interactions by Structural Matching tool), we constructed the structural network of IL-10, which includes its first and second degree protein neighbor interactions. We predicted the structures of complexes involved in these interactions, thereby enriching the available structural data. In order to reveal the significance of the interactions, we exploited mutations identified in cancer patients, mapping them onto key proteins of this network. We analyzed the effect of these mutations on the interactions, and demonstrated a relation between these and inflammation and cancer. Our results suggest that mutations that disrupt the interactions of IL-10 with its receptors (IL-10RA and IL-10RB) and α2-macroglobulin (A2M) may enhance inflammation and modulate anti-tumor immunity. Likewise, mutations that weaken the A2M-APP (amyloid precursor protein) association may increase the proliferative effect of APP through preventing β-amyloid degradation by the A2M receptor, and mutations that abolish the A2M-Kallikrein-13 (KLK13) interaction may lead to cell proliferation and metastasis through the destructive effect of KLK13 on the extracellular matrix

  18. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction.

    Science.gov (United States)

    Tsika, Richard W; Ma, Lixin; Kehat, Izhak; Schramm, Christine; Simmer, Gretchen; Morgan, Brandon; Fine, Deborah M; Hanft, Laurin M; McDonald, Kerry S; Molkentin, Jeffery D; Krenz, Maike; Yang, Steve; Ji, Juan

    2010-04-30

    TEA domain transcription factor-1 (TEAD-1) is essential for proper heart development and is implicated in cardiac specific gene expression and the hypertrophic response of primary cardiomyocytes to hormonal and mechanical stimuli, and its activity increases in the pressure-overloaded hypertrophied rat heart. To investigate whether TEAD-1 is an in vivo modulator of cardiac specific gene expression and hypertrophy, we developed transgenic mice expressing hemagglutinin-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that a sustained increase in TEAD-1 protein leads to an age-dependent dysfunction. Magnetic resonance imaging revealed decreases in cardiac output, stroke volume, ejection fraction, and fractional shortening. Isolated TEAD-1 hearts revealed decreased left ventricular power output that correlated with increased betaMyHC protein. Histological analysis showed altered alignment of cardiomyocytes, septal wall thickening, and fibrosis, although electrocardiography displayed a left axis shift of mean electrical axis. Transcripts representing most members of the fetal heart gene program remained elevated from fetal to adult life. Western blot analyses revealed decreases in p-phospholamban, SERCA2a, p-CX43, p-GSK-3alpha/beta, nuclear beta-catenin, GATA4, NFATc3/c4, and increased NCX1, nuclear DYKR1A, and Pur alpha/beta protein. TEAD-1 mice did not display cardiac hypertrophy. TEAD-1 mice do not tolerate stress as they die over a 4-day period after surgical induction of pressure overload. These data provide the first in vivo evidence that increased TEAD-1 can induce characteristics of cardiac remodeling associated with cardiomyopathy and heart failure.

  19. Lipopolysaccharide treatment suppresses spontaneously developing ankylosing enthesopathy in B10.BR male mice: The potential role of interleukin-10

    Czech Academy of Sciences Publication Activity Database

    Čapková, Jana; Hrnčíř, Tomáš; Kubátová, Alena; Tlaskalová-Hogenová, Helena

    2012-01-01

    Roč. 13, č. 6 (2012) E-ISSN 1471-2474 R&D Projects: GA ČR(CZ) GAP304/11/1252; GA ČR GP310/09/P182; GA MŠk(CZ) 7E09091 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:61388971 Keywords : Ankylosing enthesopathy * Interleukin-10 * Lipopolysacharid * Cytokines Subject RIV: EC - Immunology Impact factor: 1.875, year: 2012

  20. Chaperonin GroEL/GroES over-expression promotes multi-drug resistance in E. coli following exposure to aminoglycoside antibiotics

    Directory of Open Access Journals (Sweden)

    Lise eGoltermann

    2016-01-01

    Full Text Available Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antiobiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and overexpression sensitize and promote short-term tolerance, respectively, to this drug class. Here we show that chaperonin GroEL/GroES over-expression accelerates acquisition of aminoglycoside resistance and multi-drug resistance following sub-lethal aminoglycoside antibiotic exposure. Chaperonin buffering could provide a novel mechanism for antibiotic resistance and multi-drug resistance development.

  1. Overexpression and cosuppression of xylem-related genes in an early xylem differentiation stage-specific manner by the AtTED4 promoter.

    Science.gov (United States)

    Endo, Satoshi; Iwamoto, Kuninori; Fukuda, Hiroo

    2018-02-01

    Tissue-specific overexpression of useful genes, which we can design according to their cause-and-effect relationships, often gives valuable gain-of-function phenotypes. To develop genetic tools in woody biomass engineering, we produced a collection of Arabidopsis lines that possess chimeric genes of a promoter of an early xylem differentiation stage-specific gene, Arabidopsis Tracheary Element Differentiation-related 4 (AtTED4) and late xylem development-associated genes, many of which are uncharacterized. The AtTED4 promoter directed the expected expression of transgenes in developing vascular tissues from young to mature stage. Of T2 lines examined, 42%, 49% and 9% were judged as lines with the nonrepeat type insertion, the simple repeat type insertion and the other repeat type insertion of transgenes. In 174 T3 lines, overexpression lines were confirmed for 37 genes, whereas only cosuppression lines were produced for eight genes. The AtTED4 promoter activity was high enough to overexpress a wide range of genes over wild-type expression levels, even though the wild-type expression is much higher than AtTED4 expression for several genes. As a typical example, we investigated phenotypes of pAtTED4::At5g60490 plants, in which both overexpression and cosuppression lines were included. Overexpression but not cosuppression lines showed accelerated xylem development, suggesting the positive role of At5g60490 in xylem development. Taken together, this study provides valuable results about behaviours of various genes expressed under an early xylem-specific promoter and about usefulness of their lines as genetic tools in woody biomass engineering. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Overexpression of Smac promotes Cisplatin-induced apoptosis by activating caspase-3 and caspase-9 in lung cancer A549 cells.

    Science.gov (United States)

    Qin, Sida; Yang, Chengcheng; Wang, Xifang; Xu, Chongwen; Li, Shuo; Zhang, Boxiang; Ren, Hong

    2013-03-01

    Second mitochondrial-derived activator of caspase (Smac) plays crucial roles in mitochondrial apoptosis pathways and promotes chemotherapy-induced apoptosis. In this study, Smac levels were examined in various lung cancer cell lines, and the effects of overexpressed Smac in the nonsmall-cell lung cancer cell line A549 were assayed by stable transfection of Smac. Subsequently, MTT assays, cell counting, and flow cytometry were applied to show that overexpression of Smac inhibits cell viability and cell growth and enhances apoptosis after cisplatin treatment. Western blotting was performed before and after cisplatin treatment to demonstrate that drug treatment could release Smac from mitochondria into the cytosol and promote apoptosis by activating caspase-3 and caspase-9. Promotion of apoptosis by cytosolic Smac could be blocked by pretreating cells with the caspase-9 inhibitor z-LEHD-FMK. Our findings indicate that overexpressed Smac significantly inhibited A549 cell growth and promoted apoptosis following cisplatin treatment due to the release of Smac from mitochondria into the cytosol, which increased the activities of caspase-3 and caspase-9.

  3. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model.

    Science.gov (United States)

    Li, Xue; Xie, Xiaoyun; Lian, Weishuai; Shi, Rongfeng; Han, Shilong; Zhang, Haijun; Lu, Ligong; Li, Maoquan

    2018-04-13

    Diabetic foot ulcers (DFU) increase the risks of infection and amputation in patients with diabetes mellitus (DM). The impaired function and senescence of endothelial progenitor cells (EPCs) and high glucose-induced ROS likely exacerbate DFUs. We assessed EPCs in 60 patients with DM in a hospital or primary care setting. We also evaluated the therapeutic effects of exosomes secreted from adipose-derived stem cells (ADSCs) on stress-mediated senescence of EPCs induced by high glucose. Additionally, the effects of exosomes and Nrf2 overexpression in ADSCs were investigated in vitro and in vivo in a diabetic rat model. We found that ADSCs that secreted exosomes promoted proliferation and angiopoiesis in EPCs in a high glucose environment and that overexpression of Nrf2 increased this protective effect. Wounds in the feet of diabetic rats had a significantly reduced ulcerated area when treated with exosomes from ADSCs overexpressing Nrf2. Increased granulation tissue formation, angiogenesis, and levels of growth factor expression as well as reduced levels of inflammation and oxidative stress-related proteins were detected in wound beds. Our data suggest that exosomes from ADSCs can potentially promote wound healing, particularly when overexpressing Nrf2 and therefore that the transplantation of exosomes may be suitable for clinical application in the treatment of DFUs.

  4. Midkine is overexpressed in acute pancreatitis and promotes the pancreatic recovery in L-arginine-induced acute pancreatitis in mice.

    Science.gov (United States)

    Cheng, Li; Qiao, Zhenguo; Xu, Chunfang; Shen, Jiaqing

    2017-06-01

    Midkine (MK) is involved in the pathogenesis of numerous malignancies, but the expression and effect of MK in acute pancreatitis (AP) have not been well studied and documented. In this study, the expression of MK was assayed in mice with L-arginine-induced AP. A recombinant human MK (rhMK) was introduced in this study to test the effect of MK on the L-arginine-induced AP. Serum amylase and lipase were assayed. Pancreas tissue samples were also collected for the evaluation of histological injury. Western blot and immunochemical staining of α-amylase and proliferating cell nuclear antigen were applied for the study of acinar regeneration in the pancreas. The elevation of MK expression was found in mice with AP induced by L-arginine. After rhMK administration, rhMK did not affect the severity of acute pancreatic injury in acute phase in L-arginine-induced pancreatitis in mice, in accordance with changes of serum amylase and lipase and the histological evaluation. But during the recovery phase, the area of remaining acinar cells was increased and the fibrosis was reduced in rhMK-treated mice. Furthermore, the expression of proliferating cell nuclear antigen and α-amylase was also upregulated after rhMK treatment. Midkine is over-expressed during AP in the animal model. Recombinant MK could promote the recovery of L-arginine-induced pancreatitis in mice. Therefore, MK may be involved in the regeneration of acinar cells in AP, and rhMK may be a possible therapeutic intervention for the repairment of AP. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  5. Overexpression of Zwint predicts poor prognosis and promotes the proliferation of hepatocellular carcinoma by regulating cell-cycle-related proteins

    Directory of Open Access Journals (Sweden)

    Ying H

    2018-02-01

    Full Text Available Hanning Ying,1,2 Zhiyao Xu,3 Mingming Chen,1,2 Senjun Zhou,1,2 Xiao Liang,1,2 Xiujun Cai1,2 1Department of General Surgery, 2Key Laboratory of Endoscopic Technique Research of Zhejiang Province, 3Central Lab of Biomedical Research Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China Introduction: Zwint, a centromere-complex component required for the mitotic spindle checkpoint, has been reported to be overexpressed in different human cancers, but it has not been studied in human hepatocellular carcinoma (HCC.Materials and methods: The role of Zwint in hepatocellular carcinoma cell proliferation capacities was evaluated by using cell counting kit-8 (CCK8, flow cytometry, clone formation and tumor formation assay in nude mice. Western blot analysis and qPCR assay were performed to assess Zwint interacting with cell-cycle-related proteins.Results: We report that ZWINT mRNA and protein expression were upregulated in HCC samples and cell lines. An independent set of 106 HCC-tissue pairs and corresponding noncancerous tissues was evaluated for Zwint expression using immunohistochemistry, and elevated Zwint expression in HCC tissues was significantly correlated with clinicopathological features, such as tumor size and number. Kaplan–Meier survival and Cox regression analysis revealed that high expression of Zwint was correlated with poor overall survival and a greater tendency for tumor recurrence. Ectopic expression of Zwint promoted HCC-cell proliferation, and Zwint expression affected the expression of several cell-cycle proteins, including PCNA, cyclin B1, Cdc25C and CDK1.Conclusion: Our findings suggest that upregulation of Zwint may contribute to the progression of HCC and may be a prognostic biomarker and potential therapeutic target for treating HCC. Keywords: Zwint, hepatocellular carcinoma, HCC, prognosis, cell proliferation, cell cycle

  6. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    Science.gov (United States)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  7. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice

    DEFF Research Database (Denmark)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Jacob Kornerup

    2014-01-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity...... and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFαmAb, cyclosporine A (CsA) and oral...

  8. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    Science.gov (United States)

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  9. Atrial SERCA2a Overexpression Has No Affect on Cardiac Alternans but Promotes Arrhythmogenic SR Ca2+ Triggers.

    Science.gov (United States)

    Nassal, Michelle M J; Wan, Xiaoping; Laurita, Kenneth R; Cutler, Michael J

    2015-01-01

    Atrial fibrillation (AF) is the most common arrhythmia in humans, yet; treatment has remained sub-optimal due to poor understanding of the underlying mechanisms. Cardiac alternans precede AF episodes, suggesting an important arrhythmia substrate. Recently, we demonstrated ventricular SERCA2a overexpression suppresses cardiac alternans and arrhythmias. Therefore, we hypothesized that atrial SERCA2a overexpression will decrease cardiac alternans and arrhythmias. Adult rat isolated atrial myocytes where divided into three treatment groups 1) Control, 2) SERCA2a overexpression (Ad.SERCA2a) and 3) SERCA2a inhibition (Thapsigargin, 1μm). Intracellular Ca2+ was measured using Indo-1AM and Ca2+ alternans (Ca-ALT) was induced with a standard ramp pacing protocol. As predicted, SR Ca2+ reuptake was enhanced with SERCA2a overexpression (poverexpression or inhibition when compared to controls (p = 0.73). In contrast, SERCA2a overexpression resulted in increased premature SR Ca2+ (SCR) release compared to control myocytes (28% and 0%, p overexpression in atrial myocytes can increase SCR, which may be arrhythmogenic.

  10. Overexpression of pig selenoprotein S blocks OTA-induced promotion of PCV2 replication by inhibiting oxidative stress and p38 phosphorylation in PK15 cells

    Science.gov (United States)

    Gan, Fang; Hu, Zhihua; Huang, Yu; Xue, Hongxia; Huang, Da; Qian, Gang; Hu, Junfa; Chen, Xingxiang; Wang, Tian; Huang, Kehe

    2016-01-01

    Porcine circovirus type 2 (PCV2) is the primary cause of porcine circovirus disease, and ochratoxin A (OTA)-induced oxidative stress promotes PCV2 replication. In humans, selenoprotein S (SelS) has antioxidant ability, but it is unclear whether SelS affects viral infection. Here, we stably transfected PK15 cells with pig pCDNA3.1-SelS to overexpress SelS. Selenium (Se) at 2 or 4 μM and SelS overexpression blocked the OTA-induced increases of PCV2 DNA copy number and infected cell numbers. SelS overexpression also increased glutathione (GSH), NF-E2-related factor 2 (Nrf2) mRNA, and γ-glutamyl-cysteine synthetase mRNA levels; decreased reactive oxygen species (ROS) levels; and inhibited p38 phosphorylation in PCV2-infected PK15 cells, regardless of OTA treatment. Buthionine sulfoximine reversed all of the above SelS-induced changes. siRNA-mediated SelS knockdown decreased Nrf2 mRNA and GSH levels, increased ROS levels, and promoted PCV2 replication in OTA-treated PK15 cells. These data indicate that pig SelS blocks OTA-induced promotion of PCV2 replication by inhibiting the oxidative stress and p38 phosphorylation in PK15 cells. PMID:26943035

  11. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab resistant HER2-overexpressing breast cancer cells

    Science.gov (United States)

    Wu, Yanyuan; Ginther, Charles; Kim, Juri; Mosher, Nicole; Chung, Seyung; Slamon, Dennis; Vadgama, Jaydutt V.

    2013-01-01

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors we created trastuzumab insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression, and show increase in EGFR. Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab resistant cells also promoted a parental EMT-like transition (epithelial to mesenchymal transition), increased N-cadherin, Twist, SLUG and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin, and decreased EGFR expression in trastuzumab resistant cells. Furthermore the EMT markers were decreased, E-cadherin was increased and the cell invasiveness was inhibited in response to the Wnt3 down-regulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist and SLUG. The cells were less sensitive to trastuzumab compared to parental SKBR3 and vector transfected cells. In summary, our data suggests that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2 overexpressing breast cancer cells. PMID:23071104

  12. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells.

    Science.gov (United States)

    Wu, Yanyuan; Ginther, Charles; Kim, Juri; Mosher, Nicole; Chung, Seyung; Slamon, Dennis; Vadgama, Jaydutt V

    2012-12-01

    To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.

  13. The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis

    Directory of Open Access Journals (Sweden)

    Ana Cardoso

    2018-03-01

    Full Text Available Inflammatory bowel disease encompasses a group of chronic-inflammatory conditions of the colon and small intestine. These conditions are characterized by exacerbated inflammation of the organ that greatly affects the quality of life of patients. Molecular mechanisms counteracting this hyperinflammatory status of the gut offer strategies for therapeutic intervention. Among these regulatory molecules is the anti-inflammatory cytokine interleukin (IL-10, as shown in mice and humans. Indeed, IL-10 signaling, particularly in macrophages, is essential for intestinal homeostasis. We sought to investigate the temporal profile of IL-10-mediated protection during chemical colitis and which were the underlying mechanisms. Using a novel mouse model of inducible IL-10 overexpression (pMT-10, described here, we show that mice preconditioned with IL-10 for 8 days before dextran sulfate sodium (DSS administration developed a milder colitic phenotype. In IL-10-induced colitic mice, Ly6C cells isolated from the lamina propria showed a decreased inflammatory profile. Because our mouse model leads to transcription of the IL-10 transgene in the bone marrow and elevated seric IL-10 concentration, we investigated whether IL-10 could imprint immune cells in a long-lasting way, thus conferring sustained protection to colitis. We show that this was not the case, as IL-10-afforded protection was only observed if IL-10 induction immediately preceded DSS-mediated colitis. Thus, despite the protection afforded by IL-10 in colitis, novel strategies are required, specifically to achieve long-lasting protection.

  14. Cissampelos sympodialis Eichl (Menispermaceae leaf extract induces interleukin-10-dependent inhibition of Trypanosoma cruzi killing by macrophages

    Directory of Open Access Journals (Sweden)

    Alexandre-Moreira M.S.

    2003-01-01

    Full Text Available The aqueous fraction of the ethanolic extract (AFL of Cissampelos sympodialis Eichl (Menispermaceae, popularly known as milona, has been shown to have both immunosuppressive and anti-inflammatory effects. In the present study we investigated the modulation of macrophage antimicrobicidal activity by in vitro treatment with the extract from C. sympodialis. Normal and thioglycolate-elicited mouse peritoneal macrophages were infected in vitro with the protozoan Trypanosoma cruzi DM28c clone. We observed that the AFL (used at doses ranging from 13 to 100 µg/ml increased T. cruzi growth and induced a 75% reduction in nitric oxide production. This inhibition could be mediated by the stimulation of macrophage interleukin-10 (IL-10 secretion since the in vitro treatment with the AFL stimulated IL-10 production by T. cruzi-infected macrophages. These results suggest that the anti-inflammatory effect of the AFL from C. sympodialis could be, at least in part, mediated by the inhibition of macrophage functions and that the inhibition of macrophage microbicidal activity induced by the C. sympodialis extract may be mediated by the decrease in macrophage function mediated by interleukin-10 production.

  15. Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10 Receptor-1 Mimetics.

    Directory of Open Access Journals (Sweden)

    Gloria Ruiz-Gómez

    Full Text Available Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1, which are relevant for its interaction with interleukin-10 (IL-10 has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands.

  16. Combination of interleukin-10 gene promoter polymorphisms with HLA-DRB1*15 allele is associated with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Majid Shahbazi

    2017-01-01

    Interpretation & conclusions: The IL-10 and HLA-DRB1*15 polymorphisms were associated with the susceptibility to MS in Iranian patients. Our results suggest that gene-gene interaction of IL-10 polymorphisms and HLA-DRB1*15 alleles may be important factors in the development of MS.

  17. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    Science.gov (United States)

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  18. Overexpression of N-terminal kinase like gene promotes tumorigenicity of hepatocellular carcinoma by regulating cell cycle progression and cell motility.

    Science.gov (United States)

    Wang, Jian; Liu, Ming; Chen, Leilei; Chan, Tim Hon Man; Jiang, Lingxi; Yuan, Yun-Fei; Guan, Xin-Yuan

    2015-01-30

    Amplification and overexpression of CHD1L is one of the most frequent genetic alterations in hepatocellular carcinoma (HCC). Here we found that one of CHD1L downstream targets, NTKL, was frequently upregulated in HCC, which was significantly correlated with vascular invasion (P = 0.012) and poor prognosis (P = 0.050) of HCC. ChIP assay demonstrated the binding of CHD1L to the promoter region of NTKL. QRT-PCR study showed that the expression of NTKL positively correlated with CHD1L expression in both clinical samples and cell lines. Functional study found that NTKL had strong oncogenic roles, including increased cell growth, colony formation in soft agar, and tumor formation in nude mice. Further study found that NTKL could promote G1/S transition by decreasing P53 and increasing CyclinD1 expressions. NTKL overexpression could accelerate the mitotic exit and chromosome segregation, which led to the cytokinesis failure and subsequently induced apoptosis. NTKL also regulated cell motility by facilitating philopodia and lamellipodia formation through regulating F-actin reorganization and the phosphorylation of small GTPase Rac1/cdc42. Using co-IP and mass spectrometry approach, we identified the large GTPase dynamin2 as an interacting protein of NTKL, which might be responsible for the phenotype alterations caused by NTKL overexpression, such as cytokinesis failure, increased cell motility and abnormal of cell division.

  19. [Changes in the interleukin-6 and interleukin-10 concentrations in the blood plasma of miners working in deep coal mines].

    Science.gov (United States)

    Plotkin, V Ia; Rebrov, B A; Belkina, E B

    2000-03-01

    Blood plasma levels of interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured in 45 miners working in a deep coal mine immediately after work shift using an immunoenzyme technique. The highest IL-6 level was recorded in those miners engaged in hard work under most adverse conditions of underground workings--it was found to exceed the control values. The same group of workers demonstrated the lowest level of IL-10 that differed from the control value. Miners aged between 41 to 50 years working in a coal mine, their underground service duration 16 to 20 years, displayed a decline in the level of IL-6. The coal mine miners with the 11- to 15-year service duration revealed an increase in the level of IL-10.

  20. Overexpression of transcription factor AP-2 stimulates the PA promoter of the human uracil-DNA glycosylase (UNG) gene through a mechanism involving derepression

    DEFF Research Database (Denmark)

    Aas, Per Arne; Pena Diaz, Javier; Liabakk, Nina Beate

    2009-01-01

    The PA promoter in the human uracil-DNA glycosylase gene (UNG) directs expression of the nuclear form (UNG2) of UNG proteins. Using a combination of promoter deletion and mutation analyses, and transient transfection of HeLa cells, we show that repressor and derepressor activities are contained...... within the region of DNA marked by PA. Footprinting analysis and electrophoretic mobility shift assays of PA and putative AP-2 binding regions with HeLa cell nuclear extract and recombinant AP-2alpha protein indicate that AP-2 transcription factors are central in the regulated expression of UNG2 m......RNA. Chromatin immunoprecipitation with AP-2 antibody demonstrated that endogenous AP-2 binds to the PA promoter in vivo. Overexpression of AP-2alpha, -beta or -gamma all stimulated expression from a PA-luciferase reporter gene construct approximately 3- to 4-fold. Interestingly, an N-terminally truncated AP-2...

  1. High leukocyte count and interleukin-10 predict high on-treatment-platelet-reactivity in patients treated with clopidogrel.

    Science.gov (United States)

    Osmancik, Pavel; Paulu, Petra; Tousek, Petr; Kocka, Viktor; Widimsky, Petr

    2012-05-01

    According to recent trials, a significant number of patients do not have a completely effective response to clopidogrel. The aim of the study was to evaluate the rate of clopidogrel resistance in the context of important clinical characteristics and to specifically determine the relation between clopidogrel efficacy and biomarkers of inflammation. Consecutive non-selected patients following PCI were enrolled into the study. All patients received a loading dose of 600 mg of clopidogrel. The effect of clopidogrel was assessed using the VerifyNow assay 24 h after clopidogrel administration, clopidogrel resistance was defined as PRU ≥ 240. At the same time, standard parameters of biochemistry and hematology, the concentration of anti-inflammatory cytokine interleukin-10 and of soluble CD40 ligand, were measured. 378 patients were enrolled. 243 (64.3%) patients were responders (R) and 135 patients (35.7%) were non-responders (NR). Non-responders were older (R 65.7 ± 13.3, NR 69.8 ± 11.5, P leukocyte count (R 9.8 ± 3.5, NR 11.7 ± 12.8, P leukocytes and IL-10 were associated with an increased risk for being a non-responder. Older, obese patients, especially women had a higher risk of high on-treatment-platelet-reactivity. Higher concentrations of leukocytes and interleukin-10 were also an important factor associated with the risk of low clopidogrel responsiveness.

  2. The MsPRP2 promoter enables strong heterologous gene expression in a root-specific manner and is enhanced by overexpression of Alfin 1.

    Science.gov (United States)

    Winicov, Ilga; Valliyodan, Babu; Xue, Lingru; Hoober, J Kenneth

    2004-10-01

    Promoter specificity and efficiency of utilization are essential for endogenous and transgene expression. Selective root expression remains to be defined in terms of both promoter elements and transcription factors that provide high levels of ubiquitous expression. We characterized expression from the MsPRP2 promoter with the green fluorescent protein (GFP) reporter transgene in alfalfa (Medicago sativa) and found that a promoter fragment (+1 to -652 bp) retained the root and callus specificity of the endogenous MsPRP2 gene and hence this promoter fragment contains elements necessary for root-specific expression. The strong ubiquitous expression obtained from this promoter was comparable to that of the CaMV 35S promoter in roots and was enhanced by transgenic overexpression of Alfin 1, a root- and callus-specific transcription factor in alfalfa. No transgenic expression was obtained in leaves with this promoter in the presence or absence of Alfin 1. The increased expression of GFP in alfalfa containing the Alfin 1 transgene confirms the function of Alfin 1 binding sites in the MsPRP2 promoter fragment and also indicates that Alfin 1 concentrations are limiting for maximal expression in calli and roots. These findings characterize the MsPRP2 promoter as a novel root- and callus-specific promoter of plant origin that can be used as an effective tool for strong root-directed gene expression. In addition, we have demonstrated that the signal sequence of MsPRP2 can be used for efficient secretion of transgene products from callus and roots.

  3. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Liang Jiang

    Full Text Available The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP, Bombyx mori A4 promoter (A4P, hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG. After oral inoculation of BmNPV with 3 × 10(5 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity.

  4. Resistance to BmNPV via Overexpression of an Exogenous Gene Controlled by an Inducible Promoter and Enhancer in Transgenic Silkworm, Bombyx mori

    Science.gov (United States)

    Jiang, Liang; Cheng, Tingcai; Zhao, Ping; Yang, Qiong; Wang, Genhong; Jin, Shengkai; Lin, Ping; Xiao, Yang; Xia, Qingyou

    2012-01-01

    The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP), Bombyx mori A4 promoter (A4P), hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG). After oral inoculation of BmNPV with 3 × 105 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity. PMID:22870254

  5. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    Science.gov (United States)

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  6. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1.

    Science.gov (United States)

    Yao, Jie; Qin, Li; Miao, Sen; Wang, Xiangshan; Wu, Xuejian

    2016-09-01

    There is increasing evidence that microRNAs (miRs) are implicated in tumor development and progression; however, their specific roles in osteosarcoma are not well understood. The aim of the present study was to investigate the role of miR-506 in the pathogenesis of osteosarcoma. The expression levels of miR-506 and astrocyte elevated gene-1 (AEG-1) mRNA were detected using quantitative polymerase chain reaction, and the protein levels of AEG-1, β-catenin, c-myc and cyclin D1 were determined using western blot analysis. The effects of miR-506 and AEG-1 on cell viability, colony forming ability and apoptosis were assessed using MTT assay, colony formation assay, and flow cytometry, respectively. Lucifer reporter assays were used to demonstrate whether AEG-1 is a direct target of miR-506. The present study identified that miR-506 was downregulated in osteosarcoma tissues and cells. Overexpression of miR-506 suppressed the proliferation and induced apoptosis in osteosarcoma cells in vitro and inhibited tumor formation in vivo . Overexpression of miR-506 significantly inhibited the luciferase activity of AEG-1 with a wild-type 3'-untranslated region, providing clear evidence that AEG-1 was a direct and functional downstream target of miR-506. Similar to the overexpression of miR-506, downregulation of AEG-1 lead to an inhibitory effect on osteosarcoma in vitro . Furthermore, overexpression of miR-506 or downregulation of AEG-1 inhibited the Wnt/β-catenin signaling pathway, and inhibition of this pathway by β-catenin small interfering RNA or CGP049090, a small molecule inhibitor, suppressed cell proliferation and induced apoptosis in vitro . Overall, the present data indicated that miR-506 functions as a tumor suppressor by targeting AEG-1 in osteosarcoma via the regulation of the Wnt/β-catenin signaling pathway.

  7. MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ardalan Khales, Sima; Ebrahimi, Ehsan; Jahanzad, Eisa; Ardalan Khales, Sahar; Forghanifard, Mohammad Mahdi

    2018-01-15

    Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with considerable morbidity and mortality. Invasion and metastasis of HNSCC is a complex process involving multiple molecules and signaling pathways. Twist Family BHLH Transcription Factor 1 (TWIST1) and Mastermind-like 1 (MAML1) are essential in induction of epithelial-mesenchymal transition through direct regulation of implicated molecules in cellular adhesion, migration and invasion. Our aim in this study was to assess the clinical significance of MAML1 and TWIST1 expression in HNSCC, and elucidate the probable correlation between these genes to exhibit their possible associations with progression and metastasis of the disease. The gene expression profile of MAML1 and TWIST1 was assessed in fresh tumoral compared to distant tumor-free tissues of 55 HNSCC patients using quantitative real-time Polymerase chain reaction (PCR). Significant overexpression of MAML1 and TWIST1 mRNA was observed in 49.1% and 38.2% (P ˂ 0.05) of tumor specimens, respectively. Overexpression of MAML1 was associated with vascular invasion (P = 0.048). Concomitant overexpression of MAML1 and TWIST1 was significantly correlated to each other (P = 0.004). Co-overexpression of the genes was significantly correlated to the various clinicopathological indices of poor prognosis including depth of tumor invasion (P < 0.01), lymphatic invasion and grade of tumor cell differentiation (P < 0.05). Significant correlation between MAML1 and TWIST1 in HNSCC was revealed. This study was the first report elucidating MAML1 clinical relevance in HNSCC. These new findings suggest an oncogenic role for concomitant expression of MAML1 and TWIST1 genes in HNSCC invasion and metastasis. © 2018 John Wiley & Sons Australia, Ltd.

  8. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression.

    Science.gov (United States)

    Alaña, Lide; Sesé, Marta; Cánovas, Verónica; Punyal, Yolanda; Fernández, Yolanda; Abasolo, Ibane; de Torres, Inés; Ruiz, Cristina; Espinosa, Lluís; Bigas, Anna; Y Cajal, Santiago Ramón; Fernández, Pedro L; Serras, Florenci; Corominas, Montserrat; Thomson, Timothy M; Paciucci, Rosanna

    2014-03-31

    PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this

  9. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology.

    Science.gov (United States)

    Swiderski, Kristy; Martins, Karen Janet Bernice; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Gehrig, Stefan Martin; Baum, Dale Michael; Brenmoehl, Julia; Chau, Luong; Koopman, René; Gregorevic, Paul; Metzger, Friedrich; Hoeflich, Andreas; Lynch, Gordon Stuart

    The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.

    Science.gov (United States)

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-09-01

    investigations suggested that overexpression of ANG2 might increase OSCC metastasis by promoting angiogenesis in nude mice. This stimulatory effect could be achieved by inducing abnormal EMT and by reducing apoptosis and increasing proliferation of cells.

  11. Suppression of WIF-1 through promoter hypermethylation causes accelerated proliferation of the aryl hydrocarbon receptor (AHR) overexpressing MCF10AT1 breast cancer cells

    International Nuclear Information System (INIS)

    Wu, Dalei; Wong, Patrick; Li, Wen; Vogel, Christoph F.; Matsumura, Fumio

    2011-01-01

    Highlights: → 5-Aza-2'-deoxycytidine (AZ) causes proliferation suppression and ERα recovery. → AZ down-regulates Wnt/β-catenin pathway mainly by increasing WIF-1 expression. → Both ERα and AhR have some effects on DNA methylation in breast cancer cells. → Artificial overexpression of ERα in ER negative cells increases WIF-1 expression. → WIF-1 promoter hypermethylation is one of the major causes for accelerated proliferation. -- Abstract: The cause for increased cell proliferation in AHR overexpressing breast cancer cells still remains unknown. Here we studied the molecular basis of aggressive cell proliferation of an AHR overexpressing and ERα functionally down-regulated MCF10AT1 cell line, designated as P20E, in comparison to a matched sub-line, P20C with normal AHR expression and ERα function. We found that a 4-day treatment of P20E cells with 5-aza-2'-deoxycytidine (AZ) caused a significant suppression of cell proliferation. Such an effect of AZ was accompanied with the significant recovery of ERα function. Among diagnostic markers of AZ-induced cellular changes we found conspicuous up-regulation of mRNA expression of Wnt inhibitory factor-1 (WIF-1), particularly in P20E. The possibility of AZ-induced demethylation on the promoter of WIF-1 gene was confirmed through methylation specific PCR assay. Such AZ-induced changes in P20E cells were also accompanied with the decrease in the binding of nuclear proteins to the 32 P labeled TRE (TCF response element) and the reduced accumulation of β-catenin protein in the cell nucleus, indicating the importance of Wnt/β-catenin pathway in maintaining the increased cell proliferation in P20E line over P20C line. The importance of WIF-1 in this regard has been validated by transfecting cells with siRNA against WIF-1, which caused an increase in cell proliferation. Moreover, artificial overexpression of ERα in both P20E as well as MDA-MB-231 cells increased the mRNA expression of WIF-1. Together these

  12. Formation of Foamy Macrophages by Tuberculous Pleural Effusions Is Triggered by the Interleukin-10/Signal Transducer and Activator of Transcription 3 Axis through ACAT Upregulation

    Directory of Open Access Journals (Sweden)

    Melanie Genoula

    2018-03-01

    Full Text Available The ability of Mycobacterium tuberculosis (Mtb to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM. Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT. Importantly, interleukin-10 (IL-10 depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10−/− mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic

  13. Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1.

    Science.gov (United States)

    Wang, Minghao; Dong, Qianze; Wang, Yunjie

    2016-08-01

    Rab23 overexpression has been implicated in several human cancers. However, its biological roles and molecular mechanism in astrocytoma have not been elucidated. The aim of this study is to explore clinical significance and biological roles of Rab23 in astrocytoma. We observed negative Rab23 staining in normal astrocytes and positive staining in 39 out of 86 (45 %) astrocytoma specimens using immunohistochemistry. The positive rate of Rab23 was higher in grades III and IV (56.5 %, 26/46) than grades I + II astrocytomas (32.5 %, 13/40, p Rac1 activity. Treatment of transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. In conclusion, Rab23 serves as an important oncoprotein in human astrocytoma by regulating cell invasion and migration through Rac1 activity.

  14. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: weixing22@163.com [Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 (China); Institute of Cardiovascular Disease, Department of Pathophysiology, School of Medicine, University of South China, 28 Changsheng Xi Road, Hengyang, Hunan 421001 (China); Song, Lan; Jiang, Lei; Wang, Guiliang; Luo, Xinjing; Zhang, Bin [Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 (China); Xiao, Xianzhong, E-mail: xianzhongxiao@hotmail.com [Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 (China)

    2010-03-19

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  15. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10

    Directory of Open Access Journals (Sweden)

    Flotte Terence R

    2005-02-01

    Full Text Available Abstract Despite many decades of drug development, effective therapies for neuropathic pain remain elusive. The recent recognition of spinal cord glia and glial pro-inflammatory cytokines as important contributors to neuropathic pain suggests an alternative therapeutic strategy; that is, targeting glial activation or its downstream consequences. While several glial-selective drugs have been successful in controlling neuropathic pain in animal models, none are optimal for human use. Thus the aim of the present studies was to explore a novel approach for controlling neuropathic pain. Here, an adeno-associated viral (serotype II; AAV2 vector was created that encodes the anti-inflammatory cytokine, interleukin-10 (IL-10. This anti-inflammatory cytokine is known to suppress the production of pro-inflammatory cytokines. Upon intrathecal administration, this novel AAV2-IL-10 vector was successful in transiently preventing and reversing neuropathic pain. Intrathecal administration of an AAV2 vector encoding beta-galactosidase revealed that AAV2 preferentially infects meningeal cells surrounding the CSF space. Taken together, these data provide initial support that intrathecal gene therapy to drive the production of IL-10 may prove to be an efficacious treatment for neuropathic pain.

  16. RAGE-Mediated Suppression of Interleukin-10 Results in Enhanced Mortality in a Murine Model of Acinetobacter baumannii Sepsis.

    Science.gov (United States)

    Noto, Michael J; Becker, Kyle W; Boyd, Kelli L; Schmidt, Ann Marie; Skaar, Eric P

    2017-03-01

    The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor capable of recognizing multiple pathogen-associated and danger-associated molecular patterns that contributes to the initiation and potentiation of inflammation in many disease processes. During infection, RAGE functions to either exacerbate disease severity or enhance pathogen clearance depending on the pathogen studied. Acinetobacter baumannii is an opportunistic human pathogen capable of causing severe infections, including pneumonia and sepsis, in impaired hosts. The role of RAGE signaling in response to opportunistic bacterial infections is largely unknown. In murine models of A. baumannii pneumonia, RAGE signaling alters neither inflammation nor bacterial clearance. In contrast, RAGE -/- mice systemically infected with A. baumannii exhibit increased survival and reduced bacterial burdens in the liver and spleen. The increased survival of RAGE -/- mice is associated with increased circulating levels of the anti-inflammatory cytokine interleukin-10 (IL-10). Neutralization of IL-10 in RAGE -/- mice results in decreased survival during systemic A. baumannii infection that mirrors that of wild-type (WT) mice, and exogenous IL-10 administration to WT mice enhances survival in this model. These findings demonstrate the role for RAGE-dependent IL-10 suppression as a key modulator of mortality from Gram-negative sepsis. Copyright © 2017 American Society for Microbiology.

  17. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events.

    Science.gov (United States)

    Bhattacharyya, S; Ghosh, S; Jhonson, P L; Bhattacharya, S K; Majumdar, S

    2001-03-01

    Leishmania donovani, an intracellular protozoan parasite, challenges host defense mechanisms by impairing the signal transduction of macrophages. In this study we investigated whether interleukin-10 (IL-10)-mediated alteration of signaling events in a murine model of visceral leishmaniasis is associated with macrophage deactivation. Primary in vitro cultures of macrophages infected with leishmanial parasites markedly elevated the endogenous release of IL-10. Treatment with either L. donovani or recombinant IL-10 (rIL-10) inhibited both the activity and expression of the Ca2+-dependent protein kinase C (PKC) isoform. However, preincubation with neutralizing anti-IL-10 monoclonal antibody (MAb) restored the PKC activity in the parasitized macrophage. Furthermore, we observed that coincubation of macrophages with rIL-10 and L. donovani increased the intracellular parasite burden, which was abrogated by anti-IL-10 MAb. Consistent with these observations, generation of superoxide (O2-) and nitric oxide and the release of murine tumor necrosis factor-alpha were attenuated in response to L. donovani or rIL-10 treatment. On the other hand, preincubation of the infected macrophages with neutralizing anti-IL-10 MAb significantly blocked the inhibition of nitric oxide and murine tumor necrosis factor-alpha release by the infected macrophages. These findings imply that infection with L. donovani induces endogenous secretion of murine IL-10, which in turn facilitates the intracellular survival of the protozoan and orchestrates several immunomodulatory roles via selective impairment of PKC-mediated signal transduction.

  18. Bee Venom Acupuncture Reduces Interleukin-6, Increases Interleukin-10, and Induces Locomotor Recovery in a Model of Spinal Cord Compression.

    Science.gov (United States)

    Nascimento de Souza, Raquel; Silva, Fernanda Kohn; Alves de Medeiros, Magda

    2017-06-01

    Spinal cord injuries (SCIs) initiate a series of molecular and cellular events in which inflammatory responses can lead to major neurological dysfunctions. The present study aims to investigate whether bee venom (BV) acupuncture applied at acupoints ST36 (Zusanli) and GV3 (Yaoyangquan) could minimize locomotor deficits and the magnitude of neural tissue losses, and change the balance between pro- and anti-inflammatory cytokines after an SCI by compression. Wistar rats were subjected to an SCI model by compression in which a 2-French Fogarty embolectomy catheter was inflated in the extradural space. The effects of BV acupuncture, in which 20 μL of BV diluted in saline (0.08 mg/kg) was injected at acupoints GV3 and ST36 [BV(ST36+GV3)-SCI] was compared with BV injected at nonacupoints [BV(NP)-SCI] and with no treatment [group subjected only to SCI (CTL-SCI)]. The BV(ST36+GV3)-SCI group showed a significant improvement in the locomotor performance and a decrease of lesion size compared with the controls. BV acupuncture at the ST36 + GV3 increased the expression of interleukin-10 (anti-inflammatory) at 6 hours and reduced the expression of interleukin-6 (proinflammatory) at 24 hours after SCI compared with the controls. Our results suggest that BV acupuncture can reduce neuroinflammation and induce recovery in the SCI compression model. Copyright © 2017. Published by Elsevier B.V.

  19. The Effect of Levothyroxine on Serum Levels of Interleukin 10 and Interferon-gamma in Rat Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Cobra Payghani

    2017-01-01

    Full Text Available Background: There is an increase in inflammatory and a reduction in anti-inflammatory cytokines in multiple sclerosis (MS. Considering the role of thyroid hormones in the development and regulation of both neural and immune systems, the aim of this study was to evaluate the effects of levothyroxine on serum concentrations of interleukin-10 (IL-10 and interferon gamma (IFN-γ in animal models of MS. Materials and Methods: To induce demyelination in male Wistar rats, lysolecithin was injected into the optic chiasm. Then levothyroxine was injected intraperitoneally (20, 50, and 100 μg/kg for 21 days. Serum levels of cytokines were measured by enzyme-linked immunosorbent assay at 7, 14, and 21 days after that. Results: The results showed that injection of lysolecithin to the optic chiasm only increased serum concentrations of IL-10 compared to the sham group (P < 0.05 at 7th day, but this increase was prevented by all doses of levothyroxine. IFN-γ was decreased significantly (P < 0.001 21 days after. Comparing to the sham group at all sampling time and with respect to the MS group at the days 7 and 21, levothyroxine decreased serum concentrations of IFN-γ significantly. Conclusion: The results showed that thyroid hormones probably could produce protective effects against induced demyelination through affecting immune responses.

  20. Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation.

    Science.gov (United States)

    Bhatlekar, Seema; Viswanathan, Vignesh; Fields, Jeremy Z; Boman, Bruce M

    2018-02-01

    Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC. © 2017 Wiley Periodicals, Inc.

  1. BAFF overexpression increases lymphocytic infiltration in Sjögren's target tissue, but only inefficiently promotes ectopic B-cell differentiation.

    Science.gov (United States)

    Ding, Jian; Zhang, Wei; Haskett, Scott; Pellerin, Alex; Xu, Shanqin; Petersen, Britta; Jandreski, Luke; Hamann, Stefan; Reynolds, Taylor L; Zheng, Timothy S; Mingueneau, Michael

    2016-08-01

    B-cell activating factor (BAFF) levels are increased in rheumatoid arthritis, lupus and primary Sjögren's syndrome (pSS). However, BAFF contribution to pathogenesis is not completely understood. In pSS, immune infiltration of the salivary and lacrimal glands leads to xerostomia and xerophtalmia. Glandular B cell hyperactivation, differentiation into germinal center (GC)-like structures and plasma cell accumulation are histopathological hallmarks that were attributed to increased BAFF. Here, we experimentally tested this hypothesis by overexpressing BAFF in a mouse model of pSS. BAFF overexpression enhanced lymphocytic infiltration and MHCII expression on B cells. Increased BAFF also induced B cell differentiation into GC B cells within the autoimmune target tissue. However, even in these conditions, GC B cells only accounted for BAFF is not efficiently promoting ectopic GC formation in pSS and warranting further investigation of therapeutics targeting both BAFF and the related TNF-family member APRIL. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis.

    Science.gov (United States)

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B; da Motta, Leonardo L; Klamt, Fabio; Ibañez, Irene L; Durán, Hebe

    2016-07-05

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.

  3. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    Science.gov (United States)

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  4. Overexpression of CaTLP1, a putative transcription factor in chickpea (Cicer arietinum L.), promotes stress tolerance.

    Science.gov (United States)

    Wardhan, Vijay; Jahan, Kishwer; Gupta, Sonika; Chennareddy, Srinivasarao; Datta, Asis; Chakraborty, Subhra; Chakraborty, Niranjan

    2012-07-01

    Dehydration is the most crucial environmental constraint on plant growth and development, and agricultural productivity. To understand the underlying mechanism of stress tolerance, and to identify proteins for improving such important trait, we screened the dehydration-responsive proteome of chickpea and identified a tubby-like protein, referred to as CaTLP1. The CaTLP1 was found to predominantly bind to double-stranded DNA but incapable of transcriptional activation. We investigated the gene structure and organization and demonstrated, for the first time, that CaTLP1 may be involved in osmotic stress response in plants. The transcripts are strongly expressed in vegetative tissues but weakly in reproductive tissues. CaTLP1 is upregulated by dehydration and high salinity, and by treatment with abscisic acid (ABA), suggesting that its stress-responsive function might be associated with ABA-dependent network. Overexpression of CaTLP1 in transgenic tobacco plants conferred dehydration, salinity and oxidative stress tolerance along with improved shoot and root architecture. Molecular genetic analysis showed differential expression of CaTLP1 under normal and stress condition, and its preferential expression in the nucleus might be associated with enhanced stress tolerance. Our work suggests important roles of CaTLP1 in stress response as well as in the regulation of plant development.

  5. Eukaryotic translation initiation factor 3, subunit C is overexpressed and promotes cell proliferation in human glioma U-87 MG cells.

    Science.gov (United States)

    Hao, Jinmin; Liang, Chaohui; Jiao, Baohua

    2015-06-01

    Disrupted protein translation is prevalent in tumours. Eukaryotic translation initiation factors (eIFs) were found to play an important role in various tumours. However, the involvement of eIFs in glioma remains to be elucidated. The present study explored the expression and the role of eIF 3, subunit C (eIF3c) in human glioma. The expression of eIF3c in glioma tissues was evaluated by immunohistochemistry. The impact of eIF3c inhibition on U-87 MG was explored in vitro and in vivo by lentivirus-mediated siRNA targeting eIF3c. The results revealed that overexpression of eIF3c was present in glioma tissues. Knockdown of eIF3c significantly impaired cell proliferation and colony formation, further induced cell cycle arrest and apoptosis in the U-87 MG cell line. Furthermore, tumoursphere formation in the U-87 MG glioma xenograft model was blocked by eIF3c knockdown. The involvement of eIF3c in the tumorigenesis of glioma was confirmed, suggesting eIF3c may be a promising therapy target in human glioma.

  6. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  7. Selection of Arabidopsis mutants overexpressing genes driven by the promoter of an auxin-inducible glutathione S-transferase gene

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Pinas, J.E.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1999-01-01

    Transgenic arabidopsis plants were isolated that contained a T-DNA construct in which the promoter of an auxin-inducible glutathione S-transferase (GST) gene from tobacco was fused to the kanamycin resistance (nptII) as well as to the β-glucuronidase (gusA) reporter gene. Subsequently, seeds were

  8. Interleukin 10-Dominant Immune Response and Increased Risk of Cutaneous Leishmaniasis After Natural Exposure to Lutzomyia intermedia Sand Flies.

    Science.gov (United States)

    Carvalho, Augusto M; Cristal, Juqueline R; Muniz, Aline C; Carvalho, Lucas P; Gomes, Regis; Miranda, José C; Barral, Aldina; Carvalho, Edgar M; de Oliveira, Camila I

    2015-07-01

    Leishmaniasis is caused by parasites transmitted to the vertebrate host by infected sand flies. During transmission, the vertebrate host is also inoculated with sand fly saliva, which exerts powerful immunomodulatory effects on the host's immune response. We conducted a prospective cohort analysis to characterize the human immune response to Lutzomyia intermedia saliva in 264 individuals, from an area for cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Antibodies were found in 150 individuals (56.8%); immunoglobulin G1 and G4 were the predominant subclasses. Recall responses to salivary gland sonicate showed elevated production of interleukin 10 (IL-10), interleukin 13, interferon γ, CXCL9, and CCL2 compared with controls. CD4(+)CD25(+) T cells, including Foxp3(+) cells, were the main source of IL-10. L. braziliensis replication was increased (P < .05) in macrophages cocultured with saliva-stimulated lymphocytes from exposed individuals and addition of anti-IL-10 reverted this effect. Positive correlation between antibody response to saliva and cellular response to Leishmania was not found. Importantly, individuals seropositive to saliva are 2.1 times more likely to develop CL (relative risk, 2.1; 95% confidence interval, 1.07-4.2; P < .05). Exposure to L. intermedia sand flies skews the human immune response, facilitating L. braziliensis survival in vitro, and increases the risk of developing CL. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Kvist, Peter Helding; Hansen, Axel Kornerup; Holm, Thomas Lindebo

    2014-07-01

    Piroxicam administration is a method for induction of enterocolitis in interleukin-10 knockout (IL-10 k.o.) mice. The piroxicam-accelerated colitis (PAC) IL-10 k.o. model combines a dysregulated immune response against the gut microbiota with a decreased mucosal integrity. The predictive validity and pathogenic mechanisms of the model have not been thoroughly investigated. In this study, IL-10 k.o. mice received piroxicam in the chow, and model qualification was performed by examining the efficacy of prophylactic anti-IL-12/23p40 monoclonal antibody (mAb), anti-TNFα mAb, cyclosporine A (CsA) and oral prednisolone treatment. To evaluate cell involvement in the disease pathogenesis, specific cell subsets were depleted by treatment with anti-CD4 mAb, anti-CD8 mAb or clodronate-encapsulated liposomes. T cell receptor co-stimulation was blocked by CTLA4-Ig. Cytokine profiling ELISAs and calprotectin immunohistochemistry were performed on colon tissue. Treatments with anti-IL-12/23p40 mAb and CsA prevented disease in PAC IL-10 k.o. mice and reduced IFNγ, IL-17A, MPO and calprotectin levels in colon. Anti-TNFα mAb treatment caused amelioration of selected clinical parameters. No effect of prednisolone was detected. Depletion of CD8(+) cells tended to increase mortality, whereas treatment with anti-CD4 mAb or CTLA4-Ig had no significant effect on disease development. Clodronate liposome treatment induced a loss of body weight; nevertheless macrophage depletion was associated with a significant reduction in colonic pathology. In conclusion, reference drugs with known efficacy in severe inflammatory bowel disease were efficacious in the PAC IL-10 k.o. model. Our data indicate that in this model macrophages are a main driver of colitis, whereas CD4(+) cells are not. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Preliminary characterisation of tumor necrosis factor alpha and interleukin-10 responses to Chlamydia pecorum infection in the koala (Phascolarctos cinereus.

    Directory of Open Access Journals (Sweden)

    Marina Mathew

    Full Text Available Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus. An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα and anti-inflammatory interleukin 10 (IL10, in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.

  11. Preliminary characterisation of tumor necrosis factor alpha and interleukin-10 responses to Chlamydia pecorum infection in the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Mathew, Marina; Beagley, Kenneth W; Timms, Peter; Polkinghorne, Adam

    2013-01-01

    Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus). An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα) and anti-inflammatory interleukin 10 (IL10), in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.

  12. Expression of Tumor Necrosis Factor Receptor 2 Characterizes TLR9-Driven Formation of Interleukin-10-Producing B Cells

    Directory of Open Access Journals (Sweden)

    Olga Ticha

    2018-01-01

    Full Text Available B cell-derived interleukin-10 (IL-10 production has been described as a hallmark for regulatory function in B lymphocytes. However, there is an ongoing debate on the origin of IL-10-secreting B cells and lack of specific surface markers has turned into an important obstacle for studying human B regulatory cells. In this study, we propose that tumor necrosis factor receptor 2 (TNFR2 expression can be used for enrichment of IL-10-secreting B cells. Our data confirm that IL-10 production can be induced by TLR9 stimulation with CpG ODN and that IL-10 secretion accompanies differentiation of peripheral blood B cells into plasma blasts. We further show that CpG ODN stimulation induces TNFR2 expression, which correlates with IL-10 secretion and terminal differentiation. Indeed, flow cytometric sorting of TNFR2+ B cells revealed that TNFR2+ and TNFR2− fractions correspond to IL-10+ and IL-10− fractions, respectively. Furthermore, CpG-induced TNFR2+ B cells were predominantly found in the IgM+ CD27+ B cell subset and spontaneously released immunoglobulin. Finally, our data corroborate the functional impact of TNFR2 by demonstrating that stimulation with a TNFR2 agonist significantly augments IL-10 and IL-6 production in B cells. Altogether, our data highlight a new role for TNFR2 in IL-10-secreting human B lymphocytes along with the potential to exploit this finding for sorting and isolation of this currently ill-defined B cell subset.

  13. Polymorphisms in the gene encoding bovine interleukin-10 receptor alpha are associated with Mycobacterium avium ssp. paratuberculosis infection status

    Directory of Open Access Journals (Sweden)

    Kelton David F

    2010-04-01

    Full Text Available Abstract Background Johne's disease is a chronic inflammatory bowel disease (IBD of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP. Since this pathogen has been implicated in the pathogenesis of human IBDs, the goal of this study was to assess whether single nucleotide polymorphism (SNPs in several well-known candidate genes for human IBD are associated with susceptibility to MAP infection in dairy cattle. Methods The bovine candidate genes, interleukin-10 (IL10, IL10 receptor alpha/beta (IL10RA/B, transforming growth factor beta 1 (TGFB1, TGFB receptor class I/II (TGFBR1/2, and natural resistance-associated macrophage protein 1 (SLC11A1 were sequenced for SNP discovery using pooled DNA samples, and the identified SNPs were genotyped in a case-control association study comprised of 242 MAP negative and 204 MAP positive Holstein dairy cattle. Logistic regression was used to determine the association of SNPs and reconstructed haplotypes with MAP infection status. Results A total of 13 SNPs were identified. Four SNPs in IL10RA (984G > A, 1098C > T, 1269T > C, and 1302A > G were tightly linked, and showed a strong additive and dominance relationship with MAP infection status. Haplotypes AGC and AAT, containing the SNPs IL10RA 633C > A, 984G > A and 1185C > T, were associated with an elevated and reduced likelihood of positive diagnosis by serum ELISA, respectively. Conclusions SNPs in IL10RA are associated with MAP infection status in dairy cattle. The functional significance of these SNPs warrants further investigation.

  14. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liyan; Liu, Xiaolin [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zhang, Yuelin [Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong (China); Liang, Xiaoting; Ding, Yue [Pudong District Clinical Translational Medical Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai (China); Xu, Yan; Fang, Zhen [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zhang, Fengxiang, E-mail: njzfx6@njmu.edu.cn [Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2016-05-15

    Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.

  15. Overexpression of c-met in oral SCC promotes hepatocyte growth factor-induced disruption of cadherin junctions and invasion.

    Science.gov (United States)

    Murai, M; Shen, X; Huang, L; Carpenter, W M; Lin, C S; Silverman, S; Regezi, J; Kramer, R H

    2004-10-01

    Hepatocyte growth factor (HGF), the ligand for the c-met proto-oncogene product, is a multifunctional protein that enhances tumor cell motility, extracellular matrix invasion, and mitogenic or morphogenic activities of various cell types. In this study we examined the expression of the c-Met receptor in human oral squamous cell carcinoma (SCC) in vivo and in vitro to explore its relationship to tumor progression and invasiveness. Biopsy specimens of human oral SCC were immunohistochemically stained for c-Met. Nearly all primary oral SCC lesions and lymph node metastases consistently showed intense staining for c-Met, whereas normal oral mucosa showed faint to negative staining only on basal cells. In a panel of human oral SCC cell lines, we found a strong correlation between the levels of c-Met expression and the cells' response to HGF in motility and invasion assays. Sensitivity to HGF also correlated with the expression of the c-Met 9-kb mRNA. When the non-invasive HOC-605 cell line, which expresses a low level of c-Met receptor, was transfected with an expression plasmid containing human c-met cDNA, the transfectant cells showed motile and invasive responses to HGF. Immunostaining and immunoprecipitation studies demonstrated that E-cadherin and c-Met were physically associated at SCC cell-cell junctions, suggesting a direct role for c-Met in induction of junctional integrity. Importantly, HGF caused a rapid elevation of unbound beta-catenin, suggesting its availability for nuclear signal transduction and triggering of cell motility and invasiveness. Thus, overexpression of c-Met may facilitate disruption of E-cadherin junctions. Collectively, these results suggest that HGF/c-Met signaling is a common event in oral SCC that may trigger phenotype modulation and enhanced invasion and metastasis.

  16. Promoting scopolamine biosynthesis in transgenic Atropa belladonna plants with pmt and h6h overexpression under field conditions.

    Science.gov (United States)

    Xia, Ke; Liu, Xiaoqiang; Zhang, Qiaozhuo; Qiang, Wei; Guo, Jianjun; Lan, Xiaozhong; Chen, Min; Liao, Zhihua

    2016-09-01

    Atropa belladonna is one of the most important plant sources for producing pharmaceutical tropane alkaloids (TAs). T1 progeny of transgenic A. belladonna, in which putrescine N-methyltransferase (EC. 2.1.1.53) from Nicotiana tabacum (NtPMT) and hyoscyamine 6β-hydroxylase (EC. 1.14.11.14) from Hyoscyamus niger (HnH6H) were overexpressed, were established to investigate TA biosynthesis and distribution in ripe fruits, leaves, stems, primary roots and secondary roots under field conditions. Both NtPMT and HnH6H were detected at the transcriptional level in transgenic plants, whereas they were not detected in wild-type plants. The transgenes did not influence the root-specific expression patterns of endogenous TA biosynthetic genes in A. belladonna. All four endogenous TA biosynthetic genes (AbPMT, AbTRI, AbCYP80F1 and AbH6H) had the highest/exclusive expression levels in secondary roots, suggesting that TAs were mainly synthesized in secondary roots. T1 progeny of transgenic A. belladonna showed an impressive scopolamine-rich chemotype that greatly improved the pharmaceutical value of A. belladonna. The higher efficiency of hyoscyamine conversion was found in aerial than in underground parts. In aerial parts of transgenic plants, hyoscyamine was totally converted to downstream alkaloids, especially scopolamine. Hyoscyamine, anisodamine and scopolamine were detected in underground parts, but scopolamine and anisodamine were more abundant than hyoscyamine. The exclusively higher levels of anisodamine in roots suggested that it might be difficult for its translocation from root to aerial organs. T1 progeny of transgenic A. belladonna, which produces scopolamine at very high levels (2.94-5.13 mg g(-1)) in field conditions, can provide more valuable plant materials for scopolamine production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Targeted overexpression of cyclic AMP-dependent protein kinase subunit in Toxoplasma gondii promotes replication and virulence in host cells.

    Science.gov (United States)

    Sun, Hongchao; Wang, Suhua; Zhao, Xianfeng; Yao, Chaoqun; Zhuang, Haohan; Huang, Yechuan; Chen, Xueqiu; Yang, Yi; Du, Aifang

    2017-08-30

    Toxoplasma gondii (T. gondii) is one of the most common parasite that can infect almost any warm-blooded animals including humans. The cyclic nucleotide-dependent protein kinase (PKA) regulates a spectrum of intracellular signal pathways in many organisms. Protein kinase catalytic subunit (PKAC) is the core of the whole protein, and plays an important role in the life cycle of T.gondii. Here, T.gondii PKAC (TgPKAC) overexpression strain (TgPKAC-OE) was constructed. The growth of the TgPKAC-OE, RH△Ku80, and TgPKAC inhibition strains (TgPKAC-H89) were analysed by SYBR-green real-time PCR, and the ultrastructure was observed by transmission electron microscopy. The survival rate in mice was also recorded to analyse the virulence of the parasites. We also investigated the subcellular localization of TgPKAC in Vero cells by laser scanning microscope. We found that TgPKAC-OE strain exhibited obviously increased growth rate in Vero cells in vitro, and infected mice survived for a shorter time compared to wild type strain. Ultrastructural analysis found more autophagosomes-like structures in TgPKAC-H89 parasite compared to RH△Ku80 strain, and the relative expression level of Toxoplasma gondii autophagy-related protein (ATG8) in TgPKAC-H89 parasite was higher than wild type parasite. Laser confocal results showed that TgPKAC was mainly expressed in the cytoplasm of Vero cells. In conclusion, we hypothesized that inhibition of TgPKAC could cause autophagy of Toxoplasma gondii and then influence the replication of the parasite. TgPKAC plays an important role in parasite virulence in vivo, and the subcellular localization was successfully detected in Vero cells. Our data will provide a basis for further study of TgPKAC function and help screen drug targets of T. gondii. Copyright © 2017. Published by Elsevier B.V.

  18. NF-κB p65 Overexpression Promotes Bladder Cancer Cell Migration via FBW7-Mediated Degradation of RhoGDIα Protein.

    Science.gov (United States)

    Zhu, Junlan; Li, Yang; Chen, Caiyi; Ma, Jiugao; Sun, Wenrui; Tian, Zhongxian; Li, Jingxia; Xu, Jiheng; Liu, Claire S; Zhang, Dongyun; Huang, Chuanshu; Huang, Haishan

    2017-09-01

    Since invasive bladder cancer (BC) is one of the most lethal urological malignant tumors worldwide, understanding the molecular mechanisms that trigger the migration, invasion, and metastasis of BC has great significance in reducing the mortality of this disease. Although RelA/p65, a member of the NF-kappa B transcription factor family, has been reported to be upregulated in human BCs, its regulation of BC motility and mechanisms have not been explored yet. NF-κBp65 expression was evaluated in N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced high invasive BCs by immunohistochemistry staining and in human BC cell lines demonstrated by Western Blot. The effects of NF-κBp65 knockdown on BC cell migration and invasion, as well as its regulated RhoGDIα and FBW7, were also evaluated in T24T cells by using loss- and gain-function approaches. Moreover, the interaction of FBW7 with RhoGDIα was determined with immunoprecipitation assay, while critical role of ubiquitination of RhoGDIα by FBW7 was also demonstrated in the studies. p65 protein was remarkably upregulated in the BBN-induced high invasive BCs and in human BC cell lines. We also observed that p65 overexpression promoted BC cell migration by inhibiting RhoGDIα expression. The regulatory effect of p65 on RhoGDIα expression is mediated by its upregulation of FBW7, which specifically interacted with RhoGDIα and promoted RhoGDIα ubiquitination and degradation. Mechanistic studies revealed that p65 stabilizing the E3 ligase FBW7 protein was mediated by its attenuating pten mRNA transcription. We demonstrate that p65 overexpression inhibits pten mRNA transcription, which stabilizes the protein expression of ubiquitin E3 ligase FBW7, in turn increasing the ubiquitination and degradation of RhoGDIα protein and finally promoting human BC migration. The novel identification of p65/PTEN/FBW7/RhoGDIα axis provides a significant insight into understanding the nature of BC migration, further offering a new

  19. NF-κB p65 Overexpression Promotes Bladder Cancer Cell Migration via FBW7-Mediated Degradation of RhoGDIα Protein

    Directory of Open Access Journals (Sweden)

    Junlan Zhu

    2017-09-01

    Full Text Available BACKGROUND: Since invasive bladder cancer (BC is one of the most lethal urological malignant tumors worldwide, understanding the molecular mechanisms that trigger the migration, invasion, and metastasis of BC has great significance in reducing the mortality of this disease. Although RelA/p65, a member of the NF-kappa B transcription factor family, has been reported to be upregulated in human BCs, its regulation of BC motility and mechanisms have not been explored yet. METHODS: NF-κBp65 expression was evaluated in N-butyl-N-(4-hydroxybutyl-nitrosamine (BBN–induced high invasive BCs by immunohistochemistry staining and in human BC cell lines demonstrated by Western Blot. The effects of NF-κBp65 knockdown on BC cell migration and invasion, as well as its regulated RhoGDIα and FBW7, were also evaluated in T24T cells by using loss- and gain-function approaches. Moreover, the interaction of FBW7 with RhoGDIα was determined with immunoprecipitation assay, while critical role of ubiquitination of RhoGDIα by FBW7 was also demonstrated in the studies. RESULTS: p65 protein was remarkably upregulated in the BBN-induced high invasive BCs and in human BC cell lines. We also observed that p65 overexpression promoted BC cell migration by inhibiting RhoGDIα expression. The regulatory effect of p65 on RhoGDIα expression is mediated by its upregulation of FBW7, which specifically interacted with RhoGDIα and promoted RhoGDIα ubiquitination and degradation. Mechanistic studies revealed that p65 stabilizing the E3 ligase FBW7 protein was mediated by its attenuating pten mRNA transcription. CONCLUSIONS: We demonstrate that p65 overexpression inhibits pten mRNA transcription, which stabilizes the protein expression of ubiquitin E3 ligase FBW7, in turn increasing the ubiquitination and degradation of RhoGDIα protein and finally promoting human BC migration. The novel identification of p65/PTEN/FBW7/RhoGDIα axis provides a significant insight into

  20. Serum profile of cytokines interferon gamma and interleukin-10 in ewes subjected to artificial insemination by cervical retraction.

    Science.gov (United States)

    Alvares, C T G; Cruz, J F; Romano, C C; Brandão, F Z

    2016-04-15

    This study evaluated the influence of artificial insemination (AI) by cervical retraction (CRI) on serum levels of interferon gamma (IFNγ) and interleukin-10 (IL-10) in ewes. Synchronized pluriparous Santa Inês ewes were subjected to natural mating (NM, n = 8) and AI, which was performed for a fixed time (55 ± 1 hour) by CRI (n = 8) or laparoscopy (n = 8). Ewes were classified as pregnant, with return to estrus (RE) or with embryonic loss (EL). Blood samples were collected on Day 0, Day 3, Day 5, Day 12, and Day 17 (Day 0 = AI/NM) for progesterone dosage and cytokines were quantified from Day 0 to Day 12. Progesterone levels were constant, except for a decrease in ewes with RE at Day 17 (P < 0.05). Regardless of the reproductive method used, there was no difference in the IFNγ and IL-10 levels at any time, with averages of 642.1, 713.2, and 741.2 pg/mL for IFNγ and 667.1, 616.8, and 721.1 pg/mL for IL-10 when using CRI, laproscopy, and NM, respectively. Regarding the physiological status, ewes with EL had lower serum levels of IFNγ and IL-10 than pregnant ewes and ewes with RE, regardless of the reproductive method used, with averages of 769.1, 714.9, and 555.7 pg/mL for IFNγ and 713.8, 699.3, and 578.7 pg/mL for IL-10 in pregnant ewes, ewes with RE and EL, respectively (P < 0.01). In conclusion, AI by CRI in Santa Inês ewes does not alter the profile of serum cytokines IFNγ and IL-10 and does not induce an inflammatory reaction that can compromise pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [Roles of interleukin-10 differentiated dendritic cell of allergic asthma patients in T-lymphocyte proliferation in vitro].

    Science.gov (United States)

    Tang, Jian-feng; Guan, Shu-hong; Wang, Zhi-gang

    2012-10-30

    To explore the roles of interleukin (IL)-10 differentiated peripheral blood monocyte-derived dendritic cell (DC-10) of allergic asthma patients in T-lymphocytes proliferation in vitro. From January to June 2011, 10 subjects with dust mite allergic asthma treated at Third Affiliated Hospital of Soochow University were enrolled. Their peripheral blood monocytes were isolated by Ficoll-Hypaque solution density gradient centrifugation and adherent method. And the adherent monocytes were routinely cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF)+interleukin-4 (IL-4)+tumor necrosis factor-alpha (TNF-α), stimulated with/without interleukin-10 (IL-10), pulsed with dust mite allergen and finally harvested. The cell surface molecules including CD80, CD83, CD86, human leukocyte antigen (HLA)-DR and immunoglobulin-like transcript 2 (ILT2) were detected by immunofluorescent labeling and flow cytometry. And cellular functions were estimated by detecting the capacities of DC uptake antigens with fluorescein isothiocyanate (FITC)-dextran capturing assay. The IL-10 differentiation DC (DC-10) were cultured with autologous peripheral T cells (DC-10 group), either alone (DC-TNF group) or together (combined group) with autologous immunostimulatory DC (DC-TNF). And the impact of this treatment on T-cell responses was assessed for each donor by 3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) assay. The production of interferon-γ (IFN-γ), IL-4, interleukin-5 (IL-5) and interleukin-13 (IL-13) were measured with the quantification of enzyme linked immunosorbent assay (ELISA) kits. In DC-10, the levels of some mature DC's markers (CD80, CD83, CD86 & HLA-DR) decreased, ILT2 increased and there were the higher capacities of up-taking FITC-dextran particle (72.32%±2.93% vs 54.41%±2.95%, PDC-10 group (1.06±0.18) and that of the combined group (1.34±0.16) were significantly inhibited (PDC-10 group versus (3223±203), (149±19), (2465±183) and

  2. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Ioannis Vouldoukis

    Full Text Available BACKGROUND: In addition to helminthic infections, elevated serum IgE levels were observed in many protozoal infections, while their contribution during immune response to these pathogens remained unclear. As IgE/antigen immune complexes (IgE-IC bind to human cells through FcεRI or FcεRII/CD23 surface molecules, the present study aimed to identify which functional receptor may be involved in IgE-IC interaction with human macrophages, the major effector cell during parasite infection. METHODOLOGY/PRINCIPAL FINDINGS: Human monocyte-derived macrophages were infected with Toxoplasma gondii before being incubated with IgE-IC. IgE receptors were then identified using appropriate blocking antibodies. The activation of cells and parasiticidal activity were evaluated by mediator quantification and direct counting of infected macrophages. RNAs were extracted and cell supernatants were also collected for their content in tumor necrosis factor (TNF-α, interleukin-10 (IL-10 and nitrites. Sera from symptomatic infected patients were also tested for their content of IgE, IL-10 and nitrites, and compared to values found in healthy donors. Results showed that IgE-IC induced intracellular elimination of parasites by human macrophages. IgE-mediated effect was FcεRI-independent, but required cross-linking of surface FcεRII/CD23, cell activation and the generation of nitric oxide (NO. Although TNF-α was shown to be produced during cell activation, this cytokine had minor contribution in this phenomenon while endogenous and exogenous IL-10 down-regulated parasite killing. Inverse relationship was found between IL-10 and NO expression by infected human macrophages at both mRNA and mediator levels. The relationship between these in vitro data and in vivo levels of various factors in T. gondii infected patients supports the involvement of CD23 antigen and IL-10 expression in disease control. CONCLUSION: Thus, IgE may be considered as immune mediator during

  3. Correlation between serum levels of interleukins 10 and 12 and thrombocytopenia in hepatitis C cirrhotic (class A patients

    Directory of Open Access Journals (Sweden)

    N Abdallah

    2010-01-01

    Full Text Available Hepatitis C virus (HCV patients commonly have low platelet counts; however, the exact role of HCV infection in thrombocytopenia is unknown. This work aimed to study the serum levels of interleukins (IL 10 and 12 in patients with mild and moderate thrombocytopenia associated with chronic hepatitis C infection. Our study included 15 patients with chronic HCV infection and newly diagnosed isolated autoimmune thrombocytopenia (Group I and 15 patients with chronic HCV infection and normal platelet count as controls (Group II. All patients were examined for personal history and clinical aspects, complete blood count, bone marrow aspiration, liver function tests, HCV antibody assay by ELISA and polymerase chain reaction (PCR, abdominal ultrasound, Helicobacter pylori stool antigen test, evaluation of serum levels of IL-10, IL-12 and platelet specific antibodies. Our results revealed that eight patients from Group l had mild thrombocytopenia and seven patients had moderate thrombocytopenia. Serum IL-10 level was significantly elevated (t = 9.301, p < 0.001 while serum IL-12 showed a significant decrease (t = 6.502, p < 0.001 in Group I compared to the control group. No correlation was detected between platelet counts and the serum levels of either IL-10 [r = 0.454, p = 0.089 (Group I, r = 0.038, p = 0.89 (Group II] or IL-12 [r = 0.497, p = 0.06 (Group I, r = 0.499, p = 0.058 (Group II]. However, in Group I, a significant correlation was present only between moderate thrombocytopenia and serum levels of either IL-10 (r = 0.794, p = 0.033 or IL-12 (r = 0.967, p = 0.001, while no correlation was detected between these interleukin parameters and mild thrombocytopenia (r = 0.311 and p = 0.453 for IL-10 and r = -0.08 and p = 0.851 for IL-12. Based on our data, we may conclude that interleukins 10 and 12 are involved in low platelet levels.

  4. Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tomo eTsuzuki

    2013-10-01

    Full Text Available The Mg-chelatase H subunit (CHLH has been shown to mediate chlorophyll biosynthesis, as well as plastid-to-nucleus and abscisic acid (ABA-mediated signaling. A recent study using a novel CHLH mutant, rtl1, indicated that CHLH specifically affects ABA-induced stomatal closure, but also that CHLH did not serve as an ABA receptor in Arabidopsis thaliana. However, the molecular mechanism by which CHLH engages in ABA-mediated signaling in guard cells remains largely unknown. In the present study, we examined CHLH function in guard cells and explored whether CHLH expression might influence stomatal aperture. Incubation of rtl1 guard cell protoplasts with ABA induced expression of the ABA-responsive genes RAB18 and RD29B, as also observed in wild-type (WT cells, indicating that CHLH did not affect the expression of ABA-responsive genes. Earlier, ABA was reported to inhibit blue light (BL-mediated stomatal opening, at least in part through dephosphorylating/inhibiting guard cell H+-ATPase (which drives opening. Therefore, we immunohistochemically examined the phosphorylation status of guard cell H+-ATPase. Notably, ABA inhibition of BL-induced phosphorylation of H+-ATPase was impaired in rtl1 cells, suggesting that CHLH influences not only ABA-induced stomatal closure but also inhibition of BL-mediated stomatal opening by ABA. Next, we generated CHLH-GFP-overexpressing plants using CER6 promoter, which induces gene expression in the epidermis including guard cells. CHLH-transgenic plants exhibited a closed stomata phenotype even when brightly illuminated. Moreover, plant growth experiments conducted under water-deficient conditions showed that CHLH transgenic plants were more tolerant of drought than WT plants. In summary, we show that CHLH is involved in the regulation of stomatal aperture in response to ABA, but not in ABA-induced gene expression, and that manipulation of stomatal aperture via overexpression of CHLH in guard cells improves plant

  5. Genome-Wide Association Study Identifies That the ABO Blood Group System Influences Interleukin-10 Levels and the Risk of Clinical Events in Patients with Acute Coronary Syndrome

    OpenAIRE

    Johansson, ?sa; Alfredsson, Jenny; Eriksson, Niclas; Wallentin, Lars; Siegbahn, Agneta

    2015-01-01

    Introduction Acute coronary syndrome (ACS) is a major cause of mortality worldwide. We have previously shown that increased interleukin-10 (IL-10) levels are associated with poor outcome in ACS patients. Method We performed a genome-wide association study in 2864 ACS patients and 408 healthy controls, to identify genetic variants associated with IL-10 levels. Then haplotype analyses of the identified loci were done and comparisons to levels of IL-10 and other known ACS related biomarkers. Res...

  6. Fruit-specific overexpression of wound-induced tap1 under E8 promoter in tomato confers resistance to fungal pathogens at ripening stage.

    Science.gov (United States)

    Kesanakurti, Divya; Kolattukudy, Pappachan E; Kirti, Pulugurtha Bhardwaja

    2012-10-01

    Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages. Further, tap1 expression levels were significantly enhanced in response to wounding in breaker- and red-ripe stages of transgenic fruits, whereas wound-induced expression of tap1 was not detected in WT fruits. Confocal microscopy revealed high accumulation of phenolic compounds at the wound site in transgenic fruits suggesting a role of tap1 in wound-induced phenolic polymerization. Total peroxidase activity has increased remarkably in transgenic pericarp tissues in response to wounding, while very less or minimal levels were recorded in WT pericarp tissues. Transgenic fruits also displayed reduced post-harvest decay and increased resistance toward Alternaria alternata and Fusarium solani infection with noticeable inhibition in lesion formation. Conidiospore germination and mycelial growth of F. solani were severely inhibited when treated with E8-tap1 fruit extracts compared to WT fruits. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed reduced spore viability when incubated in E8-tap1 fruit extracts. Thus, fruit-specific expression of tap1 using E8 promoter is associated with enhanced total peroxidase activity and high phenolic accumulation in fruits with minimized post-harvest deterioration caused by wounding and fungal attack in tomato fruits. Copyright © Physiologia Plantarum 2012.

  7. Overexpression of Trophoblast Stem Cell-Enriched MicroRNAs Promotes Trophoblast Fate in Embryonic Stem Cells.

    Science.gov (United States)

    Nosi, Ursula; Lanner, Fredrik; Huang, Tsu; Cox, Brian

    2017-05-09

    The first cell fate choice of the preimplantation embryo generates the extraembryonic trophoblast and embryonic epiblast lineages. Embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) can be utilized to investigate molecular mechanisms of this first cell fate decision. It has been established that ESCs can be induced to acquire trophoblast lineage characteristics upon manipulation of lineage-determining transcription factors. Here, we have interrogated the potential of microRNAs (miRNAs) to drive trans-differentiation of ESCs into the trophoblast lineage. Analysis of gene expression data identified a network of TSC-enriched miRNAs that were predicted to target mRNAs enriched in ESCs. Ectopic expression of these miRNAs in ESCs resulted in a stable trophoblast phenotype, supported by gene expression changes and in vivo contribution potential. This process is highly miRNA-specific and dependent on Hdac2 inhibition. Our experimental evidence suggests that these miRNAs promote a mural trophectoderm (TE)-like cell fate with physiological properties that differentiate them from the polar TE. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Aldolase B Overexpression is Associated with Poor Prognosis and Promotes Tumor Progression by Epithelial-Mesenchymal Transition in Colorectal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Qingguo Li

    2017-05-01

    Full Text Available Background: Glycolysis is considered to be the root of cancer development and progression, which involved a multi-step enzymatic reaction. Our study aimed at figuring out which glycolysis enzyme participates in the development of colorectal cancer and its possible mechanisms. Methods: We firstly screened out Aldolase B (ALDOB by performing qRT-PCR arrays of glycolysis-related genes in five paired liver metastasis and primary colorectal tissues, and further detected ALDOB protein with immunohistochemistry in tissue microarray (TMA consisting of 229 samples from stage I-III colorectal cancer patients. CRISPR-Cas9 method was adopted to create knock out colon cancer cell lines (LoVo and SW480 of ALDOB. The effect of ALDOB on cell proliferation and metastasis was examined in vitro using colony formation assay as well as transwell migration and invasion assay, respectively. Results: In TMA, there was 64.6% of samples demonstrated strong intensity of ALDOB. High ALDOB expression were associated with poor overall survival and disease-free survival in both univariate and multivariate regression analyses (P<0.05. In vitro functional studies of CCK-8 demonstrated that silencing ALDOB expression significantly (P<0.05 inhibited proliferation, migration and invasion of colon cancer cells. Mechanically, silencing ALDOB activated epithelial markers and repressed mesenchymal markers, indicating inactivation of ALDOB may lead to inhibition of epithelial-mesenchymal transition (EMT. Conclusion: Upregulation of ALDOB promotes colorectal cancer metastasis by facilitating EMT and acts as a potential prognostic factor and therapeutic target in colorectal cancer.

  9. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  10. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1.

    Science.gov (United States)

    Li, Chao; Zhang, Yannan; Zhang, Kun; Guo, Danli; Cui, Baiming; Wang, Xiyin; Huang, Xianzhong

    2015-01-01

    FLOWERING LOCUS T (FT) encodes a mobile signal protein, recognized as major component of florigen, which has a central position in regulating flowering, and also plays important roles in various physiological aspects. A mode is recently emerging for the balance of indeterminate and determinate growth, which is controlled by the ratio of FT-like and TERMINAL FLOWER 1 (TFL1)-like gene activities, and has a strong influence on the floral transition and plant architecture. Orthologs of GhFT1 was previously isolated and characterized from Gossypium hirsutum. We demonstrated that ectopic overexpression of GhFT1 in tobacco, other than promoting flowering, promoted lateral shoot outgrowth at the base, induced more axillary bud at the axillae of rosette leaves, altered leaf morphology, increased chlorophyll content, had higher rate of photosynthesis and caused flowers abscission. Analysis of gene expression suggested that flower identity genes were significantly upregulated in transgenic plants. Further analysis of tobacco FT paralogs indicated that NtFT4, acting as flower inducer, was upregulated, whereas NtFT2 and NtFT3 as flower inhibitors were upregulated in transgenic plants under long-day conditions, but downregulated under short-day conditions. Our data suggests that sufficient level of transgenic cotton FT might disturb the balance of the endogenous tobacco FT paralogs of inducers and repressors and resulted in altered phenotype in transgenic tobacco, emphasizing the expanding roles of FT in regulating shoot architecture by advancing determine growth. Manipulating the ratio for indeterminate and determinate growth factors throughout FT-like and TFL1-like gene activity holds promise to improve plant architecture and enhance crop yield.

  11. Over-Expression of the Pikh Gene with a CaMV 35S Promoter Leads to Improved Blast Disease (Magnaporthe oryzae) Tolerance in Rice

    Science.gov (United States)

    Azizi, Parisa; Rafii, Mohd Y.; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Maziah, M.; Sahebi, Mahbod; Ashkani, Sadegh; Taheri, Sima; Jahromi, Mohammad F.

    2016-01-01

    Magnaporthe oryzae is a rice blast fungus and plant pathogen that causes a serious rice disease and, therefore, poses a threat to the world's second most important food security crop. Plant transformation technology has become an adaptable system for cultivar improvement and to functionally analyze genes in plants. The objective of this study was to determine the effects (through over-expressing and using the CaMV 35S promoter) of Pikh on MR219 resistance because it is a rice variety that is susceptible to the blast fungus pathotype P7.2. Thus, a full DNA and coding DNA sequence (CDS) of the Pikh gene, 3172 bp, and 1206 bp in length, were obtained through amplifying the gDNA and cDNA template from a PH9-resistant rice variety using a specific primer. Agrobacterium-mediated transformation technology was also used to introduce the Pikh gene into the MR219 callus. Subsequently, transgenic plants were evaluated from the DNA to protein stages using polymerase chain reaction (PCR), semi-quantitative RT-PCR, real-time quantitative PCR and high performance liquid chromatography (HPLC). Transgenic plants were also compared with a control using a real-time quantification technique (to quantify the pathogen population), and transgenic and control plants were challenged with the local most virulent M. oryzae pathotype, P7.2. Based on the results, the Pikh gene encodes a hydrophilic protein with 18 sheets, 4 helixes, and 21 coils. This protein contains 401 amino acids, among which the amino acid sequence from 1 to 376 is a non-cytoplasmic region, that from 377 to 397 is a transmembrane region, and that from 398 to 401 is a cytoplasmic region with no identified disordered regions. The Pikh gene was up-regulated in the transgenic plants compared with the control plants. The quantity of the amino acid leucine in the transgenic rice plants increased significantly from 17.131 in the wild-type to 47.865 mg g−1 in transgenic plants. The M. oryzae population was constant at 31, 48

  12. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.

    Science.gov (United States)

    Zhuo, Chunliu; Wang, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-06-14

    Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.

  13. A stat-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells

    NARCIS (Netherlands)

    Gaemers, I. C.; Vos, H. L.; Volders, H. H.; van der Valk, S. W.; Hilkens, J.

    2001-01-01

    The mucin-like glycoprotein episialin (MUC1) is highly overproduced by a number of human carcinomas. We have shown previously in a variety of mammalian cell lines that overexpression of this very large transmembrane molecule diminishes cellular adhesion, suggesting that episialin/MUC1 overexpression

  14. Tr-1-like CD4+CD25-CD127-/lowFOXP3- cells are the main source of interleukin 10 in patients with cutaneous leishmaniasis due to Leishmania braziliensis.

    Science.gov (United States)

    Costa, Diego L; Cardoso, Tiago M; Queiroz, Adriano; Milanezi, Cristiane M; Bacellar, Olívia; Carvalho, Edgar M; Silva, João S

    2015-03-01

    CD4(+)CD25(+)FOXP3(+) regulatory T cells have long been shown to mediate susceptibility to Leishmania infection, mainly via interleukin 10 production. In this work, we showed that the main sources of interleukin 10 in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis due to Leishmania braziliensis are CD4(+)CD25(-)CD127(-/low)FOXP3(-) cells. Compared with uninfected controls, patients with CL had increased frequencies of circulating interleukin 10-producing CD4(+)CD25(-)CD127(-/low) cells, which efficiently suppressed tumor necrosis factor α production by the total PBMC population. Also, in CL lesions, interleukin 10 was mainly produced by CD4(+)CD25(-) cells, and interleukin 10 messenger RNA expression was associated with interleukin 27, interleukin 21, and interferon γ expression, rather than with FOXP3 or transforming growth factor β expressions. Active production of both interleukin 27 and interleukin 21, together with production of interferon γ and interleukin 10, was also detected in the lesions. Since these cytokines are associated with the differentiation and activity of Tr-1 cells, our results suggest that this cell population may play an important role in the immunomodulation of CL. Therefore, development of treatments that interfere with this pathway may lead to faster parasite elimination. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Gene Expression Changes in the Colon Epithelium Are Similar to Those of Intact Colon during Late Inflammation in Interleukin-10 Gene Deficient Mice

    Science.gov (United States)

    Russ, Anna E.; Peters, Jason S.; McNabb, Warren C.; Barnett, Matthew P. G.; Anderson, Rachel C.; Park, Zaneta; Zhu, Shuotun; Maclean, Paul; Young, Wayne; Reynolds, Gordon W.; Roy, Nicole C.

    2013-01-01

    In addition to their role in absorption and secretion, epithelial cells play an important role in the protection of the colon mucosa from the resident microbiota and are important for the maintenance of homeostasis. Microarray analysis of intact colon samples is widely used to gain an overview of the cellular pathways and processes that are active in the colon during inflammation. Laser microdissection of colon epithelial cells allows a more targeted analysis of molecular pathways in the mucosa, preceding and during inflammation, with potentially increased sensitivity to changes in specific cell populations. The aim of this study was to investigate the molecular changes that occur in early and late inflammation stages in colon epithelium of a mouse model of inflammatory bowel diseases. Microarray analysis of intact colon samples and microdissected colon epithelial cell samples from interleukin-10 gene deficient and control mice at 6 and 12 weeks of age was undertaken. Results of gene set enrichment analysis showed that more immune-related pathways were identified between interleukin-10 gene deficient and control mice at 6 weeks of age in epithelial cells than intact colon. This suggests that targeting epithelial cells could increase sensitivity for detecting immune changes that occur early in the inflammatory process. However, in the later stages of inflammation, microarray analyses of intact colon and epithelium both provide a similar overview of gene expression changes in the colon mucosa at the pathway level. PMID:23700416

  16. Gene expression changes in the colon epithelium are similar to those of intact colon during late inflammation in interleukin-10 gene deficient mice.

    Directory of Open Access Journals (Sweden)

    Anna E Russ

    Full Text Available In addition to their role in absorption and secretion, epithelial cells play an important role in the protection of the colon mucosa from the resident microbiota and are important for the maintenance of homeostasis. Microarray analysis of intact colon samples is widely used to gain an overview of the cellular pathways and processes that are active in the colon during inflammation. Laser microdissection of colon epithelial cells allows a more targeted analysis of molecular pathways in the mucosa, preceding and during inflammation, with potentially increased sensitivity to changes in specific cell populations. The aim of this study was to investigate the molecular changes that occur in early and late inflammation stages in colon epithelium of a mouse model of inflammatory bowel diseases. Microarray analysis of intact colon samples and microdissected colon epithelial cell samples from interleukin-10 gene deficient and control mice at 6 and 12 weeks of age was undertaken. Results of gene set enrichment analysis showed that more immune-related pathways were identified between interleukin-10 gene deficient and control mice at 6 weeks of age in epithelial cells than intact colon. This suggests that targeting epithelial cells could increase sensitivity for detecting immune changes that occur early in the inflammatory process. However, in the later stages of inflammation, microarray analyses of intact colon and epithelium both provide a similar overview of gene expression changes in the colon mucosa at the pathway level.

  17. Effect of Nigella Sativa Extract on Inflammatory Cells, Interleukin-10, Interferon-γ and Histological of Kidney in Monosodium Glutamate-Induced Rats

    Directory of Open Access Journals (Sweden)

    Abdalrauf A Mahmud Yousif

    2016-04-01

    Full Text Available There is considerable evidence, suggest that, consumption of food additives monosodium glutamate (MSG, a flavor enhancer was unhealthy. Herbal medicine Nigella sativa (NS has antioxidant properties able to cure the toxic induced by MSG. This study aimed to evaluate the risks of excessive use of MSG and to study the role of NS to inhibit inflammation and renal damage. Treated rats (twenty four male wistar rats were divided into six group and analyzed by measuring the cells in blood, interleukin-10, interferon-γ serum levels by ELISA method and remove kidneys for histological examination. Histological of kidney for all groups except control, were showed different abnormalities include congestion of some blood vessels, hemorrhage between tubules, widening in the renal tubules, revealed severe dilatation of Bowman's capsule and shrinkage of glomeruli, and areas of huge vacuole, were observed compared with control. Interleukin-10 was reduced in Groups 2,3,4 and 5, whereas increase in NS group compared with control. Interferon-γ was increased in groups 2,3,4 and reduced in groups 5,6 compared with control. Eosinophil was increased in groups 2,5 and reduced in groups 3,4, 6 compared with control. This present study showed that administration of MSG to rats induced many changes effects on inflammatory cells, cytokines and histological of kidneys. NS has benefit in blood parameters, whereas harmful on kidney at these doses.

  18. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle.

    Science.gov (United States)

    Hong, Eun-Gyoung; Ko, Hwi Jin; Cho, You-Ree; Kim, Hyo-Jeong; Ma, Zhexi; Yu, Tim Y; Friedline, Randall H; Kurt-Jones, Evelyn; Finberg, Robert; Fischer, Matthew A; Granger, Erica L; Norbury, Christopher C; Hauschka, Stephen D; Philbrick, William M; Lee, Chun-Geun; Elias, Jack A; Kim, Jason K

    2009-11-01

    Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with muscle-specific overexpression of IL-10 (MCK-IL10). MCK-IL10 and wild-type mice were fed a high-fat diet (HFD) for 3 weeks, and insulin sensitivity was determined using hyperinsulinemic-euglycemic clamps in conscious mice. Biochemical and molecular analyses were performed in muscle to assess glucose metabolism, insulin signaling, and inflammatory responses. MCK-IL10 mice developed with no obvious anomaly and showed increased whole-body insulin sensitivity. After 3 weeks of HFD, MCK-IL10 mice developed comparable obesity to wild-type littermates but remained insulin sensitive in skeletal muscle. This was mostly due to significant increases in glucose metabolism, insulin receptor substrate-1, and Akt activity in muscle. HFD increased macrophage-specific CD68 and F4/80 levels in wild-type muscle that was associated with marked increases in tumor necrosis factor-alpha, IL-6, and C-C motif chemokine receptor-2 levels. In contrast, MCK-IL10 mice were protected from diet-induced inflammatory response in muscle. These results demonstrate that IL-10 increases insulin sensitivity and protects skeletal muscle from obesity-associated macrophage infiltration, increases in inflammatory cytokines, and their deleterious effects on insulin signaling and glucose metabolism. Our findings provide novel insights into the role of anti-inflammatory cytokine in the treatment of type 2 diabetes.

  19. The Effect of Turmeric (Curcuma longa Extract on the Functionality of the Solute Carrier Protein 22 A4 (SLC22A4 and Interleukin-10 (IL-10 Variants Associated with Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Mark J. McCann

    2014-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual’s capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152 and interleukin-10 (IL-10, rs1800896 associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F and increasing anti-inflammatory cytokine gene promoter activity (IL-10, −1082A. The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  20. The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease.

    Science.gov (United States)

    McCann, Mark J; Johnston, Sarah; Reilly, Kerri; Men, Xuejing; Burgess, Elaine J; Perry, Nigel B; Roy, Nicole C

    2014-10-13

    Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual's capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, -1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  1. The Effect of Turmeric (Curcuma longa) Extract on the Functionality of the Solute Carrier Protein 22 A4 (SLC22A4) and Interleukin-10 (IL-10) Variants Associated with Inflammatory Bowel Disease

    Science.gov (United States)

    McCann, Mark J.; Johnston, Sarah; Reilly, Kerri; Men, Xuejing; Burgess, Elaine J.; Perry, Nigel B.; Roy, Nicole C.

    2014-01-01

    Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual’s capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, −1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions. PMID:25314644

  2. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  3. Interaction between interleukin-10 (IL-10) polymorphisms and dietary fibre in relation to risk of colorectal cancer in a Danish case-cohort study

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Egeberg, Rikke; Tjonneland, Anne

    2012-01-01

    Background: More than 50% of the colorectal cancer (CRC) etiology has been attributed to diet. Established or suspected dietary factors modifying risk of CRC are red meat, cereals, fish, and fibre. Diet and lifestyle may be linked to cancer through inflammation. Interleukin-10 (IL-10) is an anti......-inflammatory cytokine. We wanted to test if dietary factors and IL10 polymorphisms interact in relation to colorectal carcinogenesis. Methods: The functional IL10 polymorphism C-592A (rs1800872) and the marker rs3024505 were assessed in relation to diet and lifestyle in a nested case-cohort study of 378 CRC cases...... and 775 randomly selected participants from a prospective study of 57,053 persons. Genotyping data on the IL10 polymorphism C-592A, smoking and nonsteroidal anti-inflammatory drugs (NSAID) was retrieved from Vogel et al. (Mutat Res, 2007; 624: 88). Incidence rate ratios (IRR) and 95% Confidence Interval...

  4. Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes.

    Science.gov (United States)

    Tung, Swee Ang; Smeeton, Rachel; White, Charlotte A; Black, Colin R; Taylor, Ian B; Hilton, Howard W; Thompson, Andrew J

    2008-07-01

    Previous work where 9-cis-epoxycarotenoid dioxygenase (NCED) was over-expressed using the constitutive Gelvin Superpromoter resulted in mild increases in abscisic acid (ABA) accumulation, accompanied by stomatal closure and increased water-use efficiency (WUE), but with apparently little impact on long-term biomass production. However, one of the negative effects of the over-expression of NCED using constitutive promoters in tomato was increased seed dormancy. Here we report the use of the rbcS3C promoter, from a gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), to drive LeNCED1 transgene expression in tomato in a light-responsive and circadian manner. In comparison to the constitutive promoter, the rbcS3C promoter allowed the generation of transgenic plants with much higher levels of ABA accumulation in leaves and sap, but the effect on seed dormancy was diminished. These plants displayed the expected reductions in stomatal conductance and CO(2) assimilation, but they also exhibited a severe set of symptoms that included perturbed cotyledon release from the testa, increased photobleaching in young seedlings, substantially reduced chlorophyll and carotenoid content, interveinal leaf flooding, and greatly reduced growth. These symptoms illustrate adverse consequences of long-term, very high ABA accumulation. Only more moderate increases in ABA biosynthesis are likely to be useful in the context of agriculture. Implications are discussed for the design of transgenic 'high ABA' plants that exhibit increased WUE but have minimal negative phenotypic effects.

  5. Electronic effects in emission of core/shell CdSe/ZnS quantum dots conjugated to anti-Interleukin 10 antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Quintos Vazquez, A.L. [ESIME—Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM–Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Casas Espinola, J.L. [ESFM–Instituto Politécnico Nacional, México D. F. 07738, México (Mexico); Jaramillo Gómez, J.A.; Douda, J. [UPIITA–Instituto Politécnico Nacional, México D. F. 07320, México (Mexico)

    2013-11-15

    The paper presents a comparative study of the photoluminescence (PL) and Raman scattering spectra of the core–shell CdSe/ZnS quantum dots (QDs) in nonconjugated states and after the conjugation to anti-Interleukin 10 antibodies (anti-IL10). All optical measurements are performed on the dried droplets of the original solution of nonconjugated and bioconjugated QDs located on the Si substrate. CdSe/ZnS QDs with emission at 605 and 655 nm have been used. PL spectra of nonconjugated QDs are characterized by one Gaussian shape PL band related to the exciton emission in the CdSe core. PL spectra of bioconjugated QDs have changed essentially: the core PL band shifts into the high energy spectral range (“blue” sift) and becomes asymmetric. Additionally two new PL bands appear. A set of physical reasons has been proposed for the “blue” shift explanation for the core PL band in bioconjugated QDs. Then Raman scattering spectra have been studied with the aim to analyze the impact of elastic strains or the oxidation process at the QD bioconjugation. The variation of PL spectra versus excitation light intensities has been studied to analyze the exciton emission via excited states in QDs. Finally the PL spectrum transformation for the core emission in bioconjugated QDs has been attributed to the electronic quantum confined effects stimulated by the electric charges of bioconjugated antibodies. -- Highlights: • The conjugation of CdSe/ZnS QDs to anti-Interleukin 10 antibodies has been studied. • PL shift to high energy is detected in bioconjugated CdSe/ZnS QDs. • The PL energy shift in bioconjugated QDs is stimulated by antibody electric charges. • The reasons of PL energy shift in bioconjugated QDs have been discussed.

  6. Polymorphisms of transporter associated with antigen presentation, tumor necrosis factor-α and interleukin-10 and their implications for protection and susceptibility to severe forms of dengue fever in patients in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Anira N Fernando

    2015-01-01

    Full Text Available Context: To date, a clear understanding of dengue disease pathogenesis remains elusive. Some infected individuals display no symptoms while others develop severe life-threatening forms of the disease. It is widely believed that host genetic factors influence dengue severity. Aims: This study evaluates the relationship between certain polymorphisms and dengue severity in Sri Lankan patients. Settings and Design: Polymorphism studies are carried out on genes for; transporter associated with antigen presentation (TAP, promoter of tumor necrosis factor-α (TNF-α, and promoter of interleukin-10 (IL-10. In other populations, TAP1 (333, TAP2 (379, TNF-α (−308, and IL-10 (−1082, −819, −592 have been associated with dengue and a number of different diseases. Data have not been collected previously for these polymorphisms for dengue patients in Sri Lanka. Materials and Methods: The polymorphisms were typed by amplification refractory mutation system polymerase chain reaction in 107 dengue hemorrhagic fever (DHF patients together with 62 healthy controls. Statistical Analysis Used: Pearson′s Chi-square contingency table analysis with Yates′ correction. Results: Neither the TAP nor the IL-10 polymorphisms considered individually can define dengue disease outcome with regard to severity. However, the genotype combination, IL-10 (−592/−819/−1082 CCA/ATA was significantly associated with development of severe dengue in these patients, suggesting a risk factor to developing DHF. Also, identified is the genotype combination IL-10 (−592/−819/−1082 ATA/ATG which suggested a possibility for protection from DHF. The TNF-α (−308 GG genotype was also significantly associated with severe dengue, suggesting a significant risk factor. Conclusions: The results reported here are specific to the Sri Lankan population. Comparisons with previous reports imply that data may vary from population to population.

  7. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Holm, Sverre [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Yndestad, Arne [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Scholz, Hanne [Section for Transplantation, Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo (Norway); Sagen, Ellen Lund [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Nebb, Hilde [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Holven, Kirsten B. [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Dahl, Tuva B. [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Aukrust, Pål [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway)

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  8. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    International Nuclear Information System (INIS)

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-01-01

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL) 2 and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation

  9. A small molecule drug promoting miRNA processing induces alternative splicing of MdmX transcript and rescues p53 activity in human cancer cells overexpressing MdmX protein.

    Directory of Open Access Journals (Sweden)

    Georgios Valianatos

    Full Text Available MdmX overexpression contributes to the development of cancer by inhibiting tumor suppressor p53. A switch in the alternative splicing of MdmX transcript, leading to the inclusion of exon 6, has been identified as the primary mechanism responsible for increased MdmX protein levels in human cancers, including melanoma. However, there are no approved drugs, which could translate these new findings into clinical applications. We analyzed the anti-melanoma activity of enoxacin, a fluoroquinolone antibiotic inhibiting the growth of some human cancers in vitro and in vivo by promoting miRNA maturation. We found that enoxacin inhibited the growth and viability of human melanoma cell lines much stronger than a structurally related fluoroquinolone ofloxacin, which only weakly modulates miRNA processing. A microarray analysis identified a set of miRNAs significantly dysregulated in enoxacin-treated A375 melanoma cells. They had the potential to target multiple signaling pathways required for cancer cell growth, among them the RNA splicing. Recent studies showed that interfering with cellular splicing machinery can result in MdmX downregulation in cancer cells. We, therefore, hypothesized that enoxacin could, by modulating miRNAs targeting splicing machinery, activate p53 in melanoma cells overexpressing MdmX. We found that enoxacin and ciprofloxacin, a related fluoroquinolone capable of promoting microRNA processing, but not ofloxacin, strongly activated wild type p53-dependent transcription in A375 melanoma without causing significant DNA damage. On the molecular level, the drugs promoted MdmX exon 6 skipping, leading to a dose-dependent downregulation of MdmX. Not only in melanoma, but also in MCF7 breast carcinoma and A2780 ovarian carcinoma cells overexpressing MdmX. Together, our results suggest that some clinically approved fluoroquinolones could potentially be repurposed as activators of p53 tumor suppressor in cancers overexpressing Mdm

  10. GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation.

    Directory of Open Access Journals (Sweden)

    Nicolas Chevalier

    Full Text Available BACKGROUND: Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30 mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium. The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. RESULTS: We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells and germ cells (spermatogonia and spermatocytes. GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist and by siRNA invalidation. CONCLUSION: These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for

  11. GPR30, the Non-Classical Membrane G Protein Related Estrogen Receptor, Is Overexpressed in Human Seminoma and Promotes Seminoma Cell Proliferation

    Science.gov (United States)

    Chevalier, Nicolas; Vega, Aurélie; Bouskine, Adil; Siddeek, Bénazir; Michiels, Jean-François; Chevallier, Daniel; Fénichel, Patrick

    2012-01-01

    Background Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. Results We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. Conclusion These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas. PMID

  12. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses.

    Science.gov (United States)

    Saema, Syed; Rahman, Laiq Ur; Singh, Ruchi; Niranjan, Abhishek; Ahmad, Iffat Zareen; Misra, Pratibha

    2016-01-01

    Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and

  13. Superoxide serves as a putative signal molecule for plant cell division: overexpression of CaRLK1 promotes the plant cell cycle via accumulation of O2- and decrease in H2 O2.

    Science.gov (United States)

    Lee, Dong Ju; Choi, Hyun Jun; Moon, Mid-Eum; Chi, Youn-Tae; Ji, Kon-Young; Choi, Doil

    2017-02-01

    Reactive oxygen species (ROS) exert both positive and negative effects on plant growth and development and therefore receive a great deal of attention in current research. A hot pepper, Capsicum annuum receptor-like kinase 1 (CaRLK1) was ectopically expressed in Nicotiana tabacum BY-2 cell and Nicotiana benthamiana plants. This ectopic expression of CaRLK1 enhanced cell division and proliferation in both heterologous systems. Apparently, CaRLK1 is involved in controlling the cell cycle, possibly by inducing expressions of cyclin B1, cyclin D3, cyclin-dependent protein kinase 3, condensin complex subunit 2 and anaphase-promoting complex subunit 11 genes. CaRLK1 overexpression also increased transcript accumulation of NADPH oxidase genes, generation of O 2 - and catalase (CAT) activity/protein levels. In parallel, it decreased cellular H 2 O 2 levels and cell size. Treatment with Tiron or diphenyleneiodonium (DPI) both decreased the cell division rate and O 2 - concentrations, but increased cellular H 2 O 2 levels. Tobacco BY-2 cells overexpressing CaRLK1 were more sensitive to amino-1,2,4-triazole (3-AT), a CAT inhibitor, than control cells, suggesting that the increased H 2 O 2 levels may not function as a signal for cell division and proliferation. Overexpression of CaRLK1 stimulated progression of the cell cycle from G 0 /G 1 phase into the S phase. It is concluded that the CaRLK1 protein plays a pivotal role in controlling the level of O 2 - as signaling molecule which promotes cell division, concomitant with a reduction in H 2 O 2 by the induction of CAT activity/protein. © 2016 Scandinavian Plant Physiology Society.

  14. Antihyperglycemic effect of Sesbania grandiflora seed decoction on streptozotocin-induced diabetic mice: Inflammatory status and the role of interleukin-10

    Science.gov (United States)

    Zamroni, Ahmad; Widjanarko, Simon B.; Rifa'i, Muhaimin; Zubaidah, Elok

    2017-05-01

    Diabetes is one of the fastest growing diseases in the world: its prevalence is estimated to reach 642 million people, or one-tenth of adults will have diabetes by 2040. Traditional herbal exploration and investigation are needed in order to discover medicines that have potential anti-diabetic activity, with no or lower side effects than the medicines clinically used today. In this research, we investigated the anti-hyperglycemic activity of an aqueous decoction of Sesbania grandiflora seeds in streptozotocin-induced diabetic mice, and analyzed the immune responses that occurred during the counter balance process to reach blood glucose homeostasis. Our results revealed that administration of the aqueous decoction (2.5 g/kg BW) could lower the blood glucose levels of diabetic mice from an initial blood glucose level of 435 mg/dl to 213 mg/dl within 18 days of treatment. Analysis of inflammatory markers showed that there was no significant difference in the relative amounts of CD4+CD62L-, CD8+CD62L-, TNF-α or IFN-γ between the experimental groups, which revealed that there were no pro-inflammatory responses involved either in hyperglycemia or in the blood glucose lowering process. On the other hand, an increased amount of interleukin-10 in diabetic mice treated with an S. grandiflora seed decoction indicated a role for IL-10 in maintaining blood glucose homeostasis.

  15. A Glucuronoxylomannan-Associated Immune Signature, Characterized by Monocyte Deactivation and an Increased Interleukin 10 Level, Is a Predictor of Death in Cryptococcal Meningitis.

    Science.gov (United States)

    Scriven, James E; Graham, Lisa M; Schutz, Charlotte; Scriba, Thomas J; Wilkinson, Katalin A; Wilkinson, Robert J; Boulware, David R; Urban, Britta C; Lalloo, David G; Meintjes, Graeme

    2016-06-01

    Cryptococcal meningitis remains a significant cause of death among human immunodeficiency virus type 1 (HIV)-infected persons in Africa. We aimed to better understand the pathogenesis and identify immune correlates of mortality, particularly the role of monocyte activation. A prospective cohort study was conducted in Cape Town, South Africa. Patients with a first episode of cryptococcal meningitis were enrolled, and their immune responses were assessed in unstimulated and stimulated blood specimens, using flow cytometry and cytokine analysis. Sixty participants were enrolled (median CD4(+) T-cell count, 34 cells/µL). Mortality was 23% (14 of 60 participants) at 14 days and 39% (22 of 57) at 12 weeks. Nonsurvivors were more likely to have an altered consciousness and higher cerebrospinal fluid fungal burden at presentation. Principal component analysis identified an immune signature associated with early mortality, characterized by monocyte deactivation (reduced HLA-DR expression and tumor necrosis factor α response to lipopolysaccharide); increased serum interleukin 6, CXCL10, and interleukin 10 levels; increased neutrophil counts; and decreased T-helper cell type 1 responses. This immune signature remained an independent predictor of early mortality after adjustment for consciousness level and fungal burden and was associated with higher serum titers of cryptococcal glucuronoxylomannan. Cryptococcal-related mortality is associated with monocyte deactivation and an antiinflammatory blood immune signature, possibly due to Cryptococcus modulation of the host immune response. Validation in other cohorts is required. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. Changes in composition of caecal microbiota associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species.

    Science.gov (United States)

    Bassett, Shalome A; Young, Wayne; Barnett, Matthew P G; Cookson, Adrian L; McNabb, Warren C; Roy, Nicole C

    2015-03-11

    Human inflammatory bowel disease (IBD) is a chronic intestinal disease where the resident microbiota contributes to disease development, yet the specific mechanisms remain unclear. Interleukin-10 gene-deficient (Il10-/-) mice develop inflammation similar to IBD, due in part to an inappropriate response to commensal bacteria. We have previously reported changes in intestinal morphology and colonic gene expression in Il10-/- mice in response to oral bacterial inoculation. In this study, we aimed to identify specific changes in the caecal microbiota associated with colonic inflammation in these mice. The microbiota was evaluated using pyrotag sequencing, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR. Microbiota profiles were influenced by genotype of the mice and by bacterial inoculation, and a strong correlation was observed between the microbiota and colonic inflammation scores. Although un-inoculated Il10-/- and C57 mice had similar microbiota communities, bacterial inoculation resulted in different changes to the microbiota in Il10-/- and C57 mice. Inoculated Il10-/- mice had significantly less total bacteria than un-inoculated Il10-/- mice, with a strong negative correlation between total bacterial numbers, relative abundance of Escherichia/Shigella, microbiota diversity, and colonic inflammation score. Our results show a putative causative role for the microbiota in the development of IBD, with potentially key roles for Akkermansia, or for Bacteroides, Helicobacter, Parabacteroides, and Alistipes, depending on the composition of the bacterial inoculum. These data support the use of bacterially-inoculated Il10-/- mice as an appropriate model to investigate human IBD.

  17. Interleukin 10–Dominant Immune Response and Increased Risk of Cutaneous Leishmaniasis After Natural Exposure to Lutzomyia intermedia Sand Flies

    Science.gov (United States)

    Carvalho, Augusto M.; Cristal, Juqueline R.; Muniz, Aline C.; Carvalho, Lucas P.; Gomes, Regis; Miranda, José C.; Barral, Aldina; Carvalho, Edgar M.; de Oliveira, Camila I.

    2015-01-01

    Background. Leishmaniasis is caused by parasites transmitted to the vertebrate host by infected sand flies. During transmission, the vertebrate host is also inoculated with sand fly saliva, which exerts powerful immunomodulatory effects on the host's immune response. Methods. We conducted a prospective cohort analysis to characterize the human immune response to Lutzomyia intermedia saliva in 264 individuals, from an area for cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Results. Antibodies were found in 150 individuals (56.8%); immunoglobulin G1 and G4 were the predominant subclasses. Recall responses to salivary gland sonicate showed elevated production of interleukin 10 (IL-10), interleukin 13, interferon γ, CXCL9, and CCL2 compared with controls. CD4+CD25+ T cells, including Foxp3+ cells, were the main source of IL-10. L. braziliensis replication was increased (P < .05) in macrophages cocultured with saliva-stimulated lymphocytes from exposed individuals and addition of anti–IL-10 reverted this effect. Positive correlation between antibody response to saliva and cellular response to Leishmania was not found. Importantly, individuals seropositive to saliva are 2.1 times more likely to develop CL (relative risk, 2.1; 95% confidence interval, 1.07–4.2; P < .05). Conclusions. Exposure to L. intermedia sand flies skews the human immune response, facilitating L. braziliensis survival in vitro, and increases the risk of developing CL. PMID:25596303

  18. In vitro infection of bovine monocytes with Mycoplasma bovis delays apoptosis and suppresses production of gamma interferon and tumor necrosis factor alpha but not interleukin-10.

    Science.gov (United States)

    Mulongo, Musa; Prysliak, Tracy; Scruten, Erin; Napper, Scott; Perez-Casal, Jose

    2014-01-01

    Mycoplasma bovis is one of the major causative pathogens of bovine respiratory complex disease (BRD), which is characterized by enzootic pneumonia, mastitis, pleuritis, and polyarthritis. M. bovis enters and colonizes bovine respiratory epithelial cells through inhalation of aerosol from contaminated air. The nature of the interaction between M. bovis and the bovine innate immune system is not well understood. We hypothesized that M. bovis invades blood monocytes and regulates cellular function to support its persistence and systemic dissemination. We used bovine-specific peptide kinome arrays to identify cellular signaling pathways that could be relevant to M. bovis-monocyte interactions in vitro. We validated these pathways using functional, protein, and gene expression assays. Here, we show that infection of bovine blood monocytes with M. bovis delays spontaneous or tumor necrosis factor alpha (TNF-α)/staurosporine-driven apoptosis, activates the NF-κB p65 subunit, and inhibits caspase-9 activity. We also report that M. bovis-infected bovine monocytes do not produce gamma interferon (IFN-γ) and TNF-α, although the level of production of interleukin-10 (IL-10) is elevated. Our findings suggest that M. bovis takes over the cellular machinery of bovine monocytes to prolong bacterial survival and to possibly facilitate subsequent systemic distribution.

  19. Cloning of Interleukin-10 from African Clawed Frog (Xenopus tropicalis, with the Finding of IL-19/20 Homologue in the IL-10 Locus

    Directory of Open Access Journals (Sweden)

    Zhitao Qi

    2015-01-01

    Full Text Available Interleukin-10 (IL-10 is a pleiotropic cytokine that plays an important role in immune system. In the present study, the IL-10 gene of African clawed frog (Xenopus tropicalis was first cloned, and its expression pattern and 3D structure were also analyzed. The frog IL-10 mRNA encoded 172 amino acids which possessed several conserved features found in IL-10s from other species, including five-exon/four-intron genomic structure, conserved four cysteine residues, IL-10 family motif, and six α-helices. Real-time PCR showed that frog IL-10 mRNA was ubiquitous expressed in all examined tissues, highly in some immune related tissues including kidney, spleen, and intestine and lowly in heart, stomach, and liver. The frog IL-10 mRNA was upregulated at 24 h after LPS stimulation, indicating that it plays a part in the host immune response to bacterial infection. Another IL, termed as IL-20, was identified from the frog IL-10 locus, which might be the homologue of mammalian IL-19/20 according to the analysis results of the phylogenetic tree and the sequence identities.

  20. STAT3 activation is associated with cerebrospinal fluid interleukin-10 (IL-10) in primary central nervous system diffuse large B cell lymphoma.

    Science.gov (United States)

    Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2015-09-01

    Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.

  1. Whole body hyperthermia treatment increases interleukin 10 and toll-like receptor 4 expression in patients with ankylosing spondylitis: a pilot study.

    Science.gov (United States)

    Zauner, Dorothea; Quehenberger, Franz; Hermann, Josef; Dejaco, Christian; Stradner, Martin H; Stojakovic, Tatjana; Angerer, Hannes; Rinner, Beate; Graninger, Winfried B

    2014-09-01

    Exposure to increased environmental temperatures is commonly used as a non-pharmacological treatment modality in ankylosing spondylitis (AS). We aimed to investigate systemic immunological effects of moderate whole body hyperthermia in patients with AS compared to healthy control subjects. Ten healthy control subjects and six AS patients underwent whole body hyperthermia treatment with 38.7-39 °C body core temperature over 60 min. Numbers of polymorphonuclear leucocytes and lymphocyte subsets, plasma concentrations of several acute phase reactants and cytokines, and gene expression levels of toll-like receptor 4 (TLR-4), interleukin 10 (IL-10) and heat shock protein beta 1 (HSPB1) were determined during and up to 24 h after treatment. TLR-4, IL-10 and HSPB1 gene expression increased significantly up to 3 h post treatment, with an earlier, higher and more pronounced increase of IL-10 in patients with AS. An increase of natural killer cells and CD8+ T lymphocytes was noted during active heating, with a subsequent decrease up to 2 h after treatment. CD4+ T lymphocytes showed a short increase during active treatment in AS patients, while decreasing immediately after start of treatment in control subjects. Neutrophil granulocytes increased significantly up to 3 h after treatment, monocytes and B lymphocytes remained unchanged. Likewise, no significant changes were found concerning systemic cytokine concentrations and acute phase reactants. Our data support the concept of systemic immunological effects of moderate whole body hyperthermia in patients with AS.

  2. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production.

    Science.gov (United States)

    Németh, Krisztián; Leelahavanichkul, Asada; Yuen, Peter S T; Mayer, Balázs; Parmelee, Alissa; Doi, Kent; Robey, Pamela G; Leelahavanichkul, Kantima; Koller, Beverly H; Brown, Jared M; Hu, Xuzhen; Jelinek, Ivett; Star, Robert A; Mezey, Eva

    2009-01-01

    Sepsis causes over 200,000 deaths yearly in the US; better treatments are urgently needed. Administering bone marrow stromal cells (BMSCs -- also known as mesenchymal stem cells) to mice before or shortly after inducing sepsis by cecal ligation and puncture reduced mortality and improved organ function. The beneficial effect of BMSCs was eliminated by macrophage depletion or pretreatment with antibodies specific for interleukin-10 (IL-10) or IL-10 receptor. Monocytes and/or macrophages from septic lungs made more IL-10 when prepared from mice treated with BMSCs versus untreated mice. Lipopolysaccharide (LPS)-stimulated macrophages produced more IL-10 when cultured with BMSCs, but this effect was eliminated if the BMSCs lacked the genes encoding Toll-like receptor 4, myeloid differentiation primary response gene-88, tumor necrosis factor (TNF) receptor-1a or cyclooxygenase-2. Our results suggest that BMSCs (activated by LPS or TNF-alpha) reprogram macrophages by releasing prostaglandin E(2) that acts on the macrophages through the prostaglandin EP2 and EP4 receptors. Because BMSCs have been successfully given to humans and can easily be cultured and might be used without human leukocyte antigen matching, we suggest that cultured, banked human BMSCs may be effective in treating sepsis in high-risk patient groups.

  3. Changes of regulatory T cells, transforming growth factor-beta and interleukin-10 in patients with type 1 diabetes mellitus: A systematic review and meta-analysis.

    Science.gov (United States)

    Qiao, Yong-Chao; Shen, Jian; Hong, Xue-Zhi; Liang, Ling; Bo, Chao-Sheng; Sui, Yi; Zhao, Hai-Lu

    2016-09-01

    Regulatory T lymphocyte cells (Treg) associated with interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) have implicated in the development of type 1 diabetes mellitus (T1DM), yet the existing evidence remains unclear. Hereby we performed a systematic review and meta-analysis to characterize the changes in T1DM patients. A total of 1407 T1DM patients and 1373 healthy controls from 40 case-control studies were eventually included in the pooling analysis. Compared with the controls, T1DM patients had decreased frequency of CD4(+)CD25(+)Treg (p=0.0003), CD4(+)CD25(+)Foxp3(+)Treg (p=0.020), and the level of TGF-β (p=0.030). Decrease in IL-10 (p=0.14) was not significant. All the changes remained significant when the studies with low NOS scores and publication bias were excluded. In conclusion, peripheral Treg and serum TGF-β are reduced in type 1 diabetes mellitus whereas changes in serum IL-10 are not significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Association of interleukin 10 and interferon gamma gene polymorphisms with enterovirus 71 encephalitis in patients with hand, foot and mouth disease.

    Science.gov (United States)

    Yang, Jing; Zhao, Na; Su, Nai-Lun; Sun, Jian-Lan; Lv, Tie-Gang; Chen, Zong-Bo

    2012-06-01

    Enterovirus 71 (EV71) is one of the common causative agents of hand, foot and mouth disease (HFMD), and is associated with several outbreaks with neurological complications including encephalitis. This study investigated the polymorphisms of interferon gamma (IFN-γ)+874 T/A and interleukin 10 (IL-10)-1082 G/A in 65 Chinese patients with EV71 encephalitis and 113 Chinese HFMD patients without complications. The polymorphisms of IFN-γ+874 T/A and IL-10-1082 G/A were determined by polymerase chain reaction (PCR)-amplification refractory mutation system (ARMS) and PCR-sequence-specific primer (SSP) analysis, respectively. The IFN-γ + 874 A allele was observed with significantly greater frequency in patients with EV71 encephalitis (76.2%) compared with HFMD patients without complications (61.1%, p encephalitis (86.2%) compared with HFMD patients without complications (77.0%, p associated with susceptibility to EV71 encephalitis in Chinese patients.

  5. Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Zhou, C; Ma, Z Y; Zhu, L; Guo, J S; Zhu, J; Wang, J F

    2015-12-17

    The stress phytohormone abscisic acid (ABA) plays pivotal roles in plants' adaptive responses to adverse environments. Molybdenum cofactor sulfurases influence aldehyde oxidase activity and ABA biosynthesis. In this study, we isolated a novel EsMcsu1 gene encoding a molybdenum cofactor sulfurase from Eutrema salsugineum. EsMcus1 transcriptional patterns varied between organs, and its expression was significantly upregulated by abiotic stress or ABA treatment. Alfalfa plants that overexpressed EsMcsu1 had a higher ABA content than wild-type (WT) plants under drought stress conditions. Furthermore, levels of reactive oxygen species (ROS), ion leakage, and malondialdehyde were lower in the transgenic plants than in the WT plants after drought treatment, suggesting that the transgenic plants experienced less ROS-mediated damage. However, the expression of several stress-responsive genes, antioxidant enzyme activity, and osmolyte (proline and total soluble sugar) levels in the transgenic plants were higher than those in the WT plants after drought treatment. Therefore, EsMcsu1 overexpression improved drought tolerance in alfalfa plants by activating a series of ABA-mediated stress responses.

  6. No Changes in Serum Concentrations of Interleukin 10 (IL-10 and Interferon γ (IF-γ Before and After Treatment of the Thyroid Eye Disease (TED

    Directory of Open Access Journals (Sweden)

    Nevenka Laban-Gučeva

    2008-11-01

    Full Text Available TED is a severe eye disease leading in rare cases to decrease of sight, optic nerve compression and blindness. Recently, significant progresses in understanding the disease have been done. Nevertheless, the treatment of the disease, especially in its severe form remains challenging. Glucocorticoids (GC have been the basis of the treatment for a long time. Orbital irradiation (OI and optical decompression (OD are also used in managing the severe forms of TED. Somatostatin, intravenous immunoglobulin have been also used, with conflicting results. Regarding the potential for the treatment of TED with cytokine antagonists, controlled clinical studies are not available. Since cytokines play an important role in the pathogenesis of the TED, they seemed to be logical choice for modern TED treatment. It has been shown that both Th1 (interleukin-2, tumor necrosis factor γ, interleukin γ and Th2 (interleukin-4,-5-,-10 profile T cells are activated in the TED. We therefore measured interleukin-γ, IF-γ and interleukin -10 (IL-10(Th1 and Th2 pattern to assess its relationship to the course of the disease. This paper shows that both Th1 (Il-2 and Th2 (If-γ pathways represented by those two cytokines are not involved (Il-10 before 2,29±5,23 and after treatment 3,77±8,44; IF γ before 0,50±0,24 and after treatment 0,35±0,19. No relationship to the response to treatment was found. GC resulted in positive response in 8/22 patients, OI (12 patients given after CS therapy, resulted in a response in all patients. Increase in proptosis, loss of visual acuity is spite of CS treatment prompted OD in two patients, who both recovered visual acuity and proptosis fell under 25mm Hertel.

  7. Effect of scaling and root planing on serum interleukin-10 levels and glycemic control in chronic periodontitis and type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Anirudh Balakrishna Acharya

    2015-01-01

    Full Text Available Aim: Chronic periodontal disease (CPD and type 2 diabetes mellitus (T2DM share common pathogenic pathways involving the cytokine network resulting in increased susceptibility to both diseases, leading to increased inflammatory destruction, insulin resistance, and poor glycemic control. Periodontal treatment may improve glycemic control. The aim of this study was to evaluate the effect of scaling and root planing (SRP of T2DM patients with CPD on hyperglycemia and the levels of serum interleukin-10 (IL-10. Materials and Methods: Forty-five subjects were divided into three groups comprising 15 subjects each as Group 1 (healthy controls, Group 2 (CPD patients, and Group 3 (T2DM patients with CPD. Plaque index, gingival index (GI, probing pocket depths (PPD, clinical attachment loss (AL, bleeding on probing (BoP, random blood sugar, glycosylated hemoglobin (HbA1C, and serum IL-10 were measured at baseline; SRP was performed on Groups 2 and 3 and the selected parameters recorded again at 6 months. Results: Statistically significant (P < 0.05 differences were observed in the variables at baseline and 6 months after SRP between the three groups using one-way ANOVA. The paired samples t-test for PPD and AL in Group 3 was statistically significant. Group 3 revealed positive correlations between PPD and HbA1C, BoP and IL-10, respectively, at 6 months and a predictable association of HbA1C with PPD and GI, and IL-10 levels with BoP, respectively, at 6 months. Conclusion: Scaling and root planing is effective in reducing blood glucose levels in T2DM patient with pocket depths and effective in elevating systemic IL-10 levels in CPD patients and CPD patients with T2DM.

  8. The Effect of an Eight-Week Rope Skipping Exercise Program on Interleukin-10 and C-Reactive Protein in Overweight and Obese Adolescents

    Directory of Open Access Journals (Sweden)

    Zakavi

    2015-08-01

    Full Text Available Background The different effects of exercise on obesity in obese adolescents have not sufficiently been studied. Objectives This study aimed to investigate the effect of an eight-week rope skipping exercise on interleukin-10 (IL-10 and C-reactive protein (CRP in obese and overweight adolescents. Patients and Methods In this semi-experimental study, using purposive convenience sampling 30 overweight and obese teens were randomly divided into two groups: the experimental (height 165.28 cm; weight 85.53 kg and age 13.73 years old and control (height 164.54 cm; weight 83.02 kg and age 13.93 years old groups. Then the experimental group performed the eight-week rope skipping exercise program while the control group did not receive any intervention and was only following up. Before and after the exercise, the variables including weight, fat percentage, body mass index (BMI and the maximum oxygen consumption (Vo2max in both groups were measured. To assess the amount of serum IL-10, CRP, 48 hours before and after the exercise, fasting blood samples were taken during the two-stage mode. The correlated t-test and the independent t-test were used to compare the intragroup and intergroup relationships, respectively. Results There was no significant change in the serum levels of IL-10 (P > 0.05; however, the intragroup comparison in the experimental group showed a significant increase in serum levels of IL.10 (P < 0.05. Moreover, the variables of the weight, BMI, fat percentage, V02max and CRP were significantly changed (P < 0.05. Conclusions A rope skipping protocol increases the anti-inflammatory index, reduces the risk of cardiovascular disease, and improves the body compounds and immune system of the obese and overweight teens.

  9. Genome-Wide Association Study Identifies That the ABO Blood Group System Influences Interleukin-10 Levels and the Risk of Clinical Events in Patients with Acute Coronary Syndrome.

    Directory of Open Access Journals (Sweden)

    Åsa Johansson

    Full Text Available Acute coronary syndrome (ACS is a major cause of mortality worldwide. We have previously shown that increased interleukin-10 (IL-10 levels are associated with poor outcome in ACS patients.We performed a genome-wide association study in 2864 ACS patients and 408 healthy controls, to identify genetic variants associated with IL-10 levels. Then haplotype analyses of the identified loci were done and comparisons to levels of IL-10 and other known ACS related biomarkers.Genetic variants at the ABO blood group locus associated with IL-10 levels (top SNP: rs676457, P = 4.4 × 10-10 were identified in the ACS patients. Haplotype analysis, using SNPs tagging the four main ABO antigens (A1, A2, B and O, showed that O and A2 homozygous individuals, or O/A2 heterozygotes have much higher levels of IL-10 compared to individuals with other antigen combinations. In the ACS patients, associations between ABO antigens and von Willebrand factor (VWF, P = 9.2 × 10-13, and soluble tissue factor (sTF, P = 8.6 × 10-4 were also found. In the healthy control cohort, the associations with VWF and sTF were similar to those in ACS patients (P = 1.2 × 10-15 and P = 1.0 × 10-5 respectively, but the healthy cohort showed no association with IL-10 levels (P>0.05. In the ACS patients, the O antigen was also associated with an increased risk of cardiovascular death, all causes of death, and recurrent myocardial infarction (odds ratio [OR] = 1.24-1.29, P = 0.029-0.00067.Our results suggest that the ABO antigens play important roles, not only for the immunological response in ACS patients, but also for the outcome of the disease.

  10. Genome-Wide Association Study Identifies That the ABO Blood Group System Influences Interleukin-10 Levels and the Risk of Clinical Events in Patients with Acute Coronary Syndrome.

    Science.gov (United States)

    Johansson, Åsa; Alfredsson, Jenny; Eriksson, Niclas; Wallentin, Lars; Siegbahn, Agneta

    2015-01-01

    Acute coronary syndrome (ACS) is a major cause of mortality worldwide. We have previously shown that increased interleukin-10 (IL-10) levels are associated with poor outcome in ACS patients. We performed a genome-wide association study in 2864 ACS patients and 408 healthy controls, to identify genetic variants associated with IL-10 levels. Then haplotype analyses of the identified loci were done and comparisons to levels of IL-10 and other known ACS related biomarkers. Genetic variants at the ABO blood group locus associated with IL-10 levels (top SNP: rs676457, P = 4.4 × 10-10) were identified in the ACS patients. Haplotype analysis, using SNPs tagging the four main ABO antigens (A1, A2, B and O), showed that O and A2 homozygous individuals, or O/A2 heterozygotes have much higher levels of IL-10 compared to individuals with other antigen combinations. In the ACS patients, associations between ABO antigens and von Willebrand factor (VWF, P = 9.2 × 10-13), and soluble tissue factor (sTF, P = 8.6 × 10-4) were also found. In the healthy control cohort, the associations with VWF and sTF were similar to those in ACS patients (P = 1.2 × 10-15 and P = 1.0 × 10-5 respectively), but the healthy cohort showed no association with IL-10 levels (P>0.05). In the ACS patients, the O antigen was also associated with an increased risk of cardiovascular death, all causes of death, and recurrent myocardial infarction (odds ratio [OR] = 1.24-1.29, P = 0.029-0.00067). Our results suggest that the ABO antigens play important roles, not only for the immunological response in ACS patients, but also for the outcome of the disease.

  11. Downregulation of the NHE3-binding PDZ-adaptor protein PDZK1 expression during cytokine-induced inflammation in interleukin-10-deficient mice.

    Directory of Open Access Journals (Sweden)

    Henrike Lenzen

    Full Text Available BACKGROUND: Impaired salt and water absorption is an important feature in the pathogenesis of diarrhea in inflammatory bowel disease (IBD. We analyzed the expression of proinflammatory cytokines in the infiltrating immune cells and the function and expression of the Na(+/H(+ exchanger isoform 3 (NHE3 and its regulatory PDZ-adaptor proteins NHERF1, NHERF2, and PDZK1 in the colon of interleukin-10-deficient (IL-10(-/- mice. METHODOLOGY/PRINCIPAL FINDINGS: Gene and protein expression were analyzed by real-time reverse transcription polymerase chain reaction (qRT-PCR, in situ RT-PCR, and immunohistochemistry. NHE3 activity was measured fluorometrically in apical enterocytes within isolated colonic crypts. Mice developed chronic colitis characterized by a typical immune cell infiltration composed of T-lymphocytes and macrophages, with high levels of gene and protein expression of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. In parallel, inducible nitric oxide synthase expression was increased while procaspase 3 expression was unaffected. Interferon-γ expression remained low. Although acid-activated NHE3 activity was significantly decreased, the inflammatory process did not affect its gene and protein expression or its abundance and localization in the apical membrane. However, expression of the PDZ-adaptor proteins NHERF2 and PDZK1 was downregulated. NHERF1 expression was unchanged. In a comparative analysis we observed the PDZK1 downregulation also in the DSS (dextran sulphate sodium model of colitis. CONCLUSIONS/SIGNIFICANCE: The impairment of the absorptive function of the inflamed colon in the IL-10(-/- mouse, in spite of unaltered NHE3 expression and localization, is accompanied by the downregulation of the NHE3-regulatory PDZ adaptors NHERF2 and PDZK1. We propose that the downregulation of PDZ-adaptor proteins may be an important factor leading to NHE3 dysfunction and diarrhea in the course of the cytokine

  12. CXCR5+CD8+T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing

    2017-09-01

    Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.

  13. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer.

    Science.gov (United States)

    Iliev, Robert; Kleinova, Renata; Juracek, Jaroslav; Dolezel, Jan; Ozanova, Zuzana; Fedorko, Michal; Pacik, Dalibor; Svoboda, Marek; Stanik, Michal; Slaby, Ondrej

    2016-10-01

    Long non-coding RNA TUG1 is involved in the development and progression of a variety of tumors. Little is known about TUG1 function in high-grade muscle-invasive bladder cancer (MIBC). The aims of our study were to determine expression levels of long non-coding RNA TUG1 in tumor tissue, to evaluate its relationship with clinico-pathological features of high-grade MIBC, and to describe its function in MIBC cells in vitro. TUG1 expression levels were determined in paired tumor and adjacent non-tumor bladder tissues of 47 patients with high-grade MIBC using real-time PCR. Cell line T-24 and siRNA silencing were used to study the TUG1 function in vitro. We observed significantly increased levels of TUG1 in tumor tissue in comparison to adjacent non-tumor bladder tissue (P TUG1 levels were significantly increased in metastatic tumors (P = 0.0147) and were associated with shorter overall survival of MIBC patients (P = 0.0241). TUG1 silencing in vitro led to 34 % decrease in cancer cell proliferation (P = 0.0004) and 23 % reduction in migration capacity of cancer cells (P TUG1 silencing on cell cycle distribution and number of apoptotic cells. Our study confirmed overexpression of TUG1 in MIBC tumor tissue and described its association with worse overall survival in high-grade MIBC patients. Together with in vitro observations, these data suggest an oncogenic role of TUG1 and its potential usage as biomarker or therapeutic target in MIBC.

  14. ASSOCIATION OF INTERLEUKIN-10 -1082 A/G (RS1800896) POLYMORPHISM WITH SUSCEPTIBILITY TO GASTRIC CANCER: META-ANALYSIS OF 6,101 CASES AND 8,557 CONTROLS.

    Science.gov (United States)

    Namazi, Abolfazl; Forat-Yazdi, Mohammad; Jafari, Mohammadali; Farahnak, Soudabeh; Nasiri, Rezvan; Foroughi, Elnaz; Abolbaghaei, Seyed Mojtaba; Neamatzadeh, Hossein

    2018-01-01

    The promoter -1082 A/G (rs1800896) polymorphism of Interleukin-10 (IL-10) gene have been widely reported and considered to have a significant role on gastric cancer risk, but the results are inconsistent. To clarify the association, we conducted a meta-analysis to investigate the associations IL-10 -1082 A/G polymorphism with gastric cancer. Eligible articles were identified by searching databases including PubMed, Web of Science, and Google Scholar up to August 03, 2017. Odds ratios (OR) with corresponding 95% confidence intervals (CIs) were used to assess the association. A total of 30 case-control studies with 6,101 cases and 8,557 controls were included in this meta-analysis. Overall, a significant association between IL-10 -1082 A/G polymorphism and gastric cancer risk was observed under the allele model (G vs A: OR=1.305, 95% CI=1.076-1.584; P=0.007), heterozygote model and (GA vs AA: OR=1.252, 95% CI=1.252-1.054; P=0.011) and dominant model (GG+GA vs AA: OR=1.264, 95% CI=1.053-1.516; P=0.012). In the subgroup analysis by ethnicity, increased gastric cancer risk were found in Asians under the allele model (G vs A: OR=1.520, 95% CI=1.172-1.973; P=0.002), homozygote model (GG+GA vs AA: OR=1.571, 95% CI=1.023-2.414; P= 0.039), heterozygote model (GA vs AA: OR=1.465, 95% CI=1.192-1.801; P≤0.001) and dominant model (GG+GA vs AA: OR=1.448, 95% CI=1.152-1.821; P=0.002), but not among Caucasian and Latinos populations. These results suggested that the IL-10 -1082 A/G (rs1800896) polymorphism might contribute to the gastric cancer susceptibility, especially among Asians.

  15. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Directory of Open Access Journals (Sweden)

    Lídia Cedó

    Full Text Available Human hepatic lipase (hHL is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT. In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL-mediated free fatty acid (FFA lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  16. Increased serum levels of interleukin-10 predict poor prognosis in extranodal natural killer/T-cell lymphoma patients receiving asparaginase-based chemotherapy

    Directory of Open Access Journals (Sweden)

    Wang H

    2015-09-01

    Full Text Available Hua Wang,1–3,* Liang Wang,1–3,* ZhiJun Wuxiao,4,* HuiQiang Huang,5 WenQi Jiang,5 ZhiMing Li,5 Yue Lu,1–3 ZhongJun Xia1–31Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China; 2State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China; 3Collaborative Innovation Center for Cancer Medicine, Guangzhou, People’s Republic of China; 4Department of Hematology & Oncology, The Affiliated Hospital, Hainan Medical College, Haikou, Hainan, People’s Republic of China; 5Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China*These authors contributed equally to this workAbstract: There are currently no prognostic biomarkers for extranodal natural killer/T-cell lymphoma (ENKTL patients receiving asparaginase-based chemotherapy. Interleukin-10 (IL-10 is a pleiotropic cytokine that is involved in the stimulation and suppression of immune responses and influences the prognosis of different subtypes of lymphoma. We retrospectively analyzed 98 newly diagnosed patients with ENKTL receiving asparaginase-based chemotherapy. Baseline serum IL-10 levels were tested with sandwich enzyme-linked immunosorbent assays. Patients with high IL-10 (≥12.28 pg/mL at diagnosis tended to have more adverse clinical features. Patients with low IL-10 (<12.28 pg/mL at diagnosis had better progression-free survival (PFS (P<0.001 and overall survival (OS (P<0.001. Multivariate analysis revealed that baseline serum IL-10 level ≥12.28 pg/mL, stage III/IV, elevated serum ferritin, and elevated serum Epstein–Barr virus DNA level at diagnosis were four adverse factors for PFS and OS. Based on these four independent prediction factors, we divided the patients into different subgroups as follows: group 1, no adverse factors; group 2, one factor; group 3, two factors; and group 4, three or four factors. Furthermore, significant

  17. Detection of levels of serum interleukin-10 and plasma endothelin in children with or without atopic asthma and their clinical significances

    International Nuclear Information System (INIS)

    Wang Xuehua; Liu Li; Qiao Hongmei; Li Ya'nan; Lu Qinghua; Cheng Huanji

    2012-01-01

    Objective: To observe the changes of the levels of serum interleukin-10 (Il-10), plasma endothelin (Et-1) and immunoglobulin E (IgE) in children with or without a topic asthma and to discuss their clinical significances. Methods: 60 asthma children conducted the Allergen skin prick tests and serum IgE measurement to determine a topic status at the same time, and they were divided into a topic asthma group (n=32) and non-a topic asthma group (n=28) according to the results. 30 normal healthy children were selected as control group. The expressions of Et-1 and IgE in the asthma children during attack period and remission phase and the children in control group were detected by radioimmunoassay and the levels of serum Il-10 were detected by the double antibody sandwich ELISA. Results: The level of serum Il-10 in the asthma children in the acute attack period was lower than those in control group (P<0.01), and the level of Et-1 was higher obviously than that in control group (P<0.05); the levels of IgE in the asthma children in the acute attack period and remission phase in asthma groups were obviously higher than that in control group (P<0.01). The levels of Et-1 and IgE of the a topic asthma children in acute attack period were higher than those of the atopic asthma children in remission phase, and the level of IL-10 was lower (P<0.01). The levels of serum IL-10 in atopic of the acute attack period was lower than that in non-atopic group (P<0.05), and the levels of the ET-1 and IgE of the patients in the acute attack period and remission phase in atopic group were higher than those in non-atopic group (P<0.05). The relationship between IL-10 level and ET-1 and IgE showed obviously negative correlations (r=-0.592, r=-0.894, P<0.05), and the relationship between ET-1 and IgE showed obviously positive correlation (r=-0.623, P<0.05). Conclusion: The levels of serum IL-10 and ET-1 perhaps take part in the pathologic and physiological process of the children's asthma

  18. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jianxin; Yu, Chao; Chen, Meiyuan; Tian, She; Sun, Chengyi, E-mail: chenyisun11@163.com

    2015-09-04

    Hepatocellular carcinoma (HCC) is the most common cancer in the world especially in East Asia and Africa. Advanced stage, metastasis and frequent relapse are responsible for the poor prognosis of HCC. However, the precise mechanisms underlying HCC remained unclear. So it is urgent to identify the pathological processes and relevant molecules of HCC. TRIM37 is an E3 ligase and has been observed deregulated expression in various tumors. Recent studies of TRIM37 have implicated that TRIM37 played critical roles in cell proliferation and other processes. In the present study, we demonstrated that TRIM37 expression was notably up-regulated in HCC samples and was associated with advanced stage and tumor volume, which all indicating the poor outcomes. We also found that TRIM37 could serve as an independent prognostic factor of HCC. During the course of in vitro and in vivo work, we showed that TRIM37 promoted HCC cells migration and metastasis by inducing EMT. Furthermore, we revealed that the effect of TRIM37 mediated EMT in HCC cells was achieved by the activation of Wnt/β-catenin signaling. These finding may provide insight into the understanding of TRIM37 as a novel critical factor of HCC and a candidate target for HCC treatment. - Highlights: • Highly expression of TRIM37 is found in HCC samples compared with nontumorous samples. • TRIM37 expression is correlated with advanced HCC stages and could be an independent prognostic factor. • TRIM37 promotes cell proliferation and metastasis. • We report an E3 ligase TRIM37 affects Wnt/β-catenin signaling.

  19. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Sukweenadhi, Johan; Singh, Priyanka; Yang, Deok-Chun

    2017-07-01

    Panax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Effects of bamboo vinegar powder on growth performance and mRNA expression levels of interleukin-10, interleukin-22, and interleukin-25 in immune organs of weaned piglets

    Directory of Open Access Journals (Sweden)

    Yongjiu Huo

    2016-06-01

    Full Text Available The aim of this study was to explore the effects of bamboo vinegar powder on growth performance, diarrhea situation and mRNA expression levels of cytokines i.e., interleukin-10 (IL-10, interleukin-22 (IL-22, and interleukin-25 (IL-25 in immune organs of weaned piglets, and to accumulate theoretical data for the application of bamboo vinegar powder in weaned piglet production. Forty-five crossbred (Duroc × Landrace × Yorkshire, all male weaned piglets with similar body weight (6.74 ± 0.17 kg at 31 days of age were randomly assigned to 5 treatments with 3 replicates per treatment and 3 piglets in each replicate. The five treatments were as follows: CON (a basal diet, ANT (the basal diet + 0.12% antibiotics, BV1 (the basal diet + 0.1% bamboo vinegar powder, BV5 (the basal diet + 0.5% bamboo vinegar powder, BV10 (the basal diet + 1.0% bamboo vinegar powder. This experiment lasted 35 days. The growth performance and diarrhea situation were recorded. The relative mRNA expression levels of IL-10, IL-22 and IL-25 in liver, spleen, duodenum and mesenteric lymph nodes were detected by real-time PCR. Feed: gain of BV5 was significantly lower than that of CON (P < 0.05. In comparison with CON, diarrhea rate and diarrhea index of BV1 and BV5 all tended to decrease (P < 0.1. Compared with CON, mRNA expression level of IL-10 in liver of ANT tended to be lower (P < 0.1 and these of BV1, BV5 and BV10 were significantly reduced (P < 0.05. The mRNA expression levels of IL-10 in duodenum of ANT, BV1, BV5 and BV10 were all lower than those of CON, of which BV10 had significantly decreased IL-10 mRNA expression in duodenum (P < 0.05. The mRNA expression levels of IL-22 in duodenum of ANT, BV1, BV5 and BV10 all tended to be inhibited compared with CON (P < 0.1. With the increase of bamboo vinegar powder dosage, mRNA expression levels of IL-25 in spleen and mesenteric lymph nodes of BV1, BV5 and BV10 tended to be up-regulated. Overall

  1. Expression of CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming Growth Factor β in Newly Diagnosed Type 2 Diabetic Patients.

    Science.gov (United States)

    Yuan, Ning; Zhang, Hai-Feng; Wei, Qi; Wang, Ping; Guo, Wei-Ying

    2018-02-01

    Recent studies have shown that dysfunction and decrease of regulatory T cells (Tregs) correlates with insulin resistance (IR), one of the most significant mechanisms for type 2 diabetes mellitus (T2DM). To examine potential relationships among Tregs, IR, blood lipid content, and related cytokines, we investigated the frequency of CD4+CD25+Foxp3+ Tregs, as well as expression levels of interleukin 10 (IL-10) and transforming growth factor-β (TGF-β) in newly diagnosed T2DM patients. Fifty-one newly diagnosed T2DM patients and 55 control individuals were enrolled. According to body mass index (BMI), the T2DM patients were grouped into non-obese and obese groups. Blood was collected in ethylene diamine tetraacetic acid (EDTA) anticoagulant tubes for detection of CD4+CD25+Foxp3+ Tregs by flow cytometry. Serum was collected to quantify IL-10 and TGF-β levels by enzyme-linked immunosorbent assay (ELISA). By comparing percentages of Tregs between non-obese and obese groups, correlation with Treg frequency, homeostasis model assessment of insulin resistance (HOMA-IR), IL-10 and TGF-β was examined. The percentage of CD4+CD25+Foxp3+ Tregs in the newly diagnosed T2DM group was significantly lower than in the control group (P<0.01). Further, levels of IL-10 and TGF-β were also lower in the T2DM group (P<0.05). The level of IL-10 was remarkably lower in the obese group than in the non-obese and the control groups (P<0.01), but there was no significant difference between non-obese group and the control group. The level of TGF-β was lower in obese group than in the control group (P<0.05). There was no significant difference between non-obese group and the control group. The frequency of CD4+CD25+Foxp3+ Tregs in the obese group was significantly lower than in the non-obese group (P<0.05). In the obese group, the percentage of Tregs negatively correlated with HOMA-IR and positively correlated with TGF-β (P<0.05). There was no obvious correlation between Treg and HOMA-IR in the

  2. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    International Nuclear Information System (INIS)

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-01-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells

  3. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  4. Increased miR-223 expression in T cells from patients with rheumatoid arthritis leads to decreased insulin-like growth factor-1-mediated interleukin-10 production.

    Science.gov (United States)

    Lu, M-C; Yu, C-L; Chen, H-C; Yu, H-C; Huang, H-B; Lai, N-S

    2014-09-01

    We hypothesized that the aberrant expression of microRNAs (miRNAs) in rheumatoid arthritis (RA) T cells was involved in the pathogenesis of RA. The expression profile of 270 human miRNAs in T cells from the first five RA patients and five controls were analysed by real-time polymerase chain reaction. Twelve miRNAs exhibited potentially aberrant expression in RA T cells compared to normal T cells. After validation with another 22 RA patients and 19 controls, miR-223 and miR-34b were over-expressed in RA T cells. The expression levels of miR-223 were correlated positively with the titre of rheumatoid factor (RF) in RA patients. Transfection of Jurkat cells with miR-223 mimic suppressed insulin-like growth factor-1 receptor (IGF-1R) and transfection with miR-34b mimic suppressed cAMP response element binding protein (CREB) protein expression by Western blotting. The protein expression of IGF-1R but not CREB was decreased in RA T cells. The addition of recombinant IGF-1-stimulated interleukin (IL)-10 production by activated normal T cells, but not RA T cells. The transfection of miR-223 mimic impaired IGF-1-mediated IL-10 production in activated normal T cells. The expression levels of SCD5, targeted by miR-34b, were decreased in RA T cells after microarray analysis. In conclusion, both miR-223 and miR-34b were over-expressed in RA T cells, but only the miR-223 expression levels were correlated positively with RF titre in RA patients. Functionally, the increased miR-223 expression could impair the IGF-1-mediated IL-10 production in activated RA T cells in vivo, which might contribute to the imbalance between proinflammatory and anti-inflammatory cytokines. © 2014 British Society for Immunology.

  5. Reduced mortality and CD4 cell loss among carriers of the interleukin-10 -1082G allele in a Zimbabwean cohort of HIV-1-infected adults

    DEFF Research Database (Denmark)

    Erikstrup, Christian; Kallestrup, Per; Zinyama-Gutsire, Rutendo B

    2007-01-01

    To evaluate the effect on HIV progression of single nucleotide polymorphisms in promoters of the genes for tumour necrosis factor (TNF)-alpha and interleukin (IL)-10 and known to influence cytokine production.......To evaluate the effect on HIV progression of single nucleotide polymorphisms in promoters of the genes for tumour necrosis factor (TNF)-alpha and interleukin (IL)-10 and known to influence cytokine production....

  6. Quantitative nature of overexpression experiments

    Science.gov (United States)

    Moriya, Hisao

    2015-01-01

    Overexpression experiments are sometimes considered as qualitative experiments designed to identify novel proteins and study their function. However, in order to draw conclusions regarding protein overexpression through association analyses using large-scale biological data sets, we need to recognize the quantitative nature of overexpression experiments. Here I discuss the quantitative features of two different types of overexpression experiment: absolute and relative. I also introduce the four primary mechanisms involved in growth defects caused by protein overexpression: resource overload, stoichiometric imbalance, promiscuous interactions, and pathway modulation associated with the degree of overexpression. PMID:26543202

  7. CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells

    DEFF Research Database (Denmark)

    Fjelbye, Jonas; Antvorskov, Julie C; Buschard, Karsten

    2015-01-01

    Conflicting observations have been reported concerning the role of CD1d-dependent natural killer T (NKT) cells in contact hypersensitivity (CHS), supporting either a disease-promoting or downregulatory function. We studied the role of NKT cells in CHS by comparing the immune response in CD1d.......05) and peritoneal cavity (80.8% decrease; P NKT cells in CHS in our model, at least in part via regulation of IL-10 producing B(regs) ........5% DNCB (w/v) on the ears fifteen days later. We demonstrate that CD1d KO mice, as compared with Wt littermates, have more pronounced infiltration of mononuclear cells in the skin (29.1% increase; P cells (B(regs) ) in the spleen (53.2% decrease; P

  8. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    Science.gov (United States)

    Yu, Hong-Ren; Tsai, Ching-Chang; Chang, Ling-Sai; Huang, Hsin-Chun; Cheng, Hsin-Hsin; Wang, Jiu-Yao; Sheen, Jiunn-Ming; Kuo, Ho-Chang; Hsieh, Kai-Sheng; Huang, Ying-Hsien; Yang, Kuender D.; Hsu, Te-Yao

    2017-01-01

    A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL)-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs) function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs) produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs) by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency. PMID:28487700

  9. l-Arginine-Dependent Epigenetic Regulation of Interleukin-10, but Not Transforming Growth Factor-β, Production by Neonatal Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kuender D. Yang

    2017-04-01

    Full Text Available A growing number of diseases in humans, including trauma, certain cancers, and infection, are known to be associated with l-arginine deficiency. In addition, l-arginine must be supplemented by diet during pregnancy to aid fetal development. In conditions of l-arginine depletion, T cell proliferation is impaired. We have previously shown that neonatal blood has lower l-arginine levels than adult blood, which is associated with poor neonatal lymphocyte proliferation, and that l-arginine enhances neonatal lymphocyte proliferation through an interleukin (IL-2-independent pathway. In this study, we have further investigated how exogenous l-arginine enhances neonatal regulatory T-cells (Tregs function in relation to IL-10 production under epigenetic regulation. Results showed that cord blood mononuclear cells (CBMCs produced higher levels of IL-10 than adult peripheral blood mononuclear cells (PBMCs by phytohemagglutinin stimulation but not by anti-CD3/anti-CD28 stimulation. Addition of exogenous l-arginine had no effect on transforming growth factor-β production by PBMCs or CBMCs, but enhanced IL-10 production by neonatal CD4+CD25+FoxP3+ Tregs. Further studies showed that IL-10 promoter DNA hypomethylation, rather than histone modification, corresponded to the l-arginine-induced increase in IL-10 production by neonatal CD4+ T cells. These results suggest that l-arginine modulates neonatal Tregs through the regulation of IL-10 promoter DNA methylation. l-arginine supplementation may correct the Treg function in newborns with l-arginine deficiency.

  10. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Zhanshan [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Qian, Guangfang [Department of Endocrinology, Zhangqiu Municipal Hospital of Traditional Chinese Medicine, Zhangqiu, Shandong 250200 (China); Zang, Yan; Gu, Haihui; Huang, Yanyan; Zhu, Lishuang; Li, Jinqi; Liu, Yang; Tu, Xiaohua [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Song, Haihan [Emergency Center, East Hospital, Shanghai 200120 (China); Qian, Baohua, E-mail: qianbhl963@163.com [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-01-01

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.

  11. Improvement of daptomycin yield by overexpression of the ...

    African Journals Online (AJOL)

    The effects of the accessory genes flanking the non-ribosomal peptide synthetase (NRPS) genes on daptomycin production were investigated by overexpression under the control of ermE* promoter via the integrative Escherichia coli–Streptomyces vector pIB139. The yield of daptomycin was promoted significantly when ...

  12. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  13. Indoleamine 2,3-dioxygenase promotes peritoneal metastasis of ovarian cancer by inducing an immunosuppressive environment.

    Science.gov (United States)

    Tanizaki, Yuko; Kobayashi, Aya; Toujima, Saori; Shiro, Michihisa; Mizoguchi, Mika; Mabuchi, Yasushi; Yagi, Shigetaka; Minami, Sawako; Takikawa, Osamu; Ino, Kazuhiko

    2014-08-01

    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that has immunoregulatory functions. Our prior study showed that tumoral IDO overexpression is involved in disease progression and impaired patient survival in human ovarian cancer, although its mechanism remains unclear. The purpose of the present study is to clarify the role of IDO during the process of peritoneal dissemination of ovarian cancer. Indoleamine 2,3-dioxygenase cDNA was transfected into the murine ovarian carcinoma cell line OV2944-HM-1, establishing stable clones of IDO-overexpressing cells (HM-1-IDO). Then HM-1-IDO or control vector-transfected cells (HM-1-mock) were i.p. transplanted into syngeneic immunocompetent mice. The HM-1-IDO-transplanted mice showed significantly shortened survival compared with HM-1-mock-transplanted (control) mice. On days 11 and 14 following transplantation, the tumor weight of peritoneal dissemination and ascites volume were significantly increased in HM-1-IDO-transplanted mice compared with those of control mice. This tumor-progressive effect was coincident with significantly reduced numbers of CD8(+) T cells and natural killer cells within tumors as well as increased levels of transforming growth factor-β and interleukin-10 in ascites. Finally, treatment with the IDO inhibitor 1-methyl-tryptophan significantly suppressed tumor dissemination and ascites with reduced transforming growth factor-β secretion. These findings showed that tumor-derived IDO promotes the peritoneal dissemination of ovarian cancer through suppression of tumor-infiltrating effector T cell and natural killer cell recruitment and reciprocal enhancement of immunosuppressive cytokines in ascites, creating an immunotolerogenic environment within the peritoneal cavity. Therefore, IDO may be a promising molecular target for the therapeutic strategy of ovarian cancer. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer

  14. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    Science.gov (United States)

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  15. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Directory of Open Access Journals (Sweden)

    Visar Qeska

    Full Text Available Canine distemper virus (CDV exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs, responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  16. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Galdiers, Marcel P; Hedegaard, Chris J

    2010-01-01

    Thyroglobulin (TG), as autoantigen, induces in vitro proliferation of T and B cells from normal individuals, but the cytokine production differs from that in patients with autoimmune thyroid disease. Here, we investigate whether normal T cells responding to TG are naive, or have previously...... encountered TG in vivo, using their responses to classic primary and secondary antigens, keyhole limpet haemocyanin (KLH) and tetanus toxoid (TT), respectively, for comparison. While TG elicited T-cell proliferation kinetics typical of a secondary response, the cytokine profile was distinct from that for TT....... Whereas TT induced pro-inflammatory cytokines [interleukin-2 (IL-2)/interferon-gamma (IFN-gamma)/IL-4/IL-5], TG evoked persistent release of the regulatory IL-10. Some donors, however, also responded with late IFN-gamma production, suggesting that the regulation by IL-10 could be overridden. Although...

  17. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus Kim Hostein; Galdiers, Marcel P; Hedegaard, Chris Juul

    2010-01-01

    . Whereas TT induced pro-inflammatory cytokines [interleukin-2 (IL-2)/interferon-gamma (IFN-gamma)/IL-4/IL-5], TG evoked persistent release of the regulatory IL-10. Some donors, however, also responded with late IFN-gamma production, suggesting that the regulation by IL-10 could be overridden. Although...... monocytes were prime producers of IL-10 in the early TG response, a few IL-10-secreting CD4(+) T cells, primarily with CD45RO(+) memory phenotype, were also detected. Furthermore, T-cell depletion from the mononuclear cell preparation abrogated monocyte IL-10 production. Our findings indicate active...

  18. The self-antigen, thyroglobulin, induces antigen-experienced CD4+ T cells from healthy donors to proliferate and promote production of the regulatory cytokine, interleukin-10, by monocytes

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Galdiers, Marcel P; Hedegaard, Chris J

    2010-01-01

    Thyroglobulin (TG), as autoantigen, induces in vitro proliferation of T and B cells from normal individuals, but the cytokine production differs from that in patients with autoimmune thyroid disease. Here, we investigate whether normal T cells responding to TG are naive, or have previously...... and pathological modes of auto-recognition....

  19. Effects of escitalopram, R-citalopram, and reboxetine on serum levels of tumor necrosis factor-α, interleukin-10, and depression-like behavior in mice after lipopolysaccharide administration.

    Science.gov (United States)

    Dong, Chao; Zhang, Ji-chun; Yao, Wei; Ren, Qian; Yang, Chun; Ma, Min; Han, Mei; Saito, Ryo; Hashimoto, Kenji

    2016-05-01

    Inflammation plays a role in the pathophysiology of depression. The purpose of this study is to examine whether the selective serotonin reuptake inhibitor (SSRI) escitalopram, its inactive enantiomer R-citalopram, and selective noradrenaline reuptake inhibitor (NRI) reboxetine, show anti-inflammatory and antidepressant effects in an inflammation-induced model of depression. Pretreatment with escitalopram (1, 3, or 10mg/kg, i.p.) markedly blocked an increase in the serum levels of pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), after a single administration of lipopolysaccharide (LPS; 0.5mg/kg). Furthermore, escitalopram (3 or 10mg/kg) significantly increased the serum levels of the anti-inflammatory cytokine interleukin-10 (IL-10) by a single administration of LPS. In contrast, pretreatment with R-citalopram (10mg/kg, i.p.) or reboxetine (10mg/kg, i.p.) did not affect the alterations in serum levels of TNF-α and IL-10 after LPS administration. Co-administration of reboxetine with escitalopram did not show anti-inflammatory effects. Pretreatment with escitalopram (10mg/kg) significantly attenuated LPS-induced increase of the immobility time in the tail-suspension test (TST) and forced swimming test (FST). In contrast, pretreatment with R-citalopram (10mg/kg), or reboxetine (10mg/kg) did not alter LPS-induced increase of immobility time of TST and FST. Interestingly, co-administration of reboxetine with escitalopram did not show antidepressant effect in this model. These findings suggest that escitalopram, but not R-citalopram and reboxetine, has anti-inflammatory and antidepressant effects in LPS-treated model of depression, and that reboxetine can antagonize the effects of escitalopram in the inflammation model. Therefore, it is likely that serotonergic system plays a key role in the pathophysiology of inflammation-induced depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Plasma concentrations and placental immunostaining of interleukin-10 and tumornecrosis factor-α as predictors of alterations in the embryo-fetal organism and the placental development of diabetic rats

    Directory of Open Access Journals (Sweden)

    Y.K. Sinzato

    2011-03-01

    Full Text Available Interleukin-10 (IL-10 appears to be the key cytokine for the maintenance of pregnancy and inhibits the secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α. However, there are no studies evaluating the profile of these cytokines in diabetic rat models. Thus, our aim was to analyze IL-10 and TNF-α immunostaining in placental tissue and their respective concentrations in maternal plasma during pregnancy in diabetic rats in order to determine whether these cytokines can be used as predictors of alterations in the embryo-fetal organism and in placental development. These parameters were evaluated in non-diabetic (control; N = 15 and Wistar rats with streptozotocin (STZ-induced diabetes (N = 15. At term, the dams (100 days of life were killed under anesthesia and plasma and placental samples were collected for IL-10 and TNF-α determinations by ELISA and immunohistochemistry, respectively. The reproductive performance was analyzed. Plasma IL-10 concentrations were reduced in STZ rats compared to controls (7.6 ± 4.5 vs 20.9 ± 8.1 pg/mL. The placental scores of immunostaining intensity did not differ between groups (P > 0.05. Prevalence analysis showed that the IL-10 expression followed TNF-α expression, showing a balance between them. STZ rats also presented impaired reproductive performance and reduced plasma IL-10 levels related to damage during early embryonic development. However, the increased placental IL-10 as a compensatory mechanism for the deficit of maternal regulation permitted embryo development. Therefore, the data suggest that IL-10 can be used as a predictor of changes in the embryo-fetal organism and in placental development in pregnant diabetic rats.

  1. Latency-Associated Viral Interleukin-10 (IL-10) Encoded by Human Cytomegalovirus Modulates Cellular IL-10 and CCL8 Secretion during Latent Infection through Changes in the Cellular MicroRNA hsa-miR-92a

    Science.gov (United States)

    Poole, Emma; Avdic, Selmir; Hodkinson, Jemima; Jackson, Sarah; Wills, Mark; Slobedman, Barry

    2014-01-01

    ABSTRACT The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system. PMID:25253336

  2. Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system.

    Science.gov (United States)

    Cheng, L; Chen, G; Ding, G; Zhao, Z; Dong, T; Hu, Z

    2015-04-27

    The Rhodobacter sphaeroides system has been used to express membrane proteins. However, its low yield has substantially limited its application. In order to promote the protein expression capability of this system, the pucC gene, which plays a crucial role in assembling the R. sphaeroides light-harvesting 2 complex (LH2), was overexpressed. To build a pucC overexpression strain, a pucC overexpression vector was constructed and transformed into R. sphaeroides CQU68. The overexpression efficiency was evaluated by quantitative real-time polymerase chain reaction. A well-used reporter β-glucuronidase (GUS) was fusion-expressed with LH2 to evaluate the heterologous protein expression level. As a result, the cell culture and protein in the pucC overexpression strain showed much higher typical spectral absorption peaks at 800 and 850 nm compared with the non-overexpression strain, suggesting a higher expression level of LH2-GUS fusion protein in the pucC overexpression strain. This result was further confirmed by Western blot, which also showed a much higher level of heterologous protein expression in the pucC overexpression strain. We further compared GUS activity in pucC overexpression and non-overexpression strains, the results of which showed that GUS activity in the pucC overexpression strain was approximately ten-fold that in the non-overexpression strain. These results demonstrate that overexpressed pucC can promote heterologous protein expression levels in R. sphaeroides.

  3. Interleukin 6, lipopolysaccharide-binding protein and interleukin 10 in the prediction of risk and etiologic patterns in patients with community-acquired pneumonia: results from the German competence network CAPNETZ

    Science.gov (United States)

    2012-01-01

    Background The aim of our study was to investigate the predictive value of the biomarkers interleukin 6 (IL-6), interleukin 10 (IL-10) and lipopolysaccharide-binding protein (LBP) compared with clinical CRB and CRB-65 severity scores in patients with community-acquired pneumonia (CAP). Methods Samples and data were obtained from patients enrolled into the German CAPNETZ study group. Samples (blood, sputum and urine) were collected within 24 h of first presentation and inclusion in the CAPNETZ study, and CRB and CRB-65 scores were determined for all patients at the time of enrollment. The combined end point representative of a severe course of CAP was defined as mechanical ventilation, intensive care unit treatment and/or death within 30 days. Overall, a total of 1,000 patients were enrolled in the study. A severe course of CAP was observed in 105 (10.5%) patients. Results The highest IL-6, IL-10 and LBP concentrations were found in patients with CRB-65 scores of 3-4 or CRB scores of 2-3. IL-6 and LBP levels on enrollment in the study were significantly higher for patients with a severe course of CAP than for those who did not have severe CAP. In receiver operating characteristic analyses, the area under the curve values for of IL-6 (0.689), IL-10 (0.665) and LPB (0.624) in a severe course of CAP were lower than that of CRB-65 (0.764) and similar to that of CRB (0.69). The accuracy of both CRB and CRB-65 was increased significantly by including IL-6 measurements. In addition, higher cytokine concentrations were found in patients with typical bacterial infections compared with patients with atypical or viral infections and those with infection of unknown etiology. LBP showed the highest discriminatory power with respect to the etiology of infection. Conclusions IL-6, IL-10 and LBP concentrations were increased in patients with a CRB-65 score of 3-4 and a severe course of CAP. The concentrations of IL-6 and IL-10 reflected the severity of disease in patients with CAP

  4. Interleukin-10 does not mediate the inhibitory effect of PDE-4 inhibitors and other cAMP-elevating drugs on lipopolysaccharide-induced tumors necrosis factor-alpha generation from human peripheral blood monocytes.

    Science.gov (United States)

    Seldon, P M; Barnes, P J; Giembycz, M A

    1998-01-01

    Lipopolysaccharide (LPS)-induced liver injury in mice and LPS-induced tumor necrosis factor-alpha (TNF-alpha) generation by murine macrophages and hepatocytes are suppressed markedly by agents that elevate intracellular cAMP. Phosphodiesterase (PDE)-4 inhibitors, beta 2-adrenoceptor agonists, and E-series prostaglandins also attenuate the induction of the TNF-alpha gene in human monocytes in response to bacterial LPS. The mechanism of action of cAMP is unclear, but in the mouse, is believed to involve the generation of this anti-inflammatory cytokine, interleukin-10 (IL-10). In this article, we describe the results of studies designed to determine the extent to which IL-10 contributes to the suppression of TNF-alpha generation from LPS-stimulated human monocytes evoked by 8-bromo cyclic AMP (8-Br-cAMP), rolipram, salbutamol, and prostaglandin E2 (PGE2). LPS evoked a time- and concentration-dependent generation of TNF-alpha (t1/2 = 4.5 h; EC50 = 273 pg/mL), which was inhibited by exogenous human recombinant (h) IL-10 (IC50 = 124 pg/mL), and by rolipram (EC50 = 420 nM), 8-Br-cAMP (EC50 = 77 (microM), PGE2 (EC50 = 15 nM) and salbutamol (EC50 = 20 nM). In addition, 8-Br-cAMP, PGE2; and salbutamol (but not rolipram) augmented significantly LPS-induced IL-10 production (two-to-fivefold) under identical experimental conditions. Pretreatment of monocytes with an anti-IL-10 monoclonal antibody (MAb) that abolished the inhibitory action of a maximally effective concentration of exogenous hrIL-10, failed to attenuate the inhibitory effect of rolipram, PGE2, salbutamol, and 8-Br-cAMP. Anti-IL-10 was similarly inactive when the number of monocytes seeded was increased from 0.5 to 4 x 10(6)/mL or when measurements were made at 42 h post-LPS, a time when the concentration of IL-10 released was maximal. Collectively, these data suggest that in contrast to murine hepatocytes and macrophages, IL-10 does not mediate the inhibitory effect of cAMP-elevating drugs on TNF

  5. Resident Bacteria-Stimulated Interleukin-10-Secreting B Cells Ameliorate T-Cell-Mediated Colitis by Inducing T-Regulatory-1 Cells That Require Interleukin-27 SignalingSummary

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Mishima

    2015-05-01

    Full Text Available Background & Aims: The regulatory roles of interleukin-10 (IL10-producing B cells in colitis are not fully understood, so we explored the molecular mechanisms by which these cells modulate mucosal homeostasis. Methods: CD4+ T cells from wild-type (WT, Il10−/−, or Il27ra−/− mice were cotransferred with B cells from specific pathogen-free (SPF or germ-free (GF WT or Il10−/− mice into Rag2−/−Il10−/−(double-knockout mice, and the severity of colitis and intestinal regulatory T-cell populations were characterized. In vitro, WT or Il10−/− B cells were cocultured with unfractionated, naïve or regulatory T cells plus Il10−/− antigen-presenting cells and stimulated with cecal bacterial lysate (CBL with or without IL27 or anti-IL10R blockade. Gene expressions, cytokines in the supernatant and cell populations were assessed. Results: WT but not Il10−/− B cells attenuated T helper cell TH1/TH17-mediated colitis in double-knockout mice that also received WT but not Il10−/− T cells. In vitro, CBL-stimulated WT B cells secrete abundant IL10 and suppress interferon-γ (IFNγ and IL17a-production by T cells without requiring cell contact. Although both WT and Il10−/− B cells induced Foxp3+CD4+ T-regulatory cells, only WT B cells induced IL10-producing (Foxp3-negative T regulatory-1 (Tr-1 cells both in vivo and in vitro. However, IL10-producing B cells did not attenuate colitis or induce Tr-1 cells in the absence of T cell IL27 signaling in vivo. WT B cell-dependent Tr-1 induction and concomitant decreased IFNγ-secretion were also mediated by T-cell IL27-signaling in vitro. Conclusions: IL10-secreting B cells activated by physiologically relevant bacteria ameliorate T-cell-mediated colitis and contribute to intestinal homeostasis by suppressing effector T cells and inducing Tr-1 cells via IL27-signaling on T cells. Keywords: Experimental

  6. Prognostic implication of aquaporin 1 overexpression in resected lung adenocarcinoma.

    Science.gov (United States)

    Bellezza, Guido; Vannucci, Jacopo; Bianconi, Fortunato; Metro, Giulio; Del Sordo, Rachele; Andolfi, Marco; Ferri, Ivana; Siccu, Paola; Ludovini, Vienna; Puma, Francesco; Sidoni, Angelo; Cagini, Lucio

    2017-12-01

    Aquaporins (AQPs) are a group of transmembrane water-selective channel proteins thought to play a role in the regulation of water permeability for plasma membranes. Indeed, high AQP levels have been suggested to promote the progression, invasion and metastasis of tumours. Specifically, AQP1 and AQP5 overexpression in lung adenocarcinoma (AC) have been suggested to be involved in molecular mechanisms in lung cancer. The aim of this retrospective cohort single-centre study was to assess both the levels of expression and therein the prognostic significance, regarding outcome of AQP1 and AQP5 in resected AC patients. Patients with histological diagnoses of lung AC submitted to pulmonary resection were included in this cohort study. Tissue microarrays containing cores from 185 ACs were prepared. AQP1 and AQP5 expressions were assessed by immunohistochemistry. Results were scored as either low (Score 0-2) or high (Score 3-9). Clinical data, pathological tumour-node-metastasis staging and follow-up were recorded. Multivariate Cox survival analysis and Fisher's t-test were performed. AQP1 overexpression was detected in 85 (46%) patients, while AQP5 overexpression was observed in 45 (24%) patients. AQP1 did not result being significantly correlated with clinical and pathological parameters, while AQP5 resulted more expressed in AC with mucinous and papillary predominant patterns. Patients with AQP1 overexpression had shorter disease-free survival (P = 0.001) compared with patients without AQP1 overexpression. Multivariate analysis confirmed that AQP1 overexpression was significantly associated with shorter disease-free survival (P = 0.001). Our results evidenced that AQP1 overexpression resulted in a shorter disease-free survival in lung AC patients. Being so, AQP1 overexpression might be an important prognostic marker in lung AC. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights

  7. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone.

    Science.gov (United States)

    Luo, Hao; Liang, Hairong; Chen, Yuting; Chen, Shaoyun; Xu, Yongchun; Xu, Longmei; Liu, Jiaxian; Zhou, Kairu; Peng, Jucheng; Guo, Guoqiang; Lai, Bei; Song, Li; Yang, Hui; Liu, Linhua; Peng, Jianming; Liu, Zhidong; Tang, Lin; Chen, Wen; Tang, Huanwen

    2018-03-01

    Hydroquinone (HQ), one of the major metabolic products of benzene, is a carcinogen, which induces apoptosis and inhibit proliferation in lymphoma cells. microRNA-7-5p (miR-7-5p), a tumor suppressor, participates in various biological processes including cell proliferation and apoptosis regulation by repressing expression of specific oncogenic target genes. To explore whether miR-7-5p is involved in HQ-induced cell proliferation and apoptosis, we assessed the effect of miR-7-5p overexpression on induction of apoptosis analyzed by FACSCalibur flow cytometer in transfection of TK6 cells with miR-7-5p mimic (TK6- miR-7-5p). We observed an increased apoptosis by 25.43% and decreased proliferation by 28.30% in TK6-miR-7-5p cells compared to those negative control cells (TK6-shNC) in response to HQ treatment. Furthermore, HQ might active the apoptotic pathway via partly downregulation the expression of BRCA1 and PARP-1, followed by p53 activation, in TK6-miR-7-5p cells. In contrast, attenuated p53 and BRCA1 expression was observed in shPARP-1 cells than in NC cells after HQ treatment. Therefore, we conclude that HQ may activate apoptotic signals via inhibiting the tumor suppressive effects of miR-7-5p, which may be mediated partly by upregulating the expression of PARP-1 and BRCA1 in control cells. The increase of miR-7-5p expression further intensified downregulation of PARP-1 and BRCA1 in TK6-miR-7-5p cells, resulting in an increase of apoptosis and proliferation inhibited. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Revolutionizing membrane protein overexpression in bacteria

    NARCIS (Netherlands)

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickstrom, David; Slotboom, Dirk Jan; de Gier, Jan-Willem; Wickström, David

    The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory,

  9. DEK protein overexpression predicts poor prognosis in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Sun, Jie; Bi, Fangfang; Yang, Yang; Zhang, Yuan; Jin, Aihua; Li, Jinzi; Lin, Zhenhua

    2017-02-01

    DEK, a transcription factor, is involved in mRNA splicing, transcriptional control, cell division and differentiation. Recent studies suggest that DEK overexpression can promote tumorigenesis in a wide range of cancer cell types. However, little is known concerning the status of DEK in pancreatic ductal adenocarcinoma (PDAC). Based on the microarray data from Gene Expression Omnibus (GEO), the expression levels of DEK mRNA in PDAC tissues were significantly higher than levels in the adjacent non-tumor tissues. To explore the clinical features of DEK overexpression in PDAC, 87 PDAC and 52 normal pancreas tissues were selected for immunoenzyme staining of the DEK protein. Localization of the DEK protein was detected in PANC-1 pancreatic cancer cells using immunofluorescence (IF) staining. The correlations between DEK overexpression and the clinical features of PDAC were evaluated using the Chi-squared (χ2) and Fisher's exact tests. The survival rates were calculated by the Kaplan-Meier method, and the relationship between prognostic factors and patient survival was also analyzed by the Cox proportional hazard models. The expression levels of DEK mRNA in PDAC tissues were significantly higher than that in the adjacent non‑tumor tissues. The DEK protein showed a primarily nuclear staining pattern in PDAC. The positive rate of the DEK protein was 52.9% (46/87) in PDAC, which was significantly higher than that in the adjacent normal pancreatic tissues (7.7%, 4/52). DEK overexpression in PDAC was correlated with tumor size, histological grade, tumor‑node‑metastasis (TNM) stage and overall survival (OS) rates. In addition, multivariate analysis demonstrated that DEK overexpression was an independent prognostic factor along with histological grade and TNM stage in patients with PDAC. In conclusion, DEK overexpression is associated with PDAC progression and may be a potential biomarker for poor prognostic evaluation in PDAC.

  10. Gene Overexpression: Uses, Mechanisms, and Interpretation

    Science.gov (United States)

    2012-01-01

    The classical genetic approach for exploring biological pathways typically begins by identifying mutations that cause a phenotype of interest. Overexpression or misexpression of a wild-type gene product, however, can also cause mutant phenotypes, providing geneticists with an alternative yet powerful tool to identify pathway components that might remain undetected using traditional loss-of-function analysis. This review describes the history of overexpression, the mechanisms that are responsible for overexpression phenotypes, tests that begin to distinguish between those mechanisms, the varied ways in which overexpression is used, the methods and reagents available in several organisms, and the relevance of overexpression to human disease. PMID:22419077

  11. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected in cryosect......The kinetics of mRNA expression in the central nervous system (CNS) for a series of putatively disease-promoting and disease-limiting cytokines during the course of experimental autoimmune encephalomyelitis (EAE) in Lewis rats were studied. Cytokine mRNA-expressing cells were detected...

  12. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation.

    Science.gov (United States)

    Shen, Long; Qin, Kunhua; Wang, Dekun; Zhang, Yan; Bai, Nan; Yang, Shengyong; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2014-11-01

    Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. vIL-10-overexpressing human MSCs modulate naïve and activated T lymphocytes following induction of collagenase-induced osteoarthritis.

    Science.gov (United States)

    Farrell, Eric; Fahy, Niamh; Ryan, Aideen E; Flatharta, Cathal O; O'Flynn, Lisa; Ritter, Thomas; Murphy, J Mary

    2016-05-18

    Recent efforts in osteoarthritis (OA) research have highlighted synovial inflammation and involvement of immune cells in disease onset and progression. We sought to establish the in-vivo immune response in collagenase-induced OA and investigate the ability of human mesenchymal stem cells (hMSCs) overexpressing viral interleukin 10 (vIL-10) to modulate immune populations and delay/prevent disease progression. Eight-week-old male C57BL/6 mice were injected with 1 U type VII collagenase over two consecutive days. At day 7, 20,000 hMSCs overexpressing vIL-10 were injected into the affected knee. Control groups comprised of vehicle, 20,000 untransduced or adNull-transduced MSCs or virus alone. Six weeks later knees were harvested for histological analysis and popliteal and inguinal lymph nodes for flow cytometric analysis. At this time there was no significant difference in knee OA scores between any of the groups. A trend toward more damage in animals treated with hMSCs was observed. Interestingly there was a significant reduction in the amount of activated CD4 and CD8 T cells in the vIL-10-expressing hMSC group. vIL-10-overexpressing hMSCs can induce long-term reduction in activated T cells in draining lymph nodes of mice with collagenase-induced OA. This could lead to reduced OA severity or disease progression over the long term.

  14. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lijie [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Dong, Pingping [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Liu, Longzi; Gao, Qiang; Duan, Meng [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China); Zhang, Si; Chen, She [Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Xue, Ruyi, E-mail: xue.ruyi@zs-hospital.sh.cn [Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai (China); Wang, Xiaoying, E-mail: xiaoyingwang@fudan.edu.cn [Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai (China)

    2016-04-29

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  15. Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway

    International Nuclear Information System (INIS)

    Ma, Lijie; Dong, Pingping; Liu, Longzi; Gao, Qiang; Duan, Meng; Zhang, Si; Chen, She; Xue, Ruyi; Wang, Xiaoying

    2016-01-01

    Aberrant activation of Notch signaling frequently occurs in liver cancer, and is associated with liver malignancies. However, the mechanisms regulating pathologic Notch activation in hepatocellular carcinoma (HCC) remain unclear. Protein O-fucosyltransferase 1 (Pofut1) catalyzes the addition of O-linked fucose to the epidermal growth factor-like repeats of Notch. In the present study, we detected the expression of Pofut1 in 8 HCC cell lines and 253 human HCC tissues. We reported that Pofut1 was overexpressed in HCC cell lines and clinical HCC tissues, and Pofut1 overexpression clinically correlated with the unfavorable survival and high disease recurrence in HCC. The in vitro assay demonstrated that Pofut1 overexpression accelerated the cell proliferation and migration in HCC cells. Furthermore, Pofut1 overexpression promoted the binding of Notch ligand Dll1 to Notch receptor, and hence activated Notch signaling pathway in HCC cells, indicating that Pofut1 overexpression could be a reason for the aberrant activation of Notch signaling in HCC. Taken together, our findings indicated that an aberrant activated Pofut1-Notch pathway was involved in HCC progression, and blockage of this pathway could be a promising strategy for the therapy of HCC. - Highlights: • Pofut1 overexpression in HCC was correlated with aggressive tumor behaviors. • Pofut1 overexpression in HCC was associated with poor prognosis. • Pofut1 promoted cell proliferation, migration and invasion in hepatoma cells. • Pofut1 activated Notch signaling pathway in hepatoma cells.

  16. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  17. NUCKS overexpression in breast cancer

    Directory of Open Access Journals (Sweden)

    Kittas Christos

    2009-08-01

    Full Text Available Abstract Background NUCKS (Nuclear, Casein Kinase and Cyclin-dependent Kinase Substrate is a nuclear, DNA-binding and highly phosphorylated protein. A number of reports show that NUCKS is highly expressed on the level of mRNA in several human cancers, including breast cancer. In this work, NUCKS expression on both RNA and protein levels was studied in breast tissue biopsies consisted of invasive carcinomas, intraductal proliferative lesions, benign epithelial proliferations and fibroadenomas, as well as in primary cultures derived from the above biopsies. Specifically, in order to evaluate the level of NUCKS protein in correlation with the histopathological features of breast disease, immunohistochemistry was employed on paraffin sections of breast biopsies of the above types. In addition, NUCKS expression was studied by means of Reverse Transcription PCR (RT-PCR, real-time PCR (qRT-PCR and Western immunoblot analyses in the primary cell cultures developed from the same biopsies. Results The immunohistochemical Results showed intense NUCKS staining mostly in grade I and II breast carcinomas compared to normal tissues. Furthermore, NUCKS was moderate expressed in benign epithelial proliferations, such as adenosis and sclerosing adenosis, and highly expressed in intraductal lesions, specifically in ductal carcinomas in situ (DCIS. It is worth noting that all the fibroadenoma tissues examined were negative for NUCKS staining. RT-PCR and qRT-PCR showed an increase of NUCKS expression in cells derived from primary cultures of proliferative lesions and cancerous tissues compared to the ones derived from normal breast tissues and fibroadenomas. This increase was also confirmed by Western immunoblot analysis. Although NUCKS is a cell cycle related protein, its expression does not correlate with Ki67 expression, neither in tissue sections nor in primary cell cultures. Conclusion The results show overexpression of the NUCKS protein in a number of non

  18. Effect of secretory pathway gene overexpression on secretion of a fluorescent reporter protein in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Schalén, Martin; Anyaogu, Diana Chinyere; Hoof, Jakob Blæsbjerg

    2016-01-01

    roles in the process have been identified through transcriptomics. The assignment of function to these genes has been enabled in combination with gene deletion studies. In this work, 14 genes known to play a role in protein secretion in filamentous fungi were overexpressed in Aspergillus nidulans....... The background strain was a fluorescent reporter secreting mRFP. The overall effect of the overexpressions could thus be easily monitored through fluorescence measurements, while the effects on physiology were determined in batch cultivations and surface growth studies. Results: Fourteen protein secretion...... pathway related genes were overexpressed with a tet-ON promoter in the RFP-secreting reporter strain and macromorphology, physiology and protein secretion were monitored when the secretory genes were induced. Overexpression of several of the chosen genes was shown to cause anomalies on growth, micro...

  19. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    Science.gov (United States)

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. Copyright © 2016 Mattana et al.

  20. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    Science.gov (United States)

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  1. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration.

    Science.gov (United States)

    Shin, M; Chavez, M B; Ikeda, A; Foster, B L; Bartlett, J D

    2018-02-01

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20 +/+ Tg + ) were assessed by multiscale analyses, combining several approaches from high-resolution micro-computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20 +/+ Tg + mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20 +/+ Tg + molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20 +/+ Tg + mouse molar enamel organs had increased levels

  3. Effects of overexpression of AaWRKY1 on artemisinin biosynthesis in transgenic Artemisia annua plants.

    Science.gov (United States)

    Han, Junli; Wang, Hongzhen; Lundgren, Anneli; Brodelius, Peter E

    2014-06-01

    The effective anti-malarial medicine artemisinin is costly because of the low content in Artemisia annua. Genetic engineering of A. annua is one of the most promising approaches to improve the yield of artemisinin. In this work, the transcription factor AaWRKY1, which is thought to be involved in the regulation of artemisinin biosynthesis, was cloned from A. annua var. Chongqing and overexpressed using the CaMV35S promoter or the trichome-specific CYP71AV1 promoter in stably transformed A. annua plants. The transcript level of AaWRKY1 was increased more than one hundred times under the CaMV35S promoter and about 40 times under the CYP71AV1 promoter. The overexpressed AaWRKY1 activated the transcription of CYP71AV1 and moreover the trichome-specific overexpression of AaWRKY1 improved the transcription of CYP71AV1 much more effectively than the constitutive overexpression of AaWRKY1, i.e. up to 33 times as compared to the wild-type plant. However the transcription levels of FDS, ADS, and DBR2 did not change significantly in transgenic plants. The significantly up-regulated CYP71AV1 promoted artemisinin biosynthesis, i.e. up to about 1.8 times as compared to the wild-type plant. It is demonstrated that trichome-specific overexpression of AaWRKY1 can significantly activate the transcription of CYP71AV1 and the up-regulated CYP71AV1 promotes artemisinin biosynthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception

    NARCIS (Netherlands)

    Husaineid, S.H.; Kok, R.A.; Schreuder, M.E.L.; Plas, van der L.H.W.; Krol, van der A.R.

    2007-01-01

    Transgenic tomato [Lycopersicon esculentum (=Solanum lycopersicum)] lines overexpressing tomato PHYA, PHYB1, or PHYB2, under control of the constitutive double-35S promoter from cauliflower mosaic virus (CaMV) have been generated to test the level of saturation in individual phytochrome-signalling

  5. Overexpression of trefoil factor 3 (TFF3) contributes to the malignant progression in cervical cancer cells.

    Science.gov (United States)

    Yuan, Zhaohu; Chen, Dandan; Chen, Xiaojie; Yang, Huikuan; Wei, Yaming

    2017-01-01

    There remains a great need for effective therapies for cervical cancers, the majority of which are aggressive leaving patients with poor prognosis. Here, we identify a novel candidate therapeutic target, trefoil factor 3 (TFF3) which overexpressed in cervical cancer cells and was associated with reduced postoperative survival. Functional studies demonstrated that TFF3 overexpression promoted the proliferation and invasion of cervical cancer cells, and inhibited the apoptosis by inducing the mRNA changes in SiHa and Hela cell lines. Conversely, TFF3 silencing disrupted the proliferation and invasion of cervical cancer cells, and induced the apoptosis via Click-iT EdU test, flow cytometry analysis and two-dimensional Matrigel Transwell analysis. Western blot analysis showed that overexpression of TFF3 repressed E-cadherin (CDH1) expression to promote the invasion of cervical cancer cells. Furthermore, down-regulated CDH1 via overexpression of TFF3 was significantly up-regulated by virtue of inhibitor of p-STAT3. These results suggested that TFF3 stimulated the invasion of cervical cancer cells probably by activating the STAT3/CDH1 signaling pathway. Furthermore, overexpression of TFF3 decreased the sensitivity of cervical cancer cells to etoposide by increasing P-glycoprotein (P-gp) functional activity. Overall, our work provides a preclinical proof that TFF3 not only contributes to the malignant progression of cervical cancers and but also is a potential therapeutic target.

  6. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  7. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    International Nuclear Information System (INIS)

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-01

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  8. Exacerbation of collagen antibody-induced arthritis in transgenic mice overexpressing peroxiredoxin 6.

    Science.gov (United States)

    Kim, Dae Hwan; Lee, Dong Hun; Jo, Mi Ran; Son, Dong Ju; Park, Mi Hee; Hwang, Chul Ju; Park, Ju Ho; Yuk, Dong Yeon; Yoon, Do Young; Jung, Young-Suk; Kim, Youngsoo; Jeong, Jae Hwang; Han, Sang Bae; Hong, Jin Tae

    2015-11-01

    Peroxiredoxin 6 plays important and complex roles in the process of inflammation, but its role in the development of rheumatoid arthritis (RA) remains unclear. We undertook this study to investigate the roles and mechanisms of peroxiredoxin 6 in the development of collagen antibody-induced arthritis (CAIA) and antigen-induced arthritis (AIA) in peroxiredoxin 6-overexpressing transgenic mice, in peroxiredoxin 6-transfected RAW 264.7 cells, in macrophages isolated from peroxiredoxin 6-overexpressing transgenic mice, and in synoviocytes from arthritis patients. CAIA and AIA were induced using standard methods. Peroxiredoxin 6-transfected RAW 264.7 cells, macrophages isolated from peroxiredoxin 6-overexpressing transgenic mice, and synoviocytes from arthritis patients were used to study proinflammatory responses and mechanisms. Clinical scores and histopathologic changes were determined in peroxiredoxin 6-overexpressing transgenic mice and wild-type (WT) mice with CAIA or AIA. Generation of nitric oxide (NO), expression of inducible NO synthase and cyclooxygenase 2, and activity of NF-κB and activator protein 1 (AP-1) were determined in cultured macrophages and synoviocytes as well as in joint tissue from mice by Western blotting, electrophoretic mobility shift assay, and immunohistochemical analysis. Development of CAIA and AIA and proinflammatory responses were more exacerbated in peroxiredoxin 6-overexpressing transgenic mice than in WT mice. Overexpression of peroxiredoxin 6 increased lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells, in macrophages isolated from peroxiredoxin 6-overexpressing transgenic mice, and in synoviocytes from arthritis patients, and this was accompanied by up-regulation of the JNK pathway. Moreover, a JNK inhibitor completely blocked RA development and proinflammatory responses. Our findings suggest that overexpression of peroxiredoxin 6 might promote development of RA through NF-κB and AP-1 activity via the JNK

  9. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jian-Ying [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Hung, Jan-Jong, E-mail: petehung@mail.ncku.edu.tw [Department of Pharmacology, National Cheng-Kung University, Tainan 701, Taiwan (China); Institute of Bioinformatics and Biosignal Transduction, National Cheng-Kung University, Tainan 701, Taiwan (China)

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  10. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    International Nuclear Information System (INIS)

    Chuang, Jian-Ying; Hung, Jan-Jong

    2011-01-01

    Highlights: → Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. → Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. → Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  11. Tumour necrosis factor alpha and interleukin 10 gene ...

    Indian Academy of Sciences (India)

    2011-08-19

    Aug 19, 2011 ... Hypertension was defined according to Joint National Committee VI–VII, as a systolic blood pressure >140 mm Hg and/or a diastolic blood pressure. >90 mm Hg based on the average of two blood pressure measurements. Diabetes was diagnosed if fasting plasma glucose was >126 mg/dL, in accordance ...

  12. Association assessment of Interleukine-10 gene polymorphism and ...

    African Journals Online (AJOL)

    Seyedeh Zahra Mousavi

    eral factors increase the risk of CAD such as age, gender, heredity, smoking, high blood cholesterol, high blood pressure, physical inactivity, and obesity. These factors make people prone to the coronary heart disease [3]. The cytokines are potent inflammatory factors that regulate each stage of atherosclerosis and leading ...

  13. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  14. ß-Cell Specific Overexpression of GPR39 Protects against Streptozotocin-Induced Hyperglycemia

    DEFF Research Database (Denmark)

    Egerod, Kristoffer Lihme; Jin, Chunyu; Petersen, Pia Steen

    2011-01-01

    promoter to selectively overexpress GPR39 in the ß cells in a double transgenic mouse strain and challenge them with multiple low doses of streptozotocin, which in the wild-type littermates leads to a gradual increase in nonfasting glucose levels and glucose intolerance observed during both food intake...... and OGTT. Although the overexpression of the constitutively active GPR39 receptor in animals not treated with streptozotocin appeared by itself to impair the glucose tolerance slightly and to decrease the ß-cell mass, it nevertheless totally protected against the gradual hyperglycemia in the steptozotocin...

  15. Smad2 overexpression enhances adhesion of gingival epithelial cells.

    Science.gov (United States)

    Hongo, Shoichi; Yamamoto, Tadashi; Yamashiro, Keisuke; Shimoe, Masayuki; Tomikawa, Kazuya; Ugawa, Yuki; Kochi, Shinsuke; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2016-11-01

    Gingival epithelial cells play an important role in preventing the initiation of periodontitis, by their hemidesmosomal adhesion to the tooth root surface. Adhesion requires integrin-extracellular matrix (ECM) interactions that are intricately regulated by transforming growth factor-β (TGF-β) signaling. However, the mechanisms underlying the interplay between adhesion molecules and TGF-β, especially the respective roles of Smad2 and Smad3, remain elusive. In this study, we examined the effects of Smad overexpression on gingival epithelial cell adhesion and expression profiles of integrin and ECM-related genes. Human gingival epithelial cells immortalized by the SV40 T-antigen were transfected with Smad2- and Smad3-overexpression vectors. A cell adhesion assay involving fluorescence detection of attached cells was performed using the ArrayScan imaging system. Real-time PCR was performed to examine the kinetics of integrin and ECM gene expression. In vitro and in vivo localization of adhesion molecules was examined by immunofluorescence analysis. By using SB431542, a specific inhibitor of the TGF-β type I receptor, Smad2/3 signaling was confirmed to be dominant in TGF-β1-induced cell adhesion. The Smad2-transfectant demonstrated higher potency for cell adhesion and integrin expression (α2, α5, β4, and β6) than the Smad3-transfectant, whereas little or no change in ECM expression was observed in either transfectant. Moreover, the gingival epithelium of transgenic mice that overexpressed Smad2 driven by the keratin 14 promoter showed increased integrin α2 expression. These findings indicate the crucial role of Smad2 in increased adhesion of gingival epithelial cells via upregulation of integrin α2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    International Nuclear Information System (INIS)

    Lin, Zhong-Zhe; Jeng, Yung-Ming; Hu, Fu-Chang; Pan, Hung-Wei; Tsao, Hsin-Wei; Lai, Po-Lin; Lee, Po-Huang; Cheng, Ann-Lii; Hsu, Hey-Chi

    2010-01-01

    To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC). The Aurora B and Aurora A mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the p53 and β-catenin genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of p53 and exon 3 of β-catenin. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines. Aurora B was overexpressed in 98 (61%) of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of Aurora B was associated with Aurora A overexpression (P = 0.0003) and p53 mutation (P = 0.002) and was inversely associated with β-catenin mutation (P = 0.002). Aurora B overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that Aurora B overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of p53 and β-catenin. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10) dephosphorylation, cell cycle disturbance, and apoptosis. Aurora B overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment

  17. Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Grotkjær, Thomas; Hofmann, Gerald

    2009-01-01

    .7.1.86) has been identified. The enzyme has a predicted molecular weight of 49 kDa. We characterised the role of this NADH kinase by genomic integration of the putative gene AN8837.2 under a strong constitutive promoter. The physiological effects of overexpressed NADH kinase in combination with different...... yield on glucose and the maximum specific growth rate increased from 0.47 g/g and 0.22 h(-1) (wild type) to 0.54 g/g and 0.26 h(-1) (NADH kinase overexpressed), respectively. The results suggest that overexpression of NADH kinase improves the growth efficiency of the cell by increasing the access...

  18. Overexpression of neurofilament H disrupts normal cell structure and function

    Science.gov (United States)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  19. Overexpression of homogentisate phytyltransferase in lettuce results ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... gene and the total content of α and γ-tocopherol in transgenic plants were increased up to 4 and 2.61 folds, respectively, demonstrating that overexpression of HPT gene is an effective way to improve vitamin E content in lettuce. Key words: Lactuca sativa, tocopherol, homogentisate phytyltransferase (HPT), ...

  20. Effects of GGCX overexpression on anterior cruciate ligament transection-induced osteoarthritis in rabbits.

    Science.gov (United States)

    Fu, Xiaoling; Qiu, Ruiyun; Tang, Chunfang; Wang, Xiaomei; Cheng, Xigao; Yin, Ming

    2018-03-01

    Effective therapeutic methods for osteoarthritis (OA) are lacking. γ‑glutamyl carboxylase (GGCX) is a key enzyme that regulates carboxylation of cartilage matrix Gla protein (MGP). Whether GGCX overexpression protects against OA remains unknown. The aim of the present study was to explore the effects of GGCX overexpression on anterior cruciate ligament transection (ACLT)‑induced OA and its mechanisms in Japanese white rabbits. ACLT surgery was used to establish an OA model in rabbits. A total of 48 rabbits were randomly divided into 4 groups: Sham, OA model + GGCX overexpression plasmid, OA model + saline and OA model + empty vector. The expression of uncarboxylated MGP (ucMGP), carboxylated MGP (cMGP), matrix metalloproteinase (MMP)‑13, collagen type X, collagen type II, tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β were detected by ELISA, immunohistochemistry, reverse transcription‑quantitative polymerase chain reaction and western blotting. Morphological changes to tibial cartilage were assessed by Giemsa and safranin O‑fast green staining, respectively. Compared with the Sham control, GGCX expression was significantly decreased in the OA Model group. GGCX expression was increased by injection of a lentivirus‑carried overexpression plasmid that encoded GGCX. GGCX overexpression ameliorated ATLC‑induced damage in articular cartilage. OA Model rabbits exhibited significantly decreased expression levels of cMGP and collagen type II, and increased expression of ucMGP, collagen type X, MMP‑13, IL‑1β and TNF‑α. Notably, these expression levels were reversed by GGCX overexpression in OA Model rabbits. Results from the present study indicated that GGCX expression was decreased in OA Model rabbits, whereas overexpression of GGCX was able to promote carboxylation of MGP, reduce inflammation, decrease MMP‑13 expression and regulate collagen expression. The results also indicated that GGCX may serve as a therapeutic target for OA.

  1. Hand1 overexpression inhibits medulloblastoma metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Asuthkar, Swapna; Guda, Maheedhara R. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Martin, Sarah E. [Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Antony, Reuben; Fernandez, Karen [Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Lin, Julian [Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Tsung, Andrew J. [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Illinois Neurological Institute, Peoria, IL 61656 (United States); Velpula, Kiran K., E-mail: velpula@uic.edu [Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States); Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656 (United States)

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  2. Hand1 overexpression inhibits medulloblastoma metastasis

    International Nuclear Information System (INIS)

    Asuthkar, Swapna; Guda, Maheedhara R.; Martin, Sarah E.; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J.; Velpula, Kiran K.

    2016-01-01

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. - Highlights: • Hand1 expression is downregulated in Medulloblastoma. • Hand1 over expression reduce

  3. Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice

    Directory of Open Access Journals (Sweden)

    Marshall Aaron M

    2012-01-01

    Full Text Available Abstract Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice, exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic.

  4. Frequent Nek1 overexpression in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Cai, Yu, E-mail: aihaozuqiu22@163.com [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai (China); Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Pin [Med-X Research Institute, Shanghai Jiao Tong University, Shanghai (China); Zhao, Weiguo [Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2016-08-05

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.

  5. Lack of cyclin D1 overexpression in gastric carcinogenesis

    NARCIS (Netherlands)

    Blok, P.; Craanen, M. E.; van Diest, P. J.; Dekker, W.; Tytgat, G. N.

    2000-01-01

    Cyclin D1 overexpression was examined in early gastric carcinomas and precursor lesions with the following aims; (1) to assess the chronology of cyclin D1 overexpression in various stages of gastric carcinogenesis, (2) to correlate cyclin D1 overexpression with the Lauren type, the grade of

  6. Overexpression AtNHX1 confers salt-tolerance of transgenic tall ...

    African Journals Online (AJOL)

    Saline soil is a serious problem worldwide, and it is necessary to improve the salt tolerance of plants so as to avoid the progressive deterioration of saline soil. Here we report that over-expression of AtNHX1 improves salt tolerance in transgenic tall fescue. The AtNHX1 gene driven with CaMV35S promoter was constructed ...

  7. Effect of tyrosine hydroxylase overexpression in lymphocytes on the differentiation and function of T helper cells.

    Science.gov (United States)

    Huang, Hui-Wei; Zuo, Cong; Chen, Xiao; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-08-01

    The aim of the present study was to examine the effect of the overexpression of tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines (CAs), in lymphocytes on the differentiation and function of T helper (Th) cells. A recombinant TH overexpression plasmid (pEGFP-N1-TH) was constructed and transfected into mesenteric lymphocytes using nucleofection technology. These cells were stimulated with concanavalin A (Con A) for 48 h and then examined for TH expression and CA content, as well as for the percentage of Th1 and Th2 cells, cytokine concentrations and for the levels of signaling molecules. The lymphocytes overexpressing TH also expressed higher mRNA and protein levels of TH, and synthesized more CAs, including norepinephrine (NE), epinephrine (E) and dopamine (DA) than the mock-transfected control cells. TH gene overexpression in the lymphocytes reduced the percentage of interferon-γ (IFN-γ)-producing CD4+ cells and the ratio of CD4+IFN-γ+/CD4+IL-4+ cells, as well as the percentages of CD4+CD26+ and CD4+CD30+ cells and the ratio of CD4+CD26+/CD4+CD30+ cells. TH overexpression also reduced the secretion of IFN-γ and tumor necrosis factor (TNF) from lymphocytes. Moreover, NE inhibited the Con A-induced lymphocyte proliferation and decreased both cyclic adenosine monophosphate (cAMP) levels and p38 mitogen-activated protein kinase (MAPK) expression in the lymphocytes. Our findings thus indicate that TH gene overexpression promotes the polarization and differentiation of CD4+ cells towards Th2 cells, and this effect is mediated by the cAMP and p38 MAPK signaling pathways.

  8. [Characteristic and clinical significance of DNA methyltransferase 3B overexpression in endometrial carcinoma].

    Science.gov (United States)

    Dong, Y; Zhou, M; Ba, X J; Si, J W; Li, W T; Wang, Y; Li, D; Li, T

    2016-10-18

    To determine the clinicopathological significance of the DNA methyltransferase 3B (DNMT3B) overexpression in endometrial carcinomas and to evaluate its correlation with hormone receptor status. Immunohistochemistry was performed to assess the expression of DNMT3B and hormone receptors in 104 endometrial carcinomas. DNMT3B overexpression occurred frequently in endometrioid carcinoma (EC, 54.8%) more than in nonendometrioid carcinoma (NEC, 30.0%) with statistical significance (P=0.028). Furthermore, there was a trend that EC with worse clinico-pathological variables and shorter survival had a higher DNMT3B expression, and the correlation between DNMT3B and tumor grade reached statistical significance (P=0.019).A negative correlation between DNMT3B and estrogen receptor (ER) or progesterone receptor (PR) expression was found in EC. NMT3B overexpression occurred frequently in the ER or PR negative subgroups (78.9%, 86.7%) more than in the positive subgroups (47.7%, 47.8%) with statistical significance (P=0.016, P=0.006). In addition, the DNMT3B overexpression increased in tumors with both ER and PR negative expression (92.9%, P=0.002). However, no such correlation was found in NEC (P>0.05). Sequence analyses demonstrated multiple ER and PR binding sites in the promoter regions of DNMT3B gene. This study showed that the expression of DNMT3B in EC and NEC was different. DNMT3B overexpression in EC was associated with the worse clinicopathological variables and might have predictive value. The methylation status of EC and NEC maybe different. In addition, in EC, DNMT3B overexpression negatively correlated with ER or PR expression. In NEC, the correlation between DNMT3B and ER or PR status was not present.

  9. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction

    Science.gov (United States)

    Weiss, Norbert; Zhang, Ying-Yi; Heydrick, Stanley; Bierl, Charlene; Loscalzo, Joseph

    2001-01-01

    Homocyst(e)ine (Hcy) inhibits the expression of the antioxidant enzyme cellular glutathione peroxidase (GPx-1) in vitro and in vivo, which can lead to an increase in reactive oxygen species that inactivate NO and promote endothelial dysfunction. In this study, we tested the hypothesis that overexpression of GPx-1 can restore the normal endothelial phenotype in hyperhomocyst(e)inemic states. Heterozygous cystathionine β-synthase-deficient (CBS(−/+)) mice and their wild-type littermates (CBS(+/+)) were crossbred with mice that overexpress GPx-1 [GPx-1(tg+) mice]. GPx-1 activity was 28% lower in CBS(−/+)/GPx-1(tg−) compared with CBS(+/+)/GPx-1(tg−) mice (P < 0.05), and CBS(−/+) and CBS(+/+) mice overexpressing GPx-1 had 1.5-fold higher GPx-1 activity compared with GPx-1 nontransgenic mice (P < 0.05). Mesenteric arterioles of CBS(−/+)/GPx-1(tg−) mice showed vasoconstriction to superfusion with β-methacholine and bradykinin (P < 0.001 vs. all other groups), whereas nonhyperhomocyst(e)inemic mice [CBS(+/+)/GPx-1(tg−) and CBS(+/+)/GPx-1(tg+) mice] demonstrated dose-dependent vasodilation in response to both agonists. Overexpression of GPx-1 in hyperhomocyst(e)inemic mice restored the normal endothelium-dependent vasodilator response. Bovine aortic endothelial cells (BAEC) were transiently transfected with GPx-1 and incubated with dl-homocysteine (HcyH) or l-cysteine. HcyH incubation decreased GPx-1 activity in sham-transfected BAEC (P < 0.005) but not in GPx-1-transfected cells. Nitric oxide release from BAEC was significantly decreased by HcyH but not cysteine, and GPx-1 overexpression attenuated this decrease. These findings demonstrate that overexpression of GPx-1 can compensate for the adverse effects of Hcy on endothelial function and suggest that the adverse vascular effects of Hcy are at least partly mediated by oxidative inactivation of NO. PMID:11606774

  10. Constitutive overexpressed type I interferon induced downregulation of antiviral activity in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Maekawa, Shun; Aoki, Takashi; Wang, Han-Ching

    2017-03-01

    In fish, as well as vertebrates, type I interferons (IFNs) are important cytokines that help to provide innate, antiviral immunity. Although low amounts of IFN are constitutively secreted under normal physiological conditions, long-term and excessive IFN stimulation leads to reduced sensitivity to the IFN signal. This provides a negative feedback mechanism that prevents inappropriate responses and autoimmunity. At present, however, neither IFN desensitization nor the normal physiological role of constitutive IFN are well characterized in fish. The objective here was therefore to produce and characterize a transgenic medaka fish (Oryzias latipes), designated IFNd-Tg, that constitutively overexpressed the IFNd gene. A dual promoter expression vector was constructed for overexpression of IFNd under an EF1α promoter and a DsRed reporter gene under control of a γF-crystaline promoter. The phenotype of the IFNd-Tg fish had a lower response to poly(I:C) and increased susceptibility to nervous necrosis virus (NNV) infection compared to wild-type (WT). Furthermore, transduction of IFN signals for STAT1b, STAT2 and IRF9 were down-regulated in the IFNd-Tg fish, and expression levels of RLR signal molecules (MDA5, MITA, IRF1 and IRF3) were lower than in WT. The constitutive overexpression of IFNd resulted in desensitization of IFN-stimulation, apparently due to downregulation of IFN signal transduction, and this caused increased susceptibility to NNV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  12. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Xi; Zhang, Zhao; Visser, Richard G F; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth.

  13. Overexpression of IRM1 enhances resistance to aphids in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1. Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth.

  14. The cellular effects of E2F overexpression.

    Science.gov (United States)

    Adams, P D; Kaelin, W G

    1996-01-01

    The product of the retinoblastoma tumor-suppressor gene (RB) is a ubiquitously expressed, 105-kDa nuclear phosphoprotein (pRB). The pRB protein negatively regulates the cellular G1/S phase transition, and it is at this point in the cell cycle that it is thought to play its role as a tumor suppressor. The growth-inhibitory effects of pRB are exerted, at least in part, through the E2F family of transcription factors. This chapter reviews the insights into the mechanism of action of the E2F family members that have been obtained through overexpression studies. Studies in RB-/- SAOS-2 cells have provided evidence in support of the hypothesis that the E2F family members are negatively regulated by pRB and the related protein p130. In particular, the results obtained are consistent with the earlier biochemical data which suggested that E2F1 is regulated primarily by pRB, and E2F4 by p130. Results relating to p107 are also discussed. Consistent with the proposed role of pRB and E2F1 as coregulators of entry into S phase, experiments have demonstrated that overexpression of E2F1 is sufficient to override the cell cycle arrests caused by serum deprivation of fibroblasts or transforming growth factor-beta (TGF-beta) treatment of mink lung epithelial cells. However, at least in the case of the serum deprivation induced arrest, the ultimate result of E2F1 overexpression is death by p53-dependent apoptosis. In light of this and other data, a model is discussed as to how functional inactivation of pRB and p53 might cooperate to promote tumorigenesis. A number of studies have demonstrated the oncogenic potential of E2F family members, at least under certain conditions. This is, again, in keeping with the notion that these proteins play a critical role in controlling proliferation.

  15. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  16. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  17. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  18. Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation.

    NARCIS (Netherlands)

    Ree, J.H.; Jeganathan, K.B.; Malureanu, L.; Deursen, J.M.A. van

    2010-01-01

    The anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase functions with the E2 ubiquitin-conjugating enzyme UbcH10 in the orderly progression through mitosis by marking key mitotic regulators for destruction by the 26-S proteasome. UbcH10 is overexpressed in many human cancer types and

  19. Overexpressed TP73 induces apoptosis in medulloblastoma

    International Nuclear Information System (INIS)

    Castellino, Robert C; De Bortoli, Massimiliano; Lin, Linda L; Skapura, Darlene G; Rajan, Jessen A; Adesina, Adekunle M; Perlaky, Laszlo; Irwin, Meredith S; Kim, John YH

    2007-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death in response to

  20. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  1. [Effect of luxS overexpression on biofilm formation by Streptococcus mutans].

    Science.gov (United States)

    He, Zhiyan; Wang, Yuxia; Huang, Zhengwei

    2015-09-01

    To evaluate the effect of quorum sensing luxS gene on biofilm formation through construction of a luxS overexpression strain by Streptococcus mutans (Sm). In order to construct pIB-luxS plasmid, the luxS gene fragment amplified by PCR was inserted into the shuttle plasmid pIB169 by corresponding double digests. The pIB-luxS plasmid was linearized electro-transformed into Sm cell and the overexpression strain was selected on chloramphenicol plate and testified by electrophoresis and western blot. The growth rate of both Sm wild type strain and its luxS overexpression strain were observed. Methyl thiazolyl tetrazolium (MTT) assay method was used to compare the biofilm formation quantification by both strains at different time points and containing different sucrose. The structures of the biofilms were observed by using confocal laser scanning microscopy, and biofilm-related gene expressions were investigated by real-time PCR. All experiments were performed in triplicate. The luxS overexpression strain was successfully constructed and confirmed by electrophoresis and Western blotting. The planktonic growth mode of the wild-type and luxS overexpression strain showed no difference, but biofilm formed by Sm overexpression strain was 0.400 ± 0.009 and 0.609 ± 0.041 at 14 and 24 h, higher than the wild type strain biofilm at the same time point (0.352 ± 0.028 and 0.533 ± 0.014, respectively, P overexpression strain raised to 1.041 ± 0.038, higher than that by the wild type strain (0.831 ± 0.020, P overexpression strain aggregated into distinct clusters on structure, genes expression including gtfB, ftf, gbpB, relA, brpA, smu630, comDE, vicR were increased (6.10 ± 0.12, 3.34 ± 0.07, 8.75 ± 0.13, 2.96 ± 0.04, 5.20 ± 0.19, 2.20 ± 0.06, 2.32 ± 0.07 and 10.67 ± 0.57 fold) compared to the wild-type strain (P < 0.05). Quorum sensing luxS gene can promote the biofilm formation of Sm.

  2. The relation between xyr1 overexpression in Trichoderma harzianum and sugarcane bagasse saccharification performance.

    Science.gov (United States)

    da Silva Delabona, Priscila; Rodrigues, Gisele Nunes; Zubieta, Mariane Paludetti; Ramoni, Jonas; Codima, Carla Aloia; Lima, Deise Juliana; Farinas, Cristiane Sanchez; da Cruz Pradella, José Geraldo; Seiboth, Bernhard

    2017-03-20

    This work investigates the influence of the positive regulator XYR1 of Trichoderma harzianum on the production of cellulolytic enzymes, using sugarcane bagasse as carbon source. Constitutive expression of xyr1 was achieved under the control of the strong Trichoderma reesei pki1 promoter. Five clones with xyr1 overexpression achieved higher xyr1 expression and greater enzymatic productivity when cultivated under submerged fermentation, hence validating the genetic construction for T. harzianum. Clone 5 presented a relative expression of xyr1 26-fold higher than the parent strain and exhibited 66, 37, and 36% higher values for filter paper activity, xylanase activity, and β-glucosidase activity, respectively, during cultivation in a stirred-tank bioreactor. The overexpression of xyr1 in T. harzianum resulted in an enzymatic complex with significantly improved performance in sugarcane bagasse saccharification, with an enhancement of 25% in the first 24h. Our results also show that constitutive overexpression of xyr1 leads to the induction of several important players in biomass degradation at early (24h) and also late (48h) timepoints of inoculation. However, we also observed that the carbon catabolite repressor CRE1 was upregulated in xyr1 overexpression mutants. These findings demonstrate the feasibility of improving cellulase production by modifying regulator expression and suggest an attractive approach for increasing total cellulase productivity in T. harzianum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Overexpression of dilp2 causes nutrient-dependent semi-lethality in Drosophila

    Directory of Open Access Journals (Sweden)

    Yukiko eSato-Miyata

    2014-04-01

    Full Text Available Insulin/insulin-like growth factor (IGF plays an important role as a systemic regulator of metabolism in multicellular organisms. Hyperinsulinemia, a high level of blood insulin, is often associated with impaired physiological conditions such as hypoglycemia, insulin resistance, and diabetes. However, due to the complex pathophysiology of hyperinsulinemia, the causative role of excess insulin/IGF signaling has remained elusive. To investigate the biological effects of a high level of insulin in metabolic homeostasis and physiology, we generated flies overexpressing Drosophila insulin-like peptide 2 (Dilp2, which has the highest potential of promoting tissue growth among the Ilp genes in Drosophila. In this model, a UAS-Dilp2 transgene was overexpressed under control of sd-Gal4 that drives expression predominantly in developing imaginal wing discs. Overexpression of Dilp2 caused semi-lethality, which was partially suppressed by mutations in the insulin receptor (InR or Akt1, suggesting that dilp2-induced semi-lethality is mediated by the PI3K/Akt1 signaling. We found that dilp2-overexpressing flies exhibited intensive autophagy in fat body cells. Interestingly, the dilp2-induced autophagy as well as the semi-lethality was partially rescued by increasing the protein content relative to glucose in the media. Our results suggest that excess insulin/IGF signaling impairs the physiology of animals, which can be ameliorated by controlling the nutritional balance between proteins and carbohydrates, at least in flies.

  4. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  5. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  6. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas.

    Science.gov (United States)

    Leung, Carly; Lingbeek, Merel; Shakhova, Olga; Liu, James; Tanger, Ellen; Saremaslani, Parvin; Van Lohuizen, Maarten; Marino, Silvia

    2004-03-18

    Overexpression of the polycomb group gene Bmi1 promotes cell proliferation and induces leukaemia through repression of Cdkn2a (also known as ink4a/Arf) tumour suppressors. Conversely, loss of Bmi1 leads to haematological defects and severe progressive neurological abnormalities in which de-repression of the ink4a/Arf locus is critically implicated. Here, we show that Bmi1 is strongly expressed in proliferating cerebellar precursor cells in mice and humans. Using Bmi1-null mice we demonstrate a crucial role for Bmi1 in clonal expansion of granule cell precursors both in vivo and in vitro. Deregulated proliferation of these progenitor cells, by activation of the sonic hedgehog (Shh) pathway, leads to medulloblastoma development. We also demonstrate linked overexpression of BMI1 and patched (PTCH), suggestive of SHH pathway activation, in a substantial fraction of primary human medulloblastomas. Together with the rapid induction of Bmi1 expression on addition of Shh or on overexpression of the Shh target Gli1 in cerebellar granule cell cultures, these findings implicate BMI1 overexpression as an alternative or additive mechanism in the pathogenesis of medulloblastomas, and highlight a role for Bmi1-containing polycomb complexes in proliferation of cerebellar precursor cells.

  7. Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-10-01

    Full Text Available MYC2 is a core transcription factor in the plant response to jasmonates. It also functions in secondary metabolism and various processes for growth and development. However, the knowledge about its role in Salvia miltiorrhiza is still very limited. We determined that the biosynthesis of salvianolic acid B (Sal B was strongly induced in 2-month-old transgenic plants that over-expressed SmMYC2. In the roots of transgenic line 12 that over-expressed SmMYC2 (OEM-12, the Sal B concentration was as high as 5.95 ± 0.07 mg g-1, a level that was 1.88-fold higher than that in control plants that had been transformed with an empty vector. Neither tanshinone IIA nor cryptotanshinone was detected by high-performance liquid chromatography in any of the genotypes. Global transcriptomic analysis using RNA sequencing revealed that most enzyme-encoding genes for the phenylpropanoid biosynthesis pathway were up-regulated in the overexpression lines. Furthermore, both the phenylalanine and tyrosine biosynthesis pathways were activated in those transgenics. Our data demonstrate that overexpression of SmMYC2 promotes the production of phenolic acids by simultaneously activating both primary and secondary pathways for metabolism in S. miltiorrhiza.

  8. Overexpression of cypin alters dendrite morphology, single neuron activity, and network properties via distinct mechanisms

    Science.gov (United States)

    Rodríguez, Ana R.; O'Neill, Kate M.; Swiatkowski, Przemyslaw; Patel, Mihir V.; Firestein, Bonnie L.

    2018-02-01

    Objective. This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. Approach. We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ PSD-95 non-binding) expression cellularly and network-wide, respectively. Main results. Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. Significance. Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.

  9. Critical role of c-Jun overexpression in liver metastasis of human breast cancer xenograft model

    International Nuclear Information System (INIS)

    Zhang, Yan; Hu, Meiru; Shen, Beifen; Guo, Ning; Pu, Xiaoyun; Shi, Ming; Chen, Liyong; Song, Yuhua; Qian, Lu; Yuan, Guogang; Zhang, Hao; Yu, Ming

    2007-01-01

    c-Jun/AP-1 has been linked to invasive properties of aggressive breast cancer. Recently, it has been reported that overexpression of c-Jun in breast cancer cell line MCF-7 resulted in increased AP-1 activity, motility and invasiveness of the cells in vitro and tumor formation in nude mice. However, the role of c-Jun in metastasis of human breast cancer in vivo is currently unknown. To further investigate the direct involvement of c-Jun in tumorigenesis and metastasis, in the present study, the effects of c-Jun overexpression were studied in both in vitro and in nude mice. Ectopic overexpression of c-Jun promoted the growth of MCF-7 cells and resulted in a significant increase in the percentage of cells in S phase and increased motility and invasiveness. Introduction of c-Jun gene alone into weakly invasive MCF-7 cells resulted in the transfected cells capable of metastasizing to the nude mouse liver following tail vein injection. The present study confirms that overexpression of c-Jun contributes to a more invasive phenotype in MCF-7 cells. It indicates an interesting relationship between c-Jun expression and increased property of adhesion, migration and in vivo liver metastasis of MCF-7/c-Jun cells. The results provide further evidence that c-Jun is involved in the metastasis of breast cancer. The finding also opens an opportunity for development of anti-c-Jun strategies in breast cancer therapy

  10. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  11. MYC overexpression with its prognostic and clinicopathological significance in breast cancer.

    Science.gov (United States)

    Qu, Jingkun; Zhao, Xixi; Wang, Jizhao; Liu, Xu; Yan, Yan; Liu, Lin; Cai, Hui; Qu, Hangying; Lu, Ning; Sun, Yuchen; Wang, Feidi; Wang, Jiansheng; Zhang, Jia

    2017-11-07

    Proto-oncogene MYC has been indicated to promote progression of many cancers. However, prognostic and clinicopathological significance of MYC in breast cancer need further evaluation. We searched EMBASE and PubMed databases to find useful studies. We analyzed relationships between high MYC expression and prognostic data/ clinicopathological features through hazard ratio (HR) and odds ratio (OR). Each statistical test was two-sided. There were 29 studies (36 cohorts) with 12621 patients enrolled in our study The MYC overexpression was associated with worse DFS/RFS (disease/relapse free survival) in 11 studies (16 cohorts) with 5390 patients, and OS (overall survival) of 7 studies (8 cohorts) with 2672 patients. Subgroup analysis according to ethnicity/technique/data source displayed that MYC overexpression was associated with poor DFS/RFS in FISH, other technique, all data source and Asian/Non-Asian subgroup, and worse OS in all subgroups. In addition, MYC overexpression was related to large tumor size, high histologic grade, lymph node metastasis, negative hormone receptors and positive Ki67 expression. Our results showed that MYC overexpression was associated with worse prognosis and high risk of breast cancer, especially in patients with negative hormone receptors, which highlighted the potential of MYC as a significant prognostic biomarker of breast cancer.

  12. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua [Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang (China); Xu, Huimian, E-mail: xuhuimianpaper@yahoo.com.cn [Department of General Surgery, First Affiliated Hospital of China Medical University, Shenyang (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.

  13. CARMA3 is overexpressed in colon cancer and regulates NF-κB activity and cyclin D1 expression

    International Nuclear Information System (INIS)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning; Xu, Yingying; Song, Yongxi; Wu, Jianhua; Xu, Huimian

    2012-01-01

    Highlights: ► CARMA3 expression is elevated in colon cancers. ► CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. ► CARMA3 upregulates cyclinD1 through NF-κB activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression and TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-IκB levels and NF-κB activity and its overexpression increased p-IκB expression and NF-κB activity. NF-κB inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-κB mediated upregulation of cyclin D1.

  14. Methanol independent induction in Pichia pastoris by simple derepressed overexpression of single transcription factors.

    Science.gov (United States)

    Vogl, Thomas; Sturmberger, Lukas; Fauland, Pia C; Hyden, Patrick; Fischer, Jasmin E; Schmid, Christian; Thallinger, Gerhard G; Geier, Martina; Glieder, Anton

    2018-04-01

    Carbon source regulated promoters are well-studied standard tools for controlling gene expression. Acquiring control over the natural regulation of promoters is important for metabolic engineering and synthetic biology applications. In the commonly used protein production host Komagataella phaffii (Pichia pastoris), methanol-inducible promoters are used because of their tight regulation and exceptional strength. Yet, induction with toxic and flammable methanol can be a considerable safety risk and cannot be applied in many existing fermentation plants. Here we studied new regulatory circuits based on the most frequently used alcohol oxidase 1 promoter (P AOX1 ), which is tightly repressed in presence of repressing carbon sources and strongly induced by methanol. We compared different overexpression strategies for putative carbon source dependent regulators identified by a homology search in related yeasts and previously published literature in order to convert existing methanol dependent expression strains into methanol free systems. While constitutive overexpression showed only marginal or detrimental effects, derepressed expression (activated when the repressing carbon source is depleted) showed that three transcription factors (TFs) are single handedly suitable to strongly activate P AOX1 in P. pastoris without relying on any specifically engineered host strains. Transcriptome analyses demonstrated that Mxr1, Mit1, and Prm1 regulate partly overlapping and unique sets of genes. Derepressed overexpression of a single TF was sufficient to retrofit existing P AOX1 based expression strains into glucose/glycerol regulated, methanol-free systems. Given the wide applicability of carbon source regulated promoters, the simplicity and low cost of controlling carbon source feed rates in large scale bioreactors, similar approaches as in P. pastoris may also be useful in other organisms. © 2017 Wiley Periodicals, Inc.

  15. Cyclooxygenase-2 is overexpressed in chronic pancreatitis.

    Science.gov (United States)

    Schlosser, Wolfgang; Schlosser, Sophia; Ramadani, Marco; Gansauge, Frank; Gansauge, Susanne; Beger, Hans-Günter

    2002-07-01

    Cyclooxygenase enzymes catalyze a critical step in the conversion of arachidonic acid to prostaglandins, which are important mediators of acute and chronic inflammation. The constitutively expressed cyclooxygenase-1 (COX-1) appears to regulate many normal physiologic functions in several cell types, whereas the inducible cyclooxygenase-2 (COX-2) enzyme mediates the inflammatory response. We investigated the expression of COX-2 in tissues of 35 patients with chronic pancreatitis, 6 patients with pancreatic cancer, and 5 control patients by immunohistochemical analysis and correlations to clinicopathologic features. We found an overexpression of COX-2 in the atrophic acinar cells (80% of patients), hyperplastic ductal cells (86% of patients), and islets cells (97% of patients) but not in normal pancreatic tissues. The COX-2 overexpression in the tissue of patients with chronic pancreatitis was significantly correlated with the frequency of acute attacks of pancreatitis. Tissue from patients who had more than five acute attacks of pancreatitis (n = 10) exhibited COX-2 immunoreactivity of a significantly higher score in atrophic acinar cells (p = 0.004). No correlation could be found with other examined clinical features such as duration of the disease, diabetes, alcohol consumption, smoking, or pain. Our results support the hypothesis that COX-2 may be involved in inflammatory responses in chronic pancreatitis and in the progression of this chronic inflammatory disease.

  16. Nucleophosmin is overexpressed in thyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pianta, Annalisa; Puppin, Cinzia [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Franzoni, Alessandra; Fabbro, Dora [Azienda Ospedaliero-Universitaria ' S. Maria della Misericordia' Udine, Udine (Italy); Di Loreto, Carla [Dipartimento di Ricerche Mediche e Morfologiche, Universita di Udine, Udine (Italy); Bulotta, Stefania [Department of Pharmacobiological Sciences, Universita di Catanzaro ' Magna Graecia' , Catanzaro (Italy); Deganuto, Marta; Paron, Igor; Tell, Gianluca [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Puxeddu, Efisio [Department of Internal Medicine, Universita di Perugia, Perugia (Italy); Filetti, Sebastiano [Department of Clinical Sciences, Universita di Roma ' La Sapienza' , Roma (Italy); Russo, Diego [Department of Pharmacobiological Sciences, Universita di Catanzaro ' Magna Graecia' , Catanzaro (Italy); Damante, Giuseppe, E-mail: giuseppe.damante@uniud.it [Dipartimento di Scienze e Tecnologie Biomediche, Universita di Udine, Udine (Italy); Azienda Ospedaliero-Universitaria ' S. Maria della Misericordia' Udine, Udine (Italy)

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  17. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    Science.gov (United States)

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  18. Genetic predisposition of IL-10 promoter polymorphisms with risk of multiple sclerosis: A meta-analysis.

    Science.gov (United States)

    Ramakrishnan, V; Akram Husain, R S; Ahmed, Shiek Ssj

    2017-05-15

    Interleukin-10 (IL-10) is a anti-inflammatory cytokine, which controls inflammation by inhibiting the synthesis of several cytokines produced by Th1 cells and macrophages. The association between Interleukin-10 promoter polymorphisms with the risk of multiple sclerosis (MS) remains inconclusive. In this study, a meta-analysis has been performed to assess the relationship between IL-10 gene polymorphisms rs1800896, rs1800871 and rs1800872 with the risk of MS. Nine case-control studies were selected involving 2755 participants. The association between the polymorphisms and MS was examined by the pooled odds ratios (ORs) with 95% confidence intervals (CIs) in allelic, homozygote, heterozygote, dominant and recessive genetic models. Of analyzed genetic models, the pooled ORs and CIs of each SNPs calculated based on random (I 2 >50) or fixed effects (I 2 0.05) of genetic predisposition with MS susceptibility across Asian and Caucasian populations. In addition, assessment based on funnel plot and Egger's linear regression test suggests no publication bias in all analyzed genetic models. Overall, our results demonstrated that rs1800896, rs1800871 and rs1800872 polymorphisms may not be the risk factor for the development of MS in both the populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Myocardial overexpression of adenine nucleotide translocase 1 ameliorates diabetic cardiomyopathy in mice.

    Science.gov (United States)

    Wang, Yong; Ebermann, Linda; Sterner-Kock, Anja; Wika, Sylwia; Schultheiss, Heinz-Peter; Dörner, Andrea; Walther, Thomas

    2009-02-01

    Mitochondrial dysfunction is implicated in the pathogenesis of diabetic cardiomyopathy, a common complication of diabetes. Adenosine nucleotide translocase (ANT) translocates ADP/ATP across the inner mitochondrial membrane. Our study aimed to test the hypothesis that overexpression of ANT1 in cardiomyocytes has cardioprotective effects in diabetic cardiomyopathy induced by streptozotocin (STZ). Mice specifically overexpressing murine ANT1 in the heart were generated using alpha-myosin heavy chain promoter. Expression of ANT1 mRNA and protein in hearts was characterized by real-time polymerase chain reaction and Western blot analysis. Five- to 6-month-old male transgenic mice and their age-matched wild-type littermates were subjected to type 1 diabetes induced by STZ. Six weeks later, haemodynamic measurement was performed to assess cardiac function. Ventricular mRNA expression of atrial natriuretic peptide, a molecular marker of heart failure, was characterized by RNase-protection assay. Both ANT1 mRNA and ANT1 protein were specifically overexpressed in the heart of transgenic mice. Heart weight was decreased and cardiac function was dramatically impaired in wild-type mice 6 weeks after induction of diabetes, but ANT1 overexpression prevented these significant changes. The mRNA expression level of atrial natriuretic peptide confirmed the haemodynamic findings, being upregulated in wild-type mice receiving STZ, but showing no statistical differences in ANT1 transgenic mice. Cardiomyocyte-restricted overexpression of ANT1 prevents the development of diabetic cardiomyopathy; therefore, accelerated ADP/ATP exchange could be a new promising target to treat diabetic cardiomyopathy.

  20. Overexpression of Suprabasin is Associated with Proliferation and Tumorigenicity of Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Zhu, Jinrong; Wu, Geyan; Li, Qingyuan; Gong, Hui; Song, Junwei; Cao, Lixue; Wu, Shu; Song, Libing; Jiang, Lili

    2016-02-22

    Suprabasin is a recently identified oncoprotein that is upregulated in multiple cancers. However, the clinical significance and biological role of suprabasin in human esophageal squamous cell carcinoma (ESCC) remains unclear. In the current study, we reported that suprabasin was markedly overexpressed in ESCC cell lines and tissues at both mRNA and protein levels, and this was associated with advanced clinical stage, tumor-nodes-metastasis (TNM) classification, histological differentiation, tumor size and poorer survival. Furthermore, we found that both proliferation and tumorigenicity of ESCC cells were significantly induced by suprabasin overexpression, but inhibited by suprabasin knock-down. Moreover, we demonstrated that upregulation of suprabasin activated the Wnt/β-catenin signaling pathway and led to nuclear localization of β-catenin and upregulation of Cyclin D1 and c-Myc. Together, our results suggest that suprabasin plays an important oncogenic role in promoting proliferation and tumorigenesis of ESCC.

  1. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms.

    Science.gov (United States)

    Jiang, Liang; Wang, Genhong; Cheng, Tingcai; Yang, Qiong; Jin, Shengkai; Lu, Gai; Wu, Fuquan; Xiao, Yang; Xu, Hanfu; Xia, Qingyou

    2012-07-01

    Transgenic technology is a powerful tool for improving disease-resistant species. Bmlipase-1, purified from the midgut juice of Bombyx mori, showed strong antiviral activity against B. mori nucleopolyhedrovirus (BmNPV). In an attempt to create an antiviral silkworm strain for sericulture, a transgenic vector overexpressing the Bmlipase-1 gene was constructed under the control of a baculoviral immediate early-1 (IE1) promoter. Transgenic lines were generated via embryo microinjection. The mRNA level of Bmlipase-1 in the midguts of the transgenic line was 27.3 % higher than that of the non-transgenic line. After feeding the silkworm with different amounts of BmNPV, the mortality of the transgenic line decreased to approximately 33 % compared with the non-transgenic line when the virus dose was 10(6) OB/larva. These results imply that overexpressing endogenous antiviral genes can enhance the antiviral resistance of silkworms.

  2. Overexpression of catalase in myeloid cells causes impaired postischemic neovascularization.

    Science.gov (United States)

    Hodara, Roberto; Weiss, Daiana; Joseph, Giji; Velasquez-Castano, Juan C; Landázuri, Natalia; Han, Ji Woong; Yoon, Young-sup; Taylor, W Robert

    2011-10-01

    Myeloid lineage cells (MLCs) such as macrophages are known to play a key role in postischemic neovascularization. However, the role of MLC-derived reactive oxygen species in this process and their specific chemical identity remain unknown. Transgenic mice with MLC-specific overexpression of catalase (Tg(Cat-MLC) mice) were created on a C57BL/6 background. Macrophage catalase activity was increased 3.4-fold compared with wild-type mice. After femoral artery ligation, laser Doppler perfusion imaging revealed impaired perfusion recovery in Tg(Cat-MLC) mice. This was associated with fewer collateral vessels, as assessed by microcomputed tomography angiography, and decreased capillary density. Impaired functional recovery of the ischemic limb was also evidenced by a 50% reduction in spontaneous running activity. The deficient neovascularization was associated with a blunted inflammatory response, characterized by decreased macrophage infiltration of ischemic tissues, and lower mRNA levels of inflammatory markers, such as tumor necrosis factor-α, osteopontin, and matrix mettaloproteinase-9. In vitro macrophage migration was impaired in Tg(Cat-MLC) mice, suggesting a role for H(2)O(2) in regulating the ability of macrophages to infiltrate ischemic tissues. MLC-derived H(2)O(2) plays a key role in promoting neovascularization in response to ischemia and is a necessary factor for the development of ischemia-induced inflammation.

  3. Overexpression of mouse TTF-2 gene causes cleft palate

    Science.gov (United States)

    Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing

    2012-01-01

    In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410

  4. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt

    2013-01-01

    Background Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+-dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells overexpressing TOX3 followed by Pathway analysis showed that TOX3 overexpression mainly affected the Interferon Signaling Pathway. TOX3 upregulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 overexpressing...

  5. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer.

    Science.gov (United States)

    Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling

    2018-04-12

    Hypoxia-inducible factor‑1α (HIF‑1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF‑1α remain unclear. β‑catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF‑1α and β‑catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4‑2B, were grouped as follows: Negative control (no treatment), HIF‑1α overexpression group (transfected with HIF‑1α overexpression plasmid) and β‑catenin silenced group (transfected with HIF‑1α plasmids and β‑catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4‑2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4‑2B cells, transfection with HIF‑1α overexpression plasmid led to an enhanced β‑catenin nuclear translocation, while β‑catenin silencing inhibited β‑catenin nuclear translocation. The enhanced β‑catenin nuclear translocation induced by HIF‑1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non‑homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF‑1α overexpression enhanced β‑catenin nuclear translocation, which led to the activation of the β‑catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF‑1α overexpression promotes the radioresistance of PCa cells.

  6. Enhancing Brassinosteroid Signaling via Overexpression of Tomato (Solanum lycopersicum SlBRI1 Improves Major Agronomic Traits

    Directory of Open Access Journals (Sweden)

    Shuming Nie

    2017-08-01

    Full Text Available Brassinosteroids (BRs play important roles in plant growth, development, and stress responses through the receptor, Brassinosteroid-insensitive 1 (BRI1, which perceives BRs and initiates BR signaling. There is considerable potential agricultural value in regulating BR signaling in crops. In this study, we investigated the effects of overexpressing the tomato (Solanum lycopersicum BRI1 gene, SlBRI1, on major agronomic traits, such as seed germination, vegetative growth, fruit ethylene production, carotenoid accumulation, yield, and quality attributes. SlBRI1 overexpression enhanced the endogenous BR signaling intensity thereby increasing the seed germination rate, lateral root number, hypocotyl length, CO2 assimilation, plant height, and flower size. The transgenic plants also showed an increase in fruit yield and fruit number per plant, although the mean weight of individual fruit was reduced, compared with wild type. SlBRI1 overexpression also promoted fruit ripening and ethylene production, and caused an increase in levels of carotenoids, ascorbic acid, soluble solids, and soluble sugars during fruit ripening. An increased BR signaling intensity mediated by SlBRI1 overexpression was therefore positively correlated with carotenoid accumulation and fruit nutritional quality. Our results indicate that enhancing BR signaling by overexpression of SlBRI1 in tomato has the potential to improve multiple major agronomic traits.

  7. Overexpression of OLE1 enhances stress tolerance and constitutively activates the MAPK HOG pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nasution, Olviyani; Lee, Young Mi; Kim, Eunjung; Lee, Yeji; Kim, Wankee; Choi, Wonja

    2017-03-01

    OLE1 of Saccharomyces cerevisiae encodes the sole and essential Δ-9 desaturase catalyzing the conversion of saturated to unsaturated fatty acids. Upon ectopic overexpression of OLE1 in S. cerevisiae, significant increases in the membrane oleic acid content were observed. OLE1-overexpressing strains displayed enhanced tolerance to various stresses, better proton efflux, lower membrane permeability, and lessened internal hydrogen peroxide content. The OLE1-mediated enhanced stress tolerance was considerably diminished upon deletion of HOG1, which encodes the mitogen-activated protein kinase (MAPK) Hog1 of the high osmolarity glycerol (HOG) pathway. Furthermore, OLE1 overexpression constitutively activated Hog1, which remained in the cytoplasm. Hog1 activation was accomplished through the MAPK kinase kinase (MAPKKK) Ssk2, but not Ste11 and Ssk22, the other MAPKKKs of the HOG pathway. Despite its cytoplasmic location, activated Hog1 was able to activate the expression of its canonical targets, including CTT1, HSP12, and STL1, and further, the cAMP and stress response elements present in the promoter. OLE1 overexpression neither caused nor relieved endoplasmic reticulum stress. Individually or in combination, the physiological and molecular changes caused by OLE1 overexpression may contribute to enhanced tolerance to various types of stress. Biotechnol. Bioeng. 2017;114: 620-631. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus.

    Science.gov (United States)

    Xu, Haifeng; Yang, Guanxian; Zhang, Jing; Wang, Yicheng; Zhang, Tianliang; Wang, Nan; Jiang, Shenghui; Zhang, Zongying; Chen, Xuesen

    2018-04-14

    The cold-induced metabolic pathway and anthocyanin biosynthesis play important roles in plant growth. In this study, we identified a bHLH binding motif in the MdMYB15L protein using protein sequence analyses. Yeast two-hybrid and pull-down assays showed that MdMYB15L could interact with MdbHLH33. Overexpressing MdMYB15L in red-fleshed callus inhibited the expression of MdCBF2 and resulted in reduced cold tolerance but did not affect anthocyanin levels. Chip-PCR and EMSA analysis showed that MdMYB15L could bind the type II cis-acting element found in the MdCBF2 promoter. Overexpressing MdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Knocking out the bHLH binding sequence of MdMYB15L (LBSMdMYB15L) prevented LBSMdMYB15L from interacting with MdbHLH33. Overexpressing LBSMdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Together, these results suggested that an apple repressor MdMYB15L might play a key role in the cold signaling and anthocyanin metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effect of Bcl-xL overexpression on sialylation of Fc-fusion protein in recombinant Chinese hamster ovary cell cultures.

    Science.gov (United States)

    Lee, Jong Hyun; Kim, Yeon-Gu; Lee, Gyun Min

    2015-01-01

    The sialic acid of glycoproteins secreted by recombinant Chinese hamster ovary (rCHO) cells can be impaired by sialidase under culture conditions which promote the extracellular accumulation of this enzyme. To investigate the effect of Bcl-xL overexpression on the sialylation of glycoproteins produced in rCHO cell culture, two rCHO cell lines producing the same Fc-fusion protein, which were derived from DUKX-B11 and DG44, respectively, were engineered to have regulated Bcl-xL overexpression using the Tet-off system. For both cell lines, Bcl-xL overexpression improved cell viability and extended culture longevity in batch cultures. As a result, a maximum Fc-fusion protein titer increased by Bcl-xL overexpression though the extent of titer enhancement differed between the two cell lines. With Bcl-xL overexpression, the sialylation of Fc-fusion protein, which was assessed by isoelectric focusing gel and sialic acid content analyses, decreased more slowly toward the end of batch cultures. This was because Bcl-xL overexpression delayed the extracellular accumulation of sialidase activity by reducing cell lysis during batch cultures. Taken together, Bcl-xL overexpression in rCHO cell culture increased Fc-fusion protein production and also reduced the impairment of sialylation of Fc-fusion protein by maintaining high viability during batch cultures. © 2015 American Institute of Chemical Engineers.

  10. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus.

    Science.gov (United States)

    Klocko, Amy L; Ma, Cathleen; Robertson, Sarah; Esfandiari, Elahe; Nilsson, Ove; Strauss, Steven H

    2016-02-01

    Eucalyptus trees are among the most important species for industrial forestry worldwide. However, as with most forest trees, flowering does not begin for one to several years after planting which can limit the rate of conventional and molecular breeding. To speed flowering, we transformed a Eucalyptus grandis × urophylla hybrid (SP7) with a variety of constructs that enable overexpression of FLOWERING LOCUS T (FT). We found that FT expression led to very early flowering, with events showing floral buds within 1-5 months of transplanting to the glasshouse. The most rapid flowering was observed when the cauliflower mosaic virus 35S promoter was used to drive the Arabidopsis thaliana FT gene (AtFT). Early flowering was also observed with AtFT overexpression from a 409S ubiquitin promoter and under heat induction conditions with Populus trichocarpa FT1 (PtFT1) under control of a heat-shock promoter. Early flowering trees grew robustly, but exhibited a highly branched phenotype compared to the strong apical dominance of nonflowering transgenic and control trees. AtFT-induced flowers were morphologically normal and produced viable pollen grains and viable self- and cross-pollinated seeds. Many self-seedlings inherited AtFT and flowered early. FT overexpression-induced flowering in Eucalyptus may be a valuable means for accelerating breeding and genetic studies as the transgene can be easily segregated away in progeny, restoring normal growth and form. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Sequence analysis and overexpression of a pectin lyase gene (pel1) from Aspergillus oryzae KBN616.

    Science.gov (United States)

    Kitamoto, N; Yoshino-Yasuda, S; Ohmiya, K; Tsukagoshi, N

    2001-01-01

    A gene (pel1) encoding pectin lyase (Pel1) was isolated from a shoyu koji mold, Aspergillus oryzae KBN616, and characterized. The structural gene comprised 1,196 bp with a single intron. The ORF encoded 381 amino acids with a signal peptide of 20 amino acids. The deduced amino acid sequence showed high similarity to those of Aspergillus niger pectin lyases and Glomerella cingulata PnlA. The pel1 gene was successfully overexpressed under the promoter of the A. oryzae TEF1 gene. The molecular mass of the recombinant pectin lyase substantially coincided with that calculated based on nucleotide sequence.

  12. Overexpression Analysis of emv2 gene coding for Late Embryogenesis Abundant Protein from Vigna radiata (Wilczek

    Directory of Open Access Journals (Sweden)

    Rajesh S.

    2008-10-01

    Full Text Available Late embryogenesis abundant (LEA proteins are speculated to protect against water stress deficit in plants. An over expression system for mungbean late embryogenesis abundant protein, emv2 was constructed in a pET29a vector, designated pET-emv2 which is responsible for higher expression under the transcriptional/translational control of T7/lac promoter incorporated in the Escherichia coli BL21 (DE3.Induction protocol was optimized for pET recombinants harboring the target gene. Overexpressed EMV2 protein was purified to homogeneity and the protein profile monitored by SDS-PAGE.

  13. MAP3K3 overexpression is associated with poor survival in ovarian carcinoma.

    Science.gov (United States)

    Jia, Wei; Dong, Yuling; Tao, Lin; Pang, Lijuan; Ren, Yan; Liang, Weihua; Jiang, Jinfang; Cheng, Gang; Zhang, Wen Jie; Yuan, Xianglin; Li, Feng

    2016-04-01

    Mitogen-activated protein kinase kinase kinase 3 (MAP3K3) is ubiquitously expressed in numerous tissues and is activated by various extracellular stimuli to regulate processes, such as cell proliferation and differentiation. Recent studies have identified potentially pathologic conditions of MAP3K3 as an oncogene that promotes tumor progression and metastasis in a number of malignancies. However, the clinical significance of MAP3K3 expression in ovarian carcinoma (OC) remains unclear. In this study, the correlation between MAP3K3 expression and OC prognosis was assessed by immunohistochemistry. MAP3K3 overexpression was observed in 59.1% (55/93) of OCs and was significantly associated with histological type and grade, chemotherapy response, and challenge model (P < .05, respectively). MAP3K3 overexpression was also used as an independent prognostic marker for decreased disease-free survival and overall survival. In OC cell lines, MAP3K3 expression was evaluated by Western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence. High MAP3K3 expression is significantly detected in SKOV3, C13*, and A2780 cells. All these findings suggested that MAP3K3 overexpression is an independent poor prognostic indicator of OC and can be a clinically effective biomarker of OC. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  15. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    International Nuclear Information System (INIS)

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  16. Apoptotic block in colon cancer cells may be rectified by lentivirus mediated overexpression of caspase-9.

    Science.gov (United States)

    Xu, D; Wang, C; Shen, X; Yu, Y; Rui, Y; Zhang, D; Zhou, Z

    2013-12-01

    At present, the inhibition of apoptosis during pathogenesis of colorectal cancer is widely recognized while the role of caspase-9 in this process remains controversial. We aimed to investigate the differential expression of caspase-9 and evaluate the therapeutic potential of expression intervention in this study. We first examined the different expression of caspase-9 in normal colon mucosa, adenoma and cancer, investigating the relationship between its expression and clinico-pathological characteristics. Secondly, overexpression of caspase-9 was established in colon cancer cell lines by lentivirus infection to study the changes in growth, proliferation and apoptosis. Compared with normal colon mucosa, the expression of caspase-9 was higher in adenoma while lower in cancer both at mRNA and protein level (P expression is more common in poorly differentiated cancers (P expression of caspase-9, poorer colony formation and slower cell proliferation. In terms of apoptosis related indicators, caspase-9 overexpression leads to higher apoptosis rate and GO/G1 arrest, while up-regulating the expression of caspase-3 (P expression from colon mucosa, adenoma to cancer suggested it may be involved in the carcinogenesis of colon cancer. The overexpression of caspase-9 exhibits an inhibitory role in cancer growth and proliferation while promoting apoptosis. However, a non-apoptotic role of caspase-9 facilitating differentiation was also implied.

  17. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    International Nuclear Information System (INIS)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-01-01

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  18. The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells.

    Science.gov (United States)

    Peng, Jiangzhou; Yu, Zigang; Xue, Lei; Wang, Jiabin; Li, Jun; Liu, Degang; Yang, Qiang; Lin, Yihui

    2018-04-01

    The aim of the present study was to investigate the novel mechanisms of forkhead box protein P3 (foxp3) in T regulatory (Treg) cells in lung cancer behavior. Treg cells were isolated from the peripheral blood of healthy volunteers and then co‑cultured with 95D cells. A plasmid overexpressing foxp3 was constructed and transfected into Treg cells and an MTS assay was performed to assess cell viability. Flow cytometry was performed to evaluate cell apoptosis and reverse transcription‑quantitative polymerase chain reaction was used to measure mRNA expression. A Transwell assay was used to assess cell invasion. Treg cells were successfully isolated from peripheral blood with purity of 94.26%. Foxp3 expression in Treg cells was significantly increased following co‑culture with 95D cells, while matrix metalloproteinase‑9 expression was upregulated in 95D cells co‑cultured with Treg cells. The apoptosis, invasion and migration abilities of 95D cells were suppressed by co‑culture with Treg cells, whereas the adhesive ability was enhanced. Foxp3 overexpression in Treg cells enhanced the viability and invasiveness of 95D cells, whereas cell adhesion and migration were decreased. The results of the present study demonstrate that the viability and invasiveness of 95D cells are enhanced by foxp3 overexpression in Treg cells, indicating that increased levels of foxp3 in the tumor microenvironment may promote tumor cell growth.

  19. [Role of autophagy in TXNIP overexpression-induced apoptosis of INS-1 islet cells].

    Science.gov (United States)

    Wang, Jing; Wang, Jin; Wang, Juan-Juan; Zhang, Wei-Fang; Jiao, Xiang-Ying

    2017-08-25

    Thioredoxin (Trx) interacting protein (TXNIP) is a Trx-binding protein that inhibits the antioxidative function of Trx and is highly expressed in the serum and tissue samples from diabetes patients. This study was to explore whether TXNIP overexpression could cause INS-1 cell autophagy under normal glucose and lipid concentrations, and to analyze the role of autophagy in the apoptosis of INS-1 cells. The INS-1 cells cultured under normal conditions were divided into three groups: normal control, empty adenovirus vector (Ad-eGFP) and TXNIP overexpression (Ad-TXNIP-eGFP) groups. Forty-eight hours after transfection, the expression levels of TXNIP mRNA and protein were measured. Western blot was used to examine the protein expression levels of Beclin-1 and P62, as well as LC3-II/LC3-I ratio, which are associated with autophagy. IF/ICC was used to measure the autophagosome. In addition, the cleaved caspase-3/caspase-3 ratio, the apoptosis marker, was also measured, and the apoptotic rates were detected by flow cytometry (FCM). The results showed that the TXNIP mRNA and protein levels were significantly up-regulated in Ad-TXNIP-eGFP group, suggesting that TXNIP overexpression model was successfully established. In Ad-TXNIP-eGFP group, the protein levels of Beclin-1 and LC3-II/LC3-I ratio were increased, while the protein expression of P62 was decreased, compared with those in Ad-eGFP group. Red fluorescent intensity, representing autophagy level, was higher in Ad-TXNIP-eGFP group than that in Ad-eGFP group. These results suggested that TXNIP overexpression can significantly promote INS-1 cell autophagy. Meanwhile, cleaved caspase 3/caspase 3 ratio and the number of apoptotic cells were significantly increased in Ad-TXNIP-eGFP group. The inhibitor of autophagy, 3-MA, reduced TXNIP overexpression-induced apoptosis in INS-1 cells. Taken together, our data demonstrate that autophagy appears to be an important pathway in TXNIP overexpression-induced apoptosis in INS-1 cells.

  20. Dek overexpression in murine epithelia increases overt esophageal squamous cell carcinoma incidence

    Science.gov (United States)

    Cimperman, Katherine A.; Haas, Sarah R.; Guasch, Geraldine; Waclaw, Ronald R.; Komurov, Kakajan; Lane, Adam; Wikenheiser-Brokamp, Kathryn A.

    2018-01-01

    data demonstrate that Dek overexpression in the cell of origin for SCC is sufficient to promote esophageal SCC development in vivo. PMID:29538372

  1. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  2. Nuclear pore protein NUP88 activates anaphase-promoting complex to promote aneuploidy

    Science.gov (United States)

    Naylor, Ryan M.; Jeganathan, Karthik B.; Cao, Xiuqi; van Deursen, Jan M.

    2016-01-01

    The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal tumors. To determine whether overexpression of NUP88 drives tumorigenesis, we engineered transgenic mice with doxycycline-inducible expression of Nup88. Surprisingly, NUP88 overexpression did not alter global nuclear transport, but was a potent inducer of aneuploidy and chromosomal instability. We determined that NUP88 and the nuclear transport factors NUP98 and RAE1 comprise a regulatory network that inhibits premitotic activity of the anaphase-promoting complex/cyclosome (APC/C). When overexpressed, NUP88 sequesters NUP98-RAE1 away from APC/CCDH1, triggering proteolysis of polo-like kinase 1 (PLK1), a tumor suppressor and multitasking mitotic kinase. Premitotic destruction of PLK1 disrupts centrosome separation, causing mitotic spindle asymmetry, merotelic microtubule-kinetochore attachments, lagging chromosomes, and aneuploidy. These effects were replicated by PLK1 insufficiency, indicating that PLK1 is responsible for the mitotic defects associated with NUP88 overexpression. These findings demonstrate that the NUP88-NUP98-RAE1-APC/CCDH1 axis contributes to aneuploidy and suggest that it may be deregulated in the initiating stages of a broad spectrum of human cancers. PMID:26731471

  3. Overexpression of constitutively active MAP3K7 in ameloblasts causes enamel defects of mouse teeth.

    Science.gov (United States)

    Jinping, Zhao; Qing, Chu; Wenying, Song; Chunyan, Yang; Lili, Xiang; Yao, Shi; Yumin, Wang; Zhenzhen, Xu; Li, Zhang; Yuguang, Gao

    2017-12-01

    Compelling evidence suggests that mitogen-activated protein kinases (Mapks) play an important role in amelogenesis. However, the role of transforming growth factor (TGF)-β-activating kinase 1 (Tak1, Map3k7), which is a known upstream kinase of Mapks, during amelogenesis remains to be determined. The aim of this study was to investigate the possible involvement of Map3k7 in amelogenesis. We generated transgenic mice that produced constitutively active human MAP3K7 (caMAP3K7) under the control of amelogenin (Amelx) gene promoter. Radiography and micro-computed tomography (μCT) analysis was used to detect the radio-opacity and density of the teeth. The enamel microstructure was observed with a scanning electron microscope. Histological analysis was used to observe the adhesion between ameloblasts and residual organic matrix of the enamel. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression of enamel matrix protein. The enamel of mandibular molars in caMAP3K7-overexpressing mice displayed pigmentation and a highly irregular structure compared with the wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. The gross histological appearances of ameloblasts and supporting cellular structures, as well as the expression of the enamel protein amelotin (Amtn) were altered by the overexpression of caMAP3K7. Our data demonstrated that protein expression, processing and secretion occurred abnormally in transgenic mice overexpressing caMAP3K7. The overexpression of caMAP3K7 had a profound effect on enamel structure by disrupting the orderly growth of enamel prisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Overexpression of Catalase in Vascular Smooth Muscle Cells Prevents the Formation of Abdominal Aortic Aneurysms

    Science.gov (United States)

    Parastatidis, Ioannis; Weiss, Daiana; Joseph, Giji; Taylor, W Robert

    2013-01-01

    Objective Elevated levels of oxidative stress have been reported in abdominal aortic aneurysms (AAA), but which reactive oxygen species (ROS) promotes the development of AAA remains unclear. Here we investigate the effect of the hydrogen peroxide (H2O2) degrading enzyme catalase on the formation of AAA. Approach and Results AAA were induced with the application of calcium chloride (CaCl2) on mouse infrarenal aortas. The administration of PEG-catalase, but not saline, attenuated the loss of tunica media and protected against AAA formation (0.91±0.1 mm vs. 0.76±0.09 mm). Similarly, in a transgenic mouse model, catalase over-expression in the vascular smooth muscle cells (VSMC) preserved the thickness of tunica media and inhibited aortic dilatation by 50% (0.85±0.14 mm vs. 0.57±0.08 mm). Further studies showed that injury with CaCl2 decreased catalase expression and activity in the aortic wall. Pharmacologic administration or genetic over-expression of catalase restored catalase activity and subsequently decreased matrix metalloproteinase activity. In addition, a profound reduction in inflammatory markers and VSMC apoptosis was evident in aortas of catalase over-expressing mice. Interestingly, as opposed to infusion of PEG-catalase, chronic over-expression of catalase in VSMC did not alter the total aortic H2O2 levels. Conclusions The data suggest that a reduction in aortic wall catalase activity can predispose to AAA formation. Restoration of catalase activity in the vascular wall enhances aortic VSMC survival and prevents AAA formation primarily through modulation of matrix metalloproteinase activity. PMID:23950141

  5. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  6. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  7. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.

    Science.gov (United States)

    Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C

    2016-12-01

    Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.

  8. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  9. Overexpression of centrosomal protein Nlp confers breast carcinoma resistance to paclitaxel.

    Science.gov (United States)

    Zhao, Weihong; Song, Yongmei; Xu, Binghe; Zhan, Qimin

    2012-02-01

    Nlp (ninein-like protein), an important molecule involved in centrosome maturation and spindle formation, plays an important role in tumorigenesis and its abnormal expression was recently observed in human breast and lung cancers. In this study, the correlation between overexpression of Nlp and paclitaxel chemosensitivity was investigated to explore the mechanisms of resistance to paclitaxel and to understand the effect of Nlp upon apoptosis induced by chemotherapeutic agents. Nlp expression vector was stably transfected into breast cancer MCF-7 cells. With Nlp overexpression, the survival rates, cell cycle distributions and apoptosis were analyzed in transfected MCF-7 cells by MTT test and FCM approach. The immunofluorescent assay was employed to detect the changes of microtubule after paclitaxel treatment. Immunoblotting analysis was used to examine expression of centrosomal proteins and apoptosis associated proteins. Subsequently, Nlp expression was retrospectively examined with 55 breast cancer samples derived from paclitaxel treated patients. Interestingly, the survival rates of MCF-7 cells with Nlp overexpressing were higher than that of control after paclitaxel treatment. Nlp overexpression promoted G2-M arrest and attenuated apoptosis induced by paclitaxel, which was coupled with elevated Bcl-2 protein. Nlp expression significantly lessened the microtubule polymerization and bundling elicited by paclitaxel attributing to alteration on the structure or dynamics of β-tubulin but not on its expression. The breast cancer patients with high expression of Nlp were likely resistant to the treatment of paclitaxel, as the response rate in Nlp negative patients was 62.5%, whereas was 58.3 and 15.8% in Nlp (+) and Nlp (++) patients respectively (p = 0.015). Nlp expression was positive correlated with those of Plk1 and PCNA. These findings provide insights into more rational chemotherapeutic regimens in clinical practice, and more effective approaches might be

  10. MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer.

    Science.gov (United States)

    Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M; Rubenstein, Michael; Hubbard, Gretchen K; Moncaliano, Maria C; Hruszkewycz, Andrew; Vaghasia, Ajay; Yegnasubramanian, Srinivasan; Wheelan, Sarah J; Meeker, Alan K; Heaphy, Christopher M; Graham, Mindy K; De Marzo, Angelo M

    2018-01-01

    Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate-limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high-grade prostatic intraepithelial neoplasia or PIN) and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in eight cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma and that its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Prosystemin Overexpression in Tomato Enhances Resistance to Different Biotic Stresses by Activating Genes of Multiple Signaling Pathways

    OpenAIRE

    Coppola, Mariangela; Corrado, Giandomenico; Coppola, Valentina; Cascone, Pasquale; Martinelli, Rosanna; Digilio, Maria Cristina; Pennacchio, Francesco; Rao, Rosa

    2014-01-01

    Systemin is a signal peptide that promotes the response to wounding and herbivore attack in tomato. This 18-amino acid peptide is released from a larger precursor, prosystemin. To study the role of systemin as a modulator of defense signaling, we generated tomato (Solanum lycopersicum) transgenic plants that overexpress the prosystemin cDNA. We carried out a transcriptomic analysis comparing two different transgenic events with the untransformed control. The Gene Ontology categories of the 50...

  12. Elucidation of the role of clp protease components in circadian rhythm by genetic deletion and overexpression in cyanobacteria.

    Science.gov (United States)

    Imai, Keiko; Kitayama, Yohko; Kondo, Takao

    2013-10-01

    In the cyanobacterium Synechococcus elongatus PCC7942, KaiA, KaiB, and KaiC are essential elements of the circadian clock, and Kai-based oscillation is thought to be the basic circadian timing mechanism. The Kai-based oscillator coupled with transcription/translation feedback and other intercellular factors maintains the stability of the 24-hour period in vivo. In this study, we showed that disruption of the Clp protease family genes clpP1, clpP2, and clpX and the overexpression of clpP3 cause long-period phenotypes. There were no significant changes in the levels of the clock proteins in these mutants. The overexpression of clpX led to a decrease in kaiBC promoter activity, the disruption of the circadian rhythm, and eventually cell death. However, after the transient overexpression of clpX, the kaiBC gene expression rhythm recovered after a few days. The rhythm phase after recovery was almost the same as the phase before clpX overexpression. These results suggest that the core Kai-based oscillation was not affected by clpX overexpression. Moreover, we showed that the overexpression of clpX sequentially upregulated ribosomal protein subunit mRNA levels, followed by upregulation of other genes, including the clock genes. Additionally, we found that the disruption of clpX decreased the expression of the ribosomal protein subunits. Finally, we showed that the circadian period was prolonged following the addition of a translation inhibitor at a low concentration. These results suggest that translational efficiency affects the circadian period and that clpX participates in the control of translation efficiency by regulating the transcription of ribosomal protein genes.

  13. Clinical significance of overexpression of NRG1 and its receptors, HER3 and HER4, in gastric cancer patients.

    Science.gov (United States)

    Yun, Sumi; Koh, Jiwon; Nam, Soo Kyung; Park, Jung Ok; Lee, Sung Mi; Lee, Kyoungyul; Lee, Kyu Sang; Ahn, Sang-Hoon; Park, Do Joong; Kim, Hyung-Ho; Choe, Gheeyoung; Kim, Woo Ho; Lee, Hye Seung

    2018-03-01

    Neuregulin 1 (NRG1), a ligand for human epidermal growth factor (HER) 3 and HER4, can activates cell signaling pathways to promote carcinogenesis and metastasis. To investigate the clinicopathologic significance of NRG1 and its receptors, immunohistochemistry was performed for NRG1, HER3, and HER4 in 502 consecutive gastric cancers (GCs). Furthermore, HER2, microsatellite instability (MSI), and Epstein-Barr virus (EBV) status were investigated. NRG1 gene copy number (GCN) was determined by dual-color fluorescence in situ hybridization (FISH) in 388 available GCs. NRG1 overexpression was observed in 141 (28.1%) GCs and closely correlated with HER3 (P = 0.034) and HER4 (P overexpression was significantly associated with aggressive features, including infiltrative tumor growth, lymphovascular, and neural invasion, high pathologic stage, and poor prognosis (all P overexpression as an independent prognostic factor for survival (P = 0.040). HER3 and HER4 expressions were observed in 157 (31.3%) and 277 (55.2%), respectively. In contrast to NRG1, expression of these proteins was not associated with survival. NRG1 GCN gain (GCN ≥ 2.5) was detected in 14.7% patients, including two cases of amplification, and was moderately correlated with NRG1 overexpression (κ, 0.459; P overexpression in GC, overexpression of their ligand, NRG1, was associated with aggressive clinical features and represented an independent unfavorable prognostic factor. Therefore, NRG1 is a potential prognostic and therapeutic biomarker in GC patients.

  14. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    Science.gov (United States)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  15. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  16. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    International Nuclear Information System (INIS)

    Terry, Mary Beth; Neugut, Alfred I; Mansukhani, Mahesh; Waye, Jerome; Harpaz, Noam; Hibshoosh, Hanina

    2003-01-01

    The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS), and intramucosal carcinoma). We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG 2 a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508). p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years) was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9) but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6). Heavy beer consumption (8+ bottles per week) was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0) but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7). Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence

  17. Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-03-01

    Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and\\/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.

  18. Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1.

    Directory of Open Access Journals (Sweden)

    Steven C Chen

    Full Text Available Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.

  19. Overexpression of Enterococcus faecalis elr operon protects from phagocytosis.

    Science.gov (United States)

    Cortes-Perez, Naima G; Dumoulin, Romain; Gaubert, Stéphane; Lacoux, Caroline; Bugli, Francesca; Martin, Rebeca; Chat, Sophie; Piquand, Kevin; Meylheuc, Thierry; Langella, Philippe; Sanguinetti, Maurizio; Posteraro, Brunella; Rigottier-Gois, Lionel; Serror, Pascale

    2015-05-25

    Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis. The elrA gene is part of an operon that comprises four other ORFs encoding putative surface proteins of unknown function. In this work, we compared the susceptibility to phagocytosis of three E. faecalis strains, including a wild-type (WT), a ΔelrA strain, and a strain overexpressing the whole elr operon in order to understand the role of this operon in E. faecalis virulence. While both WT and ΔelrA strains were efficiently phagocytized by RAW 264.7 mouse macrophages, the elr operon-overexpressing strain showed a decreased capability to be internalized by the phagocytic cells. Consistently, the strain overexpressing elr operon was less adherent to macrophages than the WT strain, suggesting that overexpression of the elr operon could confer E. faecalis with additional anti-adhesion properties. In addition, increased virulence of the elr operon-overexpressing strain was shown in a mouse peritonitis model. Altogether, our results indicate that overexpression of the elr operon facilitates the E. faecalis escape from host immune defenses.

  20. Overexpression of PSP1 enhances growth of transgenic Arabidopsis plants under ambient air conditions.

    Science.gov (United States)

    Han, Xiaofang; Peng, Keli; Wu, Haixia; Song, Shanshan; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2017-07-01

    The importance of the phosphorylated pathway (PPSB) of L-serine (Ser) biosynthesis in plant growth and development has been demonstrated, but its specific role in leaves and interaction with photorespiration, the main leaf Ser biosynthetic pathway at daytime, are still unclear. To investigate whether changes in biosynthesis of Ser by the PPSB in leaves could have an impact on photorespiration and plant growth, we overexpressed PSP1, the last enzyme of this pathway, under control of the Cauliflower Mosaic Virus 35S promoter in Arabidopsis thaliana. Overexpressor plants grown in normal air displayed larger rosette diameter and leaf area as well as higher fresh and dry weight than the wild type. By contrast, no statistically significant differences to the wild type were observed when the overexpressor seedlings were transferred to elevated CO 2 , indicating a relationship between PSP1 overexpression and photorespiration. Additionally, the transgenic plants displayed higher photorespiration, an increase in CO 2 net-uptake and stronger expression in the light of genes encoding enzymes involved in photorespiration. We further demonstrated that expression of many genes involved in nitrogen assimilation was also promoted in leaves of transgenic plants and that leaf nitrate reductase activity increased in the light, too, although not in the dark. Our results suggest a close correlation between the function of PPSB and photorespiration, and also nitrogen metabolism in leaves.

  1. Overexpression of Protective Antigen as a Novel Approach To Enhance Vaccine Efficacy of Brucella abortus Strain RB51

    Science.gov (United States)

    Vemulapalli, Ramesh; He, Yongqun; Cravero, Silvio; Sriranganathan, Nammalwar; Boyle, Stephen M.; Schurig, Gerhardt G.

    2000-01-01

    Brucella abortus strain RB51 is an attenuated rough strain that is currently being used as the official live vaccine for bovine brucellosis in the United States and several other countries. We reasoned that overexpression of a protective antigen(s) of B. abortus in strain RB51 should enhance its vaccine efficacy. To test this hypothesis, we overexpressed Cu/Zn superoxide dismutase (SOD) protein of B. abortus in strain RB51. This was accomplished by transforming strain RB51 with a broad-host-range plasmid, pBBR1MCS, containing the sodC gene along with its promoter. Strain RB51 overexpressing SOD (RB51SOD) was tested in BALB/c mice for its ability to protect against challenge infection with virulent strain 2308. Mice vaccinated with RB51SOD, but not RB51, developed antibodies and cell-mediated immune responses to Cu/Zn SOD. Strain RB51SOD vaccinated mice developed significantly (P RB51 alone. The presence of the plasmid alone in strain RB51 did not alter its vaccine efficacy. Also, overexpression of SOD did not alter the attenuation characteristic of strain RB51. PMID:10816475

  2. Restoration of osteogenic differentiation by overexpression of cannabinoid receptor 2 in bone marrow mesenchymal stem cells isolated from osteoporotic patients.

    Science.gov (United States)

    Wang, Bangjun; Lian, Kai; Li, Jun; Mei, Gang

    2018-01-01

    Cannabinoid receptor 2 (CNR2) has a critical role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). CNR2 expression was found to be downregulated in osteoporotic patients. The present study aimed to investigate the functionality of CNR2 in restoring osteogenic differentiation and mineralization of BMSCs isolated from osteoporotic patients. CNR2 was overexpressed in osteoporotic BMSCs by a lentivirus. Alkaline phosphatase (ALP) activity staining and alizarin red S staining were performed to examine the osteogenic differentiation of osteoporotic BMSCs. Reverse-transcription quantitative polymerase chain reaction analysis was performed to examine the expression of osteogenic genes in BMSCs. Western blot analysis was used to study the activation of p38 mitogen-activated protein kinase (MAPK) during osteogenic differentiation of osteoporotic BMSCs after lentivirus-mediated overexpression of CNR2. The results demonstrated that overexpression of CNR2 in osteoporotic BMSCs increased ALP activity, promoted expression of osteogenic genes and enhanced deposition of mineralized extracellular matrix. In addition, phosphorylation of p38 MAPK was found to be increased by overexpression of CNR2. In conclusion, the present study indicated that restoration of CNR2 recovered the osteogenic differentiation of BMSCs isolated from osteoporotic patients. This finding may provide a novel strategy for a treatment approach for osteoporosis.

  3. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc

    Science.gov (United States)

    Pusapati, Raju V.; Rounbehler, Robert J.; Hong, Sungki; Powers, John T.; Yan, Mingshan; Kiguchi, Kaoru; McArthur, Mark J.; Wong, Paul K.; Johnson, David G.

    2006-01-01

    Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of H2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development. p53 | DNA damage

  4. Consequences of membrane protein overexpression in Escherichia coli.

    Science.gov (United States)

    Wagner, Samuel; Baars, Louise; Ytterberg, A Jimmy; Klussmeier, Anja; Wagner, Claudia S; Nord, Olof; Nygren, Per-Ake; van Wijk, Klaas J; de Gier, Jan-Willem

    2007-09-01

    Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.

  5. HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma

    Science.gov (United States)

    Hu, Yingchuan; Bandla, Santhoshi; Godfrey, Tony E.; Tan, Dongfeng; Luketich, James D.; Pennathur, Arjun; Qiu, Xing; Hicks, David G.; Peters, Jeffrey; Zhou, Zhongren

    2011-01-01

    The HER2 oncogene was recently reported to be amplified and overexpressed in esophageal adenocarcinoma. However, the relationship of HER2 amplification in esophageal adenocarcinoma with prognosis has not been well defined. The scoring systems for clinically evaluating HER2 in esophageal adenocarcinoma are not established. The aims of the study were to establish a HER2 scoring system and comprehensively investigate HER2 amplification and overexpression in esophageal adenocarcinoma and its precursor lesion. Using a tissue microarray, containing 116 cases of esophageal adenocarcinoma, 34 cases of BE, 18 cases of low grade dysplasia and 15 cases of high grade dysplasia, HER2 amplification and overexpression were analyzed by HercepTest and CISH methods. The amplification frequency in an independent series of 116 esophageal adenocarcinoma samples was also analyzed using Affymetrix SNP 6.0 microarrays. In our studies, we have found that HER2 amplification does not associate with poor prognosis in total 232 esophageal adenocarcinoma patients by CISH and high density microarrays. We further confirm the similar frequency of HER2 amplification by CISH (18.10%; 21/116) and SNP 6.0 microarrays (16.4%, 19/116) in esophageal adenocarcinoma. HER2 protein overexpression was observed in 12.1 % (14/116) of esophageal adenocarcinoma and 6.67% (1/15) of HGD. No HER2 amplification or overexpression was identified in BE or LGD. All HER2 protein overexpression cases showed HER2 gene amplification. Gene amplification was found to be more frequent by CISH than protein overexpression in esophageal adenocarcinoma (18.10% vs 12.9%). A modified two-step model for esophageal adenocarcinoma HER-2 testing is recommend for clinical esophageal adenocarcinoma HER-2 trial. PMID:21460800

  6. Metazoan promoters

    DEFF Research Database (Denmark)

    Lenhard, Boris; Sandelin, Albin Gustav; Carninci, Piero

    2012-01-01

    Promoters are crucial for gene regulation. They vary greatly in terms of associated regulatory elements, sequence motifs, the choice of transcription start sites and other features. Several technologies that harness next-generation sequencing have enabled recent advances in identifying promoters ...

  7. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    , the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation......In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986...... - an associate professorship was established with a focus on health promotion. Nevertheless, the concept of health promotion had been integrated with or mentioned in courses run prior to the new post. Subsequently, a wide spectrum of courses in health promotion was introduced, such as Empowerment for Child...

  8. ANTIGENIC PROMOTION

    Science.gov (United States)

    Wu, Chin-Yu; Cinader, Bernard

    1971-01-01

    Rabbits were immunized with p-azobenzene arsonic acid derivatives of human serum albumin (HA-As) or of dissociated keyhole limpet hemocyanin. The IgM response to the hapten was evaluated in terms of the number of hapten-specific plaque-forming cells in the lymph node draining the injection site. In some experiments, antibody was measured by agglutination of tanned and sensitized erythrocytes. The hapten response of animals immunized with HA-As was increased (promoting effect) when the animals were injected with one of several structurally unrelated macromolecules: keyhole limpet hemocyanin (KLH), horse spleen ferritin (HSF), lysozyme (Lys), alum-precipitated human gamma globulin (alum-precipitated HGG). Different macromolecules differed in the magnitude of the promoting effect they induced, e.g., promotion by the associated form of KLH was greater than that by the dissociated form; alum-precipitated HGG was a better promoter than was soluble HGG. The relative magnitude of promotion by different macromolecules (associated vs. dissociated KLH, alum-precipitated vs. soluble HGG) correlated with the relative magnitude of the carrier effect, as judged by the hapten response induced by p-azobenzene arsonic acid conjugated to various proteins. Promotion was detected by agglutination assay of circulating antibody, by plaque assay of cells from the popliteal lymph node draining the site of preinjection, but not by plaque assay of cells from the contralateral lymph node. Promotion was dependent on the dose of the promoting macromolecule and on the dose of the hapten-protein conjugate. It was not observed in animals tolerant to the promoting macromolecule. Inhibition (i.e. antigenic competition), rather than promotion, was observed upon a secondary response to the preinjected macromolecule or when the hapten-protein conjugate was incorporated in Freund's adjuvant. PMID:15776570

  9. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells.

    Science.gov (United States)

    Kao, Yu-Ting; Wu, Chin-Han; Wu, Shan-Ying; Lan, Sheng-Hui; Liu, Hsiao-Sheng; Tseng, Ya-Shih

    2017-04-18

    Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 μM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. We

  10. Tβ4-overexpression based on the piggyBac transposon system in cashmere goats alters hair fiber characteristics.

    Science.gov (United States)

    Shi, Bingbo; Ding, Qiang; He, Xiaolin; Zhu, Haijing; Niu, Yiyuan; Cai, Bei; Cai, Jiao; Lei, Anming; Kang, Danju; Yan, Hailong; Ma, Baohua; Wang, Xiaolong; Qu, Lei; Chen, Yulin

    2017-02-01

    Increasing cashmere yield is one of the vital aims of cashmere goats breeding. Compared to traditional breeding methods, transgenic technology is more efficient and the piggyBac (PB) transposon system has been widely applied to generate transgenic animals. For the present study, donor fibroblasts were stably transfected via a PB donor vector containing the coding sequence of cashmere goat thymosin beta-4 (Tβ4) and driven by a hair follicle-specific promoter, the keratin-associated protein 6.1 (KAP6.1) promoter. To obtain genetically modified cells as nuclear donors, we co-transfected donor vectors into fetal fibroblasts of cashmere goats. Five transgenic cashmere goats were generated following somatic cell nuclear transfer (SCNT). Via determination of the copy numbers and integration sites, the Tβ4 gene was successfully inserted into the goat genome. Histological examination of skin tissue revealed that Tβ4-overexpressing, transgenic goats had a higher secondary to primary hair follicle (S/P) ratio compared to wild type goats. This indicates that Tβ4-overexpressing goats possess increased numbers of secondary hair follicles (SHF). Our results indicate that Tβ4-overexpression in cashmere goats could be a feasible strategy to increase cashmere yield.

  11. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase.

    Science.gov (United States)

    Shahsavarani, Hosein; Sugiyama, Minetaka; Kaneko, Yoshinobu; Chuenchit, Boonchird; Harashima, Satoshi

    2012-01-01

    The simultaneous saccharification and fermentation process requires thermo-tolerant yeast to facilitate the enzymatic hydrolysis of cellulose. In this paper, we describe a Htg+ strain that exhibits confluent growth at high temperature (41 °C) and resistance to heat shock, ethanol, osmotic, oxidative and DNA damage stresses. HTG6, one of the six genes responsible for the thermotolerant phenotype was identified to be the gene RSP5 encoding a ubiquitin ligase. The RSP5 allele of the Htg+ strain, designated RSP5-C, possessed five, one and two base changes in the promoter, open reading frame and terminator region, respectively. The base changes in the promoter region of the RSP5-C allele were found to be responsible for the thermotolerant phenotype by strongly increasing transcription of the RSP5 gene and consequently causing a rise in the ubiquitination of cell proteins. Overexpression of the RSP5-BY allele present in the htg6 host strain (Htg-) conferred thermotolerance at 41°C, to this strain as in the case of RSP5-C allele. We also discovered that an Htg+ strain overexpressing the RSP5-C allele exhibits a more robust Htg+ phenotype against higher temperature (43 °C). The data presented here also suggest that overexpression of RSP5 could be applied to raise the upper limit of thermotolerance in S. cerevisiae strain used for industrial bioethanol production. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cyclin A1 is a transcriptional target of PITX2 and overexpressed in papillary thyroid carcinoma.

    Science.gov (United States)

    Liu, Yan; Huang, Yue; Zhu, Guo-Zhang

    2013-12-01

    Physiological expression of cyclin A1, a unique cell cycle regulator essential for spermatogenesis, is predominantly restricted in male germ cells. Outstandingly, previous studies have also demonstrated the abnormal expression of cyclin A1 in various human tumors. How male germ cell-specific cyclin A1 is transcriptionally activated in tumor cells, however, is elusive. To begin to understand the molecular mechanisms governing the ectopic expression of cyclin A1, we searched for transcription factors and cis-regulatory DNA elements. We found that overexpression of PITX2, a paired-like homeodomain transcription factor and a downstream effector of Wnt/β-catenin signaling, resulted in upregulation of cyclin A1 in HEK293 cells and TPC-1 thyroid cancer cells. On the other hand, PITX2 knockdown in TPC-1 cells caused reduced cyclin A1. Promoter reporter assays with a series of deletion constructs determined that the DNA element from -102 to -96 bp of the cyclin A1 promoter is responsible for PITX2-induced gene expression. The result of chromatin immunoprecipitation revealed the occupancy of PITX2 on the cyclin A1 promoter. Taken together, these findings demonstrate that cyclin A1 is a transcriptional target of PITX2. Consistently, our immunohistochemistry result showed up-regulation of cyclin A1 in human papillary thyroid carcinoma, where overexpressed PITX2 has been endorsed in our recent report. Thus, our study provides new evidence on the regulation of cyclin A1 gene expression and offers a PITX2-cycin A1 pathway for cell cycle regulation.

  13. Autotaxin overexpression causes embryonic lethality and vascular defects.

    Directory of Open Access Journals (Sweden)

    Hiroshi Yukiura

    Full Text Available Autotaxin (ATX is a secretory protein, which converts lysophospholipids to lysophosphatidic acid (LPA, and is essential for embryonic vascular formation. ATX is abundantly detected in various biological fluids and its level is elevated in some pathophysiological conditions. However, the roles of elevated ATX levels remain to be elucidated. In this study, we generated conditional transgenic (Tg mice overexpressing ATX and examined the effects of excess LPA signalling. We found that ATX overexpression in the embryonic period caused severe vascular defects and was lethal around E9.5. ATX was conditionally overexpressed in the neonatal period using the Cre/loxP system, which resulted in a marked increase in the plasma LPA level. This resulted in retinal vascular defects including abnormal vascular plexus and increased vascular regression. Our findings indicate that the ATX level must be carefully regulated to ensure coordinated vascular formation.

  14. Autotaxin Overexpression Causes Embryonic Lethality and Vascular Defects

    Science.gov (United States)

    Yukiura, Hiroshi; Kano, Kuniyuki; Kise, Ryoji; Inoue, Asuka; Aoki, Junken

    2015-01-01

    Autotaxin (ATX) is a secretory protein, which converts lysophospholipids to lysophosphatidic acid (LPA), and is essential for embryonic vascular formation. ATX is abundantly detected in various biological fluids and its level is elevated in some pathophysiological conditions. However, the roles of elevated ATX levels remain to be elucidated. In this study, we generated conditional transgenic (Tg) mice overexpressing ATX and examined the effects of excess LPA signalling. We found that ATX overexpression in the embryonic period caused severe vascular defects and was lethal around E9.5. ATX was conditionally overexpressed in the neonatal period using the Cre/loxP system, which resulted in a marked increase in the plasma LPA level. This resulted in retinal vascular defects including abnormal vascular plexus and increased vascular regression. Our findings indicate that the ATX level must be carefully regulated to ensure coordinated vascular formation PMID:25992708

  15. RECK overexpression reduces invasive ability in ameloblastoma cells.

    Science.gov (United States)

    Liang, Qi-xiang; Liang, Yan-can; Xu, Zhi-ying; Chen, Wei-liang; Xie, Hong-liang; Zhang, Bin

    2014-09-01

    Ameloblastoma is a frequent odontogenic neoplasm characterized by local invasiveness and high risk of recurrence. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a tumor suppressor that inhibits metastasis and angiogenesis. The aim of this study was to investigate effects of RECK overexpression on invasive potential in ameloblastoma cells. Lentiviral vectors containing human RECK gene were created and subsequently stably transfected into immortalized ameloblastoma cell line hTERT(+) -AM. Functional characteristics of hTERT(+) -AM cells with stable RECK overexpression included proliferation, migration, invasion, and regulation of matrix metalloproteinases (MMP)-2, MMP-9 measured by zymography or commercially available assays. The stable and higher expression of RECK mRNA and protein (P 0.05). Overexpression of RECK gene significantly inhibited cell invasive ability of hTERT(+) -AM cells, suggesting RECK may be a new target for ameloblastoma treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli*

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-01-01

    Membrane proteins constitute 20–30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters. PMID:20525689

  17. Combinatorial method for overexpression of membrane proteins in Escherichia coli.

    Science.gov (United States)

    Leviatan, Shani; Sawada, Keisuke; Moriyama, Yoshinori; Nelson, Nathan

    2010-07-30

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. Large amounts of purified proteins are required for activity and crystallization attempts. Thus, there is an unmet need for a heterologous membrane protein overexpression system for purification, crystallization, and activity determination. We developed a combinatorial method for overexpressing and purifying membrane proteins using Escherichia coli. This method utilizes short hydrophilic bacterial proteins, YaiN and YbeL, fused to the ends of the membrane proteins to serve as facilitating factors for expression and purification. Fourteen prokaryotic and mammalian membrane proteins were expressed using this system. Moderate to high expression was obtained for most proteins, and detergent solubilization combined with a short purification process produced stable, monodispersed membrane proteins. Five of the mammalian membrane proteins, overexpressed using our system, were reconstituted into liposomes and exhibited transport activity comparable with the native transporters.

  18. Prognostic implication of NQO1 overexpression in hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Lijuan; Sun, Jie; Tan, Yan; Li, Zhenling; Kong, Fanyong; Shen, Yue; Liu, Chao; Chen, Litian

    2017-11-01

    To explore the role of NQO1 overexpression for prognostic implication in hepatocellular carcinoma (HCC), NQO1 mRNA levels were detected in HCC fresh tissue samples of HCC and nontumor tissues, respectively. One hundred fifty-six cases of HCC meeting strict follow-up criteria were selected for immunohistochemical staining of NQO1 protein. Correlations between NQO1 overexpression and clinicopathological features of HCC were evaluated using χ 2 tests, survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient 5-year survival was analyzed using Cox proportional hazards analysis. In results, the levels of NQO1 mRNA were significantly up-regulated in 14 fresh tissue samples of HCC. Immunohistochemical analysis showed that the NQO1 expression and overexpression rates were significantly higher in HCC samples compared with either adjacent nontumor tissues or normal liver tissues. NQO1 overexpression correlated to tumor size, venous infiltration and late pTNM stage of HCC. NQO1 overexpression was also related to low disease-free survival and 5-year survival rates. In the late-stage group, disease-free and 5-year survival rates of patients with NQO1 overexpression were significantly lower than those of patients without NQO1 expression. Further analysis using a Cox proportional hazards regression model revealed that NQO1 expression emerged as a significant independent hazard factor for the 5-year survival rate of patients with HCC. Therefore, NQO1 plays an important role in the progression of HCC. NQO1 may potentially be used as an independent biomarker for prognostic evaluation of HCC. Copyright © 2017. Published by Elsevier Inc.

  19. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2.

    Science.gov (United States)

    Weng, Lin; Bai, Xiaodong; Zhao, Fangfang; Li, Rong; Xiao, Han

    2016-12-01

    Flowering of higher plants is orchestrated by complex regulatory networks through integration of various environmental signals such as photoperiod, temperature, light quality and developmental cues. In Arabidopsis, transcription of the flowering integrator gene FLOWERING LOCUS T (FT) that several flowering pathways converge to is directly regulated by more than ten transcription factors. However, very little is known about the transcriptional regulation of the FT homolog SINGLE FLOWER TRUESS (SFT) in the day-neutral plant tomato (Solanum lycopersicum). Previously, we showed that the zinc finger transcription factor SlZFP2 plays important roles in regulation of seed germination and fruit ripening in tomato and also found that overexpression of SlZFP2 impacted flowering and branching. Here, we characterized in detail the early flowering and high branching phenotypes by overexpression of this transcription factor. Our data showed that overexpression of SlZFP2 accelerated flowering in an SFT-dependent manner as demonstrated by elevated SFT expression in the leaves and the transcription factor's binding ability to SFT promoter in vitro and in vivo. Furthermore, overexpression of the SlZFP2 gene in the sft plants failed to rescue the mutant's late flowering. Through analysis of grafting phenotype, growth response of branches to auxin application and transcriptome profiling by RNA sequencing, we also showed that overexpression of SlZFP2 affected shoot apical dominance through multiple regulatory pathways. Our results suggest that the transcription factor SlZFP2 has potential applications in genetic modification of plant architecture and flowering time for tomato production and other crops as well. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance1

    Science.gov (United States)

    Jang, Geupil; Jeong, Jin Seo; Kim, Youn Shic; Ha, Sun-Hwa

    2016-01-01

    Plant responses to drought stress require the regulation of transcriptional networks via drought-responsive transcription factors, which mediate a range of morphological and physiological changes. AP2/ERF transcription factors are known to act as key regulators of drought resistance transcriptional networks; however, little is known about the associated molecular mechanisms that give rise to specific morphological and physiological adaptations. In this study, we functionally characterized the rice (Oryza sativa) drought-responsive AP2/ERF transcription factor OsERF71, which is expressed predominantly in the root meristem, pericycle, and endodermis. Overexpression of OsERF71, either throughout the entire plant or specifically in roots, resulted in a drought resistance phenotype at the vegetative growth stage, indicating that overexpression in roots was sufficient to confer drought resistance. The root-specific overexpression was more effective in conferring drought resistance at the reproductive stage, such that grain yield was increased by 23% to 42% over wild-type plants or whole-body overexpressing transgenic lines under drought conditions. OsERF71 overexpression in roots elevated the expression levels of genes related to cell wall loosening and lignin biosynthetic genes, which correlated with changes in root structure, the formation of enlarged aerenchyma, and high lignification levels. Furthermore, OsERF71 was found to directly bind to the promoter of OsCINNAMOYL-COENZYME A REDUCTASE1, a key gene in lignin biosynthesis. These results indicate that the OsERF71-mediated drought resistance pathway recruits factors involved in cell wall modification to enable root morphological adaptations, thereby providing a mechanism for enhancing drought resistance. PMID:27382137

  1. Overexpression of histone demethylase Fbxl10 leads to enhanced migration in mouse embryonic fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Magdalena; Sievers, Elisabeth; Janzer, Andreas [Institute of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Willmann, Dominica [Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg (Germany); Egert, Angela; Schorle, Hubert [Department of Developmental Pathology, Institute of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Schüle, Roland [Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Breisacherstrasse 66, 79106 Freiburg (Germany); Kirfel, Jutta, E-mail: Jutta.Kirfel@ukb.uni-bonn.de [Institute of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)

    2016-11-01

    Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing, immune responses and invasive tumors all require the orchestrated movement of cells to specific locations. Histone demethylase proteins alter transcription by regulating the chromatin state at specific gene loci. FBXL10 is a conserved and ubiquitously expressed member of the JmjC domain-containing histone demethylase family and is implicated in the demethylation of H3K4me3 and H3K36me2 and thereby removing active chromatin marks. However, the physiological role of FBXL10 in vivo remains largely unknown. Therefore, we established an inducible gain of function model to analyze the role of Fbxl10 and compared wild-type with Fbxl10 overexpressing mouse embryonic fibroblasts (MEFs). Our study shows that overexpression of Fbxl10 in MEFs doesn’t influence the proliferation capability but leads to an enhanced migration capacity in comparison to wild-type MEFs. Transcriptome and ChIP-seq experiments demonstrated that Fbxl10 binds to genes involved in migration like Areg, Mdk, Lmnb1, Thbs1, Mgp and Cxcl12. Taken together, our results strongly suggest that Fbxl10 plays a critical role in migration by binding to the promoter region of migration-associated genes and thereby might influences cell behaviour to a possibly more aggressive phenotype. - Highlights: • Migration capability of MEFs is enhanced after Fbxl10 upregulation. • Overexpression of Fbxl10 induced migration-associated genes. • Fbxl10 binds directly to migration-associated genes.

  2. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-01-01

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR −/− and SHP −/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR −/− mice and therefore, increased SHP expression in FXR −/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR −/− mice with overexpression of SHP in hepatocytes (FXR −/− /SHP Tg ) and determined the contribution of SHP in HCC development in FXR −/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR −/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR −/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  3. Overexpression of histone demethylase Fbxl10 leads to enhanced migration in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Rohde, Magdalena; Sievers, Elisabeth; Janzer, Andreas; Willmann, Dominica; Egert, Angela; Schorle, Hubert; Schüle, Roland; Kirfel, Jutta

    2016-01-01

    Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing, immune responses and invasive tumors all require the orchestrated movement of cells to specific locations. Histone demethylase proteins alter transcription by regulating the chromatin state at specific gene loci. FBXL10 is a conserved and ubiquitously expressed member of the JmjC domain-containing histone demethylase family and is implicated in the demethylation of H3K4me3 and H3K36me2 and thereby removing active chromatin marks. However, the physiological role of FBXL10 in vivo remains largely unknown. Therefore, we established an inducible gain of function model to analyze the role of Fbxl10 and compared wild-type with Fbxl10 overexpressing mouse embryonic fibroblasts (MEFs). Our study shows that overexpression of Fbxl10 in MEFs doesn’t influence the proliferation capability but leads to an enhanced migration capacity in comparison to wild-type MEFs. Transcriptome and ChIP-seq experiments demonstrated that Fbxl10 binds to genes involved in migration like Areg, Mdk, Lmnb1, Thbs1, Mgp and Cxcl12. Taken together, our results strongly suggest that Fbxl10 plays a critical role in migration by binding to the promoter region of migration-associated genes and thereby might influences cell behaviour to a possibly more aggressive phenotype. - Highlights: • Migration capability of MEFs is enhanced after Fbxl10 upregulation. • Overexpression of Fbxl10 induced migration-associated genes. • Fbxl10 binds directly to migration-associated genes.

  4. Ubiquitous Gasp1 overexpression in mice leads mainly to a hypermuscular phenotype

    Directory of Open Access Journals (Sweden)

    Monestier Olivier

    2012-10-01

    Full Text Available Abstract Background Myostatin, a member of the TGFβ superfamily, is well known as a potent and specific negative regulator of muscle growth. Targeting the myostatin signalling pathway may offer promising therapeutic strategies for the treatment of muscle-wasting disorders. In the last decade, various myostatin-binding proteins have been identified to be able to inhibit myostatin activity. One of these is GASP1 (Growth and Differentiation Factor-Associated Serum Protein-1, a protein containing a follistatin domain as well as multiple domains associated with protease inhibitors. Despite in vitro data, remarkably little is known about in vivo functions of Gasp1. To further address the role of GASP1 during mouse development and in adulthood, we generated a gain-of-function transgenic mouse model that overexpresses Gasp1 under transcriptional control of the human cytomegalovirus immediate-early promoter/enhancer. Results Overexpression of Gasp1 led to an increase in muscle mass observed not before day 15 of postnatal life. The surGasp1 transgenic mice did not display any other gross abnormality. Histological and morphometric analysis of surGasp1 rectus femoris muscles revealed an increase in myofiber size without a corresponding increase in myofiber number. Fiber-type distribution was unaltered. Interestingly, we do not detect a change in total fat mass and lean mass. These results differ from those for myostatin knockout mice, transgenic mice overexpressing the myostatin propeptide or follistatin which exhibit both muscle hypertrophy and hyperplasia, and show minimal fat deposition. Conclusions Altogether, our data give new insight into the in vivo functions of Gasp1. As an extracellular regulatory factor in the myostatin signalling pathway, additional studies on GASP1 and its homolog GASP2 are required to elucidate the crosstalk between the different intrinsic inhibitors of the myostatin.

  5. Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice.

    Science.gov (United States)

    Jurczak, Michael J; Danos, Arpad M; Rehrmann, Victoria R; Allison, Margaret B; Greenberg, Cynthia C; Brady, Matthew J

    2007-03-01

    Adipocytes express the rate-limiting enzymes required for glycogen metabolism and increase glycogen synthesis in response to insulin. However, the physiological function of adipocytic glycogen in vivo is unclear, due in part to the low absolute levels and the apparent biophysical constraints of adipocyte morphology on glycogen accumulation. To further study the regulation of glycogen metabolism in adipose tissue, transgenic mice were generated that overexpressed the protein phosphatase-1 (PP1) glycogen-targeting subunit (PTG) driven by the adipocyte fatty acid binding protein (aP2) promoter. Exogenous PTG was detected in gonadal, perirenal, and brown fat depots, but it was not detected in any other tissue examined. PTG overexpression resulted in a modest redistribution of PP1 to glycogen particles, corresponding to a threefold increase in the glycogen synthase activity ratio. Glycogen synthase protein levels were also increased twofold, resulting in a combined greater than sixfold enhancement of basal glycogen synthase specific activity. Adipocytic glycogen levels were increased 200- to 400-fold in transgenic animals, and this increase was maintained to 1 yr of age. In contrast, lipid metabolism in transgenic adipose tissue was not significantly altered, as assessed by lipogenic rates, weight gain on normal or high-fat diets, or circulating free fatty acid levels after a fast. However, circulating and adipocytic leptin levels were doubled in transgenic animals, whereas adiponectin expression was unchanged. Cumulatively, these data indicate that murine adipocytes are capable of storing far higher levels of glycogen than previously reported. Furthermore, these results were obtained by overexpression of an endogenous adipocytic protein, suggesting that mechanisms may exist in vivo to maintain adipocytic glycogen storage at a physiological set point.

  6. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  7. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  8. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety

    Science.gov (United States)

    Coelho, Joana E.; Alves, Pedro; Canas, Paula M.; Valadas, Jorge S.; Shmidt, Tatiana; Batalha, Vânia L.; Ferreira, Diana G.; Ribeiro, Joaquim A.; Bader, Michael; Cunha, Rodrigo A.; do Couto, Frederico Simões; Lopes, Luísa V.

    2014-01-01

    Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer’s disease. PMID:24982640

  9. Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation.

    Science.gov (United States)

    Wan, Feng; Letavernier, Emmanuel; Le Saux, Claude Jourdan; Houssaini, Amal; Abid, Shariq; Czibik, Gabor; Sawaki, Daigo; Marcos, Elisabeth; Dubois-Rande, Jean-Luc; Baud, Laurent; Adnot, Serge; Derumeaux, Geneviève; Gellen, Barnabas

    2015-12-01

    The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4(+) T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1(-/-) mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4(+) T-cell and M2-macrophage recruitment. Copyright © 2015 the American Physiological Society.

  10. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    Directory of Open Access Journals (Sweden)

    Mansukhani Mahesh

    2003-11-01

    Full Text Available Abstract Background The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS, and intramucosal carcinoma. Methods We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG2a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508. Results p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9 but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6. Heavy beer consumption (8+ bottles per week was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0 but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7. Conclusion Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence.

  11. Matrix metalloproteinase-8 overexpression prevents proper tissue repair

    DEFF Research Database (Denmark)

    Danielsen, Patricia L; Holst, Anders V; Maltesen, Henrik R

    2011-01-01

    The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus-driven tra......The collagenolytic matrix metalloproteinase-8 (MMP-8) is essential for normal tissue repair but is often overexpressed in wounds with disrupted healing. Our aim was to study the impact of a local excess of this neutrophil-derived proteinase on wound healing using recombinant adenovirus...

  12. Hyaluronic Acid is Overexpressed in Fibrotic Lung Tissue and Promotes Collagen Expression

    National Research Council Canada - National Science Library

    Gooz, Pal

    2008-01-01

    ... (LPS, another TLR2 and TLR4 ligand) had major effects on collagen expression. In addition, HA oligomers affected the expression of the collagen-degrading enzyme MMP-2. These observations open up the possibility that reagents that affect signaling cascades initiated by HA or LPS will have therapeutic value in inhibiting the progression of lung fibrosis in human patients.

  13. Transgenic overexpression of Niemann-Pick C2 protein promotes cholesterol gallstone formation in mice

    NARCIS (Netherlands)

    Acuna, Mariana; Gonzalez-Hodar, Lila; Amigo, Ludwig; Castro, Juan; Gabriela Morales, M.; Cancino, Gonzalo I.; Groen, Albert K.; Young, Juan; Francisco Miquel, Juan; Zanlungo, Silvana

    Background & Aims: Niemann-Pick C2 (NPC2) is a lysosomal protein involved in the egress of low-density lipoprotein-derived cholesterol from lysosomes to other intracellular compartments. NPC2 has been detected in several tissues and is also secreted from the liver into bile. We have previously shown

  14. Over-expression of ST3Gal-I promotes mammary tumorigenesis

    DEFF Research Database (Denmark)

    Picco, Gianfranco; Julien, Sylvain; Brockhausen, Inka

    2010-01-01

    Changes in glycosylation are common in malignancy, and as almost all surface proteins are glycosylated, this can dramatically affect the behavior of tumor cells. In breast carcinomas, the O-linked glycans are frequently truncated, often as a result of premature sialylation. The sialyltransferase ...

  15. Overexpression of Id1 in transgenic mice promotes mammary basal stem cell activity and breast tumorigenesis

    Science.gov (United States)

    Won, Hee-Young; Jang, Ki-Seok; Min, Kyueng-Whan; Jang, Si-Hyong; Woo, Jong-Kyu; Oh, Seung Hyun; Kong, Gu

    2015-01-01

    Inhibitor of differentiation/DNA binding (Id)1 is a crucial regulator of mammary development and breast cancer progression. However, its effect on stemness and tumorigenesis in mammary epithelial cells remains undefined. Herein, we demonstrate that Id1 induces mammary tumorigenesis by increasing normal and malignant mammary stem cell (MaSC) activities in transgenic mice. MaSC-enriched basal cell expansion and increased self-renewal and in vivo regenerative capacity of MaSCs are observed in the mammary glands of MMTV-Id1 transgenic mice. Furthermore, MMTV-Id1 mice develop ductal hyperplasia and mammary tumors with highly expressed basal markers. Id1 also increases breast cancer stem cell (CSC) population and activity in human breast cancer lines. Moreover, the effects of Id1 on normal and malignant stem cell activities are mediated by the Wnt/c-Myc pathway. Collectively, these findings provide in vivo genetic evidence of Id1 functions as an oncogene in breast cancer and indicate that Id1 regulates mammary basal stem cells by activating the Wnt/c-Myc pathway, thereby contributing to breast tumor development. PMID:25938540

  16. Overexpression of Long Non-Coding RNA TUG1 Promotes Colon Cancer Progression

    OpenAIRE

    Zhai, Hui-yuan; Sui, Ming-hua; Yu, Xiao; Qu, Zhen; Hu, Jin-chen; Sun, Hai-qing; Zheng, Hai-tao; Zhou, Kai; Jiang, Li-xin

    2016-01-01

    Background Colon cancer is one of the most prevalent and deadly cancers worldwide. It is still necessary to further define the mechanisms and explore therapeutic targets of colon cancer. Dysregulation of long noncoding RNAs (lncRNAs) has been shown to be correlated with diverse biological processes, including tumorigenesis. This study aimed to characterize the biological mechanism of taurine-upregulated gene 1 (TUG1) in colon cancer. Material/Methods qRT-PCR was used to analyze the expression...

  17. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Science.gov (United States)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  18. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis

    DEFF Research Database (Denmark)

    Ballesteros-Martinez, Constanza; Mendez-Barbero, Nerea; Montalvo-Yuste, Alma

    2017-01-01

    anaphylaxis. Functionalin vitroassays showed that overexpression of Rcan1 promotes barrier integrity, suggesting a role played by this molecule in vascular permeability. Consistent with these findings,in vivomodels of subcutaneous and intravenous histamine-mediated fluid extravasation showed increased...

  19. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6-interleukin-10+ cytokine patterns in st-elevation acute myocardial infarction

    KAUST Repository

    Ammirati, Enrico

    2012-08-29

    RATIONALE: At the onset of ST-elevation acute myocardial infarction (STEMI), patients can present with very high circulating interleukin-6 (IL-6) levels or very low-IL-6 levels. OBJECTIVE: We compared these 2 groups of patients to understand whether it is possible to define specific STEMI phenotypes associated with outcome based on the cytokine response. METHODS AND RESULTS: We compared 109 patients with STEMI in the top IL-6 level (median, 15.6 pg/mL; IL-6 STEMI) with 96 in the bottom IL-6 level (median, 1.7 pg/mL; IL-6 STEMI) and 103 matched controls extracted from the multiethnic First Acute Myocardial Infarction study. We found minimal clinical differences between IL-6 STEMI and IL-6 STEMI. We assessed the inflammatory profiles of the 2 STEMI groups and the controls by measuring 18 cytokines in blood samples. We exploited clustering analysis algorithms to infer the functional modules of interacting cytokines. IL-6 STEMI patients were characterized by the activation of 2 modules of interacting signals comprising IL-10, IL-8, macrophage inflammatory protein-1α, and C-reactive protein, and monocyte chemoattractant protein-1, macrophage inflammatory protein-1β, and monokine induced by interferon-γ. IL-10 was increased both in IL-6 STEMI and IL-6 STEMI patients compared with controls. IL-6IL-10 STEMI patients had an increased risk of systolic dysfunction at discharge and an increased risk of death at 6 months in comparison with IL-6IL-10 STEMI patients. We combined IL-10 and monokine induced by interferon-γ (derived from the 2 identified cytokine modules) with IL-6 in a formula yielding a risk index that outperformed any single cytokine in the prediction of systolic dysfunction and death. CONCLUSIONS: We have identified a characteristic circulating inflammatory cytokine pattern in STEMI patients, which is not related to the extent of myocardial damage. The simultaneous elevation of IL-6 and IL-10 levels distinguishes STEMI patients with worse clinical outcomes from other STEMI patients. These observations could have potential implications for risk-oriented patient stratification and immune-modulating therapies. © 2012 American Heart Association, Inc.

  20. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues.

    Science.gov (United States)

    Ishii, Masaki; Yamaguchi, Yasuhiro; Isumi, Kyoko; Ogawa, Sumito; Akishita, Masahiro

    2017-12-01

    Vitamin D insufficiency is increasingly recognized as a prevalent problem worldwide, especially in patients with a chronic lung disease. Chronic obstructive pulmonary disease (COPD) is a type of chronic inflammatory lung disease. Previous clinical studies have shown that COPD leads to low vitamin D levels, which further increase the severity of COPD. Vitamin D homeostasis represents one of the most important factors that potentially determine the severity of COPD. Nonetheless, the mechanisms underlying the anti-inflammatory effects of vitamin D receptor (VDR) in lung tissues are still unclear. To investigate the anti-inflammatory effects of VDR, we generated transgenic mice that show lung-specific VDR overexpression under the control of the surfactant protein C promoter (TG mice). The TG mice were used to study the expression patterns of proinflammatory cytokines using real-time polymerase chain reaction and immunohistochemistry. The TG mice had lower levels of T helper 1 (Th1)-related cytokines than wild-type (WT) mice did. No significant differences in the expression of Th2 cytokines were observed between TG and WT mice. This study is the first to achieve lung-specific overexpression of VDR in TG mice: an interesting animal model useful for studying the relation between airway cell inflammation and vitamin D signaling. VDR expression is an important factor that influences anti-inflammatory responses in lung tissues. Our results show the crucial role of VDR in anti-inflammatory effects in lungs; these data are potentially useful for the treatment or prevention of COPD.