WorldWideScience

Sample records for intergranular impurity concentration

  1. The effect of thermal history on intergranular boron segregation and fracture morphology of substoichiometric Ni3Al

    International Nuclear Information System (INIS)

    Choudhury, A.; White, C.L.; Brooks, C.R.

    1986-01-01

    While it has attractive mechanical properties and good corrosion resistance, the usefulness of polycrystalline Ni 3 Al has been restricted because of its propensity for brittle intergranular fracture. While this intergranular brittleness can be aggravated by the intergranular segregation of certain impurities, particularly sulfur, the grain boundaries of Ni 3 Al are intrinsically brittle and Ni 3 Al will fail intergranularly in the absence of detectable impurity segregation. Addition of boron resulted in the fracture morphology changing from primarily intergranular to largely transgranular; and more importantly, the intergranular segregation of boron was conclusively demonstrated. The range of boron concentrations over which these beneficial effects are observed is well within the solubility limit, which has been estimated to be 1.5 at. % (4,5). Rice (6) developed a relationship between equilibrium intergranular segregation and grain boundary cohesion. According to this theory, the potential for intergranular embrittlement by a solute is related to the relative intensity of segregation of the solute to free surfaces as compared to segregation to grain boundaries. Rices theory allowed for the case of a solute segregating more strongly to grain boundaries than to free surfaces. If this difference is sufficiently large (approximately a factor of two), Rice's theory predicts an enhancement of grain boudary cohesion. White and coworkers (4,7) noted the rather unusual phenomenon of boron segregating much more strongly to grain boundaries of Ni 3 Al than to free surfaces, while sulfur (an embrittling impurity) was shown to exhibit the opposite effect

  2. Grain boundary segregation and intergranular failure

    International Nuclear Information System (INIS)

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented

  3. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain)

    2004-07-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr{sub 23}C{sub 6} precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  4. Influence of C, N and Ti concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Viejo, F.; Arrabal, R.; Munoz, J.A.

    2004-01-01

    The influence of Ti, C, and N concentration on the intergranular corrosion resistance of AISI 316 Ti stainless steel has been studied. A kinetic study of the corrosion process has been carried out using gravimetric tests according to ASTM A-262 practices B and C (Streicher and Huey, respectively). The TTS diagrams were drawn as a function of alloying elements concentration (C, N and Ti). Materials characterization under several test conditions was carried out using Scanning Electron Microscopy (SEM) analysing microstructural characteristics and the attack microstructure. The chemical resistance of these steels to intergranular test was function of N, C and Ti concentration. High Ti and N concentration favoured the precipitation of TiN during the material manufacture process. N forms TiN very stable, causing the removal of Ti from the matrix and, indirectly, favouring the Cr 23 C 6 precipitation during the sensitization process and increasing the corrosion rate. In order to inhibit the intergranular corrosion in these materials the N and Ti concentrations must be optimised. (authors)

  5. Impurity concentration limits and activation in fusion reactor structural materials

    International Nuclear Information System (INIS)

    Zucchetti, M.

    1991-01-01

    This paper examines waste management problems related to impurity activation in first-wall, shield, and magnet materials for fusion reactors. Definitions of low activity based on hands-on recycling, remote recycling, and shallow land burial waste management criteria are discussed. Estimates of the impurity concentration in low-activation materials (elementally substituted stainless steels and vanadium alloys) are reported. Impurity activation in first-wall materials turns out to be critical after a comparison of impurity concentration limits and estimated levels. Activation of magnet materials is then considered: Long-term activity is not a concern, while short-term activity is. In both cases, impurity activation is negligible. Magnet materials, and all other less flux-exposed materials, have no practical limitation on impurities in terms of induced radioactivity

  6. Influence of sulfur, phosphorus, and antimony segregation on the intergranular hydrogen embrittlement of nickel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Baer, D.R.; Jones, R.H.; Thomas, M.T.

    1983-01-01

    The effectiveness of sulfur, phosphorus, and antimony in promoting the intergranular embrittlement of nickel was investigated using straining electrode tests in 1N H 2 SO 4 at cathodic potentials. Sulfur was found to be the critical grain boundary segregant due to its large enrichment at grain boundaries (10 4 to 10 5 times the bulk content) and the direct relationship between sulfur coverage and hydrogeninduced intergranular failure. Phosphorus was shown to be significantly less effective than sulfur or antimony in inducing the intergranular hydrogen embrittlement of nickel. The addition of phosphoru to nickel reduced the tendency for intergranular fracture and improved ductility because phosphoru segregated strongly to grain interfaces and limited sulfur enrichment. The hydrogen embrittling potency of antimony was also less than that of sulfur while its segregation propensity was considerably less. It was found that the effectiveness of segregated phosphorus and antimony in prompting inter granular embrittlement vs that of sulfur could be expressed in terms of an equivalent grain boundary sulfur coverage. The relative hydrogen embrittling potencies of sulfur, phosphorus, and antimony are discussed in reference to general mechanisms for the effect of impurity segregation on hydrogeninduced intergranular fracture

  7. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening

    International Nuclear Information System (INIS)

    Lu Guanghong; Zhang Ying; Deng Shenghua; Wang Tianmin; Kohyama, Masanori; Yamamoto, Ryoichi; Liu Feng; Horikawa, Keitaro; Kanno, Motohiro

    2006-01-01

    Using a first-principles computational tensile test, we show that the ideal tensile strength of an Al grain boundary (GB) is reduced with both Na and Ca GB segregation. We demonstrate that the fracture occurs in the GB interface, dominated by the break of the interfacial bonds. Experimentally, we further show that the presence of Na or Ca impurity, which causes intergranular fracture, reduces the ultimate tensile strength when embrittlement occurs. These results suggest that the Na/Ca-induced intergranular embrittlement of an Al alloy originates mainly from the GB weakening due to the Na/Ca segregation

  8. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Carboneras, M.; Arrabal, R.

    2007-01-01

    Intergranular corrosion behaviour of 316Ti and 321 austenitic stainless steels has been evaluated in relation to the influence exerted by modification of Ti, C and N concentrations. For this evaluation, electrochemical measurements - double loop electrochemical potentiokinetic reactivation (DL-EPR) - were performed to produce time-temperature-sensitization (TTS) diagrams for tested materials. Transmission (TEM) and scanning electron microscopy (SEM) were used to determine the composition and nature of precipitates. The addition of Ti promotes better intergranular corrosion resistance in stainless steels. The precipitation of titanium carbides reduces the formation of chromium-rich carbides, which occurs at lower concentrations. Also, the reduction of carbon content to below 0.03 wt.% improves sensitization resistance more than does Ti content. The presence of Mo in AISI 316Ti stainless steel reduces chromium-rich carbide precipitation; the reason is that Mo increases the stability of titanium carbides and tends to replace chromium in the formation of carbides and intermetallic compounds, thus reducing the risks of chromium-depletion

  9. The assessment of the impurities concentration into CANDU steam generator crevices

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Florea, S.; Jinescu, Ghe.; Woinaroschy, Al.

    2001-01-01

    Crevice corrosion involves a number of simultaneous and interacting operations, including mass transfer processes, production of metal ions within the crevice and hydrolysis reactions, resulting in a very aggressive solution from the point of view of corrosion. These intermediary corrosion processes are in a complex interdependence and they imply a number of important parameters, including both the crevice gap and depth. The major goal of this paper was development of a mathematical model for the calculation of the concentrations of impurities (Na + , Cl - , Fe 2+ ) into crevices and experimental research related to this process. There were identified the important experimental parameters that require further experimental research. This model considers all the processes that interfere in the impurities concentration mechanism achieved into the crevice but it also makes some assumptions for the easy solving of mathematical equations. Because the measurement of the impurities concentration into the steam generator and/or deposition in the crevices solutions is not achievable, one cannot estimate the corrosion intensity inside these locations. The mathematical model presented in this paper may predict the impurities concentration in the crevices. Based on the results obtained in the study of corrosion one can appreciate the corrosion intensity in the materials with crevices or conceive an experimental program, which could lead to results. The predictive quality of the model may contribute to the choice of new design solutions, development of new alloys and criteria of material selection. (authors)

  10. Fast neutron-induced changes in net impurity concentration of high-resistivity silicon

    International Nuclear Information System (INIS)

    Tsveybak, I.; Bugg, W.; Harvey, J.A.; Walter, J.

    1992-01-01

    Resistivity changes produced by 1 MeV neutron irradiation at room temperature have been measured in float-zone grown n and p-type silicon with initial resistivities ranging from 1.8 to 100 kΩcm. Observed changes are discussed in terms of net electrically active impurity concentration. A model is presented which postulates escape of Si self-interstitials and vacancies from damage clusters and their subsequent interaction with impurities and other pre-existing defects in the lattice. These interactions lead to transfer of B and P from electrically active substitutional configurations into electrically inactive positions (B i , Pi i , and E-center), resulting in changes of net electrically active impurity concentration. The changes in spatial distribution of resistivity are discussed, and the experimental data are fit by theoretical curves. Differences in the behavior of n-type and p-type material are explained on the basis of a faster removal of substitutional P and a more nonuniform spatial distribution of the original P concentration

  11. Grain-boundary microchemistry and intergranular cracking of irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1993-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to identify the mechanisms of irradiation-assisted stress corrosion cracking (IASCC). Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion. Detailed analysis of grain-boundary chemistry was conducted on BWR neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IASCC after irradiation to ∼2 x 10 21 n/cm 2 (E > 1 MeV). Grain-boundary concentrations of Cr Ni, Si, P, S, and C of the cracking-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li than those of the cracking-susceptible material. This observation indicates that, besides the deleterious effect of grain-boundary Cr depletion, a synergism between grain-boundary segregation of N and B and transmutation to H and Li plays an important role in IASCC

  12. Influence of negative substrate bias voltage on the impurity concentrations in Zr films

    International Nuclear Information System (INIS)

    Lim, J.-W.; Bae, J.W.; Mimura, K.; Isshiki, M.

    2006-01-01

    Zr films were deposited on Si(1 0 0) substrates without a substrate bias voltage and with substrate bias voltages of -50 V and -100 V using a non-mass separated ion beam deposition system. Secondary ion mass spectrometry and glow discharge mass spectrometry were used to determine the impurity concentrations in a Zr target and Zr films. It was found that the total amount of impurities in the Zr film deposited at the substrate bias voltage of -50 V was much lower than that in the Zr film deposited without the substrate bias voltage. It means that applying a negative bias voltage to the substrate can suppress the increase in impurities of Zr films. Furthermore, it was confirmed that dominant impurity elements such as C, N and O have a considerable effect on the purity of Zr films and these impurities can be remarkably reduced by applying the negative substrate bias voltage

  13. ON THE ORIGIN OF INTERGRANULAR JETS

    International Nuclear Information System (INIS)

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-01-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band Hα images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band Hα images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  14. Corrosion of high purity Fe-Cr-Ni alloys in 13 N boiling nitric acid

    International Nuclear Information System (INIS)

    Ohta, Joji; Mayuzumi, Masami; Kusanagi, Hideo; Takaku, Hiroshi

    1998-01-01

    Corrosion in boiling nitric acid was investigated for high purity Fe-18%Cr-12%Ni alloys and type 304L stainless steels (SS). Owing to very low impurity concentration, the solution treated high purity alloys show almost no intergranular corrosion while the type 304L SS show severe intergranular corrosion. Both in the high purity alloys and type 304L SS, aging treatments ranging from 873 K to 1073 K for 1 h enhance intergranular corrosion. During the aging treatments, impurities should be segregated to the grain boundaries. The corrosion behaviors were discussed from a standpoint of impurity segregation to grain boundaries. This study is of importance for purex reprocessing of spent fuels

  15. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  16. Effect of heat treatment and impurity concentration on some mechanical properties V-15Cr-5Ti alloy

    International Nuclear Information System (INIS)

    Loomis, B.A.; Kestel, B.J.; Diercks, D.R.

    1986-03-01

    The effects of heat treatment and O, N, C, Si, and S impurity level on the yield strength, ductility, and fracture mode for specimens from four different heats of the V-15Cr-5Ti alloy are presented. The heat treatments for the alloy consisted of annealing as-rolled material for one hour at either 950, 1050, 1125, or 1200 0 C. The total oxygen, nitrogen, and carbon impurity concentration ranged from 400 to 1200 wppm. The Si concentration ranged from 300 to 1050 wppm, and the S concentration ranged from 440 to 1100 wppm. The yield strength and ductility for the alloy, regardless of impurity concentration, exhibited minimum and maximum values, respectively, for the 1125 0 C anneal. The primary mode of failure for the tensile specimens was transgranular fracture

  17. The influence of impurity concentration and magnetic fields on the superconducting transition of high-purity titanium

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzi, A.; Gottardi, E.; Peroni, I.; Ponti, G.; Ventura, G

    1999-08-01

    The influence of impurity concentration c and applied magnetic field H on the superconducting transition of high-purity commercial titanium samples was investigated. The superconductive transition temperature T{sub C} was found to be very sensitive to the impurity concentration (dT{sub C}/dc {approx} -0.6 mK/w.ppm) and to the applied magnetic field (dT{sub C}/dH {approx} -1.1 mK/G). A linear dependence of T{sub C} decrease on impurity concentration, as theoretically predicted by various authors, was observed. In the purest sample, a linear decrease of T{sub C} on the applied magnetic field was found. The run-to-run and sample-to-sample reproducibility of the transition of the same sample was evaluated, and its suitability as a thermometric reference point below 1 K was discussed.

  18. Intergranular cracking mechanism in baffle former bolt materials for PWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Toshio; Arioka, Koji; Kanasaki, Hiroshi; Fujimoto, Koji [Takasago R and D Center, Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan); Ajiki, Kazuhide [Kobe Shipyard and Machinery, Mitsubishi Heavy Industries Ltd., Kobe, Hyogo (Japan); Matsuoka, Takanori [Nuclear Development Corp., Tokai, Ibaraki (Japan); Urata, Sigeru; Mizuta, Hitoshi [Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-03-01

    In this study, the cause of intergranular cracking in baffle former bolts(BFBs) was estimated from metallurgical and chemical viewpoints based upon the experimental data and information published by EdF. At first, five kinds of possibilities were estimated as the cause of intergranular cracking in BFBs. Five possibilities estimated were (1) mechanical cracking caused by high strain in irradiation hardened austenitic stainless steels, (2) O{sub 2} SCC due to residual oxygen in the bolt stagnant region, (3) caustic SCC due to dry and wet phenomenon, (4) low pH SCC due to oxygen concentration cell, and (5) PWSCC due to radiation induced segregation. In this study each possibility was evaluated by the calculation and some out of pile tests. And also, the cause of the intergranular cracking in BFBs was estimated by the data of the post-irradiation examinations and basic out of pile tests for Type 316CW and Type 347 stainless steels in the authors' previous study. From these evaluation, the intergranular cracking in BFBs seems to be caused by the PWSCC, but not caused by mechanical cracking O{sub 2} SCC, caustic SCC or low pH SCC. (author)

  19. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    Science.gov (United States)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  20. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Corre, Y.; Rachlew, E.; Gravestijn, R.M.; Hedqvist, A.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O 4+ (Be-like) and C 3+ (Li-like)

  1. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    International Nuclear Information System (INIS)

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-01-01

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made

  2. A Calibration to Predict Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis

    International Nuclear Information System (INIS)

    Narlesky, J.E.; Kelly, E.J.; Foster, L.A.

    2005-01-01

    Prompt gamma (PG) analysis has been used to identify the presence of certain impurities in plutonium oxide, which has been stored in 3013 containers. A regression analysis was used to evaluate the trends between the count rates obtained from PG analysis and the concentration of the impurities in plutonium oxide samples measured by analytical chemistry techniques. The results of the analysis were used to obtain calibration curves, which may be used to predict the concentration of Al, Be, Cl, F, Mg, and Na in the 3013 containers. The scatter observed in the data resulted from several factors including sample geometry, error in sampling for chemical assay, statistical counting error, and intimacy of mixing of impurities and plutonium. Standards prepared by mixing plutonium oxide with CaF 2 , NaCl, and KCl show that intimacy mixing and sampling error have the largest influence on the results. Although these factors are difficult to control, the calibrations are expected to yield semiquantitative results that are sufficient for the purpose of ordering or ranking

  3. Modeling of the interfacial separation work in relation to impurity concentration in adjoining materials

    Science.gov (United States)

    Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.

    2010-02-01

    On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.

  4. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  5. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  6. Intergranular creep of oriented bi-crystals of aluminium

    International Nuclear Information System (INIS)

    Biscondi, Michel

    1971-01-01

    This research thesis reports the study of the nature of intergranular creep, and of relationships between structure and creep ability of some grain boundaries. After having explained why bi-crystals are interesting for this kind of study, the author defines experimental conditions and describes measurement methods. He reports the study of the influence of external factors (time, test temperature, applied stress) on intergranular creep. He shows that grain boundary structure has a determining influence of the grain boundary ability to intergranular creep. The author discusses the obtained results and makes some propositions for the interpretation of the observed phenomenon

  7. The effects of impurities on the properties of OFP copper specified for the copper iron canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1999-09-01

    A brief literature study has addressed the effects of impurities on OF copper to which 50 ppm of phosphorus has been added. This copper is the candidate material for the corrosion resistant coating to be applied to the container under development by SKB for the disposal of high level nuclear waste. The levels of impurities expected in this grade of copper and the final use have controlled the focus of the work. It is concluded that the impurities of greatest importance in the context of the proposed application are sulphur, phosphorus, bismuth and lead. The addition of 50 ppm of phosphorus should ensure very low oxygen content in the copper such that, As, Ni, Mn, Cr, Fe, Sn, Zn, Si, Al, Sb and Cd present as impurities all remain in solution in the copper at all temperatures of interest. In this state they will exert no material effect on the fitness for purpose of the material. Sulphur is expected to be present in amounts exceeding the solubility limit such that it will occur as grain boundary films or particles. Such segregation can cause embrittlement and it will be more serious as grain size increases. There is no evidence to support the assertion that the phosphorus addition modifies the segregation behaviour of sulphur. There is evidence that sulphur will combine with V, Zr, or Ti, even when they are present at extremely low levels, but there is no indication of the likely effects of these combinations on the segregation behaviour or embrittling effects. There is clear evidence that when creep failure occurs by intergranular cracking, sulphur causes the creep strain to fracture to be reduced to less than 1%. The amount of sulphur required for this is very low (i.e. less than the amount permitted in the specification) and dependant on grain size. The transition from transgranular to intergranular failure in creep is influenced by temperature, stress, grain size, and composition. The addition of phosphorus increases the temperature at which the transition occurs

  8. The effects of impurities on the properties of OFP copper specified for the copper iron canister

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1999-09-01

    A brief literature study has addressed the effects of impurities on OF copper to which 50 ppm of phosphorus has been added. This copper is the candidate material for the corrosion resistant coating to be applied to the container under development by SKB for the disposal of high level nuclear waste. The levels of impurities expected in this grade of copper and the final use have controlled the focus of the work. It is concluded that the impurities of greatest importance in the context of the proposed application are sulphur, phosphorus, bismuth and lead. The addition of 50 ppm of phosphorus should ensure very low oxygen content in the copper such that, As, Ni, Mn, Cr, Fe, Sn, Zn, Si, Al, Sb and Cd present as impurities all remain in solution in the copper at all temperatures of interest. In this state they will exert no material effect on the fitness for purpose of the material. Sulphur is expected to be present in amounts exceeding the solubility limit such that it will occur as grain boundary films or particles. Such segregation can cause embrittlement and it will be more serious as grain size increases. There is no evidence to support the assertion that the phosphorus addition modifies the segregation behaviour of sulphur. There is evidence that sulphur will combine with V, Zr, or Ti, even when they are present at extremely low levels, but there is no indication of the likely effects of these combinations on the segregation behaviour or embrittling effects. There is clear evidence that when creep failure occurs by intergranular cracking, sulphur causes the creep strain to fracture to be reduced to less than 1%. The amount of sulphur required for this is very low (i.e. less than the amount permitted in the specification) and dependant on grain size. The transition from transgranular to intergranular failure in creep is influenced by temperature, stress, grain size, and composition. The addition of phosphorus increases the temperature at which the transition occurs

  9. Effect of water purity on intergranular stress corrosion cracking of stainless steel and nickel alloys in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, B. [Structural Integrity Associates (United States); Garcia, S. [Electric Power Research Institute (United States)

    2011-07-01

    Boiling water reactors (BWRs) operate with very high purity water. While even the utilization of a very low conductivity water (e.g., 0.06 {mu}S/cm) coolant cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel and nickel alloys under oxygenated conditions, the presence of certain impurities in the coolant can dramatically increase the probability of this most insidious form of corrosion. The goal of this paper is to present the effect of effect of only a few ionic impurities plus zinc on the IGSCC propensities of BWR stainless steel piping and reactor internals under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions. More specifically, of the numerous impurities identified in the BWR coolant (e.g., lithium, sodium, potassium, silica, borate, chromate, phosphate, sulphate, chloride, nitrate, cuprous, cupric, ferrous, etc.) only strong acid anions sulfate and chloride that are stable in the highly reducing crack tip environment rather than the bulk water conductivity will be discussed in detail. Nitrate will be briefly discussed as representing a species that is not thermodynamically stable in the crack while the effects of zinc is discussed as a deliberate additive to the BWR environment. (authors)

  10. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  11. Effect of annealing and impurity concentration on the TL characteristics of nanocrystalline Mn-doped CaF2

    International Nuclear Information System (INIS)

    Sahare, P.D.; Singh, Manveer; Kumar, Pratik

    2015-01-01

    Nanocrystalline samples of Mn-doped CaF 2 were synthesized by chemical coprecipitation method. The impurity concentration was varied in the range of 0.5–4.0 mol%. The structure of the synthesized material was confirmed using powder XRD analysis. TEM images of the nanoparticles show their size occurring mostly in the range of 35–40 nm, with clusters of some impurity phases formed on annealing of the material at higher temperatures. Detailed studies on TL showed that the structures of glow curves depend on Mn concentrations and annealing temperatures. Optimization of the concentration and annealing temperature showed that the sample (doped with 3.0 mol% and annealed at 673 K) has almost a single dosimetric glow peak appearing at around 492 K. EPR and PL spectra were further studied to understand the reasons for changes in the glow curve structures. All detailed studies on TL, PL and EPR showed that the changes in glow curve structures are caused not only by the stress connected with the difference in ionic radii of host Ca 2+ and the guest impurity Mn 3+ /Mn 2+ , but are also governed by other reasons, like diffusion of atmospheric oxygen and formation of impurity aggregates, such as, MnO 2 , Mn 3 O 4 , etc. This is true not only for nanocrystalline CaF 2 :Mn but could also be so for the bulk CaF 2 :Mn (TLD-400) and would thus help in understanding complex glow curve structure, high fading and the loss of reusability on annealing beyond 673 K. - Highlights: • Nanocrystalline material CaF 2 :Mn is prepared by simple coprecipitation method. • The material is studied by XRD, TEM, ESR, TL and PL techniques. • High impurity concentrations give rise to clusters causing material instability. • Changes in ESR and PL and glow curve structures are studied and explained. • Better characteristics than the bulk make the nanophosphor useful for dosimetry

  12. Void growth suppression by dislocation impurity atmospheres

    International Nuclear Information System (INIS)

    Weertman, J.; Green, W.V.

    1976-01-01

    A detailed calculation is given of the effect of an impurity atmosphere on void growth under irradiation damage conditions. Norris has proposed that such an atmosphere can suppress void growth. The hydrostatic stress field of a dislocation that is surrounded by an impurity atmosphere was found and used to calculate the change in the effective radius of a dislocation line as a sink for interstitials and vacancies. The calculation of the impurity concentration in a Cottrell cloud takes into account the change in hydrostatic pressure produced by the presence of the cloud itself. It is found that void growth is eliminated whenever dislocations are surrounded by a condensed atmosphere of either oversized substitutional impurity atoms or interstitial impurity atoms. A condensed atmosphere will form whenever the average impurity concentration is larger than a critical concentration

  13. Intergranular corrosion protective of austenitic stainless steel chemical equipment

    International Nuclear Information System (INIS)

    Kuzyukov, A.N.

    1994-01-01

    A complex of protective measures was developed for each concrete case of intergranular fracture of equipment, i.e.: decrease in the level of strains, surfacing with materials resistant to intergranular fracture under the conditions; permissible correction of process parameters, permitting a shift in corrosion potential towards decrease in the rate of intergranular corrosion. It is shown that even if the eguipment was subject to interfranular corrosion, but the fracture is not of catastrophic character, it proved possible to develop and apply complex methods of protection from the above types of corrosion fracture and to elongate the service life by 5-15 years

  14. Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970

    International Nuclear Information System (INIS)

    Terada, Maysa; Saiki, Mitiko; Costa, Isolda; Padilha, Angelo Fernando

    2006-01-01

    The precipitation behaviour of the DIN 1.4970 steel and its effect on the intergranular corrosion resistance were studied. Time-temperature-precipitation diagrams for the secondary phases (Ti, Mo)C (Cr, Fe, Mo, Ni) 23 C 6 and (Cr, Fe) 2 B are presented and representative samples have been selected for corrosion studies. The susceptibility to intergranular corrosion of the samples was evaluated using the double loop electrochemical potentiokinetic reactivation technique. The results showed that the solution-annealed samples and those aged at 1173 K did not present susceptibility to intergranular corrosion, whereas aging treatment from 873 to 1073 K resulted in small susceptibility to intergranular attack that decreased with aging temperature. The preferential formation of (Ti, Mo)C at higher aging temperatures comparatively to M 23 C 6 , retained the chromium in solid solution preventing steel sensitization and, consequently, intergranular corrosion

  15. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  16. A calibration to predict the concentrations of impurities in plutonium oxide by prompt gamma analysis: Revision 1

    International Nuclear Information System (INIS)

    Narlesky, Joshua E.; Foster, Lynn A.; Kelly, Elizabeth J.; Murray, Roy E. IV

    2009-01-01

    Over 5,500 containers of excess plutonium-bearing materials have been packaged for long-term storage following the requirements of DOE-STD- 3013. Knowledge of the chemical impurities in the packaged materials is important because certain impurities, such as chloride salts, affect the behavior of the material in storage leading to gas generation and corrosion when sufficient moisture also is present. In most cases, the packaged materials are not well characterized, and information about the chemical impurities is limited to knowledge of the material's processing history. The alpha-particle activity from the plutonium and americium isotopes provides a method of nondestructive self-interrogation to identify certain light elements through the characteristic, prompt gamma rays that are emitted from alpha-particle-induced reactions with these elements. Gamma-ray spectra are obtained for each 3013 container using a highresolution, coaxial high-purity germanium detector. These gamma-ray spectra are scanned from 800 to 5,000 keV for characteristic, prompt gamma rays from the detectable elements, which include lithium, beryllium, boron, nitrogen, oxygen, fluorine, sodium, magnesium, aluminum, silicon, phosphorus, chlorine, and potassium. The lower limits of detection for these elements in a plutonium-oxide matrix increase with atomic number and range from 100 or 200 ppm for the lightest elements such as lithium and beryllium, to 19,000 ppm for potassium. The peak areas from the characteristic, prompt gamma rays can be used to estimate the concentration of the light-element impurities detected in the material on a semiquantitative basis. The use of prompt gamma analysis to assess impurity concentrations avoids the expense and the risks generally associated with performing chemical analysis on radioactive materials. The analyzed containers are grouped by impurity content, which helps to identify high-risk containers for surveillance and in sorting materials before packaging.

  17. Trace impurity analyzer

    International Nuclear Information System (INIS)

    Schneider, W.J.; Edwards, D. Jr.

    1979-01-01

    The desirability for long-term reliability of large scale helium refrigerator systems used on superconducting accelerator magnets has necessitated detection of impurities to levels of a few ppM. An analyzer that measures trace impurity levels of condensable contaminants in concentrations of less than a ppM in 15 atm of He is described. The instrument makes use of the desorption temperature at an indicated pressure of the various impurities to determine the type of contaminant. The pressure rise at that temperature yields a measure of the contaminant level of the impurity. A LN 2 cryogenic charcoal trap is also employed to measure air impurities (nitrogen and oxygen) to obtain the full range of contaminant possibilities. The results of this detector which will be in use on the research and development helium refrigerator of the ISABELLE First-Cell is described

  18. Microstructural Evidences of Intergranular Pressure Solution during Frictional Sliding at Hydrothermal Conditions

    Science.gov (United States)

    Ma, X.; Yao, S.; He, C.

    2017-12-01

    In the framework of rate- and state-dependent friction, velocity weakening is the result of a healing effect at intergranular contacts that is stronger than the instantaneous rate effect. Intergranular pressure solution has been proposed to be a feasible mechanism for the frictional healing effect (He et al., 2013), but to date no substantial evidences have been reported in related microstructures. In this study we report our reanalyses on samples of plagioclase gouge deformed at hydrothermal conditions with effective normal stresses of 100 MPa, 200 MPa, and 300 MPa, pore pressures of 30 MPa and 100 MPa, and temperatures from 100oC to 600oC. With an Inlens image detector in a scanning electron microscope, our focus is to find the evidences of the pressure solution processes during frictional sliding. As it has been difficult to observe the signatures of pressure solution during frictional sliding at the solution sites due to the short contact time of frequently-switching contact pairs, now we focus on the results of precipitation instead, which is the final process of pressure solution. With high magnification, we find the following evidences of intergranular pressure solution: 1) crystal growth as a result of precipitation is ubiquitously observed in deformed samples at temperatures above 200oC; 2) very fine-grained precipitated particles with flaky morphologies typically appear in intensely sheared regions and between relatively large particles in moderately sheared regions; 3) the precipitated grains are concentrated periodically in zones orientated at 45-50 degrees to the fault strike. These observations indicate that intergranular pressure solution is the dominant process responsible for the frictional healing effect.

  19. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    International Nuclear Information System (INIS)

    Lim, H. K.; Kim, Y. S.

    2009-01-01

    When austenitic stainless steels are heat treated in the range of 500∼850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month

  20. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H. K.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of)

    2009-12-15

    When austenitic stainless steels are heat treated in the range of 500{approx}850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month.

  1. The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography

    International Nuclear Information System (INIS)

    Knight, S.P.; Salagaras, M.; Trueman, A.R.

    2011-01-01

    Research highlights: → IGC is stochastic, where initiation is statistical and growth kinetics was somewhat predictable. → Dissolved oxygen concentration was more important than the concentration of salt in the droplet. → A limiting depth occurred for AA2024, whereas no limiting depth occurs for AA7050 after 168 h exposure. → A limiting depth may be controlled by the transport of dissolved oxygen down the corrosion fissure. → A limiting IGC depth is dependent on the overpotential of the SDZ (adjacent to the grain boundary). - Abstract: Atmospheric corrosion is one of the leading causes of structural damage to aircraft. Of particular importance is pitting and intergranular corrosion, which can develop into fatigue cracks, stress corrosion cracks, or exfoliation. Therefore it is of interest to the Australian Defence Force (ADF) to understand how corrosion ensues in susceptible aircraft aluminium alloys, such as AA2024-T351 and 7050-T7451. However, there are many difficulties in measuring the extent of intergranular corrosion, since it is predominantly hidden below the surface. Traditionally, cross-sectioning has been used to view and measure the depth of attack. In the present work, 2 mm diameter pin specimens were contaminated with a droplet of 3.5% NaCl and exposed to constant humidity that resulted in intergranular corrosion. X-ray computed tomography was then used to non-destructively assess the depth and volume of corrosion both as a function of time in 97% relative humidity, and as a function of relative humidity after 168 h exposure. Both corrosion depth and volume increased with time, but there was evidence for a limiting depth in AA2024. Depth and volume also increased with relative humidity of the environment, for which the time-of-wetness and oxygen concentration of the droplets were considered the important factors in driving the corrosion process.

  2. Investigation of intergranular corrosion resistance of Cr16Ni25NMo6 steel

    International Nuclear Information System (INIS)

    Kamenev, Yu.B.; Nazarov, A.A.; Kuusk, L.V.; Majdeburova, T.F.

    1990-01-01

    The effect of 08Kh16N25AM6 steel susceptibility to intergranular corrosion on its intergranular cracking resistance in high-temperature water is investigated. In addition, the performed tests point to the susceptibility of sensibilized Kh16N25AM6 steel to intergranular corrosion in media simulating an agressive environment of power generation equipment; the latter requires a strict control over the resistance of weld joints of the above steel to intergranular corrosion. It is shown that Kh16N25AM6 type steel in sensibilized state is susceptible to intercrystalline corrosion cracking in high-temperature water which correlates with its susceptibility to intergranular corrosion established by AM GOST 6032-84 and potentiodynamic reactivation methods

  3. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  4. Effect of mechanical treatment on intergranular corrosion of 6064 alloy bars

    Science.gov (United States)

    Sláma, P.; Nacházel, J.

    2017-02-01

    Aluminium Al-Mg-Si-type alloys (6xxx-series) exhibit good mechanical properties, formability, weldability and good corrosion resistance in various environments. They often find use in automotive industry and other applications. Some alloys, however, particularly those with higher copper levels, show increased susceptibility to intergranular corrosion. Intergranular corrosion (IGC) is typically related to the formation of microgalvanic cells between cathodic, more noble phases and depleted (precipitate-free) zones along grain boundaries. It is encountered mainly in AlMgSi alloys containing Cu, where it is thought to be related to the formation Q-phase precipitates (Al4Mg8Si7Cu2) along grain boundaries. The present paper describes the effects of mechanical working (extrusion, drawing and straightening) and artificial aging on intergranular corrosion in rods of the 6064 alloy. The resistance to intergranular corrosion was mapped using corrosion tests according to EN ISO 11846, method B. Corrosion tests showed dependence of corrosion type on mechanical processing of the material. Intergranular, pitting and transgranular corrosion was observed. Artificial ageing influenced mainly the depth of the corrosion.

  5. Interphase and intergranular stress generation in carbon steels

    International Nuclear Information System (INIS)

    Oliver, E.C.; Daymond, M.R.; Withers, P.J.

    2004-01-01

    Neutron diffraction spectra have been acquired during tensile straining of high and low carbon steels, in order to compare the evolution of internal stress in ferritic steel with and without a reinforcing phase. In low carbon steel, the generation of intergranular stresses predominates, while in high carbon steel similar intergranular stresses among ferrite grain families are superposed upon a large redistribution of stress between phases. Comparison is made to calculations using elastoplastic self-consistent and finite element methods

  6. Effect of temperature and ionic impurities at very low concentrations on stress corrosion cracking of type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W.E.; Soppet, W.K.; Kassner, T.F.

    1984-11-01

    The relative effect of approx. 12 anion species, in conjunction with hydrogen and sodium cations, on the stress-corrosion-cracking (SCC) behavior of lightly sensitized Type 304 stainless steel was investigated in constant-extension-rate-tensile (CERT) tests at 289/sup 0/C in water with 0.2 ppM dissolved oxygen at total conductivity values of less than or equal to 1 ..mu..S/cm. The results show that the sulfur species, either in acid or sodium form, produce the highest degree of IGSCC relative to other anions. The effect of temperature on the SCC behavior of the material was investigated in CERT tests over the range 110 to 320/sup 0/C in high-purity water and in water containing 0.1 and 1.0 ppM sulfate as H/sub 2/SO/sub 4/ at a dissolved oxygen concentration of 0.2 ppM. The CERT parameters were correlated with impurity concentration (i.e., conductivity) and the electrochemical potential of platinum and Type 304 stainless steel electrodes in the high-temperature environments. Maximum IGSCC occurred at temperatures between approx. 200 and 250/sup 0/C in high-purity water, and the addition of sulfate increased the average crack growth rates and the temperature range over which maximum susceptibility occurred. A distinct transition from intergranular to transgranular and ultimately to a ductile failure mode was observed as the temperature increased from approx. 270 to 320/sup 0/C in high-purity water. This transition was attributed to a decrease in the open-circuit corrosion potential of the steel below a critical value of approx. 0 mV(SHE) at the higher temperature. A large decrease in the crack growth rates of fracture-mechanics-type specimens of the steel was also found when the temperature was increased from 289 to 320/sup 0/C in high-purity water with 0.2 ppM dissolved oxygen. 26 references, 8 figures, 6 tables.

  7. Effect of temperature and ionic impurities at very low concentrations on stress corrosion cracking of type 304 stainless steel

    International Nuclear Information System (INIS)

    Ruther, W.E.; Soppet, W.K.; Kassner, T.F.

    1984-11-01

    The relative effect of approx. 12 anion species, in conjunction with hydrogen and sodium cations, on the stress-corrosion-cracking (SCC) behavior of lightly sensitized Type 304 stainless steel was investigated in constant-extension-rate-tensile (CERT) tests at 289 0 C in water with 0.2 ppM dissolved oxygen at total conductivity values of less than or equal to 1 μS/cm. The results show that the sulfur species, either in acid or sodium form, produce the highest degree of IGSCC relative to other anions. The effect of temperature on the SCC behavior of the material was investigated in CERT tests over the range 110 to 320 0 C in high-purity water and in water containing 0.1 and 1.0 ppM sulfate as H 2 SO 4 at a dissolved oxygen concentration of 0.2 ppM. The CERT parameters were correlated with impurity concentration (i.e., conductivity) and the electrochemical potential of platinum and Type 304 stainless steel electrodes in the high-temperature environments. Maximum IGSCC occurred at temperatures between approx. 200 and 250 0 C in high-purity water, and the addition of sulfate increased the average crack growth rates and the temperature range over which maximum susceptibility occurred. A distinct transition from intergranular to transgranular and ultimately to a ductile failure mode was observed as the temperature increased from approx. 270 to 320 0 C in high-purity water. This transition was attributed to a decrease in the open-circuit corrosion potential of the steel below a critical value of approx. 0 mV(SHE) at the higher temperature. A large decrease in the crack growth rates of fracture-mechanics-type specimens of the steel was also found when the temperature was increased from 289 to 320 0 C in high-purity water with 0.2 ppM dissolved oxygen. 26 references, 8 figures, 6 tables

  8. Measuring and controlling method for organic impurities

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo

    1995-01-01

    The present invention concerns measurement and control for organic impurities contained in ultrapurified water for use in a nuclear power plant. A specimen containing organic impurities leached out of anionic exchange resins and cationic exchange resins is introduced to an organic material decomposing section to decompose organic impurities into organic carbon and other decomposed products. Sulfate ions, nitrate ions, nitrite ions and carbon dioxide are produced by the decomposition of the organic impurities. As a next step, carbon dioxide in the decomposed products is separated by deaerating with a nitrogen gas or an argon gas and then a TOC concentration is measured by a non-dispersion-type infrared spectrometer. Further, a specimen from which carbon dioxide was separated is introduced to a column filled with ion exchange resins and, after concentrating inorganic ion impurities, the inorganic ion impurities are identified by using a measuring theory of an ion chromatographic method of eluting and separating inorganic ion impurities and detecting them based on the change of electroconductivity depending on the kinds of the inorganic ion impurities. Organic impurities can be measured and controlled, to improve the reliability of water quality control. (N.H.)

  9. Concentration dependence of fluorine impurity spin-lattice relaxation rate in bone mineral

    International Nuclear Information System (INIS)

    Code, R.F.; Armstrong, R.L.; Cheng, P.-T.

    1992-01-01

    The concentration dependence of the fluoride ion spin-lattice relaxation rate has been observed by nuclear magnetic resonance experiments on samples of defatted and dried bone. The 19 F spin-lattice relaxation rates increased linearly with bone fluoride concentration. Different results were obtained from trabecular than from cortical bone. For the same macroscopic fluoride content per gram of bone calcium, relaxation rate is significantly faster in cortical bone. Relaxation rates in cortical bone samples prepared from rats and dogs were apparently controlled by the same species-independent processes. For samples from beagle dogs, bulk fluoride concentrations measured by neutron activation analysis were 3.1±0.3 times greater in trabecular bone than in corresponding cortical bone. The beagle spin-lattice relaxation data suggest that microscopic fluoride concentrations in bone mineral were 1.8±0.4 times greater in trabecular bone than in cortical bone. It is concluded that accumulation of fluoride impurities in bone mineral is non-uniform. (author)

  10. Impurity diffusion in transition-metal oxides

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe 3 O 4 . Tracer impurity diffusion in these materials and TiO 2 , together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO 2 whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures

  11. The effects of impurity composition and concentration in reactor structure material on neutron activation inventory in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Gil Yong; Kim, Soon Young [RADCORE, Daejeon (Korea, Republic of); Lee, Jae Min [TUV Rheinland Korea, Seoul (Korea, Republic of); Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    The neutron activation inventories in reactor vessel and its internals, and bio-shield of a PWR nuclear power plant were calculated to evaluate the effect of impurity elements contained in the structural materials on the activation inventory. Carbon steel is, in this work, used as the reactor vessel material, stainless steel as the reactor vessel internals, and ordinary concrete as the bio-shield. For stainless steel and carbon steel, one kind of impurity concentration was employed, and for ordinary concrete five kinds were employed in this study using MCNP5 and FISPACT for the calculation of neutron flux and activation inventory, respectively. As the results, specific activities for the cases with impurity elements were calculated to be more than twice than those for the cases without impurity elements in stainless and carbon steel. Especially, the specific activity for the concrete material with impurity elements was calculated to be 30 times higher than that without impurity. Neutron induced reactions and activation inventories in each material were also investigated, and it is noted that major radioactive nuclide in steel material is Co-60 from cobalt impurity element, and, in concrete material, Co-60 and Eu-152 from cobalt and europium impurity elements, respectively. The results of this study can be used for nuclear decommissioning plan during activation inventory assessment and regulation, and it is expected to be used as a reference in the design phase of nuclear power plant, considering the decommissioning of nuclear power plants or nuclear facilities.

  12. Three-dimensional studies of intergranular carbides in austenitic stainless steel.

    Science.gov (United States)

    Ochi, Minoru; Kawano, Rika; Maeda, Takuya; Sato, Yukio; Teranishi, Ryo; Hara, Toru; Kikuchi, Masao; Kaneko, Kenji

    2017-04-01

    A large number of morphological studies of intergranular carbides in steels have always been carried out in two dimensions without considering their dispersion manners. In this article, focused ion beam serial-sectioning tomography was carried out to study the correlation among the grain boundary characteristics, the morphologies and the dispersions of intergranular carbides in 347 austenitic stainless steel. More than hundred intergranular carbides were characterized in three dimensions and finally classified into three different types, two types of carbides probably semi-coherent to one of the neighboring grains with plate-type morphology, and one type of carbides incoherent to both grains with rod-type morphology. In addition, the rod-type carbide was found as the largest number of carbides among three types. Since large numbers of defects, such as misfit dislocations, may be present at the grain boundaries, which can be ideal nucleation sites for intergranular rod-type carbide precipitation. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  13. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  14. Effect of doping of OH- and CN- on the liberation of I2 molecules in KI by gamma-irradiation, impurity concentration effect

    International Nuclear Information System (INIS)

    Shirke, A.K.; Pode, R.B.; Deshmukh, B.T.

    1996-01-01

    Photodecomposition of pure and doped KI powder (KI:KOH; KI:KCN; Impurity concentration, 100, 300, 500, 700 and 1000 ppm) to produce free I 2 molecules during gamma irradiation is studied with the help of absorption and IR measurements. Large number of I 2 molecules are formed in pure KI as compared to the doped samples. Hydroxide impurity increases the rate of liberation of I 2 molecules whereas the cyanide impurity decreases the rate of liberation of I 2 molecules. (Author)

  15. Challenges in Continuum Modelling of Intergranular Fracture

    DEFF Research Database (Denmark)

    Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.

    2011-01-01

    of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even greater geometrical complexity. To address the first two challenges, we explore the physical underpinnings for creating functional forms to capture the hierarchical commensurability structure in the grain boundary......Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....

  16. Computational multiscale modeling of intergranular cracking

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2011-01-01

    A novel computational approach for simulation of intergranular cracks in a polycrystalline aggregate is proposed in this paper. The computational model includes a topological model of the experimentally determined microstructure of a 400 μm diameter stainless steel wire and automatic finite element discretization of the grains and grain boundaries. The microstructure was spatially characterized by X-ray diffraction contrast tomography and contains 362 grains and some 1600 grain boundaries. Available constitutive models currently include isotropic elasticity for the grain interior and cohesive behavior with damage for the grain boundaries. The experimentally determined lattice orientations are employed to distinguish between resistant low energy and susceptible high energy grain boundaries in the model. The feasibility and performance of the proposed computational approach is demonstrated by simulating the onset and propagation of intergranular cracking. The preliminary numerical results are outlined and discussed.

  17. Analytical model of impurity concentration during steam generation in permeable porous structures

    International Nuclear Information System (INIS)

    Polonskii, V.S.; Orlov, A.V.

    1993-01-01

    A model is proposed to describe the mass transfer of impurities during steam generation on a surface covered by porous deposits of corrosion products. The model is based on replacement of the actual structure of the deposits by a system of cylindrical fluid and vapor channels in which the flow of vapor and a liquid film is described by the Navier-Stokes equations. The driving force in the process is assumed to be the difference in the Laplacian pressures due to surface tension on the front and back sides of elongated vapor bubbles. Calculations performed for the operating conditions of the drums of the steam generators of nuclear power plants with water-moderated water-cooled reactors show that the mass transfer rate is extremely low in the gaps in cold drums and that the concentration of aggressive impurities deep within these channels may reach two or more orders of magnitude-thus leading to rapid corrosion. Almost complete vaporization occurs in the capillary channels of hot drums with deposits, which probably precludes corrosion in the channel depths. However, corrosion damage remains a possibility at the entrance to the channels (on the side of the second loop)

  18. Proceedings: 1991 EPRI workshop on secondary-side intergranular corrosion mechanisms

    International Nuclear Information System (INIS)

    Partridge, M.J.; Zemitis, W.S.

    1992-08-01

    A workshop on ''Secondary-Side Intergranular Corrosion Mechanisms'' was organized by EPRI as an effort to give those working in this area an opportunity to share their results, ideas, and plans. Topics covered included: (1) caustic induced intergranular attack/stress corrosion cracking (IGA/IGSCC), (2) plant experience, (3) boric acid as an IGA/IGSCC remedial measure, (4) lead induced IGA/IGSCC, and (5) acid induced IGA/IGSCC

  19. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    Science.gov (United States)

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  20. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  1. Beneficiation of titanium concentrate (anatase) by HCl/H2O2 leaching of impurities

    International Nuclear Information System (INIS)

    Trindade, R.B.E.; Teixeira, L.A.C.

    1988-01-01

    The HCl/H 2 O 2 leaching of impurities from a Brazilian anatase (TiO 2 ) concentrate has been investigated by factorial experimentations. The effects of the following variables were investigated: temperature (50-90 0 C), redox potential (with and without oxidizing agent-H 2 O 2 ) and HCl concentration (4-18,5%). The conclusions were based on the analyses of Fe, Ca, P, Al, Si, Th,Ce, La, U and Ti in the beneficiated concentrates. The final results recommended the following optimum operational conditions, in a four stage countercurrent leaching: in the 4 th reactor (discharge of beneficiated concentrate): HCl fed at 18.5%, T=75 0 C, and addition of H 2 O 2 at a potential (eH) of 850 mV; in the first three reactors: T=90 0 C; with no oxidizing agent. (author) [pt

  2. Low Z impurity transport in tokamaks

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed

  3. Intergranular stresses in Incoloy-800

    International Nuclear Information System (INIS)

    Holden, T.M.; Holt, R.A.; Clarke, A.P.

    1997-01-01

    The generation of intergranular residual strains under uniaxial loading conditions in the plastic regime has been measured in detail by neutron diffraction in Incoloy-800. A relatively simple theory, based on the Taylor model, gives a good semiquantitative account of the magnitudes of the strains. The results clarify the interpretation of measurements made earlier on Incoloy-800 steam generator tubes. (author)

  4. Low-Z impurities in PLT

    International Nuclear Information System (INIS)

    Hinnov, E.; Suckewer, S.; Bol, K.; Hawryluk, R.; Hosea, J.; Meservey, E.

    1977-11-01

    Low-Z impurities concentrations (oxygen and carbon) have been measured in different discharges in PLT. The contribution to Z/sub eff/, influx rates and radiation losses by oxygen and carbon were obtained. An inverse correlation was found between the low-Z impurity density (and also the edge ion temperature) and the high-Z impurity (tungsten) density. A one-dimensional computer transport model has been used to calculate the spatial profiles of different oxygen and carbon ionization states. This model predicts that fully stripped oxygen and carbon ions should exist near the plasma periphery

  5. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption

  6. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  7. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  8. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  9. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  10. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  11. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  12. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  13. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia

    2002-01-01

    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  14. An empirical method for determination of elemental components of radiated powers and impurity concentrations from VUV and XUV spectral features in tokamak plasmas

    International Nuclear Information System (INIS)

    Lawson, K.; Peacock, N.; Gianella, R.

    1998-12-01

    The derivation of elemental components of radiated powers and impurity concentrations in bulk tokamak plasmas is complex, often requiring a full description of the impurity transport. A novel, empirical method, the Line Intensity Normalization Technique (LINT) has been developed on the JET (Joint European Torus) tokamak to provide routine information about the impurity content of the plasma and elemental components of radiated power (P rad ). The technique employs a few VUV and XUV resonance line intensities to represent the intrinsic impurity elements in the plasma. From a data base comprising these spectral features, the total bolometric measurement of the radiated power and the Z eff measured by visible spectroscopy, separate elemental components of P rad and Z eff are derived. The method, which converts local spectroscopic signals into global plasma parameters, has the advantage of simplicity, allowing large numbers of pulses to be processed, and, in many operational modes of JET, is found to be both reliable and accurate. It relies on normalizing the line intensities to the absolute calibration of the bolometers and visible spectrometers, using coefficients independent of density and temperature. Accuracies of the order of ± 15% can be achieved for the elemental P rad components of the most significant impurities and the impurity concentrations can be determined to within ±30%. Trace elements can be monitored, although with reduced accuracy. The present paper deals with limiter discharges, which have been the main application to date. As a check on the technique and to demonstrate the value of the LINT results, they have been applied to the transport modelling of intrinsic impurities carried out with the SANCO transport code, which uses atomic data from ADAS. The simulations provide independent confirmation of the concentrations empirically derived using the LINT technique. For this analysis, the simple case of the L-mode regime is considered, the chosen

  15. Investigation of the behaviour of 35% nickel alloys in the presence of helium coolant impurities

    International Nuclear Information System (INIS)

    Dixmier, J.; Leclercq, D.; Olivier, P.; Vincent, L.; Willermoz, H.

    1976-01-01

    Alloys of the Incoloy 800 type containing 35% nickel are being considered for the heat exchangers of steam-cycle high-temperature reactors for electricity production. Corrosion tests at 650 and 800 0 C have been carried out at atmospheric pressure and at 50 bar on four such alloys (commercially available and specially produced ones) with different titanium and aluminium contents. It appears that the degree of intergranular attack occurring in these materials increases with the titanium and aluminium concentration. Examination with a scanning electron microscope fitted with analysers confirms the decisive role of these two elements which are actually to be found in oxidized form at the grain boundaries to the exclusion of other components of the alloy. This type of corrosion can lead in the long run to a deterioration in the alloy's mechanical characteristics at high temperature. To assess the true risk of in-service rupture, various rigs have been developed for investigating corrosion under stress conditions. The atmosphere in these rigs consists of helium, of which the impurity content is rigorously controlled. In particular, the Aida high-pressure loop installed at the Grenoble Nuclear Research Centre can accommodate a large number of test-pieces. These are either subjected to a definite tensile stress or placed in a circuit through which helium is passed at high velocity. At present experiments are being conducted at 700 and 750 0 C on an Incoloy 800 alloy corresponding to the designers' specifications. The experiments are performed at atmospheric pressure and a pressure of 50 bar with the same impurity pressures. (author)

  16. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    La Fontaine, Alexandre; Yen, Hung-Wei; Trimby, Patrick; Moody, Steven; Miller, Sarah; Chensee, Martin; Ringer, Simon; Cairney, Julie

    2014-01-01

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  17. Glycolic acid physical properties and impurities assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pickenheim, B. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); BIBLER, N. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-09

    This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However, these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.

  18. On impurities transport in a tokamak

    International Nuclear Information System (INIS)

    Rozhanskij, V.A.

    1980-01-01

    Transport of impurity ions is analitically analized in the case when main plasma is in plateau or banana regimes but impurity ions - in the Pfirsch-Schlutter mode. It is shown that in the large region of parameters the impUrity transport represents a drift in a p oloidal electric field, averaged from magnetic surface with provision for disturbance of concentration on it. Therefore, transport velocity does not depend on Z value and impurity type, as well as collision frequency both in the plateau and banana regimes. A value of flows is determined by the value of poloidal rotation velocity. At the rotation velocity corresponding to the electric field directed from the centre to periphery impurities are thrown out of a discharge, in the reverse case the flow is directed inside. Refusal from the assumption that Zsub(eff) > approximately 2, does not considerably change the results of work. The approach developed in the process of work can be applied to the case when impurity ions are in the plateau or banana modes

  19. Impurity production and transport at limiters

    International Nuclear Information System (INIS)

    Matthews, G.F.

    1989-01-01

    This paper concentrates on the description and evaluation of experiments on the DITE tokamak. These are designed to characterise the processes involved in the production and transport of neutral and ionised impurities near carbon limiters. The need for good diagnostics in the scrape-off layer is highlighted. Langmuir probes are used to provide input data for models of impurity production at limiters. Observations of the radial profiles of carbon and oxygen impurities are compared with the code predictions. Changeover experiments involving hydrogen and helium plasmas are used as a means for investigating the role of the atomic physics and chemistry. The impurity control limiter (ICL) experiment is described which shows how geometry plays an important role in determining the spatial distributions of the neutral and ionised carbon. New diagnostics are required to study the flux and charge state distribution of impurities in the boundary. Preliminary results from an in-situ plasma ion mass-spectrometer are presented. The role of oxygen and the importance of evaluating the wall sources of impurity are emphasised. (orig.)

  20. Physical behaviors of impure atoms during relaxation of impure NiAl-based alloy grain boundary

    International Nuclear Information System (INIS)

    Zheng Liping; Jiang Bingyao; Liu Xianghuai; Li Douxing

    2003-01-01

    The Monte Carlo simulation with the energetics described by the embedded atom method has been employed to mainly study physical behaviors of boron atoms during relaxation of the Ni 3 Al-x at.% B grain boundary. During relaxation of impure Ni 3 Al grain boundaries, authors suggest that for different types of impure atoms (Mg, B, Cr and Zr atoms etc.), as the segregating species, they have the different behaviors, but as the inducing species, they have the same behaviors, i.e. they all induce Ni atoms to substitute Al atoms. Calculations show that at the equilibrium, when x(the B bulk concentration) increases from 0.1 to 0.9, the peak concentration of B increases, correspondently, the peak concentration of Ni maximizes but the valley concentration of Al minimizes, at x=0.5. The calculations also show the approximate saturation of Ni at the grain boundary at x=0.5

  1. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)

    2014-01-15

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.

  2. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  3. External electric field effect on the binding energy of a hydrogenic donor impurity in InGaAsP/InP concentric double quantum rings

    Science.gov (United States)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2018-04-01

    Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.

  4. EUV impurity study of the Alcator tokamak

    International Nuclear Information System (INIS)

    Terry, J.L.; Chen, K.I.; Moos, H.W.; Marmar, E.S.

    1978-01-01

    The intensity of resonance line radiation from oxygen, nitrogen, carbon and molybdenum impurities has been measured in the high-field (80kG), high-density (6x10 14 cm -3 ) discharges of the Alcator Tokamak, using a 0.4-m normal-incidence monochromator (300-1300A) with its line of sight fixed along a major radius. Total light-impurity concentrations of a few tenths of a percent have been estimated by using both a simple model and a computer code which included Pfirsch-Schlueter impurity diffusion. The resulting values of Zsub(eff), including the contributions due to both the light impurities and molybdenum, were close to one. The power lost through the impurity line radiation from the lower ionization states accounted for approximately 10% of the total Ohmic input power at high densities. (author)

  5. Sodium sampling and impurities determination

    International Nuclear Information System (INIS)

    Docekal, J.; Kovar, C.; Stuchlik, S.

    1980-01-01

    Samples may be obtained from tubes in-built in the sodium facility and further processed or they are taken into crucibles, stored and processed later. Another sampling method is a method involving vacuum distillation of sodium, thus concentrating impurities. Oxygen is determined by malgamation, distillation or vanadium balance methods. Hydrogen is determined by the metal diaphragm extraction, direct extraction or amalgamation methods. Carbon is determined using dry techniques involving burning a sodium sample at 1100 degC or using wet techniques by dissolving the sample with an acid. Trace amounts of metal impurities are determined after dissolving sodium in ethanol. The trace metals are concentrated and sodium excess is removed. (M.S.)

  6. The influence of optical parameters on impurity determinations by IR spectroscopy

    International Nuclear Information System (INIS)

    Lombard, O.J.

    1985-01-01

    The important role of impurities in semiconductor materials is the subject of continuous research. The concentration of interstitial oxygen impurities in silicon are determined with the aid of infrared spectroscopy. The maximum absorption coefficient of the oxygen absorption peak, centered at 9,06 μm, is determined and the impurity concentration is then calculated using a calibration factor. This procedure was evaluated, paying particular attention to those optical parameters which may influence these impurity determinations. A thorough discussion of the theoretical and experimental aspects of infrared spectroscopy in general is followed by an overview of previous experimental work. This lead to some theoretical analysis regarding the influence of the index of refraction, the index of absorption and multiple reflections in the silicon wafer on impurity determinations. This lead to specific experimental investigations. The influence of the surface morphology of samples on impurity determinations was studied by determining the reflectance of silicon surfaces. It was established that the surface reflectance plays a role and that it must be taken into consideration for accurate impurity concentration determinations. The most accurate values for the absorption coefficient due to oxygen in silicon are calculated. This requires that the surface of the silicon wafers must be highly polished for the formula to be valid. Acceptable values for the absorption coefficient of damaged surfaces are obtained if the uncorrected formula is used. Experimental results may deviate as much as 32% from the real impurity concentration if the wrong formula is used to calculate the absorption coefficient of oxygen in silicon at 9,06 μm

  7. Analysis of Sulfidation Routes for Processing Weathered Ilmenite Concentrates Containing Impurities

    Science.gov (United States)

    Ahmad, Sazzad; Rhamdhani, M. Akbar; Pownceby, Mark I.; Bruckard, Warren J.

    Rutile is the preferred feedstock for producing high-grade TiO2 pigment but due to decreasing resources, alternative materials such as ilmenite is now used to produce a synthetic rutile (SR) feedstock. This requires removal of impurities (e.g. Fe, Mg, Mn) which, for a primary ilmenite is straightforward process. Processing of weathered ilmenite however, is complex, especially when chrome-bearing impurities are present since minor chromium downgrades the SR market value as it imparts color to the final TiO2 pigment, Chrome-bearing spinels are a problem in weathered ilmenites from the Murray Basin, Australia as their physical and chemical properties overlap with ilmenite making separation difficult. In this paper, different sulfidation process routes for weathered ilmenites are analyzed for their applicability to Murray Basin deposits as a mean of remove chrome spinel impurities. Thermodynamic and experimental studies indicated that selective sulfidation of chrome-bearing spinel can be achieved under controlled pO2 and pS2 processing conditions thereby making them amenable to separation.

  8. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  9. Features of accumulation of radiation defects in metal with impurity

    International Nuclear Information System (INIS)

    Iskakov, B.M.

    2002-01-01

    The processes of accumulation and annealing of radiation defects in solids are being studied for the last fifty years quite intensively. Many regularities of these processes are fixed, but there are more unsolved problems. The computer simulation is one of the effective tools in finding the mechanisms of accumulation and annealing of radiation defects in solids. The numerical solution of the system of the differential equations by means of computers describing kinetics of accumulation of radiation point defects in metals with impurity, has allowed to receive a number of new outcomes. It was revealed, that a determinative factor influential in concentration of point defects (vacancies and interstitial atoms), formed during an exposure of metal, is the correlation a speed of Frenkel twins recombination, the capture of defects by impurity atoms and absorption of defects by other drainage, for example by dislocations. If the speed of capture of interstitial atoms by impurity atoms for two - three order is lower than the recombination speed of Frenkel twins and on two - three order exceeds the speed of capture of vacancies by impurity atoms, the concentration of interstitial atoms within the first seconds of an exposure passes through a maximum, then quickly decreases in some times and after that starts slowly to grow. The change of concentration of interstitial atoms in an initial period of an exposure does not influence on the change of a vacancy concentration. Within the whole period of an exposure, during which the concentration of interstitial atoms achieves a maximum and then is reduced, the vacancy concentration is steadily enlarged. However subsequent sluggish rise of concentration of interstitial atoms during an exposure is followed by the decrease of the vacancy concentration. The most remarkable feature of the kinetics of accumulation of interstitial atoms in metals with impurity is the presence of two extremum on curve dependence of interstitial atoms on a

  10. Hot corrosion behavior of Ni-Cr-W-C alloys in impure helium gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1976-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995% helium gas at 1000 0 C, comparing with that behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure helium gas usually causes selective oxidation of these elements and the growth of oxide whiskers on the surface of specimen at elevated temperature. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by addition of Mn and Si, providing tough spinel type oxide film on the surface and 'Keyes' on the oxide-matrix interface respectively. The amount and the morphology of the oxide whiskers depended on Si and Mn content. More than 0.29% of Si content without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changed the whiskers to thicker ones of spinel type oxide (MnCr 2 O 1 ) with rough surface. On the basis of these results, the optimum content of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack and the spalling of oxide film was discussed. (auth.)

  11. Study by nuclear techniques of the impurity-defect interaction in implanted metals

    International Nuclear Information System (INIS)

    Thome, Lionel.

    1978-01-01

    The properties of out equilibrium alloys formed by impurity implantation are strongly influenced by radiation damage created during implantation. This work presents a study, via hyperfine interaction and lattice location experiments, of the impurity-defect interaction in ion implanted metals. When the impurity and defect concentrations in the implanted layer are small, i.e. when impurities are uniformly recoil implanted in the whole crystal volume following a nuclear reaction (Aq In experiments), the impurity interacts with its own damage cascade. In this case, a vacancy is found to be trapped by a fraction of impurities during an athermal process. The value of this fraction does not seem to depend critically on impurity and host. When the impurity and defect concentrations are such that defect cascades interact, i.e. when impurities are implanted with an isotope separator (Fe Yb experiments), the observed impurity-vacancy (or vacancy cluster) interactions depend then strongly on the nature of impurity and host. An empirical relation, which indicates the importance of elastic effects, has been found between the proportion of impurities interacting with defects and the difference between impurity and host atom radii. At implantation temperature such that vacancies are mobile, the impurity-defect interaction depends essentially on vacancy migration. A model based on chemical kinetics has been developed to account for the variation with temperature of measured quantities [fr

  12. Intergranular attack observed in radiation-enhanced corrosion of mild steel

    International Nuclear Information System (INIS)

    Reda, R.J.; Kelly, J.L.; Harna, S.L.A.

    1988-01-01

    Experiments were conducted to determine the effects of gamma radiation on the corrosion of AISI 1018 mild steel in deaerated brine solutions of various sodium, magnesium, and chloride ion concentrations. Immersed metal specimens were irradiated at an exposure rate of 3 x 10/sup 5/ R/h (0.3 MR/h) for up to 1250 h at a temperature of --25 C. The corrosion rates of the irradiated specimens were found to be roughly a factor of 10 greater than the rates for the non-irradiated specimens. The radiation-enhanced corrosion rate was also found to have increased with the chloride concentration. Electron micrographs revealed that the surface morphology of the specimens exposed to irradiated brines differed greatly from the non-irradiated specimens. The non-irradiated specimens had undergone uniform corrosion, while the irradiated specimens exhibited intergranular corrosion (IGC), a phenomenon not yet observed in mild steel. An explanation for this observation is offered in terms of the relative rates of formation and recombination of radiolytic species

  13. Micromechanical Aspects of Transgranular and Intergranular Failure Competition

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Tarafder, M.; Hadraba, Hynek

    2011-01-01

    Roč. 465, - (2011), s. 399-402 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GAP107/10/0361 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. Effects of impurities on radiation damage in InP

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Ando, K.

    1986-01-01

    Strong impurity effects upon introduction and annealing behavior of radiation-induced defects in InP irradiated with 1-MeV electrons have been found. The main defect center of 0.37-eV hole trap H4 in p-InP, which must be due to a point defect, is annealed even at room temperature. Its annealing rate is found to be proportional to the 2/3 power of the preirradiation carrier concentration in InP. Moreover, the density of the hole trap H5 (E/sub v/+0.52 eV) in p-InP, which must be due to a point defect--impurity complex, increases with increase in the InP carrier concentration. These results suggest that the radiation-induced defects in InP must recover through long-range diffusion mediated by impurity atoms. A model is proposed in which point defects diffuse to sinks through impurities so as to disappear or bind impurities so as to form point defect--impurity complexes. In addition to the long-range diffusion mechanism, the possibility of charge-state effects responsible for the thermal annealing of radiation-induced defects in InP is also discussed

  15. Fractal growth in impurity-controlled solidification in lipid monolayers

    DEFF Research Database (Denmark)

    Fogedby, Hans C.; Sørensen, Erik Schwartz; Mouritsen, Ole G.

    1987-01-01

    A simple two-dimensional microscopic model is proposed to describe solidifcation processes in systems with impurities which are miscible only in the fluid phase. Computer simulation of the model shows that the resulting solids are fractal over a wide range of impurity concentrations and impurity...... diffusional constants. A fractal-forming mechanism is suggested for impurity-controlled solidification which is consistent with recent experimental observations of fractal growth of solid phospholipid domains in monolayers. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  16. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  17. Separation coefficients of liquid-vapor in systems formed by yttrium chloride with some impurities

    International Nuclear Information System (INIS)

    Volkov, V.T.; Nikiforova, T.V.; Nisel'son, L.A.; Telegin, G.F.

    1990-01-01

    Using equilibrium Rayleigh distillation in the 800-950 deg C temperature range, separation coefficients of liquid-vapor for systems, formed by yttrium chloride with Co, Cr, Ni, Mn, Fe, Cu, Na, K, Mg, Ca, Li impurities are determined. The impurity concentration lies within 0.02-0.4 mass. % limits of each impurity, and total impurity concentration does not exceed 1 mass. %. The tested impurities, except for calcium, are more volatile than the base, yttrium trichloride. In most systems negative deviation from the Raoult's law is observed

  18. Anomalous temperature behavior of Sn impurities

    International Nuclear Information System (INIS)

    Haskel, D.; Shechter, H.; Stern, E.A.; Newville, M.; Yacoby, Y.

    1993-01-01

    Sn impurities in Pb and Ag hosts have been investigated by Moessbauer effect and in Pb by x-ray-absorption fine-structure (XAFS) studies. The Sn atoms are dissolved up to at least 2 at. % in Pb and up to at least 8 at. % in Ag for the temperature ranges investigated. The concentration limit for Sn-Sn interactions is 1 at. % for Pb and 2 at. % for Ag as determined experimentally by lowering the Sn concentration until no appreciable change occurs in the Moessbauer effect. XAFS measurements verify that the Sn impurities in Pb are dissolved and predominantly at substitutional sites. For both hosts the temperature dependence of the spectral intensities of isolated Sn impurities below a temperature T 0 is as expected for vibrating about a lattice site. Above T 0 the Moessbauer spectral intensity exhibits a greatly increased rate of drop-off with temperature without appreciable broadening. This drop-off is too steep to be explained by ordinary anharmonic effects and can be explained by a liquidlike rapid hopping of the Sn, localized about a lattice site. Higher-entropy-density regions of radii somewhat more than an atomic spacing surround such impurities, and can act as nucleation sites for three-dimensional melting

  19. A stereological approach for measuring the groove angles of intergranular corrosion

    International Nuclear Information System (INIS)

    Gwinner, B.; Borgard, J.-M.; Dumonteil, E.; Zoia, A.

    2017-01-01

    Highlights: • The ICG morphology has been characterized in 3D by X-ray μ-tomography. • The measurement of the angles of the IGC groove on 2D cross sections induces a bias. • A methodology is proposed to estimate the true value of the IGC groove angles in 3D. - Abstract: Non-sensitized austenitic stainless steels can be prone to intergranular corrosion when they are in contact with an oxidizing medium like nitric acid. Intergranular corrosion is characterized by the formation of grooves along the grain boundaries. The angle of these grooves is a key parameter, which directly informs of the intergranular corrosion kinetics. Most of the time, the angles of the grooves are experimentally measured on 2-dimensional cross sections of the corroded samples. This study discusses the relationship between the groove angle measured on 2-dimensional sections and the true groove angle in 3-dimensional space. This approach could also be easily extended to the study of crack angle in the domains of corrosion-fatigue, stress corrosion cracking or mechanical fracture.

  20. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  1. Impurity effects of hydrogen isotope retention on boronized wall in LHD

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Nishimura, Kiyohiko; Sagara, Akio

    2010-11-01

    The impurity effect on hydrogen isotopes retention in the boron film deposited in LHD was evaluated by means of XPS and TDS. It was found that the impurity concentrations in boron film were increased after H-H main plasma exposure in LHD. The ratio of hydrogen retention trapped by impurity to total hydrogen retention during H-H main plasma exposure was reached to 70%, although that of deuterium retention by impurity in D 2 + implanted LHD-boron film was about 35%. In addition, the dynamic chemical sputtering of hydrogen isotopes with impurity as the form of water and / or hydrocarbons was occurred by energetic hydrogen isotopes irradiation. It was expected that the enhancement of impurity concentration during plasma exposure in LHD would induce the dynamic formation of volatile molecules and their re-emission to plasma. These facts would prevent stable plasma operation in LHD, concluding that the dynamic impurity behavior in boron film during plasma exposure is one of key issues for the steady-state plasma operation in LHD. (author)

  2. Intergranular attack evaluation from hideout return

    International Nuclear Information System (INIS)

    Nordmann, F.; Dupin, M.; Menet, O.; Fiquet, J.-M.

    1989-01-01

    Intergranular Attack (IGA) is the secondary side corrosion mechanism on PWR steam generator tubing, which can occur most frequently even with a good waterchemistry. It has moderately developed in a few French units. Consequently, several remedies have been implemented, such as sodium content decrease in makeup water and application of more stringent chemistry specifications. In order to evaluate the local chemistry in restricted areas where IGA may occur, a large hideout return programme has been carried out on many units. It shows that free alkalinity returning during shutdown is usually ranging from 0.5 to 5 g of sodium per steam generator, and that the required time to let it return is about 40 hours. However, high temperature pH calculations indicate that such an amount of alkalinity can correspond to a potentially corrosive solution in restricted areas, where a concentration factor of 10 5 to 10 7 can be reached, inducing a pH of 10 at 300 o C. Studies are still in progress in order to define when a shutdown should be required to allow hideout return and help to prevent IGA. (author)

  3. Intergranular phase of the Si3 N4 hot pressed with Mg O/Y2 O3

    International Nuclear Information System (INIS)

    Costa, Celio A.; Todd, Judith A.

    1997-01-01

    Monolithic and composite Si 3 N 4 hot-pressed with 3% Mgo or 6% Y 2 O 3 were analyzed with X-ray diffraction and transmission electron microscopy. The results showed materials to be composed of β-Si 3 N 4 grains and an intergranular phase which was partially crystalline and partially amorphous. For the materials sintered with Mg O, the identification of the intergranular phase was not conclusive. For the materials sintered with Y 2 O 3 . It was observed that the amount of intergranular crystalline phase decreased as whiskers were added to the material and the intergranular crystalline part had a crystallographic structure similar to yttrium-silicon-oxide-nitride family. (author)

  4. Impurity binding energy for δ-doped quantum well structures

    Indian Academy of Sciences (India)

    Administrator

    Calculations are made for the case of not so big impurity concentrations, when impurity bands are not .... Blom et al (2003), but our data correspond qualitatively to Bastard's .... 0113U000612 and by Ukrainian Ministry of Education and Science ...

  5. Collective impurity effects in the Heisenberg triangular antiferromagnet

    International Nuclear Information System (INIS)

    Maryasin, V S; Zhitomirsky, M E

    2015-01-01

    We theoretically investigate the Heisenberg antiferromagnet on a triangular lattice doped with nonmagnetic impurities. Two nontrivial effects resulting from collective impurity behavior are predicted. The first one is related to presence of uncompensated magnetic moments localized near vacancies as revealed by the low-temperature Curie tail in the magnetic susceptibility. These moments exhibit an anomalous growth with the impurity concentration, which we attribute to the clustering mechanism. In an external magnetic field, impurities lead to an even more peculiar phenomenon lifting the classical ground-state degeneracy in favor of the conical state. We analytically demonstrate that vacancies spontaneously generate a positive biquadratic exchange, which is responsible for the above degeneracy lifting

  6. Gas chromatographic determination of impurities of inorganic compounds

    International Nuclear Information System (INIS)

    Drugov, Yu.S.

    1985-01-01

    Methods of concentration, separation, detection in gas chromatographic determination of impurities of inorganic compounds including low-boiling gases, reactive gases, organometallic compounds, free metals, anions, etc. are reviewed. Methods of reaction gas chromatography for determining reactive gases, water, anions, metal chelates are considered in detail as well as methods of reaction-sorption concentration and reaction gas extraction. The application of gas chromatograpny ior anaiysis of water and atmosphere contamination, for determination of impurities in highly pure solid substances and gases is described

  7. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, I. [North Carolina State Univ., Raleigh, NC (United States); Zikry, M.A. [North Carolina State Univ., Raleigh, NC (United States); Ziaei, S. [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  8. Low Z impurity transport in tokamaks. [Neoclassical transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Suckewer, S.; Hirshman, S.P.

    1978-10-01

    Low Z impurity transport in tokamaks was simulated with a one-dimensional impurity transport model including both neoclassical and anomalous transport. The neoclassical fluxes are due to collisions between the background plasma and impurity ions as well as collisions between the various ionization states. The evaluation of the neoclassical fluxes takes into account the different collisionality regimes of the background plasma and the impurity ions. A limiter scrapeoff model is used to define the boundary conditions for the impurity ions in the plasma periphery. In order to account for the spectroscopic measurements of power radiated by the lower ionization states, fluxes due to anomalous transport are included. The sensitivity of the results to uncertainties in rate coefficients and plasma parameters in the periphery are investigated. The implications of the transport model for spectroscopic evaluation of impurity concentrations, impurity fluxes, and radiated power from line emission measurements are discussed.

  9. Interactions of impurities with a moving grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-01-01

    Most theories developed to explain interaction of impurities with a moving grain boundary involve a uniform excess impurity concentration distributed along a planar grain boundary. As boundary velocity increases, the excess impurities exert a net drag force on the boundary until a level is reached whereat the drag force no longer can balance the driving force and breakaway of the boundary from these impurities occurs. In this investigation, assumptions of a uniform lateral impurity profile and a planar grain boundary shape are relaxed by allowing both forward and lateral diffusion of impurities in the vicinity of a grain boundary. It is found that the two usual regions (drag of impurities by, and breakaway of a planar grain boundary) are separated by an extensive region wherein a uniform lateral impurity profile and a planar grain boundary shape are unstable. It is suspected that, in this unstable region, grain boundaries assume a spectrum of more complex morphologies and that elucidation of these morphologies can provide the first definitive description of the breakaway process and insight to more complex phenomena such as solid-solution strengthening, grain growth and secondary recrystallization.

  10. Variational method for magnetic impurities in metals: impurity pairs

    Energy Technology Data Exchange (ETDEWEB)

    Oles, A M [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany, F.R.); Chao, K A [Linkoeping Univ. (Sweden). Dept. of Physics and Measurement Technology

    1980-01-01

    Applying a variational method to the generalized Wolff model, we have investigated the effect of impurity-impurity interaction on the formation of local moments in the ground state. The direct coupling between the impurities is found to be more important than the interaction between the impurities and the host conduction electrons, as far as the formation of local moments is concerned. Under certain conditions we also observe different valences on different impurities.

  11. Change in detector properties caused by electronegative impurities

    International Nuclear Information System (INIS)

    Deptuch, M.; Kowalski, T.Z.; Mindur, B.

    2006-01-01

    Detector properties (energy resolution, gas gain, drift-time measurements) depend quite critically on the concentration of impurities. The most frequent impurities in the working gas are water vapour and oxygen. Systematic measurements of the detector properties as a function of both H 2 O vapour and O 2 concentration have been made. Ar/CO 2 (80/20) and Ar/CO 2 /CF 4 (70/10/20) have been selected as the working gases. The first mixture is commonly used, the second one is very promising due to its fastness. The concentration of H 2 O vapour and O 2 was varied from 0% to 1.9% and 3%, respectively

  12. Impurity effects on ionic-liquid-based supercapacitors

    International Nuclear Information System (INIS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  13. Impurity effects on ionic-liquid-based supercapacitors

    Science.gov (United States)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  14. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  15. Impurity transport in internal transport barrier discharges on JET

    International Nuclear Information System (INIS)

    Dux, R.

    2002-01-01

    In JET plasmas with internal transport barrier (ITB) the behaviour of metallic and low-Z impurities (C, Ne) was investigated. In ITB discharges with reversed shear, the metallic impurities accumulate in cases with too strong peaking of the density profile, while the concentration of low-Z elements C and Ne is only mildly peaked. The accumulation might be so strong, that the central radiation approximately equals the central heating power followed by a radiative collapse of the transport barrier. The radial location with strong impurity gradients (convective barrier) was identified to be situated inside (not at!) the heat flux barrier. Calculations of neo-classical transport were performed for these discharges, including impurity-impurity collisions. It was found, that the observed Z-dependence of the impurity peaking and the location of the impurity 'barrier' can be explained with neo-classical transport. ITB discharges with monotonic shear show less inward convection and seem to be advantageous with respect to plasma purity. (author)

  16. Helium impurities in a PNP-primary coolant circuit

    International Nuclear Information System (INIS)

    Reif, M.

    1981-01-01

    The concentration of impurities to be expected have been defined in consideration of recent findings concerning the rates of infiltration and formation and the reaction mechanisms of the impurity components in the circuit. The data obtained correspond with the requirements on the metallic high-temperature components as well as with the requirements of limited graphite corrosion. (DG) [de

  17. Hot corrosion behavior of Ni-Cr-W-C alloys in impure He gas

    International Nuclear Information System (INIS)

    Ohmura, Taizo; Sahira, Kensho; Sakonooka, Akihiko; Yonezawa, Noboru

    1977-01-01

    Influence of the minor alloy constituents such as Al, Mn and Si on the hot corrosion behavior of Ni-20Cr-20W-0.07C alloy was studied in 99.995%He gas at 1,000 0 C, in comparison with the behavior of commercial Ni-base superalloys (Hastelloy X and Inconel 617). The low oxidizing potential in the impure He gas usually causes selective oxidation of the elements described above and the growth of oxide whiskers on the surface of specimen at elevated temperatures. The intergranular attack was caused by selective oxidation of Al, Si and Mn. The spalling of oxide film was restrained by additions of Mn and Si, providing tough spinel type oxide film on the surface and 'keys' on the oxide-matrix interface respectively. The amount and morphology of the oxide whiskers depended on Si and Mn contents. Si of more than 0.29% without Mn always caused the growth of rather thinner whiskers with smooth surface, and the whiskers analyzed by electron diffraction patterns and EPMA to be Cr 2 O 3 containing Si. Mn addition changes the whiskers to thicker ones of spinel type oxide (MnCr 2 O 4 ) with rough surface. On the basis of these results, the optimum contents of Al, Mn and Si to minimize the growth of whiskers, the intergranular attack, and the spalling of oxide film were discussed. (auth.)

  18. Achieving improved ohmic confinement via impurity injection

    International Nuclear Information System (INIS)

    Bessenrodt-Weberpals, M.; Soeldner, F.X.

    1991-01-01

    Improved Ohmic Confinement (IOC) was obtained in ASDEX after a modification of the divertors that allowed a larger (deuterium and impurity) backflow from the divertor chamber. The quality of IOC depended crucially on the wall conditions, i.e. IOC was best for uncovered stainless steels walls and vanished with boronization. Furthermore, IOC was found only in deuterium discharges. These circumstances led to the idea that IOC correlates with the content of light impurities in the plasma. To substantiate this working hypothesis, we present observations in deuterium discharges with boronized wall conditions into which various impurities have been injected with the aim to induce IOC conditions. Firstly, the plasma behaviour in typical IOC discharges is characterized. Secondly, injection experiments with the low-Z impurities nitrogen and neon as well as with the high-Z impurities argon and krypton are discussed. Then, we concentrate on optimized neon puffing that yields the best confinement results which are similar to IOC conditions. Finally, these results are compared with eperiments in other tokamaks and some conclusions are drawn about the effects of the impurity puffing on both, the central and the edge plasma behaviour. (orig.)

  19. THE EFFICIENCY OF IMPURITIES EXTRACTION DURING THE PROCESS OF ETHANOL EPURATION

    Directory of Open Access Journals (Sweden)

    S. Yu. Nikitina

    2015-01-01

    Full Text Available The static model of the hydroselection column that describes the concentration variation of the main components was proposed. The purpose of this work is an optimization of the shared mixture input-position and evaluation of efficiency of the digestion and the impurity compound concentration during the epuration process. To this end, the author developed a static model of epuration columns, which allows to reveal the dependence of the degree of digestion and the degree of concentration of the main impurities in the column of the number of plates in each of these parts. It’s proved that with the increasing of theoretical plates number in the concentration part of the column the concentration effect tends to the limit value. The effects of the head impurities digestion increase indefinitely with the growth of exhausting part. The proportion of the output from the condenser impurities depends more from the digestion effect than from the condensation effect. The effect of alcohol cleaning from the fusel oil components depends strongly from the ratio of the number of plates in the digestion and concentration parts (the optimal ratio for isopropanol, isoamyl, butanol is 1.5, for the propanol, isobutanol is 0.45.

  20. A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Siddiq, A; Rahimi, S

    2013-01-01

    Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement

  1. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Silva, F.J. da; Scandian, C. [Universidade Federal do Espirito Santo - Departamento de Engenharia Mecanica - Av. Fernando Ferrrari, 514 - CEP 29075-910 - Vitoria/ES (Brazil); Silva, G.F. da [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Abreu, H.F.G. de [Universidade Federal do Ceara - Departamento de Engenharia Metalurgica e Materiais - Campus do Pici, Bloco 702 - CEP 60455-760 - Fortaleza/CE (Brazil)

    2010-11-15

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 {sup o}C range was not observed by DL-EPR tests.

  2. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Silva, F.J. da; Scandian, C.; Silva, G.F. da; Abreu, H.F.G. de

    2010-01-01

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 o C range was not observed by DL-EPR tests.

  3. Intergranular corrosion of Ti-stabilized 11 wt% Cr ferritic stainless steel for automotive exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Kil [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31, Pohang 790-784 (Korea, Republic of); Kim, Yeong Ho; Uhm, Sang Ho; Lee, Jong Sub [POSCO Technical Research Center, Pohang, 790-704 (Korea, Republic of); Kim, Kyoo Young [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31, Pohang 790-784 (Korea, Republic of)], E-mail: kykim@postech.ac.kr

    2009-11-15

    Intergranular corrosion (IGC) of type 409L ferritic stainless steel (FSS) was investigated. A free-exposure corrosion and a double loop electrochemical potentiokinetic reactivation (DL-EPR) tests were conducted to examine IGC of the FSS. IGC occurred in the specimens aged at the temperature range of 400-600 deg. C that has the sensitization nose located around 600 deg. C. The critical I{sub r}/I{sub a} value was determined to be about 0.03 above which IGC occurred. Based on the analysis of the intergranular precipitates by an energy dispersive spectroscopy (EDS) and a transmission electron microscopy (TEM), IGC was induced by the Cr depletion zone formation due to Cr segregation around intergranular TiC.

  4. Impurity Deionization Effects on Surface Recombination DC Current-Voltage Characteristics in MOS Transistors

    International Nuclear Information System (INIS)

    Chen Zuhui; Jie Binbin; Sah Chihtang

    2010-01-01

    Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO 2 /Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)

  5. Capture of impurity atoms by defects and the distribution of the complexes under ion bormbardment of growing films

    International Nuclear Information System (INIS)

    Radzhabov, T.D.; Iskanderova, Z.A.; Arutyunova, E.O.; Samigulin, K.R.

    1982-01-01

    Theoretical study of capture of impurity gas atoms with defects during ion introduction of the impurity in the process of film growth with simultaneous diffusion has been carried out. Concentration profiles of forned impurity-defect complexes have been calculated analytically and numerically by means of a computer in film depth and in a substrate; basic peculiarities of impurity component formation captured with defects in a wide range of changing basic experimental parameters have been revealed. Effect of impurity capture with defects on amount and distribution of total concentration of impurity atoms and intensity of complete absorption of bombarding ions in films have been analyzed. Shown is a possibility for producing films with a high concentration level and almost uniform distribution of the impurity-defect complexes for real, achievable an experiment, values of process parameters as well as a possibility for increasing complete absorption of gaseous impurity wiht concentration growth of capture defects-traps

  6. On the Preservation of Intergranular Coesite in UHP Eclogite at Yangkou Bay, Sulu belt of eastern China

    Science.gov (United States)

    Wang, L.; Wang, S.; Brown, M.

    2016-12-01

    In contrast to coesite that occurs as inclusions in zircon and rock-forming minerals, intergranular coesite is preserved in UHP eclogite at Yangkou in the Sulu belt. The survival of intergranular coesite is intriguing because the eclogite experienced phengite growth and partial melting during exhumation. The coesite eclogite occurs as rootless isoclinal fold noses within quartz-rich schist which contains 10-20 vol% phengite, whereas phengite is absent from coesite eclogite in the fold noses. To evaluate the factors that control preservation of intergranular coesite, four samples representative of different stages along the retrograde P-T path were selected for study. For each sample we determined the number of intergranular coesite grains per cm2 and the OH content of garnet and omphacite. As the number of coesite grains decreases, the bulk rock OH content increases from transformation to quartz of intergranular coesite outside of the fold noses. The fluid is inferred to have been a supercritical fluid probably residual from prograde dehydration but also derived by dissolution of nominally anhydrous minerals. Post-metamorphic-peak deformation combined with fluid percolation along sheared fold limbs induced phengite growth during initial exhumation and then facilitated partial melting. In contrast, fold hinges in competent layers are unfavourable sites for fluid penetration. At Yangkou, the intergranular coesite is preserved in the fold noses where it was protected from both penetrative deformation and fluid ingress. Therefore, the fold noses maintained a relatively dry environment that allowed preservation of the intergranular coesite. Thus, deformation partitioning and strain localization impose local controls on fluid distribution and migration in UHP eclogite. This study informs our understanding of variations in fluid regime during exhumation of deeply subducted continental crust.

  7. Effect of Zr addition on intergranular corrosion of low-chromium ferritic stainless steel

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Jeong Kil; Lee, Bong Ho; Seo, Hyung Suk; Kim, Kyoo Young

    2014-01-01

    Addition of Zr to low-Cr ferritic stainless steel forms a mixture of ZrC and Fe 23 Zr 6 precipitates that can prevent intergranular corrosion. Transmission electron microscopy and three-dimensional atom probe analysis suggest that the ZrC and Fe 23 Zr 6 mixture prevents intergranular corrosion in two ways: by acting as a strong carbide former to suppress the formation of Cr-carbide and by acting as a barrier against the diffusion of the solute Cr towards the grain boundary

  8. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  9. Impurity concentration behaviors in a boiling tubesheet crevice Part II. Packed crevice

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Si Hyoung; Park, Byung Gi; Hwang, Il Soon; Rhee, In Hyoung; Kim, Uh Chul; Na, Jung Won

    2003-01-01

    The impurity concentration behavior of a boiling crevice packed with magnetite particles was investigated with thermocouples and electrodes for the measurement of temperature and electrochemical corrosion potential (ECP), respectively, in order to understand chemical change in a pressurized water reactor (PWR) steam generator (SG) crevice. A secondary solution composed of 50 ppm Na and 200 ppb hydrogen was supplied at a flow rate of about 4 l/h. Sodium hydroxide (NaOH) concentration process in the crevice and the resultant boiling point elevation behavior were characterized with temperature and ECP data. The temperature in the packed crevice was about 2-3 deg. C higher than that for the open crevice. In the same conditions, the magnetite-packed crevice showed a greater amount of boiling point elevation with a longer time to reach a steady state compared with the case of an open crevice. It was found that the bottom region of the crevice was initially filled with steam, and then the concentrated liquid region initially located at the middle of crevice expanded to both the crevice bottom and the upper region. To analytically estimate the wetted length, a closed form model was introduced. The model results estimated the initial wetted length shorter as compared with the measurement results. Measured ECP results of packed crevice showed similar behaviors as compared with calculated results by using Nernst equation. ECP results reasonably coincided with the boiling point elevation estimated from the temperature data except one unusual case

  10. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  11. Effective Kα x-ray excitation rates for plasma impurity measurements

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hiroe, S.; Hulse, R.; Ramsey, A.T.; Sesnic, S.; Shimada, M.; Stratton, B.C.

    1986-06-01

    Metal impurity concentrations are measured by the Pulse-Height-Analyzer (PHA) diagnostic from Kα x-ray peak intensities by use of an averaged excitation rate . Low-Z impurity concentrations are inferred from the continuum enhancement (relative to a pure plasma) minus the enhancement due to metals. Since the PHA does not resolve lines from different charge states, is a weighted sum of rates; coronal equilibrium is usually assumed. The used earlier omitted the intercombination and forbidden lines from the dominant helium-like state. The result was an overestimate of metals and an underestimate of low-Z impurities in cases where metals were significant. Improved values of using recent calculations for H-, He-, and Li-like Fe range from 10 to 50% larger than the earlier rates and yield metal concentrations in better agreement with those from VUV spectroscopy

  12. Multielemental segregation analysis of the thallium bromide impurities purified by repeated Bridgman technique

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Hamada, Margarida M.; Costa, Fabio E. da; Gennari, Roseli F.; Martins, Joao F.T.; Marcondes, Renata M.; Mesquita, Carlos H. de

    2011-01-01

    TlBr crystals were purified and grown by the repeated Bridgman method from two commercial TlBr salts and characterized to be used as radiation detectors. To evaluate the purification efficiency, measurements of the impurity concentration were made after each growth, analyzing the trace impurities by inductively coupled plasma mass spectroscopy (ICP-MS). A significant decrease of the impurity concentration resulting from the purification number was observed. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out. The radiation response depended on the crystal purity. The repeated Bridgman technique improved the TlBr crystal quality used as a radiation detector. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growth. (author)

  13. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Science.gov (United States)

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-04-01

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  14. The origin of metal impurities in DIVA

    International Nuclear Information System (INIS)

    Ohasa, Kazumi; Sengoku, Seio; Maeda, Hikosuke; Ohtsuka, Hideo; Yamamoto, Shin

    1978-10-01

    The origin of metal impurities in DIVA (JFT-2a Tokamak) has been studied experimentally. Three processes of metal impurity release from the first wall were identified; i.e. ion sputtering, evaporation, and arcing. Among of these, ion sputtering is the predominant process in the quiet phase of the discharge, which is characterized by no spikes in the loop voltage and no localized heat flux concentrations on the first wall. ''Cones'' formation due to the sputtering is observed on the gold protection plate (guard limiter) exposed to about 10,000 discharges by scanning electron micrograph. In the SEM photographs, the spacial distribution of cones on the shell surface due to the ion sputtering coincides with the spacial distribution of intensity of Au-I line radiation. Gold is the dominant metal impurity in DIVA. The honeycomb structure can decrease release of the metal impurity. (author)

  15. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  16. Impurity states in two-and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  17. Defect-impurity interactions in irradiated germanium

    International Nuclear Information System (INIS)

    Cleland, J.W.; James, F.J.; Westbrook, R.D.

    1975-07-01

    Results of experiments are used to formulate a better model for the structures of lattice defects and defect-impurity complexes in irradiated n-type Ge. Single crystals were grown by the Czochralski process from P, As, or Sb-doped melts, and less than or equal to 10 15 to greater than or equal to 10 17 oxygen cm -3 was added to the furnace chamber after approximately 1 / 3 of the crystal had been solidified. Hall coefficient and resistivity measurements (at 77 0 K) were used to determine the initial donor concentration due to the dopant and clustered oxygen, and infrared absorption measurements (at 11.7 μ) were used to determine the dissociated oxygen concentration. Certain impurity and defect-impurity interactions were then investigated that occurred as a consequence of selected annealing, quenching, Li diffusion, and irradiation experiments at approximately 300 0 K with 60 Co photons, 1.5 to 2.0 MeV electrons, or thermal energy neutrons. Particular attention was given to determining the electrical role of the irradiation produced interstitial and vacancy, and to look for any evidence from electrical and optical measurements of vacancy--oxygen, lithium--oxygen, and lithium--vacancy interactions. (U.S.)

  18. Incorporation, diffusion and segregation of impurities in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Deville, J.P.; Soltani, M.L. (Universite Louis Pasteur, 67 - Strasbourg (France)); Quesada, J. (Laboratoire de Metallurgie-Chimie des Materiaux, E.N.S.A.I.S., 67 - Strasbourg (France))

    1982-01-01

    We studied by means of X-Ray photoelectron Spectroscopy the nature, distribution and, when possible, the chemical bond of impurities at the surface of polycrystalline silicon samples grown on a carbon ribbon. Besides main impurities (carbon and oxygen), always present at concentrations around their limit of solubility in silicon, metal impurities have been found: their nature varies from one sample to another. Their spatial distribution is not random: some are strictly confined at the surface (sodium), whereas others are in the superficial oxidized layer (calcium, magnesium) or localized at the oxide-bulk silicon interface (iron). Metal impurities are coming from the carbon ribbon and are incorporated to silicon during the growth process. It is not yet possible to give a model of diffusion processes of impurities since they are too numerous and interact one with the other. However oxygen seems to play a leading role in the spatial distribution of metal impurities.

  19. Spectroscopic study of sources and control of impurities in TMX-U. Revision 1

    International Nuclear Information System (INIS)

    Yu, T.L.; Allen, S.L.; Moos, H.W.

    1984-11-01

    Two absolutely calibrated euv instruments have been used to study the impurity characteristics in the Tandem Mirror Experiment-Upgrade (TMX-U). One instrument is a spectrograph that measures the time histories of several impurity emission lines in a single plasma shot. The other instrument is a monochromator that measures time-resolved radial profiles of a particular impurity emission line. The common intrinsic impurities found in TMX-U are C, N, O, and Ti. It has been shown that a large fraction of oxygen and nitrogen in the plasma is associated with the neutral beams. The plasma wall is the main source of carbon. In general, the concentration of each of the impurities is low (<1%), and the power radiated by them is less than 10 kW, which is a small portion of the total input power to the plasma. The concentrations of the impurities can be reduced substantially by glow discharge cleaning and titanium gettering

  20. Donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-09-15

    The donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings is investigated. The photoionization cross section dependence on the incident photon energy is studied considering the effects of hydrostatic pressure, variations of aluminum concentration, geometries of the structure, and impurity position. The interpretation of the dipole matrix element, which reflects the photoionization probability, is also given. We have found that these parameters can lead to both redshift and blueshift of the photoionization spectrum and also influence the cross section peak value.

  1. The impact of impurities on long-term PEMFC performance

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, Fernando H [Los Alamos National Laboratory; Lopes, Thiago [Los Alamos National Laboratory; Rockward, Tommy [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Sansinena, Jose - Maria [Los Alamos National Laboratory; Kienitz, Brian [LLNL

    2009-06-23

    Electrochemical experimentation and modeling indicates that impurities degrade fuel cell performance by a variety of mechanisms. Electrokinetics may be inhibited by catalytic site poisoning from sulfur compounds and CO and by decreased local proton activity and mobility caused by the presence of foreign salt cations or ammonia. Cation impurity profiles vary with current density, valence and may change local conductivity and water concentrations in the ionomer. Nitrogen oxides and ammonia species may be electrochemically active under fuel cell operating conditions. The primary impurity removal mechanisms are electrooxidation and water fluxes through the fuel cell.

  2. A fractal model for intergranular fractures in nanocrystals

    International Nuclear Information System (INIS)

    Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.

    1993-09-01

    A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs

  3. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    International Nuclear Information System (INIS)

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation - assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs' core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of this study was to investigate the cracking susceptibility of irradiated SA 304L and factors contributing to cracking, using two different ion irradiations; iron and proton irradiations. Both resulted in generation of point defects in the microstructure and thereby causing hardening of the SA 304L. Material (unirradiated and iron irradiated) showed no susceptibility to intergranular cracking on subjection to SSRT with a strain rate of 5 * 10 -8 s -1 up to 4 % plastic strain in inert environment. But, irradiation (iron and proton) was found to increase intergranular cracking severity of material on subjection to SSRT in simulated PWR primary water environment at 340 C. Correlation between the cracking susceptibility and degree of localization was studied. Impact of iron irradiation on bulk oxidation of SA 304L was studied as well by conducting an oxidation test for 360 h in simulated PWR environment at 340 C. The findings of this study indicate that the intergranular cracking of 304L stainless steel in PWR environment can be studied using Fe irradiation despite its small penetration depth in material. Furthermore, it has been shown that the cracking was similar in both iron and proton irradiated samples despite different degrees of localization. Lastly, on establishing iron irradiation as a successful tool, it was used to study the impact of surface finish and strain paths on intergranular cracking susceptibility of the material. (author) [fr

  4. Negative compressibility observed in graphene containing resonant impurities

    International Nuclear Information System (INIS)

    Chen, X. L.; Wang, L.; Li, W.; Wang, Y.; He, Y. H.; Wu, Z. F.; Han, Y.; Zhang, M. W.; Xiong, W.; Wang, N.

    2013-01-01

    We observed negative compressibility in monolayer graphene containing resonant impurities under different magnetic fields. Hydrogenous impurities were introduced into graphene by electron beam (e-beam) irradiation. Resonant states located in the energy region of ±0.04 eV around the charge neutrality point were probed in e-beam-irradiated graphene capacitors. Theoretical results based on tight-binding and Lifshitz models agreed well with experimental observations of graphene containing a low concentration of resonant impurities. The interaction between resonant states and Landau levels was detected by varying the applied magnetic field. The interaction mechanisms and enhancement of the negative compressibility in disordered graphene are discussed.

  5. A model of magnetic impurities within the Josephson junction of a phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R P; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2010-02-15

    We consider a superconducting phase qubit consisting of a monocrystalline sapphire Josephson junction with its symmetry axis perpendicular to the junction interfaces. Via the London gauge, we present a theoretical model of Fe{sup 3+} magnetic impurities within the junction that describes the effect of a low concentration of such impurities on the operation of the qubit. Specifically, we derive an interaction Hamiltonian expressed in terms of angular momentum states of magnetic impurities and low-lying oscillator states of a current-biased phase qubit. We discuss the coupling between the qubit and impurities within the model near resonance. When the junction is biased at an optimal point for acting as a phase qubit, with a phase difference of {pi}/2 and impurity concentration no greater than 0.05%, we find only a slight decrease in the Q factor of less than 0.01%.

  6. Effect of impurity radiation on tokamak equilibrium

    International Nuclear Information System (INIS)

    Rebut, P.H.; Green, B.J.

    1977-01-01

    The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)

  7. Impurity transport calculations for the limiter shadow region of a tokamak

    International Nuclear Information System (INIS)

    Claassen, H.A.; Repp, H.

    1981-01-01

    Impurity transport calculations are presented for the scrape-off layer of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the impurity ions in their different ionization states. It is developed in the limit of low impurity concentrations under due consideration of electron impact ionization, Coulomb collisions with hydrogen ions streaming onto a neutralizing surface, a convection along the magnetic field, and a radial drift. The background plasma and the impurity sources at the walls enter the theory as input parameters. Numerical results are given for the radial profiles of density, temperature, particle flux, and energy flux of wall-released impurity ions as well as for the screening efficiency of the scrape-off layer neglecting impurity re-emission from the limiter. (author)

  8. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    Science.gov (United States)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  9. Spectroscopical studies of impurities in the belt pinch HECTOR

    International Nuclear Information System (INIS)

    Singethan, J.

    1981-04-01

    In this paper UV-line-intensity measurements of impurities are presented, which have been performed in the belt-pinch HECTOR. From the line-intensities impurity concentrations and information on the radiation losses is be obtained. At temperatures below 100 eV, the energy loss due to line emission of oxygen and carbon impurities is one of the most important electron energy loss mechanisms. Thus the measurement and calculation of the radiation losses is of particular relevance. Furthermore the electron temperature time dependence can be obtained by comparing the line intensity time dependence with the solution of the respective rate equations. (orig./HT) [de

  10. Instability of homogeneous distribution of charged substitutional impurity in semiconductors

    International Nuclear Information System (INIS)

    Vasilevskij, M.I.; Ershov, S.N.; Panteleev, V.A.

    1985-01-01

    A mechanism is suggested of instability of uniform impurity distribution in a semiconductor. The mechanism is associated with the vacancy wind effect and deflection from local neutrality in case of impurity concentration fluctuation occurrence. It is shown that the mechanism can be realized by irradiation of silicon doped with group-3 and group 5 elements

  11. Innovative sludge pretreatment technology for impurity separation using micromesh.

    Science.gov (United States)

    Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao

    2018-05-23

    In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2  min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.

  12. Electrical resistivity of liquid iron with high concentration of light element impurities

    Science.gov (United States)

    Wagle, F.; Steinle-Neumann, G.

    2017-12-01

    The Earth's outer core mainly consists of liquid iron, enriched with several weight percent of lighter elements, such as silicon, oxygen, sulfur or carbon. Electrical resistivities of alloys of this type determine the stability of the geodynamo. Both computational and experimental results show that resistivites of Fe-based alloys deviate significantly from values of pure Fe. Using optical conductivity values computed with the Kubo-Greenwood formalism for DFT-based molecular dynamics results, we analyze the high-P and T behavior of resitivities for Fe-alloys containing various concentrations of sulfur, oxygen and silicon. As the electron mean free path length in amorphous and liquid material becomes comparable to interatomic distances at high P and T, electron scattering is expected to be dominated by the short-range order, rather than T-dependent vibrational contributions, and we describe such correlations in our results. In analogy to macroscopic porous media, we further show that resistivity of a liquid metal-nonmetal alloy is determined to first order by the resistivity of the metallic matrix and the volume fraction of non-metallic impurities.

  13. Impurity penetration through the stochastic layer near the separatrix in tokamaks

    International Nuclear Information System (INIS)

    Morozov, D.K.; Herrera, J.J.E.; Rantsev-Kartinov, V.A.

    1995-01-01

    It is shown that a stochastic layer produced by ripple perturbations near the separatrix in tokamaks, leads to anomalous plasma flow out of the bulk plasma along perturbed field lines, which brings out impurities. This suggests that the stochastic layer may play a cleaning role. There is an opposite process of anomalous impurity diffusion into the plasma. The balance of these two processes defines the impurity concentration in the bulk plasma. copyright 1995 American Institute of Physics

  14. Influence of impurities on the fuel retention in fusion reactors

    International Nuclear Information System (INIS)

    Reinhart, Michael

    2015-01-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  15. Influence of impurities on the fuel retention in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, Michael

    2015-07-01

    The topic of this thesis is the influence of plasma impurities on the hydrogen retention in metals, in the scope of plasma-wall-interaction research for fusion reactors. This is addressed experimentally and by modelling. The mechanisms of the hydrogen retention are influenced by various parameters like the wall temperature, ion energy, flux and fluence as well as the plasma composition. The plasma composition is a relevant factor for hydrogen retention in fusion reactors, as their plasma will also contain impurities like helium or seeded impurities like argon. The experiments treated in this thesis were performed in the linear plasma generator PSI-2 at Forschungszentrum Juelich, and are divided in 3 parts: The first experiments cover the plasma diagnostics, most importantly the measurement of the impurity ion concentration in the plasma by optical emission spectroscopy. This is a requirement for the later experiments with mixed plasmas. Diagnostics like Langmuir probe measurements are not applicable for this task because they do not distinguish different ionic species. The results also show that the impurity ion concentrations cannot be simply concluded from the neutral gas input to the plasma source, because the relation between the neutral gas concentration and impurity ion concentration is not linear. The second and main part of the experiments covers the exposure of tungsten samples to deuterium plasmas. In the experiments, the impurity ion type and concentration is variated, to verify the general influence of helium and argon on the deuterium retention in tungsten samples exposed at low temperatures. It shows that helium impurities reduce the amount of retained deuterium by a factor of 3, while argon impurities slightly increase the total retention, compared to exposures to a pure deuterium plasma. Cross-sections of the exposed tungsten surfaces via TEM-imaging reveal a 12-15 nm deep helium nanobubble layer at the surface of the sample, while for the cases of

  16. Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    Science.gov (United States)

    Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-05-01

    Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.

  17. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees; Penetration intergranulaire fragilisante du cuivre par le bismuth liquide: identification de la cinetique et du mecanisme de type diffusionnel entre 300 et 600 deg

    Energy Technology Data Exchange (ETDEWEB)

    Laporte, V

    2005-02-15

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees <100>). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  18. EUV impurity study of the Alcator tokamak

    International Nuclear Information System (INIS)

    Terry, J.L.; Chen, K.I.; Moos, H.W.; Marmar, E.S.

    1977-06-01

    The intensity of resonance line radiation from oxygen, nitrogen, carbon and molybdenum impurities has been measured in the high field (80 kG), high density (6 x 10 14 cm -3 ) discharges of the Alcator tokamak, using a 0.4 m normal incidence monochromator (300 to 1300 A) with its line of sight fixed along a major radius. The total light impurity concentrations were 2 x 10 -3 , 7 x 10 -4 , and 3 x 10 -3 at central electron densities of 4.5 x 10 13 cm -3 (burnout), 4.0 x 10 13 (low density plateau) and 6.0 x 10 14 (high density plateau). Both a simple model and a computer code which included Pfirsch-Schluter impurity diffusion were used to estimate oxygen influxes of 1.6 x 10 13 cm -2 sec -1 and 1.5 x 10 14 cm -2 sec -1 at the plasma edge in the low and high density emission plateaus. The resulting values of Z/sub eff/, including the contributions due to both the light impurities and molybdenum, were close to one. The power lost through the impurity line radiation accounted for approximately equal to 7 percent of the total ohmic input power at high densities

  19. Metal impurities profile in a 450kg multi-crystalline silicon ingot by Cold Neutron Prompt Gamma-ray Activation Analysis

    International Nuclear Information System (INIS)

    Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh

    2014-01-01

    Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process

  20. Influence of the impurity-defect and impurity-impurity interactions on the crystalline silicon solar cells conversion efficiency; Influence des interactions impurete-defaut et impurete-impurete sur le rendement de conversion des cellules photovoltaiques au silicium cristallin

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, S

    2007-05-15

    This study aims at understanding the influence of the impurity - defect interaction on the silicon solar cell performances. We studied first the case of single-crystalline silicon. We combined numerical simulations and experimental data providing new knowledge concerning metal impurities in silicon, to quantify the evolution of the conversion efficiency with the impurity concentration. Mainly due to the gettering effects, iron appears to be quite well tolerated. It is not the case for gold, diffusing too slowly. Hydrogenation effects were limited. We transposed then this study toward multi-crystalline silicon. Iron seems rather well tolerated, due to the gettering effects but also due to the efficiency of the hydrogenation. When slow diffusers are present, multi crystalline silicon is sensitive to thermal degradation. n-type silicon could solve this problem, this material being less sensitive to metal impurities. (author)

  1. Impurity doping processes in silicon

    CERN Document Server

    Wang, FFY

    1981-01-01

    This book introduces to non-experts several important processes of impurity doping in silicon and goes on to discuss the methods of determination of the concentration of dopants in silicon. The conventional method used is the discussion process, but, since it has been sufficiently covered in many texts, this work describes the double-diffusion method.

  2. Intergranular stress corrosion cracking of sensitized stainless steels. Final report

    International Nuclear Information System (INIS)

    Vyas, B.; Isaacs, H.S.; Weeks, J.R.

    1976-12-01

    A study was conducted of the intergranular stress corrosion cracking of materials used in Boiling Water Reactors (BWR) aimed at developing an understanding of the mechanism(s) of this mode of failure and at developing tests to determine the susceptibility of a given material to this form of attack

  3. Behaviour of carbon-bearing impurity suspensions in sodium loops

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, F A; Zagorulko, Yu I; Alexseev, V V [Institute of Physics and Power Engineering, Obninsk (USSR)

    1980-05-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  4. Behaviour of carbon-bearing impurity suspensions in sodium loops

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Zagorulko, Yu.I.; Alexseev, V.V.

    1980-01-01

    The experimental estimation results of the carbon-bearing impurity particle sizes in sodium by the sedimentometric analysis methods are presented. The techniques and results of the mass transfer calculations between the sodium flows contained the carbon-bearing impurity disperse phase, and the channel walls, the carbon particles solution kinetics and the soluble carbon near-wall concentration in channel with allowance for the flow-wall mass transfer processes, are given. (author)

  5. Computers in the investigation of the impurity content of high-purity materials

    International Nuclear Information System (INIS)

    Makarov, Yu.B.; Yan'kov, S.V.

    1987-01-01

    The efficiency of the concept of data banks for the accumulation and processing of information is now generally acknowledged. In scientific investigations not only bibliographic but also factual data banks are becoming more and more prevalent. In this article, the authors consider the possibilities of providing a data bank on high-purity materials for the study of impurity contents. Also in this paper, the authors distinguish the following groups of problems that arise in the study of impurity composition and presents examples of their proposed solutions to these problems: the analysis of error and the determination of the most probably value of impurity concentration; the estimation of average properties of impurity composition with respect to groups of impurities and samples, and the forecast of the complete impurity composition

  6. Impurity effects on the magnetic ordering in chromium

    International Nuclear Information System (INIS)

    Fishman, R.S.

    1992-05-01

    It is well-known that impurities profoundly alter the magnetic properties of chromium. While vanadium impurities suppress the Neel temperature T N , manganese impurities enhanced T N substantially. As evidenced by neutron scattering experiments, doping with as little as 0.2% vanadium changes the transition from weakly first order to second order. Young and Sokoloff explained that the first-order transition in pure chromium is caused by a charge-density wave which is the second harmonic of the spin-density wave. By examining the subtle balance between the spin-density and charge- density wave terms in the mean-field free energy, we find that the first-order transition is destroyed when the vanadium concentration exceeds about 0.15%, in agreement with experiments

  7. Evolution of interphase and intergranular stresses in Zr-2.5Nb during room temperature deformation

    International Nuclear Information System (INIS)

    Cai, S.; Daymond, M.R.; Holt, R.A.; Gharghouri, M.A.; Oliver, E.C.

    2009-01-01

    Both in situ tension and compression tests have been carried out on textured Zr-2.5Nb plate material at room temperature. Deformation along all the three principle plate directions has been studied and the evolution of interphase and intergranular strains along the loading and the principle Poisson's directions has been investigated by neutron diffraction. The evolution of interphase and intergranular strain was determined by the relative phase properties, crystal properties and texture distribution. The average phase behaviors are similar during tension and compression, where the β-phase in this material is stronger than the α-phase. The asymmetric yielding of the α-{0 0 0 2} grain family results in a relatively large intergranular strain in the loading direction during compression and different dependence of strength during tension and compression on texture. The combination of the thermal residual stress and the asymmetric CRSS in the axis gives the {0 0 0 2} grain family a higher strength in compression than in tension

  8. In vitro genotoxicity of piperacillin impurity-A

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... The manufacturing and storage of the piperacillin produce different impurities of various concentrations, which may influence the efficacy and safety of the drug. Since no report of ..... Guidance for Industry, Food and Drug ...

  9. Spectroscopic investigation of heavy impurity behaviour during ICRH with the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Czarnecka, A. [Institute of Plasma Physics and Laser Microfusion, Association EURATOM-IPPLM, Hery 23 Str., 01-497 Warsaw (Poland); Bobkov, V.; Maggi, C.; Pütterich, T. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany); Coffey, I. H. [Department of Physics, Queen' s University, Belfast, BT7 1NN, Northern Ireland (United Kingdom); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Jacquet, P.; Lawson, K. D. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van Eester, D. [Association EURATOM - Belgian State, ERM-KMS, TEC Partner (Belgium); Mayoral, M.-L. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB, UK and EFDA Close Support Unit, Garching (Germany); Collaboration: JET-EFDA Contributors

    2014-02-12

    Magnetically confined plasmas, such as those produced in the tokamak JET, contain measurable amounts of impurity ions produced during plasma-wall interactions (PWI) from the plasma-facing components and recessed wall areas. The impurities, including high- and mid-Z elements such as tungsten (W) from first wall tiles and nickel (Ni) from Inconel structure material, need to be controlled within tolerable limits, to ensure they do not significantly affect the performance of the plasma. This contribution focuses on documenting W and Ni impurity behavior during Ion Cyclotron Resonance Heating (ICRH) operation with the new ITER-Like Wall (ILW). Ni- and W-concentration were derived from VUV spectroscopy and the impact of applied power level, relative phasing of the antenna straps, plasma separatrix - antenna strap distance, IC resonance position, edge density and different plasma configuration, on the impurity release during ICRH are presented. For the same ICRH power the Ni and W concentration was lower with dipole phasing than in the case of −π/2 phasing. The Ni concentration was found to increase with ICRH power and for the same NBI power level, ICRH-heated plasmas were characterized by two times higher Ni impurity content. Both W and Ni concentrations increased strongly with decreasing edge density which is equivalent to higher edge electron temperatures and more energetic ions responsible for the sputtering. In either case higher levels were found in ICRH than in NBI heated discharges. When the central plasma temperature was similar, ICRH on-axis heating resulted in higher core Ni impurity concentration in comparison to off-axis ICRH in L-mode. It was also found that the main core radiation during ICRH came from W.

  10. Impurity flux collection at the plasma edge of the tokamak MT-1

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Bakos, J.S.; Petravich, G.

    1989-09-01

    Fluxes of intrinsic and injected impurities and background plasma ions were collected using a bidirectional probe at the plasma edge of the tokamak MT-1. The directional and radial dependences of injected impurities and plasma ions were very similar indicating a strong coupling of the impurity transport to the dynamics of the background plasma. The measured intrinsic concentration of about 10 -4 for Mo at the plasma edge is derived. (author) 17 refs.; 5 figs

  11. Fuel clean-up: poisoning of palladium-silver membranes by gaseous impurities

    International Nuclear Information System (INIS)

    Chabot, J.; Lecomte, J.; Grumet, C.; Sannier, J.

    1988-01-01

    The feasibility of a permeation process using a palladium-silver alloy membrane, to separate deuterium and tritium from fusion reactor gaseous wastes needs demonstration owing to poisoning effects of impurities. A parametric investigation of the poisoning by the most important expected gaseous impurities (C0, C0 2 and CH 4 ) is carried out with the loop PALLAS, in function of membrane temperature (100 to 450 0 C), H 2 pressure (0.3 to 14 kPa) and impurity concentration (0.2 to 9.5 vol. %). The poisoning effect of C0 is a concern for the process while C0 2 and CH 4 appear to have no practical effect on the permeation rate. Depending on C0 concentration optimal operating temperatures of the membrane should lie between 250 and 375 0 C limits

  12. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  13. Interaction between impurities in Ag dilute alloys

    International Nuclear Information System (INIS)

    Krolas, K.; Wodniecka, B.; Wodniecki, P.; Uniwersytet Jagiellonski, Krakow

    1977-01-01

    Time dependent perturbed angular correlation measurements of gamma radiation in 111 Cd after 111 In decay were performed in AgPd and AgPt alloys. The concentration of Pd or Pt atoms being the nearest neighbours to the probe atoms is much higher than that one deduced from random impurity distribution. This effect results from the attractive interaction between the In probe atoms and Pt or Pd impurity atoms in silver host lattice. The binding energy of InPd and InPt complexes was measured as 135 +- 9 meV and 171 +- 9 meV, respectively. (author)

  14. Development of Intergranular Residual Stress and Its Implication to Mechanical Behaviors at Elevated Temperatures in AL6XN Austenitic Stainless Steel

    Science.gov (United States)

    Hong, Yanyan; Li, Shilei; Li, Hongjia; Li, Jian; Sun, Guangai; Wang, Yan-Dong

    2018-05-01

    Neutron diffraction was used to investigate the residual lattice strains in AL6XN austenitic stainless steel subjected to tensile loading at different temperatures, revealing the development of large intergranular stresses after plastic deformation. Elastic-plastic self-consistent modeling was employed to simulate the micromechanical behavior at room temperature. The overall variations of the modeled lattice strains as a function of the sample direction with respect to the loading axis agree in general with the experimental values, indicating that dislocation slip is the main plastic deformation mode. At 300 °C, the serrated flow in the stress-strain curve and the great amount of slip bands indicate the appearance of dynamic strain aging. Except for promoting the local strain concentration, the long-range stress field caused by the planar slip bands near the grain boundaries is also attributed to the decrease in the experimental intergranular strains. An increase in the lattice strains localized at some specific specimen orientations for reflections at 600 °C may be explained by the segregation of solute atoms (Cr and Mo) at dislocation slip bands. The evolution of full-width at half-maximum demonstrates that the dynamic recovery indeed plays an important role in alleviating the local strain concentrations during tensile loading at 600 °C.

  15. Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus

    Science.gov (United States)

    Bui, D. H.; Yarmohammadi, Mohsen

    2018-07-01

    Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.

  16. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  17. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    Science.gov (United States)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  18. Corrosion of nickel and stainless steels in concentrated lithium hydroxide solutions

    International Nuclear Information System (INIS)

    Graydon, J.W.; Kirk, D.W.

    1990-06-01

    The corrosion behaviour of four alloys in 3 and 5 mol/L lithium hydroxide solutions under a hydrogen atmosphere at 95 degrees C was investigated. Corrosion of Nickel 200 and the stainless steels 316, 316L, and E-Brite 26-1 was assessed in two sets of immersion tests lasting 10 and 136 days. Corrosion rates were determined by weight loss, susceptibility to stress corrosion cracking was evaluated using U-bends, and the details of the corrosion process were studied on specimens with a mirror finish using light and electron microscopy, x-ray spectrometry and mapping, and x-ray diffraction. The long term corrosion rates were low for all alloys ( 2 , β-LiFeO 2 , and a very iron-rich β-LiFe 5 0 8 . The passivating layer on the nickel was Ni(OH) 2 . The underlying metal corroded evenly except for the 316 stainless steels. These showed a uniform intergranular corrosion with minor drop-out of smaller grains likely because of segregation of impurities to the grain boundaries. The walls of these intergranular crevices were covered with a passivating layer of chromium oxide. (8 figs., 5 tabs., 11 refs.)

  19. A phenomenological variational multiscale constitutive model for intergranular failure in nanocrystalline materials

    KAUST Repository

    Siddiq, A.; El Sayed, Tamer S.

    2013-01-01

    We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline

  20. Trace impurities analysis determined by neutron activation in the PbI 2 crystal semiconductor

    Science.gov (United States)

    Hamada, M. M.; Oliveira, I. B.; Armelin, M. J.; Mesquita, C. H.

    2003-06-01

    In this work, a methodology for impurity analysis of PbI 2 was studied to investigate the effectiveness of the purification. Commercial salts were purified by the multi passes zone refining and grown by the Bridgman method. To evaluate the purification efficiency, samples from the bottom, middle and upper sections of the ZR ingot were analyzed after 200, 300 and 500 purification passes, by measurements of the impurity concentrations, using the neutron activation analysis (NAA) technique. There was a significant reduction of the impurities according to the purification numbers. The reduction efficiency was different for each element, namely: Au>Mn>Co˜Ag>K˜Br. The impurity concentration of the crystals grown after 200, 300 and 500 passes and the PbI 2 starting material were analyzed by NAA and plasma optical emission spectroscopy.

  1. Conversion of transgranular to intergranular fracture in NiCr steels

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Němec, O.; Dlouhý, Ivo

    2008-01-01

    Roč. 75, č. 12 (2008), s. 3677-3691 ISSN 0013-7944 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness * fracture stress * micromechanics * micromechanism * fractal dimension Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  2. Automated identification of intergranular corrosion in X-ray CT images

    International Nuclear Information System (INIS)

    Howell, Patricia A.; Winfree, William P.

    2003-01-01

    Characterization of a material or structure by computed tomography results in the acquisition of large quantities of data that need to be tediously examined to determine the location and size of damage. Since the computed tomography images are digital, there is significant potential for reducing the human effort evolved in this process by digital processing of this data to enhance the signatures of flaws and perform automated identification of suspected flaws. Techniques are presented that enhance the contrast between corroded and uncorroded regions to simplify the analysis and improve quality of flaw identification. Algorithms developed in part for computer vision, such as anisotropic diffusion and edge detection techniques, are applied to the data. Anisotropic diffusion techniques are shown to significantly reduce image noise while maintaining the contrast between intergranular corrosion and uncorroded regions and preserving the important features of the flaw. Edge detection techniques are shown to enable a rapid location of regions requiring further analysis. In regions identified by the edge detection technique, neural network techniques are applied to automate defect detection of the intergranular corrosion

  3. Intergranular stress study of TC11 titanium alloy after laser shock peening by synchrotron-based high-energy X-ray diffraction

    Science.gov (United States)

    Su, R.; Li, L.; Wang, Y. D.; Nie, Z. H.; Ren, Y.; Zhou, X.; Wang, J.

    2018-05-01

    The distribution of residual lattice strain as a function of depth were carefully investigated by synchrotron-based high energy X-ray diffraction (HEXRD) in TC11 titanium alloy after laser shock peening (LSP). The results presented big compressive residual lattice strains at surface and subsurface, then tensile residual lattice strains in deeper region, and finally close to zero lattice strains in further deep interior with no plastic deformation thereafter. These evolutions in residual lattice strains were attributed to the balance of direct load effect from laser shock wave and the derivative restriction force effect from surrounding material. Significant intergranular stress was evidenced in the processed sample. The intergranular stress exhibited the largest value at surface, and rapidly decreased with depth increase. The magnitude of intergranular stress was proportional to the severity of the plastic deformation caused by LSP. Two shocks generated larger intergranular stress than one shock.

  4. Interactions of structural defects with metallic impurities in multicrystalline silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; Thompson, A.C.; Hieslmair, H.

    1997-01-01

    Multicrystalline silicon is one of the most promising materials for terrestrial solar cells. It is critical to getter impurities from the material as well as inhibit contamination during growth and processing. Standard processing steps such as, phosphorus in-diffusion for p-n junction formation and aluminum sintering for backside ohmic contact fabrication, intrinsically possess gettering capabilities. These processes have been shown to improve L n values in regions of multicrystalline silicon with low structural defect densities but not in highly dislocated regions. Recent Deep Level Transient Spectroscopy (DLTS) results indirectly reveal higher concentrations of iron in highly dislocated regions while further work suggests that the release of impurities from structural defects, such as dislocations, is the rate limiting step for gettering in multicrystalline silicon. The work presented here directly demonstrates the relationship between metal impurities, structural defects and solar cell performance in multicrystalline silicon. Edge-defined Film-fed Growth (EFG) multicrystalline silicon in the as-grown state and after full solar cell processing was used in this study. Standard solar cell processing steps were carried out at ASE Americas Inc. Metal impurity concentrations and distributions were determined by use of the x-ray fluorescence microprobe (beamline 10.3.1) at the Advanced Light Source, Lawrence Berkeley National Laboratory. The sample was at atmosphere so only elements with Z greater than silicon could be detected, which includes all metal impurities of interest. Structural defect densities were determined by preferential etching and surface analysis using a Scanning Electron Microscope (SEM) in secondary electron mode. Mapped areas were exactly relocated between the XRF and SEM to allow for direct comparison of impurity and structural defect distributions

  5. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    Kim, G.N.; Rakhmanov, A.

    2001-01-01

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 10 13 n/cm 2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  6. Identification and control of unspecified impurity in trimetazidine dihydrochloride tablet formulation

    Science.gov (United States)

    Jefri; Puspitasari, A. D.; Talpaneni, J. S. R.; Tjandrawinata, R. R.

    2018-04-01

    Trimetazidine dihydrochloride is an anti-ischemic metabolic agent which is used as drug for angina pectoris treatment. The drug substance monograph is available in European Pharmacopoeia and British Pharmacopoeia, while the drug product monograph is not available in any of the pharmacopoeias. During development of trimetazidine dihydrochloride tablet formulation, we found increase of an unspecified impurity during preliminary stability study. The unspecified impurity was identified by high performance liquid chromatography coupled with mass spectrometry (LC-MS) and the molecular weight obtained was matching with the molecular weight of N-formyl trimetazidine (m/z 295). Further experiments were performed to confirm the suspected result by injecting the impurity standard and spiking formic acid into the drug substance. The retention time of N-formyl trimetazidine was similar to the unspecified impurity in drug product. Even spiking of formic acid into drug substance showed that the suspected impurity increased with increasing concentration of formic acid. The proposed mechanism of impurity formation is via amidation of piperazine moiety of trimetazidine by formic acid which present as residual solvent in tablet binder used in the formulation. Subsequently, the impurity in our product was controlled by choosing the primary packaging which could minimize the formation of impurity.

  7. Experimental study of impurity production in the Tokapole II tokamak

    International Nuclear Information System (INIS)

    Brickhouse, N.S.

    1984-01-01

    The release mechanism for low-Z impurities in Tokapole II has been characterized through impurity doping and isotopic exchange experiments. The desorption mechanism responsible for the low-Z impurity concentrations during the rise phase of the plasma current depends on the mass of the plasma ions. Doping with small amounts of any gas studied (H 2 , D 2 , He, N 2 , O 2 , Ne, Ar, Kr, and Xe) increases the early-time radiation of O, C, and N. For exotic gas doping this increase is linear with the dopant concentration, and proportional to the mass of the dopant, as expected for a momentum transfer process. Isotopic exchange experiments confirm the mass-dependence of oxygen production. A time-dependent coronal model is compared with the vacuum ultraviolet spectroscopic signals of the ionizing oxygen. The quantity sigma/tau (desorption cross section divided by particle confinement time) is determined to be 4 x 10 13 cm 2 /msec. The oxygen influx has a large peak early in the start-up

  8. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  9. Quantitative assessment of intergranular damage due to PWR primary water exposure in structural Ni-based alloys

    International Nuclear Information System (INIS)

    Ter-Ovanessian, Benoît; Deleume, Julien; Cloué, Jean-Marc; Andrieu, Eric

    2013-01-01

    Highlights: ► IG damage occurred on Ni-base alloys during exposure at high temperature water. ► Two characterization methods yield a tomographic analysis of this IG damage. ► Connected or isolated intergranular oxygen/oxide penetrations are quantified. ► Such quantitative description provides information on IGSCC susceptibility. - Abstract: Two nickel-based alloys, alloy 718 and alloy 600, known to have different resistances to IGSCC, were exposed to a simulated PWR primary water environment at 360 °C for 1000 h. The intergranular oxidation damage was analyzed in detail using an original approach involving two characterization methods (Incremental Mechanical Polishing/Microcopy procedure and SIMS imaging) which yielded a tomographic analysis of the damage. Intergranular oxygen/oxide penetrations occurred either as connected or isolated penetrations deep under the external oxide/substrate interface as far as 10 μm for alloy 600 and only 4 μm for alloy 718. Therefore, assessing this damage precisely is essential to interpret IGSCC susceptibility.

  10. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    International Nuclear Information System (INIS)

    Lee, Tae Hyun; Hwang, Il Soon; Kim, Hong Deok; Kim, Ji Hyun

    2015-01-01

    A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  11. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    International Nuclear Information System (INIS)

    Bahner, C.T.; Shoun, R.R.; McDowell, W.J.

    1977-09-01

    Dihexyl[(diethylcarbamoyl)methyl]phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl[(dibutylcarbamoyl)methyl]-phosphonate (DBDBCMP) and di(2-ethylhexyl)[(diethylcarbamoyl)-methyl]phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl 4 as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen [(diethylcarbamoyl)methyl]-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions

  12. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  13. Critical current of the nonuniform Josephson transition at intergranular boundary with random dislocation distribution

    International Nuclear Information System (INIS)

    Mejlikhov, E.Z.; Farzetdinova, R.M.

    1997-01-01

    Critical current of inhomogeneous intergranular Josephson transition is calculated in the assumption concerning superconductivity suppression by local strains of boundary dislocations with random distribution

  14. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E.

    1997-01-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved

  15. Quasi-regular impurity distribution driven by charge-density wave

    International Nuclear Information System (INIS)

    Baldea, I.; Badescu, M.

    1991-09-01

    The displacive motion of the impurity distribution immersed into the one-dimensional system has recently been studied in detail as one kind of quasi-regularity driven by CDW. As a further investigation of this problem we develop here a microscopical model for a different kind of quasi-regular impurity distribution driven by CDW, consisting of the modulation in the probability of occupied sites. The dependence on impurity concentration and temperature of relevant CDW quantities is obtained. Data reported in the quasi-1D materials NbSe 3 and Ta 2 NiSe 7 (particularly, thermal hysteresis effects at CDW transition) are interpreted in the framework of the present model. Possible similarities to other physical systems are also suggested. (author). 38 refs, 7 figs

  16. Intergranular penetration of liquid gold into stainless steel

    OpenAIRE

    Favez, Denis; Deillon, Léa; Wagnière, Jean-Daniel; Rappaz, Michel

    2011-01-01

    Intergranular penetration of liquid 18 K gold into a superaustenitic stainless steel, which occurs during laser welding of these two materials, has been studied using a C-ring device which can be put under tensile stresses by a screw. It is shown that liquid gold at 1000 degrees C penetrates the immersed stainless steel C-ring at grain boundaries, but only when tensile stresses are applied. Based on the thickness of the peritectic phase that forms all along the liquid crack and on the transve...

  17. Numerical simulation of the impurity photovoltaic effect in silicon solar cells doped with thallium

    International Nuclear Information System (INIS)

    Zhao Baoxing; Zhou Jicheng; Chen Yongmin

    2010-01-01

    Many attempts have been made to increase the efficiency of solar cells by introducing a deep impurity level in the semiconductor band gap. Since Tl may be the most suitable impurity for crystalline Si solar cells, the impurity photovoltaic (IPV) effect in silicon solar cell doped with thallium as impurity was investigated by the numerical solar cell simulator SCAPS. Results show that the IPV effect of thallium extends the spectral sensitivity in the sub-band gap range from 1000 to about 1400 nm. When the Tl concentration (N t ) is lower than the base doping density (N D ), the short-circuit current density and efficiency increase with increasing N t . But they decrease rapidly as the impurity density exceeds the shallow base doping density (N t >N D ). The optimum Tl concentration is about equal to the base doping density. For the Si solar cells with high internal reflection coefficients, the IPV effect becomes appreciable (ΔJ sc ∼9 mA/cm 2 and Δη∼2%).

  18. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  19. Multiple x-ray diffraction applied to the study of crystal impurities

    International Nuclear Information System (INIS)

    Cardoso, L.P.

    1983-06-01

    The x-ray multiple diffraction technique is used in the study of impurities concentration and localization in the crystal lattice, implemented with the fundamental observation that the impurities cannot be distributed with the same spatial group symmetry of the crystal. This fact could introduce scattered intensity in the crystal reciprocal lattice forbidden nodes. This effect was effectively observed in multiple diffraction diagrams, where a reinforcement of the scattered intensity in the pure crystal is produced, when choosing conveniently the involved reflections. The reflectivity theory was developed in the kinematic case, which take into account the scattering by the impurities atoms, and the analysis showed that, in the first approximation, the impurities can influence both in the allowed and forbidden positions for the pure crystal. (L.C.J.A.)

  20. Oxygen control systems and impurity purification in LBE: Learning from DEMETRA project

    Energy Technology Data Exchange (ETDEWEB)

    Brissonneau, L., E-mail: laurent.brissonneau@cea.fr [CEA/DEN, Cadarache, DTN/STPA/LIPC, F-13108 Saint-Paul-lez-Durance (France); Beauchamp, F.; Morier, O. [CEA/DEN, Cadarache, DTN/STPA/LIPC, F-13108 Saint-Paul-lez-Durance (France); Schroer, C.; Konys, J. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Materialforschung III, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kobzova, A.; Di Gabriele, F. [NRI, UJV Husinec-Rez 130, Rez 25068 (Czech Republic); Courouau, J.-L. [CEA/DEN, Saclay, DPC/SCCME/LECNA, F-919191 Gif-sur-Yvette (France)

    2011-08-31

    Operating a system using Lead-Bismuth Eutectic (LBE) requires a control of the dissolved oxygen concentration to avoid corrosion of structural materials and oxide build-up in the coolant. Reliable devices are therefore needed to monitor and adjust the oxygen concentration and to remove impurities during operation. In this article, we describe the learning gained from experiments run in the framework of the DEMETRA project (IP-EUROTRANS 6th FP contract) on the oxygen supply in LBE and on impurity filtration and management in different European facilities. An oxygen control device should supply oxygen in LBE at sufficient rate to compensate loss by surface oxidation, otherwise local dissolution of oxide layers might lead to the loss of steel protection against dissolution. Oxygen can be supplied by gas phase H{sub 2}O or O{sub 2}, or by solid phase, PbO dissolution. Each of these systems has substantial advantages and drawbacks. Considerations are given on devices for large scale facilities. The management of impurities (lead oxides and corrosion products) is also a crucial issue as their presence in the liquid phase or in the aerosols is likely to impair the facility, instrumentation and mechanical devices. To avoid impurity build-up on the long-term, purification of LBE is required to keep the impurity inventory low by trapping oxide and metallic impurities in specific filter units. On the basis of impurities characterisation and experimental results gained through filtration tests in different loops, this paper gives a description of the state-of-art knowledge of LBE purification with different filter media. It is now understood that the nature and behaviour of impurities formed in LBE will change according to the operating modes as well as the method to propose to remove impurities. This experience can be used to validate the basis filtration process, define the operating procedures and evaluate perspectives for the design of purification units for long

  1. Effect of intergranular stress on yielding of 316H during room temperature cyclic loading

    International Nuclear Information System (INIS)

    Al Mamun, Abdullah; Moat, Richard; Bouchard, John; Kelleher, Joe

    2016-01-01

    Assessment of cyclic deformation is an integral part of nuclear power plant life assessment code, as many of the components in plant go through scheduled and unscheduled cyclic deformation owing to varying thermal and mechanical stresses. In polycrystalline material like 316H, a type of micro stress known as intergranular stress is generated due to elastic and plastic anisotropies during such cyclic loading. In tension-compression loading cycles, these stresses remain in the material as a residual stress upon unloading to zero stress from the tensile/compressive peak or intermediates stresses. The magnitude of these stresses vary depending on the point in the cycle from which it was unloaded from. When the material is re-loaded either in the same or reverse loading direction these residual stresses increase or decrease the effective stress acting in the material and as such the macroscopic yield stress of the material in subsequent cycle is changed significantly. The magnitude of intergranular stresses in many differently oriented grain families can be measured simultaneously using time of flight (ToF) neutron diffraction technique. In this paper, we have used this technique to experimentally study, how these intergranular stresses affect the yield (proof) stress of 316H at room temperature. (author)

  2. Modeling of soluble impurities distribution in the steam generator secondary water

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Kucak, L.; Urban, F.

    1997-01-01

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.)

  3. Effect of a Nitrogen Impurity on the Fundamental Raman Band of Diamond Single Crystals

    Science.gov (United States)

    Gusakov, G. A.; Samtsov, M. P.; Voropay, E. S.

    2018-05-01

    The effect of nitrogen defects in natural and synthetic diamond single crystals on the position and half-width of the fundamental Raman band was investigated. Samples containing the main types of nitrogen lattice defects at impurity contents of 1-1500 ppm were studied. The parameters of the Stokes and anti-Stokes components in Raman spectra of crystals situated in a cell with distilled water to minimize the influence of heating by the exciting laser radiation were analyzed to determine the effect of a nitrogen impurity in the diamond crystal lattice. It was shown that an increase of impurity atoms in the crystals in the studied concentration range resulted in broadening of the Raman band from 1.61 to 2.85 cm-1 and shifting of the maximum to lower frequency from 1332.65 to 1332.3 cm-1. The observed effect was directly proportional to the impurity concentration and depended on the form of the impurity incorporated into the diamond lattice. It was found that the changes in the position and half-width of the fundamental Raman band for diamond were consistent with the magnitude of crystal lattice distortions due to the presence of impurity defects and obeyed the Gruneisen law.

  4. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  5. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)

    1997-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  6. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Simo, T [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L; Urban, F [Slovak Technical Univ., Bratislava (Slovakia)

    1998-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  7. Effect of homologous impurities on primary radiation defect accumulation in alkali halides

    International Nuclear Information System (INIS)

    Chernov, S.A.; Gavrilov, V.V.

    1981-01-01

    To clarify the mechanism of the effect of anion and cation homologous impurities on the primary radiation-induced defect accumulation, the transient absorption of H and F centers was studied in KCl and KBr crystals. Pulse electron accelerator technique was used. Pure and doped crystals were investigated. It was obtained that the cation homologue Na in the concentration range from 0 to 0.5 m. % in 10 -8 -10 -6 s post-irradiation time has no effect on the defect accumulation efficiency at low temperature and increases the latter at high temperature. At large post-irradiation time and at high temperatures the rise of efficiency at low Na concentration and decrease of it at high Na concentrations were observed. The conclusion was made that Na does not affect the generation process. The anion homologous impurities (I and Br) lead to a significant increase of the accumulation efficiency due to the formation of more stable F-H pair at self-trapped exciton decay on anion impurities compared with that formed in perfect lattice. Some assumptions are advanced to explain the effect [ru

  8. The study on intergranular corrosion of sensitized Alloy 600 using DL-EPR and Huey method

    International Nuclear Information System (INIS)

    Lee, B. G.; Lee, H. R.; Kim, H. P.; Ryu, W. S.; Rhee, C. K.

    1998-01-01

    Intergranular corrosion(IGC) of sensitized Alloy 600 has been studied with double loop-electrochemical potentiokinetic reactivation(DL-EPR) and Huey tests. Corrosion of solution annealed Ni-XCr-10Fe(X=6∼15) alloys was also evaluated with DL-EPR and Huey methods to simulate corrosion of Cr-depleted grain boundary region of Alloy 600. Cr concentration of Cr-depleted grain boundary region of Alloy 600. Cr concentration profile across grain boundary was measured with TEM. In the range of the Cr concentration from 6 to 8%, corrosion rates of solution annealed Ni-XCr-10Fe(X=6∼15) alloys were much higher in Huey test than those in DL-EPR. But in the range of the Cr concentration from 12 to 15%, the trend was reversed. The width of IGC crack of Alloy 600 was higher in DL-EPR test than in Huey test in agreement with corrosion of solution annealed Ni-XCr-10Fe alloys. Width of IGC produced by DL-EPR test was almost uniform and wide while that produced by Huey test was sharp and marrow. These results suggest that IGC in DL-EPR test conforms to uniform dissolution model and IGC in Huey test conforms to Cr concentration dependent dissolution model

  9. Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2002-01-01

    We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...

  10. Intergranular brittle fracture of a low alloy steel induced by grain boundary segregation of impurities: influence of the microstructure; Rupture intergranulaire fragile d'un acier faiblement allie induite par la segregation d'impuretes aux joints de grains: influence de la microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, St

    1999-07-01

    The study contributes to improve the comprehension of intergranular embrittlement induced by the phosphorus segregation along prior austenitic grain boundaries of low alloy steels used in pressurized power reactor vessel. A part of this study was performed using a A533 steel which contains chemical fluctuations (ghost lines) with two intensities. Axi-symmetrically notched specimens were tested and intergranular brittle de-cohesions were observed in the ghost lines. The fracture initiation sites observed on fracture surfaces were identified as MnS inclusions. A bimodal statistic obtained in a probabilistic model of the fracture is explained by the double population of ghost lines' intensities. A metallurgical study was performed on the same class of steel by studying the influence of the microstructure on the susceptibility to temper embrittlement. Brittle fracture properties of such microstructures obtained by dilatometric experiments were tested on sub-sized specimens to measure the V-notched fracture toughness. Fraction areas of brittle fracture modes were determined on surface fractures. A transition of the fracture mode with the microstructure is observed. It is shown that tempered microstructures of martensite and lower bainite are more susceptible to intergranular embrittlement than tempered upper bainitic microstructure. The intergranular fracture is the most brittle mode. The analysis of crystalline mis-orientations shows a grain boundary structure appreciably more coherent for tempered microstructures of martensite and lower bainite. The higher density of randomgrain boundaries is susceptible to drag the phosphorus in the upper bainitic matrix and to make the quantity of free phosphorus decreasing. Microstructure observations show a difference in the size and the spatial distribution of carbides, essentially cementite, between tempered martensite and upper bainite. It can explain the bigger susceptibility of this last microstructure to cleavage mode

  11. The distribution of intergranular gaps along α tracks recorded in ionographic emulsions

    International Nuclear Information System (INIS)

    Wittendorp-Rechenmann, E.; Senger, B.; Koziel-Vigneron, V.; Rechenmann, R.V.

    1990-01-01

    Detailed microscopic analyses performed at high statistics (size: 1100) on 8.776 MeV α tracks materialised in nuclear emulsion demonstrated a distribution of intergranular gaps along the primary ion's path that was not only non-random but also fluctuated significantly with the energy of the projectile. The highest and lowest gap frequencies measured correspond to the energy region of 0.7 - 1.5 MeV and 7 MeV, respectively. The gap length distributions followed an exponential law, a known characteristic of the intergranular gaps distributed along the tracks of high energy charged particles. A tentative interpretation of these observations has been undertaken in terms of spatial distributions of δ rays around the incoming ion's path, by applying the Double-Differential Cross-Section Mixed Treatment to the geometrical configuration of the AgBr microcrystals embedded in the gelatin matrix. At this preliminary stage of our modelling, the main experimental data could already be reproduced satisfactorily. (author)

  12. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Terry, P.W.; Garcia, L.; Carreras, B.A.

    1986-03-01

    The role of impurity dynamics in resistivity gradient driven turbulence is investigated in the context of modeling tokamak edge plasma phenomena. The effects of impurity concentration fluctuations and gradients on the linear behavior of rippling instabilities and on the nonlinear evolution and saturation of resistivity gradient driven turbulence are studied both analytically and computationally. At saturation, fluctuation levels and particle and thermal diffusivities are calculated. In particular, the mean-square turbulent radial velocity is given by 2 > = (E 0 L/sub s/B/sub z/) 2 (L/sub/eta/ -1 + L/sub z -1 ) 2 . Thus, edged peaked impurity concentrations tend to enhance the turbulence, while axially peaked concentrations tend to quench it. The theoretical predictions are in semi-quantitative agreement with experimental results from the TEXT, Caltech, and Tosca tokamaks. Finally, a theory of the density clamp observed during CO-NBI on the ISX-B tokamak is proposed

  14. Monte-Carlo Impurity transport simulations in the edge of the DIII-D tokamak using the MCI code

    International Nuclear Information System (INIS)

    Evans, T.E.; Mahdavi, M.A.; Sager, G.T.; West, W.P.; Fenstermacher, M.E.; Meyer, W.H.; Porter, G.D.

    1995-07-01

    A Monte-Carlo Impurity (MCI) transport code is used to follow trace impurities through multiple ionization states in realistic 2-D tokamak geometries. The MCI code is used to study impurity transport along the open magnetic field lines of the Scrape-off Layer (SOL) and to understand how impurities get into the core from the SOL. An MCI study concentrating on the entrainment of carbon impurities ions by deuterium background plasma into the DIII-D divertor is discussed. MCI simulation results are compared to experimental DIII-D carbon measurements

  15. Monte-Carlo Impurity transport simulations in the edge of the DIII-D tokamak using the MCI code

    International Nuclear Information System (INIS)

    Evans, T.E.; Sager, G.T.; Mahdavi, M.A.; Porter, G.D.; Fenstermacher, M.E.; Meyer, W.H.

    1995-01-01

    A Monte-Carlo Impurity (MCI) transport code is used to follow trace impurities through multiple ionization states in realistic 2-D tokamak geometries. The MCI code is used to study impurity transport along the open magnetic field lines of the Scrape-off Layer (SOL) and to understand how impurities get into the core from the SOL. An MCI study concentrating on the entrainment of carbon impurities ions by deuterium background plasma into the DII-D divertor is discussed. MCI simulation results are compared to experimental DII-D carbon measurements. 2 refs

  16. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  17. Impurity Effects in Electroplated-Copper Solder Joints

    Directory of Open Access Journals (Sweden)

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  18. VARIABILITY STUDY TO DETERMINE THE SOLUBILITY OF IMPURITIES IN PLUTONIUM-BEARING, LANTHANIDE BOROSILICATE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; Elizabeth Hoffman, E; Charles Crawford, C; Tommy Edwards, T; David Best, D; James Marra, J

    2007-09-26

    This study focuses on the development of a compositional envelope that describes the retention of various impurities in lanthanide borosilicate (LaBS) glass for vitrification and immobilization of excess, defense-related plutonium. A limited amount of impurity data for the various plutonium sources is available and projections were made through analysis of the available information. These projections were used to define types and concentrations of impurities in the LaBS glass compositions to be fabricated and tested. Sixty surrogate glass compositions were developed through a statistically designed approach to cover the anticipated ranges of concentrations for several impurity species expected in the plutonium feeds. An additional four glass compositions containing actual plutonium oxide were selected based on their targeted concentrations of metals and anions. The glasses were fabricated and characterized in the laboratory and shielded cells facility to determine the degree of retention of the impurity components, the impact of the impurities on the durability of each glass, and the degree of crystallization that occurred, both upon quenching and slow cooling. Overall, the LaBS glass system appears to be very tolerant of most of the impurity types and concentrations projected in the plutonium waste stream. For the surrogate glasses, the measured CuO, Ga{sub 2}O{sub 3}, Na{sub 2}O, NiO, and Ta{sub 2}O{sub 5} concentrations fell very close to their target values across the ranges of concentrations targeted in this study for each of these components. The measured CaO and PbO concentrations were consistently higher than the targeted values. The measured Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations were very close to the targets except for the one highest targeted value for each of these components. A solubility limit may have been approached in this glass system for K{sub 2}O and MgO. The measured Cl{sup -}, F{sup -}, SeO{sub 2} and SO{sub 4}{sup 2

  19. Characterization of impurities in biogas before and after upgrading to vehicle fuel

    Energy Technology Data Exchange (ETDEWEB)

    Arrhenius, Karine; Johansson, Ulrika [SP Technical Research Institute of Sweden, Boraas (Sweden)

    2012-01-15

    Biogases produced by digesting organic wastes, residual sludge from waste water treatment, energy crops,byproducts from industry or in landfills contain impurities which can be harmful for components that will be in contact with the biogas during its utilization. In this project, the impurities present in biogases have been mapped out depending upon which feedstock is digested. P-cymene och D-limonene, two terpenes, have been found to be characteristics for biogases produced from the digestion of waste including household wastes while an 'oil' fraction containing alkanes with 9 to 13 carbon atoms is characteristic for biogases produced at waste water treatment plants. Ketones and sulfur compounds are found in biogases produced from the digestion of food industry wastes or energy crops. It was not possible to characterize impurities in biogases produced in farm plants digesting manure because not enough samples were analyzed from these plants. In order to understand the relation between the feedstock and the impurities present in the biogas, an extensive study on feedstock characterization must be conducted. One question to be answered is if these impurities only originate from the volatilization from the feedstock and in this case, why only these specific compounds are found at significant concentrations. In this study we have also studied how effective purification/upgrading techniques are to remove impurities that have been identified in biogases. En general comment is that the upgraded gas still contains a part of the characteristic impurities which have been identified for each feedstock at different levels of concentration depending on which technique has been used. The results show that activated carbon filters are more or less effective. Some of them can remove more than 90 % of the impurities while others remove less that 10 %. Results show also that the amine scrubber have very moderate effects on the impurities composition. In that case, the

  20. Impurities block the alpha to omega martensitic transformation in titanium.

    Science.gov (United States)

    Hennig, Richard G; Trinkle, Dallas R; Bouchet, Johann; Srinivasan, Srivilliputhur G; Albers, Robert C; Wilkins, John W

    2005-02-01

    Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.

  1. Modeling of the Microchemistry for Diffusion of Selected Impurities in Uranium

    International Nuclear Information System (INIS)

    Kirkpatrick, J. R.; Bullock, J.S. IV

    2001-01-01

    Unalloyed metallic uranium used in some work done at Y-12 contains small quantities of impurities, the three most significant of which are carbon, iron, and silicon. During metallurgical processing, as the metal cools from a molten condition towards room temperature, the metallic matrix solution becomes supersaturated in each of the impurities whose concentration exceeds the solubility limit. Many impurity atoms form compounds with uranium that precipitate out of the solution, thus creating and growing inclusions. The objective of the present work is to study the distribution of impurity atoms about some of the inclusions, with a view toward examining the effect of the interaction between inclusions on the impurity atom distribution. The method used is time-dependent mass diffusion from the supersaturated solution to the surfaces of the inclusions. Micrographs of metal samples suggest that the inclusions form in successive stages. After each inclusion forms, it begins to draw impurity atoms from its immediate vicinity, thus altering the amounts and distributions of impurity atoms available for formation and growth of later inclusions. In the present work, a one-dimensional spherical approximation was used to simulate inclusions and their regions of influence. A first set of calculations was run to simulate the distribution of impurity atoms about the largest inclusions. Then, a second set of calculations was run to see how the loss of impurity atoms to the largest inclusions might affect the distribution of impurity atoms around the next stage of inclusions. Plots are shown for the estimated distributions of impurity atoms in the region of influence about the inclusions for the three impurities studied. The authors believe that these distributions are qualitatively correct. However, there is enough uncertainty about precisely when inclusions nucleate and begin to grow that one should not put too much reliance on the quantitative results. This work does provide a

  2. Intergranular corrosion susceptibility in supermartensitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, J.M. [Sao Carlos Federal University (UFSCar), Materials Engineering Department, Rodovia Washington Luis, km 235, CEP 13565-905, Sao Carlos, SP (Brazil)], E-mail: dsek@power.ufscar.br; Della Rovere, C.A.; Kuri, S.E. [Sao Carlos Federal University (UFSCar), Materials Engineering Department, Rodovia Washington Luis, km 235, CEP 13565-905, Sao Carlos, SP (Brazil)

    2009-10-15

    The intergranular corrosion susceptibility in supermartensitic stainless steel (SMSS) weldments was investigated by the double loop - electrochemical potentiokinetic reactivation (DL-EPR) technique through the degree of sensitization (DOS). The results showed that the DOS decreased from the base metal (BM) to the weld metal (WM). The heat affected zone (HAZ) presented lower levels of DOS, despite of its complex precipitation mechanism along the HAZ length. Chromium carbide precipitate redissolution is likely to occur due to the attained temperature at certain regions of the HAZ during the electron beam welding (EBW). Scanning electron microscopy (SEM) images showed preferential oxidation sites in the BM microstructure.

  3. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography-nuclear magnetic resonance spectroscopy for minor impurity analysis.

    Science.gov (United States)

    Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko

    2017-07-28

    High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Quantitative determination of salbutamol sulfate impurities using achiral supercritical fluid chromatography.

    Science.gov (United States)

    Dispas, Amandine; Desfontaine, Vincent; Andri, Bertyl; Lebrun, Pierre; Kotoni, Dorina; Clarke, Adrian; Guillarme, Davy; Hubert, Philippe

    2017-02-05

    In the last years, supercritical fluid chromatography has largely been acknowledged as a singular and performing technique in the field of separation sciences. Recent studies highlighted the interest of SFC for the quality control of pharmaceuticals, especially in the case of the determination of the active pharmaceutical ingredient (API). Nevertheless, quality control requires also the determination of impurities. The objectives of the present work were to (i) demonstrate the interest of SFC as a reference technique for the determination of impurities in salbutamol sulfate API and (ii) to propose an alternative to a reference HPLC method from the European Pharmacopeia (EP) involving ion-pairing reagent. Firstly, a screening was carried out to select the most adequate and selective stationary phase. Secondly, in the context of robust optimization strategy, the method was developed using design space methodology. The separation of salbutamol sulfate and related impurities was achieved in 7min, which is seven times faster than the LC-UV method proposed by European Pharmacopeia (total run time of 50min). Finally, full validation using accuracy profile approach was successfully achieved for the determination of impurities B, D, F and G in salbutamol sulfate raw material. The validated dosing range covered 50 to 150% of the targeted concentration (corresponding to 0.3% concentration level), LODs close to 0.5μg/mL were estimated. The SFC method proposed in this study could be presented as a suitable fast alternative to EP LC method for the quantitative determination of salbutamol impurities. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  6. Characterization of light element impurities in ultrathin silicon-on-insulator layers by luminescence activation using electron irradiation

    International Nuclear Information System (INIS)

    Nakagawa-Toyota, Satoko; Tajima, Michio; Hirose, Kazuyuki; Ohshima, Takeshi; Itoh, Hisayoshi

    2009-01-01

    We analyzed light element impurities in ultrathin top Si layers of silicon-on-insulator (SOI) wafers by luminescence activation using electron irradiation. Photoluminescence (PL) analysis under ultraviolet (UV) light excitation was performed on various commercial SOI wafers after the irradiation. We detected the C-line related to a complex of interstitial carbon and oxygen impurities and the G-line related to a complex of interstitial and substitutional carbon impurities in the top Si layer with a thickness down to 62 nm after electron irradiation. We showed that there were differences in the impurity concentration depending on the wafer fabrication methods and also that there were variations in these concentrations in the respective wafers. Xenon ion implantation was used to activate top Si layers selectively so that we could confirm that the PL signal under the UV light excitation comes not from substrates but from top Si layers. The present method is a very promising tool to evaluate the light element impurities in top Si layers. (author)

  7. Intergranular stress corrosion in soldered joints of stainless steel 304.; Corrosion intergranular bajo esfuerzo en uniones soldadas de acero inoxidable 304

    Energy Technology Data Exchange (ETDEWEB)

    Zamora R, L [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1994-12-31

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author).

  8. Impurities determination in uranium eluates by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Bellavigna, Horacio J.; Eppis, Maria R.; Ramella, Jose L.

    1999-01-01

    The chemical control of impurities in nuclear materials is indispensable in order to assure an efficient operation of the reactors. The maximum concentration admitted depends of the elements and in most cases are in the parts per billion range. Conventional analytical methods require a pre-concentration treatment of the sample and a previous separation of the matrix (uranium). This paper investigates the use of the total reflection X-ray fluorescence as an alternative methodology for the determination of impurities in nuclear materials, namely K, Ca, Ti, Cr, Mn, Fe, Ni, Cu and As. The detection limits obtained were in the range of 0.1 to 20 ng/ml for a 1000 seconds counting time. (author)

  9. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Science.gov (United States)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  10. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    International Nuclear Information System (INIS)

    Neogi, S.K.; Karmakar, R.; Misra, A.K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-01-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn 1−x Mn x O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO 3 ) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ 1 and τ 2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase

  11. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    Energy Technology Data Exchange (ETDEWEB)

    Neogi, S.K.; Karmakar, R. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Misra, A.K. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Banerjee, A. [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India); Das, D. [UGC DAE Consortium for Scientific Research, Salt Lake, Kolkata 700064 (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.in [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); CRNN, University of Calcutta, JD 2, Sector III, Salt Lake, Kolkata 700098 (India)

    2013-11-15

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn{sub 1−x}Mn{sub x}O samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol–gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV–visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO{sub 3}) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ{sub 1} and τ{sub 2} are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. - highlights: • Single phase structure has been observed up to 6 at% of Mn doping. • Impurity phase has been developed above 6 at% of Mn doping. • Antiferromagnetic and paramagnetic interactions are present in the samples. • Defect parameters show sharp fall as Mn concentration above 6 at%. • The magnetic and defect properties are modified by the formation of impurity phase.

  12. The intergranular corrosion susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling

    International Nuclear Information System (INIS)

    Wang, Zhixiu; Chen, Peng; Li, Hai; Fang, Bijun; Song, Renguo; Zheng, Ziqiao

    2017-01-01

    Highlights: • No intergranular corrosion occured for the peak–re–aged and over–re–aged 2024 Al alloy. • Absence of intergranular corrosion in the re–aged samples resulted from no continuous grain boundary S–Al_2CuMg phase. • Aggregated pits were observed in the over–re–aged samples. • Aggregated pitting corrosion was related to the preferential precipitation of S–phase on the dislocation cell walls. - Abstract: The intergranular corrosion (IGC) susceptibility of 2024 Al alloy during re–ageing after solution treating and cold–rolling was investigated by accelerated corrosion testing, open circuit potential testing, transmission electron microscopy and scanning electron microscopy. The absence of IGC in both the peak–re–aged and over–re–aged samples is related to the dislocation pile–ups which prevent the supersaturated solutes from diffusing into the grain boundaries and precipitating the continuous S–Al_2CuMg phase. The aggregated pitting corrosion in the over–re–aged samples arises from the S–phase precipitates on the dislocation cell walls which accelerate the anodic dissolution of the cell interiors.

  13. Radiation-stimulated yield of an impurity into interstitial sites in crystals KBr-Li and KCl-Li

    International Nuclear Information System (INIS)

    Bekeshev, A.Z.; Shunkeev, K.Sh.; Vasil'chenko, E.A.; Dauletbekova, A.K.; Ehlango, A.A.

    1996-01-01

    KCl and KBr crystals are taken as examples to show that the presence of Li impurity at X-radiation at temperatures above 200 K stimulates the creation of both impurity Hal 3 - (Li)-centers (V 4A -centers) and Hal 3 - centers (V 2 -centers). Increase of impurity concentration and X-radiation temperature (up to 300 K) results to increase of impurity stimulated creation of inherent Hal 3 - centers by more, than one order, as compared to pure crystals. Initial temperature of interstitial ion mobility was evaluated (about 140 K). 16 refs., 5 figs

  14. Investigation of intergranular stress corrosion cracking in the fuel pool at Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    An intergranular stress corrosion cracking failure of 304 stainless steel pipe in 2000 ppM B as H 3 BO 3 + H 2 O at 100 0 C has been investigated. Constant extension rate testing has produced an intergranular type failure in material in air. Chemical analysis was performed on both the base metal and weld material, in addition to fractography, EPR testing and optical microscopy in discerning the mode of failure. Various effects of Cl - , O 2 , and MnS are discussed. The results have indicated that the cause of failure was the severe sensitization coupled with probable contamination by S and possibly by Cl ions

  15. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    Science.gov (United States)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  16. Study of impurities in Aditya Tokamak during different conditions using quadrupole mass analyzer

    International Nuclear Information System (INIS)

    Bhatt, S.B.; Jadeja, K.A.; Patel, K.M.; Patel, N.D.; Raval, M.K.; Ghosh, J.

    2015-01-01

    In fusion devices, e.g., Tokamak, the presence of the impurities, i.e. gas species other than the fuel gas, deteriorates plasma and makes confinement difficult. The gas molecules tend to get adsorbed on the surfaces of the solid state materials of the vessel wall during discharges. A Residual Gas Analyzer (RGA) is the most commonly useful instrument to measure the presence and quantity of the various gases in a vacuum system. Quadrupole Mass Analyzer (QMA) is installed on Aditya Tokamak to measure the concentrations of various gas species present in Aditya vacuum system. It is also used to monitor impurities generated during various phases of discharges in Aditya Tokamak. The impurities are reduced by various types of discharge cleaning and in-situ coatings. Presence of residual gas concentration in vacuum system creates limitation for achievement of ultrahigh vacuum and also affects plasma performance. The presence of residual gases is due to different reasons like atmospheric concentration, contamination of the wall materials, outgassing from the exposed materials, permeation, real and virtual leaks

  17. Some particularities of impurity center structure in concentrated solid solutions MeF2-GdF3, where Me-Ca2+, Sr2+ and Ba2+

    International Nuclear Information System (INIS)

    Karelin, V.V.; Orlov, Yu.N.; Bozhevol'nov, V.E.; Ivanov, L.N.

    1981-01-01

    The monocrystalline CaF 2 -GdF 3 , SrF 2 -GdF 3 and BaF 2 -GdF 3 systems are studied using the methods of EPR, photo-, radio-, cathode- and thermoluminescence. It is shown that the structure of fluorite solid solutions changes considerably with the growth of the rare earth component concentration. At that, in the systems investigated at least three concentration regions can be singled out: (up to 1%; from 1 to 15%, and > 15% GdF 3 ) which are characterized by their certain selection of impurity centres [ru

  18. Impurity effects in neutron-irradiated simple oxides: Implications for fusion devices

    International Nuclear Information System (INIS)

    Gonzalez, R.; Chen, Y.; Caceres, D.; Vergara, I.

    2006-01-01

    Radiation damage induced by neutron irradiation was studied in undoped MgO crystals and in MgO doped with either iron, hydrogen or lithium impurities. The oxygen-vacancy concentration produced by irradiation increases with neutron fluence. The net production rates resulting from irradiations with 14.8 MeV neutrons are about twice those produced by fission neutrons. In nominally pure crystals, the oxygen-vacancy concentration incurred by the fission-neutron irradiation is higher in crystals with a larger number of inherent impurities (such as iron) due to trapping of interstitials by impurities. Suppression of these defects is observed in MgO:H crystals and attributed to migration of oxygen vacancies to microcavities filled with H 2 gas. In MgO:Li crystals irradiated with neutron fluences below 10 18 n/cm 2 , most of the oxygen vacancies are camouflaged as hydride ions. Nanoindentation experiments show that hardness increases with neutron fluence and is independent of the presence of lithium in the crystal. Comparison between a neutron-irradiated and a thermochemically reduced crystal containing similar concentrations of oxygen vacancies shows that 70% of the neutron-irradiation hardening is produced by interstitials, 30% by oxygen vacancies and a negligible amount by higher-order point defects

  19. Thin-source concentration dependent diffusion

    International Nuclear Information System (INIS)

    Eng, G.

    1978-01-01

    The diffusion of (Ca ++ ) in NaCl has been measured for various diffusion times and for the temperature range (575 0 to 775 0 C), using a thin-source of 45 Ca tracer, rectangular geometry, and serial sectioning. The pre-diffusion surface concentration was approximately 3 x 10 16 (Ca)-atoms/cm 2 , which, for an average penetration depth of 100 to 300 μm, produces a maximum (post-diffusion) impurity concentration comparable to or greater than the intrinsic cation vacancy concentration. The high-temperature function closely matches the D 0 (T) function obtained from low impurity concentration experiments. The lower-temperature function, combined with the sudden failure of the D(C) = D 0 (1 + [C] + 0.5[C] 2 ) function at these lower temperatures, indicates the onset of a second diffusion process, one which would operate only at extremely high impurity concentrations. This low-temperature behavior is shown to be consistent with a breakdown of the conditions assumed for vacancy equilibrium

  20. Occurrence and Characterization Microstructure of Iron Impurities in Halloysite.

    Science.gov (United States)

    Liu, Rong; Yan, Chunjie; Wang, Hongquan; Xiao, Guoqi; Tu, Dong

    2015-09-01

    The quality of the clays and over all halloysite are mostly associated with minor amounts of ferruginous impurities content, since this element gives an undesirable reddish color to the halloysite mineral. Hence, finding out the modes of occurrence of iron in halloysite is of prime importance in the value addition and optimum utilization of halloysite. In order to analyze the occurrence of iron impurities in halloysite, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were combined with wet chemical analysis methods to study the low-grade halloysite. The results indicated that the mineral phases of iron impurities in the concentrates are mainly composed of amounts of magnetite, goethite and hematite. Two types of occurrences for iron impurities have been found. One is single crystalline mineral consist in the halloysite, which contains three different phases of Goethite FeO(OH) (44.75%), Magnetite Fe3O4 (27.43%) and Hematite Fe2O3 (31.96%). The other is amorphous Fe-Al-Si glial materials. This study is of significance in the theoretical research on the halloysite mineralogy and in the developmental practice of halloysite in coal measures.

  1. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Science.gov (United States)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  2. The role of impurities on the process of growing potassium hydrogen phthalate crystals from solution; A quantitative approach

    Science.gov (United States)

    Hottenhuis, M. H. J.; Lucasius, C. B.

    1988-09-01

    Quantitative information about the influence of impurities on the crystal growth process of potassium hydrogen phthalate from its aqueous solution was obtained at two levels: microscopic and macroscopic. At the microscopic level, detailed in situ observations of spiral steps at the (010) face were performed. The velocity of these steps was measured, as well in a "clean" as in a contaminated solution, where the influence of a number of different impurities was investigated. This resulted in a measure of effectiveness of step retardation for each of these impurities. From the same microscopic observations it was observed how these effectiveness factors were influenced by the supersaturation σ, the saturation temperature Ts of the solution and the concentration cimp of the impurity that w as used. At the macroscopic level, ICP (inductively coupled plasma) measurements were carried out in order to determine the distribution coefficient of the same impurities. In these measurements again the influence of the impurity concentration and the supersaturation on the distribution coefficient kD was determined.

  3. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field

    International Nuclear Information System (INIS)

    Kasapoglu, E.; Sari, H.; Soekmen, I.

    2007-01-01

    We have investigated the effects of the magnetic field which is directed perpendicular to the well on the binding energy of the hydrogenic impurities in an inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and donor impurity binding energy in IPQW strongly depends on the magnetic field, Al concentration at the well center and well dimensions

  4. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    Science.gov (United States)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB

  5. Quantitative spectrographic analysis of impurities in antimonium

    International Nuclear Information System (INIS)

    Brito, J. de; Gomes, R.P.

    1978-01-01

    An emission spectrographic method is describe for the determination of Ag, Al, As, Be, Bi, Cd, Cr, Cu, Ga, Ni, Pb, Sn, Si, and Zn in high purity antimony metal. The metal sample ia dissolved in nitric acid(1:1) and converted tp oxide by calcination at 900 0 C for one hour. The oxide so obtained is mixed with graphite, which is used as a spectroscopic buffer, and excited by a direct current arc. Many parameters are studied optimum conditions are selected for the determination of the impurities mentioned. The spectrum is photographed in the second order of a 15.000 lines per inch grating and the most sensitive lines for the elements are selected. The impurities are determined in the concentration range of 1 - 0,01% with a precision of approximately 10% [pt

  6. Donor impurity self-compensation by neutral complexes in bismuth doped lead telluride

    International Nuclear Information System (INIS)

    Ravich, Yu.I.; Nemov, S.A.; Proshin, V.I.

    1994-01-01

    Self-compensation is calculated of impurity doping action in semiconductors of the A 4 B 6 type by neutral complexes, consisting of a vacancy and two impurity atoms. Complexes entropy is estimated and the thermodynamic potential is minimized in the concentration of single two-charge vacancies and complexes. Calculation results are compared with experimental data, obtained when lead telluride doping by bismuth. Account for complex formation improves agreement theory with experiment. 4 refs., 1 fig

  7. A study of intergranular corrosion of austenitic stainless steel by electrochemical potentiodynamic reactivation, electron back-scattering diffraction and cellular automaton

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaofei [Department of Chemistry, Shandong University, Jinan 250100 (China); Chen Shenhao [Department of Chemistry, Shandong University, Jinan 250100 (China); State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)], E-mail: shchen@sdu.edu.cn; Liu Ying; Ren Fengfeng [Department of Chemistry, Shandong University, Jinan 250100 (China)

    2010-06-15

    The impact of solution and sensitization treatments on the intergranular corrosion (IGC) of austenitic stainless steel (316) was studied by electrochemical potentiodynamic reactivation (EPR) test, and the results showed the degree of sensitization (DOS) decreased as solution treatment temperature and time went up, but it increased as sensitization temperature prolonged. Factors that affected IGC were investigated by field emission scanning electron microscope (FE-SEM) and electron back-scattering diffraction (EBSD). Furthermore, the precipitation evolution of Cr-rich carbides and the distribution of chromium concentration were simulated by cellular automaton (CA), clearly showing the effects of solution and sensitization treatments on IGC.

  8. Thermal conductivity of a quantum spin-1/2 antiferromagnetic chain with magnetic impurities

    International Nuclear Information System (INIS)

    Zviagin, A.A.

    2008-01-01

    We present an exact theory that describes how magnetic impurities change the behavior of the thermal conductivity for the integrable Heisenberg antiferromagnetic quantum spin-1/2 chain. Single magnetic impurities and a large concentration of impurities with similar values of the couplings to the host chain (a weak disorder) do not change the linear-in-temperature low-T behavior of the thermal conductivity: Only the slope of that behavior becomes smaller, compared to the homogeneous case. The strong disorder in the distribution of the impurity-host couplings produces more rapid temperature growth of the thermal conductivity, compared to the linear-in-T dependence of the homogeneous chain and the chain with weak disorder. Recent experiments on the thermal conductivity in inhomogeneous quasi-one-dimensional quantum spin systems manifest qualitative agreement with our results

  9. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water

    Science.gov (United States)

    Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo

    2018-01-01

    The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.

  10. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  11. Spin Diffusion and Spin Lattice Relaxation of Dipolar Order in Solids Containing Paramagnetic Impurities

    International Nuclear Information System (INIS)

    Furman, G.B.; Panich, A.M.; Goren, S.D.

    1998-01-01

    The phenomena of spin diffusion and spin lattice relaxation of nuclear dipolar order in solids containing paramagnetic impurities (PI) is considered. We show that at the beginning of the relaxation process the diffusion vanishing regime realizes with non-exponential time dependence, R(t) ∼ exp [- (t/T 1d ) α ], where T 1d ∼ C p -1/α , C p is PI's concentration. For a homogeneous distribution of Pis and nuclear spins, α=Q/6, where Q is the sample dimensionality; for an inhomogeneous distribution, the sample is divided into q-dimensional subsystems, each containing one PI, yield- ing α= (Q + q) /6. This result coincides with experimental data for CaF 2 doped with 0.8 - 10 -3 ωt % of Mn 2+ , where the non-exponential decay of the dipolar signal with α= 0.83 has been observed [3]. Fitting the experimental data yields a good agreement with T 1d = 66 ms . For another independent check of the obtained results we use dependence of the relaxation time on impurities concentration. In accordance that 1/α=1.2 , we have T 1d ∼ C p -1 '. 2 . Exactly this dependence on impurity concentration of the relaxation time has been found in the experiment. Then the relaxation regime starts as a non-exponential time dependent, proceed asymptotically to an to an exponential function of time, to so called diffusion limited relaxation regime with relaxation time T 1d D is inversely depends on impurities concentration. This kind of relaxation behavior of the dipolar order takes place in the experiment [2]. Using experimental results [2] from this two regime we can estimate the diffusion coefficient of the nuclear dipolar order in CaF 2 , which gives for typical values of impurity concentration C p ∼ 10 18 cm 3 the diffusion coefficient of dipolar order in the interval D ∼ 10 -11 -i- 10 -12 cm 2 /sec which is coincide to the case of Zeeman energy spin diffusion

  12. Effect of Impurities on the Triple Point of Water: Experiments with Doped Cells at Different Liquid Fractions

    Science.gov (United States)

    Dobre, M.; Peruzzi, A.; Kalemci, M.; Van Geel, J.; Maeck, M.; Uytun, A.

    2018-05-01

    Recent international comparisons showed that there is still room for improvement in triple point of water (TPW) realization uncertainty. Large groups of cells manufactured, maintained and measured in similar conditions still show a spread in the realized TPW temperature that is larger than the best measurement uncertainties (25 µK). One cause is the time-dependent concentration of dissolved impurities in water. The origin of such impurities is the glass/quartz envelope dissolution during a cell lifetime. The effect is a difference in the triple point temperature proportional to the impurities concentration. In order to measure this temperature difference and to investigate the effect of different types of impurities, we manufactured doped cells with different concentrations of silicon (Si), boron (B), sodium (Na) and potassium (K), the glass main chemical components. To identify any influence of the filling process, two completely independent manufacturing procedures were followed in two different laboratories, both national metrology institutes (VSL, Netherlands and UME, Turkey). Cells glass and filling water were also different while the doping materials were identical. Measuring the temperature difference as a function of the liquid fraction is a method to obtain information about impurities concentrations in TPW. Only cells doped with 1 µmol·mol-1 B, Na and K proved to be suitable for measurements at different liquid fractions. We present here the results with related uncertainties and discuss the critical points in this experimental approach.

  13. A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Narlesky, Joshua Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelly, Elizabeth J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-10

    This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because the variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.

  14. Order in nanometer thick intergranular films at Au-sapphire interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baram, Mor [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Garofalini, Stephen H. [Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ 08854-8065 (United States); Kaplan, Wayne D., E-mail: kaplan@tx.technion.ac.il [Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2011-08-15

    Highlights: {yields} Au particles were equilibrated on (0 0 0 1) sapphire in the presence of anorthite. {yields} 1.2 nm thick equilibrium films (complexions) were formed at the Au-sapphire interfaces. {yields} Quantitative HRTEM was used to study the atomistic structure of the films. {yields} Structural order was observed in the 1.2 nm thick films adjacent to the sapphire crystal. {yields} This demonstrates that ordering is an intrinsic part of equilibrium intergranular films. - Abstract: In recent years extensive studies on interfaces have shown that {approx}1 nm thick intergranular films (IGF) exist at interfaces in different material systems, and that IGF can significantly affect the materials' properties. However, there is great deal of uncertainty whether such films are amorphous or partially ordered. In this study specimens were prepared from Au particles that were equilibrated on sapphire substrates in the presence of anorthite glass, leading to the formation of 1.2 nm thick IGF at the Au-sapphire interfaces. Site-specific cross-section samples were characterized using quantitative high resolution transmission electron microscopy to study the atomistic structure of the films. Order was observed in the 1.2 nm thick films adjacent to the sapphire crystal in the form of 'Ca cages', experimentally demonstrating that ordering is an intrinsic part of IGF, as predicted from molecular dynamics and diffuse interface theory.

  15. Role of rare-earth impurities in the thermoluminescence of calcium sulphate phosphors

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Bapat, V.N.

    1974-01-01

    Rare-earth (RE) doped calcium sulphate phosphors like CaSO 4 (Dy) and CaSO 4 (Tm) are being extensively employed for radiation dosimetric measurements because of their good sensitivity, negligible fading and the case with which these could be economically produced in the laboratory. However the role played by the RE dopants in these phosphors has not been clearly brought out by any systematic studies. This paper presents the results obtained in an attempt to investigate the part played by RE impurities in the thermoluminescence (TL) of calcium sulphate phosphors prepared in the laboratory with known concentrations of the RE dopant. The phenomenon of concentration quenching has been observed withi increasing concentrations of the dopant and the experimental results could be fitted into the theoretical expression derived by Ewles and Lee. The effect of the individual RE dopant (at a concentration of 0.1% by weight in CaSO 4 ), on the TL glow curve patterns as well as the TL emission spectra was investigated after gamma irradiation at room temperature. While the TL glow curve patterns were strikingly similar, the TL emission spectra were characteristically different for the various dopants. The discrete line emissions recorded for the individual RE dopants could be easily identified to be the 4f fluorescence emissions of RE 3+ ions. Investigations on undoped calcium sulphate samples of different origins have revealed that their TL glow curve patterns are similar, while the differences observed in TL emission spectra could be ascribed to the different RE impurities in the samples. The study brings out clearly the role played by RE impurities as emission centres in CaSO 4 and implies that presence of any RE impurity in CaSO 4 cannot be ignored while explaining its thermoluminescence. (author)

  16. Impurity-generated non-Abelions

    Science.gov (United States)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by

  17. Phonon-impurity relaxation and acoustic wave absorption in yttrium-aluminium garnet crystals with impurities

    International Nuclear Information System (INIS)

    Ivanov, S.N.; Kotelyanskij, I.M.; Medved', V.V.

    1983-01-01

    The experimental results of investigations of the influence of substitution impurities in the yttrium-aluminium garnet lattice on absorption of high-frequency acoustic waves are presented. It is shown that the phonon-impurity relaxation processses affect at most the wave absorption and have resonance character when the acoustic wave interacts with the thermal phonon group in the vicinity of the perturbed part of the phonon spectrum caused by the impurity. The differences of time values between inelastic and elastic thermal phonons relaxations determined from the data on longitudinal and shear waves in pure and impurity garnet crystals are discussed

  18. Divertor experiment for impurity control in DIVA

    International Nuclear Information System (INIS)

    Nagami, Masayuki

    1979-04-01

    Divertor actions of controlling the impurities and the transport of impurity ions in the plasma have been investigated in the DIVA device. Following are the results: (1) The radial transport of impurity ions is not described only by neoclassical theory, but it is strongly influenced by anomalous process. Radial diffusion of impurity ions across the whole minor radius is well described by a neoclassical diffusion superposed by the anomalous diffusion for protons. Due to this anomalous process, which spreads the radial density profile of impurity ions, 80 to 90% of the impurity flux in the plasma outer edge is shielded even in a nondiverted discharge. (2) The divertor reduces the impurity flux entering the main plasma by a factor of 2 to 4. The impurity ions shielded by the scrape-off plasma are rapidly guided into the burial chamber with a poloidal excursion time roughly equal to that of the scrape-off plasma. (3) The divertor reduces the impurity ion flux onto the main vacuum chamber by guiding the impurity ions diffusing from the main plasma into the burial chamber, thereby reducing the plasma-wall interaction caused by diffusing impurity ions at the main vacuum chamber. The impurity ions produced in the burial chamber may flow back to the main plasma through the scrape-off layer. However, roughly only 0.3% of the impurity flux into the scrape-off plasma in the burial chamber penetrates into the main plasma due to the impurity backflow. (4) A slight cooling of the scrape-off plasma with light-impurity injection effectively reduces the metal impurity production at the first wall by reducing the potential difference between the plasma and the wall, thereby reducing the accumulation of the metal impurity in the discharge. Radiation cooling by low-Z impurities in the plasma outer edge, which may become an important feature in future large tokamaks both with and without divertor, is numerically evaluated for carbon, oxygen and neon. (author)

  19. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    International Nuclear Information System (INIS)

    Lotfi, E; Rezania, H; Arghavaninia, B; Yarmohammadi, M

    2016-01-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength. (paper)

  20. Effect of aging time on intergranular corrosion behavior of a newly developed LDX 2404 lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Ziying, E-mail: zzying@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Huizhen [School of Management, University of Shanghai for Science and Technology, Shanghai 200093 (China); Hu, Jun [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Li, Jin [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2016-07-05

    The effect of aging at 700 °C for various times on the intergranular corrosion behavior of LDX 2404 duplex stainless steel is investigated by morphological observation and electrochemical detection. Scanning electronic microscopy and transmission electronic microscopy analysis reveal that Cr{sub 2}N, M{sub 23}C{sub 6} and the sigma and chi phases nucleate simultaneously at the initial stages of aging. The granular particles of sigma phase grow larger but fewer with the increase of aging time. The electrochemical detection results show that intergranular corrosion become more severe and the corrosion type evolves from intergranular corrosion into general corrosion as the holding time extends to 48 h. - Highlights: • The IGC behavior of aged LDX 2404 is investigated. • Cr{sub 2}N, M{sub 23}C{sub 6} and the σ and χ phases nucleate simultaneously at the initial stages of aging. • IGC resistance decreases with the increase of aging time. • The corrosion type evolves from IGC into general corrosion for longer aging times.

  1. The effect of sintering temperature on the intergranular properties and weak link behavior of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    P. Kameli

    2006-03-01

    Full Text Available  A systematic study of the intergranular properties of (Bi,Pb2 Sr2 Ca2 Cu3 Oy (Bi2223 polycrystalline samples has been done using the electrical resistivity and AC susceptibility techniques. In this study, we have prepared a series of Bi2223 samples with different sintering temperatures. The XRD results show that by increasing the sintering temperature up to 865° c , the Bi2212 phase fraction decreases. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of the weak links and consequently reduces the intergranular critical current densities.

  2. Graphene plasmons: Impurities and nonlocal effects

    Science.gov (United States)

    Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael

    2018-02-01

    This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.

  3. Interplay of light and heavy impurities in a fusion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gaja, Mustafa [IPP, Garching (Germany); Tokar, Mikhail [IEK4, Juelich FZ, Juelich (Germany)

    2016-07-01

    Radiation from impurities eroded from the walls can lead to a broad spectrum of spectacular phenomena in fusion devices An example of such events are breathing oscillations observed in the large helical device (LHD), in long pulse discharges with a stainless steel divertor. They were characterized with oscillations of a period of a second in various plasma parameters. By optimizing magnetic geometry this operation mode, leading to a deteriorate plasma performance, can be avoided. Nonetheless it is of interest and practical importance to understand and firmly predict conditions for breathing phenomenon, in particular, in view of similar impurity environment in W-7 X stellarator. A qualitative explanation for breathing oscillations proposed earlier presumes that they arise due to non-linear synergetic interplay of diverse physical processes. A one-dimensional non-stationary model, describing the generation and transport of main, impurity particles and heat by including the radiation of high-Z (Fe) and low-Z (C and O) impurities is elaborated here. The calculations predict the appearance of oscillations in the relevant range of plasma parameters, reproduce well experimentally observed amplitudes and period of oscillations. It demonstrates that the smaller the fraction of the plasma interaction with a stainless steel surface, the higher the light impurity concentration needed to excite the breathing oscillations. This shows a way to avoid oscillations in future experiments.

  4. Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator

    International Nuclear Information System (INIS)

    Derakhshan, V; Ketabi, S A; Moghaddam, A G

    2016-01-01

    We employed the formalism of bond currents, expressed in terms of non-equilibrium Green’s function to obtain the local currents and transport features of zigzag silicene ribbon in the presence of magnetic impurity. When only intrinsic and Rashba spin–orbit interactions are present, silicene behaves as a two-dimensional topological insulator with gapless edge states. But in the presence of finite intrinsic spin–orbit interaction, the edge states start to penetrate into the bulk of the sample by increasing Rashba interaction strength. The exchange interaction induced by local impurities breaks the time-reversal symmetry of the gapless edge states and influences the topological properties strongly. Subsequently, the singularity of partial Berry curvature disappears and the silicene nanoribbon becomes a trivial insulator. On the other hand, when the concentration of the magnetic impurities is low, the edge currents are not affected significantly. In this case, when the exchange field lies in the x – y plane, the spin mixing around magnetic impurity is more profound rather than the case in which the exchange field is directed along the z -axis. Nevertheless, when the exchange field of magnetic impurities is placed in the x – y plane, a spin-polarized conductance is observed. The resulting conductance polarization can be tuned by the concentration of the impurities and even completely polarized spin transport is achievable. (paper)

  5. The behaviour of impurities in a steady-state DT gas-blanket reactor

    International Nuclear Information System (INIS)

    Markvoort, J.A.

    1975-11-01

    A four-fluid model of a cylindrical steady-state DT gas-blanket reactor is analysed. The four fluids are electrons, deuterium-tritium, helium and a high -Z impurity. The behaviour of the plasma is described by the multifluid MHD-equations which are numerically solved with the aid of a Runge Kutta method. Whether impurities tend to concentrate on the axis is found to depend on how, in the collision term, the Nernst effect is taken into account. In order to show the influence of the Nernst terms arising from electron-ion collisions and the Nernst terms due to ion-ion collisions separately, the thermal force is dealt with in two ways. In model A, only the contribution from electron-ion collisions was considered. The computer calculations show that the impurities have their maximum concentration on the axis. A theoretical analysis explains this result. In model B, which is more realistic, these ion-ion collisions are included. The computer calculations as well as the theoretical analysis show that the influence of the thermoforce due to ion-ion collisions on the density profiles dominates over the force due to electron collisions, and lead to a minimum in the impurity density on the axis. As in model A, the analytical analysis yields relationships between the various density profiles and the temperature profile

  6. Power balance and characterization of impurities in the Maryland Spheromak

    International Nuclear Information System (INIS)

    Cote, C.

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T e and higher n e than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase

  7. Power balance and characterization of impurities in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Claude [Univ. of Maryland, College Park, MD (United States)

    1993-01-01

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low Te and higher ne than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.

  8. Divertor impurity injection using high voltage arcs for impurity transport studies on the Mega Amp Spherical Tokamak

    International Nuclear Information System (INIS)

    Leggate, H. J.; Turner, M. M.; Lisgo, S. W.; Harrison, J. R.; Elmore, S.; Allan, S. Y.; Gaffka, R. C.; Stephen, R. C.

    2014-01-01

    The operation of next-generation fusion reactors will be significantly affected by impurity transport in the scrape-off layer (SOL). Current modelling efforts are restricted by a lack of detailed data on impurity transport in the SOL. In order to address this, a carbon injector has been designed and installed on the Mega Amp Spherical Tokamak (MAST). The injector creates short lived carbon plumes originating at the MAST divertor lasting less than 50 μs. High voltage capacitor banks are used to create a discharge across concentric carbon electrodes located in a probe mounted on the Divertor Science Facility in the MAST lower divertor. This results in a very short plume duration allowing observation of the evolution of the plume and precise localisation of the plume relative to the X-point on MAST. The emission from the carbon plume was imaged using fast visible cameras filtered in order to isolate the carbon II and carbon III emission lines centered around 514 nm and 465 nm

  9. The impurity transport in HT-6B tokamak

    International Nuclear Information System (INIS)

    Huang Rong; Xie Jikang; Li Linzhong; He Yexi; Wang Shuya; Deng Chuanbao; Li Guoxiang; Qiu Lijian

    1992-06-01

    The quasi-stationary profiles of the impurity ionization stages in HT-6B tokamak were determined by monitoring the VUV (vacuum ultraviolet) and visible line emissions from impurities. An impurity transport code was set up. The impurity transport coefficients and other parameters of impurities in that device were simulated and determined. From the measurement of impurity emission profiles and simulation analysis, it is concluded that the impurity confinement is improved and the impurity recycling is reduced by the slow magnetic compression. Some characteristics of impurity transport in that device are also discussed

  10. Impurities and evaluation of induced activity of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Araki, Hiroshi; Ito, Shinji; Fujita, Mitsutane; Maki, Koichi

    1997-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about 5 orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC fibers is necessary to reduce the activity by 10 9 after several ten years cooling of fusion reactors. (author)

  11. Impurity gettering in semiconductors

    Science.gov (United States)

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  12. Effects of magnetic and nonmagnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor: Application to CePt3Si

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Tamaddonpour, M.

    2013-10-01

    The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.

  13. Impurity-induced moments in underdoped cuprates

    International Nuclear Information System (INIS)

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-01-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. copyright 1997 The American Physical Society

  14. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation

    International Nuclear Information System (INIS)

    Azzouzi, Ghania; Chegaar, Mohamed

    2011-01-01

    The impurity photovoltaic effect (IPV) has mostly been studied in various semiconductors such as silicon, silicon carbide and GaAs in order to increase infrared absorption and hence cell efficiency. In this work, sulphur is used as the IPV effect impurity incorporated in silicon solar cells. For our simulation we use the numerical device simulator (SCAPS). We calculate the solar cell performances (short circuit current density J sc , open circuit voltage V oc , conversion efficiency η and quantum efficiency QE). We study the influence of light trapping and certain impurity parameters like impurity concentration and position in the gap on the solar cell performances. Simulation results for IPV effect on silicon doped with sulphur show an improvement of the short circuit current and the efficiency for sulphur energy levels located far from the middle of the band gap especially at E c -E t =0.18 eV.

  15. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  16. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  17. ACCELERATING COLUMN FOR SEPARATION OF ETHANOL FROM FACTIONS OF INTERMEDIATE AND HEAD IMPURITIES

    Directory of Open Access Journals (Sweden)

    G. V. Agafonov

    2015-01-01

    Full Text Available Summary. Nowadays purification of ethanol from the head and intermediate impurities is done with the selection of fractions of fusel alcohol and fusel oil from the distillation column and head and intermediate fractions impurities from condenser Epuration column operating accord-ing to the hydro-selection method. Due to this the fraction contains at least 13% ethyl alcohol, resulting in a reduced yield of the final product. Distillation of these fractions in the known acceleration columns requires increased consumption of heating steam for 6-8 kg / dal and increasing installation metal content. In this paper we investigate the process of distillation fraction from the condenser of Epura-tion column, fusel alcohol from the distillation column and subfusel liquid layer from the decanter, which is fed on a plate of supply of new accelerating column (AC, which operates on Epuration technology with the supply of hydro-selection water on the top plate and has in its composition concentration, boiling and stripping parts, a dephlagmator, a condenser, a boiler. Material balance equations of the column were obtained and ethyl alcohol concentration on its plates were determined by them. Having converted the material balance equations, we determined the dependences for the impurities ratio being drawn from the accelerating column with the Luther flows and ethyl alcohol fraction. Then we received the equation for determining the proportion of impurities taken from the column condenser with fraction. These calculations proved that the studied impurities are almost completely selected with this faction, ethyl alcohol content of it being 0.14% of the hourly output.

  18. Determination of susceptibility to intergranular corrosion of stainless steels type X5CrNi18-10 in field

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2016-12-01

    Full Text Available In this paper, the DL EPR method (electrochemical potentiokinetic reactivation with double loop was modified and used to study the susceptibility to intergranular corrosion and stress corrosion cracking of a stainless steel type X5CrNi18-10. The tests were performed in a special electrochemical cell, with the electrolyte in the gel form. Modified DL EPR method is characterized by simple and high accuracy measurements as well as repeatability of the test results. The indicator of susceptibility to intergranular corrosion (Qr/QpGBA obtained by modified DL EPR method is in a very good agreement with the same indicator obtained by standard DL EPR method. The modified DL EPR method is quantitative and highly selective method. Small differences in the susceptibility of the stainless steel type CrNi18-10 to intergranular corrosion and stress corrosion cracking can be determined. Test results can be obtained in a short time. The cost of tests performed by modified DL EPR method is much lower than the cost of tests by conventional chemical methods. Modified DL EPR method can be applied in the field on the stainless steels constructions.

  19. Impurities in uranium process solutions

    International Nuclear Information System (INIS)

    Boydell, D.W.

    1980-01-01

    Several uranium purification circuits are presented in tabular form together with the average major impurity levels associated with each. The more common unit operations in these circuits, namely strong- and weak-base ion-exchange, solvent extraction and the precipitation of impurities are then discussed individually. Particular attention is paid to the effect and removal of impurities in each of these four unit operations. (author)

  20. NMR investigation of boron impurities in refined metallurgical grade silicon

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, Hans-Joachim; Loeser, Wolfgang; Schmitz, Steffen; Sakaliyska, Miroslava [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research (IFW), Dresden (Germany); Institute for Solid State Physics, Technische Universitaet Dresden (Germany); Eisert, Stefan; Reichenbach, Birk; Mueller, Tim [Adensis GmbH, Dresden (Germany); Acker, Joerg; Rietig, Anja; Ducke, Jana [Department of Chemistry, Faculty for Natural Sciences, Brandenburg Technical University Cottbus-Senftenberg, Senftenberg (Germany)

    2015-09-15

    The nuclear magnetic resonance (NMR) method was applied for tracking boron impurities in the refining process of metallurgical grade (MG) silicon. From the NMR signal of the {sup 11}B isotope at an operating temperature 4.2 K, the boron concentration can be estimated down to the order of 1-10 wppm B. After melting and resolidification of MG-Si alloyed with Ca and Ti, a major fraction of B impurities remains in the Si solid solution as inferred from the characteristic NMR frequency. The alloying element Ti does not form substantial fractions of TiB{sub 2}. Acid leaching of crushed powders of MG-Si alloyed with Ca and Ti can diminish the initial impurity content of B suggesting its accumulation in the grain boundary phases. NMR signals of TiB{sub 2} at 4.2 K and room temperature (RT), and of poly-Si with different B doping at 4.2 K. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An Evaluation Method for Activation Analysis using Pre-evaluated Contribution of Nuclides with Impurity

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Myeong Hyeon; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Kim, Gee Suck [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclides in radiation facilities become unstable from nuclear reaction. It emits residual radiation to be stable. Some unstable nuclides remain after operation in the material. It continuously emits the radiation, which has a harmful effect to worker when they try maintenance and plant decommissioning. It is known that residual radiation from impurity occupies a large portion of the radiation dose. If impurity concentration is higher than expectation, the effects of residual radiation could be underestimated. Therefore, estimation of residual radiation is repeatedly calculated according to impurity concentration. In this study, an approach estimating the activation was proposed using pre-evaluated nuclide's contribution to reduce the calculation time and effort of worker. In this study, in order to reduce the calculation time and effort of worker, activation analysis method based on pre-evaluated nuclide contribution was proposed. This method was verified using concreate activation problem, which is located in nuclear power plant. The results show that our proposed method has good agreement with Bateman equation.

  2. Refining of Cd and Zn from interstitial impurities using distillation with a ZrFe getter filter

    Directory of Open Access Journals (Sweden)

    Scherban’ A. P.

    2013-10-01

    Full Text Available Behavior of interstitial impurities in Cd and Zn is analysed in terms of thermodynamics. The authors consider reduction reactions of cadmium, zinc and carbon oxides, as well as zinc nitride with the getter material from the Zr-Fe alloy, depending on temperature and vacuum. Optimum initial temperature and vacuum conditions for the processes of deep refining of Cd and Zn from interstitial impurities has been developed. It has been shown experimentally that the proposed refining method provides a more effective cleaning of cadmium and zinc from the interstitial impurities than the distillation without a filter: the impurity content is reduced more than tenfold compared to the concentration in the input metal.

  3. Density profiles and particle fluxes of heavy impurities in the limiter shadow region of a tokamak

    International Nuclear Information System (INIS)

    Claassen, H.A.; Repp, H.

    1980-01-01

    For the case of low impurity concentration, transport calculations have been performed for heavy impurities, in the scrape-off layer plasma of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the various ionization states of the impurity ions taking due consideration of the convection and collision processes. The background plasma and the impurity sources from the torus wall and the limiter surface enter the theory as input parameters. The theory is developed for the first two orders of the drift approximation. Numerical results are given to zero order drift approximation for the radial profiles of density and particle fluxes parallel to the magnetic field. (orig.)

  4. Influence of the selected structural parameter on a depth of intergranular corrosion of Al-Si7-Mg0,3 aluminum alloy

    Directory of Open Access Journals (Sweden)

    L. Bernat

    2015-10-01

    Full Text Available The paper presents an influence of the Dendrite Arm Spacing (DAS microstructure parameter on the intergranular corrosion of AlSi7Mg aluminum alloy. The samples were subjected to the corrosion process for: 2,5; 12; 24; 48 and 96 hours in NaCl + HCl + H2O solution. It was noted that the DAS parameter significantly influenced on a distribution and depth of the intergranular corrosion of the hypoeutectic Al - Si - Mg silumin.

  5. Principal modes of rupture encountered in expertise of advanced components

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Bougault, A.

    1986-10-01

    Failure of many metallic components investigated can be classified into two categories: intergranular or transgranular according to their principal mode of rupture. Intergranular ruptures are often provoked by segregation of impurities at the grain boundaries. Three examples are cited where this phenomenon occured, one of them is a steel (A 508 cl 3) used for PWR vessel. Intergranular failures are in general induced by fatigue in the advanced components operating under thermal or load transients. One example concerning a sodium mixer which was subjected to thermal loadings is presented. Examples of stress corrosion and intergranular sensitization failures are cited. These examples show the importance of fractography for the determination of rupture causes [fr

  6. The effect of resonant magnetic perturbations on the impurity transport in TEXTOR-DED plasmas

    International Nuclear Information System (INIS)

    Greiche, Albert Josef

    2009-01-01

    Thermonuclear fusion provides a new mechanism for the generation of electrical power which has the perspective to serve humanity for several millions of years. One possibility to implement fusion on earth is to magnetically confine hot deuterium tritium plasmas in so called tokamaks. The fusion reactions take place in the hot plasma core. Each of the fusion reactions between deuterium and tritium yields 17.6 MeV which can be used in the process of generating electrical power. Impurities contaminate the plasma which then is cooled down and diluted. This leads to a reduction of the fusion reactions and in consequence the energy yield. The transport behaviour of the impurities in the plasma is not fully understood up to now. Nevertheless, experiments have shown that the application of resonant magnetic perturbations (RMP) can control the impurity content in the plasma. The dynamic ergodic divertor (DED) on the tokamak Textor is able to induce static and dynamic RMPs. During the application of RMPs transient impurity transport experiments with argon have been performed and the time evolution of the impurity concentrations have been monitored. The line emission intensity of the impurities in the plasma is measured in the vacuum ultraviolet (VUV) and in the soft X-ray (SXR) with the absolutely calibrated VUV spectrometer Hexos and SXR PIN diodes, respectively. The analysis of the transient impurity transport experiments is performed with the help of the transport code Strahl. The impurity flows in Strahl are described by a combination of a diffusive and a convective flow. In the computing process the code solves the coupled set of continuity equations of each of the ionization stages of an impurity. With this method the time evolution of the impurity ion densities and the line emission intensities of the ionization stages can be computed. The adaption to the experimental measurements is performed with the help of the diffusion coefficient and the drift velocity which

  7. Influence of an ergodic magnetic limiter on the impurity content in a tokamak

    International Nuclear Information System (INIS)

    Engelhardt, W.; Feneberg, W.

    1978-01-01

    This work deals with the properties of an ergodic magnetic limiter and presents calculations concerning the reduction of the impurity rate in a tokamak by a boundary sheath with decreased confinement time. The layer is produced by resonant helical windings superposed on an equilibrium magnetic field with closed magnetic surfaces. The transport coefficients in the boundary layer, which yield the temperature and density distribution, are obtained from the movement of particles along a stochastic magnetic field. The resulting line density can be made a factor of ten higher than is expected for a poloidal divertor experiment. From this it is concluded that all impurities coming from the wall will be ionized in the boundary layer. The concentration of the impurities in the plasma center is calculated according to a model which uses an anomalous diffusion coefficient being consistent with the ergodization in the boundary layer. The resulting concentration can be reduced proportional to the factor (nsub(e)Dsub(e)) -1 where nsub(e) and Dsub(e) are electron density and diffusion coefficient in the boundary layer. (Auth.)

  8. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  9. Instrumental neutron-activation determination of impurities in lead and titanium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Popova, I L

    1980-01-01

    Instrumental neutron-activation analysis was used to determine 22 impurities in lead and titanium compounds (e.g. PbO, Pb/NO3/2, and TiO2) used as raw materials for ferroelectrics. Five elements (Al, V, Mn, Sc, and Se) were determined by short-lived isotopes and 17 elements were determined by long-lived isotopes. The detection limits were 7 x 10 to the -3rd to 2 x 10 to the -8th %. A substantial difference in concentrations of certain impurity elements has been found in different series of lead and titanium oxides of similar purity.

  10. The effect of ICRF antenna phasing on metal impurities in TFTR

    International Nuclear Information System (INIS)

    Stevens, J.E.; Bush, C.; Colestock, P.L.; Oak Ridge National Lab., TN; AN Ukrainskoj SSR, Kharkov

    1989-07-01

    ICRF power levels of up to 2.8 MW were achieved during the 1988 experimental run on TFTR. Metal impurity concentrations (Ti, Cr, Fe, Ni) and Z eff were monitored during ICRF heating by x-ray pulse height analysis and uv spectroscopy. Antenna phasing was the key variable affecting ICRF performance. No increase in metallic impurities was observed for P rf approx lt 2.8 MW with the antenna straps 0-Π, while a measurable increase in titanium (Faraday screen material) was observed for P rf approx gt 1.0 MW with 0-0 phasing. 18 refs., 8 figs

  11. Application of uranium impurity data for material characterization in nuclear safeguards

    International Nuclear Information System (INIS)

    Penkin, M.V.; Boulyga, S.F.; Fischer, D.M.

    2016-01-01

    Samples of materials involved in the conversion of uranium into nuclear-grade products are collected to support the verification of States' declarations and to look for indications of possible undeclared materials and activities. Samples are analysed by several laboratories to determine concentrations of about sixty impurities; the data consistency is addressed through the unified reporting requirements, the use of common reference materials, and via inter-laboratory comparisons. The impurity analysis results, along with other essential parameters, are interpreted to judge sample conformity to the relevant specifications, to evaluate the facility design information, to assess material provenance and intended use. (author)

  12. Neo-classical impurity transport

    International Nuclear Information System (INIS)

    Stringer, T.E.

    The neo-classical theory for impurity transport in a toroidal plasma is outlined, and the results discussed. A general account is given of the impurity behaviour and its dependence on collisionality. The underlying physics is described with special attention to the role of the poloidal rotation

  13. Dynamical impurity problems

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1993-01-01

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class

  14. Dynamical impurity problems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1993-12-31

    In the past few years there has been a resurgence of interest in dynamical impurity problems, as a result of developments in the theory of correlated electron systems. The general dynamical impurity problem is a set of conduction electrons interacting with an impurity which has internal degrees of freedom. The simplest and earliest example, the Kondo problem, has attracted interest since the mid-sixties not only because of its physical importance but also as an example of a model displaying logarithmic divergences order by order in perturbation theory. It provided one of the earliest applications of the renormalization group method, which is designed to deal with just such a situation. As we shall see, the antiferromagnetic Kondo model is controlled by a strong-coupling fixed point, and the essence of the renormalization group solution is to carry out the global renormalization numerically starting from the original (weak-coupling) Hamiltonian. In these lectures, we shall describe an alternative route in which we identify an exactly solvable model which renormalizes to the same fixed point as the original dynamical impurity problem. This approach is akin to determining the critical behavior at a second order phase transition point by solving any model in a given universality class.

  15. Trace impurities analysis of aluminum nanopowder and its air combustion product

    Science.gov (United States)

    Kabanov, Denis V.; Merkulov, Viktor G.; Mostovshchikov, Andrey V.; Ilyin, Alexander P.

    2018-03-01

    Neutron activation analysis (NAA) allows estimating micro-concentrations of chemicals and analyzes tens of elements at one measurement. In this paper we have used NAA to examine metal impurities in the electroexplosive aluminum nanopowder (ANP) and its air-combustion products produced by burning in crucibles in an electric and magnetic field and without application of fields. It has been revealed that in the air-combustion products impurities content is reduced. The presence of impurities in the ANP is associated with electric explosion technology (erosion of electrode and chamber materials) and with the previous development of various nanopowders in the composition of this electric explosive device. NAA is characterized by a high sensitivity and reproducibility to elements content and low metering error. According to the obtained results it has been concluded that NAA metering error does not exceed 10% in the wide concentration range, from 0.01 to 2100 ppm, particularly. Besides, there is high reproducibility of the method that has been proved on macro-elements of Ca (>1000 ppm), Fe (>2000 ppm), and micro-elements as Sm, U, Ce, Sb, Th, etc. (<0.9 ppm). It is recommended to use an individual unit for the production of pure metal powders for electric explosion and production of nanopowders, which is possible with mass production of nanopowders.

  16. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  17. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  18. Influence of the grain boundary atomic structure on the intergranular precipitation

    International Nuclear Information System (INIS)

    Le Coze, J.

    1975-01-01

    The number of intergranular precipitates after long time annealing is calculated taking into account nucleation, growth and coarsening. With intermediate supersaturation, the great number of precipitates which is observed in some boundaries may have different causes: in low misorientation boundaries and (111) twin, the maxima come from semi-coherent nucleation with one grain; in the other boundaries, the maxima are connected with a great number of high energy atomic sites. Depending on supersaturation, some maxima may disappear whereas others are reinforced [fr

  19. Impurity decoration of native vacancies in Ga and N sublattices of gallium nitride

    OpenAIRE

    Hautakangas, Sami

    2005-01-01

    The effects of impurity atoms as well as various growth methods to the formation of vacancy type defects in gallium nitride (GaN) have been studied by positron annihilation spectroscopy. It is shown that vacancy defects are formed in Ga or N sublattices depending on the doping of the material. Vacancies are decorated with impurity atoms leading to the compensation of the free carriers of the samples. In addition, the vacancy clusters are found to be present in significant concentrations in n-...

  20. Identification and characterization of potential impurities of donepezil.

    Science.gov (United States)

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  1. Impurity Induced Phase Competition and Supersolidity

    Science.gov (United States)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  2. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  3. The impurity transport in HT-6M tokamak

    International Nuclear Information System (INIS)

    Xu Wei; Wan Baonian; Xie Jikang

    2003-01-01

    The space-time profile of impurities has been measured with a multichannel visible spectroscopic detect system and UV rotation-mirror system in the HT-6M tokamak. An ideal impurity transport code has been used to simulate impurities (carbon and oxygen) behaviour during the OHM discharge. The profiles of impurities diffusion and convection coefficient, impurities ion densities in different ionized state, loss power density and effective charge number have been derived. The impurity behaviour during low-hybrid current drive has also been analyzed, the results show that the confinement of particles, impurities and energy has been improved, and emission power and effective charge number have been reduced

  4. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    Zamora R, L.

    1994-01-01

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  5. Mechanisms of impurity diffusion in rutile

    International Nuclear Information System (INIS)

    Peterson, N.L.; Sasaki, J.

    1984-01-01

    Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures

  6. Simulation of Industrial Wastewater Treatment from the Suspended Impurities into the Flooded Waste Mining Workings

    Science.gov (United States)

    Bondareva, L.; Zakharov, Yu; Goudov, A.

    2017-04-01

    The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.

  7. Tantalum(V) impurity extraction by octanol from niobium(V) fluoride solutions

    International Nuclear Information System (INIS)

    Majorov, V.G.; Nikolaev, A.I.; Kopkov, V.K.

    2002-01-01

    The conditions of the niobium and tantalum extraction separation by octanol in the fluoride solutions, depending on the metals and free hydrofluoric acid concentration as well as on the organic and water phases voluminous relation, are studied for the purpose of developing the technology of niobium deep purification from the tantalum impurities. The technological scheme of the niobium solutions(V) extraction purification from the tantalum impurities(V), which provides for obtaining the niobium oxide(V), containing less than 0.005 mass % Ta 2 O 5 , is proposed on the basis of the established optimal separation conditions. The possibility of using the developed technology by the pyrochlore reprocessing is indicated [ru

  8. Investigations of impurity control in JET using fuelling, and interpretation of experiments using the LIM impurity code

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Stangeby, P.C.; Elder, J.D.

    1994-01-01

    Inhibition of contamination of the plasma core in JET by edge impurities during high power heating of deuterium plasmas in limiter configuration using fuelling is demonstrated. By injecting deuterium gas during heating, in the presence of a much larger recycling deuterium flux, a reduction of more than a factor of 2 was effected in n z (0)/Φ z , the ratio of central impurity density to impurity influx at the plasma edge. The reduction in n z (0) was obtained without much effect on peak electron temperature and density. Reduction of plasma contamination by gas fuelling was observed also when hot spots formed on the limiter, a condition that without simultaneous gas fuelling culminated in runaway plasma contamination. Detailed analysis of the experiments is undertaken with the purpose of identifying the processes by which plasma contamination was inhibited, employing standard limiter plasma contamination modelling. Processes which might produce the observed impurity inhibiting effects of gas injection include: (a) reduction in impurity production at the limiter; (b) increase in impurity screening in the scrape-off layer; (c) increase in radial impurity transport at the plasma edge; (d) increase in average deuteron flow velocity to the limiter along the scrape-off layer. These are examined in detail using the Monte Carlo limiter impurity transport code LIM. Bearing in mind that uncertainties exist both in the choice of appropriate modelling assumptions to be used and in the measurement of required edge plasma parameters, changes in n z (0)/Φ z by a factor of 2 are at the limit of the present modelling capability. However, comparison between LIM code simulations and measurements of plasma impurity content indicate that the standard limiter plasma contamination model may not be adequate and that other processes need to be added in order to be able to describe the experiments in JET. (author). 24 refs, 2 figs, 8 tabs

  9. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    Science.gov (United States)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  10. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  11. Impurities and evaluation of induced activity of CVI SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Fujita, Mitsutane; Araki, Hiroshi; Kohyama, Akira

    2000-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However, the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about six orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC composites, especially reduction of Fe and Ni contents, is necessary to reduce the activity to satisfy the limit of remote handling recycling after several 10 years cooling of fusion reactors

  12. Oxidation assisted intergranular cracking under loading at dynamic strain aging temperatures in Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, M.C., E-mail: monica_crezende@hotmail.com [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro 21945-970 (Brazil); Araújo, L.S.; Gabriel, S.B. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro 21945-970 (Brazil); Dille, J. [Université Libre de Bruxelles, 4MAT Department, Av. F. Roosevelt 50, C.P. 194/03, Brussels (Belgium); Almeida, L.H. de [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro 21945-970 (Brazil)

    2015-09-15

    Highlights: • Mechanical properties are controlled by DSA, precipitation hardening and OAIC. • Between 600 and 700 °C the critical strain for serrations increases with temperature. • This is related to the consumption of matrix elements (especially Nb: for γ′ and γ″). • A reduction in ductility occurs (related to the OAIC) when the DSA is no longer effective. • This reduction is accompanied by an increase in intergranular brittle fracture. - Abstract: It is well established that 718 superalloy exhibits brittle intergranular cracking when deformed under tension at temperatures above 600 °C. This embrittlement effect is related with grain boundary penetration by oxygen (Oxygen Assisted Intergranular Cracking – OAIC). Simultaneously, impacting on its mechanical properties, the precipitation of coherent γ′ and γ″ phases occur above 650 °C and Dynamic Strain Aging (DSA) occurs in the temperature range between 200 and 800 °C. Although literature indicates that OAIC is the mechanism that controls mechanical properties at high temperatures, its interactions with DSA and precipitation are still under discussion. The objective of this work is to investigate the interactions between the embrittlement phenomena (OAIC and DSA) and the hardening mechanism of γ′ and γ″ precipitation on the mechanical properties of an annealed 718 superalloy. Tensile tests were performed at a strain rate of 3.2 × 10{sup −4} s{sup −1} under secondary vacuum, in temperatures ranging from 200 to 800 °C. Fracture surfaces were observed by scanning electron microscopy (SEM) and precipitation by transmission electron microscopy (TEM). The effect of DSA and precipitation on the strength and of OAIC on the ductility was verified.

  13. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    Science.gov (United States)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  14. Chemical modifications and stability of phosphorene with impurities: a first principles study.

    Science.gov (United States)

    Boukhvalov, D W; Rudenko, A N; Prishchenko, D A; Mazurenko, V G; Katsnelson, M I

    2015-06-21

    We perform a systematic first-principles study of phosphorene in the presence of typical monovalent (hydrogen and fluorine) and divalent (oxygen) impurities. The results of our modeling suggest a decomposition of phosphorene into weakly bonded one-dimensional (1D) chains upon single- and double-side hydrogenation and fluorination. In spite of a sizable quasiparticle band gap (2.29 eV), fully hydrogenated phosphorene was found to be dynamically unstable. In contrast, complete fluorination of phosphorene gives rise to a stable structure, which is an indirect gap semiconductor with a band gap of 2.27 eV. We also show that fluorination of phosphorene from the gas phase is significantly more likely than hydrogenation due to the relatively low energy barrier for the dissociative adsorption of F2 (0.19 eV) compared to H2 (2.54 eV). At low concentrations, monovalent impurities tend to form regular atomic rows of phosphorene, though such patterns do not seem to be easily achievable due to high migration barriers (1.09 and 2.81 eV for H2 and F2, respectively). Oxidation of phosphorene is shown to be a qualitatively different process. Particularly, we observe instability of phosphorene upon oxidation, leading to the formation of disordered amorphous-like structures at high concentrations of impurities.

  15. Influence of impurities on silicide contact formation

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Meermanov, G.B.; Kazdaev, R.Kh.

    2002-01-01

    Research objectives of this work are to investigate the influence of light impurities implantation on peculiarities of the silicides formation in molybdenum monocrystal implanted by silicon, and in molybdenum films sputtered on silicon substrate at subsequent annealing. Implantation of the molybdenum samples was performed with silicon ions (90 keV, 5x10 17 cm -2 ). Phase identification was performed by X ray analysis with photographic method of registration. Analysis of the results has shown the formation of the molybdenum silicide Mo 3 Si at 900 deg. C. To find out the influence of impurities present in the atmosphere (C,N,O) on investigated processes we have applied combined implantation. At first, molybdenum was implanted with ions of the basic component (silicon) and then -- with impurities ions. Acceleration energies (40keV for C, 45 keV for N and 50 keV for O) were chosen to obtain the same distribution profiles for basic and impurities ions. Ion doses were 5x10 17 cm -2 for Si-ions and 5x10 16 cm -2 - for impurities. The most important results are reported here. The first, for all three kinds of impurities the decreased formation temperatures of the phase Mo 3 Si were observed; in the case of C and N it was ∼100 deg. and in the case of nitrogen - ∼200 deg. Further, simultaneously with the Mo 3 Si phase, the appearance of the rich-metal phase Mo 5 Si 3 was registered (not observed in the samples without additional implantation). In case of Mo/Si-structure, the implantation of the impurities (N,O) was performed to create the peak concentration (∼4at/%) located in the middle of the molybdenum film (∼ 150nm) deposited on silicon substrate. Investigation carried out on unimplanted samples showed the formation of the silicide molybdenum MoSi 2 , observed after annealing at temperatures 900/1000 deg. C, higher than values 500-600 deg. C reported in other works. It is discovered that electrical conductivity of Mo 5 Si 3 -films synthesized after impurities

  16. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  17. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Netterfield, R P; Martin, P J; Leistner, A [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  18. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard to the case of {{L}ez}<0 , the maximum growth rate scaling is {γ\\max}\\propto Mi-0.5 . The possible relations of the results

  19. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  20. Impurity energy level in the Haldane gap

    International Nuclear Information System (INIS)

    Wang Wei; Lu Yu

    1995-11-01

    An impurity bond J' in a periodic 1D antiferromagnetic spin 1 chain with exchange J is considered. Using the numerical density matrix renormalization group method, we find an impurity energy level in the Haldane gap, corresponding to a bound state near the impurity bond. When J' J. The impurity level appears only when the deviation dev = (J'- J)/J' is greater than B c , which is close to 0.3 in our calculation. (author). 15 refs, 4 figs

  1. Multi-impurity polarons in a dilute Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Santamore, D H; Timmermans, Eddy

    2011-01-01

    We describe the ground state of a large, dilute, neutral atom Bose-Einstein condensate (BEC) doped with N strongly coupled mutually indistinguishable, bosonic neutral atoms (referred to as ‘impurity’) in the polaron regime where the BEC density response to the impurity atoms remains significantly smaller than the average density of the surrounding BEC. We find that N impurity atoms with N ≠ 1 can self-localize at a lower value of the impurity-boson interaction strength than a single impurity atom. When the ‘bare’ short-range impurity-impurity repulsion does not play a significant role, the self-localization of multiple bosonic impurity atoms into the same single particle orbital (which we call co-self-localization) is the nucleation process of the phase separation transition. When the short-range impurity-impurity repulsion successfully competes with co-self-localization, the system may form a stable liquid of self-localized single impurity polarons. (paper)

  2. Collision of impurities with Bose–Einstein condensates

    Science.gov (United States)

    Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.

    2018-04-01

    Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.

  3. An Abrupt Transition to an Intergranular Failure Mode in the Near-Threshold Fatigue Crack Growth Regime in Ni-Based Superalloys

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2018-06-01

    Cyclic near-threshold fatigue crack growth (FCG) behavior of two disk superalloys was evaluated and was shown to exhibit an unexpected sudden failure mode transition from a mostly transgranular failure mode at higher stress intensity factor ranges to an almost completely intergranular failure mode in the threshold regime. The change in failure modes was associated with a crossover of FCG resistance curves in which the conditions that produced higher FCG rates in the Paris regime resulted in lower FCG rates and increased ΔK th values in the threshold region. High-resolution scanning and transmission electron microscopy were used to carefully characterize the crack tips at these near-threshold conditions. Formation of stable Al-oxide followed by Cr-oxide and Ti-oxides was found to occur at the crack tip prior to formation of unstable oxides. To contrast with the threshold failure mode regime, a quantitative assessment of the role that the intergranular failure mode has on cyclic FCG behavior in the Paris regime was also performed. It was demonstrated that even a very limited intergranular failure content dominates the FCG response under mixed mode failure conditions.

  4. Corrosion behavior of high purity Fe-Cr-Ni alloys in trans-passive condition

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Jyoji; Kako, Kenji

    1998-01-01

    The corrosion behavior of high-purity (99.99%) Fe-Cr-Ni alloys was investigated in 13 N nitric acid with/without Ce 4+ ions to clarify the effect of impurities on the trans-passive corrosion of stainless steel. The following results were obtained. (1) Almost no intergranular corrosion was observed in the high-purity alloys, although the corrosion rate of the matrix region was nearly the same as that of a commercial stainless steel with the same Cr and Ni content. (2) Due to the improved intergranular corrosion resistance, the effect of the purification became significant in the corrosion condition with the grain-separation being predominant. (3) The high-purity alloys showed higher susceptivility to intergranular corrosion with aging treatment between 873 K and 1073 K. Although the sulfuric acid/copper sulfate test suggested the formation of Cr-depleted zones, a grain boundary micro-analysis using a FETEM with an EDX did not reveal any change in Cr content or impurity segregain along the grain boundaries. The mechanism of corrosion enhancement resulting from the aging treatment remains nuclear. (author)

  5. The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M.G., E-mail: m.g.burke@manchester.ac.uk; Bertali, G.; Prestat, E.; Scenini, F.; Haigh, S.J.

    2017-05-15

    In situ analytical transmission electron microscopy (TEM) can provide a unique perspective on dynamic reactions in a variety of environments, including liquids and gases. In this study, in situ analytical TEM techniques have been applied to examine the localised oxidation reactions that occur in a Ni-Cr-Fe alloy, Alloy 600, using a gas environmental cell at elevated temperatures. The initial stages of preferential intergranular oxidation, shown to be an important precursor phenomenon for intergranular stress corrosion cracking in pressurized water reactors (PWRs), have been successfully identified using the in situ approach. Furthermore, the detailed observations correspond to the ex situ results obtained from bulk specimens tested in hydrogenated steam and in high temperature PWR primary water. The excellent agreement between the in situ and ex situ oxidation studies demonstrates that this approach can be used to investigate the initial stages of preferential intergranular oxidation relevant to nuclear power systems. - Highlights: • In situ analytical TEM has been performed in 1 bar H{sub 2}-H{sub 2}O vapor at 360–480 °C. • Nanoscale GB migration and solute partitioning correlate with ex situ data for Alloy 600 in H{sub 2}-steam. • This technique can provide new insights into localised reactions associated with localised oxidation.

  6. Determination of Impurities of Atrazine by HPLP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Canping, Pan [Department of Applied Chemistry, China Agricultural University Beijing (China)

    2009-07-15

    The determination of the main impurities of the herbicide atrazine by GC/FID, GC/MS and LC/MS is described. The most relevant technical impurities were synthesized and characterized by IR and UV spectroscopy as well. The impurity profiles of different technical grade formulated products were tested and the typical impurities identified. (author)

  7. The influence of impurities on the recovery of radiation defects in niobium

    International Nuclear Information System (INIS)

    Petzold, J.

    1986-01-01

    Pure niobium and doped niobium are irradiated with electrons (3 MeV) at a temperature of 7-8 K. During annealing the influence of the different impurities and of their doping concentration on the recovery of the electric conductivity are investigated. (BHO)

  8. Influence of iron impurities on defected graphene

    Energy Technology Data Exchange (ETDEWEB)

    Faccio, Ricardo; Pardo, Helena [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay); Araújo-Moreira, Fernando M. [Materials and Devices Group, Department of Physics, Universidade Federal de São Carlos, SP 13565-905 (Brazil); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat, Cryssmat-Lab, DETEMA, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Cno. Saravia s/n, CP 91000 Pando (Uruguay); Centro Interdisciplinario en Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República, Montevideo (Uruguay)

    2015-03-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism.

  9. Influence of iron impurities on defected graphene

    International Nuclear Information System (INIS)

    Faccio, Ricardo; Pardo, Helena; Araújo-Moreira, Fernando M.; Mombrú, Alvaro W.

    2015-01-01

    Highlights: • The interaction among a multivacancy graphene system and iron impurities is studied. • The studied iron impurities were single atom and tetrahedral and octahedral clusters. • DFT calculations using the VASP code were performed. • The embedding of Fe affects the structure and electronic behavior in the graphene. • Half metal or semimetal behavior can be obtained, depending on the Fe impurities. - Abstract: The aim of this work is to study the interaction of selected iron cluster impurities and a multivacancy graphene system, in terms of the structural distortion that the impurities cause as well as their magnetic response. While originally, the interaction has been limited to vacancies and isolated metallic atoms, in this case, we consider small iron clusters. This study was undertaken using Density Functional Theory (DFT) calculations. The influence of the iron impurities in the electronic structure of the vacant graphene system is discussed. The main conclusion of this work is that the presence of iron impurities acts lowering the magnetic signal due to the occurrence of spin pairing between carbon and iron, instead of enhancing the possible intrinsic carbon magnetism

  10. Impurity bubbles in a BEC

    Science.gov (United States)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  11. Impurity bound states in mesoscopic topological superconducting loops

    Science.gov (United States)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  12. Two-phase flow experiments through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flows rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  13. Estimation of flow rates through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  14. Impurity seeding in ASDEX upgrade tokamak modeled by COREDIV code

    Energy Technology Data Exchange (ETDEWEB)

    Galazka, K.; Ivanova-Stanik, I.; Czarnecka, A.; Zagoerski, R. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Bernert, M.; Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-08-15

    The self-consistent COREDIV code is used to simulate discharges in a tokamak plasma, especially the influence of impurities during nitrogen and argon seeding on the key plasma parameters. The calculations are performed with and without taking into account the W prompt redeposition in the divertor area and are compared to the experimental results acquired on ASDEX Upgrade tokamak (shots 29254 and 29257). For both impurities the modeling shows a better agreement with the experiment in the case without prompt redeposition. It is attributed to higher average tungsten concentration, which on the other hand seriously exceeds the experimental value. By turning the prompt redeposition process on, the W concentration is lowered, what, in turn, results in underestimation of the radiative power losses. By analyzing the influence of the transport coefficients on the radiative power loss and average W concentration it is concluded that the way to compromise the opposing tendencies is to include the edge-localized mode flushing mechanism into the code, which dominates the experimental particle and energy balance. Also performing the calculations with both anomalous and neoclassical diffusion transport mechanisms included is suggested. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  15. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  16. Models for impurity effects in tokamaks

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1980-03-01

    Models for impurity effects in tokamaks are described with an emphasis on the relationship between attainment of high β and impurity problems. We briefly describe the status of attempts to employ neutral beam heating to achieve high β in tokamaks and propose a qualitative model for the mechanism by which heavy metal impurities may be produced in the startup phase of the discharge. We then describe paradoxes in impurity diffusion theory and discuss possible resolutions in terms of the effects of large-scale islands and sawtooth oscillations. Finally, we examine the prospects for the Zakharov-Shafranov catastrophe (long time scale disintegration of FCT equilibria) in the context of present and near-term experimental capability

  17. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  18. Intergranular fluid compositions from the Waste Isolation Pilot Plant (WIPP) southeastern New Mexico

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Kimball, K.M.; Stein, C.L.

    1991-01-01

    The objective of this study was to perform a systematic sampling of the intergranular brines that slowly ''weep'' from four of the main stratigraphic units exposed in the WIPP. This information was added to the data base on brine compositions used in performance assessment and also employed in characterizing Salado Formation hydrology at the repository horizon. Concentrations of Na, K, Mg, Ca, Cl, SO 4 , and Br were all highly variable. It was also established that this variability reflects neither post-excavation evaporation nor imprecision in the analytical techniques. Compositional variability on the length scale of a few tens of centimeters is as large as that found over several hundreds of meters. Stratigraphy did not appear to exert any control over weep brine compositions. Programmatically relevant applications of these results are: (1) a valid performance assessment must consider the possibility of a wide range of brines, rather than carry out evaluations using a single ''best'' average brine, and (2) the Salado appears not to function as a continuous aquifer since brines originating millions of years ago have failed to homogenize though separated by only short distances. 10 refs., 19 figs., 11 tabs

  19. Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover two tests as follows: 1.1.1 Method A, Ferric Sulfate-Sulfuric Acid Test (Sections 3-10, inclusive)—This test method describes the procedure for conducting the boiling ferric sulfate—50 % sulfuric acid test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to intergranular corrosion (see Terminology G 15), which may be encountered in certain service environments. The uniform corrosion rate obtained by this test method, which is a function of minor variations in alloy composition, may easily mask the intergranular corrosion components of the overall corrosion rate on alloys N10276, N06022, N06059, and N06455. 1.1.2 Method B, Mixed Acid-Oxidizing Salt Test (Sections 11-18, inclusive)—This test method describes the procedure for conducting a boiling 23 % sulfuric + 1.2 % hydrochloric + 1 % ferric chloride + 1 % cupric chloride test which measures the susceptibility of certain nickel-rich, chromium-bearing alloys to display a step function increa...

  20. Device for removing impurities from liquid metals

    International Nuclear Information System (INIS)

    Naito, Kesahiro; Yokota, Norikatsu; Shimoyashiki, Shigehiro; Takahashi, Kazuo; Ishida, Tomio.

    1984-01-01

    Purpose: To attain highly reliable and efficient impurity removal by forming temperature distribution the impurity removing device thereby providing the function of corrosion product trap, nuclear fission product trap and cold trap under the conditions suitable to the impurity removing materials. Constitution: The impurity removing device comprises a container containing impurity removing fillers. The fillers comprise material for removing corrosion products, material for removing nuclear fission products and material for removing depositions from liquid sodium. The positions for the respective materials are determined such that the materials are placed under the temperature conditions easy to attain their function depending on the temperature distribution formed in the removing device, whereby appropriate temperature condition is set to each of the materials. (Yoshino, Y.)

  1. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  2. Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas

    Science.gov (United States)

    Du, Huarong; Wang, Zheng-Xiong; Dong, J. Q.; Liu, S. F.

    2014-05-01

    The coupling of ion temperature gradient (ITG or ηi) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ηi (ηi≤1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient Lez=Lne/Lnz>1 (LezTEMs in large ηi (ηi≥1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

  3. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  4. Measurements of impurity migration in graphite at high temperatures using a proton microprobe

    International Nuclear Information System (INIS)

    Shroy, R.E.; Soo, P.; Sastre, C.A.; Schweiter, D.G.; Kraner, H.W.; Jones, K.W.

    1978-01-01

    The migration of fission products and other impurities through the graphite core of a High Temperature Gas Cooled Reactor is of prime importance in studies of reactor safety. Work in this area is being carried out in which graphite specimens are heated to temperatures up to 3800 0 C to induce migration of trace elements whose local concentrations are then measured with a proton microprobe. This instrument is a powerful device for such work because of its ability to determine concentrations at a part per million (ppm) level in a circular area as small as 10 μm while operating in an air environment. Studies show that Si, Ca, Cl, and Fe impurities in graphite migrate from hotter to cooler regions. Also Si, S, Cl, Ca, Fe, Mn, and Cr are observed to escape from the graphite and be deposited on cooler surfaces

  5. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    International Nuclear Information System (INIS)

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  6. Formation of the gaseous phase of impurity elements from coal combustion at a thermal power plant

    International Nuclear Information System (INIS)

    Kizil'shtein, L.Ya.; Levchenko, S.V.; Peretyakt'ko, A.G.

    1991-01-01

    Data are reported on the distribution of impurity elements in their principal carriers: organic matter, iron sulfides, and clays. Tests with high-temperature combustion of coals and argillites indicate that elements associated with clay minerals largely remain in ash and slag. They do not pass to the gas phase - a factor to be considered in assessment of environmental impact from thermal power plants and specification of toxic concentration levels of impurity elements in coal

  7. Magnetic states of single impurity in disordered environment

    Directory of Open Access Journals (Sweden)

    G.W. Ponedilok

    2013-01-01

    Full Text Available The charged and magnetic states of isolated impurities dissolved in amorphous metallic alloy are investigated. The Hamiltonian of the system under study is the generalization of Anderson impurity model. Namely, the processes of elastic and non-elastic scattering of conductive electrons on the ions of a metal and on a charged impurity are included. The configuration averaged one-particle Green's functions are obtained within Hartree-Fock approximation. A system of self-consistent equations is given for calculation of an electronic spectrum, the charged and the spin-polarized impurity states. Qualitative analysis of the effect of the metallic host structural disorder on the observed values is performed. Additional shift and broadening of virtual impurity level is caused by a structural disorder of impurity environment.

  8. Mobile impurities in ferromagnetic liquids

    Science.gov (United States)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  9. Effect of impurity modes with quasilocal and local frequencies on the superconducting transition temperature

    International Nuclear Information System (INIS)

    Zhernov, A.P.; Malov, Yu.A.; Panova, G.Kh.

    1975-01-01

    An anisotropic irregular semiconductor is under consideration. It is believed that the effective parameter of the interaction-lambda-which determines electron coupling is less or about 0.5. The Eliashberg integral equation system is solved for T→Tsub(c). A simple analytic expression is obtained for Tsub(c). The character of a varying critical temperature in superconductors with impurity atoms is analyzed in detail. The dependence of the critical temperature on parameters describing the phonon spectrum of an impurity system is investigated. The existence of impurity modes with quasilocal and local frequencies in the phonon spectra can lead both to relatively small and to rather noticeable variations in Tsub(c). The first case is typical of the situation when an impurity atom is practically an isotopic defect. If an impurity atom is very heavy (Msub(I) 1 0 ) or strongly (γ 1 >>γ 0 ) coupled with matrix atoms. A sharp decrease in the effective force constant γ 1 for an impurity atom results in the growth of delta Tsub(c): delta Tsub(c) approximately cγ0/γ 1 (lambda - μsup((0)). On the contrary a rise in the γ 1 value requires a negative correction to Tsub(c), and delta Tsub(c) approximately c/(lambda - μsup((0)), where c - an impurity concentration, μ - matrix element of the Coulomb screened interaction averaged over the Fermi surface and multiplied for the density of normal electron states on the Fermi level. Comparison with experimental data is made. A qualitative description of the Tsub(c) change due to the impurity presence is given for a set of solutions. There is a satisfactory quantitative agreement between calculated and experimental values of delta Tsub(c)

  10. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  11. Lattice dynamics of impurity clusters : application to pairs

    International Nuclear Information System (INIS)

    Chandralekha Devi, N.; Behera, S.N.

    1979-01-01

    A general solution is obtained for the lattice dynamics of a cluster of n-impurity atoms using the double-time Green's function formalism. The cluster is characterized by n-mass defect and m-force constant change parameters. It is shown that this general solution for the Green's function for the n-impurity cluster can also be expressed in terms of the Green's function for the (n-1)-impurity cluster. As an application, the cluster impurity modes for a pair are calculated using the Debye model for the host lattice dynamics. The splitting of the high frequency local modes and nearly zero frequency resonant modes due to pairs show an oscillatory behaviour on varying the distance of separation between the two impurity atoms. These oscillations are most prominent for two similar impurities and get damped for two dissimilar impurities or if one of the impurities produces a force constant change. The predictions of the calculation provide qualitative explanation of the data obtained from the infrared measurements of the resonant modes in mixed crystal system of KBrsub(1-c)Clsub(c):Lisup(+) and KBrsub(1-c)Isub(c):Lisup(+). (author)

  12. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    Batdorf, S.B.

    1975-01-01

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  13. Effects of radiation and impurities on gaseous iodine behavior in a containment vessel

    International Nuclear Information System (INIS)

    Takahashi, Masato; Watanabe, Atsushi; Hashimoto, Takashi

    2000-01-01

    In order to estimate the effect of impurities and radiation on gaseous iodine behavior in containment vessel, NUPEC has improved IMPAIR-3 code developed by PSI. Several modifications on the iodine oxidation by radiolysis and the production of nitric acid, the existence of boric acid, and the reaction of silver particle with iodine were newly added in evaluating the effect of radiolysis and impurities. pH change resulting from presence of boric acid, nitric acid production by radiolysis of air, and sodium hydroxide addition by AM operation, was also considered. The code verification for pH change was performed using the RTF experimental results. Additionally, the effects of boric acid and silver impurities on gaseous iodine behavior were evaluated by the sensitivity analysis. As a result, the experimental results of iodine concentration transient under pH change were well simulated. The following results were also obtained from the sensitive analysis. The gaseous iodine behavior was not affected by the existence of boric acid. In the case of silver existence in liquid phase, the gaseous iodine concentration rapidly decreased because a large amount of iodine changed into AgI species in liquid phase. The restraint effect of silver on gaseous iodine, production was larger than that of pH change. (author)

  14. Impurity transport in the Wendelstein VII-A stellarator

    International Nuclear Information System (INIS)

    1985-01-01

    Impurity radiation losses in net-current-free neutral-beam-heated plasmas in the Wendelstein W VII-A stellarator are the combined effect of particularly strong impurity sources and improved particle confinement as compared with ohmically heated tokamak-like plasma discharges. Experiments are described and conclusions are drawn about the impurity species, their origin and their transport behaviour. The impurity transport is modelled by a 1-D impurity transport and radiation code. The evolution of the total radiation in time and space deduced from soft-X-ray and bolometer measurements can be fairly well simulated by the code. Experimentally, oxygen was found to make the main contribution to the radiation losses. In the calculations, an influx of cold oxygen desorbed from the walls of the order of 10 13 -10 14 cm -2 .s -1 and a rate of fast injected oxygen corresponding to a 1% impurity content of the neutral beams in combination with neoclassical impurity transport leads to quantitative agreement between the simulation and the observed radiation. The transport of A1 trace impurities injected by the laser blow-off technique was experimentally studied by soft-X-ray measurements using a differential method allowing extraction of the time evolution of A1 XII, XIII radial profiles. These are compared with code predictions, together with additional spectroscopic measurements. The main features of the impurity transport are consistent with neoclassical predictions, which explain particularly the central impurity accumulation. Some details, however, seem to require additional 'anomalous' transport. Such an enhancement is correlated with distortions of the magnetic configuration around resonant magnetic surfaces. (author)

  15. Uranium analysis. Impurities determination by spark mass spectrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in uranium, suitable for atomic content greater than 10 -8 , particularly adapted for a low content. The method is quantitative for metallic impurities and qualitative for non metallic impurities [fr

  16. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... simulation results obtained with the code GENE. The sign of the impurity convective velocity (pinch) and its various contributions are discussed. The dependence of the impurity transport coefficients and impurity peaking factor −∇nZ/nZ on plasma parameters such as impurity charge number Z, ion logarithmic...

  17. Development of seamless forged pipe and fitting for BWR recirculation loop piping with improved resistance to intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Ohnishi, Keizo; Tsukada, Hisashi; Kobayashi, Masayoshi; Iwadate, Tadao; Ono, Shinichi

    1981-01-01

    As a primary remedy for IGSCC of primary loop piping, especially Recirculation Loop Piping of BWR, extra low carbon stainless steel with high nitrogen content has become to be used. While, in order to make In-service Inspection easier and complete, new design of piping which decrease both number and total length of weld line has been considered. Japan Steel Works has developed the research on large size seamless forged pipe and fitting made from high nitrogen extra low carbon 316 stainless steel. This paper describes the key points of manufacturing technology as well as the material properties, especially strength and intergranular-corrosion and intergranular- stress-corrosion-cracking-resistivities of these forged pipe and fitting. (author)

  18. Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget

    International Nuclear Information System (INIS)

    Dhondt, Matthieu; Aubert, Isabelle; Saintier, Nicolas; Olive, Jean Marc

    2014-01-01

    Highlights: • Applied stress changes the corrosion mode from pitting to intergranular cracking. • Residual stresses are sufficient to induce intergranular stress corrosion cracking. • Effect of crystallographic texture on the development of IGSCC evidenced by EBSD. • Cubic elasticity drives the local orientation of the intergranular cracking. • Tomography observations show the 3D nature of the corrosion development. - Abstract: The effects of the microstructure and mechanical fields on intergranular stress corrosion cracking (IGSCC) of the nugget zone of heat treated welds obtained by friction stir welding in the AA2050 aluminum alloy have been investigated at different scales. At low strain rate, in 1.0 NaCl aqueous solution, IGSCC develops in the microstructure, whereas only pitting corrosion is observed without any mechanical stress. Based on surface observations, EBSD analysis and X-ray tomography, the key role of sub-millimetric textured bands (induced by the welding process) on the IGSCC is demonstrated. Analyses at a more local scale show the grain boundary (low angle boundary, special coincident site lattice boundary or high angle boundary) do not have a significant effect on crack initiation. Crystal plasticity finite element calculations show that the threshold normal stress at grain boundaries for IGSCC development is about 80% of the macroscopic stress. It is also highlighted by crystal plasticity calculations that there is a drastic effect of the local stress field on the shape of cracks. Finally, it is shown that plasticity induced residual stresses are sufficient for the formation of IGSCC

  19. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  20. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  1. Impurity control in TFTR

    International Nuclear Information System (INIS)

    Cecchi, J.L.

    1980-06-01

    The control of impurities in TFTR will be a particularly difficult problem due to the large energy and particle fluxes expected in the device. As part of the TFTR Flexibility Modification (TEM) project, a program has been implemented to address this problem. Transport code simulations are used to infer an impurity limit criterion as a function of the impurity atomic number. The configurational designs of the limiters and associated protective plates are discussed along with the consideration of thermal and mechanical loads due to normal plasma operation, neutral beams, and plasma disruptions. A summary is given of the materials-related research, which has been a collaborative effort involving groups at Argonne National Laboratory, Sandia Laboratories, and Princeton Plasma Physics Laboratory. Conceptual designs are shown for getterng systems capable of regenerating absorbed tritium. Research on this topic by groups at the previously mentioned laboratories and SAES Research Laboratory is reviewed

  2. Local chemistry of Al and P impurities in silica

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Stokbro, Kurt

    2000-01-01

    The local structure around Al and P impurities in silica is investigated using density-functional theory. Two distinct cases are considered: impurities substituting for a Si atom in alpha quartz, and impurities implanted in a stoichiometric alpha-quartz crystal. Both impurity elements are found t...

  3. Impurity transport in internal transport barrier discharges on JET

    International Nuclear Information System (INIS)

    Dux, R.; Giroud, C.; Zastrow, K.-D.

    2004-01-01

    Impurity behaviour in JET internal transport barrier (ITB) discharges with reversed shear has been investigated. Metallic impurities accumulate in cases with too strong peaking of the main ion density profile. The accumulation is due to inwardly directed drift velocities inside the ITB radius. The strength of the impurity peaking increases with the impurity charge and is low for the low-Z elements C and Ne. Transport calculations show that the observed behaviour is consistent with dominant neoclassical impurity transport inside the ITB. In some cases, MHD events in the core flatten the radial profile of the metallic impurity. (author)

  4. Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Samuel Simon Araya

    2012-10-01

    Full Text Available In this work the effects of reformate gas impurities on a H3PO4-doped polybenzimidazole (PBI membrane-based high temperature proton exchange membrane fuel cell (HT-PEMFC are studied. A unit cell assembly with a BASF Celtec®-P2100 high temperature membrane electrode assembly (MEA of 45 cm2 active surface area is investigated by means of impedance spectroscopy. The concentrations in the anode feed gas of all impurities, unconverted methanol-water vapor mixture, CO and CO2 were varied along with current density according to a multilevel factorial design of experiments. Results show that all the impurities degrade the performance, with CO being the most degrading agent and CO2 the least. The factorial analysis shows that there is interdependence among the effects of the different factors considered. This interdependence suggests, for example, that tolerances to concentrations of CO above 2% may be compromised by the presence in the anode feed of CO2. Methanol has a poisoning effect on the fuel cell at all the tested feed ratios, and the performance drop is found to be proportional to the amount of methanol in feed gas. The effects are more pronounced when other impurities are also present in the feed gas, especially at higher methanol concentrations.

  5. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    Science.gov (United States)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  6. Peculiarities of defect formation in InP single crystals doped with donor (S, Ge) and acceptor (Zn) impurities

    International Nuclear Information System (INIS)

    Mikryukova, E.V.; Morozov, A.N.; Berkova, A.V.; Nashel'skij, A.Ya.; Yakobson, S.V.

    1988-01-01

    Peculiarities of dislocation and microdefect formation in InP monocrystals doped with donor (S,Ge) and acceptor (Zn) impurities are investigated by the metallography. Dependence of dislocation density on the concentration of alloying impurity is established. Microdefects leading to the appearance of 5 different types of etch figures are shown to be observed in doped InP monocrystals. The mechanism of microdefect formation is suggested

  7. Impurities-Si interstitials interaction in Si doped with B or Ga during ion irradiation

    International Nuclear Information System (INIS)

    Romano, L; Piro, A M; Grimaldi, M G; Rimini, E

    2005-01-01

    Substitutional impurities (B, Ga) in Si experienced an off-lattice displacement during ion-irradiation using a H + or He + beam at room temperature in random incidence. Samples were prepared by solid phase epitaxy (SPE) of pre-amorphized Si subsequently implanted with B and Ga at a concentration of about 1 x10 20 at.cm -3 confined in a 300 nm thick surface region. The lattice location of impurities was performed by a channelling technique along different axes ( , ) using the 11 B(p,α) 8 Be reaction and standard RBS for B and Ga, respectively. The normalized channelling yield χ of the impurity signal increases with the ion fluence, indicating a progressive off-lattice displacement of the dopant during irradiation in random incidence, until it saturates at χ F I ) generated by the impinging beam in the doped region

  8. Local order dependent impurity levels in alloy semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Ecole Normale Superieure, 75 - Paris

    1981-01-01

    We develop a one band/may sites model for an isoelectronic impurity in a semiconductor alloy. The cluster-Bethe-lattice approximation is used to study the dependence of the impurity energy level upon the short range order (SRO) of the alloy. The Kikuchi parametrization is used to describe the latter. We take into account diagonal disorder only, with possible off-diagonal relaxation around the impurity site. All the inequivalent clusters of the impurity site and its first nearest neighbours are considered, thus including the important short range alloy potential fluctuations. Results are presented for the local density of impurity states, for different degrees of SRO in the alloy. (Author) [pt

  9. Numerical simulation of impurity transport in Lake Baikal during the summer period

    Science.gov (United States)

    Tsydenov, Bair O.

    2017-11-01

    The distributions of impurities obtained as a result of numerical modeling on the Srednyaya arm (Selenga River mouth)- Cape Golyi cross-section of Lake Baikal, Siberia, Russia, are presented. The data on the air temperature, relative humidity, atmospheric pressure, humidity, and cloudiness from the Babushkin meteorological station from 01.06.2016 to 30.06.2016 are used as the weather condition in the mathematical model. The results of simulation have shown that the impurities dissolved in water reach the bottom of the Selenga shallow basin of Lake Baikal. As the heat accumulation increases and the river waters warm up, the maximum concentrations of suspended substances tend to remain in the upper layers of the lake.

  10. Spectroscopic system for impurity measurements in the TJ-1 Tokamak of JEN

    International Nuclear Information System (INIS)

    Navas, G.; Zurro, B.

    1982-01-01

    we describe a spectroscopic system with spatial resolution capability that has been configured for plasma diagnostic in the TJ-1 Tokamak of JEN. The experimental system, based on a one meter monochromator, has been absolutely calibrated using a tungsten-halogen lamp. The calibration procedures and the absolute spectral sensitivity are presented as well as its dependence with the polarization. A simplified spectroscopic model of the radiation emitted by the intrinsic plasma impurities (C, 0, . . . ) has been developed. A one dimensional model of the temporal evolution of various ionization stages in coronal equilibrium is used to predict the electron temperature and impurity concentration. This model has been applied to experimental data from several Tokamaks. (Author) 23 refs

  11. Determination of heavy metals impurities in low and medium atomic weight matrices

    International Nuclear Information System (INIS)

    Paiano, Silvestre; Prado Souza, Rose M.G. do

    1997-01-01

    Heavy materials have a mass attenuation coefficient in the energy interval from 100 to 400 KeV substantially higher than those corresponding to light and medium atomic weight matrices. They also show, in the same energy range, a more pronounced energy variation of this parameter. In a few cases, this property can be used for the determination of the concentration of impurities constituted by heavy metals in a lighter matrix. An Ytterbium gamma-ray source, which has several energy peaks in the considered interval, is used to supply a number of energy pairs from which the density of impurities can be found without the use of reference materials. (author). 1 ref., 4 figs

  12. Influence of impurities on the crystallization of dextrose monohydrate

    Science.gov (United States)

    Markande, Abhay; Nezzal, Amale; Fitzpatrick, John; Aerts, Luc; Redl, Andreas

    2012-08-01

    The effects of impurities on dextrose monohydrate crystallization were investigated. Crystal nucleation and growth kinetics in the presence of impurities were studied using an in-line focused beam reflectance monitoring (FBRM) technique and an in-line process refractometer. Experimental data were obtained from runs carried out at different impurity levels between 4 and 11 wt% in the high dextrose equivalent (DE) syrup. It was found that impurities have no significant influence on the solubility of dextrose in water. However, impurities have a clear influence on the nucleation and growth kinetics of dextrose monohydrate crystallization. Nucleation and growth rate were favored by low levels of impurities in the syrup.

  13. Striped morphologies induced by magnetic impurities in d-wave superconductors

    International Nuclear Information System (INIS)

    Zuo Xianjun

    2011-01-01

    Research Highlights: → We investigate striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs). → For the single-impurity and two-impurity cases, modulated checkerboard pattern and stripe-like structures are induced. → When more magnetic impurities are inserted, more complex modulated structures could be induced, including rectilinear and right-angled stripes and quantum-corral-like structures. → Impurities could induce complex striped morphologies in DSCs. - Abstract: We study striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping by self-consistently solving the Bogoliubov-de Gennes equations based on the t - t' - U - V model. For the single-impurity case, it is found that the stable ground state is a modulated checkerboard pattern. For the two-impurity case, the stripe-like structures in order parameters are induced due to the impurity-pinning effect. The modulations of DSC and charge orders share the same period of four lattice constants (4a), which is half the period of modulations in the coexisting spin order. Interestingly, when three or more impurities are inserted, the impurities could induce more complex striped morphologies due to quantum interference. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  14. Impurity adsorption mechanism of borax for a suspension growth condition: A comparison of models and experimental data

    International Nuclear Information System (INIS)

    Al-Jibbouri, Sattar; Ulrich, Joachim

    2004-01-01

    A fluidized bed crystallizer is employed to investigate the growth and dissolution rates of MgSO 4 .7H 2 O from aqueous solutions in the presence of borax as impurity at 25 C. By adding 0.5, 1, 2 and 5 wt % of impurity the pH value changes from 6.7 to 7.11, while the saturation temperature shifts to 24.8, 24.4, 24 and 23.1 C, respectively. The data on crystal growth rates from aqueous solutions as a function of impurity concentration are discussed from the standpoint of Cabrera and Vermileya, and Kubota and Mullin. The value of the impurity effect, αθ eq , determined from analysis of the data on growth kinetics was found to be in good agreement with the value obtained from direct adsorption experiments. The estimated value of the average spacing between the adjacent adsorption active sites and the average distance between the neighbouring impurity-adsorbed sites are also reported. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Methods for preventing steam generator failure or degradation

    International Nuclear Information System (INIS)

    Green, S.J.

    1986-01-01

    PWR steam generators have suffered from a variety of degradation phenomena. This paper identifies the corrosion-related defects and their probable causes and suggests approaches to correct and prevent corrosive activity. In the attempt to solve the degradation problems, research programs have concentrated on modifying materials, stresses, and the chemical environment in both new and operating steam generators. The following corrosion-related defects have been studied: tube wastage, denting, primary side (ID) intergranular stress corrosion cracking (IGSCC), OD-initiated intergranular attack (IGA), pitting, and corrosion fatigue. Plants affected by wastage have greatly reduced their problem by adopting an all volatile treatment (AVT). In the case of denting, a less aggressive chemical environment is recommended. Primary side IGSCC responds to temperature reduction, stress relief, and material improvements, while flushing and boric acid addition minimizes OD-initiated IGA. It has further been shown that pitting can be minimized by sludge lancing and by reducing impurity ingress. (author)

  16. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail: qingliu@cqu.edu.cn; Jia, Zhihong, E-mail: zhihongjia@cqu.edu.cn; Xing, Yuan; Ding, Lipeng; Wang, Xueli

    2017-05-31

    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  17. Impurity screening of scrape-off plasma in a tokamak

    International Nuclear Information System (INIS)

    Kishimoto, Hiroshi; Tani, Keiji; Nakamura, Hiroo

    1981-11-01

    Impurity screening effect of a scrape-off layer has been studied in a tokamak, based on a simple model of wall-released impurity behavior. Wall-sputtered impurities are stopped effectively by the scrape-off plasma for a medium-Z or high-Z wall system while major part of impurities enters the main plasma in a low-Z wall system. The screening becomes inefficient with increase of scrape-off plasma temperature. Successive multiplication of recycling impurities in the scrape-off layer is large for a high-Z wall and is enhanced by a rise of scrape-off plasma temperature. The stability of plasma-wall interaction is determined by a multiplication factor of recycling impurities. (author)

  18. Observation of impurity accumulation and concurrent impurity influx in PBX

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Fonck, R.J.; Ida, K.; Couture, P.; Kaita, R.; Kaye, S.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Powell, E.T.; Reusch, M.; Takahashi, H.; Gammel, G.; Morris, W.

    1987-01-01

    Impurity studies in L- and H-mode discharges in PBX have shown that both types of discharges can evolve into either an impurity accumulative or nonaccumulative case. In a typical accumulative discharge, Z eff peaks in the center to values of about 5. The central metallic densities can be high, n met /n e ≅ 0.01, resulting in central radiated power densities in excess of 1 W/cm 3 , consistent with bolometric estimates. The radial profiles of metals obtained independently from the line radiation in the soft X-ray and the VUV regions are very peaked. Concurrent with the peaking, an increase in the impurity influx coming from the edge of the plasma is observed. At the beginning of the accumulation phase the inward particle flux for titanium has values of 6x10 10 and 10x10 10 particles/cm 2 s at minor radii of 6 and 17 cm. At the end of the accumulation phase, this particle flux is strongly increased to values of 3x10 12 and 1x10 12 particles/cm 2 s. This increased flux is mainly due to influx from the edge of the plasma and to a lesser extent due to increased convective transport. Using the measured particle flux, an estimate of the diffusion coefficient D and the convective velocity v is obtained. (orig.)

  19. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    Directory of Open Access Journals (Sweden)

    Tae Hyun Lee

    2015-02-01

    Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  20. Impurity induced resistivity upturns in underdoped cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nabyendu, E-mail: nabyendudas@gmail.com; Singh, Navinder

    2016-01-28

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  1. Impurity induced resistivity upturns in underdoped cuprates

    International Nuclear Information System (INIS)

    Das, Nabyendu; Singh, Navinder

    2016-01-01

    Impurity induced low temperature upturns in both the ab-plane and the c-axis dc-resistivities of cuprates in the pseudogap state have been observed in experiments. We provide an explanation of this phenomenon by incorporating impurity scattering of the charge carriers within a phenomenological model proposed by Yang, Rice and Zhang. The scattering between charge carriers and the impurity atom is considered within the lowest order Born approximation. Resistivity is calculated within Kubo formula using the impurity renormalized spectral functions. Using physical parameters for cuprates, we describe qualitative features of the upturn phenomena and its doping evolution that coincides with the experimental findings. We stress that this effect is largely due to the strong electronic correlations.

  2. Plasmon-enhanced phonon and ionized impurity scattering in doped silicon

    International Nuclear Information System (INIS)

    Chen, Ming-Jer; Hsieh, Shang-Hsun; Chen, Chuan-Li

    2015-01-01

    Historically, two microscopic electron scattering calculation methods have been used to fit macroscopic electron mobility data in n-type silicon. The first method was performed using a static system that included long-range electron-plasmon scattering; however, the well-known Born approximation fails in this case when dealing with electron-impurity scattering. In the second method, sophisticated numerical simulations were developed around plasmon-excited potential fluctuations and successfully reproduced the mobility data at room temperature. In this paper, we propose a third method as an alternative to the first method. First, using a fluctuating system, which was characterized on the basis of our recently experimentally extracted plasmon-excited potential fluctuations, the microscopic calculations reveal enhanced short-range scattering of electrons by phonons and ionized impurities due to increased electron temperature and increased screening length, respectively. The increased hot electron population makes the Born approximation hold, which eases the overall calculation task substantially. Then, we return to the static system while incorporating plasmon-enhanced impurity scattering. The resulting macroscopic electron mobility shows fairly good agreement with data over wide ranges of temperatures (200–400 K) and doping concentrations (10 15 –10 20  cm −3 ). Application of the proposed method to strained silicon is also demonstrated

  3. Light impurity production in tokamaks

    International Nuclear Information System (INIS)

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1989-01-01

    A review is given of the different erosion processes of carbon materials with special emphasis on conditions relevant to plasma surface interactions. New results on the chemical erosion and radiation enhanced sublimation of boron-carbon layers are presented. The chemical hydrocarbon formation produced by the interaction of the TEXTOR scrape-off plasma with a carbon target has been investigated up to temperatures of 1500K using a Sniffer probe. The chemical interaction of the plasma with the carbon walls in TEXTOR is also analysed by measuring the hydrocarbon and CO and CO 2 partial pressures built up on the surrounding walls during the discharges. The recycling of oxygen impurities in an all carbon surrounding occurs predominantly in the form of CO and Co 2 molecules and the analysis of both neutral pressures during the discharges has been used as an additional diagnostic for the oxygen impurity situation in TEXTOR. These data are discussed in view of spectroscopic measurements on the influx of carbon and oxygen atoms from the walls and impurity line radiation. CD-band spectroscopy in addition is employed to identify the hydrocarbon chemical carbon erosion. Our present understanding of the oxygen impurity recycling and the oxygen sources are described. Particle induced release of CO molecules from the entire first wall is believed to be the dominant influx process of oxygen in the SOL of plasmas with carbon facing materials. The influence of coating the TEXTOR first wall with a boron-carbon film (B/C ≅1) on the light impurity behaviour is shown. (author)

  4. Dynamics of impurity modes and electron–phonon interaction in Heavy Fermion (HF) systems

    International Nuclear Information System (INIS)

    Shadangi, N.; Sahoo, J.; Mohanty, S.; Nayak, P.

    2014-01-01

    A theoretical explanation is provided to understand the effect of small concentration of impurities characterized by change in mass and nearest neighbor force constants on the phonon spectrum as well as on the electron–phonon interaction in some Heavy Fermion (HF) systems in the normal state within theoretical framework of the Periodic Anderson Model (PAM). Three different mechanisms of the electron–phonon interactions, namely, the usual interaction between the phonons with the electrons in the f-bands, electrons arising from that of hybridization term of PAM and the local electron–phonon coupling at the impurity sites are considered. Coherent Potential Approximation (CPA) is used to evaluate the configuration averaged self–energy and the total Green function. For simplicity of calculation the CPA self–energy is evaluated in Average t -matrix Approximation (ATA). The analytical analysis is carried out for finite T in the long wavelength limit. The influence of impurity mass parameter λ and other system parameters such as d, the position of f-level, the effective coupling strength g on the calculated re-normalized phonon frequency and the excitation spectrum through the spectral function is studied. The numerical analysis of the results does show the influence of impurities as evident from different plots in this paper.

  5. Microscopic models of impurities in silicon

    International Nuclear Information System (INIS)

    Assali, L.V.C.

    1985-01-01

    The study of electronic structure of insulated and complex puntual impurities in silicon responsible by the appearing of deep energy levels in the forbiden band of semiconductor, is presented. The molecular cluster model with the treatment of surface orbitals by Watson sphere within the formalism of Xα multiple scattering method, was used. The electronic structures of three clusters representative of perfect silicon crystal, which were used for the impurity studies, are presented. The method was applied to analyse insulated impurities of substitutional and interstitial hydrogen (Si:H and Si:H i ), subtitutional and interstitial iron in neutral and positive charge states (Si:Fe 0 , + , Si:Fe 0 , + ) and substitutional gold in three charge states(Si,Au - , 0 , + ). The thetraedic interstitial defect of silicon (Si:Si i ) was also studied. The complex impurities: neighbour iron pair in the lattice (Si:Fe 2 ), substitutional gold-interstitial iron pair (Si:Au s Fe) and substitutional boron-interstitial hydrogen pair (Si:B s H i ), were analysed. (M.C.K.) [pt

  6. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  7. Observations of long impurity confinement times in the ISX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H; Wong, S K; Muller, III, C H; Hacker, M P [General Atomic Co., San Diego, CA (USA); Ketterer, H E; Isler, R C; Lazarus, E A [Oak Ridge National Lab., TN (USA)

    1981-08-01

    The transport of small amounts of silicon and aluminium injected into plasmas in the Impurity Study Experiment (ISX) tokamak is studied. By monitoring the time behaviour of ultra-violet spectral lines emitted by various charge states of those impurities and comparing this behaviour to the predictions of a multi-species impurity transport code, it is found that both impurity penetration times and impurity containment times are consistent with neoclassical predictions. The observed impurity containment times, which are greater than three times the energy containment time, are consistent with the inward convection predicted by neoclassical theory.

  8. Numerical studies of impurities in fusion plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest

  9. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  10. Multiscaling Dynamics of Impurity Transport in Drift-Wave Turbulence

    International Nuclear Information System (INIS)

    Futatani, S.; Benkadda, S.; Nakamura, Y.; Kondo, K.

    2008-01-01

    Intermittency effects and the associated multiscaling spectrum of exponents are investigated for impurities advection in tokamak edge plasmas. The two-dimensional Hasagawa-Wakatani model of resistive drift-wave turbulence is used as a paradigm to describe edge tokamak turbulence. Impurities are considered as a passive scalar advected by the plasma turbulent flow. The use of the extended self-similarity technique shows that the structure function relative scaling exponent of impurity density and vorticity follows the She-Leveque model. This confirms the intermittent character of the impurities advection in the turbulent plasma flow and suggests that impurities are advected by vorticity filaments

  11. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  12. Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes.

    Science.gov (United States)

    Liu, Hao; Wolf, Mark; Karki, Khim; Yu, Young-Sang; Stach, Eric A; Cabana, Jordi; Chapman, Karena W; Chupas, Peter J

    2017-06-14

    Capacity fading has limited commercial layered Li-ion battery electrodes to NCA) electrode change after capacity fade following months of slow charge-discharge. The changes in the reactions that underpin energy storage after long-term cycling directly correlate to the capacity loss; heterogeneous reaction kinetics observed during extended cycles quantitatively account for the capacity loss. This reaction heterogeneity is ultimately attributed to intergranular fracturing that degrades the connectivity of subsurface grains within the polycrystalline NCA aggregate.

  13. Investigation of correlations in some chemical impurities and isotope ratios for nuclear forensic purposes

    International Nuclear Information System (INIS)

    Wallenius, M.; Mayer, K.; Nicholl, A.; Horta, J.

    2002-01-01

    geographic location. Furthermore, we performed measurements of impurities and the n( 18 O)/n( 16 O) ratio in a set of uranium dioxide pellet samples (from different production batches) that had been produced in the same facility. This 'horizontal' comparison (same facility and same material type) aims at providing information on the consistency of data obtained and on the variation in the level and the relative abundance of some impurities. A better understanding of the propagation of chemical impurities from the base material to the final product and the correlation between the relative concentrations of individual impurities is important in the definition of characteristic impurities for nuclear forensic purposes. (author)

  14. Weak Frictional Healing as Controlled by Intergranular Pressure Solution

    Science.gov (United States)

    He, C.

    2017-12-01

    Unstable fault slips due to velocity weakening requires a frictional healing effect that is stronger than the instantaneous rate effect. Based on a previous analytical result regarding the healing effect at spherical contacts by intergranular pressure solution (He et al., 2013), we extend the analysis to incorporate the full range of dilatancy angles from π/6 to -π/6, covering uphill and downhill situations of many contacts with different dilatancy angles. Assuming that both healing effect (parameter b) and instantaneous rate effect (parameter a) are controlled by intergranular pressure solution, and averaging over the whole range of dilatancy angle, our analysis derives each of the two effects as a function of temperature. The result shows velocity weakening for friction coefficient>0.274. As hydrothermal conditions are important for deep portion of actual fault zones, the strength of velocity weakening is of interest when the related faulting behavior is concerned. As a measure of the strength of velocity weakening, the derived ratio b/a fully controlled by pressure solution shows an upper bound of 1.22. Data analyses in previous studies on plagioclase (He et al., 2013) and oceanic basalt (Zhang and He, 2017) shows a range of b/a =1.05-1.2, consistent with the analytical result. The valuesrate effect, which reduces b/a to levels below the upper bound. These values are significantly less than in dry experiments on granite by Mitchell et al.(2016), where b/a ranges from 1.54-2.59 as inferred by reanalyzing their stick-slip data at temperatures of 20°C, 500°C and 600°C. Comparison between the two ranges of b/a helps understand the dominant mechanism of frictional healing at contacts, especially under hydrothermal conditions in fault zones. For comparable ratios of system stiffness to the critical value, numerical simulations with a single-degree-of-freedom system show that a smaller b/a significantly reduces the peak slip velocity as a result of reduced period

  15. Evaluation of intergranular corrosion techniques to determine phosphorus segregation in NiCrMoV rotor steel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Thomas, M.T.; Arey, B.W.

    1985-01-01

    Several chemical and electrochemical etching techniques have been evaluated for the indirect measurement of grain boundary phosphorus segregation. A picric acid based solution was found to promote intergranular attack proportional to the grain boundary phosphorus composition measured by Auger Electron Spectroscopy. Preliminary results indicate this solution may enable the nondestructive evaluation of a rotor steel's susceptibility to temper embrittlement and IGSCC

  16. Impurities and conductivity in a D-wave superconductor

    International Nuclear Information System (INIS)

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  17. On impurity handling in high performance stellarator/heliotron plasmas

    International Nuclear Information System (INIS)

    Burhenn, R.; Feng, Y.; Ida, K.

    2008-10-01

    The Large Helical Device (LHD) and Wendelstein 7-X (W7-X, under construction) are experiments specially designed to demonstrate long pulse (quasi steady-state) operation, which is an intrinsic property of Stellarators and Heliotrons. Significant progress was made in establishment of high performance plasmas. A crucial point is the increasing impurity confinement towards high density as observed at several machines (TJ-II, W7-AS, LHD) which can lead to impurity accumulation and early pulse termination by radiation collapse at high density. In addition, theoretical predictions for non-axisymmetric configurations prognosticate the absence of impurity screening by ion temperature gradients in standard ion root plasmas. Nevertheless, scenarios were found where impurity accumulation was successfully avoided in LHD and/or W7-AS by the onset of drag forces in the high density and low temperature scrape-off-layer, the generation of magnetic islands at the plasma boundary and to a certain degree also by ELMs, flushing out impurities and reducing the net-impurity influx into the core. Additionally, a reduction of impurity core confinement was observed in the W7-AS High Density H-mode (HDH) regime and by application of sufficient ECRH heating power. The exploration of such purification mechanisms is a demanding task for successful steady-state operation. The impurity transport at the plasma edge/SOL was identified to play a major role for the global impurity behaviour in addition to the core confinement. (author)

  18. Analysis of the intergranular fracture surface by the Fourier spectrum method

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yao; Tian Jifeng; Wang Zhongguang (National Lab. for Fatigue and Fracture of Materials, Inst. of Metal Research, Academia Sinica, Shen Yang (China))

    1991-11-30

    A quantitative analysis of the fracture surface of a 1045 steel was undertaken in order to relate important microstructural features to brittle intergranular fractures in the steel. It was found that the character of the profile was not random but periodic. There is a direct correspondence between the Fourier spectrum of the profile and the microstructure features. Utilization of secondary-electron line scanning facilitated the analysis of the fracture surface in this case. The results of the analysis from both the profile and the scanning line showed that the first autocorrelation length is related to the average grain size and that the total power corresponds to the impact energy of the fracture. (orig.).

  19. Mechanistic differences between transgranular and intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Serebrinsky, Santiago A.; Galvele, Jose R.

    2000-01-01

    Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)

  20. Insulator-semimetallic transition in quasi-1D charged impurity-infected armchair boron-nitride nanoribbons

    Science.gov (United States)

    Dinh Hoi, Bui; Yarmohammadi, Mohsen

    2018-04-01

    We address control of electronic phase transition in charged impurity-infected armchair-edged boron-nitride nanoribbons (ABNNRs) with the local variation of Fermi energy. In particular, the density of states of disordered ribbons produces the main features in the context of pretty simple tight-binding model and Green's functions approach. To this end, the Born approximation has been implemented to find the effect of π-band electron-impurity interactions. A modulation of the π-band depending on the impurity concentrations and scattering potentials leads to the phase transition from insulator to semimetallic. We present here a detailed physical meaning of this transition by studying the treatment of massive Dirac fermions. From our findings, it is found that the ribbon width plays a crucial role in determining the electronic phase of disordered ABNNRs. The obtained results in controllable gap engineering are useful for future experiments. Also, the observations in this study have also fueled interest in the electronic properties of other 2D materials.

  1. Report on intercomparison exercise SR-54. Determination of impurities in U3O8

    International Nuclear Information System (INIS)

    Doubek, N.; Bagliano, G.; Deron, S.

    1984-04-01

    The report presents results of a laboratory intercomparison of impurities in U 3 O 8 sample organized by the IAEA's Analytical Quality Control Service. Twelve laboratories in 11 countries sent their results. The framework of the intercomparison was therefore conceived mainly as a ''mean'' to laboratories dealing with analysis of impurities in uranium samples to check the reliability of their results. The evaluation was based on 97 laboratory means obtained with emission spectroscopy, atomic absorption techniques and neutron activation analysis. The concentration of three elements could be certified as a result of this intercomparison; informational values could be established for an additional six elements

  2. Recent trends in the impurity profile of pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Kavita Pilaniya

    2010-01-01

    Full Text Available Various regulatory authorities such as the International Conference on Harmonization (ICH, the United States Food and Drug administration (FDA, and the Canadian Drug and Health Agency (CDHA are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs. The various sources of impurity in pharmaceutical products are - reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas-liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid-liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC-Mass Spectroscopy (MS, LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research.

  3. Signal Characteristics of Eddy Current Test for Intergranular Attack of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho; Hur, Do Haeng; Cho, Se Gon; Yim, Chang Jae

    2002-01-01

    Because intergranular attack (IGA), one of the localized corrosion forms occurring on steam generator tubes, can not be fabricated by an electric discharge machining method, there are few data for the eddy current test (ECT) characteristics of IGA. In this paper, the characteristics of eddy current signals are evaluated using nonexpanded tubes with IGA defects formed in 0.1 M sodium tetrathionate solution at 40 .deg. C. The detectability and sizing accuracy of IGA were discussed in terms of the coil type and frequency of the ECT probes

  4. Striped morphologies induced by magnetic impurities in d-wave superconductors

    Science.gov (United States)

    Zuo, Xian-Jun

    2011-05-01

    We study striped morphologies induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping by self-consistently solving the Bogoliubov-de Gennes equations based on the t - t‧ - U - V model. For the single-impurity case, it is found that the stable ground state is a modulated checkerboard pattern. For the two-impurity case, the stripe-like structures in order parameters are induced due to the impurity-pinning effect. The modulations of DSC and charge orders share the same period of four lattice constants (4 a), which is half the period of modulations in the coexisting spin order. Interestingly, when three or more impurities are inserted, the impurities could induce more complex striped morphologies due to quantum interference. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  5. Monte Carlo method for magnetic impurities in metals

    Science.gov (United States)

    Hirsch, J. E.; Fye, R. M.

    1986-01-01

    The paper discusses a Monte Carlo algorithm to study properties of dilute magnetic alloys; the method can treat a small number of magnetic impurities interacting wiith the conduction electrons in a metal. Results for the susceptibility of a single Anderson impurity in the symmetric case show the expected universal behavior at low temperatures. Some results for two Anderson impurities are also discussed.

  6. Effects of Dy{sub 71.5}Fe{sub 28.5} intergranular addition on the microstructure and the corrosion resistance of Nd–Fe–B sintered magnets

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Ma, Tianyu, E-mail: maty@zju.edu.cn; Zhang, Pei; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2015-06-15

    To satisfy high-temperature applications, heavy rare-earth (RE) Dy is commonly introduced into the Nd–Fe–B sintered magnets to improve the coercivity. In addition to forming (Nd, Dy){sub 2}Fe{sub 14}B, Dy also exists in the intergranular RE-rich phase. Hence, understanding the effect of Dy on the electrochemical characteristics of the RE-rich phase and corrosion resistance of the magnet is of importance. In this work, eutectic alloy Dy{sub 71.5}Fe{sub 28.5} powders were added into the (Pr{sub 0.2}Nd{sub 0.8}){sub 12.3}Fe{sub bal}B{sub 6.1} magnet through binary-alloy approach to investigate the corrosion resistance of the magnet in electrochemical and hot/humid environments. The results demonstrate that Dy is enriched in the intergranular phase, improving its electrode potential and stability due to the higher electrode potential of Dy than Nd or Pr. As a consequence, the electrode potential difference between the 2:14:1 phase and the RE-rich phase is reduced, improving the corrosion resistance. Furthermore, formation of (Pr, Nd, Dy){sub 2}Fe{sub 14}B shell with stronger local anisotropy surrounding the 2:14:1 phase grains improves the coercivity with a slight remanence loss. Therefore, intergranular adding Dy–Fe alloy powders can obtain both high magnetic properties and good corrosion resistance simultaneously. - Highlights: • Eutectic Dy{sub 71.5}Fe{sub 28.5} powders were intergranular added to NdFeB sintered magnets. • The doped magnet showed improved corrosion resistance compared to Dy-free magnet. • Dy enrichment in RE-rich intergranular phase improved its electrode potential. • (Nd, Dy){sub 2}Fe{sub 14}B shell was expected to form in the surface of Nd{sub 2}Fe{sub 14}B grains. • Both corrosion resistance and coercivity were improved in Dy–Fe doped magnet.

  7. Impurity dependence of superconductivity in niobium

    International Nuclear Information System (INIS)

    Laa, C.

    1984-04-01

    Jump temperatures, the critical fields Hsubc and Hsubc 2 and specific heats were measured on niobium samples where the impurity content was systematically varied by loading with nitrogen. Quantities could thus be extrapolated to lattice perfection and absolute purity. Comparisons with theories were made and some parameters extracted. Agreement was found with Gorkov theory for small impurities. A new value of the Ginsburg-Landau parameter Ko was determined to be just above 1/sqrt2 which proves that niobium is an elementary Type II semiconductor. By comparisons with the BCS and the CLAC theory the values of the mean Fermi velocity, the London penetration depth, the BCS coherence length and the impurity parameter were extracted. (G.Q.)

  8. Impurity-induced states in superconducting heterostructures

    Science.gov (United States)

    Liu, Dong E.; Rossi, Enrico; Lutchyn, Roman M.

    2018-04-01

    Heterostructures allow the realization of electronic states that are difficult to obtain in isolated uniform systems. Exemplary is the case of quasi-one-dimensional heterostructures formed by a superconductor and a semiconductor with spin-orbit coupling in which Majorana zero-energy modes can be realized. We study the effect of a single impurity on the energy spectrum of superconducting heterostructures. We find that the coupling between the superconductor and the semiconductor can strongly affect the impurity-induced states and may induce additional subgap bound states that are not present in isolated uniform superconductors. For the case of quasi-one-dimensional superconductor/semiconductor heterostructures we obtain the conditions for which the low-energy impurity-induced bound states appear.

  9. PBDD/F impurities in some commercial deca-BDE

    International Nuclear Information System (INIS)

    Ren Man; Peng Ping'an; Cai Ying; Chen Deyi; Zhou Lin; Chen Pei; Hu Jianfang

    2011-01-01

    The study presented the concentrations and distributions of polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) as impurities in some commercial decabromodiphenyl ether (DBDE) mixtures that were produced by several manufacturers. The total concentrations of 12 2,3,7,8-substituted tetra- to octa-BDD/F congeners were found to be in the range of 3.4-13.6 (mean 7.8) μg/g, averagely accounting for 99% of total PBDD/Fs. OBDF was the prevailing congener, followed by 1,2,3,4,6,7,8-HpBDF. In addition, OBDD and 1,2,3,4,7,8-HxBDF were also obviously detectable. The total concentrations of PBDD/Fs varied both between the manufacturers and between the lots. On the basis of the global demand for the commercial DBDE in 2001, the annual potential emissions of PBDD/Fs were calculated coarsely to be 0.43 (range: 0.21-0.78) tons. The major dioxin congeners, OBDF and 1,2,3,4,6,7,8-HpBDF, presenting in DBDE, were estimated to be formed from BDE-209, BDE-206, and/or BDE-207 via an intra-molecular elimination of Br 2 /HBr. - Highlights: → A new analytical method for separating trace PBDD/F impurities from DBDE. → Original data of tetra- to octa-BDD/Fs in commercial DBDE. → OBDF and 1,2,3,4,6,7,8-HpBDF are the major dioxin congeners. → OBDF and 1,2,3,4,6,7,8-HpBDF are formed from BDE-209, BDE-206, and/or BDE-207. → Commercial DBDE is an important source for PBDD/Fs. - PBDD/Fs can be formed as contaminants in the commercial DBDE production.

  10. Interpretation of plasma impurity deposition probes. Analytic approximation

    Science.gov (United States)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  11. Characterization of acoustic emission signals generated by water flow through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Claytor, T.N.; Kupperman, D.S.

    1985-05-01

    A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs

  12. The screening of charged impurities in bilayer graphene

    International Nuclear Information System (INIS)

    Zhang Wenjing; Li, Lain-Jong

    2010-01-01

    Positively charged impurities were introduced into a bilayer graphene (BLG) transistor by n-doping with dimethylformamide. Subsequent exposure of the BLG device to moisture resulted in a positive shift of the Dirac point and an increase of hole mobility, suggesting that moisture could reduce the scattering strength of the existing charged impurities. In other words, moisture screened off the 'effective density' of charged impurities. At the early stage of moisture screening the scattering of hole carriers is dominated by long-range Coulomb scatter, but an alternative scattering mechanism should also be taken into consideration when the effective density of impurities is further lowered on moisture exposure.

  13. On neoclassical impurity transport in stellarator geometry

    International Nuclear Information System (INIS)

    García-Regaña, J M; Kleiber, R; Beidler, C D; Turkin, Y; Maaßberg, H; Helander, P

    2013-01-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface Φ-tilde compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by Φ-tilde . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The Φ-tilde used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general Φ-tilde self-consistently with EUTERPE is also addressed and a preliminary calculation is presented. (paper)

  14. Simulated impurity transport in LHD from MIST

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.E. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-05-01

    The impurity transport code MIST and atomic physics package LINES are used to calculate the time evolution of charge state density profiles, individual line emissivity profiles and total radiated power profiles for impurities in LHD plasmas. Three model LHD plasmas are considered; a high density, low temperature case, a low density, high temperature case and the initial LHD start-up plasma (500 kW ECH), using impurity transport coefficient profiles from Heliotron E. The elements oxygen, neon, scandium, iron, nickel and molybdenum are considered, both injected and in steady state. (author)

  15. Probe measurements for impurity transport in the scrape-off layer of JIPP T-II

    International Nuclear Information System (INIS)

    Mohri, M.; Satake, T.; Hashiba, H.; Yamashina, T.; Amemiya, S.

    1982-05-01

    Impurity transport processes in the scrape-off layer of the JIPP T-II device have been studied by a probe method. A cubical silicon probe was inserted and exposed to 20 identical tokamak discharges in the scrape-off region. Deposited impurities were analyzed with use of AES, RBS and PIXE equipments. The main metallic impurities were molybdenum and iron whose deposition behavior was almost the same on any side of the probe, and their fluxes were observed to be 1.2 x 10 13 /cm 2 .discharge on the electron drift side and 5.2 x 10 13 /cm 2 .discharge on the ion drift side, respectively at the distance of 18.3 cm from the center line of the plasma. The mean transport energy of the impurities striking the probe surface was estimated from the depth concentration profile applying the LSS theory for iron as 90 eV on the electron drift side and 250 eV on the ion drift side, respectively. The e-folding length of the scrape-off plasma density was measured by the radial distribution of a deposited tantalum amount to be 0.64 cm on the electron drift side and 1.73 cm on the ion drift side, respectively. (author)

  16. Scattering of waves by impurities in precompressed granular chains.

    Science.gov (United States)

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  17. Spin-1 two-impurity Kondo problem on a lattice

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2018-01-01

    We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on a square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density matrix renormalization group method. We provide a simple intuitive picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling JK, longitudinal anisotropy D , and transverse anisotropy E . In the isotropic case, two impurities on opposite (the same) sublattices have a singlet (triplet) ground state. However, the energy difference between the triplet ground state and the singlet excited state is very small and we expect an effectively fourfold-degenerate ground state, i.e., two decoupled impurities. For large enough JK the impurities are practically uncorrelated forming two independent underscreened states with the conduction electrons, a clear nonperturbative effect. When the impurities are entangled in an RKKY-like state, Kondo correlations persist and the two effects coexist: the impurities are underscreened, and the dangling spin-1 /2 degrees of freedom are responsible for the interimpurity entanglement. We analyze the effects of magnetic anisotropy in the development of quasiclassical correlations.

  18. Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells

    International Nuclear Information System (INIS)

    Arafune, K.; Sasaki, T.; Wakabayashi, F.; Terada, Y.; Ohshita, Y.; Yamaguchi, M.

    2006-01-01

    We focused on the defects and impurities in polycrystalline silicon substrates, which deteriorate solar cell efficiency. Comparison of the minority carrier lifetime with the grain size showed that the region with short minority carrier lifetimes did not correspond to the region with small grains. Conversely, the minority carrier lifetime decreased as the etch-pit density (EPD) increased, suggesting that the minority carrier lifetime is strongly affected by the EPD. Electron beam induced current measurements revealed that a combination of grain boundaries and point defects had high recombination activity. Regarding impurities, the interstitial oxygen concentration was relatively low compared with that in a Czochralski-grown silicon substrate, the total carbon concentration exceeded the solubility limit of silicon melt. X-ray microprobe fluorescence measurements revealed a large amount of iron in the regions where there were many etch-pits and grain boundaries with etch-pits. X-ray absorption near edge spectrum analysis revealed trapped iron in the form of oxidized iron

  19. Defect evolution and impurity migration in Na-implanted ZnO

    Science.gov (United States)

    Neuvonen, Pekka T.; Vines, Lasse; Venkatachalapathy, Vishnukanthan; Zubiaga, Asier; Tuomisto, Filip; Hallén, Anders; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2011-11-01

    Secondary ion mass spectrometry (SIMS) and positron annihilation spectroscopy (PAS) have been applied to study impurity migration and open volume defect evolution in Na+ implanted hydrothermally grown ZnO samples. In contrast to most other elements, the presence of Na tends to decrease the concentration of open volume defects upon annealing and for temperatures above 600∘C, Na exhibits trap-limited diffusion correlating with the concentration of Li. A dominating trap for the migrating Na atoms is most likely Li residing on Zn site, but a systematic analysis of the data suggests that zinc vacancies also play an important role in the trapping process.

  20. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  1. Mitigation of intergranular stress corrosion cracking in RBMK reactors. Final report of the programme's steering committee

    International Nuclear Information System (INIS)

    2002-09-01

    In 2000 the IAEA initiated an Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK Reactors to assist countries operating RBMK reactors in addressing the issue in austenitic stainless steel 300 mm diameter piping. Intergranular stress corrosion cracking of austenitic stainless steel piping in BWRs has been a major safety concern since the early seventies. Similar degradation was found in RBMK reactor piping in 1997. Early in 1998 the IAEA responded to requests for assistance from RBMK operating countries on this issue through activities organized in the framework of Technical Co-operation Department regional projects and the Extrabudgetary Programme on the Safety of WWER and RBMK Nuclear Power Plants. Results of these activities were a basis for the formulation of the objective and scope of the Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK reactors ('the Programme'). The scope of the Programme included in-service inspection, assessment, repair and mitigation, and water chemistry and decontamination. The Programme was pursued by means of exchange of experience, formulation of guidance, transfer of technology, and training, which will assist the RBMK operators to address related safety concerns. The Programme implementation relied on voluntary extrabudgetary financial contributions from Japan, Spain, the United Kingdom and the USA, and on in kind contributions from Finland, Germany and Sweden. The Programme was implemented in close co-ordination with ongoing national and bilateral activities and major inputs to the Programme were provided through the activities of the Swedish International Project Nuclear Safety and of the US DOE International Nuclear Safety Program. The RBMK nuclear power plants in Lithuania, Russian Federation and Ukraine hosted most of the Programme activities. Support of these Member States involved in the Programme was instrumental for its successful completion in

  2. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  3. Quantum one dimensional spin systems. Disorder and impurities

    International Nuclear Information System (INIS)

    Brunel, V.

    1999-01-01

    This thesis presents three studies that are respectively the spin-1 disordered chain, the non magnetic impurities in the spin-1/2 chain and the reaction-diffusion process. The spin-1 chain of weak disorder is performed by the Abelian bosonization and the renormalization group. This allows to take into account the competition between the disorder and the interactions and predicts the effects of various spin-1 anisotropy chain phases under many different disorders. A second work uses the non magnetic impurities as local probes of the correlations in the spin-1/2 chain. When the impurities are connected to the chain boundary, the author predicts a temperature dependence of the relaxation rate (1/T) of the nuclear spin impurities, different from the case of these impurities connected to the whole chain. The last work deals with one dimensional reaction-diffusion problem. The Jordan-Wigner transformation allows to consider a fermionic field theory that critical exponents follow from the renormalization group. (A.L.B.)

  4. Impurity injection into tokamak plasmas by erosion probes

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Bakos, J.S.; Buerger, G.; Paszti, F.; Petravich, G.

    1987-08-01

    Exposing special erosion probes into the edge plasma of MT-1 the impurities Li and Ti were released and contaminated the plasma. By the use of collector probes the torodial transport of these impurities were investigated. The results indicate a preferential impurity flow into codirection of the plasma current. However, the asymmetric component of this flow is much larger than expected from the toroidal drift correlated to the plasma current. (author)

  5. Impurity effects in the electrothermal instability

    International Nuclear Information System (INIS)

    Tomimura, A.; Azevedo, M.T. de

    1982-01-01

    A 'impure' plasma model is proposed based on the homogeneous hydrogen plasma used in the theory formulated by Tomimura and Haines to explain the electrothermal instable mode growth with the wave vector perpendicular to the applied magnetic field. The impurities are introduced implicitly in the transport coefficients of the two-fluid model through a effective charge number Z sub(eff). (Author) [pt

  6. Transport and re-deposition of limiter-released metal impurities

    International Nuclear Information System (INIS)

    Claasen, H.A.; Repp, H.

    1983-01-01

    The transport parallel B-vector and re-deposition of limiter- (or divertor-target-)released metal impurities in a given counter-streaming scrape-off layer plasma is studied analytically by using a kinetic approach. Electron impact ionization, Coulomb collisions with the hydrogen ions, and impurity ion acceleration in a pre-sheath electric field are accounted for. The friction and electric-field forces provide the driving forces for impurity re-cycling in front of the limiter. Both hydrogen ion sputtering and self-sputtering are included (the latter for impurity emission perpendicular to the limiter surface). The analytical formulas are numerically evaluated for the example of sputtered iron impurities, assuming a simple model for a scrape-off layer plasma in contact with a stainless-steel poloidal ring limiter. (author)

  7. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian

    2014-05-08

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  8. Transitions and excitations in a superfluid stream passing small impurities

    KAUST Repository

    Pinsker, Florian; Berloff, Natalia G.

    2014-01-01

    We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.

  9. Impurity dynamics in stellarator W7-AS plasmas

    International Nuclear Information System (INIS)

    Igitkhanov, Yuri; Beidler, Craig D.; Burhenn, Reiner; Polunovsky, Eduard; Yamazaki, Kozo

    2006-01-01

    Numerical efforts to understand the neoclassical transport of impurities in stellarator plasmas have been undertaken. The new code solves the radial continuity equations for each ionization stage of the impurity ions for given background plasma profiles and magnetic configuration. An analytic description of the neoclassical transport coefficients based on numerical results from the DKES (Drift Kinetic Equation Solver) code and monoenergetic Monte-Carlo calculation (C.D. Beidler et al., EPS 1994), is here applied for impurity transport coefficients. The transition between the different charge states due to the ionization and recombination in balance equation is described by using the ADAS (Atomic Data and Analysis Structure) database. The impurity behavior in some typical discharges from W7-AS with moderate (NC) and improved energy confinement (HDH) has been considered. It is shown that the spatial distribution results from the competition between the radial electric field and the thermal force (which together produce a convective flux), and the diffusive term, which flattens the radial impurity distribution. The impurity ions are localized at the radial position where the convective flux goes through zero. It is also shown that for typical stellarator discharges there is no pronounced temperature screening effect as in tokamak plasmas. (author)

  10. Single-site properties of U impurities doped in La2Zn17 (abstract)

    Science.gov (United States)

    Suzuki, H.; Anzai, K.; Takagi, S.

    1997-04-01

    Thermodynamic and transport properties of heavy Fermion (HF) U compounds show similar behavior to HF Ce compounds. Although most of the magnetic properties of HF Ce compounds can be qualitatively understood on the basis of the impurity Kondo model, no such consensus for HF U compounds has been reached. In addition to this, the single-site properties of U impurities are not understood so well, in contrast to the case of Ce impurities. Recent works for dilute U systems reported new features as are not seen in dilute Ce systems. We have investigated a dilute-U2Zn17 system of (La1-zUz)2Zn17 in order to reveal the single U ion site properties of this system by preparing single crystals. The impurity contributions to various physical quantities such as ρimp(T), χimp(T), and Cimp(T) can be scaled by the U concentration between z=0.025 and 0.05, and the system is considered as in the dilute limit still for z=0.05. The electrical resistivity shows the typical impurity-Kondo upturn at low temperatures. The electronic specific-heat coefficient is strongly enhanced (γimp≈1.5 J/K2 mole U) and about 4 times as large as that for dense U2Zn17. Suppressions of the Kondo effect by the magnetic field are seen in γimp(H) and magnetoresistance. The relatively large anisotropy in χimp(T) indicates an existence of the crystal field. These features of this system will be explained in terms of the Kondo effect in the presence of the crystal field.

  11. Distribution of Al and in impurities along homogeneous Ge-Si crystals grown by the Czochralski method using Si feeding rod

    Science.gov (United States)

    Kyazimova, V. K.; Alekperov, A. I.; Zakhrabekova, Z. M.; Azhdarov, G. Kh.

    2014-05-01

    A distribution of Al and In impurities in Ge1 - x Si x crystals (0 ≤ x ≤ 0.3) grown by a modified Czochralski method (with continuous feeding of melt using a Si rod) have been studied experimentally and theoretically. Experimental Al and In concentrations along homogeneous crystals have been determined from Hall measurements. The problem of Al and In impurity distribution in homogeneous Ge-Si single crystals grown in the same way is solved within the Pfann approximation. A set of dependences of Al and In concentrations on the crystal length obtained within this approximation demonstrates a good correspondence between the experimental and theoretical data.

  12. Cutting of metal components by intergranular cracking

    International Nuclear Information System (INIS)

    Chavand, J.; Gauthier, A.; Lopez, J.J.; Tanis, G.

    1985-01-01

    The objective of this contract was to study a new steel-sheet cutting technique for dismantling nuclear installations without in principle producing secondary waste. This technique is based on intergranular cracking of steel induced by the combined action of penetration of molten metal into the steel and application of a mechanical load. Cutting has been achieved for stainless-steel sheets with thicknesses ranging from a few mm to 50 mm and for carbon-steel plates with thicknesses between 20 and 60 mm. For carbon steel is seems possible that components as thick as 100 mm can be cut. The tests have permitted selection of the heating methods and determination of the cracking parameters for the materials and range of thickness studied. In the case of thin sheets, results were obtained for cutting in varied positions suited to the techniques of dismantling in hot cells. A temperature-measuring system using an infrared camera has been developed to determine the variation of the temperature field established in the component. In association with the three-dimensional computation code COCO developed by the CEA, this system permits prediction of the changes in stresses in the cracked zone when the cutting parameters are modified. 34 figs

  13. Impurity and trace tritium transport in tokamak edge turbulence

    DEFF Research Database (Denmark)

    Naulin, V.

    2005-01-01

    The turbulent transport of impurity or minority species, as for example tritium, is investigated in drift-Alfven edge turbulence. The full effects of perpendicular and parallel convection are kept for the impurity species. The impurity density develops a granular structure with steep gradients...... and locally exceeds its initial values due to the compressibility of the flow. An approximate decomposition of the impurity flux into a diffusive part and an effective convective part (characterized by a pinch velocity) is performed and a net inward pinch effect is recovered. The pinch velocity is explained...

  14. Impurities in radioactive solutions for gamma spectroscopy

    International Nuclear Information System (INIS)

    Delgado, J.U.

    1990-01-01

    The absolute and relative methods for radioactive sources calibration, like 4 Πβ-γ and 4Πγ ionization chamber respectively, allows to reach 0,1% of exactiness in activity measurement, but cannot distinguish radioactive impurities that interfere in the activity. Then, one of the problems associated to a quality control of calibrated sources furnished to users is the identification and quantification of the impurities. In this work, a routine technical procedure, using the facilities of gamma spectrometry method that allows to identify and to determine the impurities relative contribution to the source main radionuclide activity, is described. (author) [pt

  15. Difference in oxygen impurity behavior between repetitive short discharges and one long discharge on TRIAM-1M

    International Nuclear Information System (INIS)

    Ogawa, M.; Sakamoto, M.; Sato, K.N.; Zushi, H.; Nakamura, K.; Hanada, K.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.

    2007-01-01

    Oxygen impurity behaviors of one long duration discharge and repetition of short duration discharges have been investigated in TRIAM-1M. In the former case, the OII line intensity divided by the line averaged electron density, which is considered as a monitor of oxygen concentration on the plasma facing surface (PFS), decreased with the time constant, τ d , of 30-50 s during the discharge due to the hydrogen flux to PFS. In the latter case, τ d is in the range of 70-600 s. There exists a big difference of global behavior of oxygen impurity between both cases. The difference seems to result from the absence or presence of the interval time between the discharges. The oxygen concentration on PFS increases during the interval time due to adsorption of H 2 O. The time constant of the increase in the oxygen concentration is evaluated to be about 5500 s from Langmuir adsorption isotherms analysis

  16. Transport of impurities during H-mode pulses in JET

    International Nuclear Information System (INIS)

    Giannella, R.; Gottardi, N.; Mompean, F.; Mori, H.; Pasini, D.; Stork, D.; Barnsley, R.; Hawkes, N.C.; Lawson, K.

    1990-01-01

    The transport of impurities during the H-mode is very different from that observed in the other regimes. This is clearly evident in the quiescent discharges where the confinement time of impurities τ I are measured in all the quiescent H-mode discharges in spite of the variety of impurity behavior observed corresponding to different plasma parameters and operating scenarios. The condition of the machine has an influence on the role played by the various impurities, but this does not seem to affect the flow patterns of these ions substantially. In particular oxygen, which was often detected as the dominant radiator, can be reduced to a negligible fraction by He conditioning of the carbon X-point tiles or limiters or by evaporating beryllium in the vacuum vessel. Nevertheless the behaviour of the residual impurities in otherwise similar discharges remains substantially unchanged. The transport patterns appear in fact to be affected by the plasma parameters and their profiles. In particular, two extreme transport regimes are presented in the following. These discharges have been modelled with the aid of a recently developed fully time-dependent impurity transport code using heuristic profiles for the impurity diffusion D and the convection velocity v. (author) 4 refs., 5 figs

  17. Moving discrete breathers in a Klein-Gordon chain with an impurity

    International Nuclear Information System (INIS)

    Cuevas, J; Palmero, F; Archilla, J F R; Romero, F R

    2002-01-01

    We analyse the influence of an impurity in the evolution of moving discrete breathers in a Klein-Gordon chain with non-weak nonlinearity. Three different types of behaviour can be observed when moving breathers interact with the impurity: they pass through the impurity continuing their direction of movement; they are reflected by the impurity; they are trapped by the impurity, giving rise to chaotic breathers, as their Fourier power spectra show. Resonance with a breather centred at the impurity site is conjectured to be a necessary condition for the appearance of the trapping phenomenon. This paper establishes a difference between the resonance condition of the non-weak nonlinearity approach and the resonance condition with the linear impurity mode in the case of weak nonlinearity

  18. Impurity transport of high performance discharges in JET

    Energy Technology Data Exchange (ETDEWEB)

    Lauro-Taroni, L; Alper, B; Giannella, R; Marcus, F; Smeulders, P; Von Hellermann, M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K [UKAEA Culham Lab., Abingdon (United Kingdom); Mattioli, M [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1994-07-01

    Experimental data show that in the Pellet Enhanced Performance (PEP) H-mode discharges, the light impurities are dominant and accumulate. Furthermore, strong fuel depletion may occur in the plasma centre with n{sub D}/n{sub e} falling to about 0.3 in some cases. On the other hand, in Hot-Ion discharges hollow profiles are measured for C: it is present in lower concentrations and has little effect on fuel dilution. The different behaviour of carbon in the two cases is in agreement with neoclassical predictions for the convection in the plasma core. 6 refs., 6 figs.

  19. Impurity transport of high performance discharges in JET

    International Nuclear Information System (INIS)

    Lauro-Taroni, L.; Alper, B.; Giannella, R.; Marcus, F.; Smeulders, P.; Von Hellermann, M.; Mattioli, M.

    1994-01-01

    Experimental data show that in the Pellet Enhanced Performance (PEP) H-mode discharges, the light impurities are dominant and accumulate. Furthermore, strong fuel depletion may occur in the plasma centre with n D /n e falling to about 0.3 in some cases. On the other hand, in Hot-Ion discharges hollow profiles are measured for C: it is present in lower concentrations and has little effect on fuel dilution. The different behaviour of carbon in the two cases is in agreement with neoclassical predictions for the convection in the plasma core. 6 refs., 6 figs

  20. Intergranular and inter-phased boundaries in the materials; Joints intergranulaires et interphases dans les materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, A. [Electricite de France, Dept. CIMA, 77 - Moret sur Loing (France); Backhaus-Ricoult, M. [Centre d' Etudes de Chimie metallurgique, 94 - Vitry-sur-Seine (France); Bayle-Guillemaud, P. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, 38 (France)] [and others

    2000-07-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  1. Determination of impurities in beryl by neutron activation analysis

    International Nuclear Information System (INIS)

    Swain, K.K.; Dalvi, Aditi A.; Ajith, Nicy

    2015-01-01

    Beryl is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of locations worldwide. Pure beryl is colorless, but the presence of impurities imparts colors such as green, blue, yellow, red, and white. It is one of the most important gem minerals and the gems are named by their color. The impurities in beryl can be determined using various analytical techniques. Neutron activation analysis (NAA) is a sensitive technique for multielement analysis of geological samples. Four beryl samples, collected from Nayakund Mehandi Block, Parseoni, Maharashtra, were received from Geological Survey of India (GSI), Pune. Powdered samples (50-100 mg) along with comparators (IAEA Soil-7) were packed in aluminum foils, sealed in an aluminum container and irradiated for 7 days in tray rod facility of Dhruva reactor, BARC, Mumbai. After irradiation, samples were brought to laboratory. Samples were opened, transferred into polyethylene packets and weighed. Gamma activity measurements were carried out using 45% HPGe detector coupled to 8 k multi channel analyzer. For the determination of manganese, which produces relatively shorter lived activation product ( 56 Mn: T 1/2 = 2.56 h), samples were sealed in polyethylene pouches and irradiated in graphite reflector position of Critical facility reactor, BARC, Mumbai. Relative method of NAA was used for concentration calculations. IAEA reference material (RM), SL -1 (lake sediment) was analyzed for quality control. Percentage errors on the measured concentrations of the elements are within ± 8% with respect to the recommended/information values

  2. Defect-impurity interactions in ion-implanted metals

    International Nuclear Information System (INIS)

    Turos, A.

    1986-01-01

    An overview of defect-impurity interactions in metals is presented. When point defects become mobile they migrate towards the sinks and on the way can be captured by impurity atoms forming stable associations so-called complexes. In some metallic systems complexes can also be formed athermally during ion implantation by trapping point defects already in the collision cascade. An association of a point defect with an impurity atom leads to its displacement from the lattice site. The structure and stability of complexes are strongly temperature dependent. With increasing temperature they dissociate or grow by multiple defect trapping. The appearance of freely migrating point defects at elevated temperatures, due to ion bombardment or thermal annealing, causes via coupling with defect fluxes, important impurity redistribution. Because of the sensitivity of many metal-in-metal implanted systems to radiation damage the understanding of this processes is essential for a proper interpretation of the lattice occupancy measurements and the optimization of implantation conditions. (author)

  3. Complexity of Quantum Impurity Problems

    Science.gov (United States)

    Bravyi, Sergey; Gosset, David

    2017-12-01

    We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.

  4. Evaluation of hideout return data from U.S. PWR steam generators

    International Nuclear Information System (INIS)

    Connor, W.M.; Richards, J.E.

    1988-01-01

    Since the middle to late 1970's, dramatic reductions in the quantities of impurities in the bulkwater of PWR steam generators have been made by U.S. utilities. Today most utilities operate at full power with impurity concentrations in the steam generator blowdown in the low ppb range, well within existing industry guideline control limits. Despite these efforts, some of these same utilities have subsequently encountered secondary side stress corrosion cracking (SCC) and intergranular attack (IGA) of steam generator tubing within deep tubesheet crevices and more recently at tube support intersections. It must, therefore, be concluded that either continuous low level input of contaminants within existing guideline limits, or intermittent short duration input, undetected by either current sampling and analysis techniques or procedures, are permitting ingress of corrosive impurity species which subsequently concentrate in flow-occluded regions to produce localized tube corrosion. To better understand both the quantity and composition of accumulated impurity species, more and more utilities, even those who have not experienced any steam generator corrosion, have begun to perform rigorous sampling and analysis evaluations of returning chemical contaminants each time the units are brought off-line. This paper will show examples of how these data are being used by U.S. industry to gain valuable information about accumulated contaminant inventories, to make cycle-to-cycle and plant-to-plant comparisons, and to develop plant specific actions to promote maximum contaminant removal. (author)

  5. Impurity and particle control for INTOR

    International Nuclear Information System (INIS)

    Post, D.

    1985-02-01

    The INTOR impurity control system studies have been focused on the development of an impurity control system which would be able to provide the necessary heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (approx. 1 year), and (3) minimum size and cost. The major systems examined were poloidal divertors and pumped limiters. The poloidal divertor was chosen as the reference option since it offered the possibility of low sputtering rates due to the formation of a cool, dense plasma near the collector plates. Estimates of the sputtering rates associated with pumped limiters indicated that they would be too high for a reasonable system. Development of an engineering design concept was done for both the poloidal divertor and the pumped limiter

  6. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    International Nuclear Information System (INIS)

    Malone, J.P.; Stevens, R.J.

    1998-01-01

    Potassium nitrate labeled with 15 N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO 2 - impurity has been found in the batches of K 15 NO 3 enriched to 99 atom % excess 15 N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO 3 - could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO 2 - impurity from any NO 3 - solution in a water matrix. The principle is the oxidation of NO2- to NO 3 - by UV light in the presence of a heterogenous TiO 2 catalyst. A NO 2 - concentration of 0.2 mM in 100 mL of 0.2 M NO 3 - solution could be oxidized in 12 min using 0.5 g L -1 TiO 2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO 2 - , use of the same TiO 2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  7. First-principles study of the effects of halogen dopants on the properties of intergranular films in silicon nitride ceramics

    International Nuclear Information System (INIS)

    Painter, Gayle S.; Becher, Paul F.; Kleebe, H.-J.; Pezzotti, G.

    2002-01-01

    The nanoscale intergranular films that form in the sintering of ceramics often occur as adherent glassy phases separating the crystalline grains in the ceramic. Consequently, the properties of these films are often equal in importance to those of the constituent grains in determining the ceramic's properties. The measured characteristics of the silica-rich phase separating the crystalline grains in Si 3 N 4 and many other ceramics are so reproducible that SiO 2 has become a model system for studies of intergranular films (IGF's). Recently, the influence of fluorine and chlorine dopants in SiO 2 -rich IGF's in silicon nitride was precisely documented by experiment. Along with the expected similarities between the halogens, some dramatically contrasting effects were found. But the atomic-scale mechanisms distinguishing the effects F and Cl on IGF behavior have not been well understood. First-principles density functional calculations reported here provide a quantum-level description of how these dopant-host interactions affect the properties of IGF's, with specific modeling of F and Cl in the silica-rich IGF in silicon nitride. Calculations were carried out for the energetics, structural changes, and forces on the atoms making up a model cluster fragment of an SiO 2 intergranular film segment in silicon nitride with and without dopants. Results show that both anions participate in the breaking of bonds within the IGF, directly reducing the viscosity of the SiO 2 -rich film and promoting decohesion. Observed differences in the way fluorine and chlorine affect IGF behavior become understandable in terms of the relative stabilities of the halogens as they interact with Si atoms that have lost one if their oxygen bridges

  8. Scaling laws for trace impurity confinement: a variational approach

    International Nuclear Information System (INIS)

    Thyagaraja, A.; Haas, F.A.

    1990-01-01

    A variational approach is outlined for the deduction of impurity confinement scaling laws. Given the forms of the diffusive and convective components to the impurity particle flux, we present a variational principle for the impurity confinement time in terms of the diffusion time scale and the convection parameter, which is a non-dimensional measure of the size of the convective flux relative to the diffusive flux. These results are very general and apply irrespective of whether the transport fluxes are of theoretical or empirical origin. The impurity confinement time scales exponentially with the convection parameter in cases of practical interest. (orig.)

  9. Zirconium analysis. Impurities determination by spark mass specrometry

    International Nuclear Information System (INIS)

    Anon.

    Determination of impurities in zirconium, suitable for atomic content greater than 10 -8 but particularly adapted for low contents. The method is quantitative only if a reference sample is available (metallic impurities) [fr

  10. Isospin impurity and super-allowed β transitions

    International Nuclear Information System (INIS)

    Sagawa, H.; Van Giai Nguyen; Suzuki, T.

    1999-01-01

    We study the effect of isospin impurity on the super-allowed Fermi β decay using microscopic HF and RPA (or TDA) model taking into account CSB and CIB interactions. It is found that the isospin impurity of N = Z nuclei gives enhancement of the sum rule of Fermi transition probabilities. On the other hand, the super-allowed transitions between odd-odd J = 0 nuclei and even-even J = 0 nuclei are quenched because on the cancellation of the isospin impurity effects of mother and daughter nuclei. An implication of the calculated Fermi transition rate on the unitarity of Cabbibo-Kobayashi-Maskawa mixing matrix is also discussed. (authors)

  11. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    Science.gov (United States)

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  12. Dynamics of impurities in the scrape-off layer

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Commission of the European Communities, Abingdon

    1988-01-01

    Impurity modelling of the Scrape-Off Layer, SOL, is reviewed. Simple analytic models are sometimes adequate for relating central impurity levels to edge plasma conditions and for explaining the patterns of net erosion/deposition found on limiters. More sophisticated approaches, which are also necessary, are categorized and reviewed. A plea is made for the acquisition of a more comprehensive data base of edge plasma properties since reliable impurity modelling appears to be dependent on more extensive use of experimental input. (author)

  13. The optimisation of limiter geometry to reduce impurity influx in tokamaks

    International Nuclear Information System (INIS)

    Matthews, G.F.; McCracken, G.M.; Sewell, P.; Goodall, D.H.J.; Stangeby, P.C.; Pitcher, C.S.

    1987-01-01

    Conventional limiters are designed to withstand large power loadings and hence are constructed with surfaces at grazing angles to the toroidal magnetic field. As a result any impurities released from the limiter surface are projected towards the centre of the plasma and are poorly screened from it. The impurity control limiter (ICL), an alternative concept which has an inverted geometry is discussed. The ICL shape is designed to direct the impurities towards the wall. Results are presented from a two-dimensional neutral particle code which maps the ionisation of carbon physically sputtered by deuterons from a carbon limiter. This ionisation source is coupled to a one-dimensional impurity transport code which calculates the implied central impurity density. The results demonstrate that the ICL achieves impurity control in two ways. Firstly, many of the sputtered impurities directed towards the wall are not ionised and return to the wall as neutrals. Secondly, much of the ionisation which does occur is located in the scrape-off layer. Here there is a strong ion sink which may also be enhanced by the flow of hydrogenic ions entraining impurity ions created close to the limiter surface. We conclude that a reduction in central impurity density of a factor of 10 is possible in a Tokamak such as DITE provided that the limiter is the main source of impurities. (author)

  14. Impurities in Tc-99m radiopharmaceutical solution obtained from Mo-100 in cyclotron.

    Science.gov (United States)

    Tymiński, Zbigniew; Saganowski, Paweł; Kołakowska, Ewa; Listkowska, Anna; Ziemek, Tomasz; Cacko, Daniel; Dziel, Tomasz

    2018-04-01

    The gamma emitting impurities in 99m Tc solution obtained from enriched molybdenum 100 Mo metallic target after its irradiation in a cyclotron were measured using a high-purity germanium (HPGe) detector. The radioactivity range of tested samples of 99m Tc was rather low, in the range from 0.34 to 2.39 MBq, thus creating a challenge to investigate the standard measurement HPGe system for impurity detection and quantification. In the process of 99m Tc separation from irradiated target the AnaLig® Tc-02 resin, Dionex H + and Alumina A columns were used. Fractions of eluates from various steps of separation process were taken and measured for radionuclidic purity. The overall measurement sensitivity of gamma emitters in terms of minimum detectable activity (MDA) was found at the level of 14-70Bq with emission lines in range of 36 - 1836keV resulting in impurity content range of 6.7 × 10 -4 to 3.4 × 10 -3 % for 93 Tc, 93m Tc, 94 Tc, 94m Tc, 95 Tc, 95m Tc, 96 Tc 96 Nb, 97 Nb, 99 Mo contaminants and 9.4 × 10 -3 % for 97m Tc. The usefulness of the chosen measurement conditions and the method applied to testing the potential contaminators was proved by reaching satisfactory results of MDAs less than the criteria of impurity concentration of all nuclides specified in the European Pharmacopoeia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  16. Strong quantum scarring by local impurities

    Science.gov (United States)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  17. Synthesis, Isolation and Characterization of Process-Related Impurities in Oseltamivir Phosphate

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Sharma

    2012-01-01

    Full Text Available Three known impurities in oseltamivir phosphate bulk drug at level 0.1% (ranging from 0.05-0.1% were detected by gradient reverse phase high performance liquid chromatography. These impurities were preliminarily identified by the mass number of the impurities. Different experiments were conducted and finally the known impurities were synthesized and characterized.

  18. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    International Nuclear Information System (INIS)

    Yang, Jing; Zhao, Degang; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-01-01

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg Ga acceptors and passivating donor defects. A decrease in p-type resistivity when O 2 is introduced during the postannealing process is attributed to the fact that annealing in an O 2 -containing environment can enhance the dissociation of Mg Ga -H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation

  19. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  20. The influence of impurities on the discharge behaviour in SPICA

    International Nuclear Information System (INIS)

    Meer, A.F.G. van der.

    1981-10-01

    Discharges in the screw pinch SPICA can be produced in a small range of filling pressures and bias field values. The experimentally observed lower limit of 6 mtorr for the filling pressure is explained by the onset of MHD instabilities and by imperfect implosion at low values of the filling pressure at high values of the bias field. In the accessible parameter regime, discharges can be produced with densities of the order of 5x10 21 m -3 and temperatures between 30 and 80 eV, which show gross stability for 200 μs, albeit not reproducible. In this density and temperature range discharges can easily become dominated by energy losses due to impurity radiation. An investigation of the temperature decay and the impurity concentration shows that, in spite of the quartz liner, this is not the case under normal operating conditions and that the energy containment time is of the order of 200 μs. The temperature decay rate, measured by means of Thomson scattering, is only 0.15 eV/μs, whereas from the intensity ratio of the 15.0 nm 2s 2 S - 3p 2 p 0 and the 103.2 nm 2s 2 S - 2p 2 P 0 OVI emission lines a decay rate of 0.3 eV/μs is derived. From absolute intensity measurements an oxygen concentration is derived. Besides oxygen, also silicon and nitrogen are present in the discharge. The nitrogen concentration that follows from absolute intensity measurements is in fair agreement with estimates based on an analysis of the background gas. The silicon concentration has not been measured directly, but it is estimated to be less than half the oxygen concentration since the wall material is quartz (SiO 2 ) and part of the oxygen originates from the background gas, mainly as a constituent of water vapour

  1. Oscillations of quantum transport through double-AB rings with magnetic impurity

    International Nuclear Information System (INIS)

    Gao Yingfang; Liang, J-Q

    2006-01-01

    We have studied the effect of impurity scattering on the quantum transport through double AB rings in the presence of spin-flipper in the middle lead in terms of one-dimensional quantum waveguide theory. The electron interacts with the impurity through the exchange interaction leading to spin-flip scattering. Transmissions in the spin-flipped and non-spin-flipped channels are calculated explicitly. It is found that the overall transmission and the conductance are distorted due to the impurity scattering. The extent of distortion not only depends on the strength of the impurity potential but also on the impurity position. Moreover, the transmission probability and the conductance are modulated by the magnetic flux, the size of the ring and the impurity potential strength as well

  2. Investigation of impurity defects in α-iron by molecular dynamics method

    International Nuclear Information System (INIS)

    Kevorkyan, Yu.R.

    1986-01-01

    Investigation of the configuration of impurity defects in α-iron by the molecular dynamics method is presented. The Jhonson model potential has been used to calculate the interaction of matrix atoms. The impurity-matrix atom interaction is described by the same form of the potential shifted along the axis of interatomic distances for a definite value. The correspondence between the shift value and change in the radius of the impurity defect is established on the basis of calculation of the relaxation volume. Possible configurations of the impurity - interstitial matrix atom complexes are obtained for the given model of the impurity defect, dimensional boundaries of possible transitions between different configurations are determined. Formation and bound energies, relaxation volumes of impurity defects are calculated

  3. Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    DEFF Research Database (Denmark)

    Priego, M.; Garcia, O.E.; Naulin, V.

    2005-01-01

    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive...... drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative...... orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass-charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations. (C) 2005 American Institute of Physics....

  4. Research of acceptor impurity thermal activation in GaN: Mg epitaxial layers

    Directory of Open Access Journals (Sweden)

    Aleksandr V. Mazalov

    2016-06-01

    The effect of thermal annealing of GaN:Mg layers on acceptor impurity activation has been investigated. Hole concentration increased and mobility decreased with an increase in thermal annealing temperature. The sample annealed at 1000 °C demonstrated the lowest value of resistivity. Rapid thermal annealing (annealing with high heating speed considerably improved the efficiency of Mg activation in the GaN layers. The optimum time of annealing at 1000 °C has been determined. The hole concentration increased by up to 4 times compared to specimens after conventional annealing.

  5. Depolarization of diffusing spins by paramagnetic impurities

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.

    1981-01-01

    We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)

  6. Oxidation studies of β-sialon ceramics containing amorphous and / or crystalline intergranular phases

    International Nuclear Information System (INIS)

    Persson, J.; Kall, P.O.; Jansson, K.; Nygren, M.

    1992-01-01

    β-sialon ceramics of equal overall compositions but containing amorphous, partly crystalline and almost completely crystalline intergranular phase(s) have been oxidized in oxygen at 1350 deg C for 20 hours. The obtained weight gain curves do not follow the parabolic rate law (ΔW/A 0 ) 2 = k p t + β. To the extent that crystallization occurs in the oxide scale during the oxidation experiment, the amorphous cross section area through which oxygen most easily diffuses will decrease with time. A brief description of this new rate law is given, and the obtained oxidation curves will be discussed within that framework. 4 refs., 2 tabs., 2 figs

  7. Carbon impurity transport around limiters in the DITE tokamak

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Goodall, D.H.J.; Matthews, G.F.; McCracken, G.M.

    1989-01-01

    The transport of impurity ions originating at the limiter in a tokamak is critically dependent on the location of the ion in the boundary plasma. In the confined plasma, just inboard of the limiter, impurity ions will disperse freely into the discharge whilst in the scrape-off layer the pre-sheath plasma flow and the associated ambipolar electric field may tend to sweep impurities back to the limiter surface. In this paper we have studied, both by experiment and by theory, the transport of carbon impurity ions in the vicinity of the limiter. By comparing experimental measurements of the spatial distributions of impurities around the limiter with that predicted from a Monte Carlo computer code it appears that the parallel dispersal on closed field lines in the confined plasma is consistent with classical transport processes and that in the scrape-off layer the dispersal is indeed impeded by the pre-sheath plasma flow. (orig.)

  8. Evaluation of austenitic stainless steels for transpassive corrosion by metal purification technology. Synergistic effect of Si and P on intergranular corrosion of Fe-18Cr-14Ni alloys

    International Nuclear Information System (INIS)

    Mayuzumi, Masami; Ohta, Joji; Kako, Kenji; Kawakami, Eishi

    2001-01-01

    The synergistic effect of Si, Mn, C, P, and S on the transpassive corrosion of HP18Cr-14Ni alloys was studied in 13N nitric acid. The specimens were fabricated using a cold crucible method in a high-vacuum chamber to reduce contamination. The additions of Si<1% and Mn<2% had no effect on the corrosion behavior of HP18Cr-14Ni alloys, and the addition of Si<1% also had no effect on the corrosion behavior of HP18Cr-14Ni-1Mn alloys, although 1% Si induced intergranular corrosion in both the alloys. Thus, HP18Cr-14Ni-1Mn-0.5Si alloys were selected to evaluate the effects of C, P and S (100 ppm each). The addition of P, and the co-addition of C, P, and S to HP18Cr-14Ni-1Mn-0.5Si induced intergranular corrosion of the same degree in the solution annealed condition. This result suggests the synergistic effect of Si and P to induce intergranular corrosion, since the single addition of Si or P to this level did not lead to intergranular corrosion of HP18Cr-14Ni alloys. HP18Cr-14Ni-1Mn-0.5Si alloys containing C, P, and S at the 100 ppm level each showed superior corrosion resistance compared to a commercial Type 304L in 13N nitric acid. (author)

  9. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  10. Impurity production and acceleration in CTIX

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, D. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States)], E-mail: dabuche@sandia.gov; Clift, W.M. [Sandia National Laboratories, MS-9161, P.O. Box 969, Livermore, CA 94550 (United States); Klauser, R.; Horton, R.D. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States); Howard, S.J. [General Fusion Inc., Burnaby, BC V5A 3H4 (Canada); Brockington, S.J. [HyperV Technologies Corp., Chantilly, VA 20151 (United States); Evans, R.W.; Hwang, D.Q. [CTIX Group, University of California at Davis, Davis, CA 95616 (United States)

    2009-06-15

    The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT.

  11. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  12. GGA+U investigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-08-01

    Stimulation of novel features in ZnO by impurity electrons has attracted a remarkable attention of researchers from the past decade. Consequently, ZnO has found several applications in the field of spintronics and optoelectronics. We report, the effect of 3d-(V, Ag) electrons on the properties of ZnO in stable wurtzite (WZ) and metastable zincblende (ZB) phase using the density functional theory. Introduction of V-3d electrons was found to induce a high magnetic moment value of 5.22 in WZ and 3.26 in the ZB phase, and moreover transform the semiconductor character of ZnO into a metallic nature. Ag-d electrons result in the p-type half-metallic nature of ZnO with a weak ferromagnetic background. Our calculations for ground-state magnetic ordering show that ZnO in the presence of impure 3d-(V, Ag) electrons favors ferromagnetic ordering, and obey the double exchange mechanism. However, impurity atoms have very marginal effect on the lattice parameters of ZnO, thereby exposing its potential to absorb the impurity atoms in high concentration. © 2014 Elsevier B.V. All rights reserved.

  13. Evaluation by the Double Loop Electrochemical Potentiokinetic Reactivation Test of Aged Ferritic Stainless Steel Intergranular Corrosion Susceptibility

    Science.gov (United States)

    Sidhom, H.; Amadou, T.; Braham, C.

    2010-12-01

    An experimental design method was used to determine the effect of factors that significantly affect the response of the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test in controlling the susceptibility to intergranular corrosion (IGC) of UNS S43000 (AISI 430) ferritic stainless steel. The test response is expressed in terms of the reactivation/activation current ratio ( I r / I a pct). Test results analysed by the analysis of variance (ANOVA) method show that the molarity of the H2SO4 electrolyte and the potential scanning rate have a more significant effect on the DL-EPR test response than the temperature and the depassivator agent concentration. On the basis of these results, a study was conducted in order to determine the optimal operating conditions of the test as a nondestructive technique for evaluating IGC resistance of ferritic stainless steel components. Three different heat treatments are considered in this study: solution annealing (nonsensitized), aging during 3 hours at 773 K (500 °C) (slightly sensitized), and aging during 2 hours at 873 K (600 °C) (highly sensitized). The aim is to find the operating conditions that simultaneously ensure the selectivity of the attack (intergranular and chromium depleted zone) and are able to detect the effect of low dechromization. It is found that a potential scanning rate of 2.5 mV/s in an electrolyte composed of H2SO4 3 M solution without depassivator, at a temperature around 293 K (20 °C), is the optimal operating condition for the DL-EPR test. Using this condition, it is possible to assess the degree of sensitization (DOS) to the IGC of products manufactured in ferritic stainless steels rapidly, reliably, and quantitatively. A time-temperature-start of sensitization (TTS) diagram for the UNS S43000 (France Inox, Villepinte, France) stainless steel was obtained with acceptable accuracy by this method when the IGC sensitization criterion was set to I r / I a > 1 pct. This diagram is in

  14. Towards a liquid Argon TPC without evacuation filling of a 6$m^3$ vessel with argon gas from air to ppm impurities concentration through flushing

    CERN Document Server

    Curioni, A; Gendotti, A; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Resnati, F; Rubbia, A; Coleman, J; Lewis, M; Mavrokoridis, K; McCormick, K; Touramanis, C

    2010-01-01

    In this paper we present a successful experimental test of filling a volume of 6 $m^3$ with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to $all$ sources of impurities affecting directly the argon scintillation.

  15. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    Science.gov (United States)

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  16. Continuous-time quantum Monte Carlo impurity solvers

    Science.gov (United States)

    Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias

    2011-04-01

    Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as

  17. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  18. Radiation-chemical disinfection of dissolved impurities and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical neutralization of dissolved toxic impurities formed in the production processes of different materials, while modern plants being in use, is considered. For the first time the processes of deep industrial waste detoxication and due to this peculiarities of practically thorough neutralization of dissolved toxic impurities are considered. Attention is paid to devices and economic factors of neutralization of dissolved toxic impurities. The role of radiation-chemical detoxication for environment protection is considered

  19. A model for oxidizing species concentrations in boiling water reactors

    International Nuclear Information System (INIS)

    Sun, B.; Chexal, B.; Pathania, R.; Chun, J.; Ballinger, R.; Abdollahian, D.

    1993-01-01

    To evaluate and control the intergranular stress corrosion cracking of boiling water reactor (BWR) vessel internal components requires knowledge of the concentration of oxidizing species that affects the electrochemical potentials in various regions of a BWR. In a BWR flow circuit, as water flows through the radiation field, the radiolysis process and chemical reactions lead to the production of species such as oxygen, hydrogen, and hydrogen peroxide. Since chemistry measurements are difficult inside BWRs, analytical tools have been developed by Ruiz and Lin, Ibe and Uchida and Chun and Ballinger for estimating the concentration of species that provide the necessary input for water chemistry control and material protection

  20. [Impurity removal technology of Tongan injection in liquid preparation process].

    Science.gov (United States)

    Yang, Xu-fang; Wang, Xiu-hai; Bai, Wei-rong; Kang, Xiao-dong; Liu, Jun-chao; Wu, Yun; Xiao, Wei

    2015-08-01

    In order to effectively remove the invalid impurities in Tongan injection, optimize the optimal parameters of the impurity removal technology of liquid mixing process, in this paper, taking Tongan injection as the research object, with the contents of celandine alkali, and sinomenine, solids reduction efficiency, and related substances inspection as the evaluation indexes, the removal of impurities and related substances by the combined process of refrigeration, coction and activated carbon adsorption were investigated, the feasibility of the impurity removal method was definited and the process parameters were optimized. The optimized process parameters were as follows: refrigerated for 36 h, boiled for 15 min, activated carbon dosage of 0.3%, temperature 100 degrees C, adsorption time 10 min. It can effectively remove the tannin, and other impurities, thus ensure the quality and safety of products.

  1. Effects of helium impurities on superalloys

    International Nuclear Information System (INIS)

    Selle, J.E.

    1977-07-01

    A review of the literature on the effects of helium impurities on superalloys at elevated temperatures was undertaken. The actual effects of these impurities vary depending on the alloy, composition of the gas atmosphere, and temperature. In general, exposure in helium produces significant but not catastrophic changes in the structure and properties of the alloys. The effects of these treatments on the structure, creep, fatigue, and mechanical properties of the various alloys are reviewed and discussed. Suggestions for future work are presented

  2. Determination of impurities in zirconium by emission spectrograph method

    International Nuclear Information System (INIS)

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  3. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    Science.gov (United States)

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  4. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  5. Imaging and thickness measurement of amorphous intergranular films using TEM

    International Nuclear Information System (INIS)

    MacLaren, I.

    2004-01-01

    Fresnel fringe analysis is shown to be unreliable for grain boundaries in yttrium-doped alumina: the determined thicknesses do not agree well with those measured from high resolution transmission electron microscopy (HRTEM), the asymmetry between under- and overfocus is very large, and Fresnel fringes are sometimes shown at boundaries which contain no amorphous film. An alternative approach to the analysis of HRTEM images of grain boundary films is demonstrated: Fourier filtering is used to remove the lattice fringes from the image thereby significantly enhancing the visibility of the intergranular films. The apparent film thickness shows a discrepancy between measurements from the original HRTEM image and the filtered image. It was shown that fringe delocalisation and diffuseness of the amorphous/crystalline interfaces will lead to a significant underestimate of the thickness in unprocessed HRTEM images. In contrast to this, the average thickness can be much more accurately measured from the Fourier-filtered image, provided the boundary is oriented accurately edge-on

  6. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  7. Investigation of the impurity transport in the ASDEX tokamak by spectroscopical methods

    International Nuclear Information System (INIS)

    Krieger, K.W.

    1990-12-01

    Plasma impurities: a central problem of controlled thermonuclear fusion; magnetic plasma confinement in a Tokamak; methods to the determination of plasma impurity transport coefficients - by temporally modulated gas admission; the transport equation for impurities; neoclassical and anomalous transport; harmonic analysis of time-dependent signals; solutions of the transport equation; experimental equipment and measurements; measuring results - consistency of simple transport models with radial phase measurements; linearity of the transport processes; plasma disturbance by impurity injection; determination of the diffusion coefficient by simplified transport models; comparison of transport models for impurities and background plasma; measurements of the impurity transport at the plasma edge by high modulation frequencies. (AH)

  8. Effect of suprathermal electrons on the impurity ionization state

    International Nuclear Information System (INIS)

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  9. Impurity levels: corrections to the effective mass approximation

    International Nuclear Information System (INIS)

    Bentosela, F.

    1977-07-01

    Some rigorous results concerning the effective mass approximation used for the calculation of the impurity levels in semiconductors are presented. Each energy level is expressed as an asymptotic series in the inverse of the dielectric constant K, in the case where the impurity potential is 1/μ

  10. Impurity investigations in the boundary layer of the DITE tokamak

    International Nuclear Information System (INIS)

    McCracken, G.M.; Partridge, J.W.; Erents, S.K.; Sofield, C.J.; Ferguson, S.M.

    1982-01-01

    The results obtained in the present investigation show large fluctuations both during discharges and from one discharge to the next. The radial density gradient of impurities in the boundary is not large. It is clear that the density and in particular dn/dt can have a strong effect on the impurity level. However there are apparently a number of other factors causing changes in impurity level which have not been well controlled in the present experiments. Possibilities include flaking from the walls, and changes in the level of the light impurities, oxygen and carbon, in the discharges. (orig./RW)

  11. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  12. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    International Nuclear Information System (INIS)

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  13. Orbit effects on impurity transport in a rotating plasma

    International Nuclear Information System (INIS)

    Wong, K.L.; Cheng, C.Z.

    1988-01-01

    In 1985, very high ion temperature plasmas were first produced in TFTR with co-injecting neutral beams in low current, low density plasmas. This mode of operation is called the energetic ion mode in which the plasma rotates at very high speed. It was found that heavy impurities injected into these plasmas diffused out very quickly. In this paper, the authors calculate the impurity ion orbits in a rotating tokamak plasma based on the equation of motion in the frame that rotates with the plasma. It is shown that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster. Particle orbits near the surface of a rotating tokamak are also analyzed. During impurity injection experiments, freshly ionized impurities near the plasma surface are essentially stationary in the laboratory frame and they are counter-rotating in the plasma frame with co-beam injection. The results are substantiated by numeral particle simulation. The computer code follows the impurity guiding center positions by integrating the equation of motion with the second order predictor-corrector method

  14. Resonant scattering on impurities in the quantum Hall effect

    International Nuclear Information System (INIS)

    Gurvitz, A.

    1994-06-01

    We developed a new approach to carrier transport between the edge states via resonant scattering on impurities, which is applicable both for short and long range impurities. A detailed analysis of resonant scattering on a single impurity is performed. The results used for study of the inter-edge transport by multiple resonant hopping via different impurities' site. We found the total conductance can be obtained from an effective Schroedinger equation with constant diagonal matrix elements in the Hamiltonian, where the complex non-diagonal matrix elements are the amplitudes of a carrier hopping between different impurities. It is explicitly shown how the complex phase leads to Aharonov-Bohm oscillations in the total conductance. Neglecting the contribution of self-crossing resonant-percolation trajectories, we found that the inter-edge carrier transport is similar to propagation in one-dimensional system with off-diagonal disorder. Then we demonstrated that each Landau band has an extended state Ε Ν , while all other states are localized, and the localization length behaves as L - 1 Ν (Ε) ∼ (Ε - Ε Ν ) 2 . (author)

  15. Harmful situations, impure people: an attribution asymmetry across moral domains.

    Science.gov (United States)

    Chakroff, Alek; Young, Liane

    2015-03-01

    People make inferences about the actions of others, assessing whether an act is best explained by person-based versus situation-based accounts. Here we examine people's explanations for norm violations in different domains: harmful acts (e.g., assault) and impure acts (e.g., incest). Across four studies, we find evidence for an attribution asymmetry: people endorse more person-based attributions for impure versus harmful acts. This attribution asymmetry is partly explained by the abnormality of impure versus harmful acts, but not by differences in the moral wrongness or the statistical frequency of these acts. Finally, this asymmetry persists even when the situational factors that lead an agent to act impurely are stipulated. These results suggest that, relative to harmful acts, impure acts are linked to person-based attributions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Self-limitation of impurity production by radiation cooling at the edge of a fusion plasma

    International Nuclear Information System (INIS)

    Neuhauser, J.; Lackner, K.; Wunderlich, R.

    1982-04-01

    The influence of radiation cooling at the edge of a fusion plasma on the plasma-wall interaction is numerically studied for parameters typical of the ZEPHYR ignition experiment. Various transport and impurity influx models and different external heating methods are studied using the 1D tokamak transport code BALDUR developed at Princeton. The results demonstrate the self-consistent formation of a radiating boundary layer (photosphere) for a wide range of parameters, limiting the impurity concentration in the plasma to a tolerable value. While the plasma behaviour is rather insensitive to model assumptions, the sputtering rate and the corresponding wall erosion depend on various parameters. Methods for external control of the photosphere and - more important - of the wall erosion are also discussed. (orig.)

  17. MOS Capacitance—Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations

    International Nuclear Information System (INIS)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency Capacitance—Voltage (C—V) curves of Metal—Oxide—Semiconductor Capacitors (MOSC), including electron and hole trapping at the dopant donor and acceptor impurities, are presented to illustrate giant trapping capacitances, from > 0.01C OX to > 10C OX . Five device and materials parameters are varied for fundamental trapping parameter characterization, and electrical and optical signal processing applications. Parameters include spatially constant concentration of the dopant-donor-impurity electron trap, N DD , the ground state electron trapping energy level depth measured from the conduction band edge, E C –E D , the degeneracy of the trapped electron at the ground state, g D , the device temperature, T, and the gate oxide thickness, x OX . (invited papers)

  18. Impurity strength and impurity domain modulated frequency-dependent linear and second non-linear response properties of doped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Nirmal Kumar [Department of Physics, Suri Vidyasagar College, Suri, Birbhum 731 101, West Bengal (India); Ghosh, Manas [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2011-08-15

    We explore the pattern of frequency-dependent linear and second non-linear optical responses of repulsive impurity doped quantum dots harmonically confined in two dimensions. The dopant impurity potential chosen assumes a Gaussian form and it is doped into an on-center location. The quantum dot is subject to a periodically oscillating external electric field. For some fixed values of transverse magnetic field strength ({omega}{sub c}) and harmonic confinement potential ({omega}{sub 0}), the influence of impurity strength (V{sub 0}) and impurity domain ({xi}) on the diagonal components of the frequency-dependent linear ({alpha}{sub xx} and {alpha}{sub yy}) and second non-linear ({gamma}{sub xxxx} and {gamma}{sub yyyy}) responses of the dot are computed through a linear variational route. The investigations reveal that the optical responses undergo enhancement with increase in both V{sub 0} and {xi} values. However, in the limitingly small dopant strength regime one observes a drop in the optical responses with increase in V{sub 0}. A time-average rate of energy transfer to the system is often invoked to support the findings. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Materials performance in operating PWR steam generators

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1975-01-01

    The Inconel-600 tubing in operating PWR steam generators has developed leaks due to intergranular stress corrosion cracking or a general wastage attack, originating from the secondary side of the tubing. Corrosion has been limited to those areas of the steam generators where limited coolant circulation and high heat flux have caused impurities to concentrate. Wastage or pitting attack has always been associated with local concentration of sodium hydrogen phosphates, whereas stress corrosion has been associated with local concentration of sodium or potassium hydroxides. The only instance of stress corrosion originating from the primary side occurred on cold-worked tubing when hydrogen was not added to getter oxygen, and LiOH was not added to raise the pH of the primary coolant. All PWR manufacturers are now recommending that the phosphate treatment of the secondary coolant be abandoned in favor of an all-volatile treatment. Experience in operating plants has shown, however, that removal of phosphate-rich sludge deposits is difficult, and that further wastage and/or intergranular stress corrosion may develop; the residual sodium phosphates gradually convert by reaction with corrosion product hydroxides to sodium hydroxide, which remains concentrated in the limited flow areas. Improvements in circulation patterns have been achieved by inserting flow baffles in some PWR steam generators. Inservice monitoring by eddy current techniques is useful for detecting corrosion-induced defects in the tubing, but irreproducibility in field examinations can lead to uncertainties interpreting the results. (U.S.)

  20. Boron, nitrogen, and nickel impurities in GeC nanoribbons: A first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhuo; Li, Yangping, E-mail: liyp@nwpu.edu.cn; Liu, Zhengtang

    2017-07-01

    Highlights: • The impurities preferentially substitutes the Ge atom at the ribbon edge. • The impurities could result in a reduction of the band gap of 7-AGeCNR. • The impurities turns the metallic behavior of 4-ZGeCNR into semiconductor. • The impurities could change the magnetic moment of 4-ZGeCNR. • The impurities could introduce magnetic moments into the non-magnetic 7-AGeCNR. - Abstract: Using first-principles calculations based on the density functional theory we investigated the structural, electronic and magnetic properties of substitutional boron, nitrogen, and nickel impurities in germanium carbide (GeC) nanoribbons. Hydrogen terminated GeC ribbons with armchair and zigzag edges are considered here. We observed that all three impurities preferentially substitutes the Ge atom at the ribbon edge. In addition, the electronic band structures of the doped systems indicate that (i) the impurities could introduce impurity bands in the band gap and resulting in a reduction of the band gap of 7-AGeCNR, (ii) the metallic behavior of 4-ZGeCNR turns into semiconductor because of the incorporation of the impurities, (iii) the impurities could change the magnetic moment of 4-ZGeCNR and even introduce magnetic moment into the non-magnetic 7-AGeCNR.