WorldWideScience

Sample records for interlayer based approach

  1. An innovation wall model based on interlayer ventilation

    International Nuclear Information System (INIS)

    Feng Jinmei; Lian Zhiwei; Hou Zhijian

    2008-01-01

    The thermal characteristics of the external wall are important to the energy consumption of the air conditioning system. Great attention should also be paid to the energy loss of the air exhaust. An innovation wall model based on interlayer ventilation is presented in this paper. The interlayer ventilation wall combines the wall and air exhaust of heating, ventilating and air conditioning (HVAC). The results of the experiment show that the energy loss of the exhaust air can be fully recovered by the interlayer ventilation wall. The cooling load can be reduced greatly because the temperature difference between the internal surface of the interlayer ventilation wall and the indoor air is very small. Clearly, the small temperature difference can enhance thermal comfort. In order to popularize the interlayer ventilation wall, technical and economical analysis is presented in this paper. Based on the buildings in the Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was found according to the analysis

  2. Betavoltaic Battery Conversion Efficiency Improvement Based on Interlayer Structures

    International Nuclear Information System (INIS)

    Li Da-Rang; Jiang Lan; Yin Jian-Hua; Lin Nai; Tan Yuan-Yuan

    2012-01-01

    Significant differences among the doping densities of PN junctions in semiconductors cause lattice mismatch and lattice defects that increase the recombination current of betavoltaic batteries. This extensively decreases the open circuit voltage and the short current, which results in low conversion efficiency. This study proposes P + PINN + -structure based betavoltaic batteries by adding an interlayer to typical PIN structures to improve conversion efficiency. Numerical simulations are conducted for the energy deposition of beta particles along the thickness direction in semiconductors. Based on this, 63 Ni-radiation GaAs batteries with PIN and P + PINN + structures are designed and fabricated to experimentally verify the proposed design. It turns out that the conversion efficiency of the betavoltaic battery with the proposed P + PINN + structure is about 1.45 times higher than that with the traditional PIN structure. (cross-disciplinary physics and related areas of science and technology)

  3. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao, E-mail: h.ye@aston.ac.uk [School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET (United Kingdom); Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin [Miba Coating Group: Teer Coatings Ltd, West-Stone-House, West-Stone, Berry-Hill-Industrial-Estate, WR9 9AS, Droitwich (United Kingdom)

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  4. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Science.gov (United States)

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  5. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Directory of Open Access Journals (Sweden)

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  6. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    Energy Technology Data Exchange (ETDEWEB)

    Maluangnont, Tosapol, E-mail: tosapol.ma@kmitl.ac.th [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Arsa, Pornanan [Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong [Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Gotoh, Kazuma [Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530 (Japan); Sooknoi, Tawan, E-mail: kstawan@gmail.com [Catalytic Chemistry Research Unit, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand); Department of Chemistry, Faculty of Science, King Mongkut' s Institute of Technology Ladkrabang, Bangkok 10520 (Thailand)

    2016-06-15

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O{sup 2−} sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K{sub 0.8}Zn{sub 0.4}Ti{sub 1.6}O{sub 4} as an example. The low basicity (0.04 mmol CO{sub 2}/g) and low desorption temperature (50–300 °C) shown by CO{sub 2}− TPD suggests that O{sup 2−} sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO{sub 2}. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C{sub 16} acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O{sup 2−} sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast {sup 1}H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C{sub 31} ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at Ti{sup IV} sites was also illustrated. - Graphical abstract: Interlayer basic sites in lepidocrocite titanate, K{sub 0.8}Zn{sub 0.4}Ti{sub 1.6}O{sub 4}, lead to an intercalation of palmitic acid with a layer expansion. Display Omitted - Highlights: • K{sub 0.8}Zn{sub 0.4}Ti{sub 1.6}O{sub 4} intercalates palmitic acid, forming the occluded potassium salt. • The interlayer expansion is evidenced by PXRD patterns and TEM image. • Two types of basic sites are deduced from ultrafast

  7. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    International Nuclear Information System (INIS)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-01-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O 2− sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K 0.8 Zn 0.4 Ti 1.6 O 4 as an example. The low basicity (0.04 mmol CO 2 /g) and low desorption temperature (50–300 °C) shown by CO 2 − TPD suggests that O 2− sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO 2 . The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C 16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O 2− sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1 H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C 31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at Ti IV sites was also illustrated. - Graphical abstract: Interlayer basic sites in lepidocrocite titanate, K 0.8 Zn 0.4 Ti 1.6 O 4 , lead to an intercalation of palmitic acid with a layer expansion. Display Omitted - Highlights: • K 0.8 Zn 0.4 Ti 1.6 O 4 intercalates palmitic acid, forming the occluded potassium salt. • The interlayer expansion is evidenced by PXRD patterns and TEM image. • Two types of basic sites are deduced from ultrafast 1 H MAS NMR. • Lepidocrocite titanate catalyses ketonization of palmitic acid to palmitone and

  8. Surface and interlayer base-characters in lepidocrocite titanate: The adsorption and intercalation of fatty acid

    Science.gov (United States)

    Maluangnont, Tosapol; Arsa, Pornanan; Limsakul, Kanokporn; Juntarachairot, Songsit; Sangsan, Saithong; Gotoh, Kazuma; Sooknoi, Tawan

    2016-06-01

    While layered double hydroxides (LDHs) with positively-charged sheets are well known as basic materials, layered metal oxides having negatively-charged sheets are not generally recognized so. In this article, the surface and interlayer base-characters of O2- sites in layered metal oxides have been demonstrated, taking lepidocrocite titanate K0.8Zn0.4Ti1.6O4 as an example. The low basicity (0.04 mmol CO2/g) and low desorption temperature (50-300 °C) shown by CO2- TPD suggests that O2- sites at the external surfaces is weakly basic, while those at the interlayer space are mostly inaccessible to CO2. The liquid-phase adsorption study, however, revealed the uptake as much as 37% by mass of the bulky palmitic acid (C16 acid). The accompanying expansion of the interlayer space by ~0.1 nm was detected by PXRD and TEM. In an opposite manner to the external surfaces, the interlayer O2- sites can deprotonate palmitic acid, forming the salt (i.e., potassium palmitate) occluded between the sheets. Two types of basic sites are proposed based on ultrafast 1H MAS NMR and FTIR results. The interlayer basic sites in lepidocrocite titanate leads to an application of this material as a selective and stable two-dimensional (2D) basic catalyst, as demonstrated by the ketonization of palmitic acid into palmitone (C31 ketone). Tuning of the catalytic activity by varying the type of metal (Zn, Mg, and Li) substituting at TiIV sites was also illustrated.

  9. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  10. Effects of the F₄TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors.

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Wei-Chun; Chang, Hsiang-Sheng; Lin, Yu-Zuo; Huang, Bohr-Ran

    2016-01-13

    In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F₄TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F₄TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F₄TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F₄TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window.

  11. Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-01-01

    Full Text Available In this paper, the top-contact (TC pentacene-based organic thin-film transistor (OTFT with a tetrafluorotetracyanoquinodimethane (F4TCNQ-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F4TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F4TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window.

  12. Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Wei-Chun; Chang, Hsiang-Sheng; Lin, Yu-Zuo; Huang, Bohr-Ran

    2016-01-01

    In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F4TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance on the thickness of the F4TCNQ-doped pentacene interlayer is weaker than that on a Teflon interlayer. Therefore, a molecular doping-type F4TCNQ-doped pentacene interlayer is a suitable carrier injection layer that can improve the TC-OTFT performance and facilitate obtaining a stable process window. PMID:28787845

  13. Formation of interlayer gap and control of interlayer burr in dry drilling of stacked aluminum alloy plates

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2016-02-01

    Full Text Available In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly quality and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading pressing force is an effective method to control interlayer burr formation.

  14. Time-varying multiplex network: Intralayer and interlayer synchronization

    Science.gov (United States)

    Rakshit, Sarbendu; Majhi, Soumen; Bera, Bidesh K.; Sinha, Sudeshna; Ghosh, Dibakar

    2017-12-01

    A large class of engineered and natural systems, ranging from transportation networks to neuronal networks, are best represented by multiplex network architectures, namely a network composed of two or more different layers where the mutual interaction in each layer may differ from other layers. Here we consider a multiplex network where the intralayer coupling interactions are switched stochastically with a characteristic frequency. We explore the intralayer and interlayer synchronization of such a time-varying multiplex network. We find that the analytically derived necessary condition for intralayer and interlayer synchronization, obtained by the master stability function approach, is in excellent agreement with our numerical results. Interestingly, we clearly find that the higher frequency of switching links in the layers enhances both intralayer and interlayer synchrony, yielding larger windows of synchronization. Further, we quantify the resilience of synchronous states against random perturbations, using a global stability measure based on the concept of basin stability, and this reveals that intralayer coupling strength is most crucial for determining both intralayer and interlayer synchrony. Lastly, we investigate the robustness of interlayer synchronization against a progressive demultiplexing of the multiplex structure, and we find that for rapid switching of intralayer links, the interlayer synchronization persists even when a large number of interlayer nodes are disconnected.

  15. Improving efficiency of pentacene/C60 based solar cells with mixed interlayers

    International Nuclear Information System (INIS)

    Hung, Kuang-Teng; Huang, Kuan-Ta; Hsiao, Chu-Yun; Shih, Chuan-Feng

    2011-01-01

    This work presents a modified architecture for conventional pentacene/fullerene (C 60 ) solar cells by inserting alternately deposited C 60 /pentacene interlayers (∼ 1-2 nm per layer). The cell parameters, the incident photon-to-current efficiency spectra and the atomic force microscopy were used to characterize devices that had different numbers of inserting layers. The power conversion efficiency (PCE) increased markedly from 0.77 to 1.60% as the number of the inserted pairs increased from zero to three. The PCE further increased to 1.73% after post-annealing. The interlayers formed an interpenetrating network, enlarging the area over which excitons dissociate. When the number of interlayers and post-annealing conditions were optimized, the resistance and the surface roughness were minimized. When the number of pairs was increased to five, cell performance was degraded. The mechanism by which the properties of the solar cells are related to the inserted layers is presented.

  16. The thickness design of unintentionally doped GaN interlayer matched with background doping level for InGaN-based laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.; Zhu, J. J.; Liu, Z. S.; Yang, J.; Li, X.; Le, L. C.; He, X. G.; Liu, W.; Li, X. J.; Liang, F. [State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang, B. S.; Yang, H. [Key Laboratory of Nano-devices and Applications of CAS, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zhang, Y. T.; Du, G. T. [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130023 (China)

    2016-03-15

    In order to reduce the internal optical loss of InGaN laser diodes, an unintentionally doped GaN (u-GaN) interlayer is inserted between InGaN/GaN multiple quantum well active region and Al{sub 0.2}Ga{sub 0.8}N electron blocking layer. The thickness design of u-GaN interlayer matching up with background doping level for improving laser performance is studied. It is found that a suitably chosen u-GaN interlayer can well modulate the optical absorption loss and optical confinement factor. However, if the value of background doping concentration of u-GaN interlayer is too large, the output light power may decrease. The analysis of energy band diagram of a LD structure with 100 nm u-GaN interlayer shows that the width of n-side depletion region decreases when the background concentration increases, and may become even too small to cover whole MQW, resulting in a serious decrease of the output light power. It means that a suitable interlayer thickness design matching with the background doping level of u-GaN interlayer is significant for InGaN-based laser diodes.

  17. The thickness design of unintentionally doped GaN interlayer matched with background doping level for InGaN-based laser diodes

    Directory of Open Access Journals (Sweden)

    P. Chen

    2016-03-01

    Full Text Available In order to reduce the internal optical loss of InGaN laser diodes, an unintentionally doped GaN (u-GaN interlayer is inserted between InGaN/GaN multiple quantum well active region and Al0.2Ga0.8N electron blocking layer. The thickness design of u-GaN interlayer matching up with background doping level for improving laser performance is studied. It is found that a suitably chosen u-GaN interlayer can well modulate the optical absorption loss and optical confinement factor. However, if the value of background doping concentration of u-GaN interlayer is too large, the output light power may decrease. The analysis of energy band diagram of a LD structure with 100 nm u-GaN interlayer shows that the width of n-side depletion region decreases when the background concentration increases, and may become even too small to cover whole MQW, resulting in a serious decrease of the output light power. It means that a suitable interlayer thickness design matching with the background doping level of u-GaN interlayer is significant for InGaN-based laser diodes.

  18. Effects of the F4TCNQ-Doped Pentacene Interlayers on Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors

    OpenAIRE

    Ching-Lin Fan; Wei-Chun Lin; Hsiang-Sheng Chang; Yu-Zuo Lin; Bohr-Ran Huang

    2016-01-01

    In this paper, the top-contact (TC) pentacene-based organic thin-film transistor (OTFT) with a tetrafluorotetracyanoquinodimethane (F4TCNQ)-doped pentacene interlayer between the source/drain electrodes and the pentacene channel layer were fabricated using the co-evaporation method. Compared with a pentacene-based OTFT without an interlayer, OTFTs with an F4TCNQ:pentacene ratio of 1:1 showed considerably improved electrical characteristics. In addition, the dependence of the OTFT performance ...

  19. Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Luo, Yufeng; Luo, Nannan; Kong, Weibang; Wu, Hengcai; Wang, Ke; Fan, Shoushan; Duan, Wenhui; Wang, Jiaping

    2018-02-01

    A multifunctional interlayer, composed of molybdenum diphosphide (MoP 2 ) nanoparticles and a carbon nanotube (CNT) film, is introduced into a lithium-sulfur (Li-S) battery system to suppress polysulfide migration. Molybdenum diphosphide acts as the catalyst and can capture polysulfides and improve the polysulfide conversion activity during the discharge/charge processes. The CNT film acts as a conductive skeleton to support the MoP 2 nanoparticles and to ensure their uniform distribution. The CNT film physically hinders polysulfide migration, acts as a current collector, and provides abundant electron pathways. The Li-S battery containing the multifunctional MoP 2 /CNT interlayer exhibits excellent electrochemical performance. It delivers a reversible specific capacity of 905 mA h g -1 over 100 cycles at 0.2 C, with a capacity decay of 0.152% per cycle. These results suggest the introduction of the multifunctional CNT/MoP 2 interlayer as an effective and practical method for producing high-performance Li-S batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation

    International Nuclear Information System (INIS)

    Kopanati, Gayathri N; Madras, Giridhar; Ramamurthy, Praveen C

    2016-01-01

    Barrier materials are important for improving the stability and lifetimes of organic electronic devices. A simple technique for improving the barrier properties of polymer films was considered in this work by using TiO 2 nanoparticles in the interlayer to be incorporated in the polymer film. TiO 2 was synthesized by the solution combustion technique, was further functionalized using stearic acid or octadecylamine to induce hydrophobicity and enhance processing of the composite interlayer. The grafting of these compounds on to TiO 2 was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and thermo-gravimetric analysis. The functionalized and neat TiO 2 were blended with poly (vinyl alcohol-ethylene) (EVOH) and were melt compressed between Surlyn films. The resulting nanocomposite films were tested for their transparency and barrier properties using UV–visible spectroscopy and calcium degradation test, respectively. Further, the effectiveness of these barrier films in encapsulating organic devices was determined from accelerated aging tests. Therefore, the synthesized barrier films with neat and functionalized TiO 2 in the interlayers proved to be effective as moisture barrier composite films. (paper)

  1. Strain compensation in InGaN-based multiple quantum wells using AlGaN interlayers

    Directory of Open Access Journals (Sweden)

    Syed Ahmed Al Muyeed

    2017-10-01

    Full Text Available Data are presented on strain compensation in InGaN-based multiple quantum wells (MQW using AlGaN interlayers (ILs. The MQWs consist of five periods of InxGa1-xN/AlyGa1-yN/GaN emitting in the green (λ ∼ 535 nm ± 15 nm, and the AlyGa1-yN IL has an Al composition of y = 0.42. The IL is varied from 0 - 2.1 nm, and the relaxation of the MQW with respect to the GaN template layer varies with IL thickness as determined by reciprocal space mapping about the (202¯5 reflection. The minimum in the relaxation occurs at an interlayer thickness of 1 nm, and the MQW is nearly pseudomorphic to GaN. Both thinner and thicker ILs display increased relaxation. Photoluminescence data shows enhanced spectral intensity and narrower full width at half maximum for the MQW with 1 nm thick ILs, which is a product of pseudomorphic layers with lower defect density and non-radiative recombination.

  2. Stress Regression Analysis of Asphalt Concrete Deck Pavement Based on Orthogonal Experimental Design and Interlayer Contact

    Science.gov (United States)

    Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei

    2018-03-01

    A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.

  3. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    Science.gov (United States)

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  4. Non-trivial role of interlayer cation states in iron-based superconductors

    Science.gov (United States)

    Valenti, Roser; Guterding, Daniel; Jeschke, Harald O.; Glasbrenner, J. K.; Bascones, E.; Mazin, I. I.

    Unconventional superconductivity in iron pnictides and chalcogenides has been suggested to be controlled by the interplay of low-energy antiferromagnetic spin fluctuations and the particular topology of the Fermi surface in these materials. Under this assumption, one would expect the large class of isostructural and isoelectronic iron germanide compounds to be good superconductors, but they aren't. In this talk we will argue that superconductivity in iron germanides is suppressed by strong ferromagnetic tendencies, which surprisingly do not originate from changes in bond-angles or bond-distances with respect to iron pnictides, but are due to changes in the electronic structure in a wide range of energies happening upon substitution of atom species (As by Ge and the corresponding spacer cations). We will discuss the implications of these results in the general context of Fe-based superconductors. Funding by the Deutsche Forschungsgemeinschaft is acknowledged.

  5. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes.

    Science.gov (United States)

    Min, Jung-Hong; Son, Myungwoo; Bae, Si-Young; Lee, Jun-Yeob; Yun, Joosun; Maeng, Min-Jae; Kwon, Dae-Gyeon; Park, Yongsup; Shim, Jong-In; Ham, Moon-Ho; Lee, Dong-Seon

    2014-06-30

    Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

  6. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer

    Science.gov (United States)

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-01

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  7. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon; Monteiro, Paulo J.M.

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current

  8. Performance enhancement of pentacene-based organic thin-film transistors using 6,13-pentacenequinone as a carrier injection interlayer

    Science.gov (United States)

    Fan, Ching-Lin; Lin, Wei-Chun; Chen, Hao-Wei

    2018-06-01

    This work demonstrates pentacene-based organic thin-film transistors (OTFTs) fabricated by inserting a 6,13-pentacenequinone (PQ) carrier injection layer between the source/drain (S/D) metal Au electrodes and pentacene channel layer. Compared to devices without a PQ layer, the performance characteristics including field-effect mobility, threshold voltage, and On/Off current ratio were significantly improved for the device with a 5-nm-thick PQ interlayer. These improvements are attributed to significant reduction of hole barrier height at the Au/pentacene channel interfaces. Therefore, it is believed that using PQ as the carrier injection layer is a good candidate to improve the pentacene-based OTFTs electrical performance.

  9. Noise Reduction Based on an Fe -Rh Interlayer in Exchange-Coupled Heat-Assisted Recording Media

    Science.gov (United States)

    Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter

    2017-11-01

    High storage density and high data rate are two of the most desired properties of modern hard disk drives. Heat-assisted magnetic recording (HAMR) is believed to achieve both. Recording media, consisting of exchange-coupled grains with a high and a low TC part, were shown to have low dc noise—but increased ac noise—compared to hard magnetic single-phase grains like FePt. We extensively investigate the influence of an Fe -Rh interlayer on the magnetic noise in exchange-coupled grains. We find an optimal grain design that reduces the jitter in the down-track direction by up to 30% and in the off-track direction by up to 50%, depending on the head velocity, compared to the same structures without FeRh. Furthermore, the mechanisms causing this jitter reduction are demonstrated. Additionally, we show that, for short heat pulses and low write temperatures, the switching-time distribution of the analyzed grain structure is reduced by a factor of 4 compared to the same structure without an Fe -Rh layer. This feature could be interesting for HAMR use with a pulsed laser spot and could encourage discussion of this HAMR technique.

  10. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  11. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  12. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  13. Enhancing the DEMO divertor target by interlayer engineering

    International Nuclear Information System (INIS)

    Barrett, T.R.; McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M.; Rieth, M.; Reiser, J.

    2015-01-01

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m"2. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m"2 surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m"2.

  14. Enhancing the DEMO divertor target by interlayer engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R., E-mail: tom.barrett@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M. [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, M.; Reiser, J. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany)

    2015-10-15

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m{sup 2}. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m{sup 2} surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m{sup 2}.

  15. All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries.

    Science.gov (United States)

    Dong, Yanfeng; Zheng, Shuanghao; Qin, Jieqiong; Zhao, Xuejun; Shi, Haodong; Wang, Xiaohui; Chen, Jian; Wu, Zhong-Shuai

    2018-03-27

    High-energy-density lithium-sulfur (Li-S) batteries hold promise for next-generation portable electronic devices, but are facing great challenges in rational construction of high-performance flexible electrodes and innovative cell configurations for actual applications. Here we demonstrated an all-MXene-based flexible and integrated sulfur cathode, enabled by three-dimensional alkalized Ti 3 C 2 MXene nanoribbon (a-Ti 3 C 2 MNR) frameworks as a S/polysulfides host (a-Ti 3 C 2 -S) and two-dimensional delaminated Ti 3 C 2 MXene (d-Ti 3 C 2 ) nanosheets as interlayer on a polypropylene (PP) separator, for high-energy and long-cycle Li-S batteries. Notably, an a-Ti 3 C 2 MNR framework with open interconnected macropores and an exposed surface area guarantees high S loading and fast ionic diffusion for prompt lithiation/delithiation kinetics, and the 2D d-Ti 3 C 2 MXene interlayer remarkably prevents the shuttle effect of lithium polysulfides via both chemical absorption and physical blocking. As a result, the integrated a-Ti 3 C 2 -S/d-Ti 3 C 2 /PP electrode was directly used for Li-S batteries, without the requirement of a metal current collector, and exhibited a high reversible capacity of 1062 mAh g -1 at 0.2 C and enhanced capacity of 632 mAh g -1 after 50 cycles at 0.5 C, outperforming the a-Ti 3 C 2 -S/PP electrode (547 mAh g -1 ) and conventional a-Ti 3 C 2 -S on an Al current collector (a-Ti 3 C 2 -S/Al) (597 mAh g -1 ). Furthermore, the all-MXene-based integrated cathode displayed outstanding rate capacity of 288 mAh g -1 at 10 C and long-life cyclability. Therefore, this proposed strategy of constructing an all-MXene-based cathode can be readily extended to assemble a large number of MXene-derived materials, from a group of 60+ MAX phases, for applications such as various batteries and supercapacitors.

  16. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)

    1976-01-01

    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  17. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    KAUST Repository

    Prabaswara, Aditya

    2018-02-06

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  18. Strain management of AlGaN-based distributed Bragg reflectors with GaN interlayer grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuh-Shiuan; Kao, Tsung-Ting; Mehta, Karan; Jia, Xiao Jia; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D., E-mail: dupuis@gatech.edu [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, Georgia 30332-0250 (United States); Wang, Shuo; Xie, Hongen; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2016-08-22

    We report the crack-free growth of a 45-pair Al{sub 0.30}Ga{sub 0.70}N/Al{sub 0.04}Ga{sub 0.96}N distributed Bragg reflector (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To mitigate the cracking issue originating from the tensile strain of Al{sub 0.30}Ga{sub 0.70}N on GaN, an AlN template was employed in this work. On the other hand, strong compressive strain experienced by Al{sub 0.04}Ga{sub 0.96}N favors 3D island growth, which is undesired. We found that inserting an 11 nm thick GaN interlayer upon the completion of AlN template layer properly managed the strain such that the Al{sub 0.30}Ga{sub 0.70}N/Al{sub 0.04}Ga{sub 0.96}N DBR was able to be grown with an atomically smooth surface morphology. Smooth surfaces and sharp interfaces were observed throughout the structure using high-angle annular dark-field imaging in the STEM. The 45-pair AlGaN-based DBR provided a peak reflectivity of 95.4% at λ = 368 nm with a bandwidth of 15 nm.

  19. Promoting information diffusion through interlayer recovery processes in multiplex networks

    Science.gov (United States)

    Wang, Xin; Li, Weihua; Liu, Longzhao; Pei, Sen; Tang, Shaoting; Zheng, Zhiming

    2017-09-01

    For information diffusion in multiplex networks, the effect of interlayer contagion on spreading dynamics has been explored in different settings. Nevertheless, the impact of interlayer recovery processes, i.e., the transition of nodes to stiflers in all layers after they become stiflers in any layer, still remains unclear. In this paper, we propose a modified ignorant-spreader-stifler model of rumor spreading equipped with an interlayer recovery mechanism. We find that the information diffusion can be effectively promoted for a range of interlayer recovery rates. By combining the mean-field approximation and the Markov chain approach, we derive the evolution equations of the diffusion process in two-layer homogeneous multiplex networks. The optimal interlayer recovery rate that achieves the maximal enhancement can be calculated by solving the equations numerically. In addition, we find that the promoting effect on a certain layer can be strengthened if information spreads more extensively within the counterpart layer. When applying the model to two-layer scale-free multiplex networks, with or without degree correlation, similar promoting effect is also observed in simulations. Our work indicates that the interlayer recovery process is beneficial to information diffusion in multiplex networks, which may have implications for designing efficient spreading strategies.

  20. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    KAUST Repository

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.

    2018-01-01

    .6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits

  1. Effect of tack coat application on interlayer shear strength of asphalt pavement: A state-of-the-art review based on application in the United States

    Directory of Open Access Journals (Sweden)

    Weiguang Zhang

    2017-09-01

    Full Text Available The effect of tack coat application on pavement interlayer shear strength attracts strong interest during asphalt paving. Given its extensive use, tack coat is known to behave as a bond material to reduce pavement distresses such as slippage crack. The effectiveness of tack coat in increasing shear strength may be affected by multiple factors, such as tack coat material, test condition, pavement surface condition, and moisture. This article is a literature review focus on how the interlayer shear strength varied when relevant influential factors are changing. Review results indicate that the interlayer shear strength increased with the decreased test temperature, increased traffic load (within design limit, and increased test confinement pressure. Additionally, the milled pavement surface always has higher shear strength then the non-milled pavement surface. It is also found that laboratory-prepared specimens resulted in higher interlayer shear strength than field pavement cores. The effect of other factors on tack coat application may follow different trends depending on mix type and existing pavement condition. For instance, optimum tack coat rate that corresponds to peak shear strength is widely reported, while it is also found that tack coat does not greatly affect shear strength on dry, clean and milled pavement surface. Furthermore, shear strength reduced when mixture is designed with high percentage of air voids or coarse aggregate structure, such as porous asphalt and stone mastic asphalt (SMA mixtures. More findings and recommendations can be found in this paper. Keywords: Tack coat, Interlayer shear strength, Asphalt pavement, Temperature, Milling, Mixture type

  2. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530–590 nm with AlGaN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Koleske, D. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Fischer, A. J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bryant, B. N. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Kotula, P. G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wierer, J. J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-07

    InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530–590 nm. The AlzGa1-zN (z~0.38) IL is ~1–2 nm thick, and is grown after and at the same growth temperature as the ~3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ~10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to~0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing non-radiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is also explored, along with implications to conventional longer wavelength emitters.

  3. Diffusion brazing of Ti–6Al–4V and austenitic stainless steel using silver-based interlayer

    International Nuclear Information System (INIS)

    Soltani Tashi, R.; Akbari Mousavi, S.A.A.; Mazar Atabaki, M.

    2014-01-01

    Highlights: • Ti–6Al–4V and stainless steel 316L were successfully joined by diffusion brazing. • The wettability of the filler alloy was escalated by increasing the temperature. • By increasing the brazing temperature various intermetallic compounds were formed. • There is a noteworthy effect of the brazing temperature on the fracture footpath. - Abstract: In the present study, vacuum brazing was applied to join Ti–6Al–4V and stainless steel using AgCuZn filler metal. The bonds were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. Mechanical strengths of the joints were evaluated by the shear test and microhardness showed that shear strength decreased with increasing the brazing temperature and time. The results showed that the wettability of the filler alloy was increased by enhancing the wetting test temperature. It was shown that by increasing the brazing temperature various intermetallic compounds were formed in the bond area. These intermetallic compounds were mainly a combination of CuTi and Fe–Cu–Ti. The shear test results verified the influence of the bonding temperature on the strength of the joints based on the formation of different intermetallics in the bond zone. The fracture analysis also revealed different fracture footpath and morphology for the different brazing temperatures

  4. Density functional theory study of inter-layer coupling in bulk tin selenide

    Science.gov (United States)

    Song, Hong-Yue; Lü, Jing-Tao

    2018-03-01

    We study the inter-layer coupling in bulk tin selenide (SnSe) through density functional theory based calculations. Different approximations for the exchange-correlation functionals and the van der Waals interaction are employed. By performing comparison with graphite, MoS2 and black phosphorus, we analyze the inter-layer coupling from different points of view, including the binding energy, the low frequency inter-layer optical phonons, and the inter-layer charge transfer. We find that, there is a strong charge transfer between layers of SnSe, resulting in the strongest inter-layer coupling. Moreover, the charge transfer renders the inter-layer coupling in SnSe not of van der Waals type. Mechanical exfoliation has been used to fabricate mono- or few-layer graphene, MoS2 and black phosphorus. But, our results show that it may be difficult to apply similar technique to SnSe.

  5. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.

  6. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors

    Directory of Open Access Journals (Sweden)

    Jun-Hong Lin

    2018-02-01

    Full Text Available In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB was employed to prevent the restack of the thermally reduce graphene oxide (TRG sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs. The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg.

  7. Nano-engineered composites: interlayer carbon nanotubes effect

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Glaucio, E-mail: carleyone@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Geraldo, Viviany; Oliveira, Sergio de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Avila, Antonio Ferreira [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica

    2013-11-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with Almost-Equal-To 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  8. Nano-engineered composites: interlayer carbon nanotubes effect

    International Nuclear Information System (INIS)

    Carley, Glaucio; Geraldo, Viviany; Oliveira, Sergio de; Avila, Antonio Ferreira

    2013-01-01

    The concept of carbon nanotube interlayer was successfully introduced to carbon fiber/epoxy composites. This new hybrid laminated composites was characterized by Raman spectroscopy, X-ray diffraction, scanning electron microscopy and tensile tests. An increase on peak stress close to 85% was witnessed when CNTs interlayer with 206.30 mg was placed to carbon fiber/epoxy laminates. The failure mechanisms are associated to CNTs distribution between and around carbon fibers. These CNTs are also responsible for crack bridging formation and the increase on peak stress. Initial stiffness is strongly affected by the CNT interlayer, however, changes on stiffness is associated to changes on nano/micro-structure due to damage. Three different behaviors can be described, i.e. for interlayers with ≈ 60 mg of CNT the failure mode is based on cracks between and around carbon fibers, while for interlayers with CNT contents between 136 mg and 185 mg cracks were spotted on fibers and inside the CNT/matrix mix. Finally, the third failure mechanism is based on carbon fiber breakage, as a strong interface between CNT/matrix mix and carbon fibers is observed. (author)

  9. Josephson junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Wild, Georg Hermann

    2012-01-01

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO x /Pd 0.82 Ni 0.18 /Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to π-coupling is observed for a thickness d F =6 nm of the ferromagnetic Pd 0.82 Ni 0.18 interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd 0.82 Ni 0.18 has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  10. Josephson junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Wild, Georg Hermann

    2012-03-04

    We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.

  11. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    International Nuclear Information System (INIS)

    Assili, M; Haddad, S

    2013-01-01

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT) 2 I 3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed. (paper)

  12. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    Science.gov (United States)

    Assili, M.; Haddad, S.

    2013-09-01

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.

  13. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones.

    Science.gov (United States)

    Assili, M; Haddad, S

    2013-09-11

    We theoretically study the effect of the motion and the merging of Dirac cones on the interlayer magnetoresistance in multilayer graphene-like systems. This merging, which can be induced by a uniaxial strain, gives rise in a monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase whereby Dirac points disappear. Based on a universal Hamiltonian, proposed to describe the motion and the merging of Dirac points in two-dimensional Dirac electron crystals, we calculate the interlayer conductivity of a stack of deformed graphene-like layers using the Kubo formula in the quantum limit where only the contribution of the n = 0 Landau level is relevant. A crossover from a negative to a positive interlayer magnetoresistance is found to take place as the merging is approached. This sign change of the magnetoresistance can also result from a coupling between the Dirac valleys, which is enhanced as the magnetic field amplitude increases. Our results describe the behavior of the magnetotransport in the organic conductor α-(BEDT)2I3 and in a stack of deformed graphene-like systems. The latter can be simulated by optical lattices or microwave experiments in which the merging of Dirac cones can be observed.

  14. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    Science.gov (United States)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  15. Transaction based approach

    Science.gov (United States)

    Hunka, Frantisek; Matula, Jiri

    2017-07-01

    Transaction based approach is utilized in some methodologies in business process modeling. Essential parts of these transactions are human beings. The notion of agent or actor role is usually used for them. The paper on a particular example describes possibilities of Design Engineering Methodology for Organizations (DEMO) and Resource-Event-Agent (REA) methodology. Whereas the DEMO methodology can be regarded as a generic methodology having its foundation in the theory of Enterprise Ontology the REA methodology is regarded as the domain specific methodology and has its origin in accountancy systems. The results of these approaches is that the DEMO methodology captures everything that happens in the reality with a good empirical evidence whereas the REA methodology captures only changes connected with economic events. Economic events represent either change of the property rights to economic resource or consumption or production of economic resources. This results from the essence of economic events and their connection to economic resources.

  16. Ferromagnetism and interlayer exchange coupling in thin metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Kienert, Jochen

    2008-07-15

    This thesis is concerned with the ferromagnetic Kondo lattice (s-d,s-f) model for film geometry. The spin-fermion interaction of this model refers to substances in which localized spins interact with mobile charge carriers like in (dilute) magnetic semiconductors, manganites, or rare-earth compounds. The carrier-mediated, indirect interaction between the localized spins comprises the long-range, oscillatory RKKY exchange interaction in the weak-coupling case and the short-range doubleexchange interaction for strong spin-fermion coupling. Both limits are recovered in this work by mapping the problem onto an effective Heisenberg model. The influence of reduced translational symmetry on the effective exchange interaction and on the magnetic properties of the ferromagnetic Kondo lattice model is investigated. Curie temperatures are obtained for different parameter constellations. The consequences of charge transfer and of lattice relaxation on the magnetic stability at the surface are considered. Since the effective exchange integrals are closely related to the electronic structure in terms of the density of states and of the kinetic energy, the discussion is based on the modifications of these quantities in the dimensionally-reduced case. The important role of spin waves for thin film and surface magnetism is demonstrated. Interlayer exchange coupling represents a particularly interesting and important manifestation of the indirect interaction among localized magnetic moments. The coupling between monatomic layers in thin films is studied in the framework of an RKKY approach. It is decisively determined by the type of in-plane and perpendicular dispersion of the charge carriers and is strongly suppressed above a critical value of the Fermi energy. Finally, the temperature-dependent magnetic stability of thin interlayer-coupled films is addressed and the conditions for a temperature-driven magnetic reorientation transition are discussed. (orig.)

  17. Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)

    2013-05-01

    The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.

  18. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: khabib@ee.ucr.edu; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521-0204 (United States); Ge, Supeng [Department of Physics and Astronomy, University of California, Riverside, California 92521-0204 (United States)

    2013-12-09

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm{sup 2}. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  19. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K.; Ge, Supeng

    2013-01-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm 2 . For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described

  20. Iodide uptake by negatively charged clay interlayers?

    International Nuclear Information System (INIS)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-01-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI (aq) ) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. - Highlights: • Iodide sorption experiments were completed with a diverse array of clay minerals. • Iodide uptake trended with CEC and swamping electrolyte identity and concentration. • Results can be explained by considering the formation of ion pairs in clay interlayers

  1. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Directory of Open Access Journals (Sweden)

    Sposito Garrison

    2002-09-01

    Full Text Available Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  2. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison

    2002-01-01

    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  3. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase

  4. Pavement service life extension due to asphalt surface treatment interlayer : research project capsule.

    Science.gov (United States)

    2016-07-01

    The Louisiana Department of Transportation and Development (DOTD) has been : using asphalt surface treatment (AST) interlayers over soil cement base courses : as a means to mitigate shrinkage cracks from reflecting through the asphaltic : concrete (A...

  5. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Energy Technology Data Exchange (ETDEWEB)

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  7. Behavioral based safety approaches

    International Nuclear Information System (INIS)

    Maria Michael Raj, I.

    2009-01-01

    Approach towards the establishment of positive safety culture at Heavy Water Plant, Tuticorin includes the adoption of several important methodologies focused on human behavior and culminates with achievement of Total Safety Culture where Quality and Productivity are integrated with Safety

  8. Effect of In_xGa_1_−_xAs interlayer on the properties of In_0_._3Ga_0_._7As epitaxial films grown on Si (111) substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gao, Fangliang; Wen, Lei; Zhang, Shuguang; Li, Jingling; Zhang, Xiaona; Li, Guoqiang; Liu, Ying

    2015-01-01

    High-quality In_0_._3Ga_0_._7As films have been epitaxially grown on Si (111) substrate by inserting an In_xGa_1_−_xAs interlayer with various In compositions by molecular beam epitaxy. The effect of In_xGa_1_−_xAs interlayer on the surface morphology and structural properties of In_0_._3Ga_0_._7As films is studied in detail. It reveals that In_0_._3Ga_0_._7As films grown at appropriate In composition in In_xGa_1_−_xAs interlayer exhibit smooth surface with a surface root-mean-square roughness of 1.7 nm; while In_0_._3Ga_0_._7As films grown at different In composition of In_xGa_1_−_xAs interlayer show poorer properties. This work demonstrates a simple but effective method to grow high-quality In_0_._3Ga_0_._7As epilayers on Si substrates, and brings up a broad prospect for the application of InGaAs-based optoelectronic devices on Si substrates. - Highlights: • We provide a simple approach to achieve high-quality In_0_._3Ga_0_._7As films on Si. • An In_0_._2_8Ga_0_._7_2As interlayer can release mismatch strain. • High-quality In_0_._3Ga_0_._7As film is grown on Si using 10-nm-thick interlayer. • Smooth surface In_0_._3Ga_0_._7As film is grown on Si using 10-nm-thick interlayer.

  9. A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries

    Science.gov (United States)

    Zhao, Qian; Zhu, Qizhen; An, Yabin; Chen, Renjie; Sun, Ning; Wu, Feng; Xu, Bin

    2018-05-01

    To improve the cycling performance of the Li-S batteries, a 3D interwoven hollow interlayer with extremely high electrolyte adsorption capability up to 9.64 g g-1 was simply prepared by carbonization of cotton fabric (CCF). For comparison, an interlayer coated on separator was obtained by the slurry-coating method of powdery CCF. The key role of the adsorption capability is confirmed by comparing the electrochemical performance of Li-S batteries with these two interlayers. In the Li-S batteries with 3D CCF interlayer, massive dissolved polysulfides, together with the electrolyte, can be adsorbed and confined in the 3D CCF interlayer, providing substantial extra active sites and alleviating the shuttle effect effectively. As a result, the Li-S batteries with 3D CCF interlayer show much enhanced utilization of active materials (1346.9 mAh g-1 at 0.1C), prolonged cycle life (capacity retention of 80% after 100 cycles), and improved rate performance (553.2 mAh g-1 at 4C). Even for cathodes with high sulfur loading of 5 mg cm-2, the cells with 3D CCF interlayer perform a high capacity of 1085 mAh g-1 and retain 870.6 mAh g-1 after 75 cycles at 0.5 mA cm-2. These results not only provide a sustainable, low cost and easy-prepared 3D CCF interlayer, but also offer a promising strategy based on interlayer with high adsorption capability in designing high-performance Li-S batteries.

  10. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    Science.gov (United States)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the

  11. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  12. Interlayer-Spacing-Regulated VOPO4 Nanosheets with Fast Kinetics for High-Capacity and Durable Rechargeable Magnesium Batteries.

    Science.gov (United States)

    Zhou, Limin; Liu, Qi; Zhang, Zihe; Zhang, Kai; Xiong, Fangyu; Tan, Shuangshuang; An, Qinyou; Kang, Yong-Mook; Zhou, Zhen; Mai, Liqiang

    2018-06-25

    Owing to the low-cost, safety, dendrite-free formation, and two-electron redox properties of magnesium (Mg), rechargeable Mg batteries are considered as promising next-generation secondary batteries with high specific capacity and energy density. However, the clumsy Mg 2+ with high polarity inclines to sluggish Mg insertion/deinsertion, leading to inadequate reversible capacity and rate performance. Herein, 2D VOPO 4 nanosheets with expanded interlayer spacing (1.42 nm) are prepared and applied in rechargeable magnesium batteries for the first time. The interlayer expansion provides enough diffusion space for fast kinetics of MgCl + ion flux with low polarization. Benefiting from the structural configuration, the Mg battery exhibits a remarkable reversible capacity of 310 mAh g -1 at 50 mA g -1 , excellent rate capability, and good cycling stability (192 mAh g -1 at 100 mA g -1 even after 500 cycles). In addition, density functional theory (DFT) computations are conducted to understand the electrode behavior with decreased MgCl + migration energy barrier compared with Mg 2+ . This approach, based on the regulation of interlayer distance to control cation insertion, represents a promising guideline for electrode material design on the development of advanced secondary multivalent-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iodide uptake by negatively charged clay interlayers?

    Science.gov (United States)

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Importance of interlayer pair tunneling: A variational perspective

    International Nuclear Information System (INIS)

    Medhi, Amal; Basu, Saurabh

    2011-01-01

    We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.

  15. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.

  16. Viscoelastic Waves Simulation in a Blocky Medium with Fluid-Saturated Interlayers Using High-Performance Computing

    Science.gov (United States)

    Sadovskii, Vladimir; Sadovskaya, Oxana

    2017-04-01

    A thermodynamically consistent approach to the description of linear and nonlinear wave processes in a blocky medium, which consists of a large number of elastic blocks interacting with each other via pliant interlayers, is proposed. The mechanical properties of interlayers are defined by means of the rheological schemes of different levels of complexity. Elastic interaction between the blocks is considered in the framework of the linear elasticity theory [1]. The effects of viscoelastic shear in the interblock interlayers are taken into consideration using the Pointing-Thomson rheological scheme. The model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. On the basis of the Biot equations for a fluid-saturated porous medium, a new mathematical model of a blocky medium is worked out, in which the interlayers provide a convective fluid motion due to the external perturbations. The collapse of pores is modeled within the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact [2], which is used to describe the behavior of materials with different resistance to tension and compression. Thermodynamic consistency of the equations in interlayers with the equations in blocks guarantees fulfillment of the energy conservation law for a blocky medium in a whole, i.e. kinetic and potential energy of the system is the sum of kinetic and potential energies of the blocks and interlayers. As a result of discretization of the equations of the model, robust computational algorithm is constructed, that is stable because of the thermodynamic consistency of the finite difference equations at a discrete level. The splitting method by the spatial variables and the Godunov gap decay scheme are used in the blocks, the

  17. Interlayer toughening of fiber composite flywheel rotors

    Science.gov (United States)

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  18. Feasibility Study of Interlayer Slide Monitoring Using Postembedded Piezoceramic Smart Aggregates

    Directory of Open Access Journals (Sweden)

    Jianchao Wu

    2018-01-01

    Full Text Available Utilizing embedded transducers is an effective approach to monitor a landslide. However, for existing structures, sensors can only be postembedded, which involves drilling and grouting, and may change the original state of the structure, which calls for the need to study the effectiveness of postembedded transducers. The main focus of this paper is the feasibility study of the interlayer slide detection using postembedded piezoceramic smart aggregates (SAs. In this study, a small landslide structure that involves a weak layer is studied and two pairs of SAs were embedded in predetermined positions inside the structure. To study the difference, one pair of transducer was preembedded and the other pair was postembedded. Within each pair, one SA was employed as an actuator to generate stress waves, and another SA used as a sensor to detect wave responses. Active-sensing approach was developed to perform continuous monitoring during structural loading that was used to induce an interlayer slide. The occurrence of interlayer slide attenuates wave energy and decreases signal intensity. A wavelet-packed index was proposed to detect the occurrence and development of interlayer slide. Experimental results demonstrated that SA installation through postembedding process is an innovative yet effective approach to monitor interlayer slide.

  19. Interface properties of MIS structures based on hetero-epitaxial graded-gap Hg1-xCdxTe with CdTe interlayer created in situ during MBE growth

    Science.gov (United States)

    Voitsekhovskii, Alexander V.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Varavin, Vasily S.; Dvoretsky, Sergey A.; Mikhailov, Nikolay N.; Yakushev, Maksim V.; Sidorov, Georgy Yu.

    2017-11-01

    Heterostructures based on n-Hg1-xCdxTe (x = 0.23-0.40) with near-surface graded-gap layers were grown by molecular beam epitaxy on Si (013) substrates. At 77 K, the admittance of the In/Al2O3/Hg1-xCdxTe metal-insulator-semiconductor (MIS) structures with grown in situ CdTe intermediate layer and without such a layer was investigated. It has been established that MIS structures of In/Al2O3/Hg1-xCdxTe with an interlayer of in situ grown CdTe are characterized by the electrical strength of the dielectric and the qualitative interface. The hysteresis of the capacitive characteristics is practically absent within a small range of variation in the bias voltage. The density of fast surface states at the minimum does not exceed 2.2 × 1010 eV-1 cm-2. MIS structures of In/Al2O3/Hg1-xCdxTe without an intermediate layer of CdTe have significantly higher densities of fast and slow surface states, as well as lower values of the differential resistance of the space-charge region in the regime of strong inversion.

  20. INTERLAYER OPTICAL CONDUCTIVITY OF A SUPERCONDUCTING BILAYER

    NARCIS (Netherlands)

    GARTSTEIN, YN; RICE, MJ; VANDERMAREL, D

    1994-01-01

    We employ the Bardeen-Cooper-Schrieffer theory to calculate the frequency-dependent interlayer conductivity of a superconducting bilayer, the two layers of which are coupled by weak single-particle tunneling. The effect of the superconducting transition on the normal-state absorption band is to

  1. The effect of interlayer anion on the reactivity of Mg-Al layered double hydroxides: improving and extending the customization capacity of anionic clays.

    Science.gov (United States)

    Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E

    2011-07-01

    Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Josephson tunnel junctions with ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Weides, M.P.

    2006-01-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al 2 O 3 tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or π coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, π) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-π Josephson junction. At a certain temperature this 0-π junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum Φ 0 . Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T → 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  3. Josephson tunnel junctions with ferromagnetic interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Weides, M.P.

    2006-07-01

    Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)

  4. Exchange of interlayer cations in micaceous minerals. Final report, February 1, 1967--August 31, 1976

    International Nuclear Information System (INIS)

    Scott, A.D.

    1976-08-01

    Laboratory experiments were carried out to establish a comprehensive understanding of the processes and factors governing the sorption and release of interlayer cations in micaceous minerals. A diverse approach with several lines of work was used to delineate the effects of different procedures, solution compositions and mineral properties. It was soon clear that the major factors controlling the exchange of interlayer cations are the blocking effects of dissolved fixable cations and the limiting effects of small particles. By using sodium tetraphenylboron to reduce the blocking effects and by excluding particles that were smaller than 2 μm, however, the subtle effects of many other factors were brought out. The redox status of structural iron, the hydroxyl groups, the interlayer spacing and the layer charge of the minerals are indicative of the type of factors involved and the fact that they are mainly interactive in nature. One conclusion from this work is that most experimental results for interlayer cation exchange are bound to reflect some combination of the controlling factors. More important, however, was the observation that proper management of interlayer cation exchange can make micaceous minerals a good sink for cesium and source of potassium

  5. Stresses in Coating with Gradient Interlayer caused by Contact Loading

    Directory of Open Access Journals (Sweden)

    Kulchytsky-Zhyhailo Roman

    2014-03-01

    Full Text Available The three-dimensional problem of elasticity concerning inhomogeneous half-space under normal and tangential loading applied in circular region was considered. The half-space is composed of the homogeneous body and double-layer coating which includes a homogeneous top coat and a gradient interlayer. The solution method is based on the two-dimensional integral Fourier transform. The influence of mechanical properties of coatings component and coefficient of friction on the first principal stress distribution was considered.

  6. Interface engineering of perovskite solar cells with multifunctional polymer interlayer toward improved performance and stability

    Science.gov (United States)

    Huang, Li-Bo; Su, Pei-Yang; Liu, Jun-Min; Huang, Jian-Feng; Chen, Yi-Fan; Qin, Su; Guo, Jing; Xu, Yao-Wei; Su, Cheng-Yong

    2018-02-01

    This work proposes a new perovskite solar cell structure by inserting a polymer interlayer between perovskite and hole transporting material (HTM) to minimize the interface losses via interface engineering. The multifunctional interlayers improve the photovoltaic efficiency and device stability by shielding perovskite from moisture, suppressing charge combination, and promoting hole transport. The five different polymer layers are utilized to investigate the relationships of polymer structure, layer morphology and cell performance systematically. It is found that a reliable power conversion efficiency exceeding 19.0% is realized based on P3HT/spiro-OMeTAD composite structure, surpassing that of pure spiro-OMeTAD (15.0%). Moreover, the device with P3HT interlayer shows more brilliant long-term stability than that without interlayer when exposed into moisture. The enhanced device performance based on P3HT interlayer compared with the other polymers can be ascribed to the long hydrophobic alkyl chains and the small molecule monomers of P3HT, which contribute to self-assembly of the polymers into insulating layers and formation of the efficient π-π stacking in polymer/spiro-OMeTAD interface simultaneously. This study provides a practical route for the integration of a new class of easily-accessible, solution-processed interfacial polymer materials for high-performance and long-time stable PSC.

  7. Acid–base properties of pillared interlayered clays with single and mixed Zr–Al oxide pillars prepared from Tunisian-interstratified illite–smectite

    Directory of Open Access Journals (Sweden)

    Saida Mnasri

    2017-12-01

    Full Text Available Interstratified illite–smectite clay samples from Tunisia have been used in order to prepare Al, Zr and Zr–Al-pillared clays. Several Al/metal, OH/metal ratios were used in order to investigate the effect on the chemical and physical properties, specifically the point of zero charge (PZC of the synthesized pillared clays. The structure of the pillared materials is studied by XRD and cationic exchange capacity. The textural property is investigated by the nitrogen adsorption/desorption method. The acid–base chemistry “surface acidity” of these products was analysed by using mass and potentiometric titration in order to determine the PZC and the equilibrium constants (pKa of each sample. The resulting materials exhibited basal spacings in the range of 17.4–20.5 Å, with high surface areas (134–199 m2 g−1. Titration curves obtained by acid–base potentiometric titration for the starting material showed an indistinct cross-over point at about pH = 7.3, whereas in the case of pillared samples, points were observed at the acidic region between 4 and 6. In addition, the calculated pKas values of pillared clays show a shifting to the acidic values compared to the untreated sample.

  8. In-situ X-ray photoelectron spectroscopy characterization of Si interlayer based surface passivation process for AlGaAs/GaAs quantum wire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Masamichi; Hasegawa, Hideki; Jia, Rui [Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N-13, W-8, Sapporo 060-8628 (Japan)

    2007-04-15

    Detailed properties of the Si interface control layer (Si ICL)-based surface passivation structure are characterized by in-situ X-ray photoelectron spectroscopy (XPS) in an ultra-high vacuum multi-chamber system. Si ICLs were grown by molecular beam epitaxy (MBE) on GaAs and AlGaAs(001) and (111)B surfaces, and were partially converted to SiN{sub x} by nitrogen radical beam. Freshly MBE-grown clean GaAs and AlGaAs surfaces showed strong Fermi level pinning. Large shifts of the surface Fermi level position corresponding to reduction of pinning took place after Si ICL growth, particularly on (111)B surface (around 500 meV). However, subsequent surface nitridation increased pinning again. Then, a significant reduction of pinning was obtained by changing SiN{sub x} to silicon oxynitride by intentional air-exposure and subsequent annealing. This has led to realization of a stable passivation structure with an ultrathin oxynitride/Si ICL structure which prevented subcutaneous oxidation during further device processing under air-exposure. The Si-ICL-based passivation process was applied to surface passivation of quantum wire (QWR) transistors where anomalously large side-gating phenomenon was completely eliminated. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. THE CHARACTERIZATION OF THE Ca-K GEOPOLYMER/SOLIDIFIED FLUID FLY-ASH INTERLAYER

    Directory of Open Access Journals (Sweden)

    Ivana Perna

    2016-12-01

    Full Text Available A Ca-K geopolymer matrix based on clay material and blast-furnace slag was filled with aggregates, ash pellets made from fluid fly ash, and the interlayer formed between the two components was studied. The scanning electron-microscopy investigation of the inseparable interlayer demonstrated that the pellets were not only enveloped in a geopolymer matrix but also incorporated through a thin, yet identifiable, surface pellet layer. The migration of calcium and potassium ions was detected and that changes in the quantity of these ions arise from their mobility. The interlayer on the edges of ash pellets was also studied by infrared analysis, which in this layer proved bands belonging to both participants, the matrix and the pellets. Based on the results, two different materials prepared from wastes could be used for the preparation of a new composite material and thus facilitate waste-material disposal.

  10. Form-based Approaches vs. Task-Based Approaches

    Directory of Open Access Journals (Sweden)

    Zahra Talebi

    2015-07-01

    Full Text Available This study aimed at investigating whether task-based approaches bear any superiority to that of more traditional ones evident in presentation-practice- and production phase .to fulfill the purpose of the study, the participants within the age range of 11-19, took part in the study. Following a pretest, treatment, and a posttest, the obtained data was analyzed using analysis of covariance (ANCOVA to examine the effects of the variables. The results of the analysis showed that participants in the PPP group did significantly better in the grammar recognition of the posttest than that of the task group. However, their counterparts in the task group gained better scores in the writing section of the test .this research study provided evidence in support of task proponents' claim in the merit of task-based activity in raising learners' implicit knowledge claiming to play the primary role in spontaneous speech.

  11. Enhancement of charge carrier recombination efficiency by utilizing a hole-blocking interlayer in white OLEDs

    International Nuclear Information System (INIS)

    Wang Qi; Yu Junsheng; Zhao Juan; Li Ming; Lu Zhiyun

    2013-01-01

    Charge carrier balance and recombination are essential factors relating to the performance of white organic light-emitting devices (WOLEDs). In this study, we discussed the contribution of charge carrier balance in the interlayer-based WOLEDs. By varying the interlayer thickness, the mechanisms of electroluminescent spectral alteration, energy transfer, and especially, charge carrier transport and balance in the devices were investigated and revealed in detail. With a 5 nm thick interlayer tailoring charge carrier transport and recombination, WOLEDs yielded a high power efficiency, current efficiency and external quantum efficiency of 36.1 lm W −1 , 47.1 cd A −1 and 18.3%, respectively. Additionally, single-carrier devices and quantitative analysis were subsequently carried out, demonstrating that the enhancement of carrier recombination efficiency corresponds to the optimization of device performance. (paper)

  12. Uranium diphosphonates templated by interlayer organic amines

    International Nuclear Information System (INIS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E.; Ewing, Rodney C.

    2013-01-01

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 °C results in the crystallization of a series of layered uranium diphosphonate compounds, [C 10 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Ubip2), [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} (UDAB), [C 2 H 10 N 2 ] 2 {(UO 2 ) 2 (H 2 O) 2 [CH 2 (PO 3 ) 2 ] 2 ·0.5H 2 O} (Uethyl), and [C 12 H 9 N 2 ]{UO 2 (H 2 O)[CH 2 (PO 3 )(PO 3 H)]} (Uphen). The crystal structures of the compounds are based on UO 7 units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C 6 H 14 N 2 ]{(UO 2 ) 2 [CH 2 (PO 3 )(PO 3 H)] 2 ·2H 2 O} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also shown. The structure is constructed from UO 7 pentagonal bipyramids (yellow), oxygen=red, phosphorus=magenta, carbon=black, and nitrogen=blue. Highlights: ► Organic amines act both as charge-balancing and as structure-directing agents. ► Extensive hydrogen bonding interactions with solvent water molecules and amines

  13. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.; Schuster, Cosima B.; Eckern, Ulrich; Schwingenschlö gl, Udo

    2010-01-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  14. Modification of the electronic transport in Au by prototypical impurities and interlayers

    KAUST Repository

    Fadlallah, Majida M.

    2010-02-01

    Electronic transport calculations for metallic interfaces based on density functional theory and a scattering theory on the Landauer-Büttiker level are presented. We study the modifications of the transport through Au due to prototypical impurities and interlayers. Our results show that the influence of S and Si impurities is well described in terms of simple vacancies. Metallic impurities and interlayers, on the other hand, have even more drastic effects, in particular when the Au s-d hybrid states at the Fermi energy are perturbed. The effects of a possible interface alloy formation are discussed in detail. © 2010 EPLA.

  15. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.

    Science.gov (United States)

    Liang, Lusheng; Huang, Zhifeng; Cai, Longhua; Chen, Weizhong; Wang, Baozeng; Chen, Kaiwu; Bai, Hua; Tian, Qingyong; Fan, Bin

    2014-12-10

    Suitable electrode interfacial layers are essential to the high performance of perovskite planar heterojunction solar cells. In this letter, we report magnetron sputtered zinc oxide (ZnO) film as the cathode interlayer for methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell. Scanning electron microscopy and X-ray diffraction analysis demonstrate that the sputtered ZnO films consist of c-axis aligned nanorods. The solar cells based on this ZnO cathode interlayer showed high short circuit current and power conversion efficiency. Besides, the performance of the device is insensitive to the thickness of ZnO cathode interlayer. Considering the high reliability and maturity of sputtering technique both in lab and industry, we believe that the sputtered ZnO films are promising cathode interlayers for perovskite solar cells, especially in large-scale production.

  16. Improved efficiency in OLEDs with a thin Alq3 interlayer

    International Nuclear Information System (INIS)

    Lian Jiarong; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Zhou Yunfei; Zhou Xiang

    2007-01-01

    We demonstrate an improved efficiency in OLEDs with a thin Alq 3 interlayer, which is inserted into the hole-transport layer for adjusting the hole-injection and transport, and improving the hole-electron balance. The thin Alq 3 interlayer can effectively influence the electrical performance and electroluminescence (EL) efficiency of the devices. The devices with an optimum Alq 3 interlayer exhibit a maximum EL efficiency of around 3.3 cd/A, which is improved by a factor of two over the conventional devices (1.6 cd/A) without the interlayer

  17. Effect of cuprous halide interlayers on the device performance of ZnPc/C{sub 60} organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu, E-mail: sgyim@kookmin.ac.kr

    2014-10-15

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C{sub 60}-based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C{sub 60}-based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer.

  18. Effect of cuprous halide interlayers on the device performance of ZnPc/C60 organic solar cells

    International Nuclear Information System (INIS)

    Lee, Jinho; Park, Dasom; Heo, Ilsu; Yim, Sanggyu

    2014-01-01

    Highlights: • Effect of CuX interlayers on subsequently deposited films and devices was studied. • CuI is the most effective for the performance of ZnPc/C 60 -based solar cells. • Results were related to the molecular geometry of ZnPc and HOMO level of interlayers. - Abstract: The effect of various cuprous halide (CuX) interlayers introduced between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer and zinc phthalocyanine (ZnPc) layer on the physical properties of the ZnPc thin films and device performances of ZnPc/C 60 -based small-molecule organic solar cells was studied. Strong substrate–molecule interaction between the CuX and ZnPc partly converted surface-perpendicular stacking geometry of ZnPc molecules into surface-parallel one. This flat-lying geometry led to an enhancement in electronic absorption and charge transport within the ZnPc films. As a result, the overall power conversion efficiency of the cell with CuI interlayer increased by ∼37%. In the case of the cells with CuBr and CuCl interlayer, however, the enhancement in device performances was limited because of the reduced conversion of the molecular geometry and increased energy barrier for hole extraction due to the low highest occupied molecular orbital level of the interlayer

  19. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    Science.gov (United States)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  20. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Dandan, E-mail: dandan.qu@partner.kit.edu [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Zhou, Zhangjian, E-mail: zhouzhangjianustb@163.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Yum, Youngjin [School of Mechanical Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Aktaa, Jarir [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    A rapidly solidified foil-type Ti–Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu–Cr–Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu–Cr–Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  1. Interlayer quality dependent graphene spin valve

    International Nuclear Information System (INIS)

    Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Iqbal, Muhammad Waqas; Murtaza, Ghulam; Ramay, Shahid Mahmood

    2017-01-01

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  2. Interlayer quality dependent graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, 23640 Pakistan (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul, 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Ramay, Shahid Mahmood [Physics & Astronomy Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2017-01-15

    It is possible to utilize the new class of materials for emerging two-dimensional (2D) spintronic applications. Here, the role of defects in the graphene interlayer and its influence on the spin valve signal is reported. The emergence of D peak in Raman spectrum reveals defects in the graphene layer. The linear I-V curve for defective and non-defective graphene samples indicate the ohmic nature of NiFe and graphene contact. A non-uniform magnetoresistive effect with a bump is persistently observed for defective graphene device at various temperatures, while a smooth and symmetric signal is detected for non-defective graphene spin valve. Parallel and antiparallel alignments of magnetization of magnetic materials shows low and high resistance states, respectively. The magnetoresistance (MR) ratio for defective graphene NiFe/graphene/NiFe spin valve is measured to be ~0.16% at 300 K which progresses to ~0.39% for non-defective graphene device at the same temperature. Similarly at 4.2 K the MR ratios are reported to be ~0.41% and ~0.78% for defective and non-defective graphene devices, respectively. Our investigation provides an evidence for relatively better response of the spin valve signal with high quality graphene interlayer.

  3. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  4. Role of interlayer coupling in ultra thin MoS2

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2012-01-01

    The effects of interlayer coupling on the vibrational and electronic properties of ultra thin MoS 2 were studied by ab initio calculations. For smaller slab thickness, the interlayer distance is significantly elongated because of reduced interlayer

  5. Uranium diphosphonates templated by interlayer organic amines

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Anna-Gay D., E-mail: nelsoa@umich.edu [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States); Alekseev, Evgeny V. [Institute of Energy and Climate Research (IEK-6), Forschungszentrum Juelich Wilhelm-Johnen-Strasse, 52428 Juelich (Germany); Institut fuer Kristallographie, RWTH Aachen University, D-52066 Aachen (Germany); Albrecht-Schmitt, Thomas E. [Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556 (United States); Ewing, Rodney C. [Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005 (United States)

    2013-02-15

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 Degree-Sign C results in the crystallization of a series of layered uranium diphosphonate compounds, [C{sub 10}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Ubip2), [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} (UDAB), [C{sub 2}H{sub 10}N{sub 2}]{sub 2}{l_brace}(UO{sub 2}){sub 2}(H{sub 2}O){sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sub 2}{center_dot}0.5H{sub 2}O{r_brace} (Uethyl), and [C{sub 12}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Uphen). The crystal structures of the compounds are based on UO{sub 7} units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also

  6. Oscillatory interlayer magnetic coupling and induced magnetism in ...

    Indian Academy of Sciences (India)

    Unknown

    lating interlayer magnetic coupling (IMC) (Grunberg et al 1986; Parkin et al 1990; Unguris et al 1991) and giant magnetoresistance (GMR). Such oscillations in interlayer magnetic coupling and the saturation magnetoresistance were reported by Parkin et al (1990) with a period 15–. 20 Å in Fe/Cr, Co/Cr, Co/Ru multilayers.

  7. Materiality in a Practice-Based Approach

    Science.gov (United States)

    Svabo, Connie

    2009-01-01

    Purpose: The paper aims to provide an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Design/methodology/approach: The overview is theoretically generated and is based on the anthology Knowing in Organizations: A Practice-based Approach edited by Nicolini, Gherardi and Yanow. The…

  8. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  9. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  10. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  11. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  12. A preliminary investigation on microstructure and mechanical properties of dissimilar Al to Cu friction stir welds prepared using silver interlayer

    Directory of Open Access Journals (Sweden)

    Shailesh N. Pandya

    2018-04-01

    Full Text Available Due to its solid-state nature, friction stir welding (FSW process can be considered a better alternative for dissimilar welding metals. However, like fusion welding techniques, in friction stir welding growth of thick layers of brittle intermetallics - Cu9Al4 and CuAl2 is a significant issue. One solution to this problem is the use of the suitable interlayer material. Use of interlayer material modifies the joint microstructure with the replacement of thick, brittle intermetallics by more ductile intermetallics in a thin layer or particle form. The present study is a preliminary investigation about joining of AA6082-O to pure copper joints with and without silver (Ag wire interlayer. Friction stir welded joints were characterized regarding optical microscopy, X-Ray Diffraction (XRD analysis, microhardness measurement, tensile testing and Scanning Electron Microscopy (SEM based fractography. The Al-Cu weld prepared using silver interlayer was stronger than without it. The higher strength of the weld with silver interlayer is attributed to the formation of a composite type of structure with intercalation of more ductile Ag2Al intermetallics along with dispersion of Ag particles in stir zone.

  13. Interlayer magnetoresistance in multilayer Dirac electron systems: motion and merging of Dirac cones

    OpenAIRE

    Assili, Mohamed; Haddad, Sonia

    2013-01-01

    We theoretically study the effect of the motion and the merging of Dirac cone on the interlayer magnetoresistance in multilayer graphene like systems. This merging, which could be induced by a uniaxial strain, gives rise in monolayer Dirac electron system to a topological transition from a semi-metallic phase to an insulating phase where Dirac points disappear. Based on a universal Hamiltonian proposed to describe the motion and the merging of Dirac points in two dimensional Dirac electron cr...

  14. Understanding images using knowledge based approach

    International Nuclear Information System (INIS)

    Tascini, G.

    1985-01-01

    This paper presents an approach to image understanding focusing on low level image processing and proposes a rule-based approach as part of larger knowledge-based system. The general system has a yerarchical structure that comprises several knowledge-based layers. The main idea is to confine at the lower level the domain independent knowledge and to reserve the higher levels for the domain dependent knowledge, that is for the interpretation

  15. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  16. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  17. Scalable Video Coding with Interlayer Signal Decorrelation Techniques

    Directory of Open Access Journals (Sweden)

    Yang Wenxian

    2007-01-01

    Full Text Available Scalability is one of the essential requirements in the compression of visual data for present-day multimedia communications and storage. The basic building block for providing the spatial scalability in the scalable video coding (SVC standard is the well-known Laplacian pyramid (LP. An LP achieves the multiscale representation of the video as a base-layer signal at lower resolution together with several enhancement-layer signals at successive higher resolutions. In this paper, we propose to improve the coding performance of the enhancement layers through efficient interlayer decorrelation techniques. We first show that, with nonbiorthogonal upsampling and downsampling filters, the base layer and the enhancement layers are correlated. We investigate two structures to reduce this correlation. The first structure updates the base-layer signal by subtracting from it the low-frequency component of the enhancement layer signal. The second structure modifies the prediction in order that the low-frequency component in the new enhancement layer is diminished. The second structure is integrated in the JSVM 4.0 codec with suitable modifications in the prediction modes. Experimental results with some standard test sequences demonstrate coding gains up to 1 dB for I pictures and up to 0.7 dB for both I and P pictures.

  18. Prediction on the Enhancement of the Impact Sound Insulation to a Floating Floor with Resilient Interlayer

    Science.gov (United States)

    Huang, Xianfeng; Meng, Yao; Huang, Riming

    2017-10-01

    This paper describes a theoretical method for predicting the improvement of the impact sound insulation to a floating floor with the resilient interlayer. Statistical energy analysis (SEA) model, which is skilful in calculating the floor impact sound, is set up for calculating the reduction in impact sound pressure level in downstairs room. The sound transmission paths which include direct path and flanking paths are analyzed to find the dominant one; the factors that affect impact sound reduction for a floating floor are explored. Then, the impact sound level in downstairs room is determined and comparisons between predicted and measured data are conducted. It is indicated that for the impact sound transmission across a floating floor, the flanking path impact sound level contribute tiny influence on overall sound level in downstairs room, and a floating floor with low stiffness interlayer exhibits favorable sound insulation on direct path. The SEA approach applies to the floating floors with resilient interlayers, which are experimentally verified, provides a guidance in sound insulation design.

  19. Remote sensing technology prospecting methods of interlayer oxidation zone type sandstone uranium deposit in Yili basin

    International Nuclear Information System (INIS)

    Huang Xianfang; Huang Shutao; Pan Wei; Feng Jie; Liu Dechang; Zhang Jingbo; Xuan Yanxiu; Rui Benshan

    1998-12-01

    Taking Yili Basin as an example, remote sensing technology and method of interlayer oxidation zone type sandstone uranium deposit have systematically been summarized. Firstly, principle, methods and procedures of the second development of scientific experimental satellite photograph have been elaborated in detail. Three dimensional stereo simulation, display, and multi-parameters extraction have been recommended. Secondarily, the research is focused on prospective section image features in different type images and their geological implications and on establishing recognition keys of promising areas. Finally, based on above research results, three graded predictions, i.e. regional prospect, promising sections and favourable location in the deposit have been made step by step and reconnaissance and prospecting range are gradually reduced. The practice has indicated that breakthrough progress has been made in application to prospect prognosis of interlayer oxidation zone type sandstone uranium deposit and good verified results have been obtained

  20. Study on metallogenetic prospect of interlayer oxidation zone sandstone type uranium deposit in Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    As Compared with orogenic zone basin, which the interlayer oxidation zone sandstone type uranium deposits are found, the Shanganning basin a continental platform type basin is distinct either in the geodynamic background and the post-basin hydrogeological evolution or in the appearance of the metallogenetic dynamics-orogenesis. The prediction criteria summarized for interlayer oxidation zone type U-deposits in Middle Asia therefore can not be completely applied in such a basin. Based on analysis of the typical regional geological setting, the hydrogeology of the Meso-Cenozoic cover is studied in detail. Three hydrogeological cycles have been divided, and prospects of uranium deposits have been clarified and the most promising target have been proposed

  1. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Adele C., E-mail: Adele.Tamboli@nrel.gov; Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States); Perl, Emmett E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States)

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  2. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    Science.gov (United States)

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  3. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  4. Effect of interlayer composition diffusion bonding behavior of an ods nickel alloy

    International Nuclear Information System (INIS)

    Saha, R.K.; Khan, T.I.

    2005-01-01

    Oxide dispersion strengthened superalloys have been developed with excellent mechanical properties for use at elevated temperatures. However, in order to achieve commercial application an appropriate joining process is necessary which minimizes the disruption to the alloy microstructure. In transient liquid phase (TLP) diffusion Hardness, and bonding technique an interlayer containing melting point depressants is placed between the bonding surfaces and at the bonding temperature this interlayer melts and solidifies isothermally. In this study, TLP bonding technique , was used to join a Ni-based ODS alloy, MA 758, using a number of different nickel based interlayer compositions, namely, Ni-Cr-Fe-Si-B-Co, Ni-Cr-B, Ni-P and Ni-Cr-Si-B. These foils are ductile and melt quickly within a narrow temperature range producing strong, non-porous joints. The results showed that the hold time at the bonding temperature affected the rate of isothermal solidification during the TLP bonding process. Furthermore, the use of a post-bond heat treatment helped to homogenize the joint region. (author)

  5. Service creation: a model-based approach

    NARCIS (Netherlands)

    Quartel, Dick; van Sinderen, Marten J.; Ferreira Pires, Luis

    1999-01-01

    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed

  6. Realization of φ Josephson junctions with a ferromagnetic interlayer

    International Nuclear Information System (INIS)

    Sickinger, Hanna Sabine

    2014-01-01

    In this thesis, φ Josephson junctions based on 0-π junctions with a ferromagnetic interlayer are studied. Josephson junctions (JJs) with a ferromagnetic interlayer can have a phase drop of 0 or π in the ground state, depending on the thickness of the ferromagnet (0 JJs or π JJs). Also, 0-π JJs can be realized, where one segment of the junction (if taken separately) is in the 0 state, while the other segment is in the π state. One can use these π Josephson junctions as a device in superconducting circuits, where it provides a constant phase shift, i.e., it acts as a π phase battery. A generalization of a π JJ is a φ JJ, which has the phase ±φ in the ground state. The value of φ can be chosen by design and tuned in the interval 0<φ<π. The φ JJs used in this experiment were fabricated as 0-π JJs with asymmetric current densities in the 0 and π facets. This system can be described by an effective current-phase relation which is tunable by an externally applied magnetic field. The first experimental evidence of such a φ JJ is presented in this thesis. In particular it is demonstrated that (a) a φ JJ has two ground states +φ and -φ, (b) the unknown state can be detected (read out) by measuring the critical current I c (I c+ or I c- ), and (c) a particular state can be prepared by applying a magnetic field or a special bias sweep sequence. These properties of a φ JJ can be utilized, for example, as a memory cell (classical bit). Furthermore, a φ Josephson junction can be used as a deterministic ratchet. This is due to the tunable asymmetry of the potential that can be changed by the external magnetic field. Rectification curves are observed for the overdamped and the underdamped case. Moreover, experimental data of the retrapping process of the phase of a φ Josephson junction depending on the temperature is presented.

  7. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  8. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    Science.gov (United States)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-01

    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  9. A Knowledge Based Approach to VLSI CAD

    Science.gov (United States)

    1983-09-01

    Avail-and/or Dist ISpecial L| OI. SEICURITY CLASIIrCATION OP THIS IPA.lErllm S Daene." A KNOwLEDE BASED APPROACH TO VLSI CAD’ Louis L Steinberg and...major issues lies in building up and managing the knowledge base of oesign expertise. We expect that, as with many recent expert systems, in order to

  10. Images of interlayer Josephson vortices in single-layer cuprates

    International Nuclear Information System (INIS)

    Moler, K. A.; Kirtley, J. R.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Williams, J. M.; Schlueter, J. A.; Hinks, D.; Villard, G.; Maignan, A.; Nohara, M.; Takagi, H.

    2000-01-01

    The interlayer penetration depth in layered superconductors may be determined from scanning Superconducting QUantum Interference Device (SQUID) microscope images of interlayer Josephson vortices. The authors compare their findings at 4 K for single crystals of the organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 and three near-optimally doped cuprate superconductors: La 2-x Sr x CuO 4 , (Hg, Cu)Ba 2 CuO 4+δ , and Tl 2 Ba 2 CuO 6+δ

  11. On the Stress Transfer of Nanoscale Interlayer with Surface Effects

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2018-01-01

    Full Text Available An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.

  12. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  13. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer

    Institute of Scientific and Technical Information of China (English)

    Haipeng Li; Liancheng Sun; Yongguang Zhang; Taizhe Tan; Gongkai Wang; Zhumabay Bakenov

    2017-01-01

    The high-energy lithium/sulfur (Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 mAh/g.However,the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation.In this contribution,a three-dimensional (3D) reduced graphene oxide/activated carbon (RGO/AC) film,synthesized by a simple hydrothermal method and convenient mechanical pressing,is sandwiched between the separator and the sulfur-based cathode,acting as a functional interlayer to capture and trap polysulfide species.Consequently,the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 mAh/g and a reversible capacity of 655 mAh/g even after 100 cycles.The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer.Therefore,the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.

  14. Methodological approaches based on business rules

    Directory of Open Access Journals (Sweden)

    Anca Ioana ANDREESCU

    2008-01-01

    Full Text Available Business rules and business processes are essential artifacts in defining the requirements of a software system. Business processes capture business behavior, while rules connect processes and thus control processes and business behavior. Traditionally, rules are scattered inside application code. This approach makes it very difficult to change rules and shorten the life cycle of the software system. Because rules change more quickly than the application itself, it is desirable to externalize the rules and move them outside the application. This paper analyzes and evaluates three well-known business rules approaches. It also outlines some critical factors that have to be taken into account in the decision to introduce business rules facilities in a software system. Based on the concept of explicit manipulation of business rules in a software system, the need for a general approach based on business rules is discussed.

  15. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  16. Efficient rate control scheme using modified inter-layer dependency ...

    Indian Academy of Sciences (India)

    The IRC from the prior art is modified to achieve better rate control per layer by recursive updates for mean absolute difference values of eachbasic unit. Proposed modified inter-layer dependency shows improvement in the PSNR for enhancement layers while the updated IRC enforces better IRC for all the layers.

  17. Interlayer magnetotransport study in electron-doped Sm2 ...

    Indian Academy of Sciences (India)

    Vol. 66, No. 1. — journal of. January 2006 physics pp. 305–312. Interlayer magnetotransport study ... Hc2. More recently, because of the layered structure which forms intrinsic tun- ... get plate-like single crystals with surfaces flux-free and shiny. ... on the 'natural' surface of the annealed crystals, with two contacts on top of the.

  18. Analysis on groundwater evolution and interlayer oxidation zone position at the southern margin of Yilin basin

    International Nuclear Information System (INIS)

    Zhang Guanghui

    2007-01-01

    This paper discusses the development and evolution history of groundwater and its reworking to the interlayer oxidation zone, hydrogeochemical zonation of interlayer oxidation zone, mechanism of water-rock interaction and transportation pattern of uranium in the water in Yili Basin. It is suggested that groundwater is one of the important factors to control the development of interlayer oxidation zone and uranium mineralization. (authors)

  19. Ecosystem based approaches to climate adaptation

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Jensen, Anne; Termansen, Mette

    This report analyses the prospects and barriers of applying ecosystem based approaches systematically to climate adaptation in urban areas, taking the case of green roofs in Copenhagen Municipality. It looks at planning aspects of green roofs in Copenhagen as well as citizen views and preferences...... regarding green roofs using policy document analysis, interviews with city planners and deliberative valuation methods....

  20. A practice based approach to forest governance

    NARCIS (Netherlands)

    Arts, Bas; Behagel, Jelle; Turnhout, Esther; de Koning, Jessica; van Bommel, Séverine

    2014-01-01

    ‘Forest governance’ refers to new modes of regulation in the forest sector, such as decentralized, community-based and market-oriented policy instruments and management approaches. Its main theoretical basis consists of two mainstream models: rational choice and neo-institutionalism. Since these

  1. Josephson junctions with ferromagnetic alloy interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Himmel, Nico

    2015-07-23

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO{sub x} vertical stroke Nb vertical stroke Ni{sub 60}Cu{sub 40} vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially

  2. Josephson junctions with ferromagnetic alloy interlayer

    International Nuclear Information System (INIS)

    Himmel, Nico

    2015-01-01

    Josephson junctions are used as active devices in superconducting electronics and quantum information technology. Outstanding properties are their distinct non-linear electrical characteristics and a usually sinusoidal relation between the current and the superconducting phase difference across the junction. In general the insertion of ferromagnetic material in the barrier of a Josephson junction is associated with a suppression of superconducting correlations. But also new phenomena can arise which may allow new circuit layouts and enhance the performance of applications. This thesis presents a systematic investigation for two concepts to fabricate Josephson junctions with a rather uncommon negative critical current. Such devices exhibit an intrinsic phase slip of π between the electrodes, so they are also known as π junctions. Both studies go well beyond existing experiments and in one system a π junction is shown for the first time. All the thin film junctions are based on superconducting Nb electrodes. In a first approach, barriers made from Si and Fe were investigated with respect to the realisation of π junctions by spin-flip processes. The distribution of Fe in the Si matrix was varied from pure layers to disperse compounds. The systematic fabrication of alloy barriers was facilitated by the development of a novel timing-based combinatorial sputtering technique for planetary deposition systems. An orthogonal gradient approach allowed to create binary layer libraries with independent variations of thickness and composition. Second, Nb vertical stroke AlO x vertical stroke Nb vertical stroke Ni 60 Cu 40 vertical stroke Nb (SIsFS) double barrier junctions were experimentally studied for the occurrence of proximity effect induced order parameter oscillations. Detailed dependencies of the critical current density on the thickness of s-layer and F-layer were acquired and show a remarkable agreement to existing theoretical predictions. Especially a variation of

  3. Advanced Approach of Multiagent Based Buoy Communication.

    Science.gov (United States)

    Gricius, Gediminas; Drungilas, Darius; Andziulis, Arunas; Dzemydiene, Dale; Voznak, Miroslav; Kurmis, Mindaugas; Jakovlev, Sergej

    2015-01-01

    Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information.

  4. Advanced Approach of Multiagent Based Buoy Communication

    Directory of Open Access Journals (Sweden)

    Gediminas Gricius

    2015-01-01

    Full Text Available Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys, which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information.

  5. Network-based Approaches in Pharmacology.

    Science.gov (United States)

    Boezio, Baptiste; Audouze, Karine; Ducrot, Pierre; Taboureau, Olivier

    2017-10-01

    In drug discovery, network-based approaches are expected to spotlight our understanding of drug action across multiple layers of information. On one hand, network pharmacology considers the drug response in the context of a cellular or phenotypic network. On the other hand, a chemical-based network is a promising alternative for characterizing the chemical space. Both can provide complementary support for the development of rational drug design and better knowledge of the mechanisms underlying the multiple actions of drugs. Recent progress in both concepts is discussed here. In addition, a network-based approach using drug-target-therapy data is introduced as an example. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Managing projects a team-based approach

    CERN Document Server

    Brown, Karen A

    2010-01-01

    Students today are likely to be assigned to project teams or to be project managers almost immediately in their first job. Managing Projects: A Team-Based Approach was written for a wide range of stakeholders, including project managers, project team members, support personnel, functional mangers who provide resources for projects, project customers (and customer representatives), project sponsors, project subcontractors, and anyone who plays a role in the project delivery process. The need for project management is on the rise as product life cycles compress, demand for IT systems increases, and business takes on an increasingly global character. This book adds to the project management knowledge base in a way that fills an unmet need—it shows how teams can apply many of the standard project management tools, as well as several tools that are relatively new to the field. Managing Projects: A Team-Based Approach offers the academic rigor found in most textbooks along with the practical attributes often foun...

  7. Safer childbirth: a rights-based approach.

    Science.gov (United States)

    Boama, Vincent; Arulkumaran, Sabaratnam

    2009-08-01

    The Millennium Development Goals (MDGs) set very high targets for women's reproductive health through reductions in maternal and infant mortality, among other things. Reductions in maternal mortality and morbidity can be achieved through various different approaches, such as the confidential review of maternal deaths, use of evidence-based treatments and interventions, using a health systems approach, use of information technology, global and regional partnerships, and making pregnancy safer through initiatives that increase the focus on human rights. A combination of these and other approaches can have a synergistic impact on reductions in maternal mortality. This paper highlights some of the current global efforts on safer pregnancy with a focus on reproductive rights. We encourage readers to do more in every corner of the world to advocate for women's reproductive rights and, in this way, we may achieve the MDGs by 2015.

  8. Role of interlayer coupling in ultra thin MoS2

    KAUST Repository

    Cheng, Yingchun

    2012-01-01

    The effects of interlayer coupling on the vibrational and electronic properties of ultra thin MoS 2 were studied by ab initio calculations. For smaller slab thickness, the interlayer distance is significantly elongated because of reduced interlayer coupling. This explains the anomalous thickness dependence of the lattice vibrations observed by Lee et al. (ACS Nano, 2010, 4, 2695). The absence of interlayer coupling in mono-layer MoS 2 induces a transition from direct to indirect band gap behaviour. Our results demonstrate a strong interplay between the intralayer chemical bonding and the interlayer van-der-Waals interaction. This journal is © 2012 The Royal Society of Chemistry.

  9. Materiality in a practice-based approach

    DEFF Research Database (Denmark)

    Svabo, Connie

    2009-01-01

    The paper provides an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Common terms for materiality are 'artifact' and 'object'. The interaction between social and material realities is grasped as several processes: object......-oriented activity, symbolization, embodiment, performance, alignment and mediation. Material artifacts both stabilize and destabilize organizational action. They may ensure coordination, communication, and control, but they may also create disturbance and conflict....

  10. Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Matsushita, Shotaro; Hyodo, Junji; Okuyama, Yuji; Matsuka, Maki; Ishihara, Tatsumi; Matsumoto, Hiroshige

    2012-01-01

    Highlights: ► Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer conducted a large amount of protons. ► YbDC can work as cathode interlayer for proton conducting electrolyte cells. ► Cathode overpotential of the YbDC interlayer cells showed a plateau at about 400 mV. - Abstract: Introduction of doped ceria interlayer to cathode/electrolyte interface of the electrochemical cell with proton conducting electrolyte was investigated using thin Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer of about 500 nm thickness. YbDC interlayer conducted a large amount of protons as much as 170 mA cm −2 . It was also found that cathode overpotential of the YbDC interlayer cells consistently showed a plateau at about 400 mV, at which that of the non-interlayer cells did not show, suggesting a possibility that cathode reaction is changed by introducing the doped ceria interlayer. This result also indicates that the interlayer showed high activity for cathode reaction when enough cathodic bias was applied. Especially, the interlayer showed high activity for the improvement of poor cathode reaction between SrZr 0.9 Y 0.1 O 3−α (SZY-91) electrolyte and platinum cathode.

  11. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C

    2012-01-01

    demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy......The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...... energies was observed....

  12. Fragment-based approaches to TB drugs.

    Science.gov (United States)

    Marchetti, Chiara; Chan, Daniel S H; Coyne, Anthony G; Abell, Chris

    2018-02-01

    Tuberculosis is an infectious disease associated with significant mortality and morbidity worldwide, particularly in developing countries. The rise of antibiotic resistance in Mycobacterium tuberculosis (Mtb) urgently demands the development of new drug leads to tackle resistant strains. Fragment-based methods have recently emerged at the forefront of pharmaceutical development as a means to generate more effective lead structures, via the identification of fragment molecules that form weak but high quality interactions with the target biomolecule and subsequent fragment optimization. This review highlights a number of novel inhibitors of Mtb targets that have been developed through fragment-based approaches in recent years.

  13. Asymmetric diffusion of Zr, Sc and Ce, Gd at the interface between zirconia electrolyte and ceria interlayer for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo, E-mail: Liangbo@gdut.edu.cn; Tao, Tao; Zhang, Silong; Huang, Yongan; Cai, Zhihong; Lu, Shenguo, E-mail: sglu@gdut.edu.cn

    2016-09-15

    The microstructures of cathode interlayer and elemental diffusion behaviors across the interfacial region (electrolyte/interlayer) have been characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and scanning TEM combined with energy dispersive X-ray spectroscopy (STEM-EDS). A densified film about 100 nm is locally formed at the interface of electrolyte/interlayer as the interlayer using dip-coating method and being sintered at 1200 °C. It is observed that the compositional distribution curves across the interface are asymmetric. More amount of the Zr, Sc component is detected in gadolinium-doped ceria (GDC) than that of the Ce, Gd component is detected in scandia-stabilized-zirconia (SSZ). XRD and EDS results show that the densified layer might consist of (Zr, Ce)O{sub 2}-based solid solution. The high open circuit voltage of the cell is related to the dense structure of electrolyte, while the increased activation energy in overpotential resistance is attributed to the porous structure of interlayer as well as the high resistance phases locally formed at its interface. - Highlights: • The (Ce−Zr)O{sub 2} based solid solution was locally formed at 1200 °C. • More Zr, Sc elements were detected in GDC than Ce, Gd elements in SSZ. • Zirconia nanodomain was embedded in GDC beside grain boundary. • High OCVs were achieved due to the highly dense electrolyte layer.

  14. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  15. Heutagogy: An alternative practice based learning approach.

    Science.gov (United States)

    Bhoyrub, John; Hurley, John; Neilson, Gavin R; Ramsay, Mike; Smith, Margaret

    2010-11-01

    Education has explored and utilised multiple approaches in attempts to enhance the learning and teaching opportunities available to adult learners. Traditional pedagogy has been both directly and indirectly affected by andragogy and transformational learning, consequently widening our understandings and approaches toward view teaching and learning. Within the context of nurse education, a major challenge has been to effectively apply these educational approaches to the complex, unpredictable and challenging environment of practice based learning. While not offered as a panacea to such challenges, heutagogy is offered in this discussion paper as an emerging and potentially highly congruent educational framework to place around practice based learning. Being an emergent theory its known conceptual underpinnings and possible applications to nurse education need to be explored and theoretically applied. Through placing the adult learner at the foreground of grasping learning opportunities as they unpredictability emerge from a sometimes chaotic environment, heutagogy can be argued as offering the potential to minimise many of the well published difficulties of coordinating practice with faculty teaching and learning. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures.

    Science.gov (United States)

    Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel

    2017-06-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

  17. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  18. Interlayer vortices and edge dislocations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Kuklov, A.B.; Krakovsky, A.; Birman, J.L.

    1995-01-01

    The interaction of an edge dislocation made of half the superconducting plane with a magnetic interlayer vortex is considered within the framework of the Lawrence-Doniach model with negative as well as positive Josephson interlayer coupling. In the first case the binding energy of the vortex and the dislocation has been calculated by employing a variational procedure. The current distribution around the bound vortex turns out to be asymmetric. In the second case the dislocation carries a spontaneous magnetic half vortex, whose binding energy with the dislocation turns out to be infinite. The half-vortex energy has been calculated by the same variational procedure. Implications of the possible presence of such half vortices for the properties of high-temperature sueprconductors are discussed. We suggest employing artificially made superconductor-ferromagnet superlattices with the half plane removed to observe fractional vortices

  19. Control of interlayer physics in 2H transition metal dichalcogenides

    Science.gov (United States)

    Wang, Kuang-Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C.; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann

    2017-12-01

    It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers—depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

  20. Approach to performance based regulation development

    International Nuclear Information System (INIS)

    Spogen, L.R.; Cleland, L.L.

    1977-06-01

    An approach to the development of performance based regulations (PBR's) is described. Initially, a framework is constructed that consists of a function hierarchy and associated measures. The function at the top of the hierarchy is described in terms of societal objectives. Decomposition of this function into subordinate functions and their subsequent decompositions yield the function hierarchy. ''Bottom'' functions describe the roles of system components. When measures are identified for the performance of each function and means of aggregating performances to higher levels are established, the framework may be employed for developing PBR's. Consideration of system flexibility and performance uncertainty guide in determining the hierarchical level at which regulations are formulated. Ease of testing compliance is also a factor. To show the viability of the approach, the framework developed by Lawrence Livermore Laboratory for the Nuclear Regulatory Commission for evaluation of material control systems at fixed facilities is presented

  1. Modeling thrombin generation: plasma composition based approach.

    Science.gov (United States)

    Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas

    2014-01-01

    Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.

  2. Highly efficient perovskite solar cells with crosslinked PCBM interlayers

    KAUST Repository

    Qiu, W.

    2017-01-09

    Commercially available phenyl-C-butyric acid methyl ester (PCBM) is crosslinked with 1,6-diazidohexane (DAZH), resulting in films resistant to common solvents used in perovskite solar cell processing. By using crosslinked PCBM as an interlayer and (HC(NH))(CHNH)PbIBr as the active layer, we achieve small area devices and modules with a maximum steady-state power conversion efficiency of 18.1% and 14.9%, respectively.

  3. Dynamics of beam pair coupled by visco-elastic interlayer

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Hračov, Stanislav

    2015-01-01

    Roč. 9, č. 2 (2015), s. 127-140 ISSN 1802-680X R&D Projects: GA ČR(CZ) GP13-41574P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : double-beam dynamics * visco-elastic interlayer * kinematic damping Subject RIV: JM - Building Engineering http://www.kme.zcu.cz/acm/acm/article/view/292

  4. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.

    Science.gov (United States)

    An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B

    2012-12-01

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

  5. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  6. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  7. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  8. Sound Propagation An impedance Based Approach

    CERN Document Server

    Kim, Yang-Hann

    2010-01-01

    In Sound Propagation: An Impedance Based Approach , Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are

  9. Effect of quasiparticles on interlayer transport in highly anisotropic layered superconductors

    International Nuclear Information System (INIS)

    Artemenko, S.N.; Bulaevskii, L.N.; Maley, M.P.; Vinokur, V.M.

    1999-01-01

    We have performed a microscopic calculation of the dielectric response function in highly anisotropic layered superconductors and used the developed approach to obtain the frequency-dependent London penetration length and conductivity in the case of d-wave pairing for currents perpendicular to the layers. We consider a BCS model with coherent interlayer tunneling of electrons and take into account contributions from both superconducting electrons and quasiparticles to the dielectric response. We show that quasiparticles change the low-temperature behavior of the penetration length in the intermediate frequency range where the frequency is smaller than the superconducting order parameter but larger than the inverse quasiparticle scattering time. The obtained results are used to describe the low-temperature behavior of the Josephson plasma resonance, in particular the temperature dependence of the resonance frequency and the resonance linewidth in zero external magnetic field. We compare our results with the available experimental data for Tl 2 Ba 2 CuO 6 and Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) and show that results of a BCS model with coherent interlayer tunneling for the dc c-axis resistivity in the superconducting state are inconsistent with experimental data for underdoped and optimally doped Bi-2212 crystals. copyright 1999 The American Physical Society

  10. Rheology, thermography, and interlayer welding in polymer extrusion 3D printing

    Science.gov (United States)

    Seppala, Jonathan; Davis, Chelsea; Migler, Kalman

    In polymer extrusion 3D printing, thermoplastic filament is extruded though a rastering nozzle onto previously deposited layers. The resulting strength of the 3D produced part is limited by the strength of the weld between each layer. During this thermal processing, the temperature of the interface between layers dictates the chain mobility, interdiffusion, entanglement, and thus weld strength. In quiescent welding experiments, it has been found that the weld strength in symmetric linear polymer systems scales with t 0.25, where t is the isothermal annealing time, before plateauing to the bulk strength. However, 3D printing is highly non isothermal and we calculated an equivalent isothermal annealing time using a combination of in situ infrared thermography and horizontal shift factors from offline rheological measurements of the neat polymer. Interlayer adhesion energy was measured directly by mode III fracture using a simplified geometry limiting the measurement to a single interlayer. Since the processing conditions are known a prioi this approach provides the data needed to estimate the final build strength at time of design. The resulting agreement between annealing time and adhesion energy for a range of printing conditions and thermoplastics are discussed.

  11. Creative teaching an evidence-based approach

    CERN Document Server

    Sale, Dennis

    2015-01-01

    This book contains an evidence-based pedagogic guide to enable any motivated teaching/training professional to be able to teach effectively and creatively. It firstly summarises the extensive research field on human psychological functioning relating to learning and how this can be fully utilised in the design and facilitation of quality learning experiences. It then demonstrates what creativity actually 'looks like' in terms of teaching practices, modelling the underpinning processes of creative learning design and how to apply these in lesson planning. The book, having established an evidence-based and pedagogically driven approach to creative learning design, extensively focuses on key challenges facing teaching professionals today. These include utilising information technologies in blended learning formats, differentiating instruction, and developing self-directed learners who can think well. The main purpose of the book is to demystify what it means to teach creatively, explicitly demonstrating the pr...

  12. Se interlayer in CIGS absorption layer for solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kyu; Sim, Jae-Kwan [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Kissinger, N.J. Suthan [Department of General Studies, Physics Group, Jubail University College, Royal Commission for Jubail, Jubail 10074 (Saudi Arabia); Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development, Chonbuk National University, Deokjin-Dong 664-14, Jeonju 561-756 (Korea, Republic of)

    2015-06-05

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V{sub oc}. Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance.

  13. Se interlayer in CIGS absorption layer for solar cell devices

    International Nuclear Information System (INIS)

    Lee, Seung-Kyu; Sim, Jae-Kwan; Kissinger, N.J. Suthan; Song, Il-Seok; Kim, Jin-Soo; Baek, Byung-Joon; Lee, Cheul-Ro

    2015-01-01

    Highlights: • Se interlayer is deposited between the CuGa and CuIn/In/Mo/STS stacked layer. • Both CIG precursor layers were selenized at 500 °C for 1 h. • SIMS depth profile shows that Ga distribution is uniform by Se interlayer. • The efficiency was improved for the CIGS solar cell by Se interlayer. - Abstract: A CIGS absorber layer with high gallium contents in the space-charge region can reduce the carrier recombination and improve the open circuit voltage V oc . Therefore, controlling Ga grading on top of CIGS thin film solar cells is the main objective of this experiment. To reduce Selenium (Se) vacancy, it is important that the diffusion of Ga elements into Se vacancy between Mo back contact and CIGS absorption layer would be controlled. In order to reduce Se vacancy and confirm Ga inter-diffusion, two CIGS solar cells were fabricated by converting CIG precursor with and without Se interlayer. The copper-indium metallic precursors were fabricated corresponding to the sequence CuIn/In/Mo/STS on stainless steel (STS) substrates by sequential direct current magnetron sputtering while Se layer was evaporated by rapid thermal annealing (RTA) system to obtain a Se/CuIn/In/Mo/STS stack. CuGa precursor layer was also fabricated on the Se/CuIn/In/Mo/STS stack. Finally, both CuGa/Se/CuIn/In/Mo/STS and CuGa/CuIn/In/Mo/STS stacks were selenized at 500 °C for 1 h. It was clearly observed from the secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD) that there was a change between the fabricated CIGS absorption layers and the amount of Ga elements. Furthermore, the Ga elements gradually decreased from the top to the bottom layer of the CIGS absorption layer. We also discussed the effect of Se interlayer in the CIGS absorption layer and its influence on the solar cell’s performance

  14. Structural behavior of window laminated glass plies using new interlayer materials

    Directory of Open Access Journals (Sweden)

    Mostafa El-Shami

    2018-01-01

    Full Text Available In most cases for the structural design of architectural glazing systems under a wide range of environmental conditions, the designers follow procedures provided by model building codes to design window glass. These codes commonly use design charts to determine design strength based on nominal glass thickness and aspect ratio. Glass plies are the principal components of laminated glass (LG where a thin ply of elastomeric material Polyvinyl butyral (PVB is used to bond glass plies (normally two plies to form the LG. Because of the reduction in LG design strength by most building codes and design guidelines, designers avoid architectural LG applications, other than for safety consideration. In this research a higher order mathematical model based on Mindlin plate theory is presented. LG was modeled using finite element methodology with new interlayer (NI. It consists of two plies of PVB with a hard ply of film material in between. In the FEM, properties of PVB/film material can be easily controlled regardless of their thicknesses. The finite element model (FEM was extended to account the design recommendations of ASTM (2012 to develop the design charts for LG with NI. The current FEM was verified and used to study the stresses transformation through NI. Design charts for samples of LG with NI were developed and presented. It has been found that using NI enhances the total behavior of LG and reflects on the design charts for this type of interlayer material.

  15. Interlayer tunnel field-effect transistor (ITFET): physics, fabrication and applications

    Science.gov (United States)

    Kang, Sangwoo; Mou, Xuehao; Fallahazad, Babak; Prasad, Nitin; Wu, Xian; Valsaraj, Amithraj; Movva, Hema C. P.; Kim, Kyounghwan; Tutuc, Emanuel; Register, Leonard F.; Banerjee, Sanjay K.

    2017-09-01

    The scaling challenges of complementary metal oxide semiconductors (CMOS) are increasing with the pace of scaling showing marked signs of slowing down. This slowing has brought about a widespread search for an alternative beyond-CMOS device concept. While the charge tunneling phenomenon has been known for almost a century, and tunneling based transistors have been studied in the past few decades, its possibilities are being re-examined with the emergence of a new class of two-dimensional (2D) materials. By stacking varying 2D materials together, with two electrode layers sandwiching a tunnel dielectric layer, it could be possible to make vertical tunnel transistors without the limitations that have plagued such devices implemented within other material systems. When the two electrode layers are of the same material, under certain conditions, one can achieve resonant tunneling between the two layers, manifesting as negative differential resistance (NDR) in the interlayer current-voltage characteristics. We call this type of device an interlayer tunnel FET (ITFET). We review the basic operation principles of this device, experimental and theoretical studies, and benchmark simulation results for several digital logic gates based on a compact model that we developed. The results are placed in the context of work going on in other groups.

  16. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  17. Market-based approaches to tree valuation

    Science.gov (United States)

    Geoffrey H. Donovan; David T. Butry

    2008-01-01

    A recent four-part series in Arborist News outlined different appraisal processes used to value urban trees. The final article in the series described the three generally accepted approaches to tree valuation: the sales comparison approach, the cost approach, and the income capitalization approach. The author, D. Logan Nelson, noted that the sales comparison approach...

  18. Risk-based remediation: Approach and application

    International Nuclear Information System (INIS)

    Frishmuth, R.A.; Benson, L.A.

    1995-01-01

    The principle objective of remedial actions is to protect human health and the environment. Risk assessments are the only defensible tools available to demonstrate to the regulatory community and public that this objective can be achieved. Understanding the actual risks posed by site-related contamination is crucial to designing cost-effective remedial strategies. All to often remedial actions are overdesigned, resulting in little to no increase in risk reduction while increasing project cost. Risk-based remedial actions have recently been embraced by federal and state regulators, industry, government, the scientific community, and the public as a mechanism to implement rapid and cost-effective remedial actions. Emphasizing risk reduction, rather than adherence to ambiguous and generic standards, ensures that only remedial actions required to protect human health and the environment at a particular site are implemented. Two sites are presented as case studies on how risk-based approaches are being used to remediate two petroleum hydrocarbon contaminated sites. The sites are located at two US Air Force Bases, Wurtsmith Air Force Base (AFB) in Oscoda, Michigan and Malmstrom AFB in Great Falls, Montana

  19. Efficient approach for reliability-based optimization based on weighted importance sampling approach

    International Nuclear Information System (INIS)

    Yuan, Xiukai; Lu, Zhenzhou

    2014-01-01

    An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology

  20. Nature of Interlayer Binding and Stacking of sp–sp 2 Hybridized Carbon Layers: A Quantum Monte Carlo Study

    International Nuclear Information System (INIS)

    Shin, Hyeondeok; Lee, Hoonkyung; Heinonen, Olle; Benali, Anouar; Kwon, Yongkyung

    2017-01-01

    α-graphyne is a two-dimensional sheet of sp-sp2 hybridized carbon atoms in a honeycomb lattice. While the geometrical structure is similar to that of graphene, the hybridized triple bonds give rise to electronic structure that is different from that of graphene. Similar to graphene, α-graphyne can be stacked in bilayers with two stable configurations, but the different stackings have very different electronic structures: one is predicted to have gapless parabolic bands and the other a tunable bandgap which is attractive for applications. In order to realize applications, it is crucial to understand which stacking is more stable. This is difficult to model, as the stability is a result of weak interlayer van der Waals interactions which are not well captured by density functional theory (DFT). We have used quantum Monte Carlo simulations that accurately include van der Waals interactions to calculate the interlayer binding energy of bilayer graphyne and to determine its most stable stacking mode. Our results show that inter-layer bindings of sp- and sp2-bonded carbon networks are significantly underestimated in a Kohn-Sham DFT approach, even with an exchange-correlation potential corrected to include, in some approximation, van der Waals interactions. Finally, our quantum Monte Carlo calculations reveal that the interlayer binding energy difference between the two stacking modes is only 0.9(4) eV/atom. From this we conclude that the two stable stacking modes of bilayer α-graphyne are almost degenerate with each other, and both will occur with about the same probability at room temperature unless there is a synthesis path that prefers one stacking over the other.

  1. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    Energy Technology Data Exchange (ETDEWEB)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  2. ECG biometric identification: A compression based approach.

    Science.gov (United States)

    Bras, Susana; Pinho, Armando J

    2015-08-01

    Using the electrocardiogram signal (ECG) to identify and/or authenticate persons are problems still lacking satisfactory solutions. Yet, ECG possesses characteristics that are unique or difficult to get from other signals used in biometrics: (1) it requires contact and liveliness for acquisition (2) it changes under stress, rendering it potentially useless if acquired under threatening. Our main objective is to present an innovative and robust solution to the above-mentioned problem. To successfully conduct this goal, we rely on information-theoretic data models for data compression and on similarity metrics related to the approximation of the Kolmogorov complexity. The proposed measure allows the comparison of two (or more) ECG segments, without having to follow traditional approaches that require heartbeat segmentation (described as highly influenced by external or internal interferences). As a first approach, the method was able to cluster the data in three groups: identical record, same participant, different participant, by the stratification of the proposed measure with values near 0 for the same participant and closer to 1 for different participants. A leave-one-out strategy was implemented in order to identify the participant in the database based on his/her ECG. A 1NN classifier was implemented, using as distance measure the method proposed in this work. The classifier was able to identify correctly almost all participants, with an accuracy of 99% in the database used.

  3. Linear systems a measurement based approach

    CERN Document Server

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  4. Micro-architecture embedding ultra-thin interlayer to bond diamond and silicon via direct fusion

    Science.gov (United States)

    Kim, Jong Cheol; Kim, Jongsik; Xin, Yan; Lee, Jinhyung; Kim, Young-Gyun; Subhash, Ghatu; Singh, Rajiv K.; Arjunan, Arul C.; Lee, Haigun

    2018-05-01

    The continuous demand on miniaturized electronic circuits bearing high power density illuminates the need to modify the silicon-on-insulator-based chip architecture. This is because of the low thermal conductivity of the few hundred nanometer-thick insulator present between the silicon substrate and active layers. The thick insulator is notorious for releasing the heat generated from the active layers during the operation of devices, leading to degradation in their performance and thus reducing their lifetime. To avoid the heat accumulation, we propose a method to fabricate the silicon-on-diamond (SOD) microstructure featured by an exceptionally thin silicon oxycarbide interlayer (˜3 nm). While exploiting the diamond as an insulator, we employ spark plasma sintering to render the silicon directly fused to the diamond. Notably, this process can manufacture the SOD microarchitecture via a simple/rapid way and incorporates the ultra-thin interlayer for minute thermal resistance. The method invented herein expects to minimize the thermal interfacial resistance of the devices and is thus deemed as a breakthrough appealing to the current chip industry.

  5. Ultrasound-Assisted Transient Liquid Phase Bonding of Magnesium Alloy Using Brass Interlayer in Air

    Institute of Scientific and Technical Information of China (English)

    Zhiwei Lai; Ruishan Xie; Chuan Pan; Xiaoguang Chen; Lei Liu; Wenxian Wang; Guisheng Zou

    2017-01-01

    The microstructure evolution and oxide film behavior in ultrasound-assisted transient liquid phase (U-TLP) bonding of Mg alloy were investigated by applying different ultrasonic time at 460℃ withbrass interlayer in air.The results indicated that with increasing ultrasonic time,brass interlayer disappeared gradually and the Mg-Cu-Zn eutectic compounds were formed.The eutectic compounds in the joint decreased as the ultrasonic time increased further.The oxide removal process was divided into four steps.Continuous oxide film at the interface was partially fractured by ultrasonic vibration,and then suspended into liquid by undermining eutectic reaction.After that,the suspended oxide film was broken into small oxide fragments by ultrasonic cavitation effect,which was finally squeezed out of the joint by ultrasonic squeeze action.In addition,the mechanical properties of the joints were investigated.The maximum shear strength of the joint reached 105 MPa,which was 100% of base metal.

  6. Evaluation of interlayer interfacial stiffness and layer wave velocity of multilayered structures by ultrasonic spectroscopy.

    Science.gov (United States)

    Ishii, Yosuke; Biwa, Shiro

    2014-07-01

    An ultrasonic evaluation procedure for the interlayer interfacial normal stiffness and the intralayer longitudinal wave velocity of multilayered plate-like structures is proposed. Based on the characteristics of the amplitude reflection spectrum of ultrasonic wave at normal incidence to a layered structure with spring-type interlayer interfaces, it is shown that the interfacial normal stiffness and the longitudinal wave velocity in the layers can be simultaneously evaluated from the frequencies of local maxima and minima of the spectrum provided that all interfaces and layers have the same properties. The effectiveness of the proposed procedure is investigated from the perspective of the sensitivity of local extremal frequencies of the reflection spectrum. The feasibility of the proposed procedure is also investigated when the stiffness of each interface is subjected to small random fluctuations about a certain average value. The proposed procedure is applied to a 16-layered cross-ply carbon-fiber-reinforced composite laminate. The normal stiffness of resin-rich interfaces and the longitudinal wave velocity of plies in the thickness direction evaluated from the experimental reflection spectrum are shown to be consistent with simple theoretical estimations.

  7. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory.

    Science.gov (United States)

    Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-08-23

    Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.

  8. Perpendicularly magnetized CoFeB multilayers with tunable interlayer exchange for synthetic ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Pirro, P., E-mail: ppirro@physik.uni-kl.de [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Hamadeh, A.; Lavanant-Jambert, M. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France); Meyer, T. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Tao, B.; Rosario, E.; Lu, Y.; Hehn, M.; Mangin, S.; Petit Watelot, S. [Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRS, 54506 Vandoeuvre-lés-Nancy (France)

    2017-06-15

    Highlights: • MgO/CoFeB/Ta/CoFeB/MgO multilayers as synthetic ferrimagnets. • Comprehensive characterization by measurement of static and dynamic properties. • Different pinning for domain walls with different alignment of the individual layers. - Abstract: A study of the multilayer system MgO/CoFeB(1.1 nm)/Ta(t)/CoFeB(0.8 nm)/MgO is presented, where the two CoFeB layers are separated by a Ta interlayer of varying thickness t. The magnetization properties deduced from complementary techniques such as superconducting quantum interference magnetometry, ferromagnetic resonance frequency measurements and Brillouin light scattering spectroscopy can be tuned by changing the Ta thickness between t = 0.25 nm, 0.5 nm and 0.75 nm. For t = 0.5 nm, a ferromagnetic coupling is observed, whereas for t = 0.75 nm, the antiferromagnetic coupling needed to construct a synthetic ferrimagnet is realized. In the latter case, the shape of magnetic domain walls between two ferrimagnetic alignments or between a ferro- and a ferrimagnetic alignment is very different. This behavior can be interpreted as a result of the change in dipolar as well as interlayer exchange energy and domain wall pinning, which is an important conclusion for the realization of data storage devices based on synthetic ferri- and antiferromagnets.

  9. Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates

    Science.gov (United States)

    Chang, R. C.; Li, T. C.; Lin, C. W.

    2012-02-01

    Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.

  10. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous; Dong, Zhihua; Warzywoda, Juliusz; Fan, Zhaoyang

    2017-01-01

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li_2S_8–Li_2S_6). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  11. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States); Dong, Zhihua [Hangzhou Dianzi University, No. 1158, 2nd Street, Xiasha Higher Education District, Hangzhou City, Zhejiang Province (China); Warzywoda, Juliusz [Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Fan, Zhaoyang, E-mail: zhaoyang.fan@ttu.edu [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States)

    2017-02-28

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li{sub 2}S{sub 8}–Li{sub 2}S{sub 6}). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  12. Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene.

    Science.gov (United States)

    Araujo, Paulo T; Mafra, Daniela L; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S

    2012-01-01

    In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.

  13. Interlayer interactions in absorption and reflection spectra of bismuth HTSC crystals

    International Nuclear Information System (INIS)

    Kruchinin, S.P.; Yaremko, A.M.

    1992-01-01

    The HTSC reflection and absorption optic spectra peculiarities are analysed in the paper on the basis of bismuth and thallium. The approach suggested takes into account the complex character of crystals structure, possible localization of excitations in the isolated layers and further excitations exchange due to the interlayer interaction between cuprate (Cu O) and quasi-degenerate bismuth layers (Bi O/3pO). The expressions for the excitation and intensity energies of the corresponding transitions are obtained. It is shown that only part of excitations whose number is determined by the number of layers in the unit cell will be manifest in optical reflection and absorption spectra. The experimental results on spectral dependence of crystal reflection coefficients are analysed

  14. Stem cell-based approaches in dentistry

    Directory of Open Access Journals (Sweden)

    TA Mitsiadis

    2011-11-01

    Full Text Available Repair of dental pulp and periodontal lesions remains a major clinical challenge. Classical dental treatments require the use of specialised tissue-adapted materials with still questionable efficacy and durability. Stem cell-based therapeutic approaches could offer an attractive alternative in dentistry since they can promise physiologically improved structural and functional outcomes. These therapies necessitate a sufficient number of specific stem cell populations for implantation. Dental mesenchymal stem cells can be easily isolated and are amenable to in vitro expansion while retaining their stemness. In vivo studies realised in small and large animals have evidenced the potential of dental mesenchymal stem cells to promote pulp and periodontal regeneration, but have also underlined new important challenges. The homogeneity of stem cell populations and their quality control, the delivery method, the quality of the regenerated dental tissues and their integration to the host tissue are some of the key challenges. The use of bioactive scaffolds that can elicit effective tissue repair response, through activation and mobilisation of endogenous stem cell populations, constitutes another emerging therapeutic strategy. Finally, the use of stem cells and induced pluripotent cells for the regeneration of entire teeth represents a novel promising alternative to dental implant treatment after tooth loss. In this mini-review, we present the currently applied techniques in restorative dentistry and the various attempts that are made to bridge gaps in knowledge regarding treatment strategies by translating basic stem cell research into the dental practice.

  15. Surrogate Motherhood: A Trust-Based Approach.

    Science.gov (United States)

    Beier, Katharina

    2015-12-01

    Because it is often argued that surrogacy should not be treated as contractual, the question arises in which terms this practice might then be couched. In this article, I argue that a phenomenology of surrogacy centering on the notion of trust provides a description that is illuminating from the moral point of view. My thesis is that surrogacy establishes a complex and extended reproductive unit--the "surrogacy triad" consisting of the surrogate mother, the child, and the intending parents--whose constituents are bound together by mutual trustful commitments. Even though a trust-based approach does not provide an ultimate answer to whether surrogacy should be sanctioned or prohibited, it allows for at least some practical suggestions. In particular, I will argue that, under certain conditions, surrogacy is tenable within familial or other significant relationships, and I will stress the necessity of acknowledging the new relationships and moral commitments that result from this practice. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Quality based approach for adaptive face recognition

    Science.gov (United States)

    Abboud, Ali J.; Sellahewa, Harin; Jassim, Sabah A.

    2009-05-01

    Recent advances in biometric technology have pushed towards more robust and reliable systems. We aim to build systems that have low recognition errors and are less affected by variation in recording conditions. Recognition errors are often attributed to the usage of low quality biometric samples. Hence, there is a need to develop new intelligent techniques and strategies to automatically measure/quantify the quality of biometric image samples and if necessary restore image quality according to the need of the intended application. In this paper, we present no-reference image quality measures in the spatial domain that have impact on face recognition. The first is called symmetrical adaptive local quality index (SALQI) and the second is called middle halve (MH). Also, an adaptive strategy has been developed to select the best way to restore the image quality, called symmetrical adaptive histogram equalization (SAHE). The main benefits of using quality measures for adaptive strategy are: (1) avoidance of excessive unnecessary enhancement procedures that may cause undesired artifacts, and (2) reduced computational complexity which is essential for real time applications. We test the success of the proposed measures and adaptive approach for a wavelet-based face recognition system that uses the nearest neighborhood classifier. We shall demonstrate noticeable improvements in the performance of adaptive face recognition system over the corresponding non-adaptive scheme.

  17. Controlled release of agrochemicals intercalated into montmorillonite interlayer space.

    Science.gov (United States)

    Wanyika, Harrison

    2014-01-01

    Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

  18. Thermotropic liquid crystalline polyazomethine nanocomposites via in situ interlayer polymerization

    International Nuclear Information System (INIS)

    Min, Ungki; Chang, Jin-Hae

    2011-01-01

    Highlights: → Nanocomposites of polyazomethine with the organoclay C 12 -MMT were synthesized by using the in situ interlayer polymerization method. → The thermal properties of the polyazomethine hybrids increase with the addition of the organoclay up to a critical content and then decrease with further organoclay loading. → Liquid crystalline compositions with 0-9 wt% organoclay have threaded Schlieren nematic textures. - Abstract: Nanocomposites of polyazomethine (PAM) with the organoclay C 12 -MMT were synthesized by using the in situ interlayer polymerization method. The variations with organoclay content of the thermal properties, morphology, and liquid crystalline mesophases of the hybrids were determined for concentrations from 0 to 9 wt% C 12 -MMT. The thermal properties and the morphologies of the PAM nanocomposites were examined by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffractometry (XRD), transmission electron microscopy (TEM), and polarizing optical microscopy (POM). The XRD analysis and TEM micrographs show that the levels of nanosize dispersion can be controlled by varying the C 12 -MMT content. The clay particles are better dispersed in the matrix polymer at low clay contents than at high clay contents. With the exception of the glass transition temperature (T g ), the maximum enhancement in the thermal properties was found to arise at an organoclay content of 1 wt%. Further, the PAM hybrids were shown to exhibit a nematic liquid crystalline phase for organoclay contents in the range 0-9 wt%.

  19. Thickness Dependent Interlayer Magnetoresistance in Multilayer Graphene Stacks

    Directory of Open Access Journals (Sweden)

    S. C. Bodepudi

    2016-01-01

    Full Text Available Chemical Vapor Deposition grown multilayer graphene (MLG exhibits large out-of-plane magnetoresistance due to interlayer magnetoresistance (ILMR effect. It is essential to identify the factors that influence this effect in order to explore its potential in magnetic sensing and data storage applications. It has been demonstrated before that the ILMR effect is sensitive to the interlayer coupling and the orientation of the magnetic field with respect to the out-of-plane (c-axis direction. In this work, we investigate the role of MLG thickness on ILMR effect. Our results show that the magnitude of ILMR effect increases with the number of graphene layers in the MLG stack. Surprisingly, thicker devices exhibit field induced resistance switching by a factor of at least ~107. This effect persists even at room temperature and to our knowledge such large magnetoresistance values have not been reported before in the literature at comparable fields and temperatures. In addition, an oscillatory MR effect is observed at higher field values. A physical explanation of this effect is presented, which is consistent with our experimental scenario.

  20. Interlayer exchange coupling in (Ga,Mn)As based multilayers

    Czech Academy of Sciences Publication Activity Database

    Giddings, A.D.; Jungwirth, Tomáš; Gallagher, B. L.

    2006-01-01

    Roč. 3, č. 12 (2006), s. 4070-4073 ISSN 1610-1634 R&D Projects: GA ČR GA202/05/0575; GA AV ČR(CZ) IAA100100530; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * standing-wave fluorescence * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. The distinguishing characteristics of interlayer oxidation zone and burial ancient ground oxidation zone

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Zhou Wenbin

    1998-01-01

    The author discusses the main characteristics of interlayer oxidation zones and the burial ancient ground oxidation zones of Uranium deposit No. 512 in Xinjiang Uigur municipality. The epigenetic genesis, depending on some aquifer, the tongue-like in section, having the zonation along dip direction and having certain mineral assemblage are the typical features for interlayer oxidation zones

  2. Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Dai, Wei; Xu, Sheng [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Li, Hongji [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-04-07

    Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Ti interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.

  3. IPTV inter-destination synchronization: A network-based approach

    NARCIS (Netherlands)

    Stokking, H.M.; Deventer, M.O. van; Niamut, O.A.; Walraven, F.A.; Mekuria, R.N.

    2010-01-01

    This paper introduces a novel network-based approach to inter-destination media synchronization. The approach meets the need for synchronization in advanced TV concepts like social TV and offers high scalability, unlike conventional end-point based approaches. The solution for interdestination media

  4. Cognition-Based Approaches for High-Precision Text Mining

    Science.gov (United States)

    Shannon, George John

    2017-01-01

    This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both…

  5. Nanotechnology based approaches in cancer therapeutics

    International Nuclear Information System (INIS)

    Biswas, Amit Kumer; Islam, Md Reazul; Choudhury, Zahid Sadek; Kadir, Mohammad Fahim; Mostafa, Asif

    2014-01-01

    The current decades are marked not by the development of new molecules for the cure of various diseases but rather the development of new delivery methods for optimum treatment outcome. Nanomedicine is perhaps playing the biggest role in this concern. Nanomedicine offers numerous advantages over conventional drug delivery approaches and is particularly the hot topic in anticancer research. Nanoparticles (NPs) have many unique criteria that enable them to be incorporated in anticancer therapy. This topical review aims to look at the properties and various forms of NPs and their use in anticancer treatment, recent development of the process of identifying new delivery approaches as well as progress in clinical trials with these newer approaches. Although the outcome of cancer therapy can be increased using nanomedicine there are still many disadvantages of using this approach. We aim to discuss all these issues in this review. (review)

  6. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  7. Efficient CsF interlayer for high and low bandgap polymer solar cell

    Science.gov (United States)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  8. A Constructivist Approach to Rule Bases

    NARCIS (Netherlands)

    Sileno, G.; Boer, A.; van Engers, T.; Loiseau, S.; Filipe, J.; Duval, B.; van den Herik, J.

    2015-01-01

    The paper presents a set of algorithms for the conversion of rule bases between priority-based and constraint-based representations. Inspired by research in precedential reasoning in law, such algorithms can be used for the analysis of a rule base, and for the study of the impact of the introduction

  9. The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model

    International Nuclear Information System (INIS)

    Marx, Vera M.; Toth, Florian; Wiesinger, Andreas; Berger, Julia; Kirchlechner, Christoph; Cordill, Megan J.; Fischer, Franz D.; Rammerstorfer, Franz G.; Dehm, Gerhard

    2015-01-01

    Thin metal films deposited on polymer substrates are used in flexible electronic devices such as flexible displays or printed memories. They are often fabricated as complicated multilayer structures. Understanding the mechanical behavior of the interface between the metal film and the substrate as well as the process of crack formation under global tension is important for producing reliable devices. In the present work, the deformation behavior of copper films (50–200 nm thick), bonded to polyimide directly or via a 10 nm chromium interlayer, is investigated by experimental analysis and computational simulations. The influence of the various copper film thicknesses and the usage of a brittle interlayer on the crack density as well as on the stress magnitude in the copper after saturation of the cracking process are studied with in situ tensile tests in a synchrotron and under an atomic force microscope. From the computational point of view, the evolution of the crack pattern is modeled as a stochastic process via finite element based cohesive zone simulations. Both, experiments and simulations show that the chromium interlayer dominates the deformation behavior. The interlayer forms cracks that induce a stress concentration in the overlying copper film. This behavior is more pronounced in the 50 nm than in the 200 nm copper films

  10. Approaches to tobacco control: the evidence base.

    Science.gov (United States)

    Aquilino, M Lober; Lowe, J B

    2004-02-01

    Tobacco production, distribution, and use are international issues with significant health and economic implications. This paper provides an overview of the effective approaches to tobacco control including decreasing demand for tobacco products through taxation, consumer education, research, bans on advertising and promotion, warning labels, and restrictions on public smoking. The effectiveness of reducing the supply of tobacco products through prohibition, restrictions on youth access, crop substitution, trade restrictions, and control of smuggling, will also be discussed. Decreasing smoking, particularly among young people, by preventing or delaying initiation, preventing regular use, and increasing cessation through behavioural approaches for all ages is reviewed. Cessation methods including pharmacological approaches, 'quitlines', Internet programmes, and the targeting of specific populations are discussed. Internet availability of tobacco products and sustainability of current efforts are presented as continuing challenges to tobacco control.

  11. Constructing a justice model based on Sen's capability approach

    OpenAIRE

    Yüksel, Sevgi; Yuksel, Sevgi

    2008-01-01

    The thesis provides a possible justice model based on Sen's capability approach. For this goal, we first analyze the general structure of a theory of justice, identifying the main variables and issues. Furthermore, based on Sen (2006) and Kolm (1998), we look at 'transcendental' and 'comparative' approaches to justice and concentrate on the sufficiency condition for the comparative approach. Then, taking Rawls' theory of justice as a starting point, we present how Sen's capability approach em...

  12. Predicting Liaison: an Example-Based Approach

    NARCIS (Netherlands)

    Greefhorst, A.P.M.; Bosch, A.P.J. van den

    2016-01-01

    Predicting liaison in French is a non-trivial problem to model. We compare a memory-based machine-learning algorithm with a rule-based baseline. The memory-based learner is trained to predict whether liaison occurs between two words on the basis of lexical, orthographic, morphosyntactic, and

  13. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  14. Abstract algebra an inquiry based approach

    CERN Document Server

    Hodge, Jonathan K; Sundstrom, Ted

    2013-01-01

    ""This book arose from the authors' approach to teaching abstract algebra. They place an emphasis on active learning and on developing students' intuition through their investigation of examples. … The text is organized in such a way that it is possible to begin with either rings or groups.""-Florentina Chirtes, Zentralblatt MATH 1295

  15. View based approach to forensic face recognition

    NARCIS (Netherlands)

    Dutta, A.; van Rootseler, R.T.A.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    Face recognition is a challenging problem for surveillance view images commonly encountered in a forensic face recognition case. One approach to deal with a non-frontal test image is to synthesize the corresponding frontal view image and compare it with frontal view reference images. However, it is

  16. Automated Generation of OCL Constraints: NL based Approach vs Pattern Based Approach

    Directory of Open Access Journals (Sweden)

    IMRAN SARWAR BAJWA

    2017-04-01

    Full Text Available This paper presents an approach used for automated generations of software constraints. In this model, the SBVR (Semantics of Business Vocabulary and Rules based semi-formal representation is obtained from the syntactic and semantic analysis of a NL (Natural Language (such as English sentence. A SBVR representation is easy to translate to other formal languages as SBVR is based on higher-order logic like other formal languages such as OCL (Object Constraint Language. The proposed model endows with a systematic and powerful system of incorporating NL knowledge on the formal languages. A prototype is constructed in Java (an Eclipse plug-in as a proof of the concept. The performance was tested for a few sample texts taken from existing research thesis reports and books

  17. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    Science.gov (United States)

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  18. Nanoparticle intercalation-induced interlayer-gap-opened graphene–polyaniline nanocomposite for enhanced supercapacitive performances

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sungjin; Park, Young Ran [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Park, Sanghyuk [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Hyeong Jin [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Doh, Ji Hoon [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Hong, Won G. [Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kim, Byungnam [Radiation Equipment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Yang, Woo Seok [Electronic Material and Device Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi-do 13509 (Korea, Republic of); Kim, TaeYoung [Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-do 13120 (Korea, Republic of); Hong, Young Joon, E-mail: yjhong@sejong.ac.kr [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2017-08-01

    Highlights: • High energy–power supercapacitor electrode is demonstrated using EDLC–PC hybridized rGO–PANi nanocomposite. • A method for perpetuated intercalation of nanoparticles into interlayer gap of rGO is developed. • The intercalaction (i) exfoliates rGO layers, (ii) prevents self-agglomeration, and (iii) enlarges specific surface area of rGO for high power performance. • Electric resistance is substantially reduced by forming more rGO–PANi links via grafting of PANi to well-opened rGO edges. - Abstract: This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor–electrochemical pseudocapacitor (EDLC–PC) electrode, we synthesized reduced graphene oxide–polyaniline nanofibers (rGO–PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi–rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC–PC electrodes.

  19. Methodological approaches based on business rules

    OpenAIRE

    Anca Ioana ANDREESCU; Adina UTA

    2008-01-01

    Business rules and business processes are essential artifacts in defining the requirements of a software system. Business processes capture business behavior, while rules connect processes and thus control processes and business behavior. Traditionally, rules are scattered inside application code. This approach makes it very difficult to change rules and shorten the life cycle of the software system. Because rules change more quickly than the application itself, it is desirable to externalize...

  20. MOBILE COMMERCE APPROACH BASED ON MOBILE AGENT

    OpenAIRE

    Oussama Zerdoumi; Okba Kazar; Saber Benharzallah

    2011-01-01

    Telecommunications technologies are advanced; they introduced new technologies to meet the needs of individuals and organizations to make commercial transactions, where we find the birth of e-commerce after the emergence of the Internet. But this approach has limits like the use of a client / server model, which limit the use of these transactions in anytime and anywhere. Recently and after the emergence of the wireless networking, the commerce increase the range of the E-commerce application...

  1. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    Science.gov (United States)

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Problem-Based Learning Approaches in Meteorology

    Science.gov (United States)

    Charlton-Perez, Andrew James

    2013-01-01

    Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a…

  3. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer

    Directory of Open Access Journals (Sweden)

    Ding Zheng

    2017-08-01

    Full Text Available An innovative bilayer cathode interlayer (CIL with a nanostructure consisting of in situ thermal reduced graphene oxide (ITR-GO and poly[(9,9-bis(3′-(N,N-dimethylamionpropyl-2,7-fluorene-alt-2,7-(9,9-dioctyl fluorene] (PFN has been fabricated for inverted organic solar cells (OSCs. An approach to prepare a CIL of high electronic quality by using ITR-GO as a template to modulate the morphology of the interface between the active layer and electrode and to further reduce the work function of the electrode has also been realized. This bilayer ITR-GO/PFN CIL is processed by a spray-coating method with facile in situ thermal reduction. Meanwhile, the CIL shows a good charge transport efficiency and less charge recombination, which leads to a significant enhancement of the power conversion efficiency from 6.47% to 8.34% for Poly({4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl} (PTB7:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM-based OSCs. In addition, the long-term stability of the OSC is improved by using the ITR-GO/PFN CIL when compared with the pristine device. These results indicate that the bilayer ITR-GO/PFN CIL is a promising way to realize high-efficiency and stable OSCs by using water-soluble conjugated polymer electrolytes such as PFN.

  4. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure.

    Science.gov (United States)

    Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian

    2018-01-25

    The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.

  5. Antirandom Testing: A Distance-Based Approach

    Directory of Open Access Journals (Sweden)

    Shen Hui Wu

    2008-01-01

    Full Text Available Random testing requires each test to be selected randomly regardless of the tests previously applied. This paper introduces the concept of antirandom testing where each test applied is chosen such that its total distance from all previous tests is maximum. This spans the test vector space to the maximum extent possible for a given number of vectors. An algorithm for generating antirandom tests is presented. Compared with traditional pseudorandom testing, antirandom testing is found to be very effective when a high-fault coverage needs to be achieved with a limited number of test vectors. The superiority of the new approach is even more significant for testing bridging faults.

  6. Behavior based safety approach towards fire

    International Nuclear Information System (INIS)

    Suresh Kumar, R.

    2009-01-01

    The behavior of the individual who notice fire first is very important because it affect the safety of all occupants of the area. Human behavior on fire depends on variables of the buildings in which fire occurs and by the appearance of the fire when it is detected. Altruistic behavior of human being will help to handle the critical conditions due to fire emergencies. NPCIL have developed a culture of systematic approach to safeguard men and materials from fire by training and awareness. In our Nuclear Power Plants, we have an effective plan and system to test the plans. In each emergency exercises, the behavior of individuals will be monitored and recorded

  7. A systematic approach for component-based software development

    NARCIS (Netherlands)

    Guareis de farias, Cléver; van Sinderen, Marten J.; Ferreira Pires, Luis

    2000-01-01

    Component-based software development enables the construction of software artefacts by assembling prefabricated, configurable and independently evolving building blocks, called software components. This paper presents an approach for the development of component-based software artefacts. This

  8. A Combined Approach for Component-based Software Design

    NARCIS (Netherlands)

    Guareis de farias, Cléver; van Sinderen, Marten J.; Ferreira Pires, Luis; Quartel, Dick; Baldoni, R.

    2001-01-01

    Component-based software development enables the construction of software artefacts by assembling binary units of production, distribution and deployment, the so-called software components. Several approaches addressing component-based development have been proposed recently. Most of these

  9. Sensitivity based reduced approaches for structural reliability analysis

    Indian Academy of Sciences (India)

    captured by a safety-factor based approach due to the intricate nonlinear ... give the accounts of extensive research works which have been done over ... (ii) simulation based methods, for example, importance sampling (Bucher 1988; Mahade-.

  10. The mechanism of formation of the interlayer quantum wires in zinc-doped Bi2Te3

    Directory of Open Access Journals (Sweden)

    Alieva A. P.

    2012-06-01

    Full Text Available Nanowires formation process on a (0001 surface of Bi2Te3 is studied. It has been established that on interlayer surface Te(1—Te(1 there is a process of migration of atoms, moving and coagulation of clusters on the basis of Zn atoms. As a result of diffusion-limited aggregation the structures with quantum dots are formed, from which nanowires are self-organized. Such superficial structures play regulating role in working out the topological insulators based on A2VB3VI and increase thermoelectric efficiency of a composite.

  11. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  12. Supplier selection an MCDA-based approach

    CERN Document Server

    Mukherjee, Krishnendu

    2017-01-01

    The purpose of this book is to present a comprehensive review of the latest research and development trends at the international level for modeling and optimization of the supplier selection process for different industrial sectors. It is targeted to serve two audiences: the MBA and PhD student interested in procurement, and the practitioner who wishes to gain a deeper understanding of procurement analysis with multi-criteria based decision tools to avoid upstream risks to get better supply chain visibility. The book is expected to serve as a ready reference for supplier selection criteria and various multi-criteria based supplier’s evaluation methods for forward, reverse and mass customized supply chain. This book encompasses several criteria, methods for supplier selection in a systematic way based on extensive literature review from 1998 to 2012. It provides several case studies and some useful links which can serve as a starting point for interested researchers. In the appendix several computer code wri...

  13. Advantages of condition-based maintenance approach

    International Nuclear Information System (INIS)

    Bareiss, J.; Roos, E.; Jovanovic, A.; Perunicic, M.; Balos, D.

    2004-01-01

    Pilot applications in EnBW steam boiler components and high-pressure pipe systems in the context of the European research project RIMAP (''Risk Based Inspection and Maintenance Procedures for European Industry'') showed that application of a risk-based maintenance strategy (e.g. RIMAP) will make the decision process more transparent and enable better condition-oriented maintenance. With regard to life management of the systems (availability, product quality), this appears to be more important than than the aspect of cost reduction in the maintenance sector, although the latter may not be unwelcome. (orig.) [de

  14. Knowledge-Based Approaches: Two cases of applicability

    DEFF Research Database (Denmark)

    Andersen, Tom

    1997-01-01

    Basic issues of the term: A knowledge-based approach (KBA) are discussed. Two cases of applicable to KBA are presented, and its concluded that KBA is more than just IT.......Basic issues of the term: A knowledge-based approach (KBA) are discussed. Two cases of applicable to KBA are presented, and its concluded that KBA is more than just IT....

  15. A Task-Based Approach to Materials Development

    Science.gov (United States)

    Nunan, David

    2010-01-01

    The purpose of this chapter is to present a task-based approach to materials development. In the first part of the chapter, I sketch out the evolution of task based language teaching, drawing on a distinction between synthetic and analytical approaches to syllabus design first articulated by Wilkins (1976).

  16. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  17. SLAM - Based Approach to Dynamic Ship Positioning

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrobel

    2014-03-01

    Full Text Available Dynamically positioned vessels, used by offshore industry, use not only satellite navigation but also different positioning systems, often referred to as reference' systems. Most of them use multiple technical devices located outside the vessel which creates some problems with their accessibility and performance. In this paper, a basic concept of reference system independent from any external device is presented, basing on hydroacoustics and Simultaneous Localization and Mapping (SLAM method. Theoretical analysis of its operability is also performed.

  18. Nanotechnology-Based Approach in Tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    Mohammad Nasiruddin

    2017-01-01

    Full Text Available Tuberculosis, commonly known as TB, is the second most fatal infectious disease after AIDS, caused by bacterium called Mycobacterium tuberculosis. Prolonged treatment, high pill burden, low compliance, and stiff administration schedules are factors that are responsible for emergence of MDR and XDR cases of tuberculosis. Till date, only BCG vaccine is available which is ineffective against adult pulmonary TB, which is the most common form of disease. Various unique antibodies have been developed to overcome drug resistance, reduce the treatment regimen, and elevate the compliance to treatment. Therefore, we need an effective and robust system to subdue technological drawbacks and improve the effectiveness of therapeutic drugs which still remains a major challenge for pharmaceutical technology. Nanoparticle-based ideology has shown convincing treatment and promising outcomes for chronic infectious diseases. Different types of nanocarriers have been evaluated as promising drug delivery systems for various administration routes. Controlled and sustained release of drugs is one of the advantages of nanoparticle-based antituberculosis drugs over free drug. It also reduces the dosage frequency and resolves the difficulty of low poor compliance. This paper reviews various nanotechnology-based therapies which can be used for the treatment of TB.

  19. Media approach to gender-based violence

    Directory of Open Access Journals (Sweden)

    Mršević Zorica

    2012-01-01

    Full Text Available The author grounds her research and the latter analysis on continually conducted daily press-clipping of seven main printed daily newspapers and two main electronic media in Serbia, within the three years period (2009 - 2011. An analysis of media reports on gender based violence, with particular focus on the most frequent domestic violence cases within the two years period, 2010 to 2011 is presented. As the best of media reports on gender based violence, the author stressed out its „whistle blower“ role - media are the main source of information on cases, dimensions and forms of gender based violence. Also the worse moments of media reporting in the mentioned period are presented - when the violence was justified or when reality is deformed by presenting these cases as romantic love stories. For example, in 2010 the worst was reporting on the „Pajčin/Kapisoda“ case, while in 2011 it was the „Ponjiger“ case. In the end, the author also warned on the worrysome fact of sudden dissapearance of media reports on partners’ murdering their wives after the last such report published in mid-october 2011, which could mean that now we have a new problem of diminished freedom of media.

  20. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  1. Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer

    International Nuclear Information System (INIS)

    Atasoy, Evren; Kahraman, Nizamettin

    2008-01-01

    Titanium and low carbon steel plates were joined through diffusion bonding using a silver interlayer at various temperatures for various diffusion times. In order to determine the strength of the resulting joints, tensile-shear tests and hardness tests were applied. Additionally, optical, scanning electron microscopy examinations and energy dispersive spectrometry elemental analyses were carried out to determine the interface properties of the joint. The work showed that the highest interface strength was obtained for the specimens joined at 850 deg. C for 90 min. It was seen from the hardness results that the highest hardness value was obtained for the interlayer material and the hardness values on the both sides of the interlayer decreased gradually as the distance from the joint increased. In energy dispersive spectrometry analyses, it was seen that the amount of silver in the interlayer decreased markedly depending on the temperature rise. In addition, increasing diffusion time also caused some slight decrease in the amount of silver

  2. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOX barriers

    Science.gov (United States)

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.; Huang, S.; Kato, H.; Bi, C.; Xu, M.; LeRoy, B. J.; Wang, W. G.

    2018-02-01

    Perpendicular magnetic tunnel junctions with GdOX tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here, we investigate the quality of the GdOX barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlOX and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence including sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.

  3. The valve effect of the carbide interlayer of an electric resistance plug

    International Nuclear Information System (INIS)

    Lakomskii, V.

    1998-01-01

    The welded electric resistance plug (ERP) usually contains a carbide interlayer at the plug-carbon material interface. The interlayer forms during welding the contact metallic alloy with the carbon material when the oxide films of the alloy are reduced on the interface surface by carbon to the formation of carbides and the surface layer of the plug material dissolves carbon to saturation. Subsequently, during solidification of the plug material it forms carbides with the alloy components. The structural composition of the carbide interlayer is determined by the chemical composition of the contact alloy. In alloys developed by the author and his colleagues the carbide forming elements are represented in most cases by silicon and titanium and, less frequently, by chromium and manganese. Therefore, the carbide interlayers in the ERP consisted mainly of silicon and titanium carbides

  4. Alternative approaches to risk-based technical specifications

    International Nuclear Information System (INIS)

    Atefi, B.; Gallagher, D.W.; Liner, R.T.; Lofgren, E.V.

    1987-01-01

    Four alternative risk-based approaches to Technical Specifications are identified. These are: a Probabilistic Risk Assessment (PRA) oriented approach; a reliability goal-oriented approach; an approach based on configuration control; a data-oriented approach. Based on preliminary results, the PRA-oriented approach, which has been developed further than the other approaches, seems to offer a logical, quantitative basis for setting Allowed Outage Times (AOTs) and Surveillance Test Intervals (STIs) for some plant components and systems. The most attractive feature of this approach is that it directly links the AOTs and STIs with the risk associated with the operation of the plant. This would focus the plant operator's and the regulatory agency's attention on the most risk-significant components of the plant. A series of practical issues related to the level of detail and content of the plant PRAs, requirements for the review of these PRAs, and monitoring cf the plant's performance by the regulatory agency must be resolved before the approach could be implemented. Future efforts will examine the other three approaches and their practicality before firm conclusions are drawn regarding the viability of any of these approaches

  5. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  6. INDIVIDUAL BASED MODELLING APPROACH TO THERMAL ...

    Science.gov (United States)

    Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. Changes in river temperature regimes are producing an additional challenge for upstream migrating adult salmon and steelhead, species that are sensitive to absolute and cumulative thermal exposure. Adult salmon populations have been shown to utilize cold water patches along migration routes when mainstem river temperatures exceed thermal optimums. We are employing an individual based model (IBM) to explore the costs and benefits of spatially-distributed cold water refugia for adult migrating salmon. Our model, developed in the HexSim platform, is built around a mechanistic behavioral decision tree that drives individual interactions with their spatially explicit simulated environment. Population-scale responses to dynamic thermal regimes, coupled with other stressors such as disease and harvest, become emergent properties of the spatial IBM. Other model outputs include arrival times, species-specific survival rates, body energetic content, and reproductive fitness levels. Here, we discuss the challenges associated with parameterizing an individual based model of salmon and steelhead in a section of the Columbia River. Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effec

  7. Algebraic Verification Method for SEREs Properties via Groebner Bases Approaches

    Directory of Open Access Journals (Sweden)

    Ning Zhou

    2013-01-01

    Full Text Available This work presents an efficient solution using computer algebra system to perform linear temporal properties verification for synchronous digital systems. The method is essentially based on both Groebner bases approaches and symbolic simulation. A mechanism for constructing canonical polynomial set based symbolic representations for both circuit descriptions and assertions is studied. We then present a complete checking algorithm framework based on these algebraic representations by using Groebner bases. The computational experience result in this work shows that the algebraic approach is a quite competitive checking method and will be a useful supplement to the existent verification methods based on simulation.

  8. Foundry based approach for InP based PIC development

    NARCIS (Netherlands)

    Smit, M.K.

    2014-01-01

    Europe is making significant investments in development of generic photonic foundry platform infrastructures for InP-based and Silicon Photonic ICs. Here we present the present status for the InP-based JePPIX platform.

  9. Assessing Acid-Base Status: Physiologic Versus Physicochemical Approach.

    Science.gov (United States)

    Adrogué, Horacio J; Madias, Nicolaos E

    2016-11-01

    The physiologic approach has long been used in assessing acid-base status. This approach considers acids as hydrogen ion donors and bases as hydrogen ion acceptors and the acid-base status of the organism as reflecting the interaction of net hydrogen ion balance with body buffers. In the physiologic approach, the carbonic acid/bicarbonate buffer pair is used for assessing acid-base status and blood pH is determined by carbonic acid (ie, Paco 2 ) and serum bicarbonate levels. More recently, the physicochemical approach was introduced, which has gained popularity, particularly among intensivists and anesthesiologists. This approach posits that the acid-base status of body fluids is determined by changes in the dissociation of water that are driven by the interplay of 3 independent variables: the sum of strong (fully dissociated) cation concentrations minus the sum of strong anion concentrations (strong ion difference); the total concentration of weak acids; and Paco 2 . These 3 independent variables mechanistically determine both hydrogen ion concentration and bicarbonate concentration of body fluids, which are considered as dependent variables. Our experience indicates that the average practitioner is familiar with only one of these approaches and knows very little, if any, about the other approach. In the present Acid-Base and Electrolyte Teaching Case, we attempt to bridge this knowledge gap by contrasting the physiologic and physicochemical approaches to assessing acid-base status. We first outline the essential features, advantages, and limitations of each of the 2 approaches and then apply each approach to the same patient presentation. We conclude with our view about the optimal approach. Copyright © 2016 National Kidney Foundation, Inc. All rights reserved.

  10. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-01-01

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO 4 ) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO 4 2− . In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg 3 (PO 4 ) 2 , AlPO 4 , MgO and MgAl 2 O 4 after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: ► The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. ► The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature. ► The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. ► The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  11. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers.

    Science.gov (United States)

    Jasieniak, Jacek J; Treat, Neil D; McNeill, Christopher R; de Villers, Bertrand J Tremolet; Della Gaspera, Enrico; Chabinyc, Michael L

    2016-05-01

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  13. Staffing in Radiotherapy: An Activity Based Approach

    International Nuclear Information System (INIS)

    2015-01-01

    Radiotherapy requires competent professional staff to ensure safe and effective patient treatment and management. There is a need to provide guidelines that recommend appropriate staffing levels to support the initiation of new services as well as the expansion or upgrade of existing services as even simple upgrades or replacement of existing equipment may have a significant impact on staffing needs. Similarly, the introduction of education and training programmes will require staffing adjustments. A calculation algorithm was developed to predict staffing levels based on the inputs that are known or can be easily estimated. This publication complements other IAEA publications used to support the initiation of basic radiation medicine services including Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, published in 2008

  14. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  15. All-Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling.

    Science.gov (United States)

    Liu, Hang; Sun, Jia-Tao; Fu, Hui-Xia; Sun, Pei-Jie; Feng, Y P; Meng, Sheng

    2017-07-19

    The magnetoelectric (ME) effect originating from the effective coupling between electric field and magnetism is an exciting frontier in nanoscale science such as magnetic tunneling junction (MTJ), ferroelectric/piezoelectric heterojunctions etc. The realization of switchable ME effect under external electric field in d0 semiconducting materials of single composition is needed especially for all-silicon spintronics applications because of its natural compatibility with current industry. We employ density functional theory (DFT) to reveal that the pristine Si(111)-3×3 R30° (Si3 hereafter) reconstructed surfaces of thin films with a thickness smaller than eleven bilayers support a sizeable linear ME effect with switchable direction of magnetic moment under external electric field. This is achieved through the interlayer exchange coupling effect in the antiferromagnetic regime, where the spin-up and spin-down magnetized density is located on opposite surfaces of Si3 thin films. The obtained coefficient for the linear ME effect can be four times larger than that of ferromagnetic Fe films, which fail to have the reversal switching capabilities. The larger ME effect originates from the spin-dependent screening of the spin-polarized Dirac fermion. The prediction will promote the realization of well-controlled and switchable data storage in all-silicon electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interlayer thermal conductance within a phosphorene and graphene bilayer.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2016-11-24

    Monolayer graphene possesses unusual thermal properties, and is often considered as a prototype system for the study of thermal physics of low-dimensional electronic/thermal materials, despite the absence of a direct bandgap. Another two-dimensional (2D) atomic layered material, phosphorene, is a natural p-type semiconductor and it has attracted growing interest in recent years. When a graphene monolayer is overlaid on phosphorene, the hybrid van der Waals (vdW) bilayer becomes a potential candidate for high-performance thermal/electronic applications, owing to the combination of the direct-bandgap properties of phosphorene with the exceptional thermal properties of graphene. In this work, the interlayer thermal conductance at the phosphorene/graphene interface is systematically investigated using classical molecular dynamics (MD) simulation. The transient pump-probe heating method is employed to compute the interfacial thermal resistance (R) of the bilayer. The predicted R value at the phosphorene/graphene interface is 8.41 × 10 -8 K m 2 W -1 at room temperature. Different external and internal conditions, i.e., temperature, contact pressure, vacancy defect, and chemical functionalization, can all effectively reduce R at the interface. Numerical results of R reduction as a function of temperature, interfacial coupling strength, defect ratio, or hydrogen coverage are reported with the most R reduction amounting to 56.5%, 70.4%, 34.8% and 84.5%, respectively.

  17. Arts-based and creative approaches to dementia care.

    Science.gov (United States)

    McGreevy, Jessica

    2016-02-01

    This article presents a review of arts-based and creative approaches to dementia care as an alternative to antipsychotic medications. While use of antipsychotics may be appropriate for some people, the literature highlights the success of creative approaches and the benefits of their lack of negative side effects associated with antipsychotics. The focus is the use of biographical approaches, music, dance and movement to improve wellbeing, enhance social networks, support inclusive practice and enable participation. Staff must be trained to use these approaches. A case study is presented to demonstrate how creative approaches can be implemented in practice and the outcomes that can be expected when used appropriately.

  18. Effect of interlayer bonding quality of asphalt layers on pavement performance

    Science.gov (United States)

    Jaskula, Piotr; Rys, Dawid

    2017-09-01

    The quality of interlayer bonding at the interfaces between the asphalt layers in flexible pavements affects the overall pavement performance. Lack or partial lack of interlayer bonding between asphalt layers can cause pavement’s premature failures such as rutting, slippage of the wearing course, cracking or simply a reduction in the calculated fatigue life of the pavement structure. This paper shows the case studies of investigation of actual or potential premature failure of newly reconstructed and constructed pavements where low quality of interlayer bonding has a dominant meaning. In situ and laboratory tests were performed and followed by analytical calculation of pavement structure where thicknesses of layers and maximum shear strengths obtained from the tests were used. During the investigation it was found out that a low quality of tack coat as well as the same aggregate gradation in the bonded asphalt mixtures were the main reasons behind the weak quality of interlayer bonding. Partial interlayer bonding has a strong influence on reduction of calculated fatigue life of pavement. The summary of the paper includes recommendations on how to avoid the low quality of interlayer bonding of asphalt layers.

  19. Effects of Electrospun Carbon Nanofibers’ Interlayers on High-Performance Lithium–Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Tianji Gao

    2017-03-01

    Full Text Available Two different interlayers were introduced in lithium–sulfur batteries to improve the cycling stability with sulfur loading as high as 80% of total mass of cathode. Melamine was recommended as a nitrogen-rich (N-rich amine component to synthesize a modified polyacrylic acid (MPAA. The electrospun MPAA was carbonized into N-rich carbon nanofibers, which were used as cathode interlayers, while carbon nanofibers from PAA without melamine was used as an anode interlayer. At the rate of 0.1 C, the initial discharge capacity with two interlayers was 983 mAh g−1, and faded down to 651 mAh g−1 after 100 cycles with the coulombic efficiency of 95.4%. At the rate of 1 C, the discharge capacity was kept to 380 mAh g−1 after 600 cycles with a coulombic efficiency of 98.8%. It apparently demonstrated that the cathode interlayer is extremely effective at shutting down the migration of polysulfide ions. The anode interlayer induced the lithium ions to form uniform lithium metal deposits confined on the fiber surface and in the bulk to strengthen the cycling stability of the lithium metal anode.

  20. The influence of interlayer interactions on the mechanical properties of polymeric nanocomposites

    Directory of Open Access Journals (Sweden)

    Jabbarzadeh Mehrdad

    2015-01-01

    Full Text Available In this paper the influence of types of interlayer interactions on the elastic modules of multilayer graphene sheets (GS and nanocomposites is studied. The modeling and investigation of mechanical properties of graphite layers are performed using molecular mechanics (MM method. Initially, due to improving the model and decreasing the amount of computations, three types of elements such as beam, linear spring and nonlinear spring are used. To continue, the mechanical properties of multilayers and nanocomposites are compared using three types of interlayer interactions. Initially, nonlinear spring defined by Leonard Jones potential is used to define interlayer interactions (ordinary case. To continue, linear spring with certain stiffness, to obtain an equal linear spring and also to investigate the ultimate capacity of interlayer interactions in the force translation, by increasing the stiffness of linear springs, is employed (chemical change. Then once by omitting all Van der Waals interactions and defects creation in graphite layers, they are devoted to create covalent interlayer interactions (using Morse potential and another time, Van der Waals and covalent interlayer interactions are created spontaneously to study the properties of multilayers and nanocomposites (functionalization. The results are compared with other available literatures in this case to validate the modeling.

  1. Analytical modeling of effect of interlayer on effective moduli of layered graphene-polymer nanocomposites

    Institute of Scientific and Technical Information of China (English)

    C.C.Roach; Y.C.Lu

    2017-01-01

    Nanocomposites enhanced with two-dimensional,layered graphene fillers are a new class of engineering materials that exhibit superior properties and characteristics to composites with conventional fillers.However,the roles of "interlayers" in layered graphene fillers have yet to be fully explored.This paper examines the effect of interlayers on mechanical properties of layered graphene polymer composites.As an effective filler,the fundamental properties (in-plane Young's modulus EL1,out-of-plane Young's modulus EL2;shear modulus GL12,major Poisson's ratio 1L12) of the layered graphene were computed by using the Arridge's lamellar model.The effects of interlayers on effective moduli of layered graphene epoxy composites were examined through the Tandon-Weng model.The properties of the interlayer show noticeable impact on elastic properties of the composites,particular the out-of-plane properties (Young's modulus E2 and shear modulus G12).The interlayer spacing is seen to have much great influence on properties of the composites.As the interlayer spacing increases from 0.34 nm to 2 nm,all elastic properties of the composites have been greatly decreased.

  2. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Zhou, Yan, E-mail: yanzhou@upc.edu.cn [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); Wang, Zhaojie [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); An, Changhua [College of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China); College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Zhang, Jun, E-mail: zhangj@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development Zone, Qingdao, Shandong, 266580 (China)

    2017-05-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS{sub 2} nanosheets assembled nanorods with the interlayer of MoS{sub 2} nanosheets expanded to 0.89 nm, namely layer expanded MoS{sub 2} nanorods (LE-MoS{sub 2} NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS{sub 2} nanosheets. N{sub 2} adsorption-desorption isotherms of LE-MoS{sub 2} NRs indicated high specific area up to 37.0 m{sup 2} g{sup −1}. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS{sub 2} interlayers. The as-prepared electrode material showed capacitance up to 231 F g{sup −1} at 1 A g{sup −1} charge-discharge current and cycling stability test indicated high capacitance of 177 F g{sup −1} was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS{sub 2} to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS{sub 2}. • MoS{sub 2} nanosheets assembled incompact nanorods.

  3. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  4. Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance

    International Nuclear Information System (INIS)

    Xiao, Huaqing; Wang, Shutao; Zhang, Shuo; Wang, Yihe; Xu, Qingfei; Hu, Wenjie; Zhou, Yan; Wang, Zhaojie; An, Changhua; Zhang, Jun

    2017-01-01

    Rational structural design for electrode materials is essential for fabricating high performance supercapacitors. In this work, we demonstrated a novel way to prepare incompact MoS_2 nanosheets assembled nanorods with the interlayer of MoS_2 nanosheets expanded to 0.89 nm, namely layer expanded MoS_2 nanorods (LE-MoS_2 NRs). The material was characterized by XRD, XPS and electron microscopes. The XRD data and HRTEM images confirmed the existence of expanded interlayer of MoS_2 nanosheets. N_2 adsorption-desorption isotherms of LE-MoS_2 NRs indicated high specific area up to 37.0 m"2 g"−"1. It was found that the expanded interlayer spacing can benefit the ion transportation within the MoS_2 interlayers. The as-prepared electrode material showed capacitance up to 231 F g"−"1 at 1 A g"−"1 charge-discharge current and cycling stability test indicated high capacitance of 177 F g"−"1 was retained after 1000 cycles. - Highlights: • High performance electrochemical supercapacitor electrode material. • Interlayer expanded MoS_2 to achieve enhanced capacitance. • Facile hydrothermal synthesis of interlayer expanded MoS_2. • MoS_2 nanosheets assembled incompact nanorods.

  5. Modification of magnetoresistance and magnetic properties of Ni thin films by adding Dy interlayer

    Science.gov (United States)

    Vorobiov, S. I.; Shabelnyk, T. M.; Shutylieva, O. V.; Pazukha, I. M.; Chornous, A. M.

    2018-03-01

    The paper reports the influence of dysprosium (Dy) interlayer addition on structure, magnetoresistance and magnetic properties of nickel (Ni) thin films. Trilayer film systems Ni/Dy/Ni have been prepared by alternate electron-beam evaporation. It is demonstrated that all as-prepared and annealed Ni thin films have face-centered cubic structure. The composition of the samples after addition of the Dy interlayer corresponds to the combination of face-centered cubic (Ni) and hexagonal close-packed (Dy) structures. The structure of Ni/Dy/Ni film systems changes from amorphous to polycrystalline when Dy interlayer thickness (t Dy) is more than 15 nm. The value of magnetoresistance increases with the adding the Dy interlayer in both longitudinal and transverse geometries, meanwhile the anisotropic character of magnetoresistance field dependences retained. The saturation and reversal magnetizations are reduced with the increasing of the Dy thickness interlayer, while the coercivity takes the minimum value at t Dy = 15 nm. The following increasing of t Dy leads to increasing of coercivity near to three times. This result indicates the influence of the crystal structure on the magnetic properties of Ni thin films at adding Dy interlayer.

  6. Effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, K.D.G.I.; Amarasinghe, K.M.P.; Nismy, N.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Mills, C.A. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, Swinden Technology Centre, Rotherham, S60 3AR (United Kingdom); Silva, S.R.P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-09-30

    Polymer solar cells are fast gaining momentum as a potential solution towards low cost sustainable energy generation. However, the performance of architectures is known to be limited by the thin film nature of the active layer which, although required due to low charge carrier mobilities, limits the optical coupling to the active layer. The formation of periodic backgratings has been proposed as a solution to this problem. Here, we investigate the effect of solution processed and thermally evaporated interlayers on the performance of backgrated polymer solar cells. Analysis of device performance under standard conditions indicates higher power conversion efficiencies with the incorporation of the evaporated interlayer (5.7%) over a sol–gel processed interlayer (4.9%). This is driven by a more conformal coating as evidenced through two orders of magnitude higher electron mobilities (10{sup −5} versus 10{sup −7} cm{sup 2} V{sup −1} s{sup −1}) as well as the balanced electron and hole transport observed for the former architecture. It is believed that these results will catalyse further development of such device engineering concepts for improved optical coupling in thin film photovoltaics. - Highlights: • Effect of interlayers on backgrated photovoltaic devices is tested. • Evaporated interlayers lead to better device performance. • Better charge extraction is observed for evaporated interlayers.

  7. Information theory based approaches to cellular signaling.

    Science.gov (United States)

    Waltermann, Christian; Klipp, Edda

    2011-10-01

    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Ethics education for health professionals: a values based approach.

    Science.gov (United States)

    Godbold, Rosemary; Lees, Amanda

    2013-11-01

    It is now widely accepted that ethics is an essential part of educating health professionals. Despite a clear mandate to educators, there are differing approaches, in particular, how and where ethics is positioned in training programmes, underpinning philosophies and optimal modes of assessment. This paper explores varying practices and argues for a values based approach to ethics education. It then explores the possibility of using a web-based technology, the Values Exchange, to facilitate a values based approach. It uses the findings of a small scale study to signal the potential of the Values Exchange for engaging, meaningful and applied ethics education. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Optimization of the diffusion bonding parameters for SS316L/CuCrZr with and without Nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K.P., E-mail: kpsingh@ipr.res.in; Patel, Alpesh; Bhope, Kedar; Khirwadkar, S.S.; Mehta, Mayur

    2016-11-15

    Dispersive X-ray (EDAX) analysis, micro hardness measurement and shear measurements by custom made fixture. The diffusion bonding parameter of SS316L/CuCrZr is optimized based on study with Nickel (Ni) interlayer and without interlayer. The details of fabrication procedure and the results of the characterization are discussed and presented in this paper.

  10. Optimization of the diffusion bonding parameters for SS316L/CuCrZr with and without Nickel interlayer

    International Nuclear Information System (INIS)

    Singh, K.P.; Patel, Alpesh; Bhope, Kedar; Khirwadkar, S.S.; Mehta, Mayur

    2016-01-01

    Dispersive X-ray (EDAX) analysis, micro hardness measurement and shear measurements by custom made fixture. The diffusion bonding parameter of SS316L/CuCrZr is optimized based on study with Nickel (Ni) interlayer and without interlayer. The details of fabrication procedure and the results of the characterization are discussed and presented in this paper.

  11. Pressure-assisted reaction bonding between W and Si80Ge20 alloy with Ni as the interlayer

    International Nuclear Information System (INIS)

    Xu, Y.; Laabs, F.C.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1991-01-01

    The conditions and reaction mechanism of W/Ni/Si 80 Ge 20 hot-press bonding have been studied. It was found that a Ni/Si 80 Ge 20 bond can be formed using low pressure, 19.6 MPa, in the temperature range between 780 and 900 degree C in a short time. The kinetics follows a parabolic pattern, suggesting it is a diffusion-controlled process. The activation energy is 2.7 eV and the parabolic rate constant is given by K P = 4.0 x 10 14 exp(-3.2x10 4 /T) (μm 2 /min). The bonding interface has a multilayered structure. A phenomenological mechanism of the bonding formation has been proposed based on scanning electron microscopy observations and energy dispersive spectroscopy. The cracking problem due to thermal stress is discussed based on Oxx's equation. It was found that bonds free from cracks in the Si 80 Ge 20 alloy are formed when the Ni consumption (as measured by the thickness of the nickel layer) is sufficiently small ( 4 . As an interlayer, nickel can join the tungsten sheet and the Si 80 Ge 20 together. It has been also demonstrated that a thin nickel layer formed by vapor deposition on a tungsten sheet may be used as the interlayer in place of nickel sheet

  12. Interteaching: An Evidence-Based Approach to Instruction

    Science.gov (United States)

    Brown, Thomas Wade; Killingsworth, Kenneth; Alavosius, Mark P.

    2014-01-01

    This paper describes "interteaching" as an evidence-based method of instruction. Instructors often rely on more traditional approaches, such as lectures, as means to deliver instruction. Despite high usage, these methods are ineffective at achieving desirable academic outcomes. We discuss an innovative approach to delivering instruction…

  13. [Evidence-based medicine: an approach without any weakness?].

    Science.gov (United States)

    Junod, A F

    2000-04-06

    Evidence-based medicine is a methodological approach giving access to the best information derived from clinical research for an individual patient. It requires the formulation of a question, a strategy to search for the best information, the selection of the latter, its critical appraisal and its application to the patient. The qualities, but also the limitations of this approach are discussed.

  14. Leisure market segmentation : an integrated preferences/constraints-based approach

    NARCIS (Netherlands)

    Stemerding, M.P.; Oppewal, H.; Beckers, T.A.M.; Timmermans, H.J.P.

    1996-01-01

    Traditional segmentation schemes are often based on a grouping of consumers with similar preference functions. The research steps, ultimately leading to such segmentation schemes, are typically independent. In the present article, a new integrated approach to segmentation is introduced, which

  15. Agile Service Development: A Rule-Based Method Engineering Approach

    NARCIS (Netherlands)

    dr. Martijn Zoet; Stijn Hoppenbrouwers; Inge van de Weerd; Johan Versendaal

    2011-01-01

    Agile software development has evolved into an increasingly mature software development approach and has been applied successfully in many software vendors’ development departments. In this position paper, we address the broader agile service development. Based on method engineering principles we

  16. An improved Hough transform-based fingerprint alignment approach

    CSIR Research Space (South Africa)

    Mlambo, CS

    2014-11-01

    Full Text Available An improved Hough Transform based fingerprint alignment approach is presented, which improves computing time and memory usage with accurate alignment parameter (rotation and translation) results. This is achieved by studying the strengths...

  17. A sampling-based approach to probabilistic pursuit evasion

    KAUST Repository

    Mahadevan, Aditya; Amato, Nancy M.

    2012-01-01

    Probabilistic roadmaps (PRMs) are a sampling-based approach to motion-planning that encodes feasible paths through the environment using a graph created from a subset of valid positions. Prior research has shown that PRMs can be augmented

  18. Poverty reduction Approaches in Kenya: Assessing the Usefulness of the Right Based Approach in Kenya

    Directory of Open Access Journals (Sweden)

    Wambua Leonard Munyao, Ph.D

    2013-06-01

    Full Text Available While billions of dollars have been spent in development projects in least developed countries, poverty continues to increase. This study proposes human-rights based approach to poverty eradication. To this end, the study seeks to assess the key determinants of use of rights- based approaches to poverty reduction and it’s usefulness in Kenya with special reference to NGOs in Kibera. The study further high lights some of the basic skills of implementing the rights based approach to poverty reduction. The attempts to establish the proportion of NGOs applying rights based approach to poverty reduction in Kibera Division as well. The review of relevant literature has been undertaken and a field study done. The study is informed by a qualitative human rights framework.

  19. User-based and Cognitive Approaches to Knowledge Organization

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2013-01-01

    ’s PageRank are not based on the empirical studies of users. In knowledge organization, the Book House System is one example of a system based on user studies. In cognitive science the important WordNet database is claimed to be based on psychological research. This article considers such examples......In the 1970s and 1980s, forms of user-based and cognitive approaches to knowledge organization came to the forefront as part of the overall development in library and information science and in the broader society. The specific nature of userbased approaches is their basis in the empirical studies...

  20. A model-data based systems approach to process intensification

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    . Their developments, however, are largely due to experiment based trial and error approaches and while they do not require validation, they can be time consuming and resource intensive. Also, one may ask, can a truly new intensified unit operation be obtained in this way? An alternative two-stage approach is to apply...... a model-based synthesis method to systematically generate and evaluate alternatives in the first stage and an experiment-model based validation in the second stage. In this way, the search for alternatives is done very quickly, reliably and systematically over a wide range, while resources are preserved...... for focused validation of only the promising candidates in the second-stage. This approach, however, would be limited to intensification based on “known” unit operations, unless the PI process synthesis/design is considered at a lower level of aggregation, namely the phenomena level. That is, the model-based...

  1. Enhancing Performance and Uniformity of Perovskite Solar Cells via a Solution-Processed C70 Interlayer for Interface Engineering.

    Science.gov (United States)

    Zhou, Ya-Qing; Wu, Bao-Shan; Lin, Guan-Hua; Li, Yang; Chen, Di-Chun; Zhang, Peng; Yu, Ming-Yu; Zhang, Bin-Bin; Yun, Da-Qin

    2017-10-04

    Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C 70 interlayer between TiO 2 and (HC(NH 2 ) 2 PbI 3 ) x (CH 3 NH 3 PbCl 3 ) 1-x is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO 2 /C 70 ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C 70 molecules. In comparison with pristine TiO 2 -based PSCs, the efficiency and hysteresis index are, respectively, enhanced 28% and reduced 76% by adding the C 70 interlayer between TiO 2 and perovskite on the basis of statistical data of more than 50 cells. With the main advantages of low-temperature process and optimized interface, the champion efficiency of PSCs on flexible substrates could exceed 12% in contrast with the above 18% on rigid substrate.

  2. MOCVD growth of GaN layer on InN interlayer and relaxation of residual strain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon-Hun; Park, Sung Hyun; Kim, Jong Hack; Kim, Nam Hyuk; Kim, Min Hwa [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Na, Hyunseok [Department of Advanced Materials Science and Engineering, Daejin University, Pocheon, 487-711 (Korea, Republic of); Yoon, Euijoon, E-mail: eyoon@snu.ac.k [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 433-270 (Korea, Republic of)

    2010-09-01

    100 nm InN layer was grown on sapphire c-plane using a metal-organic chemical vapor deposition (MOCVD) system. Low temperature (LT) GaN layer was grown on InN layer to protect InN layer from direct exposure to hydrogen flow during high temperature (HT) GaN growth and/or abrupt decomposition. Subsequently, thick HT GaN layer (2.5 {mu}m thick) was grown at 1000 {sup o}C on LT GaN/InN/sapphire template. Microstructure of epilayer-substrate interface was investigated by transmission electron microscopy (TEM). From the high angle annular dark field TEM image, the growth of columnar structured LT GaN and HT GaN with good crystallinity was observed. Though thickness of InN interlayer is assumed to be about 100 nm based on growth rate, it was not clearly shown in TEM image due to the InN decomposition. The lattice parameters of GaN layers were measured by XRD measurement, which shows that InN interlayer reduces the compressive strain in GaN layer. The relaxation of compressive strain in GaN layer was also confirmed by photoluminescence (PL) measurement. As shown in the PL spectra, red shift of GaN band edge peak was observed, which indicates the reduction of compressive strain in GaN epilayer.

  3. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  4. Investigation on the Permeability Evolution of Gypsum Interlayer Under High Temperature and Triaxial Pressure

    Science.gov (United States)

    Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu

    2017-08-01

    reduced, which eventually leads to a decrease in permeability. When the inlet gas pressure is between 2 and 6 MPa, the Klinkenberg effect dribbles away, and the gas flow gradually obeys to the Darcy's law. Hence, the permeability increased with the increase in inlet gas pressure. (c) The curve of permeability versus temperature is divided into five stages based on its gradient. In the temperature range of 20-100 °C, the permeability of gypsum decreased slowly when the temperature decreased. From 100 to 200 °C, the permeability of gypsum increased dramatically when the temperature increased. However, a dramatic increase in permeability was observed from 200 to 450 °C. Subsequently, in the temperature range of 450-550 °C, due to closure of pores and fractures, the permeability of the specimens slowly lessened when the temperature increased. From 550 to 650 °C, the permeability of gypsum slightly increased when the temperature increased; (d) the micro-cracks and porosity obtained from the CT images show a high degree of consistency to the permeability evolution; (e) when compared to the permeability evolutions of sandstone, granite, and lignite, gypsum exhibits a stable evolution trend of permeability and has a much greater threshold temperature when its permeability increases sharply. The results of the paper may provide essential and valuable references for the design and construction of high-level radioactive wastes repository in bedded salt rock containing gypsum interlayers.

  5. A new approach to hand-based authentication

    Science.gov (United States)

    Amayeh, G.; Bebis, G.; Erol, A.; Nicolescu, M.

    2007-04-01

    Hand-based authentication is a key biometric technology with a wide range of potential applications both in industry and government. Traditionally, hand-based authentication is performed by extracting information from the whole hand. To account for hand and finger motion, guidance pegs are employed to fix the position and orientation of the hand. In this paper, we consider a component-based approach to hand-based verification. Our objective is to investigate the discrimination power of different parts of the hand in order to develop a simpler, faster, and possibly more accurate and robust verification system. Specifically, we propose a new approach which decomposes the hand in different regions, corresponding to the fingers and the back of the palm, and performs verification using information from certain parts of the hand only. Our approach operates on 2D images acquired by placing the hand on a flat lighting table. Using a part-based representation of the hand allows the system to compensate for hand and finger motion without using any guidance pegs. To decompose the hand in different regions, we use a robust methodology based on morphological operators which does not require detecting any landmark points on the hand. To capture the geometry of the back of the palm and the fingers in suffcient detail, we employ high-order Zernike moments which are computed using an effcient methodology. The proposed approach has been evaluated on a database of 100 subjects with 10 images per subject, illustrating promising performance. Comparisons with related approaches using the whole hand for verification illustrate the superiority of the proposed approach. Moreover, qualitative comparisons with state-of-the-art approaches indicate that the proposed approach has comparable or better performance.

  6. Molecular simulation of the role of interlayer water on the mechanical properties of montmorillonite

    International Nuclear Information System (INIS)

    Carrier, Benoit; Vandamme, Matthieu; Ebrahimi, Davoud; Whittle, Andrew J.; Pellenq, Roland J.M.; Van Damme, Henri

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Montmorillonite - a swelling clay - is the main component of the clay fraction of the Callovo-Oxfordian argillite, which is considered as a possible host rock for radioactive waste disposal, and of the sealing bentonite plugs of storage tunnels. Montmorillonite layers have a great ability to adsorb water, resulting in the swelling of the clay. Montmorillonite consists of water molecules and sodium or calcium cations between negatively charged layers. Both the water content of the interlayer space and the nature of the charge-balancing cations are expected to have an effect on the mechanical properties of the clay layer. Computer simulations allow to reproduce the experimental swelling isotherms of the layers and to gain a deeper understanding of the physical mechanisms of the swelling process. They show how water is organized in discrete layers and how this process depends on the type of inter-layer cation. However, the effect of the swelling on the mechanical properties of the nano-scale have not been fully investigated. The objective of this work is to compute the elastic properties of a Na + - Montmorillonite and a Ca 2+ -Montmorillonite versus relative humidity at 300 K. The results of this work is the first step to build a macroscopic state equation of unsaturated clay-based materials. We use a simulation cell containing two Montmorillonite layers and sodium or calcium counterions. The partial charges of the atoms and the interatomic interaction parameters are given by the CLAYFF force field. Grand Canonical Monte-Carlo simulations are used to compute the adsorption/desorption isotherm. Each equilibrium configuration is then strained in all directions of space. Then, we perform Molecular Dynamics and compute the stress tensor and all the components of the elasticity tensor. We present the evolution of the elastic properties of the clay layers with the relative humidity. In

  7. Knowledge-based biomedical word sense disambiguation: comparison of approaches

    Directory of Open Access Journals (Sweden)

    Aronson Alan R

    2010-11-01

    Full Text Available Abstract Background Word sense disambiguation (WSD algorithms attempt to select the proper sense of ambiguous terms in text. Resources like the UMLS provide a reference thesaurus to be used to annotate the biomedical literature. Statistical learning approaches have produced good results, but the size of the UMLS makes the production of training data infeasible to cover all the domain. Methods We present research on existing WSD approaches based on knowledge bases, which complement the studies performed on statistical learning. We compare four approaches which rely on the UMLS Metathesaurus as the source of knowledge. The first approach compares the overlap of the context of the ambiguous word to the candidate senses based on a representation built out of the definitions, synonyms and related terms. The second approach collects training data for each of the candidate senses to perform WSD based on queries built using monosemous synonyms and related terms. These queries are used to retrieve MEDLINE citations. Then, a machine learning approach is trained on this corpus. The third approach is a graph-based method which exploits the structure of the Metathesaurus network of relations to perform unsupervised WSD. This approach ranks nodes in the graph according to their relative structural importance. The last approach uses the semantic types assigned to the concepts in the Metathesaurus to perform WSD. The context of the ambiguous word and semantic types of the candidate concepts are mapped to Journal Descriptors. These mappings are compared to decide among the candidate concepts. Results are provided estimating accuracy of the different methods on the WSD test collection available from the NLM. Conclusions We have found that the last approach achieves better results compared to the other methods. The graph-based approach, using the structure of the Metathesaurus network to estimate the relevance of the Metathesaurus concepts, does not perform well

  8. Component-Based Approach in Learning Management System Development

    Science.gov (United States)

    Zaitseva, Larisa; Bule, Jekaterina; Makarov, Sergey

    2013-01-01

    The paper describes component-based approach (CBA) for learning management system development. Learning object as components of e-learning courses and their metadata is considered. The architecture of learning management system based on CBA being developed in Riga Technical University, namely its architecture, elements and possibilities are…

  9. Rights-Based Approach: The Hub of Sustainable Development

    Science.gov (United States)

    Choondassery, Yesudas

    2017-01-01

    A rights-based approach to the environmental issues has been gaining momentum since the United Nations' Environmental Agency proposed a new rights-based agenda for sustainable development in the document, "Transforming Our World: The 2030 Agenda for Sustainable Development" (UN, 2015). Our moral responsibility toward the environment is…

  10. A scenario based approach for flexible resource loading under uncertainty

    NARCIS (Netherlands)

    Wullink, Gerhard; Gademann, Noud; Hans, Elias W.; van Harten, Aart

    2003-01-01

    Order acceptance decisions in manufacture-to-order environments are often made based on incomplete or uncertain information. To promise reliable due dates and to manage resource capacity adequately, resource capacity loading is an indispensable supporting tool. We propose a scenario based approach

  11. Zero base approach to fiscal management of the laboratory.

    Science.gov (United States)

    Boudreau, D A; Majonos, J S

    1985-08-01

    Lab administrators who face the challenge of providing quality care while cutting costs need a way to periodically re-evaluate all lab functions and services. The guidelines presented here, based on the Zero Base Budget approach, formulate a management strategy for the lab that could lead to better fiscal planning.

  12. A GIS based hydrogeomorphic approach for identification of site ...

    Indian Academy of Sciences (India)

    a Geographical Information System (GIS) based hydrogeomorphic approach in the Bhatsa and. Kalu river basins of Thane district, in western DVP. The criteria adopted for the GIS analysis were based .... segments of the rivers. The majority of the lineaments correspond to either dyke ridges or stream channels which are of ...

  13. Approaches in anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Di Pietro, R.; Mancini, L.V.

    2008-01-01

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  14. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  15. A Database Approach to Content-based XML retrieval

    NARCIS (Netherlands)

    Hiemstra, Djoerd

    2003-01-01

    This paper describes a rst prototype system for content-based retrieval from XML data. The system's design supports both XPath queries and complex information retrieval queries based on a language modelling approach to information retrieval. Evaluation using the INEX benchmark shows that it is

  16. Implementing Project Based Learning Approach to Graphic Design Course

    Science.gov (United States)

    Riyanti, Menul Teguh; Erwin, Tuti Nuriah; Suriani, S. H.

    2017-01-01

    The purpose of this study was to develop a learning model based Commercial Graphic Design Drafting project-based learning approach, was chosen as a strategy in the learning product development research. University students as the target audience of this model are the students of the fifth semester Visual Communications Design Studies Program…

  17. A knowledge-based approach for recognition of handwritten Pitman ...

    Indian Academy of Sciences (India)

    The paper describes a knowledge-based approach for the recognition of PSL strokes. Information about location and the direction of the starting point and final point of strokes are considered the knowledge base for recognition of strokes. The work comprises preprocessing, determination of starting and final points, ...

  18. The Effect of Interlayer Materials on the Joint Properties of Diffusion-Bonded Aluminium and Magnesium

    Directory of Open Access Journals (Sweden)

    Stefan Habisch

    2018-02-01

    Full Text Available Diffusion bonding is a well-known technology for a wide range of advanced joining applications, due to the possibility of bonding different materials within a defined temperature-time-contact pressure regime in solid state. For this study, aluminium alloys AA 6060, AA 6082, AA 7020, AA 7075 and magnesium alloy AZ 31 B are used to produce dissimilar metal joints. Titanium and silver were investigated as interlayer materials. SEM and EDXS-analysis, micro-hardness measurements and tensile testing were carried out to examine the influence of the interlayers on the diffusion zone microstructures and to characterize the joint properties. The results showed that the highest joint strength of 48 N/mm2 was reached using an aluminium alloy of the 6000 series with a titanium interlayer. For both interlayer materials, intermetallic Al-Mg compounds were still formed, but the width and the level of hardness across the diffusion zone was significantly reduced compared to Al-Mg joints without interlayer.

  19. Effect of humidity and interlayer cation on frictional strength of montmorillonite

    Science.gov (United States)

    Tetsuka, H.; Katayama, I.; Sakuma, H.; Tamura, K.

    2016-12-01

    Smectite has been ubiquitously seen in fault gouge (Schleicher et al., 2006; Kuo et al., 2009; Si et al., 2014; Kameda, 2015) and is characteristic by low frictional coefficient (Saffer et al., 2001; Ikari et al., 2007); consequently, it has a key role in fault dynamics. The frictional strength of montmorillonite (a typical type of smectite) is affected by mainly two factors, 1) hydration state and 2) interlayer cation. Previous laboratory experiments have shown that the frictional strength of montmorillonite changes with hydration state (Ikari et al., 2007) and with interlayer cation (Behnsen and Faulkner, 2013). However, experimental study for frictional strengths of interlayer cation-exchanged montmorillonite under controlled hydration state has not been reported. We are developing humidity control system in biaxial friction testing machine and try to investigate the effect of relative humidity and interlayer cation on frictional strength of montmorillonite. The humidity control system consists of two units, 1) the pressure vessel (core holder) unit controlled by a constant temperature and 2) the vapor generating unit controlled by variable temperature. We control relative humidity around sample, which is calculated from the temperature around sample and the vapor pressure at vapor generating unit. Preliminary experiments under controlled humidity show frictional coefficient of montmorillonite decrease with increasing relative humidity. In the meeting, we will report the systematic study of frictional coefficient as function of relative humidity and interlayer cation species.

  20. Standard Guide for Selection of Test Methods for Interlayer Materials for Aerospace Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide summarizes the standard test methods available for determining physical and mechanical characteristics of interlayer materials used in multi-ply aerospace transparent enclosures. 1.2 Interlayer materials are used to laminate glass-to-glass, glass-to-plastic, and plastic-to-plastic. Interlayer materials are basically transparent adhesives with high-quality optical properties. They can also serve as an energy absorbing medium, a fail-safe membrane to contain cockpit pressure and to prevent entry of impact debris; a strain insulator to accommodate different thermal expansion rates of members being laminated and as an adherent to prevent spalling of inner surface ply material fragments. The relative importance of an interlayer characteristic will be a function of the prime use it serves in its particular application. 1.3 This guide, as a summary of various methods in Section 2, is intended to facilitate the selection of tests that can be applied to interlayer materials. 1.4 The test methods list...

  1. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun; Zhang, Chenhui; Wang, Zhenyu; Zhu, Jian; Wen, Zhiwei; Zhao, Xingzhong; Zhang, Xixiang; Xu, Jun; Lu, Zhouguang

    2017-01-01

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  2. Synergistic Interlayer and Defect Engineering in VS2 Nanosheets toward Efficient Electrocatalytic Hydrogen Evolution Reaction

    KAUST Repository

    Zhang, Junjun

    2017-12-27

    A simple one-pot solvothermal method is reported to synthesize VS2 nanosheets featuring rich defects and an expanded (001) interlayer spacing as large as 1.00 nm, which is a ≈74% expansion as relative to that (0.575 nm) of the pristine counterpart. The interlayer-expanded VS2 nanosheets show extraordinary kinetic metrics for electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 43 mV at a geometric current density of 10 mA cm-2 , a small Tafel slope of 36 mV dec-1 , and long-term stability of 60 h without any current fading. The performance is much better than that of the pristine VS2 with a normal interlayer spacing, and even comparable to that of the commercial Pt/C electrocatalyst. The outstanding electrocatalytic activity is attributed to the expanded interlayer distance and the generated rich defects. Increased numbers of exposed active sites and modified electronic structures are achieved, resulting in an optimal free energy of hydrogen adsorption (∆GH ) from density functional theory calculations. This work opens up a new door for developing transition-metal dichalcogenide nanosheets as high active HER electrocatalysts by interlayer and defect engineering.

  3. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.

    Science.gov (United States)

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2016-02-10

    van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

  4. Electrical properties of a charge-transfer interlayer modified organic heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Salzmann, Ingo; Koch, Norbert [Humboldt-Universitaet zu Berlin (Germany). Institut f. Physik; Vollmer, Antje [HZB-BESSY, Berlin (Germany)

    2010-07-01

    We investigated the effect of a thin interlayer (ca. monolayer) of tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) between prototypical hole and electron transport layers (HTL and ETL) on interface energetics and current transport. As HTL we used 4,4{sup '},4''-tris(N,N-diphenyl-amino)triphenylamine (TDATA) and tris (8-hydroxyquinoline)aluminium (Alq{sub 3}) as ETL, which are commonly employed in organic light emitting diodes. The hole injection barrier into TDATA is 0.5 eV, as measured by photoemission spectroscopy. Deposition of an F4-TCNQ interlayer on top of TDATA does not further change the energy level position. However, after applying the F4-TCNQ interlayer the energy levels of Alq3 deposited on top of TDATA are 0.15 eV closer to the Fermi-level than without the interlayer. Diodes fabricated without interlayer had a 0.6 V higher onset-voltage one order of magnitude lower current density than those with F4-TCNQ. These observations can be rationalized by an increased (non-radiative) electron-hole recombination rate at the modified organic heterojunction and a changed internal electric field distribution.

  5. Exchange of interlayer cations in micaceous minerals. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Scott, A.D.

    1975-01-01

    Information pertaining to the sorption and exchange of interlayer cations in micaceous minerals was developed along several lines. Cs sorption experiments with different minerals and particle sizes established the periods required for maximum sorption at different temperatures and downgraded the impact anticipated from a contraction of particle edges by Cs. Added interlayer Cs in even highly charged minerals (degraded muscovite) proved to be very exchangeable in air-dry, clay size particles. Heat treatments greatly retarded the exchange of this sorbed Cs and by doing so have circumvented the commonly observed small particle effects. Structural Fe in micas was shown to be susceptible to oxidation by various Br 2 treatments but these treatments also removed a lot of K that must be accounted for in a determination of changes in interlayer K exchangeability. Changes in the rate of interlayer K exchange were induced in some micaceous minerals by adding H 2 O 2 but not in others. Specific effects of heat treatments on dioctahedral and trioctahedral micas were examined in great detail. Interlayer cation exchange experiments with different concentrations of Na and Al have produced predictable results. (U.S.)

  6. A Brief Introduction of Task-based Approach

    Institute of Scientific and Technical Information of China (English)

    王丹

    2012-01-01

    The task-based language teaching approach is one of the syllabus models that have been proposed in the last twenty years or so. Task-based syllabus represent a particular realization of communicative language teaching. Task-based teaching/learning helps develop students’ communicative competence, enabling them to communicate effectively in real communicating world and engage in interaction. The most active element in the process of the task-based teaching is the learner’ creativity. By exploiting this kind of creativity, learning can be made significantly more efficient and more interesting. It is well-known that the task-based teaching/learning have a rich potential for promoting successful second language learning than the traditional teaching/learning. Task-based approach is reflected not only in China but also in some other countries, such as America, Canada, Singapore, Hong Kong and son on.

  7. THE DEVELOPMENT OF THE PROCESS-BASED APPROACH TO MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Urij V. Lyandau

    2013-01-01

    Full Text Available This article considers the timeline of the approaches to management of the industrial processes and organizations in general.The Adam Smith’s idea of specialization, the Henry Ford’s conveyor and Frederick Taylor’s scientific approach created functional corporations, in which specialized departments consisted of specialized workers. Such organizational chart was optimized for every department’s tasks, which are necessary to perform.During the life cycle evolution of industrial and then informational ages external conditions of production has changed. In consequence, there was born the necessity to change key factors of the management paradigm. These changes are the transfer from the functional management to the process-based approach. The functional management was the basic type of management in many organizations during the 20th century. Only in the end of 1990 companies started to integrate the process-based approach. This conversion was born cause of special conditions that the informational age created.

  8. Impact of interlayer processing conditions on the performance of GaN light-emitting diode with specific NiOx/graphene electrode.

    Science.gov (United States)

    Chandramohan, S; Kang, Ji Hye; Ryu, Beo Deul; Yang, Jong Han; Kim, Seongjun; Kim, Hynsoo; Park, Jong Bae; Kim, Taek Yong; Cho, Byung Jin; Suh, Eun-Kyung; Hong, Chang-Hee

    2013-02-01

    This paper reports on the evaluation of the impact of introducing interlayers and postmetallization annealing on the graphene/p-GaN ohmic contact formation and performance of associated devices. Current-voltage characteristics of the graphene/p-GaN contacts with ultrathin Au, Ni, and NiO(x) interlayers were studied using transmission line model with circular contact geometry. Direct graphene/p-GaN interface was identified to be highly rectifying and postmetallization annealing improved the contact characteristics as a result of improved adhesion between the graphene and the p-GaN. Ohmic contact formation was realized when interlayer is introduced between the graphene and p-GaN followed by postmetallization annealing. Temperature-dependent I-V measurements revealed that the current transport was modified from thermionic field emission for the direct graphene/p-GaN contact to tunneling for the graphene/metal/p-GaN contacts. The tunneling mechanism results from the interfacial reactions that occur between the metal and p-GaN during the postmetallization annealing. InGaN/GaN light-emitting diodes with NiO(x)/graphene current spreading electrode offered a forward voltage of 3.16 V comparable to that of its Ni/Au counterpart, but ended up with relatively low light output power. X-ray photoelectron spectroscopy provided evidence for the occurrence of phase transformation in the graphene-encased NiO(x) during the postmetallization annealing. The observed low light output is therefore correlated to the phase change induced transmittance loss in the NiO(x)/graphene electrode. These findings provide new insights into the behavior of different interlayers under processing conditions that will be useful for the future development of opto-electronic devices with graphene-based electrodes.

  9. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron Collecting Interlayer

    KAUST Repository

    Xu, Weidong; Yan, Congfei; Kan, Zhipeng; Wang, Yang; Lai, Wen-Yong; Huang, Wei

    2016-01-01

    A novel fulleropyrrolidine derivative, named as FPNOH, was designed, synthesized and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multi-layer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick PFNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the non-conjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial traps-induced recombination at ITO/active layer interface.

  10. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron Collecting Interlayer

    KAUST Repository

    Xu, Weidong

    2016-05-20

    A novel fulleropyrrolidine derivative, named as FPNOH, was designed, synthesized and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multi-layer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick PFNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the non-conjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial traps-induced recombination at ITO/active layer interface.

  11. Wave energy transfer in elastic half-spaces with soft interlayers.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey

    2015-04-01

    The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.

  12. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate.

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J; Qomi, Mohammad Javad Abdolhosseini; Monteiro, Paulo J M

    2017-09-08

    Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.

  13. Influence of an Inorganic Interlayer on Exciton Separation in Hybrid Solar Cells

    Science.gov (United States)

    2015-01-01

    It has been shown that in hybrid polymer–inorganic photovoltaic devices not all the photogenerated excitons dissociate at the interface immediately, but can instead exist temporarily as bound charge pairs (BCPs). Many of these BCPs do not contribute to the photocurrent, as their long lifetime as a bound species promotes various charge carrier recombination channels. Fast and efficient dissociation of BCPs is therefore considered a key challenge in improving the performance of polymer–inorganic cells. Here we investigate the influence of an inorganic energy cascading Nb2O5 interlayer on the charge carrier recombination channels in poly(3-hexylthiophene-2,5-diyl) (P3HT)–TiO2 and PbSe colloidal quantum dot–TiO2 photovoltaic devices. We demonstrate that the additional Nb2O5 film leads to a suppression of BCP formation at the heterojunction of the P3HT cells and also a reduction in the nongeminate recombination mechanisms in both types of cells. Furthermore, we provide evidence that the reduction in nongeminate recombination in the P3HT–TiO2 devices is due in part to the passivation of deep midgap trap states in the TiO2, which prevents trap-assisted Shockley–Read–Hall recombination. Consequently a significant increase in both the open-circuit voltage and the short-circuit current was achieved, in particular for P3HT-based solar cells, where the power conversion efficiency increased by 39%. PMID:26548399

  14. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  15. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application.

    Science.gov (United States)

    Wang, Qian; Chen, Xiaoguang; Zhu, Lin; Yan, Jiuchun; Lai, Zhiwei; Zhao, Pizhi; Bao, Juncheng; Lv, Guicai; You, Chen; Zhou, Xiaoyu; Zhang, Jian; Li, Yuntao

    2017-01-01

    Al-50Si alloys were joined by rapid ultrasound-induced transient-liquid-phase bonding method using Zn foil as interlayer at 390°C in air, below the melt point of interlayer. The fracture of oxide films along the edge of Si particles led to contact and inter-diffusion between aluminum substrate and Zn interlayer, and liquefied Zn-Al alloys were developed. The width of Zn-Al alloys gradually decreased with increasing the ultrasonic vibration time due to liquid squeezing out and accelerated diffusion. A stage of isothermal solidification existed, and the completion time was significantly shortened. In the liquid metal, the acoustic streaming and ultrasonic cavitations were induced. As the process developed, much more Si particles, which were particulate-reinforced phases of Al-50Si, gradually migrated to the center of soldering seam. The highest average shear strength of joints reached to 94.2MPa, and the fracture mainly occurred at the base metal. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Computer based approach to fatigue analysis and design

    International Nuclear Information System (INIS)

    Comstock, T.R.; Bernard, T.; Nieb, J.

    1979-01-01

    An approach is presented which uses a mini-computer based system for data acquisition, analysis and graphic displays relative to fatigue life estimation and design. Procedures are developed for identifying an eliminating damaging events due to overall duty cycle, forced vibration and structural dynamic characteristics. Two case histories, weld failures in heavy vehicles and low cycle fan blade failures, are discussed to illustrate the overall approach. (orig.) 891 RW/orig. 892 RKD [de

  17. A New Classification Approach Based on Multiple Classification Rules

    OpenAIRE

    Zhongmei Zhou

    2014-01-01

    A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when t...

  18. Case-based approaches for knowledge application and organisational learning

    DEFF Research Database (Denmark)

    Wang, Chengbo; Johansen, John; Luxhøj, James T.

    2005-01-01

    In dealing with the strategic issues within a manufacturing system, it is necessary to facilitate formulating the composing elements of a set of strategic manufacturing practices and activity patterns that will support an enterprise to reinforce and increase its competitive advantage....... These practices and activity patterns are based on learning and applying the knowledge internal and external to an organisation. To ensure their smooth formulation process, there are two important techniques designed – an expert adaptation approach and an expert evaluation approach. These two approaches provide...

  19. Lessons learned about art-based approaches for disseminating knowledge.

    Science.gov (United States)

    Bruce, Anne; Makaroff, Kara L Schick; Sheilds, Laurene; Beuthin, Rosanne; Molzahn, Anita; Shermak, Sheryl

    2013-01-01

    To present a case example of using an arts-based approach and the development of an art exhibit to disseminate research findings from a narrative research study. Once a study has been completed, the final step of dissemination of findings is crucial. In this paper, we explore the benefits of bringing nursing research into public spaces using an arts-based approach. Findings from a qualitative narrative study exploring experiences of living with life-threatening illnesses. Semi-structured in-depth interviews were conducted with 32 participants living with cancer, chronic renal disease, or HIV/AIDS. Participants were invited to share a symbol representing their experience of living with life-threatening illness and the meaning it held for them. The exhibit conveyed experiences of how people story and re-story their lives when living with chronic kidney disease, cancer or HIV. Photographic images of symbolic representations of study participants' experiences and poetic narratives from their stories were exhibited in a public art gallery. The theoretical underpinning of arts-based approaches and the lessons learned in creating an art exhibit from research findings are explored. Creative art forms for research and disseminating knowledge offer new ways of understanding and knowing that are under-used in nursing. Arts-based approaches make visible patients' experiences that are often left unarticulated or hidden. Creative dissemination approaches such as art exhibits can promote insight and new ways of knowing that communicate nursing research to both public and professional audiences.

  20. A Market-Based Approach to Multi-factory Scheduling

    Science.gov (United States)

    Vytelingum, Perukrishnen; Rogers, Alex; MacBeth, Douglas K.; Dutta, Partha; Stranjak, Armin; Jennings, Nicholas R.

    In this paper, we report on the design of a novel market-based approach for decentralised scheduling across multiple factories. Specifically, because of the limitations of scheduling in a centralised manner - which requires a center to have complete and perfect information for optimality and the truthful revelation of potentially commercially private preferences to that center - we advocate an informationally decentralised approach that is both agile and dynamic. In particular, this work adopts a market-based approach for decentralised scheduling by considering the different stakeholders representing different factories as self-interested, profit-motivated economic agents that trade resources for the scheduling of jobs. The overall schedule of these jobs is then an emergent behaviour of the strategic interaction of these trading agents bidding for resources in a market based on limited information and their own preferences. Using a simple (zero-intelligence) bidding strategy, we empirically demonstrate that our market-based approach achieves a lower bound efficiency of 84%. This represents a trade-off between a reasonable level of efficiency (compared to a centralised approach) and the desirable benefits of a decentralised solution.

  1. Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding

    Science.gov (United States)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2013-09-01

    Holoscopic imaging, also known as integral imaging, has been recently attracting the attention of the research community, as a promising glassless 3D technology due to its ability to create a more realistic depth illusion than the current stereoscopic or multiview solutions. However, in order to gradually introduce this technology into the consumer market and to efficiently deliver 3D holoscopic content to end-users, backward compatibility with legacy displays is essential. Consequently, to enable 3D holoscopic content to be delivered and presented on legacy displays, a display scalable 3D holoscopic coding approach is required. Hence, this paper presents a display scalable architecture for 3D holoscopic video coding with a three-layer approach, where each layer represents a different level of display scalability: Layer 0 - a single 2D view; Layer 1 - 3D stereo or multiview; and Layer 2 - the full 3D holoscopic content. In this context, a prediction method is proposed, which combines inter-layer prediction, aiming to exploit the existing redundancy between the multiview and the 3D holoscopic layers, with self-similarity compensated prediction (previously proposed by the authors for non-scalable 3D holoscopic video coding), aiming to exploit the spatial redundancy inherent to the 3D holoscopic enhancement layer. Experimental results show that the proposed combined prediction can improve significantly the rate-distortion performance of scalable 3D holoscopic video coding with respect to the authors' previously proposed solutions, where only inter-layer or only self-similarity prediction is used.

  2. Aminopropyl-modified magnesium-phyllosilicates: layered solids with tailored interlayer access and reactivity.

    Science.gov (United States)

    Ferreira, Ricardo B; da Silva, César R; Pastore, Heloise O

    2008-12-16

    Despite its wide application, the synthesis of aminopropyl-modified magnesium-phyllosilicates was known only in the case where every silicon atom bore an organic pending group. This paper shows the preparation of aminopropyl-modified talc where tailored amounts of silicon atoms are bound to an aminopropyl group. The decrease in the concentration of the organoamino group leaves a proportional concentration of interlayer SiOH groups that can be used to react with other silylation agents. The amino group reacts with CO2, forming a carbamate functionality; it seems that the presence of this group avoids delamination in water as performed for the parent compound. Bearing in mind that the aminopropyl group can be changed by other groups, the present synthesis strategy demonstrates ways to produce solids with controlled surface properties with interlayer amino and SiOH groups in variable concentrations, allowing formation of several other interlayer functionalities.

  3. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Interlayer Cations, CEC, and Chain Length

    Science.gov (United States)

    Chen, Hua; Li, Yingjun; Zhou, Yuanlin; Wang, Shanqiang; Zheng, Jian; He, Jiacai

    2017-12-01

    Recently, polymeric materials have been filled with synthetic or natural inorganic compounds in order to improve their properties. Especially, polymer clay nanocomposites have attracted both academic and industrial attention. Currently, the structure and physical phenomena of organoclays at molecular level are difficultly explained by existing experimental techniques. In this work, molecular dynamics (MD) simulation was executed using the CLAYFF and CHARMM force fields to evaluate the structural properties of organoclay such as basal spacing, interlayer density, energy and the arrangement of alkyl chains in the interlayer spacing. Our results are in good agreement with available experimental or other simulation data. The effects of interlayer cations (Na+, K+, Ca2+), the cation exchange capacity, and the alkyl chain length on the basal spacing and the structural properties are estimated. These simulations are expected to presage the microstructure of organo-montmorillonite and lead relevant engineering applications.

  4. Formation conditions and prospecting criteria for sandstone uranium deposit of interlayer oxidation type

    International Nuclear Information System (INIS)

    Huang Shijie

    1994-01-01

    This paper comprehensively analyses the geotectonic setting and favourable conditions, such as structure of the basin, sedimentary facies and paleogeography, geomorphology and climate, hydrodynamics and hydrogeochemistry, the development of interlayered oxidation etc, necessary for the formation of sandstone uranium deposit of interlayered oxidation type. The following prospecting criteria is proposed, namely: abundant uranium source, arid climate, stable big basin, flat-lying sandstone bed, big alluvial fan, little change in sedimentary facies, intercalation of sandstone and mudstone beds, shallow burying of sandstone bed, well-aquiferous sandstone bed, high permeability of sandstone bed, development of interlayered oxidation, and high content of reductant in sandstone. In addition, the 6 in 1 hydrogenic genetic model is proposed

  5. Grid-based electronic structure calculations: The tensor decomposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  6. The anterior interhemispheric approach: a safe and effective approach to anterior skull base lesions.

    Science.gov (United States)

    Mielke, Dorothee; Mayfrank, Lothar; Psychogios, Marios Nikos; Rohde, Veit

    2014-04-01

    Many approaches to the anterior skull base have been reported. Frequently used are the pterional, the unilateral or bilateral frontobasal, the supraorbital and the frontolateral approach. Recently, endoscopic transnasal approaches have become more popular. The benefits of each approach has to be weighted against its complications and limitations. The aim of this study was to investigate if the anterior interhemispheric approach (AIA) could be a safe and effective alternative approach to tumorous and non-tumorous lesions of the anterior skull base. We screened the operative records of all patients with an anterior skull base lesion undergoing transcranial surgery. We have used the AIA in 61 patients. These were exclusively patients with either olfactory groove meningioma (OGM) (n = 43), ethmoidal dural arteriovenous fistula (dAVF) ( n = 6) or frontobasal fractures of the anterior midline with cerebrospinal fluid (CSF) leakage ( n = 12). Patient records were evaluated concerning accessibility of the lesion, realization of surgical aims (complete tumor removal, dAVF obliteration, closure of the dural tear), and approach related complications. The use of the AIA exclusively in OGMs, ethmoidal dAVFs and midline frontobasal fractures indicated that we considered lateralized frontobasal lesions not suitable to be treated successfully. If restricted to these three pathologies, the AIA is highly effective and safe. The surgical aim (complete tumor removal, complete dAVF occlusion, no rhinorrhea) was achieved in all patients. The complication rate was 11.5 % (wound infection (n = 2; 3.2 %), contusion of the genu of the corpus callosum, subdural hygroma, epileptic seizure, anosmia and asymptomatic bleed into the tumor cavity (n = 1 each). Only the contusion of the corpus callosum was directly related to the approach (1.6 %). Olfaction, if present before surgery, was preserved in all patients, except one (1.6 %). The AIA is an effective and a safe approach

  7. Activation energies of diffusion for I and Cs in interlayer of smectite

    International Nuclear Information System (INIS)

    Sato, H.

    2009-01-01

    The apparent diffusivities (Da) and activation energies (ΔEa) for I - and Cs + ions in compacted Na-smectite with an interlayer space of only 2 water layers were measured at a dry density of 1.79 Mg/m 3 . In-diffusion experiments were carried out under the conditions that interlayer space, orientation of smectite stacks and dry density were controlled. Basal spacing was checked by X-ray diffractometry (XRD). All diffraction peaks to d(001) indicated basal spacing, of which interlayer space was equal to 2 water layers. The ΔEa of I - ions was at similar level as that for the ionic diffusivity of I - ions in free water (Do) at a dry density of 1.0 Mg/m 3 , but was 35.24 kJ/mol at a dry density of 1.79 Mg/m 3 . The ΔEa for Cs + ions was 46.27 kJ/mol which was higher than that for I? ions, at a dry density of 1.79 Mg/m 3 . Such high ΔEa for I - ions in the interlayer of smectite could be explained by the lowering in the activity (a H 2 O ) of interlayer water. Since Cs + ions sorb onto smectite by ion exchange, such high ΔEa for Cs + ions could be explained by the combined effects of the Cs+/Na+ ion exchange enthalpy (ΔH o ) in smectite and the lowering in the a H 2 O of interlayer water. (author)

  8. Application of heat treatment and dispersive strengthening concept in interlayer deposition to enhance diamond film adherence

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chiiruey [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mech. Eng.; Kuo Chengtzu; Chang Rueyming [Institute of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050 (Taiwan, Province of China)

    1997-10-31

    Two different deposition processes were carried out to enhance adherence of diamond films on WC+3-5%Co substrate with Ti-Si as the interlayer. One process can be called two-step diamond deposition process. Another process can be called interlayer heat treatment process. Diamond films were deposited by a microwave plasma chemical vapor deposition system. Ti and Si interlayer are deposited by DC sputter and an E-gun, respectively. Film morphologies, interface structure and film quality were examined by SEM, XRD, Auger electron spectroscopy and Raman spectroscopy. The residual stresses and adhesion strengths of the films were determined by Raman spectroscopy and indentation adhesion testing, respectively. Comparing the regular one-step diamond deposition process with the present two different new processes, the average dP/dX values, which are a measure of the adherence of the film, are 354 kgf/mm, 494 kgf/mm and 787 kgf/mm, respectively. In other words, the interlayer heat treatment process gives the best film adherence on average. For the two-step diamond deposition process, the interlayer thickness and the percent diamond surface coverage of the first diamond deposition step are the main parameters, and there exists an optimum Ti thickness and percent diamond coverage for the best film adherence. The main contribution to better film adherence is not a large difference in residual stress, but is due to the following reasons. The interlayer heat treatment can transform amorphous Si to polycrystalline Si, and may form strong TiC and SiC bonding. The polycrystalline Si and the diamond particles from the first diamond deposition step can be an effective seeds to enhance diamond nucleation. (orig.) 11 refs.

  9. A multiparameter chaos control method based on OGY approach

    International Nuclear Information System (INIS)

    Souza de Paula, Aline; Amorim Savi, Marcelo

    2009-01-01

    Chaos control is based on the richness of responses of chaotic behavior and may be understood as the use of tiny perturbations for the stabilization of a UPO embedded in a chaotic attractor. Since one of these UPO can provide better performance than others in a particular situation the use of chaos control can make this kind of behavior to be desirable in a variety of applications. The OGY method is a discrete technique that considers small perturbations promoted in the neighborhood of the desired orbit when the trajectory crosses a specific surface, such as a Poincare section. This contribution proposes a multiparameter semi-continuous method based on OGY approach in order to control chaotic behavior. Two different approaches are possible with this method: coupled approach, where all control parameters influences system dynamics although they are not active; and uncoupled approach that is a particular case where control parameters return to the reference value when they become passive parameters. As an application of the general formulation, it is investigated a two-parameter actuation of a nonlinear pendulum control employing coupled and uncoupled approaches. Analyses are carried out considering signals that are generated by numerical integration of the mathematical model using experimentally identified parameters. Results show that the procedure can be a good alternative for chaos control since it provides a more effective UPO stabilization than the classical single-parameter approach.

  10. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  11. Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films

    International Nuclear Information System (INIS)

    Liu, Y-L; Liu, C-S; Cho, C-I; Hwu, M-J

    2007-01-01

    Polyhedral oligomeric silsequioxane (POSS) monomer was fixed to a silicon surface by reacting octakis(glycidyldimethylsiloxy)octasilsesquioxane (OG-POSS) with the OH-terminated silicon surface in the presence of tin (II) chloride. The POSS cage layer then served as a nanoporous interlayer to reduce the dielectric constants of polyimide films on silicon surfaces. The chemical structure and surface morphology of OG-POSS modified silicon surfaces were characterized with XPS. With the introduction of a POSS nanopored interlayer, the dielectric constants of polyimide films were reduced

  12. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures

    Science.gov (United States)

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming

    2018-05-01

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  13. Human rights-based approach to unintentional injury prevention.

    Science.gov (United States)

    MacKay, J Morag; Ryan, Mark Andrew

    2018-06-01

    Unintentional injury remains an important global public health issue, and efforts to address it are often hampered by a lack of visibility, leadership, funding, infrastructure, capacity and evidence of effective solutions. The growing support for a socioecological model and a systems approach to prevention-along with the acknowledgement that injury prevention can be a byproduct of salutogenic design and activities-has increased opportunities to integrate unintentional injury prevention into other health promotion and disease prevention agendas. It has also helped to integrate it into the broader human development agenda through the Sustainable Development Goals. This growing support provides new opportunities to use a human rights-based approach to address the issue. The human rights-based approach is based on the idea that all members of society have social, economic and cultural rights and that governments are responsible and accountable for upholding those rights. It incorporates a systems approach, addresses inequity and places an emphasis on the most vulnerable corners of humanity. It also leverages legal statutes and provides organisations with the opportunity to build existing international goals and benchmarks into their monitoring efforts. This paper describes the approach and highlights how it can leverage attention and investment to address current challenges for unintentional injury. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Intelligent Transportation and Evacuation Planning A Modeling-Based Approach

    CERN Document Server

    Naser, Arab

    2012-01-01

    Intelligent Transportation and Evacuation Planning: A Modeling-Based Approach provides a new paradigm for evacuation planning strategies and techniques. Recently, evacuation planning and modeling have increasingly attracted interest among researchers as well as government officials. This interest stems from the recent catastrophic hurricanes and weather-related events that occurred in the southeastern United States (Hurricane Katrina and Rita). The evacuation methods that were in place before and during the hurricanes did not work well and resulted in thousands of deaths. This book offers insights into the methods and techniques that allow for implementing mathematical-based, simulation-based, and integrated optimization and simulation-based engineering approaches for evacuation planning. This book also: Comprehensively discusses the application of mathematical models for evacuation and intelligent transportation modeling Covers advanced methodologies in evacuation modeling and planning Discusses principles a...

  15. An innovative approach to capability-based emergency operations planning.

    Science.gov (United States)

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology.

  16. A Learning Object Approach To Evidence based learning

    OpenAIRE

    Zabin Visram; Bruce Elson; Patricia Reynolds

    2005-01-01

    This paper describes the philosophy, development and framework of the body of elements formulated to provide an approach to evidence-based learning sustained by Learning Objects and web based technology Due to the demands for continuous improvement in the delivery of healthcare and in the continuous endeavour to improve the quality of life, there is a continuous need for practitioner's to update their knowledge by accomplishing accredited courses. The rapid advances in medical science has mea...

  17. A rights-based approach to accessing health determinants.

    Science.gov (United States)

    Perkins, Fran

    2009-03-01

    This commentary summarizes the experience and learnings from a site visit in May 2008 to a drop-in centre for vulnerable women in downtown Cairo run by El-Shehab Institution for Comprehensive Development, which provides street outreach for the prevention of Sexually Transmitted Infection (STI). The Centre successfully provides services and support for women, many of who are displaced or refugees and are from the most marginalized areas in Cairo. Through a rights-based approach to the work, the Centre helps people living in the slums fight and win the right to access clean water, sewerage and electrical power in their communities. An individual-based approach to human rights is also used. In the last year El-Shehab have helped 67 women go to court and win their marriage rights from husbands who have abandoned them. Their approach is an example of a successful way to achieve access to basic health determinants.

  18. A Multi-Faceted Approach to Inquiry-Based Learning

    Science.gov (United States)

    Brudzinski, M. R.; Sikorski, J.

    2009-12-01

    In order to fully attain the benefits of inquiry-based learning, instructors who typically employ the traditional lecture format need to make several adjustments to their approach. This change in styles can be intimidating and logistically difficult to overcome. A stepwise approach to this transformation is likely to be more manageable for individual faculty or departments. In this session, we will describe several features that we are implementing in our introductory geology course with the ultimate goal of converting to an entirely inquiry-based approach. Our project is part of the Miami University initiative in the top 25 enrolled courses to move towards the “student as scholar” model for engaged learning. Some of the features we developed for our course include: student learning outcomes, student development outcomes, out-of-class content quizzes, in-class conceptests, pre-/post-course assessment, reflective knowledge surveys, and daily group activities.

  19. Non-frontal Model Based Approach to Forensic Face Recognition

    NARCIS (Netherlands)

    Dutta, A.; Veldhuis, Raymond N.J.; Spreeuwers, Lieuwe Jan

    2012-01-01

    In this paper, we propose a non-frontal model based approach which ensures that a face recognition system always gets to compare images having similar view (or pose). This requires a virtual suspect reference set that consists of non-frontal suspect images having pose similar to the surveillance

  20. What does an enquiry-based approach offer undergraduate ...

    African Journals Online (AJOL)

    Background. Physiotherapy students in their final year at Stellenbosch University (SU) complete a module that follows an enquiry-based learning (EBL) approach. This module exposes them to higher-order problem solving and was developed to facilitate independent self-directed learning and improved higher-order ...

  1. PETRA - an Activity-based Approach to Travel Demand Analysis

    DEFF Research Database (Denmark)

    Fosgerau, Mogens

    2001-01-01

    This paper concerns the PETRA model developed by COWI in a project funded by the Danish Ministry of Transport, the Danish Transport Council and the Danish Energy Research Program. The model provides an alternative approach to activity based travel demand analysis that excludes the time dimension...

  2. Saccharide-based Approach to Green Metallic Nanostructure Synthesis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Jensen, Palle Skovhus

    A green approach to solution synthesis of metallic nanoparticles has been developed using harmless and bioapplicable chemicals as well as moderate temperatures. Metal precursors are reduced by glucose/buffers and sterically stabilized by starch. The saccharide based procedure is highly diverse pr...... producing specifically a wide range of spherical, anisotropic, metallic, semi - conductor and core-shell nanostructures....

  3. Evaluation of a Blog Based Parent Involvement Approach by Parents

    Science.gov (United States)

    Ozcinar, Zehra; Ekizoglu, Nihat

    2013-01-01

    Despite the well-known benefits of parent involvement in children's education, research clearly shows that it is difficult to effectively involve parents. This study aims to capture parents' views of a Blog Based Parent Involvement Approach (BPIA) designed to secure parent involvement in education by strengthening school-parent communication. Data…

  4. The Task-Based Approach in Language Teaching

    Science.gov (United States)

    Sánchez, Aquilino

    2004-01-01

    The Task-Based Approach (TBA) has gained popularity in the field of language teaching since the last decade of the 20th Century and significant scholars have joined the discussion and increased the amount of analytical studies on the issue. Nevertheless experimental research is poor, and the tendency of some of the scholars is nowadays shifting…

  5. A Project-based Learning approach for teaching Robotics to ...

    African Journals Online (AJOL)

    In this research we used a project-based learning approach to teach robotics basics to undergraduate business computing students. The course coverage includes basic electronics, robot construction and programming using arduino. Students developed and tested a robot prototype. The project was evaluated using a ...

  6. Effect of the inquiry-based teaching approach on students ...

    African Journals Online (AJOL)

    The experimental group was treated with a teaching approach that integrated inquiry-based teaching into classroom discourse. Tests (pre- and post-), for assessing students' understanding of circle theorems and a questionnaire for measuring the students' perception of motivation to learn were given to the two groups ...

  7. Predicting footbridge vibrations using a probability-based approach

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2017-01-01

    Vibrations in footbridges may be problematic as excessive vibrations may occur as a result of actions of pedestrians. Design-stage predictions of levels of footbridge vibration to the action of a pedestrian are useful and have been employed for many years based on a deterministic approach to mode...

  8. Intelligent assembly time analysis, using a digital knowledge based approach

    NARCIS (Netherlands)

    Jin, Y.; Curran, R.; Butterfield, J.; Burke, R.; Welch, B.

    2009-01-01

    The implementation of effective time analysis methods fast and accurately in the era of digital manufacturing has become a significant challenge for aerospace manufacturers hoping to build and maintain a competitive advantage. This paper proposes a structure oriented, knowledge-based approach for

  9. Binaural speech enhancement using a codebook based approach

    DEFF Research Database (Denmark)

    Kavalekalam, Mathew Shaji; Christensen, Mads Græsbøll; Boldt, Jesper B.

    2016-01-01

    term predictor (STP) parameters using a codebook based approach, when we have access to binaural noisy signals. The estimated STP parameters are subsequently used for enhancement in a dual channel scenario. Objective measures indicate, that the proposed method is able to improve the speech...

  10. From Equation to Inequality Using a Function-Based Approach

    Science.gov (United States)

    Verikios, Petros; Farmaki, Vassiliki

    2010-01-01

    This article presents features of a qualitative research study concerning the teaching and learning of school algebra using a function-based approach in a grade 8 class, of 23 students, in 26 lessons, in a state school of Athens, in the school year 2003-2004. In this article, we are interested in the inequality concept and our aim is to…

  11. A sampling-based approach to probabilistic pursuit evasion

    KAUST Repository

    Mahadevan, Aditya

    2012-05-01

    Probabilistic roadmaps (PRMs) are a sampling-based approach to motion-planning that encodes feasible paths through the environment using a graph created from a subset of valid positions. Prior research has shown that PRMs can be augmented with useful information to model interesting scenarios related to multi-agent interaction and coordination. © 2012 IEEE.

  12. Effect of the inquiry-based teaching approach on students ...

    African Journals Online (AJOL)

    kofi.mereku

    mathematics as a vital tool for the understanding and application of science and .... In view of senior high school students' poor performance in circle theorems and their ..... taught using the inquiry-based approach on the other hand perceive their .... visualization and spatial reasoning to middle school mathematics students.

  13. Tennis: Applied Examples of a Game-Based Teaching Approach

    Science.gov (United States)

    Crespo, Miguel; Reid, Machar M.; Miley, Dave

    2004-01-01

    In this article, the authors reveal that tennis has been increasingly taught with a tactical model or game-based approach, which emphasizes learning through practice in match-like drills and actual play, rather than in practicing strokes for exact technical execution. Its goal is to facilitate the player's understanding of the tactical, physical…

  14. An Approach to Quality Estimation in Model-Based Development

    DEFF Research Database (Denmark)

    Holmegaard, Jens Peter; Koch, Peter; Ravn, Anders Peter

    2004-01-01

    We present an approach to estimation of parameters for design space exploration in Model-Based Development, where synthesis of a system is done in two stages. Component qualities like space, execution time or power consumption are defined in a repository by platform dependent values. Connectors...

  15. Development of Scientific Approach Based on Discovery Learning Module

    Science.gov (United States)

    Ellizar, E.; Hardeli, H.; Beltris, S.; Suharni, R.

    2018-04-01

    Scientific Approach is a learning process, designed to make the students actively construct their own knowledge through stages of scientific method. The scientific approach in learning process can be done by using learning modules. One of the learning model is discovery based learning. Discovery learning is a learning model for the valuable things in learning through various activities, such as observation, experience, and reasoning. In fact, the students’ activity to construct their own knowledge were not optimal. It’s because the available learning modules were not in line with the scientific approach. The purpose of this study was to develop a scientific approach discovery based learning module on Acid Based, also on electrolyte and non-electrolyte solution. The developing process of this chemistry modules use the Plomp Model with three main stages. The stages are preliminary research, prototyping stage, and the assessment stage. The subject of this research was the 10th and 11th Grade of Senior High School students (SMAN 2 Padang). Validation were tested by the experts of Chemistry lecturers and teachers. Practicality of these modules had been tested through questionnaire. The effectiveness had been tested through experimental procedure by comparing student achievement between experiment and control groups. Based on the findings, it can be concluded that the developed scientific approach discovery based learning module significantly improve the students’ learning in Acid-based and Electrolyte solution. The result of the data analysis indicated that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That’s proved by the result of learning student. Based on the result can conclude that chemistry module based on

  16. Influence of in-situ deposited SiNx interlayer on crystal quality of GaN epitaxial films

    Science.gov (United States)

    Fan, Teng; Jia, Wei; Tong, Guangyun; Zhai, Guangmei; Li, Tianbao; Dong, Hailiang; Xu, Bingshe

    2018-05-01

    GaN epitaxial films with SiNx interlayers were prepared by metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates. The influences of deposition times and locations of SiNx interlayers on crystal quality of GaN epitaxial films were studied. Under the optimal growth time of 120 s for the SiNx interlayer, the dislocation density of GaN film is reduced to 4.05 × 108 cm-2 proved by high resolution X-ray diffraction results. It is found that when the SiNx interlayer deposits on the GaN nucleation islands, the subsequent GaN film has the lowest dislocation density of only 2.89 × 108 cm-2. Moreover, a model is proposed to illustrate the morphological evolution and associated propagation processes of TDs in GaN epi-layers with SiNx interlayers for different deposition times and locations.

  17. Adjoint current-based approaches to prostate brachytherapy optimization

    International Nuclear Information System (INIS)

    Roberts, J. A.; Henderson, D. L.

    2009-01-01

    This paper builds on previous work done at the Univ. of Wisconsin - Madison to employ the adjoint concept of nuclear reactor physics in the so-called greedy heuristic of brachytherapy optimization. Whereas that previous work focused on the adjoint flux, i.e. the importance, this work has included use of the adjoint current to increase the amount of information available in optimizing. Two current-based approaches were developed for 2-D problems, and each was compared to the most recent form of the flux-based methodology. The first method aimed to take a treatment plan from the flux-based greedy heuristic and adjust via application of the current-displacement, or a vector displacement based on a combination of tissue (adjoint) and seed (forward) currents acting as forces on a seed. This method showed promise in improving key urethral and rectal dosimetric quantities. The second method uses the normed current-displacement as the greedy criterion such that seeds are placed in regions of least force. This method, coupled with the dose-update scheme, generated treatment plans with better target irradiation and sparing of the urethra and normal tissues than the flux-based approach. Tables of these parameters are given for both approaches. In summary, these preliminary results indicate adjoint current methods are useful in optimization and further work in 3-D should be performed. (authors)

  18. EVALUATING HUMAN CAPITAL IN A KNOWLEDGE – BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Emanoil MUSCALU

    2014-04-01

    Full Text Available The widespread enthusiasm for a knowledge-based approach to understanding the nature of a business and the possible basis for sustained competitive advantage have renewed interest in human capital evaluation or measurement. While many attempts have been made to develop methods for measuring intellectual capital, none have been widely adopted in the business world. In the knowledge-based organizations, and generally, in the information society, human capital is recognized as the fundamental factor of overall progress, and experts agree that long-term investment in human capital has strong drive-propagation effects at the individual, organizational, national and global level. In this paper, we consider that a knowledge-based approach can offer new possibilities and answers to illustrate the importance of evaluation the human capital and knowledge assets by consistently generating added value in the business world.

  19. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  20. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-01

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  1. Problems and Projects Based Approach For Analog Electronic Circuits' Course

    Directory of Open Access Journals (Sweden)

    Vahé Nerguizian

    2009-04-01

    Full Text Available New educational methods and approaches are recently introduced and implemented at several North American and European universities using Problems and Projects Based Approach (PPBA. The PPBA employs a teaching technique based mostly on competences/skills rather than only on knowledge. This method has been implemented and proven by several pedagogical instructors and authors at several educational institutions. This approach is used at different disciplines such as medicine, biology, engineering and many others. It has the advantage to improve the student's skills and the knowledge retention rate, and reflects the 21st century industrial/company needs and demands. Before implementing this approach to a course, a good resources preparation and planning is needed upfront by the responsible or instructor of the course to achieve the course and students related objectives. This paper presents the preparation, the generated documentation and the implementation of a pilot project utilizing PPBA education for a second year undergraduate electronic course over a complete semester, and for two different class groups (morning and evening groups. The outcome of this project (achieved goals, observed difficulties and lessons learned is presented based on different tools such as students 'in class' communication and feedback, different course evaluation forms and the professor/instructor feedback. Resources, challenges, difficulties and recommendations are also assessed and presented. The impact, the effect and the results (during and at the end of the academic fall session of the PPBA on students and instructor are discussed, validated, managed and communicated to help other instructor in taking appropriate approach decisions with respect to this new educational approach compared to the classical one.

  2. Estimating Soil Hydraulic Parameters using Gradient Based Approach

    Science.gov (United States)

    Rai, P. K.; Tripathi, S.

    2017-12-01

    The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.

  3. Practice-Based Interdisciplinary Approach and Environmental Research

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Datta

    2017-03-01

    Full Text Available Interdisciplinary researchers and educators, as community members, creators of knowledge, and environmental activists and practitioners, have a responsibility to build a bridge between community practice, academic scholarship, and professional contributions aimed at establishing environmental sustainability. In this paper, I focus on an undervalued area of environmental politics, practices, and often unarticulated assumptions which underlie human–environmental relations. This article challenges interdisciplinary studies that are not connected with practice by reconfiguring the meaning of a community-based, interdisciplinary approach. Drawing from works by Foucault, Latour, and Haraway, this paper first shows how to reconfigure the meaning of an interdisciplinary approach. Second, using Bourdieu and Brightman’s ethnographic studies as a framework, the paper situates practice as central to our efforts to deconstruct and replace current interdisciplinary initiatives with a practice-based approach. Through a practice-based interdisciplinary approach (PIA, environmental educators and researchers gain an awareness of and learn to make an investment in sustainable communities. As teams of environmental researchers practising in the local community, they are meaningfully involved with the community, with each other, and with the environment.

  4. Fragment approaches in structure-based drug discovery

    International Nuclear Information System (INIS)

    Hubbard, Roderick E.

    2008-01-01

    Fragment-based methods are successfully generating novel and selective drug-like inhibitors of protein targets, with a number of groups reporting compounds entering clinical trials. This paper summarizes the key features of the approach as one of the tools in structure-guided drug discovery. There has been considerable interest recently in what is known as 'fragment-based lead discovery'. The novel feature of the approach is to begin with small low-affinity compounds. The main advantage is that a larger potential chemical diversity can be sampled with fewer compounds, which is particularly important for new target classes. The approach relies on careful design of the fragment library, a method that can detect binding of the fragment to the protein target, determination of the structure of the fragment bound to the target, and the conventional use of structural information to guide compound optimization. In this article the methods are reviewed, and experiences in fragment-based discovery of lead series of compounds against kinases such as PDK1 and ATPases such as Hsp90 are discussed. The examples illustrate some of the key benefits and issues of the approach and also provide anecdotal examples of the patterns seen in selectivity and the binding mode of fragments across different protein targets

  5. A New Acoustic Emission Sensor Based Gear Fault Detection Approach

    Directory of Open Access Journals (Sweden)

    Junda Zhu

    2013-01-01

    Full Text Available In order to reduce wind energy costs, prognostics and health management (PHM of wind turbine is needed to ensure the reliability and availability of wind turbines. A gearbox is an important component of a wind turbine. Therefore, developing effective gearbox fault detection tools is important to the PHM of wind turbine. In this paper, a new acoustic emission (AE sensor based gear fault detection approach is presented. This approach combines a heterodyne based frequency reduction technique with time synchronous average (TSA and spectrum kurtosis (SK to process AE sensor signals and extract features as condition indictors for gear fault detection. Heterodyne technique commonly used in communication is first employed to preprocess the AE signals before sampling. By heterodyning, the AE signal frequency is down shifted from several hundred kHz to below 50 kHz. This reduced AE signal sampling rate is comparable to that of vibration signals. The presented approach is validated using seeded gear tooth crack fault tests on a notational split torque gearbox. The approach presented in this paper is physics based and the validation results have showed that it could effectively detect the gear faults.

  6. Effects of a Ta interlayer on the phase transition of TiSi2 on Si(111)

    Science.gov (United States)

    Jeon, Hyeongtag; Jung, Bokhee; Kim, Young Do; Yang, Woochul; Nemanich, R. J.

    2000-09-01

    This study examines the effects of a thin Ta interlayer on the formation of TiSi2 on Si(111) substrate. The Ta interlayer was introduced by depositing Ta and Ti films sequentially on an atomically clean Si(111) substrate in an ultrahigh vacuum (UHV) system. Samples of 100 Å Ti with 5 and 10 Å Ta interlayers were compared to similar structures without an interlayer. After deposition, the substrates were annealed for 10 min, in situ, at temperatures between 500 and 750 °C in 50 °C increments. The TiSi2 formation with and without the Ta interlayer was analyzed with an X-ray diffractometer, Auger electron spectroscopy (AES), Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and a four-point probe. The AES analysis data showed a 1:2 ratio of Ti:Si in the Ti-silicide layer and indicated that the Ta layer remained at the interface between TiSi2 and the Si(111) substrate. The C 49-C 54 TiSi2 phase transition temperature was lowered by ˜200 °C. The C 49-C 54 TiSi2 phase transition temperature was 550 °C for the samples with a Ta interlayer and was 750 °C for the samples with no Ta interlayer. The sheet resistance of the Ta interlayered Ti silicide showed lower values of resistivity at low temperatures which indicated the change in phase transition temperature. The C 54 TiSi2 displayed different crystal orientation when the Ta interlayer was employed. The SEM and TEM micrographs showed that the TiSi2 with a Ta interlayer significantly suppressed the tendency to islanding and surface agglomeration.

  7. An Approach for Composing Services Based on Environment Ontology

    Directory of Open Access Journals (Sweden)

    Guangjun Cai

    2013-01-01

    Full Text Available Service-oriented computing is revolutionizing the modern computing paradigms with its aim to boost software reuse and enable business agility. Under this paradigm, new services are fabricated by composing available services. The problem arises as how to effectively and efficiently compose heterogeneous services facing the high complexity of service composition. Based on environment ontology, this paper introduces a requirement-driven service composition approach. We propose the algorithms to decompose the requirement, the rules to deduct the relation between services, and the algorithm for composing service. The empirical results and the comparison with other services’ composition methodologies show that this approach is feasible and efficient.

  8. Influences of structures on the interlayer oxidation zone sandstone-type uranium deposits on the southern margin of Yili basin

    International Nuclear Information System (INIS)

    Wang Mou; Li Shengfu

    2006-01-01

    Based on geology and the theory of hydromorphic origin uranium deposit, structural conditions of uranium formation on the southern margin of Yili Basin are analyzed from two aspects of structural movements and deformation. It is suggested that the subsidiary structures caused by the neotectonic movement are the major factor that control and reform the interlayer oxidation zone sandstone-type uranium deposit, and the differences lie in the tectonics at the eastern and western section on the southern margin of Yili Basin. At the western section, because Mesozoic and Cenozoic strata are tilted by the subsidiary structures, some strata on the margin of the basin outcrop at the surface and suffer from the weathering and erosion, which is favorable for the formation of large size uranium deposits. But at the eastern section, the fault and fold are predominant, outcropping at the surface, cause the redistribution of the uranium, which is favorable for the formation of small size uranium deposits. (authors)

  9. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  10. Toward Increasing Micropore Volume between Hybrid Layered Perovskites with Silsesquioxane Interlayers.

    Science.gov (United States)

    Kataoka, Sho; Kamimura, Yoshihiro; Endo, Akira

    2018-04-10

    Hybrid organic-inorganic layered perovskites are typically nonporous solids. However, the incorporation of silsesquioxanes with a cubic cage structure as interlayer materials creates micropores between the perovskite layers. In this study, we increase in the micropore volume in layered perovskites by replacing a portion of the silsesquioxane interlayers with organic amines. In the proposed method, approximately 20% of the silsesquioxane interlayers can be replaced without changing the layer distance owing to the size of the silsesquioxane. When small amines (e.g., ethylamine) are used in this manner, the micropore volume of the obtained hybrid layered perovskites increases by as much as 44%; when large amines (e.g., phenethylamine) are used, their micropore volume decreases by as much as 43%. Through the variation of amine fraction, the micropore volume can be adjusted in the range. Finally, the magnetic moment measurements reveal that the layered perovskites with mixed interlayers exhibit ferromagnetic ordering at temperature below 20 K, thus indicating that the obtained perovskites maintain their functions as layered perovskites.

  11. Thermal decomposition of hydrotalcite with chromate, molybdate or sulphate in the interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Frost, Ray L. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia)]. E-mail: r.frost@qut.edu.au; Musumeci, Anthony W. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Bostrom, Thor [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Adebajo, Moses O. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Weier, Matt L. [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia); Martens, Wayde [Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001 (Australia)

    2005-05-15

    The thermal decomposition of hydrotalcites with chromate, molybdate and sulphate in the interlayer has been studied using thermogravimetric analysis coupled to a mass spectrometer measuring the gas evolution. X-ray diffraction shows the hydrotalcites have a d(0 0 3) spacing of 7.98 A with very small differences in the d-spacing between the three hydrotalcites. XRD was also used to determine the products of the thermal decomposition. For the sulphate-hydrotalcite decomposition the products were MgO and a spinel MgAl{sub 2}O{sub 4}, for the chromate interlayered hydrotalcite MgO, Cr{sub 2}O{sub 3} and spinel. For the molybdate interlayered hydrotalcite the products were MgO, spinel and MgMoO{sub 4}. EDX analyses enabled the formula of the hydrotalcites to be determined. Two processes are observed in the thermal decomposition namely dehydration and dehydroxylation and for the case of the sulphate interlayered hydrotalcite, a third process is the loss of sulphate. Both the dehydration and dehydroxylation take place in three steps each for each of the hydrotalcites.

  12. Structure and thermal evolution of Mg-Al layered double hydroxide containing interlayer organic glyphosate anions

    Energy Technology Data Exchange (ETDEWEB)

    Li Feng; Zhang Lihong; Evans, David G.; Forano, Claude; Duan Xue

    2004-12-15

    Layered double hydroxide (LDH) with the Mg{sup 2+}/Al{sup 3+} molar ratio of 2.0 containing interlayer organic pesticide glyphosate anions (MgAl-Gly-LDH) has been synthesized by the use of anion exchange and coprecipitation routes. Intercalation experiments with glyphosate (Gly) reveal a correlation between the temperatures for thermal treatments and the types of reaction it undergoes with Gly. The grafting of the Gly anion onto hydroxylated sheets of LDH by moderate thermal treatments (hydrothermal treatments and calcinations) was confirmed by a combination of several techniques, including powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA-DTG), and {sup 31}P nuclear magnetic resonance (NMR). The thermal decomposition of MgAl-Gly-LDH results in the removal of loosely held interlayer water, grafting reaction between the interlayer anions and hydroxyl groups on the lattice of LDH, dehydroxylation of the lattice and decomposition of the interlayer species in succession, thus leading to a variety of crystallographic transitions.

  13. Effect of interlayer on structure and performance of anode-supported SOFC single cells

    International Nuclear Information System (INIS)

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-01-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm 2 at 800 deg. C and 0.44 W/cm 2 at 700 deg. C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer

  14. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon

  15. Mechanistic modelling of weak interlayers in flexible and semi-flexible road pavements: Part 2

    CSIR Research Space (South Africa)

    De Beer, Morris

    2012-04-01

    Full Text Available This paper (Part 2 of a two-part set of papers) discusses models and illustrates the adverse effects of weak layers, interlayers, laminations and/or weak interfaces in flexible and semi-flexible pavements, also incorporating lightly cemented layers...

  16. Interlayer growth in Mo/B4C multilayered structures upon thermal annealing

    International Nuclear Information System (INIS)

    Nyabero, S. L.; Kruijs, R. W. E. van de; Yakshin, A. E.; Zoethout, E.; Bosgra, J.; Loch, R. A.; Blanckenhagen, G. von; Bijkerk, F.

    2013-01-01

    Both multilayer period thickness expansion and compaction were observed in Mo/B 4 C multilayers upon annealing, and the physical causes for this were explored in detail. Using in situ time-dependent grazing incidence X-ray reflectometry, period changes down to picometer-scale were resolved. It was shown that the changes depend on the thickness of the B 4 C layers, annealing temperature, and annealing time. Although strong stress relaxation during annealing was observed, it was excluded as a cause for period expansion. Auger electron spectroscopy and wide angle X-ray diffraction measurements revealed the growth of interlayers, with associated period changes influenced by the supply of B and C atoms to the growing compound interlayers. For multilayers with a Mo thickness of 3 nm, two regimes were recognized, depending on the deposited B 4 C thickness: in multilayers with B 4 C ≤ 1.5 nm, the supply of additional Mo into the already formed MoB x C y interlayer was dominant and led to densification, resulting in period compaction. For multilayers with B 4 C ≥ 2 nm, the B and C enrichment of interlayers formed low density compounds and yielded period expansion.

  17. A reliability model for interlayer dielectric cracking during fast thermal cycling

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.; Ray, Gary W.; Smy, Tom; Ohta, Tomohiro; Tsujimura, Manabu

    2003-01-01

    Interlayer dielectric (ILD) cracking can result in short circuits of multilevel interconnects. This paper presents a reliability model for ILD cracking induced by fast thermal cycling (FTC) stress. FTC tests have been performed under different temperature ranges (∆T) and minimum temperatures (Tmin).

  18. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    Science.gov (United States)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  19. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.

    Science.gov (United States)

    Alexeev, Evgeny M; Catanzaro, Alessandro; Skrypka, Oleksandr V; Nayak, Pramoda K; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S; Shin, Hyeon Suk; Tartakovskii, Alexander I

    2017-09-13

    Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

  20. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration

    Science.gov (United States)

    Li, Hongliang; Song, Shaoxian; Dong, Xianshu; Min, Fanfei; Zhao, Yunliang; Peng, Chenliang; Nahmad, Yuri

    2018-04-01

    Swelling of montmorillonite (Mt) is an important factor for many industrial applications. In this study, crystalline swelling of alkali-metal- and alkaline-earth-metal-Mt has been studied through energy optimization and molecular dynamics simulations using the clay force field by Materials Studio 8.0. The delamination and exfoliation of Mt are primarily realized by crystalline swelling caused by the enhanced interlayer cation hydration. The initial position of the interlayer cations and water molecules is the dominated factor for the accuracy of the Mt simulations. Crystalline swelling can be carried out in alkali-metal-Mt and Mg-Mt but with difficulty in Ca-Mt, Sr-Mt and Ba-Mt. The crystalline swelling capacity values are in the order Na-Mt > K-Mt > Cs-Mt > Mg-Mt. This order of crystalline swelling of Mt in the same group can be attributed to the differences between the interlayer cation hydration strengths. In addition, the differences in the crystalline swelling between the alkali-metal-Mt and alkaline-earth-metal-Mt can be primarily attributed to the valence of the interlayer cations.

  1. Tilted Dirac Cone Effect on Interlayer Magnetoresistance in α-(BEDT-TTF)2I3

    Science.gov (United States)

    Tajima, Naoya; Morinari, Takao

    2018-04-01

    We report the effect of Dirac cone tilting on interlayer magnetoresistance in α-(BEDT-TTF)2I3, which is a Dirac semimetal under pressure. Fitting of the experimental data by the theoretical formula suggests that the system is close to a type-II Dirac semimetal.

  2. Phishing Detection: Analysis of Visual Similarity Based Approaches

    Directory of Open Access Journals (Sweden)

    Ankit Kumar Jain

    2017-01-01

    Full Text Available Phishing is one of the major problems faced by cyber-world and leads to financial losses for both industries and individuals. Detection of phishing attack with high accuracy has always been a challenging issue. At present, visual similarities based techniques are very useful for detecting phishing websites efficiently. Phishing website looks very similar in appearance to its corresponding legitimate website to deceive users into believing that they are browsing the correct website. Visual similarity based phishing detection techniques utilise the feature set like text content, text format, HTML tags, Cascading Style Sheet (CSS, image, and so forth, to make the decision. These approaches compare the suspicious website with the corresponding legitimate website by using various features and if the similarity is greater than the predefined threshold value then it is declared phishing. This paper presents a comprehensive analysis of phishing attacks, their exploitation, some of the recent visual similarity based approaches for phishing detection, and its comparative study. Our survey provides a better understanding of the problem, current solution space, and scope of future research to deal with phishing attacks efficiently using visual similarity based approaches.

  3. Collaborative design of Open Educational Practices: An Assets based approach

    Directory of Open Access Journals (Sweden)

    Kate Helen Miller

    2018-04-01

    Full Text Available This paper outlines a collaborative approach to the design of open educational resources (OER with community stakeholders so they can be shared with other community practitioners openly, online and repurposed for other contexts. We view curriculum not as something that educationalists provide but rather something that emerges as learners engage with an educational context. We draw on a Project consisting of a partnership between five European Institutions of Higher Education and a range of community stakeholder groups. The partnership will develop a suite of OER for community workers who are implementing assets based approaches in different contexts. We argue that these approaches are negotiated in that one cannot decide how they might operate in a given context without engaging in deliberative discussion. The challenge for us as open education practitioners is how to turn those deliberations into OER and to highlight the important pedagogical aspect of the design process.

  4. A fuzzy behaviorist approach to sensor-based robot control

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.

    1996-05-01

    Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.

  5. Testing candidate interlayers for an enhanced water-cooled divertor target

    International Nuclear Information System (INIS)

    Hancock, David; Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William; Rieth, Michael; Reiser, Jens

    2015-01-01

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  6. Characterization of the porous anodic alumina nanostructures with a metal interlayer on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chia-Hui; Chen, Hung-Ing; Hsiao, Jui-Ju; Wang, Jen-Cheng; Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw

    2014-04-15

    Porous anodic alumina (PAA) films produced by the anodization technique have made possible the mass production of porous nano-scale structures where the pore height and diameter are controllable. A metal interlayer is observed to have a significant influence on the characteristics of these PAA nanostructures. In this study, we investigate in-depth the effect of the current density on the properties of porous anodic alumina nanostructures with a metal interlayer. A thin film layer of tungsten (W) and titanium (Ti) was sandwiched between a porous anodic alumina film and a silicon (Si) substrate to form PAA/W/Si and PAA/Ti/Si structures. The material and optical characteristics of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates were studied using the scanning electron microscopy, X-ray diffraction (XRD), and temperature-dependent photoluminescence (PL) measurements. The current densities of the porous anodic alumina nanostructures with the metal interlayer are higher than for the PAA/Si, resulting in an increase of the growth rate of the oxide layer. It can be observed from the X-ray diffraction curves that there is more aluminum oxide inside the structure with the metal interlayer. Furthermore, it has been found that there is a reduction in the photoluminescence intensity of the oxygen vacancy with only one electron due to the formation of oxygen vacancies inside the aluminum oxide during the re-crystallization process. This leads to competition between the two kinds of different oxygen-deficient defect centers (F+ and F centers) in the carrier recombination mechanism from the PL spectra of the porous anodic alumina nanostructures, with and without a metal interlayer, on silicon substrates. -- Highlights: • Study of porous anodic alumina (PAA) films with metal interlayers on silicon. • The highly ordered PAA film with a fairly regular nano-porous structure. • The luminescence properties of PAA films were

  7. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  8. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2

    Science.gov (United States)

    Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng

    2016-04-01

    Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and

  9. An Iterative Load Disaggregation Approach Based on Appliance Consumption Pattern

    Directory of Open Access Journals (Sweden)

    Huijuan Wang

    2018-04-01

    Full Text Available Non-intrusive load monitoring (NILM, monitoring single-appliance consumption level by decomposing the aggregated energy consumption, is a novel and economic technology that is beneficial to energy utilities and energy demand management strategies development. Hardware costs of high-frequency sampling and algorithm’s computational complexity hampered NILM large-scale application. However, low sampling data shows poor performance in event detection when multiple appliances are simultaneously turned on. In this paper, we contribute an iterative disaggregation approach that is based on appliance consumption pattern (ILDACP. Our approach combined Fuzzy C-means clustering algorithm, which provide an initial appliance operating status, and sub-sequence searching Dynamic Time Warping, which retrieves single energy consumption based on the typical power consumption pattern. Results show that the proposed approach is effective to accurately disaggregate power consumption, and is suitable for the situation where different appliances are simultaneously operated. Also, the approach has lower computational complexity than Hidden Markov Model method and it is easy to implement in the household without installing special equipment.

  10. A Semantics-Based Approach to Retrieving Biomedical Information

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Zambach, Sine

    2011-01-01

    This paper describes an approach to representing, organising, and accessing conceptual content of biomedical texts using a formal ontology. The ontology is based on UMLS resources supplemented with domain ontologies developed in the project. The approach introduces the notion of ‘generative ontol...... of data mining of texts identifying paraphrases and concept relations and measuring distances between key concepts in texts. Thus, the project is distinct in its attempt to provide a formal underpinning of conceptual similarity or relatedness of meaning.......This paper describes an approach to representing, organising, and accessing conceptual content of biomedical texts using a formal ontology. The ontology is based on UMLS resources supplemented with domain ontologies developed in the project. The approach introduces the notion of ‘generative...... ontologies’, i.e., ontologies providing increasingly specialised concepts reflecting the phrase structure of natural language. Furthermore, we propose a novel so called ontological semantics which maps noun phrases from texts and queries into nodes in the generative ontology. This enables an advanced form...

  11. Assessment of Constraint Effects based on Local Approach

    International Nuclear Information System (INIS)

    Lee, Tae Rin; Chang, Yoon Suk; Choi, Jae Boong; Seok, Chang Sung; Kim, Young Jin

    2005-01-01

    Traditional fracture mechanics has been used to ensure a structural integrity, in which the geometry independence is assumed in crack tip deformation and fracture toughness. However, the assumption is applicable only within limited conditions. To address fracture covering a broad range of loading and crack geometries, two-parameter global approach and local approach have been proposed. The two-parameter global approach can quantify the load and crack geometry effects by adopting T-stress or Q-parameter but time-consuming and expensive since lots of experiments and finite element (FE) analyses are necessary. On the other hand, the local approach evaluates the load and crack geometry effects based on damage model. Once material specific fitting constants are determined from a few experiments and FE analyses, the fracture resistance characteristics can be obtained by numerical simulation. The purpose of this paper is to investigate constraint effects for compact tension (CT) specimens with different in-plane or out-of-plane size using local approach. Both modified GTN model and Rousselier model are adopted to examine the ductile fracture behavior of SA515 Gr.60 carbon steel at high temperature. The fracture resistance (J-R) curves are estimated through numerical analysis, compared with corresponding experimental results and, then, crack length, thickness and side-groove effects are evaluated

  12. An SQL-based approach to physics analysis

    International Nuclear Information System (INIS)

    Limper, Dr Maaike

    2014-01-01

    As part of the CERN openlab collaboration a study was made into the possibility of performing analysis of the data collected by the experiments at the Large Hadron Collider (LHC) through SQL-queries on data stored in a relational database. Currently LHC physics analysis is done using data stored in centrally produced 'ROOT-ntuple' files that are distributed through the LHC computing grid. The SQL-based approach to LHC physics analysis presented in this paper allows calculations in the analysis to be done at the database and can make use of the database's in-built parallelism features. Using this approach it was possible to reproduce results for several physics analysis benchmarks. The study shows the capability of the database to handle complex analysis tasks but also illustrates the limits of using row-based storage for storing physics analysis data, as performance was limited by the I/O read speed of the system.

  13. English to Sanskrit Machine Translation Using Transfer Based approach

    Science.gov (United States)

    Pathak, Ganesh R.; Godse, Sachin P.

    2010-11-01

    Translation is one of the needs of global society for communicating thoughts and ideas of one country with other country. Translation is the process of interpretation of text meaning and subsequent production of equivalent text, also called as communicating same meaning (message) in another language. In this paper we gave detail information on how to convert source language text in to target language text using Transfer Based Approach for machine translation. Here we implemented English to Sanskrit machine translator using transfer based approach. English is global language used for business and communication but large amount of population in India is not using and understand the English. Sanskrit is ancient language of India most of the languages in India are derived from Sanskrit. Sanskrit can be act as an intermediate language for multilingual translation.

  14. Deep-Learning-Based Approach for Prediction of Algal Blooms

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2016-10-01

    Full Text Available Algal blooms have recently become a critical global environmental concern which might put economic development and sustainability at risk. However, the accurate prediction of algal blooms remains a challenging scientific problem. In this study, a novel prediction approach for algal blooms based on deep learning is presented—a powerful tool to represent and predict highly dynamic and complex phenomena. The proposed approach constructs a five-layered model to extract detailed relationships between the density of phytoplankton cells and various environmental parameters. The algal blooms can be predicted by the phytoplankton density obtained from the output layer. A case study is conducted in coastal waters of East China using both our model and a traditional back-propagation neural network for comparison. The results show that the deep-learning-based model yields better generalization and greater accuracy in predicting algal blooms than a traditional shallow neural network does.

  15. Earthquake insurance pricing: a risk-based approach.

    Science.gov (United States)

    Lin, Jeng-Hsiang

    2018-04-01

    Flat earthquake premiums are 'uniformly' set for a variety of buildings in many countries, neglecting the fact that the risk of damage to buildings by earthquakes is based on a wide range of factors. How these factors influence the insurance premiums is worth being studied further. Proposed herein is a risk-based approach to estimate the earthquake insurance rates of buildings. Examples of application of the approach to buildings located in Taipei city of Taiwan were examined. Then, the earthquake insurance rates for the buildings investigated were calculated and tabulated. To fulfil insurance rating, the buildings were classified into 15 model building types according to their construction materials and building height. Seismic design levels were also considered in insurance rating in response to the effect of seismic zone and construction years of buildings. This paper may be of interest to insurers, actuaries, and private and public sectors of insurance. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  16. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  17. Triangulation based inclusion probabilities: a design-unbiased sampling approach

    OpenAIRE

    Fehrmann, Lutz; Gregoire, Timothy; Kleinn, Christoph

    2011-01-01

    A probabilistic sampling approach for design-unbiased estimation of area-related quantitative characteristics of spatially dispersed population units is proposed. The developed field protocol includes a fixed number of 3 units per sampling location and is based on partial triangulations over their natural neighbors to derive the individual inclusion probabilities. The performance of the proposed design is tested in comparison to fixed area sample plots in a simulation with two forest stands. ...

  18. Flow-based approach for holistic factory engineering and design

    OpenAIRE

    Constantinescu, C.; Westkämper, E.

    2010-01-01

    The engineering of future factories requires digital tools along life cycle phases from investment planning to ramp-up. Manufacturers need scientific-based integrated highly dynamic data management systems for the participative and integrated factory planning. The paper presents a new approach for the continuously integrated product design, factory and process planning, through a service-oriented architecture for the implementation of digital factory tools. A first prototype of the digital fa...

  19. A corpus-based approach to generalising a chatbot system

    OpenAIRE

    Abu Shawar, Bayan; Atwell, Eric

    2003-01-01

    International research in NLP is dominated by work on English. NLP techniques and systems can be ported to other natural languages, but this is generally a labour-intensive task, requiring scarce computational and linguistic expertise; hence minority languages are poorly represented in NLP technology. We present an automated approach to porting an NLP technology, the AIML-based chatbot, to new languages, by using a corpus in the target language to retrain the chatbot. We have s...

  20. An ontology-based approach for modelling architectural styles

    OpenAIRE

    Pahl, Claus; Giesecke, Simon; Hasselbring, Wilhelm

    2007-01-01

    peer-reviewed The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework.We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. Architect...

  1. A structural informatics approach to mine kinase knowledge bases.

    Science.gov (United States)

    Brooijmans, Natasja; Mobilio, Dominick; Walker, Gary; Nilakantan, Ramaswamy; Denny, Rajiah A; Feyfant, Eric; Diller, David; Bikker, Jack; Humblet, Christine

    2010-03-01

    In this paper, we describe a combination of structural informatics approaches developed to mine data extracted from existing structure knowledge bases (Protein Data Bank and the GVK database) with a focus on kinase ATP-binding site data. In contrast to existing systems that retrieve and analyze protein structures, our techniques are centered on a database of ligand-bound geometries in relation to residues lining the binding site and transparent access to ligand-based SAR data. We illustrate the systems in the context of the Abelson kinase and related inhibitor structures. 2009 Elsevier Ltd. All rights reserved.

  2. Ray-based approach to integrated 3D visual communication

    Science.gov (United States)

    Naemura, Takeshi; Harashima, Hiroshi

    2001-02-01

    For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.

  3. Knowledge-based approach to video content classification

    Science.gov (United States)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  4. Toward a Mechanism-Based Approach to Pain Diagnosis.

    Science.gov (United States)

    Vardeh, Daniel; Mannion, Richard J; Woolf, Clifford J

    2016-09-01

    The past few decades have witnessed a huge leap forward in our understanding of the mechanistic underpinnings of pain, in normal states where it helps protect from injury, and also in pathological states where pain evolves from a symptom reflecting tissue injury to become the disease itself. However, despite these scientific advances, chronic pain remains extremely challenging to manage clinically. Although the number of potential treatment targets has grown substantially and a strong case has been made for a mechanism-based and individualized approach to pain therapy, arguably clinicians are not much more advanced now than 20 years ago, in their capacity to either diagnose or effectively treat their patients. The gulf between pain research and pain management is as wide as ever. We are still currently unable to apply an evidence-based approach to chronic pain management that reflects mechanistic understanding, and instead, clinical practice remains an empirical and often unsatisfactory journey for patients, whose individual response to treatment cannot be predicted. In this article we take a common and difficult to treat pain condition, chronic low back pain, and use its presentation in clinical practice as a framework to highlight what is known about pathophysiological pain mechanisms and how we could potentially detect these to drive rational treatment choice. We discuss how present methods of assessment and management still fall well short, however, of any mechanism-based or precision medicine approach. Nevertheless, substantial improvements in chronic pain management could be possible if a more strategic and coordinated approach were to evolve, one designed to identify the specific mechanisms driving the presenting pain phenotype. We present an analysis of such an approach, highlighting the major problems in identifying mechanisms in patients, and develop a framework for a pain diagnostic ladder that may prove useful in the future, consisting of successive

  5. Influencing factors for condition-based maintenance in railway tracks using knowledge-based approach

    NARCIS (Netherlands)

    Jamshidi, A.; Hajizadeh, S.; Naeimi, M.; Nunez Vicencio, Alfredo; Li, Z.

    2017-01-01

    In this paper, we present a condition-based maintenance decision method using
    knowledge-based approach for rail surface defects. A railway track may contain a considerable number of surface defects which influence track maintenance decisions. The proposed method is based on two sets of

  6. Conceptual design of jewellery: a space-based aesthetics approach

    Directory of Open Access Journals (Sweden)

    Tzintzi Vaia

    2017-01-01

    Full Text Available Conceptual design is a field that offers various aesthetic approaches to generation of nature-based product design concepts. Essentially, Conceptual Product Design (CPD uses similarities based on the geometrical forms and functionalities. Furthermore, the CAD-based freehand sketch is a primary conceptual tool in the early stages of the design process. The proposed Conceptual Product Design concept is dealing with jewelleries that are inspired from space. Specifically, a number of galaxy features, such as galaxy shapes, wormholes and graphical representation of planet magnetic field are used as inspirations. Those space-based design ideas at a conceptual level can lead to further opportunities for research and economic success of the jewellery industry. A number of illustrative case studies are presented and new opportunities can be derived for economic success.

  7. Mapping site-based construction workers’ motivation: Expectancy theory approach

    Directory of Open Access Journals (Sweden)

    Parviz Ghoddousi

    2014-03-01

    Full Text Available The aim of this study is to apply a recently proposed model of motivation based on expectancy theory to site-based workers in the construction context and confirm the validity of this model for the construction industry. The study drew upon data from 194 site-based construction workers in Iran to test the proposed model of motivation. To this end, the structural equation modelling (SEM approach based on the confirmatory factor analysis (CFA technique was deployed. The study reveals that the proposed model of expectancy theory incorporating five indicators (i.e. intrinsic instrumentality, extrinsic instrumentality, intrinsic valence, extrinsic valence and expectancy is able to map the process of construction workers’ motivation. Nonetheless, the findings posit that intrinsic indicators could be more effective than extrinsic ones. This proffers the necessity of construction managers placing further focus on intrinsic motivators to motivate workers. 

  8. Mapping site-based construction workers’ motivation: Expectancy theory approach

    Directory of Open Access Journals (Sweden)

    Parviz Ghoddousi

    2014-03-01

    Full Text Available The aim of this study is to apply a recently proposed model of motivation based on expectancy theory to site-based workers in the construction context and confirm the validity of this model for the construction industry. The study drew upon data from 194 site-based construction workers in Iran to test the proposed model of motivation. To this end, the structural equation modelling (SEM approach based on the confirmatory factor analysis (CFA technique was deployed. The study reveals that the proposed model of expectancy theory incorporating five indicators (i.e. intrinsic instrumentality, extrinsic instrumentality, intrinsic valence, extrinsic valence and expectancy is able to map the process of construction workers’ motivation. Nonetheless, the findings posit that intrinsic indicators could be more effective than extrinsic ones. This proffers the necessity of construction managers placing further focus on intrinsic motivators to motivate workers.

  9. Influence of MoOx interlayer on the maximum achievable open-circuit voltage in organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell

    2013-03-01

    Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.

  10. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Guo, Pengqian; Liu, Dequan; Liu, Zhengjiao; Shang, Xiaonan; Liu, Qiming; He, Deyan

    2017-01-01

    Highlights: •Dual functional MoS 2 /graphene interlayer was first used as an efficient polysulfide-trapping shield for lithium-sulfur batteries. •MoS 2 /graphene interlayer shows strong chemical interactions with LiPSs. •MoS 2 /graphene interlayer forms a 3D network to facilitate electron and ion transfer during the discharge-charge processes. •The resultant lithium-sulfur batteries exhibit a superior rate capacity and improved cycling capacity. -- Abstract: A dual functional interlayer consisted of composited two-dimensional MoS 2 and graphene has been developed as an efficient polysulfide barrier for lithium-sulfur batteries (LSBs). With such a configuration, LSBs show a superior rate capacity and improved cycling capacity. The excellent electrochemical performance can be attributed to the strong bonding interactions between the MoS 2 /graphene interlayer and the formed lithium polysulfides (LiPSs) as well as the good electrical conductivity of the MoS 2 /graphene composite. The MoS 2 /graphene interlayer can physically block LiPSs by the graphene nanosheets and chemically suppress the dissolution of LiPSs by the polar MoS 2 nanoflowers. Such a dual functional interlayer further provides a good contact with the surface of the sulfur cathode, acts as an upper current collector and greatly improves the sulfur utilization and the rate capability of LSBs.

  11. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  12. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  13. Towards a mechanism-based approach to pain diagnosis

    Science.gov (United States)

    Vardeh, Daniel

    2016-01-01

    The last few decades have witnessed a huge leap forward in our understanding of the mechanistic underpinnings of pain, both in normal states where it helps protect from injury, and in pathological states where pain evolves from a symptom reflecting tissue injury to become the disease itself. However, despite these scientific advances, chronic pain remains extremely challenging to manage clinically. While the number of potential treatment targets has grown substantially and a strong case has been made for a mechanism-based and individualized approach to pain therapy, arguably clinicians are not much more advanced now than 20 years ago, in their capacity to either diagnose or effectively treat their patients. The gulf between pain research and pain management is as wide as ever. We are still currently unable to apply an evidence-based approach to chronic pain management that reflects mechanistic understanding, and instead, clinical practice remains an empirical and often unsatisfactory journey for patients, whose individual response to treatment cannot be predicted. Here we take a common and difficult to treat pain condition, chronic low back pain, and use its presentation in clinical practice as a framework to highlight what is known about pathophysiological pain mechanisms and how we could potentially detect these to drive rational treatment choice. We discuss how present methods of assessment and management still fall well short, however, of any mechanism-based or precision-medicine approach. Nevertheless, substantial improvements in chronic pain management could be possible if a more strategic and coordinated approach were to evolve, one designed to identify the specific mechanisms driving the presenting pain phenotype. We present an analysis of such an approach, highlighting the major problems in identifying mechanisms in patients, and develop a framework for a pain diagnostic ladder that may prove useful in the future, consisting of successive identification of

  14. Frame-Based and Subpicture-Based Parallelization Approaches of the HEVC Video Encoder

    Directory of Open Access Journals (Sweden)

    Héctor Migallón

    2018-05-01

    Full Text Available The most recent video coding standard, High Efficiency Video Coding (HEVC, is able to significantly improve the compression performance at the expense of a huge computational complexity increase with respect to its predecessor, H.264/AVC. Parallel versions of the HEVC encoder may help to reduce the overall encoding time in order to make it more suitable for practical applications. In this work, we study two parallelization strategies. One of them follows a coarse-grain approach, where parallelization is based on frames, and the other one follows a fine-grain approach, where parallelization is performed at subpicture level. Two different frame-based approaches have been developed. The first one only uses MPI and the second one is a hybrid MPI/OpenMP algorithm. An exhaustive experimental test was carried out to study the performance of both approaches in order to find out the best setup in terms of parallel efficiency and coding performance. Both frame-based and subpicture-based approaches are compared under the same hardware platform. Although subpicture-based schemes provide an excellent performance with high-resolution video sequences, scalability is limited by resolution, and the coding performance worsens by increasing the number of processes. Conversely, the proposed frame-based approaches provide the best results with respect to both parallel performance (increasing scalability and coding performance (not degrading the rate/distortion behavior.

  15. A probabilistic approach to the drag-based model

    Science.gov (United States)

    Napoletano, Gianluca; Forte, Roberta; Moro, Dario Del; Pietropaolo, Ermanno; Giovannelli, Luca; Berrilli, Francesco

    2018-02-01

    The forecast of the time of arrival (ToA) of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the ToA using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.

  16. Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.

    Science.gov (United States)

    Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi

    2016-06-01

    Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.

  17. Feedback structure based entropy approach for multiple-model estimation

    Institute of Scientific and Technical Information of China (English)

    Shen-tu Han; Xue Anke; Guo Yunfei

    2013-01-01

    The variable-structure multiple-model (VSMM) approach, one of the multiple-model (MM) methods, is a popular and effective approach in handling problems with mode uncertainties. The model sequence set adaptation (MSA) is the key to design a better VSMM. However, MSA methods in the literature have big room to improve both theoretically and practically. To this end, we propose a feedback structure based entropy approach that could find the model sequence sets with the smallest size under certain conditions. The filtered data are fed back in real time and can be used by the minimum entropy (ME) based VSMM algorithms, i.e., MEVSMM. Firstly, the full Markov chains are used to achieve optimal solutions. Secondly, the myopic method together with particle filter (PF) and the challenge match algorithm are also used to achieve sub-optimal solutions, a trade-off between practicability and optimality. The numerical results show that the proposed algorithm provides not only refined model sets but also a good robustness margin and very high accuracy.

  18. Contingent approach to Internet-based supply network integration

    Science.gov (United States)

    Ho, Jessica; Boughton, Nick; Kehoe, Dennis; Michaelides, Zenon

    2001-10-01

    The Internet is playing an increasingly important role in enhancing the operations of supply networks as many organizations begin to recognize the benefits of Internet- enabled supply arrangements. However, the developments and applications to-date do not extend significantly beyond the dyadic model, whereas the real advantages are to be made with the external and network models to support a coordinated and collaborative based approach. The DOMAIN research group at the University of Liverpool is currently defining new Internet- enabled approaches to enable greater collaboration across supply chains. Different e-business models and tools are focusing on different applications. Using inappropriate e- business models, tools or techniques will bring negative results instead of benefits to all the tiers in the supply network. Thus there are a number of issues to be considered before addressing Internet based supply network integration, in particular an understanding of supply chain management, the emergent business models and evaluating the effects of deploying e-business to the supply network or a particular tier. It is important to utilize a contingent approach to selecting the right e-business model to meet the specific supply chain requirements. This paper addresses the issues and provides a case study on the indirect materials supply networks.

  19. An approach for fixed coefficient RNS-based FIR filter

    Science.gov (United States)

    Srinivasa Reddy, Kotha; Sahoo, Subhendu Kumar

    2017-08-01

    In this work, an efficient new modular multiplication method for {2k-1, 2k, 2k+1-1} moduli set is proposed to implement a residue number system (RNS)-based fixed coefficient finite impulse response filter. The new multiplication approach reduces the number of partial products by using pre-loaded product block. The reduction in partial products with the proposed modular multiplication improves the clock frequency and reduces the area and power as compared with the conventional modular multiplication. Further, the present approach eliminates a binary number to residue number converter circuit, which is usually needed at the front end of RNS-based system. In this work, two fixed coefficient filter architectures with the new modular multiplication approach are proposed. The filters are implemented using Verilog hardware description language. The United Microelectronics Corporation 90 nm technology library has been used for synthesis and the results area, power and delay are obtained with the help of Cadence register transfer level compiler. The power delay product (PDP) is also considered for performance comparison among the proposed filters. One of the proposed architecture is found to improve PDP gain by 60.83% as compared with the filter implemented with conventional modular multiplier. The filters functionality is validated with the help of Altera DSP Builder.

  20. Pedestrian detection from thermal images: A sparse representation based approach

    Science.gov (United States)

    Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi

    2016-05-01

    Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.

  1. Rights-Based Approaches to Ensure Sustainable Nutrition Security.

    Science.gov (United States)

    Banerjee, Sweta

    2016-01-01

    In India, a rights-based approach has been used to address large-scale malnutrition, including both micro- and macro-level nutrition deficiencies. Stunting, which is an intergenerational chronic consequence of malnutrition, is especially widespread in India (38% among children under 5 years old). To tackle this problem, the government of India has designed interventions for the first 1,000 days, a critical period of the life cycle, through a number of community-based programs to fulfill the rights to food and life. However, the entitlements providing these rights have not yet produced the necessary changes in the malnutrition status of people, especially women and children. The government of India has already implemented laws and drafted a constitution that covers the needs of its citizens, but corruption, bureaucracy, lack of awareness of rights and entitlements and social discrimination limit people's access to basic rights and services. To address this crisis, Welthungerhilfe India, working in remote villages of the most backward states in India, has shifted from a welfare-based approach to a rights-based approach. The Fight Hunger First Initiative, started by Welthungerhilfe in 2011, is designed on the premise that in the long term, poor people can only leave poverty behind if adequate welfare systems are in place and if basic rights are fulfilled; these rights include access to proper education, sufficient access to adequate food and income, suitable health services and equal rights. Only then can the next generation of disadvantaged populations look forward to a new and better future and can growth benefit the entire society. The project, co-funded by the Federal Ministry for Economic Cooperation and Development, is a long-term multi-sectoral program that involves institution-building and empowerment. © 2016 S. Karger AG, Basel.

  2. Improving information extraction using a probability-based approach

    DEFF Research Database (Denmark)

    Kim, S.; Ahmed, Saeema; Wallace, K.

    2007-01-01

    Information plays a crucial role during the entire life-cycle of a product. It has been shown that engineers frequently consult colleagues to obtain the information they require to solve problems. However, the industrial world is now more transient and key personnel move to other companies...... or retire. It is becoming essential to retrieve vital information from archived product documents, if it is available. There is, therefore, great interest in ways of extracting relevant and sharable information from documents. A keyword-based search is commonly used, but studies have shown...... the recall, while maintaining the high precision, a learning approach that makes identification decisions based on a probability model, rather than simply looking up the presence of the pre-defined variations, looks promising. This paper presents the results of developing such a probability-based entity...

  3. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  4. New approaches to addiction treatment based on learning and memory.

    Science.gov (United States)

    Kiefer, Falk; Dinter, Christina

    2013-01-01

    Preclinical studies suggest that physiological learning processes are similar to changes observed in addicts at the molecular, neuronal, and structural levels. Based on the importance of classical and instrumental conditioning in the development and maintenance of addictive disorders, many have suggested cue-exposure-based extinction training of conditioned, drug-related responses as a potential new treatment of addiction. It may also be possible to facilitate this extinction training with pharmacological compounds that strengthen memory consolidation during cue exposure. Another potential therapeutic intervention would be based on the so-called reconsolidation theory. According to this hypothesis, already-consolidated memories return to a labile state when reactivated, allowing them to undergo another phase of consolidation-reconsolidation, which can be pharmacologically manipulated. These approaches suggest that the extinction of drug-related memories may represent a viable treatment strategy in the future treatment of addiction.

  5. Bridging Ayurveda with evidence-based scientific approaches in medicine.

    Science.gov (United States)

    Patwardhan, Bhushan

    2014-01-01

    This article reviews contemporary approaches for bridging Ayurveda with evidence-based medicine. In doing so, the author presents a pragmatic assessment of quality, methodology and extent of scientific research in Ayurvedic medicine. The article discusses the meaning of evidence and indicates the need to adopt epistemologically sensitive methods and rigorous experimentation using modern science. The author critically analyzes the status of Ayurvedic medicine based on personal observations, peer interactions and published research. This review article concludes that traditional knowledge systems like Ayurveda and modern scientific evidence-based medicine should be integrated. The author advocates that Ayurvedic researchers should develop strategic collaborations with innovative initiatives like 'Horizon 2020' involving predictive, preventive and personalized medicine (PPPM).

  6. Intelligent Flowcharting Developmental Approach to Legal Knowledge Based System

    Directory of Open Access Journals (Sweden)

    Nitin Balaji Bilgi

    2011-10-01

    Full Text Available The basic aim of this research, described in this paper is to develop a hybrid legal expert system/ knowledge based system, with specific reference to the transfer of property act, within the Indian legal system which is often in demand. In this paper the authors discuss an traditional approach to combining two types of reasoning methodologies, Rule Based Reasoning (RBR and Case Based Reasoning (CBR. In RBR module we have interpreted and implemented rules that occur in legal statutes of the Transfer of property act. In the CBR module we have an implementation to find the related cases. The VisiRule software made available by Logic Programming Associates is used in the development of RBR part this expert system. The authors have used java Net Beans for development of CBR. VisiRule is a decision charting tool, in which the rules are defined by a combination of graphical shapes and pieces of text, and produces rules.

  7. A New Design Approach to game or play based learning

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel

    to ground the students sense of meaning. This paper proposes another approach: using visualization in immersive 3D-worlds as documentation of learning progress while at the same time constituting a reward system which motivate further learning. The overall design idea is to build a game based learning......Abstract: The present paper proposes a new design perspective for game based learning. The general idea is to abandon the long and sought after dream of designing a closed learning system, where students from elementary school to high school without teachers’ interference could learn whatever...... game based learning system, but also confront aspects of modern learning theory especially the notion of reference between content of an assignment and the reality with which it should or could be connected (situated learning). The second idea promotes a way to tackle the common experience...

  8. An Asset-Based Approach to Tribal Community Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Rachael A. [Pratt Inst., Brooklyn, NY (United States). City and Regional Planning; Martino, Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials, Devices, and Energy Technologies; Begay, Sandra K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials, Devices, and Energy Technologies

    2016-08-01

    Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, and political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.

  9. Scattered Data Processing Approach Based on Optical Facial Motion Capture

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2013-01-01

    Full Text Available In recent years, animation reconstruction of facial expressions has become a popular research field in computer science and motion capture-based facial expression reconstruction is now emerging in this field. Based on the facial motion data obtained using a passive optical motion capture system, we propose a scattered data processing approach, which aims to solve the common problems of missing data and noise. To recover missing data, given the nonlinear relationships among neighbors with the current missing marker, we propose an improved version of a previous method, where we use the motion of three muscles rather than one to recover the missing data. To reduce the noise, we initially apply preprocessing to eliminate impulsive noise, before our proposed three-order quasi-uniform B-spline-based fitting method is used to reduce the remaining noise. Our experiments showed that the principles that underlie this method are simple and straightforward, and it delivered acceptable precision during reconstruction.

  10. Alcoholism and its Effects: an Approach Based on Health Psychology

    Directory of Open Access Journals (Sweden)

    Maria de las Mercedes Pretel Olite

    2014-11-01

    Full Text Available Alcoholism is a complex biopsychosocial disorder that requires a specialised and multidisciplinary approach focusing on both the patient and the family. Alcohol consumption is the most important addiction worldwide due to its prevalence and impact. Therefore, the main objective of a primary care physician should be to facilitate the referral of patients and their families to a structured treatment, support and guidance program during the whole detoxification process. In every health area in Cienfuegos, there are community mental health centers with a staff trained to deal with these disorders in addicts and their family. A literature review was conducted to establish the relationship between alcohol consumption and its harmful effects on health, family and society, using an approach based on Health Psychology.

  11. Applying a Problem Based Learning Approach to Land Management Education

    DEFF Research Database (Denmark)

    Enemark, Stig

    Land management covers a wide range activities associated with the management of land and natural resources that are required to fulfil political objectives and achieve sustainable development. This paper presents an overall understanding of the land management paradigm and the benefits of good...... land governance to society. A land administration system provides a country with the infrastructure to implement land-related policies and land management strategies. By applying this land management profile to surveying education, this paper suggests that there is a need to move away from an exclusive...... engineering focus toward adopting an interdisciplinary and problem-based approach to ensure that academic programmes can cope with the wide range of land administration functions and challenges. An interdisciplinary approach to surveying education calls for the need to address issues and problems in a real...

  12. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.

    Science.gov (United States)

    Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel

    2017-06-01

    Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.

  13. Road traffic management based on self-load-balancing approach

    Directory of Open Access Journals (Sweden)

    Adnane Ahmed

    2016-01-01

    Full Text Available Traffic congestion is one of the most challenging problems for nowadays cities. Several contributions mainly based on V2V (Vehicle-to-Vehicle communication have been published, but most of them have never been applied due to their communication related problems and costs. In this article, a novel cost-effective approach is introduced inspired by social life of insects where direct (V2V communication does not exist anymore. Vehicles are equipped with devices that perform simple tasks, but their interactions with the environment through RSUs (Road Side Units allow the creation of an intelligence which notifies drivers about congested road segments to avoid them. We call this emerging behavior self-load balancing. Description of the fundamentals of this approach and its performance are detailed in this work.

  14. A Component Based Approach to Scientific Workflow Management

    CERN Document Server

    Le Goff, Jean-Marie; Baker, Nigel; Brooks, Peter; McClatchey, Richard

    2001-01-01

    CRISTAL is a distributed scientific workflow system used in the manufacturing and production phases of HEP experiment construction at CERN. The CRISTAL project has studied the use of a description driven approach, using meta- modelling techniques, to manage the evolving needs of a large physics community. Interest from such diverse communities as bio-informatics and manufacturing has motivated the CRISTAL team to re-engineer the system to customize functionality according to end user requirements but maximize software reuse in the process. The next generation CRISTAL vision is to build a generic component architecture from which a complete software product line can be generated according to the particular needs of the target enterprise. This paper discusses the issues of adopting a component product line based approach and our experiences of software reuse.

  15. A component based approach to scientific workflow management

    International Nuclear Information System (INIS)

    Baker, N.; Brooks, P.; McClatchey, R.; Kovacs, Z.; LeGoff, J.-M.

    2001-01-01

    CRISTAL is a distributed scientific workflow system used in the manufacturing and production phases of HEP experiment construction at CERN. The CRISTAL project has studied the use of a description driven approach, using meta-modelling techniques, to manage the evolving needs of a large physics community. Interest from such diverse communities as bio-informatics and manufacturing has motivated the CRISTAL team to re-engineer the system to customize functionality according to end user requirements but maximize software reuse in the process. The next generation CRISTAL vision is to build a generic component architecture from which a complete software product line can be generated according to the particular needs of the target enterprise. This paper discusses the issues of adopting a component product line based approach and our experiences of software reuse

  16. Evolutionary modeling-based approach for model errors correction

    Directory of Open Access Journals (Sweden)

    S. Q. Wan

    2012-08-01

    Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."

    On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.

  17. Nucleic Acid-Based Therapy Approaches for Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Tatyana Vagner

    2012-01-01

    Full Text Available Huntington's disease (HD is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin, and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic strategies that have been tested to date.

  18. An Agent Based approach to design Serious Game

    Directory of Open Access Journals (Sweden)

    Manuel Gentile

    2014-06-01

    Full Text Available Serious games are designed to train and educate learners, opening up new learning approaches like exploratory learning and situated cognition.  Despite growing interest in these games, their design is still an artisan process.On the basis of experiences in designing computer simulation, this paper proposes an agent-based approach to guide the design process of a serious game. The proposed methodology allows the designer to strike the right equilibrium between educational effectiveness and entertainment, realism and complexity.The design of the PNPVillage game is used as a case study. The PNPVillage game aims to introduce and foster an entrepreneurial mindset among young students. It was implemented within the framework of the European project “I  can… I cannot… I go!” Rev.2

  19. Microarray-based cancer prediction using soft computing approach.

    Science.gov (United States)

    Wang, Xiaosheng; Gotoh, Osamu

    2009-05-26

    One of the difficulties in using gene expression profiles to predict cancer is how to effectively select a few informative genes to construct accurate prediction models from thousands or ten thousands of genes. We screen highly discriminative genes and gene pairs to create simple prediction models involved in single genes or gene pairs on the basis of soft computing approach and rough set theory. Accurate cancerous prediction is obtained when we apply the simple prediction models for four cancerous gene expression datasets: CNS tumor, colon tumor, lung cancer and DLBCL. Some genes closely correlated with the pathogenesis of specific or general cancers are identified. In contrast with other models, our models are simple, effective and robust. Meanwhile, our models are interpretable for they are based on decision rules. Our results demonstrate that very simple models may perform well on cancerous molecular prediction and important gene markers of cancer can be detected if the gene selection approach is chosen reasonably.

  20. A Survey on Trust-Based Web Service Provision Approaches

    DEFF Research Database (Denmark)

    Dragoni, Nicola

    2010-01-01

    The basic tenet of Service-Oriented Computing (SOC) is the possibility of building distributed applications on the Web by using Web Services as fundamental building blocks. The proliferation of such services is considered the second wave of evolution in the Internet age, moving the Web from...... a collection of pages to a collections of services. Consensus is growing that this Web Service “revolution” won't eventuate until we resolve trust-related issues. Indeed, the intrinsic openness of the SOC vision makes crucial to locate useful services and recognize them as trustworthy. In this paper we review...... the field of trust-based Web Service selection, providing a structured classification of current approaches and highlighting the main limitations of each class and of the overall field. As a result, we claim that a soft notion of trust lies behind such weaknesses and we advocate the need of a new approach...

  1. Hypercompetitive Environments: An Agent-based model approach

    Science.gov (United States)

    Dias, Manuel; Araújo, Tanya

    Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.

  2. New approach for risk based inspection of H2S based Process Plants

    International Nuclear Information System (INIS)

    Vinod, Gopika; Sharma, Pavan K.; Santosh, T.V.; Hari Prasad, M.; Vaze, K.K.

    2014-01-01

    Highlights: • Study looks into improving the consequence evaluation in risk based inspection. • Ways to revise the quantity factors used in qualitative approach. • New approach based on computational fluid dynamics along with probit mathematics. • Demonstrated this methodology along with a suitable case study for the said issue. - Abstract: Recent trend in risk informed and risk based approaches in life management issues have certainly put the focus on developing estimation methods for real risk. Idea of employing risk as an optimising measure for in-service inspection, termed as risk based inspection, was accepted in principle from late 80s. While applying risk based inspection, consequence of failure from each component needs to be assessed. Consequence evaluation in a Process Plant is a crucial task. It may be noted that, in general, the number of components to be considered for life management is very large and hence the consequence evaluation resulting from their failures (individually) is a laborious task. Screening of critical components is usually carried out using simplified qualitative approach, which primarily uses influence factors for categorisation. This necessitates logical formulation of influence factors and their ranges with a suitable technical basis for acceptance from regulators. This paper describes application of risk based inspection for H 2 S based Process Plant along with the approach devised for handling the influence factor related to the quantity of H 2 S released

  3. Assessment of acid-base balance. Stewart's approach.

    Science.gov (United States)

    Fores-Novales, B; Diez-Fores, P; Aguilera-Celorrio, L J

    2016-04-01

    The study of acid-base equilibrium, its regulation and its interpretation have been a source of debate since the beginning of 20th century. Most accepted and commonly used analyses are based on pH, a notion first introduced by Sorensen in 1909, and on the Henderson-Hasselbalch equation (1916). Since then new concepts have been development in order to complete and make easier the understanding of acid-base disorders. In the early 1980's Peter Stewart brought the traditional interpretation of acid-base disturbances into question and proposed a new method. This innovative approach seems more suitable for studying acid-base abnormalities in critically ill patients. The aim of this paper is to update acid-base concepts, methods, limitations and applications. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Minimal incision surgery in strabismus: Modified fornix-based approach.

    Science.gov (United States)

    Pérez-Flores, I

    2016-07-01

    To evaluate the modified fornix-based technique as an approach for minimal incision surgery in strabismus. The medical records of all consecutive patients that underwent strabismus surgery with fornix-based conjunctival incision between 2007 and 2012 were retrospectively reviewed. As a primary variable, an analysis was made of the wound size depending on the number of stitches. A descriptive study was performed on the variables related to patients and to the type of strabismus and surgery. Out of 153patients identified, 138 with 294 surgeries were included. In 200 (68%) interventions, the incision was sutured with one stitch, in 77 (26.2%) with 2, in 13 (4.4%) with 3, and in 4 (1.4%) with 4, with the mean number of stitches being 1.39±0.64. The mean age of the patients was 39years (2-80), and 36 (26.1%) had previous strabismus surgery, with topical anaesthesia being used in 35 (25.4%) cases. At 3months after surgery deviation was ≤10DP in 114 (82.6%) patients. There were no wound-related complications. The modified fornix-based technique is an effective and safe approach for minimal incision surgery in strabismus, in patients at all ages, with previous history of strabismus surgery and with topical anaesthesia. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  5. A web-based approach to data imputation

    KAUST Repository

    Li, Zhixu

    2013-10-24

    In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques. © 2013 Springer Science+Business Media New York.

  6. A collaborative filtering-based approach to biomedical knowledge discovery.

    Science.gov (United States)

    Lever, Jake; Gakkhar, Sitanshu; Gottlieb, Michael; Rashnavadi, Tahereh; Lin, Santina; Siu, Celia; Smith, Maia; Jones, Martin R; Krzywinski, Martin; Jones, Steven J M; Wren, Jonathan

    2018-02-15

    The increase in publication rates makes it challenging for an individual researcher to stay abreast of all relevant research in order to find novel research hypotheses. Literature-based discovery methods make use of knowledge graphs built using text mining and can infer future associations between biomedical concepts that will likely occur in new publications. These predictions are a valuable resource for researchers to explore a research topic. Current methods for prediction are based on the local structure of the knowledge graph. A method that uses global knowledge from across the knowledge graph needs to be developed in order to make knowledge discovery a frequently used tool by researchers. We propose an approach based on the singular value decomposition (SVD) that is able to combine data from across the knowledge graph through a reduced representation. Using cooccurrence data extracted from published literature, we show that SVD performs better than the leading methods for scoring discoveries. We also show the diminishing predictive power of knowledge discovery as we compare our predictions with real associations that appear further into the future. Finally, we examine the strengths and weaknesses of the SVD approach against another well-performing system using several predicted associations. All code and results files for this analysis can be accessed at https://github.com/jakelever/knowledgediscovery. sjones@bcgsc.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Lessons Learned From Community-Based Approaches to Sodium Reduction

    Science.gov (United States)

    Kane, Heather; Strazza, Karen; Losby PhD, Jan L.; Lane, Rashon; Mugavero, Kristy; Anater, Andrea S.; Frost, Corey; Margolis, Marjorie; Hersey, James

    2017-01-01

    Purpose This article describes lessons from a Centers for Disease Control and Prevention initiative encompassing sodium reduction interventions in six communities. Design A multiple case study design was used. Setting This evaluation examined data from programs implemented in six communities located in New York (Broome County, Schenectady County, and New York City); California (Los Angeles County and Shasta County); and Kansas (Shawnee County). Subjects Participants (n = 80) included program staff, program directors, state-level staff, and partners. Measures Measures for this evaluation included challenges, facilitators, and lessons learned from implementing sodium reduction strategies. Analysis The project team conducted a document review of program materials and semi structured interviews 12 to 14 months after implementation. The team coded and analyzed data deductively and inductively. Results Five lessons for implementing community-based sodium reduction approaches emerged: (1) build relationships with partners to understand their concerns, (2) involve individuals knowledgeable about specific venues early, (3) incorporate sodium reduction efforts and messaging into broader nutrition efforts, (4) design the program to reduce sodium gradually to take into account consumer preferences and taste transitions, and (5) identify ways to address the cost of lower-sodium products. Conclusion The experiences of the six communities may assist practitioners in planning community-based sodium reduction interventions. Addressing sodium reduction using a community-based approach can foster meaningful change in dietary sodium consumption. PMID:24575726

  8. TOURISM SEGMENTATION BASED ON TOURISTS PREFERENCES: A MULTIVARIATE APPROACH

    Directory of Open Access Journals (Sweden)

    Sérgio Dominique Ferreira

    2010-11-01

    Full Text Available Over the last decades, tourism became one of the most important sectors of the international economy. Specifically in Portugal and Brazil, its contribution to Gross Domestic Product (GDP and job creation is quite relevant. In this sense, to follow a strong marketing approach on the management of tourism resources of a country comes to be paramount. Such an approach should be based on innovations which help unveil the preferences of tourists with accuracy, turning it into a competitive advantage. In this context, the main objective of the present study is to illustrate the importance and benefits associated with the use of multivariate methodologies for market segmentation. Another objective of this work is to illustrate on the importance of a post hoc segmentation. In this work, the authors applied a Cluster Analysis, with a hierarchical method followed by an  optimization method. The main results of this study allow the identification of five clusters that are distinguished by assigning special importance to certain tourism attributes at the moment of choosing a specific destination. Thus, the authors present the advantages of post hoc segmentation based on tourists’ preferences, in opposition to an a priori segmentation based on socio-demographic characteristics.

  9. Lessons learned from community-based approaches to sodium reduction.

    Science.gov (United States)

    Kane, Heather; Strazza, Karen; Losby, Jan L; Lane, Rashon; Mugavero, Kristy; Anater, Andrea S; Frost, Corey; Margolis, Marjorie; Hersey, James

    2015-01-01

    This article describes lessons from a Centers for Disease Control and Prevention initiative encompassing sodium reduction interventions in six communities. A multiple case study design was used. This evaluation examined data from programs implemented in six communities located in New York (Broome County, Schenectady County, and New York City); California (Los Angeles County and Shasta County); and Kansas (Shawnee County). Participants (n = 80) included program staff, program directors, state-level staff, and partners. Measures for this evaluation included challenges, facilitators, and lessons learned from implementing sodium reduction strategies. The project team conducted a document review of program materials and semistructured interviews 12 to 14 months after implementation. The team coded and analyzed data deductively and inductively. Five lessons for implementing community-based sodium reduction approaches emerged: (1) build relationships with partners to understand their concerns, (2) involve individuals knowledgeable about specific venues early, (3) incorporate sodium reduction efforts and messaging into broader nutrition efforts, (4) design the program to reduce sodium gradually to take into account consumer preferences and taste transitions, and (5) identify ways to address the cost of lower-sodium products. The experiences of the six communities may assist practitioners in planning community-based sodium reduction interventions. Addressing sodium reduction using a community-based approach can foster meaningful change in dietary sodium consumption.

  10. A risk-based approach to prioritize underground storage tanks

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-01-01

    The purpose of this paper is to present a risk-based approach for rapid prioritization of low level liquid radioactive waste underground storage tanks (LLLW USTs) for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at the Oak Ridge National Laboratory (ORNL) were pumped out at the time the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include, the radionuclides, 9O Sr, 137 Cs and 233 U and the chemicals, carbon tetrachloride, trichloroethene, tetrachloroethene, methyl ethyl ketone, mercury, lead and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank; (2) location of the tanks; and (3) toxic potential of the tank contents

  11. Big data analytics in immunology: a knowledge-based approach.

    Science.gov (United States)

    Zhang, Guang Lan; Sun, Jing; Chitkushev, Lou; Brusic, Vladimir

    2014-01-01

    With the vast amount of immunological data available, immunology research is entering the big data era. These data vary in granularity, quality, and complexity and are stored in various formats, including publications, technical reports, and databases. The challenge is to make the transition from data to actionable knowledge and wisdom and bridge the knowledge gap and application gap. We report a knowledge-based approach based on a framework called KB-builder that facilitates data mining by enabling fast development and deployment of web-accessible immunological data knowledge warehouses. Immunological knowledge discovery relies heavily on both the availability of accurate, up-to-date, and well-organized data and the proper analytics tools. We propose the use of knowledge-based approaches by developing knowledgebases combining well-annotated data with specialized analytical tools and integrating them into analytical workflow. A set of well-defined workflow types with rich summarization and visualization capacity facilitates the transformation from data to critical information and knowledge. By using KB-builder, we enabled streamlining of normally time-consuming processes of database development. The knowledgebases built using KB-builder will speed up rational vaccine design by providing accurate and well-annotated data coupled with tailored computational analysis tools and workflow.

  12. Big Data Analytics in Immunology: A Knowledge-Based Approach

    Directory of Open Access Journals (Sweden)

    Guang Lan Zhang

    2014-01-01

    Full Text Available With the vast amount of immunological data available, immunology research is entering the big data era. These data vary in granularity, quality, and complexity and are stored in various formats, including publications, technical reports, and databases. The challenge is to make the transition from data to actionable knowledge and wisdom and bridge the knowledge gap and application gap. We report a knowledge-based approach based on a framework called KB-builder that facilitates data mining by enabling fast development and deployment of web-accessible immunological data knowledge warehouses. Immunological knowledge discovery relies heavily on both the availability of accurate, up-to-date, and well-organized data and the proper analytics tools. We propose the use of knowledge-based approaches by developing knowledgebases combining well-annotated data with specialized analytical tools and integrating them into analytical workflow. A set of well-defined workflow types with rich summarization and visualization capacity facilitates the transformation from data to critical information and knowledge. By using KB-builder, we enabled streamlining of normally time-consuming processes of database development. The knowledgebases built using KB-builder will speed up rational vaccine design by providing accurate and well-annotated data coupled with tailored computational analysis tools and workflow.

  13. Renewable resources-based approach to biantennary glycolipids.

    Science.gov (United States)

    Tabandeh, Mojtaba; Salman, Abbas Abdulameer; Goh, Ean Wai; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali

    2018-01-31

    A new synthesis approach towards biantennary lipids of Guerbet glycoside type was developed based on oleic acid as sustainable resource. Functionalization of the double bond provided access to primary alcohols with α-branched C 19 -skeleton. Formulation studies with corresponding lactosides indicated formation of vesicles with high assembly stability. A relatively narrow bimodal size distribution of the latter, which turns into a narrow unimodal distribution of small vesicles upon addition of an ionic cosurfactant, suggests potential for a vesicular drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Dependence-Based Segmentation Approach for Detecting Morpheme Boundaries

    Directory of Open Access Journals (Sweden)

    Ahmed Khorsi

    2017-04-01

    Full Text Available The unsupervised morphology processing in the emerging mutant languages has the advantage over the human/supervised processing of being more agiler. The main drawback is, however, their accuracy. This article describes an unsupervised morphemes identification approach based on an intuitive and formal definition of event dependence. The input is no more than a plain text of the targeted language. Although the original objective of this work was classical Arabic, the test was conducted on an English set as well. Tests on these two languages show a very acceptable precision and recall. A deeper refinement of the output allowed 89% precision and 78% recall on Arabic.

  15. A design approach for systems based on magnetic pulse compression

    International Nuclear Information System (INIS)

    Praveen Kumar, D. Durga; Mitra, S.; Senthil, K.; Sharma, D. K.; Rajan, Rehim N.; Sharma, Archana; Nagesh, K. V.; Chakravarthy, D. P.

    2008-01-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results

  16. Distributed, price-based control approach to market-based operation of future power systems

    NARCIS (Netherlands)

    Jokic, A.; Bosch, van den P.P.J.; Hermans, R.M.

    2009-01-01

    In this paper we present, discuss and illustrate on examples the price-based control paradigm as a suitable approach to solve some of the challenging problems facing future, market-based power systems. It is illustrated how global objectives and constraints are optimally translated into time-varying

  17. One Piece Orbitozygomatic Approach Based on the Sphenoid Ridge Keyhole

    DEFF Research Database (Denmark)

    Spiriev, Toma; Poulsgaard, Lars; Fugleholm, Kåre

    2016-01-01

    The one-piece orbitozygomatic (OZ) approach is traditionally based on the McCarty keyhole. Here, we present the use of the sphenoid ridge keyhole and its possible advantages as a keyhole for the one-piece OZ approach. Using transillumination technique the osteology of the sphenoid ridge...... was examined on 20 anatomical dry skull specimens. The results were applied to one-piece OZ approaches performed on freshly frozen cadaver heads. We defined the center of the sphenoid ridge keyhole as a superficial projection on the lateral skull surface of the most anterior and thickest part of the sphenoid...... ridge. It was located 22 mm (standard deviation [SD], 0.22 mm) from the superior temporal line; 10.7 mm (SD, 0.08 mm) posterior and 7.1 mm (SD, 0.22 mm) inferior to the frontozygomatic suture. The sphenoid ridge burr hole provides exposure of frontal, temporal dura as well as periorbita, which...

  18. Pedestrian safety management using the risk-based approach

    Directory of Open Access Journals (Sweden)

    Romanowska Aleksandra

    2017-01-01

    Full Text Available The paper presents a concept of a multi-level pedestrian safety management system. Three management levels are distinguished: strategic, tactical and operational. The basis for the proposed approach to pedestrian safety management is a risk-based method. In the approach the elements of behavioural and systemic theories were used, allowing for the development of a formalised and repeatable procedure integrating the phases of risk assessment and response to the hazards of road crashes involving pedestrians. Key to the method are tools supporting pedestrian safety management. According to the risk management approach, the tools can be divided into two groups: tools supporting risk assessment and tools supporting risk response. In the paper attention is paid to selected tools supporting risk assessment, with particular emphasis on the methods for estimating forecasted pedestrian safety measures (at strategic, national and regional level and identification of particularly dangerous locations in terms of pedestrian safety at tactical (regional and local and operational level. The proposed pedestrian safety management methods and tools can support road administration in making rational decisions in terms of road safety, safety of road infrastructure, crash elimination measures or reducing the consequences suffered by road users (particularly pedestrians as a result of road crashes.

  19. Systematic approach for synthesis of palm oil-based biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    NG, Rex T. L.; NG, Denny K. S.; LAM, Hon Loong [Dept. of Chemical and Environmental Engineering, Centre of Excellence for Green Technologies, Univ. of Nottingham, Selangor, (Malaysia); TAY, Douglas H. S.; LIM, Joseph H. E. [2GGS Eco Solutions Sdn Bhd, Kuala Lumpur (Malaysia)

    2012-11-01

    Various types of palm oil biomasses are generated from palm oil mill when crude palm oil (CPO) is produced from fresh fruit bunch (FFB). In the current practice, palm oil biomasses are used as the main source of energy input in the palm oil mill to produce steam and electricity. Moreover, those biomasses are regarded as by-products and can be reclaimed easily. Therefore, there is a continuous increasing interest concerning biomasses generated from the palm oil mill as a source of renewable energy. Although various technologies have been exploited to produce bio-fuel (i.e., briquette, pellet, etc.) as well as heat and power generation, however, no systematic approach which can analyse and optimise the synthesise biorefinery is presented. In this work, a systematic approach for synthesis and optimisation of palm oil-based biorefinery which including palm oil mill and refinery with maximum economic performance is developed. The optimised network configuration with achieves the maximum economic performance can also be determined. To illustrate the proposed approach, a case study is solved in this work.

  20. Fuzzy Axiomatic Design approach based green supplier selection

    DEFF Research Database (Denmark)

    Kannan, Devika; Govindan, Kannan; Rajendran, Sivakumar

    2015-01-01

    proposes a multi-criteria decision-making (MCDM) approach called Fuzzy Axiomatic Design (FAD) to select the best green supplier for Singapore-based plastic manufacturing company. At first, the environmental criteria was developed along with the traditional criteria based on the literature review......Abstract Green Supply Chain Management (GSCM) is a developing concept recently utilized by manufacturing firms of all sizes. All industries, small or large, seek improvements in the purchasing of raw materials, manufacturing, allocation, transportation efficiency, in curbing storage time, importing...... responsible in addition to being efficiently managed. A significant way to implement responsible GSCM is to reconsider, in innovative ways, the purchase and supply cycle, and a preliminary step would be to ensure that the supplier of goods successfully incorporates green criteria. Therefore, this paper...

  1. A Model-Based Approach to Constructing Music Similarity Functions

    Science.gov (United States)

    West, Kris; Lamere, Paul

    2006-12-01

    Several authors have presented systems that estimate the audio similarity of two pieces of music through the calculation of a distance metric, such as the Euclidean distance, between spectral features calculated from the audio, related to the timbre or pitch of the signal. These features can be augmented with other, temporally or rhythmically based features such as zero-crossing rates, beat histograms, or fluctuation patterns to form a more well-rounded music similarity function. It is our contention that perceptual or cultural labels, such as the genre, style, or emotion of the music, are also very important features in the perception of music. These labels help to define complex regions of similarity within the available feature spaces. We demonstrate a machine-learning-based approach to the construction of a similarity metric, which uses this contextual information to project the calculated features into an intermediate space where a music similarity function that incorporates some of the cultural information may be calculated.

  2. Polynomial fuzzy model-based approach for underactuated surface vessels

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav

    2018-01-01

    The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...

  3. A New Design Approach to Game-Based learning

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel

    2012-01-01

    to ground the student’s reason to learn. This paper proposes a different approach: using visualisation in immersive 3D worlds as both documentation of learning progress and as a reward system which motivates further learning. The overall design idea is to build a game based learning system from three......This paper puts forward a new design perspective for gamebased learning. The general idea is to abandon the long sought-after dream of designing a closed learning system, where students in both primary and secondary school could learn – without the interference of teachers – whatever subject......-based learning system, but will also confront aspects of modern learning theory, especially the notion of reference between the content of an assignment and the reality with which it should or could be connected (situated learning). The second idea promotes a way of tackling the common experience of the average...

  4. Opportunistic splitting for scheduling using a score-based approach

    KAUST Repository

    Rashid, Faraan

    2012-06-01

    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  5. Taxonomy-Based Approaches to Quality Assurance of Ontologies

    Directory of Open Access Journals (Sweden)

    Michael Halper

    2017-01-01

    Full Text Available Ontologies are important components of health information management systems. As such, the quality of their content is of paramount importance. It has been proven to be practical to develop quality assurance (QA methodologies based on automated identification of sets of concepts expected to have higher likelihood of errors. Four kinds of such sets (called QA-sets organized around the themes of complex and uncommonly modeled concepts are introduced. A survey of different methodologies based on these QA-sets and the results of applying them to various ontologies are presented. Overall, following these approaches leads to higher QA yields and better utilization of QA personnel. The formulation of additional QA-set methodologies will further enhance the suite of available ontology QA tools.

  6. Space nuclear reactor system diagnosis: Knowledge-based approach

    International Nuclear Information System (INIS)

    Ting, Y.T.D.

    1990-01-01

    SP-100 space nuclear reactor system development is a joint effort by the Department of Energy, the Department of Defense and the National Aeronautics and Space Administration. The system is designed to operate in isolation for many years, and is possibly subject to little or no remote maintenance. This dissertation proposes a knowledge based diagnostic system which, in principle, can diagnose the faults which can either cause reactor shutdown or lead to another serious problem. This framework in general can be applied to the fully specified system if detailed design information becomes available. The set of faults considered herein is identified based on heuristic knowledge about the system operation. The suitable approach to diagnostic problem solving is proposed after investigating the most prevalent methodologies in Artificial Intelligence as well as the causal analysis of the system. Deep causal knowledge modeling based on digraph, fault-tree or logic flowgraph methodology would present a need for some knowledge representation to handle the time dependent system behavior. A proposed qualitative temporal knowledge modeling methodology, using rules with specified time delay among the process variables, has been proposed and is used to develop the diagnostic sufficient rule set. The rule set has been modified by using a time zone approach to have a robust system design. The sufficient rule set is transformed to a sufficient and necessary one by searching the whole knowledge base. Qualitative data analysis is proposed in analyzing the measured data if in a real time situation. An expert system shell - Intelligence Compiler is used to develop the prototype system. Frames are used for the process variables. Forward chaining rules are used in monitoring and backward chaining rules are used in diagnosis

  7. The investigation of solid solutions thin interlayers in CdS/CdTe film heterosystems

    International Nuclear Information System (INIS)

    Khrypunov, G.; Boyko, B.; Chernykh, O.

    1999-01-01

    The photo-response spectral dependence of ITO/CdTe/Au/Cu and ITO/CdS/CdTe/Au/Cu film heterosystems were investigated. At illuminations ITO/CdS/CdTe/Au/Cu heterosystems on ITO side a photo-response maximum was observed for photon absorption with a wavelength of 0.87 μm that is stipulated by formation of CdS x Te 1-x solid solutions interlayer with band gap width less than in CdTe layer. By use optical measurement transmittance spectra was selected a spectral photosensitivity interval appropriate to the contribution of non-equilibrium charge carriers generated in solid solutions interlayer by photon absorption with energy less than CdTe film band gap

  8. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Kong, Jing; Terrones, Humberto; Meunier, Vincent; Dresselhaus, Mildred S

    2014-10-08

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results.

  9. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.

    Science.gov (United States)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-06-10

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and, thus, their frequencies show a stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that in the temperature range -150 to 30 °C, the breathing modes have a weak anharmonic behavior, in contrast to the HF Raman modes that exhibit strong anharmonicity.

  10. Discussion on the interlayer oxidation and uranium metallogenesis in Qianjiadian uranium deposit, Songliao Basin

    International Nuclear Information System (INIS)

    Pang Yaqing; Chen Xiaolin; Fang Xiheng; Sun Ye

    2010-01-01

    Through systematic drill core observation, section contrast and analysis,it is proved that the ore-controlling interlayer oxidation zone of Qianjiadian uranium deposit is mainly composed by the red oxidized sandstone and locally distributed yellow and off-white sandstones. The red sandstone contains charcoal fragments, pyrite, ilmenite, siderite, which have been oxidized intensively, and it can be deduced that their original color was gray and became red due to the oxidization. The distribution of the oxidation zone is mainly controlled by the sedimentary facies,which also controll uranium metallization. The uranium orebodies mainly developed in the thinning or pinch parts of the red oxidation zone in section. On the plans, the uranium mineralization distributes near the front of the red interlayer oxidation zone. (authors)

  11. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    Science.gov (United States)

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  12. Interlayer electron-hole pair multiplication by hot carriers in atomic layer semiconductor heterostructures

    Science.gov (United States)

    Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel

    Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.

  13. Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides

    Science.gov (United States)

    Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young

    2018-06-01

    A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.

  14. Magnetization study of interlayer exchange in semiconductor EuS-PbS ferromagnetic wedge multilayers

    International Nuclear Information System (INIS)

    Kowalczyk, L.; Osinniy, V.; Chernyshova, M.; Dziawa, P.; Boratynski, A.; Story, T.; Smits, C.J.P.; Swagten, H.J.M.; Sipatov, A.Yu.; Volobuev, V.V.

    2006-01-01

    Interlayer coupling was experimentally studied in semiconductor EuS-PbS ferromagnetic superlattice wedge structures grown on KCl (0 0 1) substrates with the wedges covering the semiconductor nonmagnetic PbS spacer layer thickness from 0.3 to 6 nm. Structural parameters of the wedges were examined by X-ray diffraction analysis of EuS-PbS superlattice period. Measurements of magnetic hysteresis loops of EuS-PbS structures were performed by both SQUID (for small terminal parts of the wedge) and MOKE (magneto-optical analysis along the wedge) magnetometry. A strong decrease of magnetic remanence and an increase of saturation field observed for EuS-PbS structures with the PbS spacer thickness decreasing below about 1.5 nm is discussed in terms of the influence of antiferromagnetic interlayer coupling

  15. Numerical analyses of the effect of SG-interlayer shear stiffness on the structural performance of reinforced glass beams

    DEFF Research Database (Denmark)

    Louter, C.; Nielsen, Jens Henrik

    2013-01-01

    This paper focuses on the numerical modelling of SentryGlas-laminated reinforced glass beams. In these beams, which have been experimentally investigated in preceding research, a stainless steel reinforcement section is laminated at the inner recessed edge of a triple-layer glass beam by means...... of SentryGlas (SG) interlayer sheets. The current contribution numerically investigates the effect of the SG-interlayer shear stiffness on the overall structural response of the beams. This is done by means of a 3D finite element model in which the individual glass layers, the SG......-interlayers and the reinforcement are incorporated. In the model, the glass parts are allowed to crack, but all other parts are assumed linear elastic throughout the analyses. By changing the shear modulus of the SG-interlayer in multiple analyses, its contribution to the overall structural performance of the beams - especially...

  16. Interlayer Trions in the MoS2/WS2 van der Waals Heterostructure

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2018-01-01

    and experimentally. In contrast, studies of charged trions have so far been limited to the intralayer type. Here we investigate the complete set of interlayer excitations in a MoS2/WS2 heterostructure using a novel ab initio method, which allows for a consistent treatment of both excitons and trions at the same...... theoretical footing. Our calculations predict the existence of bound interlayer trions below the neutral interlayer excitons. We obtain binding energies of 18/28 meV for the positive/negative interlayer trions with both electrons/holes located on the same layer. In contrast, a negligible binding energy...... is found for trions which have the two equally charged particles on different layers. Our results advance the understanding of electronic excitations in doped van der Waals heterostructures and their effect on the optical properties....

  17. A hierarchical fuzzy rule-based approach to aphasia diagnosis.

    Science.gov (United States)

    Akbarzadeh-T, Mohammad-R; Moshtagh-Khorasani, Majid

    2007-10-01

    Aphasia diagnosis is a particularly challenging medical diagnostic task due to the linguistic uncertainty and vagueness, inconsistencies in the definition of aphasic syndromes, large number of measurements with imprecision, natural diversity and subjectivity in test objects as well as in opinions of experts who diagnose the disease. To efficiently address this diagnostic process, a hierarchical fuzzy rule-based structure is proposed here that considers the effect of different features of aphasia by statistical analysis in its construction. This approach can be efficient for diagnosis of aphasia and possibly other medical diagnostic applications due to its fuzzy and hierarchical reasoning construction. Initially, the symptoms of the disease which each consists of different features are analyzed statistically. The measured statistical parameters from the training set are then used to define membership functions and the fuzzy rules. The resulting two-layered fuzzy rule-based system is then compared with a back propagating feed-forward neural network for diagnosis of four Aphasia types: Anomic, Broca, Global and Wernicke. In order to reduce the number of required inputs, the technique is applied and compared on both comprehensive and spontaneous speech tests. Statistical t-test analysis confirms that the proposed approach uses fewer Aphasia features while also presenting a significant improvement in terms of accuracy.

  18. THE TASK-BASED APPROACH IN LANGUAGE TEACHING

    Directory of Open Access Journals (Sweden)

    Aquilino Sánchez

    2004-06-01

    Full Text Available The Task-Based Approach (TBA has gained popularity in the field of language teaching since the last decade of the 20th Century and significant scholars have joined the discussion and increased the amount of analytical studies on the issue. Nevertheless experimental research is poor, and the tendency of some of the scholars is nowadays shifting towards a more tempered and moderate stand on their claims. Reasons for that are various: the difficulty in the implementation of the method in the classroom, the difficulty in elaborating materials following the TBA and the scarcity of task-based manuals count as important and perhaps decisive arguments. But there are also theoretical implications in the TBA which do not seem to be fully convincing or may lack sound foundations. In this paper I will attempt to describe the TBA criticaIly, pointing out what I consider positive in this approach, and underlining the inadequacy of some assumptions and conclusions. The design of a new TBA model is not the goal of this study. But the conclusions suggest that tasks may contribute to the production of a more refined and complete foreign language syllabus, helping to motivate the students and focus the attention of teachers and learners on meaning and communicative language use.

  19. Interactive teaching materials based on scientific approach: triangles and quadrilaterals

    Directory of Open Access Journals (Sweden)

    Pujiastuti Heni

    2018-01-01

    Full Text Available One of the Indonesian government’s efforts to improve the quality of education is by changing the curriculum. Currently the Curriculum 2013 is being implemented in schools. Implementation of Curriculum 2013 is require teaching materials in accordance with the characteristics of the students, utilizing computer technology facilities, and contains the components of the scientific approach. Therefore, it is necessary to develop teaching materials in accordance with the Curriculum 2013. In this research we developed the Interactive Teaching Materials based on Scientific Approach (ITMSA. The research method is research and development (R&D which consist of ten steps. The product design validation performed by multimedia, mathematics, and mathematics education expert involving lecturers and mathematics teacher. Utility testing of product conducted on junior high school students in Serang City, Banten Province, Indonesia. Based on research known that the ITMSA obtained a total score 85,30% from mathematics expert, 87,80% from mathematics education expert, 83,60% from multimedia expert, and 89,40% from students. In addition, students mathematical concept understanding who learn by using ITMSA better than student who learn without ITMSA. From these results concluded that the ITMSA is considered feasible and can be used in mathematics teaching in schools.

  20. Radar Rainfall Bias Correction based on Deep Learning Approach

    Science.gov (United States)

    Song, Yang; Han, Dawei; Rico-Ramirez, Miguel A.

    2017-04-01

    Radar rainfall measurement errors can be considerably attributed to various sources including intricate synoptic regimes. Temperature, humidity and wind are typically acknowledged as critical meteorological factors in inducing the precipitation discrepancies aloft and on the ground. The conventional practices mainly use the radar-gauge or geostatistical techniques by direct weighted interpolation algorithms as bias correction schemes whereas rarely consider the atmospheric effects. This study aims to comprehensively quantify those meteorological elements' impacts on radar-gauge rainfall bias correction based on a deep learning approach. The deep learning approach employs deep convolutional neural networks to automatically extract three-dimensional meteorological features for target recognition based on high range resolution profiles. The complex nonlinear relationships between input and target variables can be implicitly detected by such a scheme, which is validated on the test dataset. The proposed bias correction scheme is expected to be a promising improvement in systematically minimizing the synthesized atmospheric effects on rainfall discrepancies between radar and rain gauges, which can be useful in many meteorological and hydrological applications (e.g., real-time flood forecasting) especially for regions with complex atmospheric conditions.

  1. Exploring a Problem-Based Learning Approach in Pharmaceutics

    Directory of Open Access Journals (Sweden)

    Barbara McKenzie

    2017-09-01

    Full Text Available Objective. The basis of this study was to explore the impact of the initiation of a Problem-Base Learning (PBL approach within a second-year pharmaceutics degree on a Master of Pharmacy programme, introduced as a way of improving deep learning and to foster independent learning. Design. A semi-structured interview was used to seek feedback from the students, and feedback from staff was secured though a focus group. A thematic approach was used for the analysis, once data saturation had been reached. Exam pass-rate statistics were also analysed. Assessment. Five parent themes were identified from the student interviews: Module structure, Promoting lifelong learning, Integration and future practice, Outcomes and Student experience. The third year exam pass rate improved by 12% in the year following the introduction of PBL in second year. Conclusions. Various recommendations were proposed to further improve the module, based on the findings of this study. These include improving feedback and support through tutorials, reducing the volume of directed study, as well as highlighting the relevance of pharmaceutics to the pharmacy degree. A long-term review would be needed to assess the full implications of PBL teaching within this course.

  2. 3-D FEATURE-BASED MATCHING BY RSTG APPROACH

    Directory of Open Access Journals (Sweden)

    J.-J. Jaw

    2012-07-01

    Full Text Available 3-D feature matching is the essential kernel in a fully automated feature-based LiDAR point cloud registration. After feasible procedures of feature acquisition, connecting corresponding features in different data frames is imperative to be solved. The objective addressed in this paper is developing an approach coined RSTG to retrieve corresponding counterparts of unsorted multiple 3-D features extracted from sets of LiDAR point clouds. RSTG stands for the four major processes, "Rotation alignment"; "Scale estimation"; "Translation alignment" and "Geometric check," strategically formulated towards finding out matching solution with high efficiency and leading to accomplishing the 3-D similarity transformation among all sets. The workable types of features to RSTG comprise points, lines, planes and clustered point groups. Each type of features can be employed exclusively or combined with others, if sufficiently supplied, throughout the matching scheme. The paper gives a detailed description of the matching methodology and discusses on the matching effects based on the statistical assessment which revealed that the RSTG approach reached an average matching rate of success up to 93% with around 6.6% of statistical type 1 error. Notably, statistical type 2 error, the critical indicator of matching reliability, was kept 0% throughout all the experiments.

  3. A value-based taxonomy of improvement approaches in healthcare.

    Science.gov (United States)

    Colldén, Christian; Gremyr, Ida; Hellström, Andreas; Sporraeus, Daniella

    2017-06-19

    Purpose The concept of value is becoming increasingly fashionable in healthcare and various improvement approaches (IAs) have been introduced with the aim of increasing value. The purpose of this paper is to construct a taxonomy that supports the management of parallel IAs in healthcare. Design/methodology/approach Based on previous research, this paper proposes a taxonomy that includes the dimensions of view on value and organizational focus; three contemporary IAs - lean, value-based healthcare, and patient-centered care - are related to the taxonomy. An illustrative qualitative case study in the context of psychiatric (psychosis) care is then presented that contains data from 23 interviews and focuses on the value concept, IAs, and the proposed taxonomy. Findings Respondents recognized the dimensions of the proposed taxonomy and indicated its usefulness as support for choosing and combining different IAs into a coherent management model, and for facilitating dialog about IAs. The findings also suggested that the view of value as "health outcomes" is widespread, but healthcare professionals are less likely than managers to also view value as a process. Originality/value The conceptual contribution of this paper is to delineate some important characteristics of IAs in relation to the emerging "value era". It also highlights the coexistence of different IAs in healthcare management practice. A taxonomy is proposed that can help managers choose, adapt, and combine IAs in local management models.

  4. Spatial Data Integration Using Ontology-Based Approach

    Science.gov (United States)

    Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.

    2015-12-01

    In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  5. SPATIAL DATA INTEGRATION USING ONTOLOGY-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    S. Hasani

    2015-12-01

    Full Text Available In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  6. LEADING CHANGES IN ASSESSMENT USING AN EVIDENCE BASED APPROACH

    Directory of Open Access Journals (Sweden)

    J. O. Macaulay

    2015-08-01

    Full Text Available Introduction and objectivesIt is has been widely accepted that assessment of learning is a critical component of education and that assessment drives/guides student learning through shaping study habits and student approaches to learning. However, although most academics would agree that assessment is a critical aspect of their roles as teachers it is often an aspect of teaching that is regarded more as an additional task rather than an integral component of the teaching/learning continuum. An additional impediment to high quality assessment is the non-evidence based-approach to the decision making process. The overall aim of this project was to improve the quality of assessment in Biochemistry and Molecular Biology undergraduate education by promoting high quality assessment.Materials and methodsTo do this we developed and trialled an audit tool for mapping assessment practices. The audit tool was designed to gather data on current assessment practices and identify areas of good practice in which assessment aligned with the learning objectives and areas in need of improvement. This evidence base will then be used to drive change in assessment.Results and conclusionsUsing the assessment mapping tool we have mapped the assessment regime in a Biochemistry and Molecular Biology major at Monash University. Criteria used included: assessment type, format, timing, assessors, provision of feedback, level of learning (Bloom’s, approaches taken to planning assessment. We have mapped assessment of content and the systematic development of higher order learning and skills progression throughout the program of study. The data has enabled us to examine the assessment at unit (course level as well as the vertical development across the major. This information is now being used to inform a review of the units and the major.

  7. The characterization of the Ca–K geopolymer/solidified fluid fly-ash interlayer

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Šupová, Monika; Hanzlíček, Tomáš

    2017-01-01

    Roč. 61, č. 1 (2017), s. 26-33 ISSN 0862-5468 Institutional support: RVO:67985891 Keywords : fluid fly ash * blast-furnace slag * geopolymer * interlayer * recycling Subject RIV: DM - Solid Waste and Recycling OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 0.439, year: 2016 https://www.irsm.cas.cz/materialy/cs_content/2016_doi/Perna_CS_2016_0056.pdf

  8. Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A., E-mail: catledge@uab.edu

    2015-02-15

    Highlights: • Metal-boride layer creates a compatible surface for NSD deposition. • PECVD boriding on CoCrMo produces robust metal-boride layer. • Deposition temperature comparison shows 750 °C boriding masks surface cobalt. • EDS shows boron diffusion as well as deposition. • Nanoindentation hardness of CoCrMo substantially increases after boriding. - Abstract: Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt–chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B{sub 2}H{sub 6}) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal–boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  9. Photo-induced antiferromagnetic interlayer coupling in Fe superlattices with iron silicide spacers

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, J.E.; Fullerton, E.E.; Kumar, S.; Lee, S.R.; Sowers, C.H.; Grimsditch, M.; Bader, S.D. [Argonne National Lab., IL (United States); Parker, F.T. [California Univ., San Diego, La Jolla, CA (United States). Center for Magnetic Recording Research

    1993-09-01

    Sputtered Fe/FeSi films possessing antiferromagnetic (AF) interlayer coupling at room temperature develop ferromagnetic remanence when cooled below 100K, but the AF coupling can be restored at low temperature by exposure to visible light of sufficient intensity (>10 mW/mm{sup 2}). We attribute these effects to charge carriers in the FeSi spacer layer which, when thermally or photo-generated, are capable of communicating spin information between the Fe layers.

  10. Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys

    Science.gov (United States)

    Foster, B. K.; Beese, A. M.; Keist, J. S.; McHale, E. T.; Palmer, T. A.

    2017-09-01

    Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.

  11. Influence of smectite crystal chemistry on the organization of interlayer water and cations

    International Nuclear Information System (INIS)

    Dazas, Baptiste

    2014-01-01

    Swelling clay minerals such as smectites are ubiquitous at the Earth surface and possess major hydration ability and contaminant uptake/retention capacity. As a consequence smectites exert a pivotal influence on elemental transfers in surficial environments. These properties are especially relevant also when smectites are used as sealant in engineered or geological barriers for waste disposal facilities. As interlayer H_2O molecules account for more than 80% of smectite water in under-saturated conditions, characterization of H_2O organization and dynamics in smectites interlayers is essential to determining the geometrical and dynamical properties of clay barriers for waste disposal and to predicting the mobility of contaminant whose principal vector is water. Within this general framework, the present works describe, in a first time, the structuration of interlayer water/cations in saturated conditions. Then, in a second time, review the influence of structural parameters such as the amount and location of layer charge deficit and the chemical composition (and more especially the presence of structural fluorine/hydroxyl) on smectite hydration properties. A set of samples covering the whole compositional range of swelling phyllosilicates has thus been synthesized and characterized chemically and structurally. Special attention was paid to determining the amount (water vapor sorption isotherms) and the distribution (X-ray diffraction) of interlayer water. Molecular modeling allowed unraveling the origin of the contrasting behaviors observed experimentally and to determine the influence of the different crystal-chemical parameters on smectite hydration. This step is essential for the prediction of smectite reactivity in the environment from a limited number of crystal-chemical parameters. Molecular modeling allowed unraveling the origin of the contrasting behaviors observed experimentally and to determine the influence of the different crystal-chemical parameters on

  12. Dissimilar laser welding of AISI 316L stainless steel to Ti6–Al4–6V alloy via pure vanadium interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr; Grevey, D.; Sallamand, P.

    2015-01-12

    Successful continuous laser joining of AISI 316L stainless steel with Ti6Al4V titanium alloy through pure vanadium interlayer has been performed. Three welding configurations were tested: one-pass welding involving all three materials and two pass and double spot welding involving creation of two melted zones separated by remaining solid vanadium. For the most relevant welds, the investigation of microstructure, phase content and mechanical properties has been carried out. In case of formation of a single melted zone, the insertion of steel elements into V-based solid solution embrittles the weld. In case of creation of two separated melted zones, the mechanical resistance of the junction is determined by annealing of remaining vanadium interlayer, which can be witnessed by observing the increase of grain size and decrease of UTS. The two pass configuration allows attain highest mechanical resistance: 367 MPa or 92% of UTS of annealed vanadium. Double spot configuration produces excessive heat supply to vanadium interlayer, which results in important decrease of tensile strength down to 72% of UTS of annealed vanadium. It was found that undesirable σ phase which forms between Fe and V is not created during the laser welding process because of high cooling rates. However, the zones whose composition corresponds to σ homogeneity range are crack-susceptible, so the best choice is to reduce the V content in steel/vanadium melted zone below σ phase formation limit. In the same time, the proportion between V and Ti in Ti6Al4V/vanadium melted zones does not influence mechanical properties as these elements form ideal solid solution.

  13. A Comparison of Routing Protocol for WSNs: Redundancy Based Approach A Comparison of Routing Protocol for WSNs: Redundancy Based Approach

    Directory of Open Access Journals (Sweden)

    Anand Prakash

    2014-03-01

    Full Text Available Wireless Sensor Networks (WSNs with their dynamic applications gained a tremendous attention of researchers. Constant monitoring of critical situations attracted researchers to utilize WSNs at vast platforms. The main focus in WSNs is to enhance network localization as much as one could, for efficient and optimal utilization of resources. Different approaches based upon redundancy are proposed for optimum functionality. Localization is always related with redundancy of sensor nodes deployed at remote areas for constant and fault tolerant monitoring. In this work, we propose a comparison of classic flooding and the gossip protocol for homogenous networks which enhances stability and throughput quiet significantly.  

  14. A Decision Analytic Approach to Exposure-Based Chemical ...

    Science.gov (United States)

    The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies. The National Exposure Research Laboratory′s (NERL′s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in suppor

  15. Driving profile modeling and recognition based on soft computing approach.

    Science.gov (United States)

    Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya

    2009-04-01

    Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.

  16. Characterization of Friction Welded Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry

    Science.gov (United States)

    Kumar, R.; Balasubramanian, M.

    The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.

  17. Computational Study of Low Interlayer Friction in Tin+1Cn (n = 1, 2, and 3) MXene.

    Science.gov (United States)

    Zhang, Difan; Ashton, Michael; Ostadhossein, Alireza; van Duin, Adri C T; Hennig, Richard G; Sinnott, Susan B

    2017-10-04

    The friction of adjacent Ti n+1 C n (n = 1, 2, and 3) MXene layers is investigated using density functional theory (DFT) calculations and classical molecular dynamics simulations with ReaxFF potentials. The calculations reveal the sliding pathways in all three MXene systems with low energy barriers. The friction coefficients for interlayer sliding are evaluated using static calculations. Both DFT and ReaxFF methods predict friction coefficients between 0.24 and 0.27 for normal loads less than 1.2 GPa. The effect of titanium (Ti) vacancies in sublayers and terminal oxygen (O) vacancies at surfaces on the interlayer friction is further investigated using the ReaxFF potential. These defects are found to increase the friction coefficients by increasing surface roughness and creating additional attractive forces between adjacent layers. However, these defective MXenes still maintain friction coefficients below 0.31. We also consider functionalized Ti 3 C 2 MXene terminated with -OH and -OCH 3 and find that compared to the -O-terminated surface both groups further reduce the interlayer friction coefficient to 0.10-0.14.

  18. Barrier height enhancement of metal/semiconductor contact by an enzyme biofilm interlayer

    Science.gov (United States)

    Ocak, Yusuf Selim; Gul Guven, Reyhan; Tombak, Ahmet; Kilicoglu, Tahsin; Guven, Kemal; Dogru, Mehmet

    2013-06-01

    A metal/interlayer/semiconductor (Al/enzyme/p-Si) MIS device was fabricated using α-amylase enzyme as a thin biofilm interlayer. It was observed that the device showed an excellent rectifying behavior and the barrier height value of 0.78 eV for Al/α-amylase/p-Si was meaningfully larger than the one of 0.58 eV for conventional Al/p-Si metal/semiconductor (MS) contact. Enhancement of the interfacial potential barrier of Al/p-Si MS diode was realized using enzyme interlayer by influencing the space charge region of Si semiconductor. The electrical properties of the structure were executed by the help of current-voltage and capacitance-voltage measurements. The photovoltaic properties of the structure were executed under a solar simulator with AM1.5 global filter between 40 and 100 mW/cm2 illumination conditions. It was also reported that the α-amylase enzyme produced from Bacillus licheniformis had a 3.65 eV band gap value obtained from optical method.

  19. Tunable color parallel tandem organic light emitting devices with carbon nanotube and metallic sheet interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Jorge; Desirena, Haggeo; De la Rosa, Elder [Centro de Investigaciones en Optica, A.P. 1-948, León, Guanajuato 37160 (Mexico); Papadimitratos, Alexios [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Zakhidov, Anvar A., E-mail: Zakhidov@utdallas.edu [Solarno Inc., Coppell, Texas 75019 (United States); University of Texas at Dallas, Richardson, Texas 75080 (United States); Energy Efficiency Center, National University of Science and Technology, MISiS, Moscow 119049 (Russian Federation)

    2015-11-21

    Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.

  20. Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-12-01

    Full Text Available Guanosine monophosphates (GMPs were intercalated into the interlayer space of layered double hydroxides (LDHs and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C, a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C, GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.