WorldWideScience

Sample records for intergranular cracking mechanism

  1. Intergranular cracking mechanism in baffle former bolt materials for PWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Toshio; Arioka, Koji; Kanasaki, Hiroshi; Fujimoto, Koji [Takasago R and D Center, Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan); Ajiki, Kazuhide [Kobe Shipyard and Machinery, Mitsubishi Heavy Industries Ltd., Kobe, Hyogo (Japan); Matsuoka, Takanori [Nuclear Development Corp., Tokai, Ibaraki (Japan); Urata, Sigeru; Mizuta, Hitoshi [Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-03-01

    In this study, the cause of intergranular cracking in baffle former bolts(BFBs) was estimated from metallurgical and chemical viewpoints based upon the experimental data and information published by EdF. At first, five kinds of possibilities were estimated as the cause of intergranular cracking in BFBs. Five possibilities estimated were (1) mechanical cracking caused by high strain in irradiation hardened austenitic stainless steels, (2) O{sub 2} SCC due to residual oxygen in the bolt stagnant region, (3) caustic SCC due to dry and wet phenomenon, (4) low pH SCC due to oxygen concentration cell, and (5) PWSCC due to radiation induced segregation. In this study each possibility was evaluated by the calculation and some out of pile tests. And also, the cause of the intergranular cracking in BFBs was estimated by the data of the post-irradiation examinations and basic out of pile tests for Type 316CW and Type 347 stainless steels in the authors' previous study. From these evaluation, the intergranular cracking in BFBs seems to be caused by the PWSCC, but not caused by mechanical cracking O{sub 2} SCC, caustic SCC or low pH SCC. (author)

  2. A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Siddiq, A; Rahimi, S

    2013-01-01

    Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement

  3. Intergranular stress corrosion cracking of sensitized stainless steels. Final report

    International Nuclear Information System (INIS)

    Vyas, B.; Isaacs, H.S.; Weeks, J.R.

    1976-12-01

    A study was conducted of the intergranular stress corrosion cracking of materials used in Boiling Water Reactors (BWR) aimed at developing an understanding of the mechanism(s) of this mode of failure and at developing tests to determine the susceptibility of a given material to this form of attack

  4. Effects of microstructure and local mechanical fields on intergranular stress corrosion cracking of a friction stir welded aluminum–copper–lithium 2050 nugget

    International Nuclear Information System (INIS)

    Dhondt, Matthieu; Aubert, Isabelle; Saintier, Nicolas; Olive, Jean Marc

    2014-01-01

    Highlights: • Applied stress changes the corrosion mode from pitting to intergranular cracking. • Residual stresses are sufficient to induce intergranular stress corrosion cracking. • Effect of crystallographic texture on the development of IGSCC evidenced by EBSD. • Cubic elasticity drives the local orientation of the intergranular cracking. • Tomography observations show the 3D nature of the corrosion development. - Abstract: The effects of the microstructure and mechanical fields on intergranular stress corrosion cracking (IGSCC) of the nugget zone of heat treated welds obtained by friction stir welding in the AA2050 aluminum alloy have been investigated at different scales. At low strain rate, in 1.0 NaCl aqueous solution, IGSCC develops in the microstructure, whereas only pitting corrosion is observed without any mechanical stress. Based on surface observations, EBSD analysis and X-ray tomography, the key role of sub-millimetric textured bands (induced by the welding process) on the IGSCC is demonstrated. Analyses at a more local scale show the grain boundary (low angle boundary, special coincident site lattice boundary or high angle boundary) do not have a significant effect on crack initiation. Crystal plasticity finite element calculations show that the threshold normal stress at grain boundaries for IGSCC development is about 80% of the macroscopic stress. It is also highlighted by crystal plasticity calculations that there is a drastic effect of the local stress field on the shape of cracks. Finally, it is shown that plasticity induced residual stresses are sufficient for the formation of IGSCC

  5. Initiation model for intergranular stress corrosion cracking in BWR pipes

    International Nuclear Information System (INIS)

    Hishida, Mamoru; Kawakubo, Takashi; Nakagawa, Yuji; Arii, Mitsuru.

    1981-01-01

    Discussions were made on the keys of intergranular stress corrosion cracking of austenitic stainless steel in high-temperature water in laboratories and stress corrosion cracking incidents in operating plants. Based on these discussions, a model was set up of intergranular stress corrosion cracking initiation in BWR pipes. Regarding the model, it was presumed that the intergranular stress corrosion cracking initiates during start up periods whenever heat-affected zones in welded pipes are highly sensitized and suffer dynamic strain in transient water containing dissolved oxygen. A series of BWR start up simulation tests were made by using a flowing autoclave system with slow strain rate test equipment. Validity of the model was confirmed through the test results. (author)

  6. Intergranular stress corrosion cracking of ion irradiated 304L stainless steel in PWR environment

    International Nuclear Information System (INIS)

    Gupta, Jyoti

    2016-01-01

    IASCC is irradiation - assisted enhancement of intergranular stress corrosion cracking susceptibility of austenitic stainless steel. It is a complex degrading phenomenon which can have a significant influence on maintenance time and cost of PWRs' core internals and hence, is an issue of concern. Recent studies have proposed using ion irradiation (to be specific, proton irradiation) as an alternative of neutron irradiation to improve the current understanding of the mechanism. The objective of this study was to investigate the cracking susceptibility of irradiated SA 304L and factors contributing to cracking, using two different ion irradiations; iron and proton irradiations. Both resulted in generation of point defects in the microstructure and thereby causing hardening of the SA 304L. Material (unirradiated and iron irradiated) showed no susceptibility to intergranular cracking on subjection to SSRT with a strain rate of 5 * 10 -8 s -1 up to 4 % plastic strain in inert environment. But, irradiation (iron and proton) was found to increase intergranular cracking severity of material on subjection to SSRT in simulated PWR primary water environment at 340 C. Correlation between the cracking susceptibility and degree of localization was studied. Impact of iron irradiation on bulk oxidation of SA 304L was studied as well by conducting an oxidation test for 360 h in simulated PWR environment at 340 C. The findings of this study indicate that the intergranular cracking of 304L stainless steel in PWR environment can be studied using Fe irradiation despite its small penetration depth in material. Furthermore, it has been shown that the cracking was similar in both iron and proton irradiated samples despite different degrees of localization. Lastly, on establishing iron irradiation as a successful tool, it was used to study the impact of surface finish and strain paths on intergranular cracking susceptibility of the material. (author) [fr

  7. Thresholds of time dependent intergranular crack growth in a nickel disc alloy Alloy 720Li

    Directory of Open Access Journals (Sweden)

    Li Hangyue

    2014-01-01

    Full Text Available At high temperatures in air, introducing a dwell period at the peak stress of fatigue cycles promotes time dependent intergranular crack growth which can increase crack growth rates by upto a few orders of magnitude from the rates of transgranular fatigue crack growth in superalloys. It is expected that time dependent intergranular crack growth in nickel-based superalloys may not occur below a critical mechanical driving force, ΔKth−IG, analogous to a fatigue threshold (ΔKth and a critical temperature, Tth. In this study, dwell fatigue crack growth tests have been carefully designed and conducted on Alloy 720Li to examine such thresholds. Unlike a fatigue threshold, the threshold stress intensity factor range for intergranular crack growth is observed to be highly sensitive to microstructure, dwell time and test procedure. The near threshold crack growth behaviour is made complex by the interactions between grain boundary oxidation embrittlement and crack tip stress relaxation. In general, lower ΔKth−IG values are associated with finer grain size and/or shorter dwell times. Often a load increasing procedure promotes stress relaxation and tends to lead to higher ΔKth−IG. When there is limited stress relaxation at the crack tip, similar ΔKth−IG values are measured with load increasing and load shedding procedures. They are generally higher than the fatigue threshold (ΔKth despite faster crack growth rates (da/dN in the stable crack growth regime. Time dependent intergranular crack growth cannot be activated below a temperature of 500 ∘C.

  8. Computational multiscale modeling of intergranular cracking

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2011-01-01

    A novel computational approach for simulation of intergranular cracks in a polycrystalline aggregate is proposed in this paper. The computational model includes a topological model of the experimentally determined microstructure of a 400 μm diameter stainless steel wire and automatic finite element discretization of the grains and grain boundaries. The microstructure was spatially characterized by X-ray diffraction contrast tomography and contains 362 grains and some 1600 grain boundaries. Available constitutive models currently include isotropic elasticity for the grain interior and cohesive behavior with damage for the grain boundaries. The experimentally determined lattice orientations are employed to distinguish between resistant low energy and susceptible high energy grain boundaries in the model. The feasibility and performance of the proposed computational approach is demonstrated by simulating the onset and propagation of intergranular cracking. The preliminary numerical results are outlined and discussed.

  9. Proceedings: 1991 EPRI workshop on secondary-side intergranular corrosion mechanisms

    International Nuclear Information System (INIS)

    Partridge, M.J.; Zemitis, W.S.

    1992-08-01

    A workshop on ''Secondary-Side Intergranular Corrosion Mechanisms'' was organized by EPRI as an effort to give those working in this area an opportunity to share their results, ideas, and plans. Topics covered included: (1) caustic induced intergranular attack/stress corrosion cracking (IGA/IGSCC), (2) plant experience, (3) boric acid as an IGA/IGSCC remedial measure, (4) lead induced IGA/IGSCC, and (5) acid induced IGA/IGSCC

  10. Simulation of Intergranular Ductile Cracking in β Titanium Alloys Based on a Micro-Mechanical Damage Model.

    Science.gov (United States)

    Li, Huan; Li, Jinshan; Tang, Bin; Fan, Jiangkun; Yuan, Huang

    2017-10-30

    The intergranular crack propagation of the lamellar structure β titanium alloys is investigated by using a modified Gurson-type damage model. The representative microstructure of the lamellar alloy, which consists of the soft α phase layer surrounding the hard grain interiors, is generated based on an advanced Voronoi algorithm. Both the normal fracture due to void growth and the shear fracture associated with void shearing are considered for the grain boundary α layer. The individual phase properties are determined according to the experimental nanoindentation result and the macroscopic stress-strain curve from a uni-axial tensile test. The effects of the strain hardening exponent of the grain interiors and the void shearing mechanism of the grain boundary α layer on fracture toughness and the intergranular crack growth behavior are emphatically studied. The computational predictions indicate that fracture toughness can be increased with increasing the strain hardening ability of the grain interiors and void shearing can be deleterious to fracture toughness. Based on the current simulation technique, qualitative understanding of relationships between the individual phase features and the fracture toughness of the lamellar alloys can be obtained, which provides useful suggestions to the heat treatment process of the β titanium alloys.

  11. Cutting of metal components by intergranular cracking

    International Nuclear Information System (INIS)

    Chavand, J.; Gauthier, A.; Lopez, J.J.; Tanis, G.

    1985-01-01

    The objective of this contract was to study a new steel-sheet cutting technique for dismantling nuclear installations without in principle producing secondary waste. This technique is based on intergranular cracking of steel induced by the combined action of penetration of molten metal into the steel and application of a mechanical load. Cutting has been achieved for stainless-steel sheets with thicknesses ranging from a few mm to 50 mm and for carbon-steel plates with thicknesses between 20 and 60 mm. For carbon steel is seems possible that components as thick as 100 mm can be cut. The tests have permitted selection of the heating methods and determination of the cracking parameters for the materials and range of thickness studied. In the case of thin sheets, results were obtained for cutting in varied positions suited to the techniques of dismantling in hot cells. A temperature-measuring system using an infrared camera has been developed to determine the variation of the temperature field established in the component. In association with the three-dimensional computation code COCO developed by the CEA, this system permits prediction of the changes in stresses in the cracked zone when the cutting parameters are modified. 34 figs

  12. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water

    Science.gov (United States)

    Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo

    2018-01-01

    The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.

  13. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    International Nuclear Information System (INIS)

    Lee, Tae Hyun; Hwang, Il Soon; Kim, Hong Deok; Kim, Ji Hyun

    2015-01-01

    A technique developed to produce artificial intergranular stress corrosion cracks in structural components was applied to thick, forged alloy 600 base and alloy 182 weld metals for use in the qualification of nondestructive examination techniques for welded components in nuclear power plants. An externally controlled procedure was demonstrated to produce intergranular stress corrosion cracks that are comparable to service-induced cracks in both the base and weld metals. During the process of crack generation, an online direct current potential drop method using array probes was used to measure and monitor the sizes and shapes of the cracks. A microstructural characterization of the produced cracks revealed realistic conformation of the crack faces unlike those in machined notches produced by an electrodischarge machine or simple fatigue loading using a universal testing machine. A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  14. Mechanistic differences between transgranular and intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Serebrinsky, Santiago A.; Galvele, Jose R.

    2000-01-01

    Constant extension rate tests (CERT or CSRT) with the strain rate (SR) covering a 7 orders of magnitude range were applied to the study of many systems. In particular, the kinetics of SCC were measured via the stress corrosion (SCC) crack propagation rate (CPR). The main experimental findings are: a) increasing SR produces a monotonic (logarithmic) increase in CPR; b) the slopes α in log CPR vs. log SR plots take distinct values depending on the morphology: intergranular (IG) cracks are more steeply accelerated by SR than transgranular (TG), with α lG =0.4 to 0.7 and α TG =0.2 to 0.3; c) an increase in SR only shifts the log CPR vs. potential curves to higher CPR values, without changing its shape. Quantitative evaluation shows that dislocations piled-up at grain boundaries may combine with the surface mobility mechanism to give the experimental results. (author)

  15. Two-phase flow experiments through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flows rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  16. Estimation of flow rates through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Collier, R.P.; Norris, D.M.

    1984-01-01

    Experimental studies of critical two-phase water flow, through simulated and actual intergranular stress corrosion cracks, were performed to obtain data to evaluate a leak flow rate model and investigate acoustic transducer effectiveness in detecting and sizing leaks. The experimental program included a parametric study of the effects of crack geometry, fluid stagnation pressure and temperature, and crack surface roughness on leak flow rate. In addition, leak detection, location, and leak size estimation capabilities of several different acoustic transducers were evaluated as functions of leak rate and transducer position. This paper presents flow rate data for several different cracks and fluid conditions. It also presents the minimum flow rate detected with the acoustic sensors and a relationship between acoustic signal strength and leak flow rate

  17. Oxidation assisted intergranular cracking under loading at dynamic strain aging temperatures in Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, M.C., E-mail: monica_crezende@hotmail.com [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro 21945-970 (Brazil); Araújo, L.S.; Gabriel, S.B. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro 21945-970 (Brazil); Dille, J. [Université Libre de Bruxelles, 4MAT Department, Av. F. Roosevelt 50, C.P. 194/03, Brussels (Belgium); Almeida, L.H. de [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro 21945-970 (Brazil)

    2015-09-15

    Highlights: • Mechanical properties are controlled by DSA, precipitation hardening and OAIC. • Between 600 and 700 °C the critical strain for serrations increases with temperature. • This is related to the consumption of matrix elements (especially Nb: for γ′ and γ″). • A reduction in ductility occurs (related to the OAIC) when the DSA is no longer effective. • This reduction is accompanied by an increase in intergranular brittle fracture. - Abstract: It is well established that 718 superalloy exhibits brittle intergranular cracking when deformed under tension at temperatures above 600 °C. This embrittlement effect is related with grain boundary penetration by oxygen (Oxygen Assisted Intergranular Cracking – OAIC). Simultaneously, impacting on its mechanical properties, the precipitation of coherent γ′ and γ″ phases occur above 650 °C and Dynamic Strain Aging (DSA) occurs in the temperature range between 200 and 800 °C. Although literature indicates that OAIC is the mechanism that controls mechanical properties at high temperatures, its interactions with DSA and precipitation are still under discussion. The objective of this work is to investigate the interactions between the embrittlement phenomena (OAIC and DSA) and the hardening mechanism of γ′ and γ″ precipitation on the mechanical properties of an annealed 718 superalloy. Tensile tests were performed at a strain rate of 3.2 × 10{sup −4} s{sup −1} under secondary vacuum, in temperatures ranging from 200 to 800 °C. Fracture surfaces were observed by scanning electron microscopy (SEM) and precipitation by transmission electron microscopy (TEM). The effect of DSA and precipitation on the strength and of OAIC on the ductility was verified.

  18. In-situ observation of intergranular stress corrosion cracking in AA2024-T3 under constant load conditions

    International Nuclear Information System (INIS)

    Liu Xiaodong; Frankel, G.S.; Zoofan, B.; Rokhlin, S.I.

    2007-01-01

    A specially designed setup was used to apply a constant load to a thin sheet sample of AA2024-T3 and, using microfocal X-ray radiography, to observe in situ the resulting intergranular stress corrosion cracking (IGSCC) from the exposed edge of the sample. The growth of and competition between multiple IGSCC sites was monitored. In many experiments twin cracks initiated close to each other. Furthermore, the deepest crack at the beginning of every experiment was found to slow or stop growing, and was then surpassed by another crack that eventually penetrated through the sample. These observations cannot be explained by the theory of fracture mechanics in inert environments. The possible mechanisms underlying the competition between cracks are discussed

  19. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    Batdorf, S.B.

    1975-01-01

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  20. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  1. An Electrochemical Framework to Explain Intergranular Stress Corrosion Cracking in an Al-5.4%Cu-0.5%Mg-0.5%Ag Alloy

    Science.gov (United States)

    Little, D. A.; Connolly, B. J.; Scully, J. R.

    2001-01-01

    A modified version of the Cu-depletion electrochemical framework was used to explain the metallurgical factor creating intergranular stress corrosion cracking susceptibility in an aged Al-Cu-Mg-Ag alloy, C416. This framework was also used to explain the increased resistance to intergranular stress corrosion cracking in the overaged temper. Susceptibility in the under aged and T8 condition is consistent with the grain boundary Cu-depletion mechanism. Improvements in resistance of the T8+ thermal exposure of 5000 h at 225 F (T8+) compared to the T8 condition can be explained by depletion of Cu from solid solution.

  2. Mechanisms of stress relief cracking in titanium stabilised austenitic stainless steel

    International Nuclear Information System (INIS)

    Chabaud-Reytier, M.; Allais, L.; Caes, C.; Dubuisson, P.; Pineau, A.

    2003-01-01

    The heat affected zone (HAZ) of AISI 321 welds may exhibit a serious form of cracking during service at high temperature. This form of damage, called 'stress relief cracking', is known to be due to work hardening but also to aging due to Ti(C,N) precipitation on dislocations which modifies the mechanical behaviour of the HAZ. The present study aims to analyse the latter embrittlement mechanism in one specific heat of 321 stainless steel. To this end, different HAZs are simulated using an annealing heat-treatment, followed by various cold rolling and aging conditions. Then, we study the effects of work hardening and aging on Ti(C,N) precipitation, on the mechanical (hardness, tensile and creep) behaviour of the simulated HAZs and on their sensitivity to intergranular crack propagation through stress relaxation tests performed on pre-cracked CT type specimens tested at 600 deg. C. It is shown that work hardening is the main parameter of the involved mechanism but that aging does not promote crack initiation although it leads to titanium carbide precipitation. Therefore, the role of Ti(C,N) precipitation on stress relief cracking mechanisms is discussed. An attempt is made to show that solute drag effects are mainly responsible for this form of intergranular damage, rather than Ti(C,N) precipitation

  3. Grain-boundary microchemistry and intergranular cracking of irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1993-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to identify the mechanisms of irradiation-assisted stress corrosion cracking (IASCC). Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion. Detailed analysis of grain-boundary chemistry was conducted on BWR neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IASCC after irradiation to ∼2 x 10 21 n/cm 2 (E > 1 MeV). Grain-boundary concentrations of Cr Ni, Si, P, S, and C of the cracking-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li than those of the cracking-susceptible material. This observation indicates that, besides the deleterious effect of grain-boundary Cr depletion, a synergism between grain-boundary segregation of N and B and transmutation to H and Li plays an important role in IASCC

  4. Life time estimation for irradiation assisted mechanical cracking of PWR RCCA rodlets

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Takanori; Yamaguchi, Youichirou [Nuclear Development Corp., Tokai, Ibaraki (Japan)

    1999-09-01

    Intergranular cracks of cladding tubes had been observed at the tips of the rodlets of PWR rod cluster control assemblies (RCCAs). Because RCCAs were important core components, an investigation was carried out to estimate their service lifetime. The reviews on their mechanism and the life time estimation are shown in this paper. The summaries are as follows. (1) The mechanism of the intergranular crack of the cladding tube was not IASCC but irradiation assisted mechanical cracking (IAMC) caused by an increase in hoop strain due to the swelling of the absorber and a decrease in elongation due to neutron irradiation. (2) The crack initiation limit of cylindrical shells made of low ductile material and subjected to internal pressure was determined in relation to the uniform strain of the material and was in accordance with that of the RCCA rodlets in an actual plant. (3) From the above investigation, the method of estimating the lifetime and countermeasures for its extension were obtained. (author)

  5. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  6. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    International Nuclear Information System (INIS)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-01-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  7. The probability distribution of intergranular stress corrosion cracking life for sensitized 304 stainless steels in high temperature, high purity water

    International Nuclear Information System (INIS)

    Akashi, Masatsune; Kenjyo, Takao; Matsukura, Shinji; Kawamoto, Teruaki

    1984-01-01

    In order to discuss the probability distribution of intergranular stress corrsion carcking life for sensitized 304 stainless steels, a series of the creviced bent beem (CBB) and the uni-axial constant load tests were carried out in oxygenated high temperature, high purity water. The following concludions were resulted; (1) The initiation process of intergranular stress corrosion cracking has been assumed to be approximated by the Poisson stochastic process, based on the CBB test results. (2) The probability distribution of intergranular stress corrosion cracking life may consequently be approximated by the exponential probability distribution. (3) The experimental data could be fitted to the exponential probability distribution. (author)

  8. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  9. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, I. [North Carolina State Univ., Raleigh, NC (United States); Zikry, M.A. [North Carolina State Univ., Raleigh, NC (United States); Ziaei, S. [North Carolina State Univ., Raleigh, NC (United States)

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  10. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  11. Short intergranular cracks in the piecewise anisotropic continuum model of the microstructure

    International Nuclear Information System (INIS)

    Cizelj, L.; Kovse, I.

    2001-01-01

    Computational algorithms aiming at modeling and visualization of the initiation and growth of intergranular stress corrosion cracks (e.g., in the steam generator tubes) on the grain-size scale have already been proposed [6]. The main focus of the paper is given to the influence of randomly oriented neighboring grains on the microscopic stress fields at crack tips. The incompatibility strains, which develop along the boundaries of randomly oriented anisotropic grains, are shown to influence the local stress fields at crack tips significantly. Special attention has been paid to the implementation and comparison of different numerical methods estimating the local stress fields at crack tips, aiming at optimizing the computational time and the numerical accuracy of the results. The limited number of calculations indicate that the anisotropic arrangement of grains with local incompatibility strains causes on average about 10% (plane strain) and 26% (plane stress) higher J-integral values at the crack tips than expected from the calculations in the isotropic case.(author)

  12. Characterization of acoustic emission signals generated by water flow through intergranular stress corrosion cracks

    International Nuclear Information System (INIS)

    Claytor, T.N.; Kupperman, D.S.

    1985-05-01

    A program is under way at Argonne National Laboratory (ANL) to develop an independent capability to assess the effectiveness of current and proposed techniques for acoustic leak detection (ALD) in reactor coolant systems. The program will establish whether meaningful quantitative data on flow rates and leak location can be obtained from acoustic signatures of leaks due to intergranular stress corrosion cracks (TGSCCs) and fatigue cracks, and whether these can be distinguished from other types of leaks. 5 refs., 3 figs

  13. Demonstration through EPR tests of the sensitivity of austeno-ferritic steels to intergranular corrosion and stress corrosion cracking

    International Nuclear Information System (INIS)

    Lopez, Nathalie

    1997-01-01

    Duplex stainless steels can be sensitised to intergranular corrosion and stress corrosion cracking (SCC) under some conditions (heat treatments, welding). The aim of this work is to contribute to the validation of the EPR (Electrochemical Potentiodynamic Reactivation) test in order to determine conditions for normalisation. This method, based on the dissolution of chromium depleted areas due to precipitation of σ-phase, provides a degree of sensitisation to intergranular corrosion. The test is broaden considering the mechanical stress by the way of slow strain rate tests, performed in chloride magnesium and in a solution similar to the EPR solution. A metallurgical study puts on the precipitates and the structural modifications due to welding and heat treatments, in order to make a critical analysis of the EPR test. (author) [fr

  14. Ultrasonic inspection reliability for intergranular stress corrosion cracks

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P G; Taylor, T T; Spanner, J C; Doctor, S R; Deffenbaugh, J D [Pacific Northwest Lab., Richland, WA (USA)

    1990-07-01

    A pipe inspection round robin entitled Mini-Round Robin'' was conducted at Pacific Northwest Laboratory from May 1985 through October 1985. The research was sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research under a program entitled Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors.'' The Mini-Round Robin (MRR) measured the intergranular stress corrosion (GSC) crack detection and sizing capabilities of inservice inspection (ISI) inspectors that had passed the requirements of IEB 83-02 and the Electric Power Research Institute (EPRI) sizing training course. The MRR data base was compared with an earlier Pipe Inspection Round Robin (PIRR) that had measured the performance of inservice inspection prior to 1982. Comparison of the MRR and PIRR data bases indicates no significant change in the inspection capability for detecting IGSCC. Also, when comparing detection of long and short cracks, no difference in detection capability was measured. An improvement in the ability to differentiate between shallow and deeper IGSCC was found when the MRR sizing capability was compared with an earlier sizing round robin conducted by the EPRI. In addition to the pipe inspection round robin, a human factors study was conducted in conjunction with the Mini-Round Robin. The most important result of the human factors study is that the Relative Operating Characteristics (ROC) curves provide a better methodology for describing inspector performance than only probability of detection (POD) or single-point crack/no crack data. 6 refs., 55 figs., 18 tabs.

  15. Propagation of stress corrosion cracks in alpha-brasses

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  16. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  17. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  18. Thermo-Mechanical Fatigue Crack Growth of RR1000.

    Science.gov (United States)

    Pretty, Christopher John; Whitaker, Mark Thomas; Williams, Steve John

    2017-01-04

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP) testing produces accelerated crack growth rates compared with out-of-phase (OOP) due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  19. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty

    2017-01-01

    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  20. An Abrupt Transition to an Intergranular Failure Mode in the Near-Threshold Fatigue Crack Growth Regime in Ni-Based Superalloys

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2018-06-01

    Cyclic near-threshold fatigue crack growth (FCG) behavior of two disk superalloys was evaluated and was shown to exhibit an unexpected sudden failure mode transition from a mostly transgranular failure mode at higher stress intensity factor ranges to an almost completely intergranular failure mode in the threshold regime. The change in failure modes was associated with a crossover of FCG resistance curves in which the conditions that produced higher FCG rates in the Paris regime resulted in lower FCG rates and increased ΔK th values in the threshold region. High-resolution scanning and transmission electron microscopy were used to carefully characterize the crack tips at these near-threshold conditions. Formation of stable Al-oxide followed by Cr-oxide and Ti-oxides was found to occur at the crack tip prior to formation of unstable oxides. To contrast with the threshold failure mode regime, a quantitative assessment of the role that the intergranular failure mode has on cyclic FCG behavior in the Paris regime was also performed. It was demonstrated that even a very limited intergranular failure content dominates the FCG response under mixed mode failure conditions.

  1. Investigation of intergranular stress corrosion cracking in the fuel pool at Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    An intergranular stress corrosion cracking failure of 304 stainless steel pipe in 2000 ppM B as H 3 BO 3 + H 2 O at 100 0 C has been investigated. Constant extension rate testing has produced an intergranular type failure in material in air. Chemical analysis was performed on both the base metal and weld material, in addition to fractography, EPR testing and optical microscopy in discerning the mode of failure. Various effects of Cl - , O 2 , and MnS are discussed. The results have indicated that the cause of failure was the severe sensitization coupled with probable contamination by S and possibly by Cl ions

  2. A Three-Stage Mechanistic Model for Solidification Cracking During Welding of Steel

    Science.gov (United States)

    Aucott, L.; Huang, D.; Dong, H. B.; Wen, S. W.; Marsden, J.; Rack, A.; Cocks, A. C. F.

    2018-03-01

    A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-granular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.

  3. A new stress corrosion cracking model for Inconel 600 in PWR media

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A model of cracking in corrosion under stress, based on corrosion-plasticity interactions at cracking points, is proposed to describe the generally intergranular breakage of Inconel 600 in PWR medium. It is shown by calculation, and verified experimentally by observations in SEM, that a pseudo-intergranular breakage connected to the formation of micro facets in zigzags along the joints is possible, as well as a completely intergranular breakage. This allows us to assume that a continuity of mechanisms exists between the trans- and intergranular cracking by corrosion under material stress. (author)

  4. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    Science.gov (United States)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  5. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals

    Directory of Open Access Journals (Sweden)

    Tae Hyun Lee

    2015-02-01

    Conclusion: A comparison with a destructive metallographic examination showed that the characteristics, orientations, and sizes of the intergranular cracks produced in this study are highly reproducible.

  6. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  7. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  8. Effect of mechanical treatment on intergranular corrosion of 6064 alloy bars

    Science.gov (United States)

    Sláma, P.; Nacházel, J.

    2017-02-01

    Aluminium Al-Mg-Si-type alloys (6xxx-series) exhibit good mechanical properties, formability, weldability and good corrosion resistance in various environments. They often find use in automotive industry and other applications. Some alloys, however, particularly those with higher copper levels, show increased susceptibility to intergranular corrosion. Intergranular corrosion (IGC) is typically related to the formation of microgalvanic cells between cathodic, more noble phases and depleted (precipitate-free) zones along grain boundaries. It is encountered mainly in AlMgSi alloys containing Cu, where it is thought to be related to the formation Q-phase precipitates (Al4Mg8Si7Cu2) along grain boundaries. The present paper describes the effects of mechanical working (extrusion, drawing and straightening) and artificial aging on intergranular corrosion in rods of the 6064 alloy. The resistance to intergranular corrosion was mapped using corrosion tests according to EN ISO 11846, method B. Corrosion tests showed dependence of corrosion type on mechanical processing of the material. Intergranular, pitting and transgranular corrosion was observed. Artificial ageing influenced mainly the depth of the corrosion.

  9. Mitigation of intergranular stress corrosion cracking in RBMK reactors. Final report of the programme's steering committee

    International Nuclear Information System (INIS)

    2002-09-01

    In 2000 the IAEA initiated an Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK Reactors to assist countries operating RBMK reactors in addressing the issue in austenitic stainless steel 300 mm diameter piping. Intergranular stress corrosion cracking of austenitic stainless steel piping in BWRs has been a major safety concern since the early seventies. Similar degradation was found in RBMK reactor piping in 1997. Early in 1998 the IAEA responded to requests for assistance from RBMK operating countries on this issue through activities organized in the framework of Technical Co-operation Department regional projects and the Extrabudgetary Programme on the Safety of WWER and RBMK Nuclear Power Plants. Results of these activities were a basis for the formulation of the objective and scope of the Extrabudgetary Programme on Mitigation of Intergranular Stress Corrosion Cracking in RBMK reactors ('the Programme'). The scope of the Programme included in-service inspection, assessment, repair and mitigation, and water chemistry and decontamination. The Programme was pursued by means of exchange of experience, formulation of guidance, transfer of technology, and training, which will assist the RBMK operators to address related safety concerns. The Programme implementation relied on voluntary extrabudgetary financial contributions from Japan, Spain, the United Kingdom and the USA, and on in kind contributions from Finland, Germany and Sweden. The Programme was implemented in close co-ordination with ongoing national and bilateral activities and major inputs to the Programme were provided through the activities of the Swedish International Project Nuclear Safety and of the US DOE International Nuclear Safety Program. The RBMK nuclear power plants in Lithuania, Russian Federation and Ukraine hosted most of the Programme activities. Support of these Member States involved in the Programme was instrumental for its successful completion in

  10. Oxygen-induced intergranular fracture of the nickel-base alloy IN718 during mechanical loading at high temperatures

    Directory of Open Access Journals (Sweden)

    Krupp Ulrich

    2004-01-01

    Full Text Available There is a transition in the mechanical-failure behavior of nickel-base superalloys from ductile transgranular crack propagation to time-dependent intergranular fracture when the temperature exceeds about 600 °C. This transition is due to oxygen diffusion into the stress field ahead of the crack tip sufficient to cause brittle decohesion of the grain boundaries. Since very high cracking rates were observed during fixed-displacement loading of IN718, it is not very likely that grain boundary oxidation governs the grain-boundary-separation process, as has been proposed in several studies on the fatigue-damage behavior of the nickel-base superalloy IN718. Further studies on bicrystal and thermomechanically processed specimens of IN718 have shown that this kind of brittle fracture, which has been termed "dynamic embrittlement", depends strongly on the structure of the grain boundaries.

  11. A stereological approach for measuring the groove angles of intergranular corrosion

    International Nuclear Information System (INIS)

    Gwinner, B.; Borgard, J.-M.; Dumonteil, E.; Zoia, A.

    2017-01-01

    Highlights: • The ICG morphology has been characterized in 3D by X-ray μ-tomography. • The measurement of the angles of the IGC groove on 2D cross sections induces a bias. • A methodology is proposed to estimate the true value of the IGC groove angles in 3D. - Abstract: Non-sensitized austenitic stainless steels can be prone to intergranular corrosion when they are in contact with an oxidizing medium like nitric acid. Intergranular corrosion is characterized by the formation of grooves along the grain boundaries. The angle of these grooves is a key parameter, which directly informs of the intergranular corrosion kinetics. Most of the time, the angles of the grooves are experimentally measured on 2-dimensional cross sections of the corroded samples. This study discusses the relationship between the groove angle measured on 2-dimensional sections and the true groove angle in 3-dimensional space. This approach could also be easily extended to the study of crack angle in the domains of corrosion-fatigue, stress corrosion cracking or mechanical fracture.

  12. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    Science.gov (United States)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  13. Intergranular stress corrosion cracking of low alloy and carbon steels in high temperature pure water

    International Nuclear Information System (INIS)

    Tsubota, M.; Sakamoto, H.; Tsuzuki, R.

    1993-01-01

    Stress corrosion cracking (SCC) behavior of low alloy steels (A508 and SNCM630) and a carbon steel (SGV480) in high temperature water has been examined with relation to the heat treatment condition, including a long time aging, and the mechanical properties. Intergranular stress corrosion cracking (IGSCC) as observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed a close relationship between hardness and SCC susceptibility. From the engineering point of view, it was concluded that adequate SR (stress relief) or tempering heat treatment is necessary to avoid the IGSCC of the welded structures made of low alloy and carbon steels. A508 heat treated with specified quench and temper did not show the SCC susceptibility, even after aging 10000 hours at 350, 400 and 450 degrees C. Tensile properties corresponding to the critical hardness for SSC susceptibility coincided with the values at the 'necking point' in the true stress-strain curve. Ductile-brittle transition observed in the fracture toughness test also occurred at around the critical hardness for SCC susceptibility. Therefore, it was conjectured that the limitation of plasticity was an absolute cause for the SCC susceptibility of the steels

  14. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    International Nuclear Information System (INIS)

    Romero de la Osa, M; Olagnon, C; Chevalier, J; Estevez, R; Tallaron, C

    2011-01-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623–31) to mimic the reaction–rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284–8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597–623) of the reaction–rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157–67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression

  15. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  16. Investigation of intergranular corrosion resistance of Cr16Ni25NMo6 steel

    International Nuclear Information System (INIS)

    Kamenev, Yu.B.; Nazarov, A.A.; Kuusk, L.V.; Majdeburova, T.F.

    1990-01-01

    The effect of 08Kh16N25AM6 steel susceptibility to intergranular corrosion on its intergranular cracking resistance in high-temperature water is investigated. In addition, the performed tests point to the susceptibility of sensibilized Kh16N25AM6 steel to intergranular corrosion in media simulating an agressive environment of power generation equipment; the latter requires a strict control over the resistance of weld joints of the above steel to intergranular corrosion. It is shown that Kh16N25AM6 type steel in sensibilized state is susceptible to intercrystalline corrosion cracking in high-temperature water which correlates with its susceptibility to intergranular corrosion established by AM GOST 6032-84 and potentiodynamic reactivation methods

  17. Chemically assisted crack nucleation in zircaloy

    International Nuclear Information System (INIS)

    Williford, R.E.

    1985-01-01

    Stress corrosion cracking models (proposed to explain fuel rod failures) generally address crack propagation and cladding rupture, but frequently neglect the necessary nucleation stage for microcracks small enough to violate fracture mechanics continuum requirements. Intergranular microcrack nucleation was modeled with diffusion-controlled grain-boundary cavitation concepts, including the effects of metal embrittlement by iodine species. Computed microcrack nucleation times and strains agree with experimental observation, but the predicted grain-boundary cavities are so small that detection may be difficult. Without a protective oxide film intergranular microcracks can nucleate within 30 s at even low stresses when the embrittler concentration exceeds a threshold value. Indications were found that intergranular microcrack nucleation may be caused by combined corrosive and embrittlement phenomena. (orig.)

  18. Evaluation of intergranular cracks on the ring header cross at Grand Gulf Unit No. 1

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1987-01-01

    A metallurgical investigation was performed on a sample of cracked ring header cross material from the Grand Gulf Unit No. 1 Nuclear Power Station. The cracks were located in a 6-7 in (15-17.5 cm) width band running circumferentially below the cross to cap weld with a similar band above the cross to discharger pipe weld. The indications were up to 19 mm in length and 6.0 mm in depth. This particular sample was cut from a cross which had not seen actual service but which had been used to qualify the induction heating stress improvement (IHSI) technique for the Grand Gulf units. The base material was SA 182 material manufactured to SA 403-type WP 304 stainless steel. The investigation consisted of visual/dye penetrant examination, chemical analysis, hardness testing, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. The evaluated cracks were intergranular and initiated on the forging's exterior surface. The grain size of the material was larger than ASTM 00 and no definitive corrosive species were found by Energy Dispersive Spectroscopy (EDS). The cracking is considered to be the result of the forging having been overheated/burned during manufacture. (author)

  19. Cracking in dissimilar laser welding of tantalum to molybdenum

    Science.gov (United States)

    Zhou, Xingwen; Huang, Yongde; Hao, Kun; Chen, Yuhua

    2018-06-01

    Dissimilar joining of tantalum (Ta) to molybdenum (Mo) is of great interest in high temperature structural component applications. However, few reports were found about joining of these two hard-to-weld metals. The objective of this experimental study was to assess the weldability of laser butt joining of 0.2 mm-thick Ta and Mo. In order to study cracking mechanism in Ta/Mo joint, similar Ta/Ta and Mo/Mo joints were compared under the same welding conditions. An optical microscope observation revealed presence of intergranular cracks in the Mo/Mo joint, while both transgranular and intergranular cracks were observed in Ta/Mo joint. The cracking mechanism of the Ta/Mo joint was investigated further by micro-hardness testing, micro X-ray diffraction and scanning electron microscopy. The results showed that solidification cracking tendency of Mo is a main reason for crack initiation in the Ta/Mo joint. Low ductility feature in fusion zone most certainly played a role in the transgranular propagation of cracking.

  20. Stress corrosion of alloy 600: mechanism proposition

    International Nuclear Information System (INIS)

    Magnin, T.

    1993-01-01

    A fissuring model by stress corrosion based on interactions corrosion-plasticity on the fissure top is proposed to describe the generally intergranular bursting of INCONEL 600 in the PWR. The calculation shows, and some observations check experimentally, that a pseudo intergranular cracking bound to the zigzag micro facets formation along the joints may be so that a completely intergranular bursting. This pseudo intergranular mode makes up a signature of the proposed mechanism. It may be suggested that it may exist one continuity mechanism between the trans and intergranular cracking by stress corrosion of ductile cubic centered faces materials. 2 figs

  1. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    Science.gov (United States)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-06-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  2. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    Science.gov (United States)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  3. Reheat cracking of austenitic stainless steels - pre-strain effect on intergranular damage; Fissuration en relaxation des aciers inoxydables austenitiques - influence de l'ecrouissage sur l'endommagement intergranulaire

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q

    2004-01-01

    Welding process induces strain in 316 stainless steel affected zones. Their microstructure was reproduce by rolling of three different steels (316L, 316L(N) et 316H). Traction, creep and relaxation tests were performed at 550 deg C and 600 deg C on smooth, notched and pre-cracked specimens. Pre-strain by rolling increases the hardness and the creep resistance because of the high dislocation density but decreases ductility because of the fast development of intergranular damage. This embrittlement leads to crack propagation during relaxation tests on pre-strained steels without distinction in respect to their carbon or nitrogen content. A new intergranular damage model was built using local micro-cracks measurements and finite elements analysis. Pre-strain effect and stress triaxiality ratio effect are reproduced by the modelling so that the reheat cracking risk near welds can now be estimated. (author)

  4. Development of seamless forged pipe and fitting for BWR recirculation loop piping with improved resistance to intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Ohnishi, Keizo; Tsukada, Hisashi; Kobayashi, Masayoshi; Iwadate, Tadao; Ono, Shinichi

    1981-01-01

    As a primary remedy for IGSCC of primary loop piping, especially Recirculation Loop Piping of BWR, extra low carbon stainless steel with high nitrogen content has become to be used. While, in order to make In-service Inspection easier and complete, new design of piping which decrease both number and total length of weld line has been considered. Japan Steel Works has developed the research on large size seamless forged pipe and fitting made from high nitrogen extra low carbon 316 stainless steel. This paper describes the key points of manufacturing technology as well as the material properties, especially strength and intergranular-corrosion and intergranular- stress-corrosion-cracking-resistivities of these forged pipe and fitting. (author)

  5. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    International Nuclear Information System (INIS)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H 3 BO 3 ) with 1 bar hydrogen overpressure at 360 degrees C and 320 degrees C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition

  6. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2015-01-01

    Highlights: • Alternative approach to cohesive elements is proposed: cohesive-zone contact. • Applicability to measured and simulated grain structures is demonstrated. • Normal and normal/shear separation as a damage initialization is explored. • Normal/shear damage initialization significantly reduces ductility. • Little difference in Voronoi aggregate size on macroscopic response. - Abstract: Understanding and controlling early damage initiation and evolution are amongst the most important challenges in nuclear power plants, occurring in ferritic, austenitic steels and nickel based alloys. In this work a meso-scale approach to modeling initiation and evolution of early intergranular cracking is presented. This damage mechanism is present in a number of nuclear power plant components and depends on the material (e.g. composition, heat treatment, microstructure), environment and load. Finite element modeling is used to explicitly model the microstructure – both the grains and the grain boundaries. Spatial Voronoi tessellation is used to obtain the grain topology. In addition, measured topology of a 0.4 mm stainless steel wire is used. Anisotropic elasticity and crystal plasticity are used as constitutive laws for the grains. Grain boundaries are modeled using the cohesive zone approach. Different modeling assumptions/parameters are evaluated against the numerical stability criteria. The biggest positive contribution to numerical stability is the use of cohesive-type contact instead of cohesive elements. A small amount of viscous regularization should be also used along with the addition of a small amount of viscous forces to the global equilibrium equations. Two cases of grain boundary damage initiation are explored: (1) initiation due to normal separation and (2) initiation due to a combination of normal and shear separation. The second criterion significantly decreases the ductility of an aggregate and slightly improves the numerical stability

  7. Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.

    2018-02-01

    The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.

  8. Computational simulation for creep fracture properties taking microscopic mechanism into account

    International Nuclear Information System (INIS)

    Tabuchi, Masaaki

    2003-01-01

    Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)

  9. Status report: Intergranular stress corrosion cracking of BWR core shrouds and other internal components

    International Nuclear Information System (INIS)

    1996-03-01

    On July 25, 1994, the US Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 94-03 to obtain information needed to assess compliance with regulatory requirements regarding the structural integrity of core shrouds in domestic boiling water reactors (BWRs). This report begins with a brief description of the safety significance of intergranular stress corrosion cracking (IGSCC) as it relates to the design and function of BWR core shrouds and other internal components. It then presents a brief history of shroud cracking events both in the US and abroad, followed by an indepth summary of the industry actions to address the issue of IGSCC in BWR core shrouds and other internal components. This report summarizes the staff's basis for issuing GL 94-03, as well as the staff's assessment of plant-specific responses to GL 94-03. The staff is continually evaluating the licensee inspection programs and the results from examinations of BWR core shrouds and other internal components. This report is representative of submittals to and evaluations by the staff as of September 30, 1995. An update of this report will be issued at a later date

  10. Contribution of solution pH and buffer capacity to suppress intergranular stress corrosion cracking of sensitized type 304 stainless steel at 95 C

    International Nuclear Information System (INIS)

    Zhang, S.; Shibata, T.; Haruna, T.

    1999-01-01

    Controlling pH of high-temperature water to ∼pH 7 at 300 C by adding lithium hydroxide (LiOH) into the coolant system of a pressurized water reactor (PWR) successfully has been mitigating the corrosion of PWR component materials. The effects of solution pH and buffer capacity on intergranular stress corrosion cracking (IGSCC) of sensitized type 304 stainless steel ([SS] UNS S30400) was examined at 95 C by slow strain rate technique (SSRT) with an in-situ cracking observation system. It was found that an increase in solution pH or buffer capacity increased crack initiation time and decreased mean crack initiation frequency, but exerted almost no effect on crack propagation. This inhibition effect on IGSCC initiation was explained as resulting from a retarding effect of solution pH and buffer capacity on the decrease in pH at crack nuclei caused by the hydrolysis of metal ions dissolved when the passive film was ruptured by strain in SSRT

  11. Stress corrosion cracking of zirconium and its alloys in halogenide solutions

    International Nuclear Information System (INIS)

    Farina, Silvia B.

    2001-01-01

    A doctoral thesis developed at the corrosion labs in CNEA a few years ago showed that zirconium and Zircaloy-4 were susceptible to stress corrosion cracking (SCC) in chloride aqueous solutions at potentials above the pitting potential. However, the nature of the phenomenon was not elucidated. On the other hand, references about the subject were scarce and contradictory. The development of new SCC models, in particular, the surface mobility SCC mechanism suggested a review of zirconium and Zircaloy-4 SCC in halogenide aqueous solutions. This mechanism predicts that zirconium should be susceptible to SCC not only in chloride solutions but also in bromide and iodide solutions due to the low melting point of the surface compounds formed by the interaction between the metal and the environment. The present work was aimed to determine the conditions under which SCC takes place and the mechanism operating during this process. For that purpose, the effect of electrochemical potential, strain rate and temperature on the SCC susceptibility of both, zirconium and Zircaloy-4 in chloride, bromide and iodide solutions was investigated. It was observed that those materials undergo stress corrosion cracking only at potentials higher than the breakdown potential. The crack velocity increased slightly with the applied potential, and the strain rate had an accelerating effect on the crack propagation rate. In both materials two steps were found during cracking. The first one was characterized as intergranular attack assisted by stress due to an anodic dissolution process. This step is followed by a transition to a transgranular mode of propagation, which was considered as the 'true' stress corrosion cracking step. The intergranular attack is the rate-determining step due to the fact that the transgranular propagation rate is higher than the intergranular propagation rate. Several stress corrosion cracking mechanisms were analyzed to explain the transgranular cracking. The predictions

  12. Grain boundary segregation and intergranular stress corrosion cracking susceptibility of austenitic stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, T.; Yamaki, K.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    The effects of grain boundary segregation on intergranular stress corrosion cracking of austenitic stainless steels in high temperature water have been examined as a function of heat treatment. The materials investigated were: (1) two commercial purity Type 304; (2) low sulfur Type 304; (3) nuclear grade Type 304; (4) ultra high purity Type 304L; and (5) Type 316L and Type 347L. Specimens were solution treated at 1050 degrees C for 0.5 hour and given a sensitization heat treatment at 650 degrees C for 50 hours. Some of the specimens were then subjected to an aging heat treatment at 850 degrees C for from one to ten hours to cause Cr recovery at the grain boundaries. The effects of heat treatments on degree of sensitization and grain boundary segregation were evaluated by Electrochemical Potentiokinetic Reactivation (EPR) and Coriou tests, respectively. The susceptibility to stress corrosion (SCC) was evaluated using slow strain rate tests technique (SSRT) in high temperature water. SSRT tests were performed in an aerated pure water (8 ppm dissolved oxygen) at 288 degrees C at a strain rate of 1.33 x 10 -6 /sec. Susceptibility to intergranular stress corrosion cracking was compared with degree of sensitization and grain boundary segregation. The results of the investigation indicate that EPR is not always an accurate indicator of SCC susceptibility. The Coriou test provides a more reliable measure of SCC susceptibility especially for 304L, 304NG, 316L, and 347L stainless steels. The results also indicate that grain boundary segregation as well as degree of sensitization must be considered in the determination of SCC susceptibility

  13. Relationship Between Unusual High-Temperature Fatigue Crack Growth Threshold Behavior in Superalloys and Sudden Failure Mode Transitions

    Science.gov (United States)

    Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.

    2017-01-01

    An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.

  14. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    International Nuclear Information System (INIS)

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water

  15. Stress corrosion cracking of Alloy 82 in hydrogenated steam at 400 C: influence of microstructural and mechanical parameters on initiation of SCC cracks

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth

    2016-01-01

    In Pressurize Water Reactors (PWR), Stress Corrosion Cracking (SCC) is the mean degradation mode of components pieced together by welding. Nickel based alloys are, among others, used in dissimilar metal welding (DMW). International report showed only 3 cracking cases in Alloy 82 out of 300 cracking cases concerned on nickel based alloys DMW in primary water circuit. The aim of this study is to identify which microstructural and local mechanism parameters at microstructure scale provide the initiation of SCC cracks. Characterizations performed on specimen surface to identify those parameters are composed of chemical composition analysis and EBSD analysis (Electron Back-Scattered Diffraction) to know the morphology and the crystallography of grains for microstructure features on one hand, and experimental strain fields measured by Digital Imaging Correlation (DIC) of gold micro-grids deposed by electronic lithography on U-bend specimen surface and stress fields calculated along grains boundaries by finite element for local mechanical features on the other hand. The correlation between those characterizations and localization of initiation sites of SCC cracks, obtained on U-bend specimens tested in autoclave in hydrogen steam water at 400 C and 188 bar for 3500 hours, confirmed the susceptibility of the Alloy 82 in SCC conditions with intergranular SCC cracks. The perpendicular position to the loading direction (mode I) is the worst conditions for grains boundary in SCC. The others points concern the chemical composition (precipitation, impurities) around grain boundary and the grain boundary type which is more susceptible when it is a High Angle Grain Boundary. It is following by the mechanical characterization (stress and strain gradient) along grain boundary. This methodology can be used to other material and helped to define which microstructural and mechanical parameter can be define the initiation of SCC cracks. (author) [fr

  16. Environmentally-induced cracking of zirconium alloys - a review

    International Nuclear Information System (INIS)

    Cox, B.

    1990-01-01

    The general field of environmentally-induced cracking of zirconium alloys has been reviewed and the phenomena that are observed and the progress in understanding the mechanisms are summarized. The details of the industrially important pellet-clad interaction failures of nuclear reactor fuel have been left for a companion review, and only observations on the mechanism are summarized briefly here. It is concluded that in the zirconium alloy system, by virtue of the physical peculiarities of the system, it is easier to reach unambiguous conclusions about the environmental cracking mechanisms that are operating than with other systems. Thus, chemical dissolution in either liquid or vapour phase is thought to be the principal mechanism for intergranular cracking, while adsorption-induced embrittlement is thought to be the most common transgranular quasi-cleavage process. Hydrogen embrittlement in this system can be identified because it requires precipitated hydride that gives characteristic fractography when cracked. Only in a few instances does stress-corrosion cracking appear to proceed by a hydride cracking mechanism. (orig.)

  17. Effect of water purity on intergranular stress corrosion cracking of stainless steel and nickel alloys in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, B. [Structural Integrity Associates (United States); Garcia, S. [Electric Power Research Institute (United States)

    2011-07-01

    Boiling water reactors (BWRs) operate with very high purity water. While even the utilization of a very low conductivity water (e.g., 0.06 {mu}S/cm) coolant cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel and nickel alloys under oxygenated conditions, the presence of certain impurities in the coolant can dramatically increase the probability of this most insidious form of corrosion. The goal of this paper is to present the effect of effect of only a few ionic impurities plus zinc on the IGSCC propensities of BWR stainless steel piping and reactor internals under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions. More specifically, of the numerous impurities identified in the BWR coolant (e.g., lithium, sodium, potassium, silica, borate, chromate, phosphate, sulphate, chloride, nitrate, cuprous, cupric, ferrous, etc.) only strong acid anions sulfate and chloride that are stable in the highly reducing crack tip environment rather than the bulk water conductivity will be discussed in detail. Nitrate will be briefly discussed as representing a species that is not thermodynamically stable in the crack while the effects of zinc is discussed as a deliberate additive to the BWR environment. (authors)

  18. A study on the fractures of iodine induced stress corrosion cracking of new zirconium alloys

    International Nuclear Information System (INIS)

    Peng Qian; Zhao Wenjin; Li Weijun; Tang Zhenghua; Heng Xuemei

    2005-10-01

    The morphology and chemical compositions of I-SCC fractures of new zirconium alloys were investigated by SEM and EDXA. The feature on fracture surface for I-SCC samples, such as corrosion products, the secondary cracking, intergranular cracking and pseudo-cleavage transgranular cracking, have been observed. And the fluting, the typical characteristic of I-SCC also has been found. Intergranular cracking is visible at crack initiation stage and transgranular cracking is distinguished at crack propagation stage. The corrosion products are mainly composed of Zr and O; and I can be detected on the local pseudocleavage zone. The most of grooves on the fractures of relieved-stress annealing samples are parallel with the roll plane. The intergranular cracking in relieved-stress annealing samples is not obvious. When the test temperature increases, the activity of iodine increases and the stress on crack tip is easier to be released, thus the corrosion products on fracture also increase and intergranular cracking is visible. The partial pressure of iodine influents the thickness of corrosion products, and intergranular cracking is easier to be found when iodine partial pressure is high enough. (authors)

  19. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  20. Solvent effects on stress corrosion cracking of zirconium and Zircaloy-4 in iodine

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    2000-01-01

    Localized corrosion (pitting, intergranular attack and stress corrosion cracking) of Zircaloy-4 and its principal component, zirconium, was investigated in solutions of iodine in different alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-octanol). Intergranular attack was found in all of the solutions tested, and the attack velocity increases when the size of the alcohol molecule decreases. In some cases it was found that intergranular attack is accompanied by pitting. Slow strain-rate experiments showed that the propagation rate of stress corrosion cracks also depends on the size of the solvent molecule. From these results it may be inferred that the cause of the variation in the velocity is the steric hindrance of the alcohol molecules. The surface mobility SCC mechanism may account for these results. (author)

  1. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  2. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  3. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  4. Crack characterization for in-service inspection planning

    International Nuclear Information System (INIS)

    Waale, J.; Ekstroem, P.

    1995-12-01

    During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs

  5. Crack characterization for in-service inspection planning

    Energy Technology Data Exchange (ETDEWEB)

    Waale, J [SAQ Inspection Ltd, Stockholm (Sweden); Ekstroem, P [ABB Atom AB, Vaesteraas (Sweden)

    1995-12-01

    During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs.

  6. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    Science.gov (United States)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface, and intergranular corrosion does not take place. In the fuel salt with [U(IV)]/[U(III)] = 4-20 the potentials of uranium

  7. Observations and insights into Pb-assisted stress corrosion cracking of alloy 600 steam generator tubes

    International Nuclear Information System (INIS)

    Thomas, L.; Bruemmer, Stephen M.

    2005-01-01

    Pb-assisted stress-corrosion cracking (PbSCC) of Alloy 600 steam-generator tubing in high-temperature-water service and laboratory tests were studied by analytical transmission electron microscopy of cross-sectioned samples. Examinations of pulled tubes from many pressurized water reactors revealed lead in cracks from 11 of 17 samples. Comparisons of the degraded intergranular structures with ones produced in simple laboratory tests with PbO in near-neutral AVT water showed that the PbSCC characteristics in service tubing could be reproduced without complex chemistries and heat-flow conditions that can occur during plant operation. Observations of intergranular and transgranular cracks promoted by Pb in the test samples also provided new insights into the mechanisms of PbSCC in mill-annealed and thermally treated Alloy 600

  8. The diffusional growth of a grain boundary crack

    International Nuclear Information System (INIS)

    Puls, M.P.; Dutton, R.

    1977-10-01

    This report considers the possibility of high temperature rupture occurring by a grain boundary diffusional mechanism. It is assumed that a pre-existing, intergranular crack grows by loss of atoms from the crack tip to the grain boundary. Rupture occurs when the crack has grown to a critical length. A theoretical treatment of the kinetics of crack growth is presented and equations are derived for the crack velocity and time to rupture. A comparison is made with a previous theoretical model developed by Charles, together with rupture data obtained experimentally for the nickel-based alloy, Nimonic 80A. We conclude that experimental verification of the theoretical models requires a comparison with crack velocity data rather than time to rupture data. (author)

  9. Stress corrosion cracking of highly irradiated 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Morihito; Fukuya, Koji; Fujii, Katsuhiko; Nakajima, Nobuo; Furutani, Gen [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Mechanical property tests, grain boundary (GB) composition analysis and slow strain rate test (SSRT) in simulated PWR primary water changing dissolved hydrogen (DH) and dissolved oxygen (DO) content were carried out on cold-worked (CW) 316 stainless steels which were irradiated to 1-8x10{sup 26} n/m{sup 2} (E>0.1 MeV) in a Japanese PWR in order to evaluate irradiation-assisted stress corrosion cracking (IASCC) susceptibility. Highly irradiated stainless steels were susceptible to intergranular stress corrosion cracking (IGSCC) in both hydrogenated water and oxygenated water and to intergranular cracking in inert gas atmosphere. IASCC susceptibility increased with increasing DH content (0-45 ccH{sub 2}/kgH{sub 2}O). Hydrogen content of the section containing fracture surface was higher than that of the section far from fracture surface. These results suggest that hydrogen would have an important role for IASCC. While mechanical property was saturated, GB segregation and IASCC susceptibility increased with an increase in fluence, suggesting that GB segregation would have a dominant role for an increase in IASCC susceptibility at this high fluence region. (author)

  10. A method for the 3-D quantification of bridging ligaments during crack propagation

    International Nuclear Information System (INIS)

    Babout, L.; Janaszewski, M.; Marrow, T.J.; Withers, P.J.

    2011-01-01

    This letter shows how a hole-closing algorithm can be used to identify and quantify crack-bridging ligaments from a sequence of X-ray tomography images of intergranular stress corrosion cracking. This allows automatic quantification of the evolution of bridging ligaments through the crack propagation sequence providing fracture mechanics insight previously unobtainable from fractography. The method may also be applied to other three-dimensional materials science problems, such as closing walls in foams.

  11. Environment sensitive cracking in light water reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Haenninen, H.; Aho-Mantila, I.

    1985-01-01

    The purpose of the paper is to review the available methods and the most promising future possibilities of preventive maintenance to counteract the various forms of environment sensitive cracking of pressure boundary materials in light water reactors. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strenght Ni-base alloys, as well as on corrosion fatigue of low alloy and stainless steels. Finally, some general ideas how to predict, reduce or eliminate environment sensitive cracking in service are presented

  12. Cracking of low-pressure steam turbine rotor discs in nuclear power plants

    International Nuclear Information System (INIS)

    McMinn, A.; Burghard, H.C. Jr.; Lyle, F.F. Jr.; Leverant, G.R.

    1984-01-01

    This paper describes the results of several metallurgical analyses of retired low pressure (LP) turbine discs that had suffered in-service cracking. Cracks were found in four locations; keyways, bores, web faces and rim attachment areas. In every case, the metallurgical analyses identified intergranular stress corrosion cracking (IGSCC) as the operative mechanism. The cracks normally have been filled with iron oxides; but chlorides, sulphates, carbonates, copper and copper oxide have been found in, or near cracks. In some cases deposits have been strongly alkaline. However, no specific corrodent has been identified as being uniquely responsible for the cracking in any of the discs. In every case, the disc materials met all mechanical-properties and chemical-composition requirements, and had normal microstructures

  13. Evaluation of the IGSCC(Intergranular Stress Corrosion Cracking) resistance of inconel alloys by static potential method in high temperature and high pressure environment

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Nam, Tae Woon

    1997-01-01

    Inconel alloys which have good high temperature mechanical properties and corrosion resistance have been used extensively as steam generator tube of nuclear power plants. There have been some reports on the intergranular stress corrosion cracking (IGSCC) failure problems in steam generator tubes of nuclear reactors. In order to evaluate the effects of heat treatment and composition on the IGSCC behavior of inconel alloys in simulated nuclear reactor environment, four different specimens (inconel 600 MA, 600 TT, 690 MA and 690 TT) were prepared and tested by eletrochemical method. Static potential tests for stressed C-ring type inconel specimens were carried out in 10% NaOH solution at 300 deg C (75 atm). It was found that IGSCC was initiated in inconel 600 MA specimen, but the other three specimens were not cracked. Based on the gradients of corrosion current density of the four specimens as a function of test time, thermally treated alloys show better IGSCC resistance than mull-annealed alloys, and inconel 690 TT has better passivation characteristic than inconel 600 MA. Inconel 690 TT shows clear periodic passivation that indicates good SCC resistance. The good IGSCC resistance of inconel 690 TT is due to periodic passivation characteristics of surface layer. (author)

  14. Stress corrosion cracks initiation of recrystallized Zircaloy-4 in iodine-methanol solutions

    International Nuclear Information System (INIS)

    Mozzani, N.

    2013-01-01

    During the pellet-cladding interaction, Zirconium-alloy fuel claddings might fail when subjected to incidental power transient in nuclear Pressurized Water Reactors, by Iodine-induced Stress Corrosion Cracking (I-SCC). This study deals with the intergranular initiation of I-SCC cracks in fully recrystallized Zircaloy-4, in methyl alcohol solution of iodine at room temperature, with the focus on critical mechanical parameters and iodine concentration. It was carried out with an approach mixing experiments and numerical simulations. An anisotropic and viscoplastic mechanical behavior model was established and validated over a wide range of loadings. With numerous constant elongation rate tensile tests and four points bending creep tests, the existence of a threshold iodine concentration I0 close to 10 -6 g.g -1 was highlighted, necessary to the occurrence of I-SCC damage, along with a transition concentration I1 close to 2.10 -4 g.g -1 . Above I1 the mechanism changes, leading to a sped up crack initiation and a loss of sensitivity towards mechanical parameters. The importance of concentration on parameters such as crack density, crack average length and intergranular and transgranular crack velocities was evidenced. Experimental results show that plastic strain is not required for I-SCC crack initiation, if the test time is long enough in the presence of stress. Its main influence is to rush the occurrence of cracking by creating initiation sites, by way of breaking the oxide layer and building up intergranular stress. Below I1, the critical strains at initiation show a substantial strain rate sensitivity. In this domain, a threshold stress of 100 MPa was found, well below the yield stress. Thanks to the combined use of notched specimens and numerical simulations, a strong protective effect of an increasing stress bi-axiality ratio was found, both in the elastic and plastic domains. Proton-irradiated samples, up to a dose of 2 dpa, were tested in the same conditions

  15. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  16. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  17. Environment sensitive cracking in pressure boundary materials of light water reactors

    International Nuclear Information System (INIS)

    Hanninen, H.; Aho-Mantila, I.; Torronen, K.

    1987-08-01

    A review of the various forms of environment sensitive cracking in pressure boundary materials of light water reactors is presented. The available methods and the most promising future possibilities of preventive maintenance to counteract the environmental degradation are evaluated. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strength Ni-base alloys as well as on corrosion fatigue of low alloy and stainless steels. Additionally, some general ideas on how to predict, reduce, monitor or eliminate environment sensitive cracking in service are presented

  18. Performance demonstration testing at the EPRI NDE center for intergranular stress corrosion cracking in BWR piping

    International Nuclear Information System (INIS)

    Pherigo, G.

    1986-01-01

    Intergranular stress corrosion cracking (IGSCC) has become a significant concern for the commercial electric utility industry during the past four years. As the IGSCC problem manifested itself, the Nuclear Regulatory Commission (NRC) responded by issuing Inspection and Enforcement (I and E) Bulletin 82-03 which required that ultrasonic inspection procedures be demonstrated on service- removed samples. The ability to reliably detect and discriminate IGSCC was recognized by the industry as a very difficult task, at best. Concurrent with the NRC bulletin, state-of-the-art yet practical techniques for the detection and discrimination of IGSCC had to be developed, demonstrated, and transferred to the field in a relatively short time. With the release of I and E Bulletin 83-02, procedures as well as personnel had to be qualified on service-removed samples. This paper reports how the EPRI Nondestructive Evaluation (NDE) Center developed the necessary technology and a formal training and qualification program to meet these needs on behalf of the industry

  19. Environment-assisted cracking of cast WE43-T6 magnesium

    International Nuclear Information System (INIS)

    Marrow, T.J.; Bin Ahmad, A.; Khan, I.N.; Sim, S.M.A.; Torkamani, S.

    2004-01-01

    Environment-assisted cracking of WE43 cast magnesium (4.2 wt.% Yt, 2.3 wt.% Nd, 0.7% Zr, 0.8% HRE) in the T6 peak-aged condition was induced in ambient air in notched specimens. The mechanism of fracture was studied using electron backscatter diffraction, serial sectioning and in situ observations of crack propagation. Cracks initiated at the intergranular brittle intermetallic, and propagated by transgranular cleavage. These observations imply that a microstructural model for the static fatigue limit in cast magnesium alloys may be developed which includes the effects of notch-like defects such as porosity

  20. Modeling the initiation of Primary Water Stress Corrosion Cracking in nickel base alloys 182 and 82 of Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Wehbi, Mickael

    2014-01-01

    Nickel base welds are widely used to assemble components of the primary circuit of Pressurized Water Reactors (PWR) plants. International experience shows an increasing number of Stress Corrosion Cracks (SCC) in nickel base welds 182 and 82 which motivates the development of models predicting the time to SCC initiation for these materials. SCC involves several parameters such as materials, mechanics or environment interacting together. The goal of this study is to have a better understanding of the physical mechanisms occurring at grains boundaries involved in SCC. In-situ tensile test carried out on oxidized alloy 182 evidenced dispersion in the susceptibility to corrosion of grain boundaries. Moreover, the correlation between oxidation and cracking coupled with micro-mechanical simulations on synthetic polycrystalline aggregate, allowed to propose a cracking criterion of oxidized grain boundaries which is defined by both critical oxidation depth and local stress level. Due to the key role of intergranular oxidation in SCC and since significant dispersion is observed between grain boundaries, oxidation tests were performed on alloys 182 and 82 in order to model the intergranular oxidation kinetics as a function of chromium carbides precipitation, temperature and dissolved hydrogen content. The model allows statistical analyses and is embedded in a local initiation model. In this model, SCC initiation is defined by the cracking of the intergranular oxide and is followed by slow and fast crack growth until the crack depth reaches a given value. Simplifying assumptions were necessary to identify laws used in the SCC model. However, these laws will be useful to determine experimental conditions of future investigations carried out to improve the calibration used parameters. (author)

  1. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  2. Stress corrosion cracking of Zircaloy-4 in non-aqueous iodine solutions

    International Nuclear Information System (INIS)

    Gomez Sanchez, Andrea V.

    2006-01-01

    In the present work the susceptibility to intergranular attack and stress corrosion cracking of Zircaloy-4 in different iodine alcoholic solutions was studied. The influence of different variables such as the molecular weight of the alcohols, the water content of the solutions, the alcohol type (primary, secondary or tertiary) and the temperature was evaluated. To determine the susceptibility to stress corrosion cracking the slow strain rate technique was used. Specimens of Zircaloy-4 were also exposed between 0.5 and 300 hours to the solutions without applied stress to evaluate the susceptibility to intergranular attack. The electrochemical behavior of the material in the corrosive media was studied by potentiodynamic polarization tests. It was determined that the active species responsible for the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions is a molecular complex between the alcohol and iodine. The intergranular attack precedes the 'true' stress corrosion cracking phenomenon (which is associated to the transgranular propagation of the crack) and it is controlled by the diffusion of the active specie to the tip of the crack. Water acts as inhibitor to intergranular attack. Except for methanolic solutions, the minimum water content necessary to inhibit stress corrosion cracking was determined. This critical water content decreases when increasing the molecular weight of the alcohol. An explanation for this behavior is proposed. The susceptibility to stress corrosion cracking also depends on the type of the alcohol used as solvent. The temperature dependence of the crack propagation rate is in agreement with a thermal activated process, and the activation energy is consistent with a process controlled by the volume diffusion of the active species. (author) [es

  3. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  4. Metallurgical factors that contribute to cracking in BWR piping

    International Nuclear Information System (INIS)

    Weeks, J.R.

    1975-01-01

    During the fall of 1974 and early winter of 1975, cracks have been discovered in the 4 in. bypass lines of several Boiling Water Reactors (BWR's) in the United States. Further, similar cracks were discovered at two BWR's in Japan during the same period. More recently, cracks have been discovered in the core spray piping and in a furnace-sensitized ''safe end'' and adjacent ''dutchman'' at the Dresden Nuclear Power Station, Unit No. 2. Although inspections at all other U.S. BWR's have not disclosed further instances of cracking in core spray piping, leaking cracks have been found in the core spray piping of two BWR's overseas. Metallurgical examinations of these cracks are not yet complete. The following observations have been made to date. All cracks (except those in the furnace-sensitized safe end and dutchman) occurred in seamless type 304 stainless steel piping or in elbows fabricated from such piping, in the outer heat affected zone of either field or shop welds, in lines isolated from the main primary coolant flow during full power operation, except for the not yet examined cracks in the Monticello bypass lines. The cracks are exclusively intergranular, and occur in metal that has been lightly sensitized by the welding process, with only intermittent grain boundary carbides. They developed in the areas of peak axial residual stresses from welding rather than in the most heavily sensitized areas. No fatigue striations have been found on the fracture surfaces. The evidence received to date strongly indicates that these cracks were caused by intergranular stress corrosion of weld-sensitized stainless steel by BWR water containing greater than 0.2 ppM oxygen. The possible role of fatigue or alternating stresses in this corrosion is not clear. Further, not all the cracks detected to date necessarily have occurred by the same mechanism

  5. Reheat cracking in austenitic stainless steels; Fissuration en relaxation des aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Auzoux, Q.; Allais, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Pineau, A.; Gourgues, A.F. [Centre des Materiaux Pierre-Marie Fourt UMR CNRS 7633, 91 - Evry (France)

    2002-07-01

    Intergranular cracking can occur in heat-affected zones (HAZs) of austenitic stainless steel welded joints when reheated in the temperature range from 500 to 700 deg C. At this temperature, residual stresses due to welding relax by creep flow. HAZ may not sustain this small strain if its microstructure has been sufficiently altered during welding. In order to precise which particular microstructure alteration causes such an intergranular embrittlement, type 316L(N) HAZs were examined by transmission electron microscopy. A marked increase in the dislocation density, due to plastic strain during the welding process, was revealed, which caused an increase in Vickers hardness. Type 316L(N) HAZ were then simulated by the following thermal-mechanical process: annealing treatment and work hardening (pre-strain). Creep rupture tests on smooth specimens were also carried out at 600 deg C on both base metal and simulated HAZ. Pre-straining increased creep strength but reduced ductility. Slow strain rate tests on CT specimens confirmed this trend as well as did relaxation tests on CT specimens, which led to intergranular crack propagation in the pre-strained material only. Metallography and fractography showed no qualitative difference between base metal and HAZs in the creep cavitation around intergranular carbides. Although quantitative study of damage development is not achieved yet, experiments suggest that uniaxial creep strain smaller than one percent could lead to cavity nucleation when the material is pre-strained. Pre-strain as well as stress triaxiality reduce therefore creep ductility and enhance the reheat cracking risk. (authors)

  6. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  7. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  8. Crack growth rate in the HAZ of alloy 690TT/152

    International Nuclear Information System (INIS)

    Gomez-Briceno, D.; Lapena, J.; Garcia-Redondo, M.; Castro, L.; Perosanz, F.J.; Ahluwalia, K.; Hickling, J.

    2011-01-01

    Crack growth rate (CGR) experiments to obtain data for the HAZ of nickel base alloys using fracture mechanics specimens are a challenge, primarily due to the difficulties of positioning the tip of the notch (or pre-crack) in the desired location within the complex region adjacent to the fusion line that is altered in several ways by the welding process. This paper describes an experimental program carried out to determine the CGR in the HAZ of an Alloy 690 test weld made using Alloy 152. Compact tension (CT) specimens have been tested in simulated PWR primary water at temperatures of 340 and 360 C under cyclic and constant loading (both with and without periodic partial unloading). For the Alloy 690 HAZ tested here, transgranular crack propagation (primarily due to environmentally assisted fatigue) with isolated intergranular secondary cracks was observed and there was no increase of the crack growth rate in comparison with that for Alloy 690 base metal. In both cases, the CGR values at constant load were very low (4*10 -9 mm/s down to effectively zero) and generally comparable with the data found in the literature for intergranular cracking of thermally treated or solution annealed Alloy 690 in simulated primary water. The scarce CGR data for the HAZ of Alloy 690 available to date do not suggest a significant increase in the PWSCC susceptibility of this resistant alloy, but further testing is still required given the expected variability in actual production welds. (authors)

  9. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1999-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  10. Relaxation cracking in the process industry, an underestimated problem

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)

    1998-12-31

    Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.

  11. Grain boundary defects initiation at the outer surface of dissimilar welds: corrosion mechanism studies

    International Nuclear Information System (INIS)

    De Bouvier, O.; Yrieix, B.

    1995-11-01

    Dissimilar welds located on the primary coolant system of the French PWR I plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some δ ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO 2 additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials. This corrosion studies cannot conclude definitively on the causes of the defect initiation on field, but they show that the atmospheric corrosion could produce intergranular attacks in the pure austenitic zones of the first buttering layer of the dissimilar welds and that this corrosion is stress assisted. (author). 1 ref., 6 figs., 4 tabs

  12. Failure Mechanical Behavior of Australian Strathbogie Granite at High Temperatures: Insights from Particle Flow Modeling

    Directory of Open Access Journals (Sweden)

    Sheng-Qi Yang

    2017-05-01

    Full Text Available Thermally induced damage has an important influence on rock mechanics and engineering, especially for high-level radioactive waste repositories, geological carbon storage, underground coal gasification, and hydrothermal systems. Additionally, the wide application of geothermal heat requires knowledge of the geothermal conditions of reservoir rocks at elevated temperature. However, few methods to date have been reported for investigating the micro-mechanics of specimens at elevated temperatures. Therefore, this paper uses a cluster model in particle flow code in two dimensions (PFC2D to simulate the uniaxial compressive testing of Australian Strathbogie granite at various elevated temperatures. The peak strength and ultimate failure mode of the granite specimens at different elevated temperatures obtained by the numerical methods are consistent with those obtained by experimentation. Since the tensile force is always concentrated around the boundary of the crystal, cracks easily occur at the intergranular contacts, especially between the b-b and b-k boundaries where less intragranular contact is observed. The intergranular and intragranular cracking of the specimens is almost constant with increasing temperature at low temperature, and then it rapidly and linearly increases. However, the inflection point of intergranular micro-cracking is less than that of intragranular cracking. Intergranular cracking is more easily induced by a high temperature than intragranular cracking. At an elevated temperature, the cumulative micro-crack counts curve propagates in a stable way during the active period, and it has no unstable crack propagation stage. The micro-cracks and parallel bond forces in the specimens with elevated temperature evolution and axial strain have different characteristics than those at lower temperature. More branch fractures and isolated wider micro-cracks are generated with increasing temperature when the temperature is over 400

  13. Relationship between turbine rotor and disk metallurgical characteristics and stress corrosion cracking behavior. Final report

    International Nuclear Information System (INIS)

    Gayley, H.B.

    1986-09-01

    This report describes stress corrosion test results in which several heats of turbine rotor steels specially prepared to achieve different degrees of segregation to the grain boundaries were tested in concentrated laboratory and actual steam turbine environments. Grain boundary characteristics are considered important because turbine rotor failures in field service have been of an intergranular nature and because grain boundary segregation is known to affect the impact toughness of rotor steels (''temper embrittlement''). The laboratory stress corrosion testing results showed no differences between heavily and lightly segregated test pieces which differed greatly in impact toughness. All test specimens cracked, indicating the laboratory environments may have been too severe to allow differentiation between the various metallurgical conditions, if any differences exist. Test loops and autoclaves for chemical analysis and mechanical testing were designed, installed and are operating in the field testing portion of this program. No intergranular cracking has occurred to date; hence, no differentiation between heavily and lightly segregated test pieces has been possible in field testing. Instrumented crack propagation specimens, which permit measurement of cracking as it occurs, have been installed for the continuing field testing program. Correlation of such cracking with the continuously monitored chemical composition of the environment will increase understanding of the cracking process and may give the possibility of providing an early warning of the existence of conditions which might cause turbine rotor cracking

  14. Intergranular penetration of liquid gold into stainless steel

    OpenAIRE

    Favez, Denis; Deillon, Léa; Wagnière, Jean-Daniel; Rappaz, Michel

    2011-01-01

    Intergranular penetration of liquid 18 K gold into a superaustenitic stainless steel, which occurs during laser welding of these two materials, has been studied using a C-ring device which can be put under tensile stresses by a screw. It is shown that liquid gold at 1000 degrees C penetrates the immersed stainless steel C-ring at grain boundaries, but only when tensile stresses are applied. Based on the thickness of the peritectic phase that forms all along the liquid crack and on the transve...

  15. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  16. Statistical crack mechanics

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1993-01-01

    Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives

  17. Study on mechanism of intergranular stress corrosion cracking and analysis of residual stress and work hardening in welds of low-carbon austenitic stainless steel with hard surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Toyoda, Masao; Katsuyama, Jinya

    2007-01-01

    In order to make clear the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening, the residual stress and hardness in the butt-joint of pipes as a typical example of the actual structure were estimated and the grain boundary sliding was analyzed from the viewpoint of micro-deformation. On the basis of these results, the mechanism of IGSCC was discussed by the integrated knowledge between metallurgy and mechanics. The relationship between plastic strain and hardness in hard-machined surface near welds was clarified from the experimented relationship and the analysis method by the thermal elastic-plastic analysis. The distributions of hardness and residual stress with the actual surface machining could be simulated. It was made clear that grain boundary sliding occurred in the steel at 561K by a constant strain rate tensile test. From the comparison of grain boundary sliding behavior between solution treated specimen and cold-rolled one, it was found that the grain boundary sliding in cold-rolled one occurs in smaller strain conditions than that in as received one, and the amount of grain boundary sliding in cold-rolled one increases remarkably with increases in rolling reduction. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  18. Top of tubesheet cracking in Bruce A NGS steam generator tubing - recent experience

    International Nuclear Information System (INIS)

    Clark, M.A.; Lepik, O.; Mirzai, M.; Thompson, I.

    1998-01-01

    During the Bruce A Nuclear Generating Station (BNGS-A) Unit 1 1997 planned outage, a dew point search method identified a leak in one steam generator(SG) tube. Subsequently, the tube was inspected with all available eddy current probes and removed for examination. The initial inspection results and metallurgical examination of the removed tube confirmed that the leak was due to intergranular attack/stress corrosion cracking (IGA/SCC) emanating from the secondary side of the tube at the top of the tubesheet location. Subsequently, eddy current and ultrasonic indications were found at the top of the tubesheet of other Alloy 600 SG tubes. To investigate the source of the indications and to validate the inspection probes, sections of 40 tubes with various levels of damage were removed. The metallurgical examination of the removed sections showed that both secondary side and primary side initiated, circumferential, stress corrosion cracking and intergranular attack occurred in the BNGS-A SG tubing. Significant degradation from both mechanisms was found, invariably located in the roll transition region of the top expansion joint between the tube and the tubesheet on the hot leg (304 degrees C) side of the tube. Various aspects of the failures and tube examinations are presented in this paper, including presentation of the cracking morphology, measured crack size distributions, and discussion of some factors possibly affecting the cracking. (author)

  19. Sizing of intergranular stress corrosion cracking using low frequency ultrasound

    International Nuclear Information System (INIS)

    Fuller, M.D.; Avioli, M.J.; Rose, J.L.

    1985-01-01

    Based upon the work thus far accomplished on low frequency sizing, the following conclusions can be drawn: the potential of low frequency ultrasound for the sizing of IGSCC seams encouraging as demonstrated in this work. If minimal walking is expected, larger values of crack height/wavelength ratios should not affect the reliability of estimates; notch data points out the validity of signal amplitude for sizing. With care in frequency consideration, the technique can be extended to cracks; when wavelength is greater than flaw size, importance of orientation and reflector shape diminishes although less so for deeper cracks; when beam profile is larger than the defect size, echo amplitude is proportional to defect area when using shear wave probes and corner reflectors; other factors, in addition to crack size, affect signal amplitude. Reference data to compensate for depth and material (HAZ) is a must; additional crack samples should be studied in order to further develop and characterize the use of low frequency ultrasonics

  20. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals

    International Nuclear Information System (INIS)

    Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung

    2017-01-01

    Highlights: • Long-term stress corrosion cracking (SCC) test of Mg alloys was performed. • AZ31B-H24 shows transgranular stress corrosion cracking (TGSCC) and ZE41A-T5 intergranular stress corrosion cracking (IGSCC). • Long-term static loading accelerated crack propagation, leading to the loss of mechanical strength. - Abstract: Predicting degradation behavior of biodegradable metals in vivo is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard). Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and micro-computed tomography (micro-CT) were used to characterize surface morphology and micro-structure of degraded alloys. The results show the different mechanisms of stress corrosion cracking for AZ31B (transgranular stress corrosion cracking, TGSCC) and ZE41A (intergranular stress corrosion cracking, IGSCC). AZ31B was more susceptible to stress corrosion cracking under a long term static load than ZE41A. In conclusion, we observed that long-term static loading accelerated crack propagation, leading to the loss of mechanical integrity.

  1. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung, E-mail: yyun@ncat.edu

    2017-05-15

    Highlights: • Long-term stress corrosion cracking (SCC) test of Mg alloys was performed. • AZ31B-H24 shows transgranular stress corrosion cracking (TGSCC) and ZE41A-T5 intergranular stress corrosion cracking (IGSCC). • Long-term static loading accelerated crack propagation, leading to the loss of mechanical strength. - Abstract: Predicting degradation behavior of biodegradable metals in vivo is crucial for the clinical success of medical devices. This paper reports on the effect of long-term static stress on degradation of magnesium alloys and further changes in mechanical integrity. AZ31B (H24) and ZE41A (T5) alloys were tested to evaluate stress corrosion cracking (SCC) in a physiological solution for 30 days and 90 days (ASTM G39 testing standard). Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and micro-computed tomography (micro-CT) were used to characterize surface morphology and micro-structure of degraded alloys. The results show the different mechanisms of stress corrosion cracking for AZ31B (transgranular stress corrosion cracking, TGSCC) and ZE41A (intergranular stress corrosion cracking, IGSCC). AZ31B was more susceptible to stress corrosion cracking under a long term static load than ZE41A. In conclusion, we observed that long-term static loading accelerated crack propagation, leading to the loss of mechanical integrity.

  2. Stress corrosion cracking experience in steam generators at Bruce NGS

    International Nuclear Information System (INIS)

    King, P.J.; Gonzalez, F.; Brown, J.

    1993-01-01

    In late 1990 and through 1991, units 1 and 2 at the Bruce A Nuclear Generating Station (BNGS-A) experienced a number of steam generator tube leaks. Tube failures were identified by eddy current to be circumferential cracks at U-bend supports on the hot-leg side of the boilers. In late 1991, tubes were removed from these units for failure characterization. Two active failure modes were found: corrosion fatigue in both units 1 and 2 and stress corrosion cracking (SCC) in unit 2. In unit 2, lead was found in deposits, on tubes, and in cracks, and the cracking was mixed-mode: transgranular and intergranular. This convincingly indicated the involvement of lead in the stress corrosion cracking failures. A program of inspection and tube removals was carried out to investigate more fully the extent of the problem. This program found significant cracking only in lead-affected boilers in unit 2, and also revealed a limited extent of non-lead-related intergranular stress corrosion cracking in other boilers and units. Various aspects of the failures and tube examinations are presented in this paper. Included is discussion of the cracking morphology, measured crack size distributions, and chemical analysis of tube surfaces, crack faces, and deposits -- with particular emphasis on lead

  3. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  4. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  5. Effect of heat treatments and minor elements on caustic stress corrosion cracking of type 304 stainless steel

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Kowaka, Masamichi

    1983-01-01

    The effect of heat treatments and minor elements (C, S, P, N) on caustic stress corrosion cracking of Type 304 stainless steel in boiling 34% NaOH solution at 393 K was studied. The results obtained as follows: (1) Susceptibility to IGSCC (intergranular stress corrosion cracking) in NaOH solution was increased with the intergranular precipitation of chromium carbides by the sensitizing heat treatments, but was not completely consistent with the susceptibility to IGC (intergranular corrosion) by Strauss test in H 2 SO 4 + CuSO 4 solution. (2) SCC in NaOH solution took place in three potential ranges of about -100 to +150 mV (vs SCE), -600 to -300 mV and -1100 to -900 mV. Transglanular cracking predominantly occurred in the first region and intergranular cracking occurred in the latter two regions. IGC occurred in the potential range of about -400 to 0 mV. No IGC was observed at corrosion potential. (3) Among minor elements carbon and sulfur had a detrimental effect on SCC, but no effect of phosphorus and nitrogen was almost observed on SCC in NaOH solution. (author)

  6. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  7. 13%Cr internal hardware cracks of 1300 MW moisture separator reheater

    International Nuclear Information System (INIS)

    Gauchet, J.P.; Chatelain, M.; Marceau, J.; Guignard, S.; Charbonnel, A.; Vandershaeghe, A.; Roguet, D.

    1994-01-01

    Degradations have been observed on fixing bearing pads of 13% Cr steel plates which protect against erosion-corrosion the inner part of vessels of 1300 MW moisture separator reheaters. These cracks are located between the parent metal sheet and the HAZ of the welds between 13% Cr steel plate and the 18/10 austenitic support washer which assure the fixation on the vessel. They were like an intergranular network and corresponded to a stress intergranular corrosion phenomenon under stream-water. This phenomenon is possible with a very local dechromisation of some 13% Cr grain boundaries which are sometimes enriched with aluminium coming from the parent metal of the steel plate. Two studies have been undertaken: - a mechanical analysis of the behaviour and loading stresses of fixing bearing pads in order to reduce the stress levels which reveal the cracks; - welding tests with different filler metals in order to remove the dechromised and aluminium enriched ares which ar potential corrosion zones. Another solutions for ''in service'' and future devices have been tested and are described. (authors). 9 figs

  8. Effect of potential on the corrosion fatigue crack propagation of inconel 600 in 50% NaOH solution at 850C

    International Nuclear Information System (INIS)

    Misawa, Toshihei; Sugawara, Hideo; Harada, Tadashi

    1979-01-01

    A study has been made of corrosion fatigue crack growth for Inconel 600 solution-annealed at 1100 0 C for 0.5 h in 85 0 C 50% NaOH solution with a frequency of 1.1 cycle per minute. The effect of potential on the corrosion fatigue crack growth rate (da/dN) as a function of ΔK was examined and the fracture surfaces were observed. The results obtained are as follows: (1) The crack growth rate and the cracking mode were affected by the applied potentials in the anodic polarization curve. The value of da/dN was arranged in the following order of the observed potentials: secondary passive region > corrosion potential > primary active region > primary passive region. (2) Intergranular cracking took place at a secondary passive potential (-0.04 V vs SCE) which gave a maximum crack growth rate. Transgranular cracking with fatigue striations occurred at the other potentials. (3) The variation in current with the alternating loading was observed at the potentials where transgranular cracking occurred, whereas no appreciable correlation between current and cyclic loading was shown at a potential of -0.04 V where the intergranular mode cracking occurred. (4) It is pointed out to be helpful in studying the influence of applied potential on the accelerated rate of cracking at the crack tip by the ''crack-tip opening displacement'' estimated from the stress intensity, as the major mechanical condition. (author)

  9. Determination of susceptibility to intergranular corrosion of stainless steels type X5CrNi18-10 in field

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2016-12-01

    Full Text Available In this paper, the DL EPR method (electrochemical potentiokinetic reactivation with double loop was modified and used to study the susceptibility to intergranular corrosion and stress corrosion cracking of a stainless steel type X5CrNi18-10. The tests were performed in a special electrochemical cell, with the electrolyte in the gel form. Modified DL EPR method is characterized by simple and high accuracy measurements as well as repeatability of the test results. The indicator of susceptibility to intergranular corrosion (Qr/QpGBA obtained by modified DL EPR method is in a very good agreement with the same indicator obtained by standard DL EPR method. The modified DL EPR method is quantitative and highly selective method. Small differences in the susceptibility of the stainless steel type CrNi18-10 to intergranular corrosion and stress corrosion cracking can be determined. Test results can be obtained in a short time. The cost of tests performed by modified DL EPR method is much lower than the cost of tests by conventional chemical methods. Modified DL EPR method can be applied in the field on the stainless steels constructions.

  10. Stress Corrosion Cracking of Zircaloy-4 in Halide Solutions: Effect of Temperature

    Directory of Open Access Journals (Sweden)

    Farina S.B.

    2002-01-01

    Full Text Available Zircaloy-4 was found to be susceptible to stress corrosion cracking in 1 M NaCl, 1 M KBr and 1 M KI aqueous solutions at potentials above the pitting potential. In all the solutions tested crack propagation was initially intergranular and then changed to transgranular. The effect of strain rate and temperature on the SCC propagation was investigated. An increase in the strain rate was found to lead to an increase in the crack propagation rate. The crack propagation rate increases in the three solutions tested as the temperatures increases between 20 and 90 °C. The Surface-Mobility SCC mechanism accounts for the observation made in the present work, and the activation energy predicted in iodide solutions is similar to that found in the literature.

  11. A phenomenological model for iodine stress corrosion cracking of zircaloy

    International Nuclear Information System (INIS)

    Miller, A.K.; Tasooji, A.

    1981-01-01

    To predict the response of Zircaloy tubing in iodine environments under conditions where either crack initiation or crack propagation predominates, a unified model of the SCC process has been developed based on the local conditions (the local stress, local strain, and local iodine concentration) within a small volume of material at the cladding inner surface or the crack tip. The methodology used permits computation of these values from simple equations. A nonuniform distribution of local stress and strain results once a crack has initiated. The local stress can be increased due to plastic constraint and triaxiality at the crack tip. Iodine penetration is assumed to be a surface diffusion-controlled process. Experimental data are used to derive criteria for intergranular failure, transgranular failure, and ductile rupture in terms of the local conditions. The same failure criteria are used for both crack initiation and crack propagation. Irradiation effects are included in the model by changing the value of constants in the equation governing iodine penetration and by changing the values used to represent the mechanical properties of the Zircaloy. (orig./HP)

  12. Caustic stress corrosion cracking of Inconel-600, Incoloy-800, and Type 304 stainless steel

    International Nuclear Information System (INIS)

    Theus, G.J.

    1976-01-01

    High-temperature electrochemical tests have resulted in the stress corrosion cracking of Inconel-600 and Incoloy-800 (registered trademarks, International Nickel Company), and Type 304 stainless steel in caustic solutions. Results show that stress corrosion cracking of these alloys can be prevented or accelerated by varying their electrochemical potential. To a certain extent, the same effect can be achieved by altering the gas atmosphere above the test solution from a pure nitrogen cover gas to a mixture of 5 percent H 2 and 95 percent N 2 . The effect of the cover gas can then be negated by adjusting the specimen's electrochemical potential either to cause or to inhibit stress corrosion cracking. Some specifics of the test results reveal that in deoxygenated caustic solutions, Inconel-600 cracks intergranularly at mildly anodic potentials; Incoloy-800 cracks transgranularly at reduced potentials (at or near the open circuit potential) and intergranularly at highly oxidizing potentials; and cracking is mixed (transgranular/intergranular) for Type 304 stainless steel at or near the open circuit potential. The severity of cracking for both Inconel-600 and Incoloy-800 in deoxygenated caustic solutions is reduced by giving the materials a simulated post-weld heat treatment (1150 0 F for 18 h). Test results on Inconel-600 show that high-carbon (0.06 percent) material cracks less severely than low-carbon (0.02 percent) material, in both the simulated post-weld heat-treated condition and the mill-annealed condition

  13. Investigation of thermally sensitised stainless steels as analogues for spent AGR fuel cladding to test a corrosion inhibitor for intergranular stress corrosion cracking

    Science.gov (United States)

    Whillock, Guy O. H.; Hands, Brian J.; Majchrowski, Tom P.; Hambley, David I.

    2018-01-01

    A small proportion of irradiated Advanced Gas-cooled Reactor (AGR) fuel cladding can be susceptible to intergranular stress corrosion cracking (IGSCC) when stored in pond water containing low chloride concentrations, but corrosion is known to be prevented by an inhibitor at the storage temperatures that have applied so far. It may be necessary in the future to increase the storage temperature by up to ∼20 °C and to demonstrate the impact of higher temperatures for safety case purposes. Accordingly, corrosion testing is needed to establish the effect of temperature increases on the efficacy of the inhibitor. This paper presents the results of studies carried out on thermally sensitised 304 and 20Cr-25Ni-Nb stainless steels, investigating their grain boundary compositions and their IGSCC behaviour over a range of test temperatures (30-60 °C) and chloride concentrations (0.3-10 mg/L). Monitoring of crack initiation and propagation is presented along with preliminary results as to the effect of the corrosion inhibitor. 304 stainless steel aged for 72 h at 600 °C provided a close match to the known pond storage corrosion behaviour of spent AGR fuel cladding.

  14. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  15. Intergranular stress corrosion in soldered joints of stainless steel 304.; Corrosion intergranular bajo esfuerzo en uniones soldadas de acero inoxidable 304

    Energy Technology Data Exchange (ETDEWEB)

    Zamora R, L [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1994-12-31

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author).

  16. Chloride stress corrosion cracking of Alloy 600 in boric acid solutions

    International Nuclear Information System (INIS)

    Berge, Ph.; Noel, D.; Gras, J.M.; Prieux, B.

    1997-10-01

    The high nickel austenitic alloys are generally considered to have good resistance to chloride stress corrosion cracking. In the standard boiling magnesium chloride solution tests, alloys with more than 40% nickel are immune. Nevertheless, more recent data show that cracking can occur in both Alloys 600 and 690 if the solution is acidified. In other low pH media, such as boric acid solution at 100 deg C, transgranular and intergranular cracking are observed in Alloy 600 in the presence of minor concentrations of sodium chloride (2g/I). In concentrated boric acid at higher temperatures (250 and 290 deg C), intergranular cracking also occurs, either when the chloride concentration is high, or at low chloride contents and high oxygen levels. The role of pH and a possible specific action of boric acid are discussed, together with the influence of electrochemical potential. (author)

  17. Fatigue crack growth in an aluminum alloy-fractographic study

    Science.gov (United States)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  18. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360 degree C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-01-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhances IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated

  19. Fatigue Crack Growth Behavior of Nickel-base Superalloy Haynes 282 at 550-750 °C

    Science.gov (United States)

    Rozman, K. A.; Kruzic, J. J.; Hawk, J. A.

    2015-08-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at temperatures of 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 Hz and 0.25 Hz. Increasing the temperature from 550 to 750 °C caused the fatigue crack growth rates to increase from ~20 to 60% depending upon the applied stress intensity level. The effect of reducing the applied loading frequency increased the fatigue crack growth rates from ~20 to 70%, also depending upon the applied stress intensity range. The crack path was observed to be transgranular for the temperatures and frequencies used during fatigue crack growth rate testing. At 750 °C, there were some indications of limited intergranular cracking excursions at both loading frequencies; however, the extent of intergranular crack growth was limited and the cause is not understood at this time.

  20. Role of damage tolerance and fatigue crack growth in the power generation industry

    International Nuclear Information System (INIS)

    Coffin, L.F.

    1988-01-01

    The problem of intergranular stress-corrosion cracking (IGSCC) in boiling water reactor (BWR) piping is discussed and the body of work undertaken in the author's laboratory to solve that problem is described. Particular attention is given to the development of electrical potential crack monitoring techniques and their application to surface crack growth, particularly under conditions approaching those found in service. The important role of water chemistry and its control is described in this context. The concept and description of sensors to monitor in situ the degree of damage containment from intergranular stress-corrosion cracking is then described, with reference to use in piping components and other types of monitoring. Finally, a concept for the life management of structures is described where damage processes are identified and monitored in situ using appropriate sensors to measure the damage rate continuously

  1. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  2. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy

    International Nuclear Information System (INIS)

    Idowu, O.A.; Ojo, O.A.; Chaturvedi, M.C.

    2007-01-01

    The heat affected zones (HAZs) of low and high heat input laser welds of a newly developed superalloy, ATI Allvac 718Plus, were studied. Low heat input welds suffered significant HAZ grain boundary liquation cracking, while no cracking was observed in spite of a more extensive HAZ intergranular liquation in the higher heat input welds. Combination of lower welding stresses generated during cooling, and relaxation of these stresses by thick intergranular liquid were suggested to be the factors that contributed to the absence of cracking in the high heat input welds. Further, healing of some of the HAZ cracks in lower heat input welds by fusion zone interdendritic liquid occurred through liquid backfilling

  3. Fatigue cracking on a steam generator tube

    International Nuclear Information System (INIS)

    Boccanfuso, M.; Lothios, J.; Thebault, Y.; Bruyere, B.; Duisabeau, L.; Herms, E.

    2015-01-01

    A circumferential fatigue crack was observed on a steam generator tube of the unit 2 of the Fessenheim plant. The results of destructive testing and the examination of the fracture surface show that the circumferential crack is linked to a large number of cycles with a very low stress intensity factor. Other aggravating factors like inter-granular corrosion have played a role in the initiating phase of fatigue cracking. The damage has been exacerbated by the lack of support of the tube at the level of the anti-vibration bars. (A.C.)

  4. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  5. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    International Nuclear Information System (INIS)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm 2 ) Type 304 SS specimens in 289 0 C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s)

  6. Study of stress relief cracking in titanium stabilized austenitic stainless steel

    International Nuclear Information System (INIS)

    Chabaud-Reytier, M.

    1999-01-01

    The heat affected zone (HAZ) of titanium stabilised austenitic stainless steel welds (AISI 321) may exhibit a serious form of intercrystalline cracking during service at high temperature. This type of cracking, called 'stress relief cracking', is known to be due to work hardening but also to ageing: a fine and abundant intragranular Ti(C,N) precipitation appears near the fusion line and modifies the mechanical behaviour of the HAZ. This study aims to better know the accused mechanism and to succeed in estimating the risk of such cracking in welded junctions of 321 stainless steel. To analyse this embrittlement mechanism, and to assess the lifetime of real components, different HAZ are simulated by heat treatments applied to the base material which is submitted to various cold rolling and ageing conditions in order to reproduce the HAZ microstructure. Then, we study the effects of work hardening and ageing on the titanium carbide precipitation, on the mechanical (tensile and creep) behaviour of the resulting material and on its stress relief cracking sensitivity. It is shown that work hardening is the main parameter of the mechanism and that ageing do not favour crack initiation although it leads to titanium carbide precipitation. The role of this precipitation is also discussed. Moreover, a creep damage model is identified by a local approach to fracture. Materials sensitive to stress relief cracking are selected. Then, creep tests are carried out on notched bars in order to quantify the intergranular damage of these different materials; afterwards, these measurements are combined with calculated mechanical fields. Finally, it is shown that the model gives good results to assess crack initiation for a compact tension (CT) specimen during relaxation tests, as well as for a notched tubular specimen tested at 600 deg. C under a steady torque. (author)

  7. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  8. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  9. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Shoji, Tetsuo; Meng Fanjiang; Xue He; Qiu Yubing; Takeda, Yoichi; Negishi, Koji

    2011-01-01

    Research highlights: → Away from the fusion line, kernel average misorientation and hardness decrease. → Away from the fusion line, the fraction of Σ3 boundaries increases. → Crack growth in high temperature water correlates to kernel average misorientation and hardness. → SCC along random boundaries as well as extensive intergranular branching near the fusion line. - Abstract: Microstructure and local deformation in 316NG weld heat-affected zones were measured by electron-back scattering diffraction and hardness measurements. With increasing the distance from the fusion line, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Stress corrosion cracking growth rates in high temperature water were measured at different locations in the heat-affected zones that correspond to different levels of strain-hardening represented by kernel average misorientation and hardness distribution. Intergranular cracking along random boundaries as well as extensive intergranular crack branching is observed in the heat-affected zone near the weld fusion line.

  10. Role of hydrogen embrittlement in intergranular stress corrosion cracking of sensitized Type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, W.E.; Kassner, T.F.; Nichols, F.A.

    1985-06-01

    Fixed-load Mode I/Mode III comparative tests have been conducted on lightly sensitized (EPR = 2 C/cm/sup 2/) Type 304 SS specimens in 289/sup 0/C oxygenated water with other impurity additives. Substantial susceptibility to IGSCC was shown in Mode I but no conclusive evidence for SCC was found in Mode III. These results are consistent with a hydrogen embrittlement mechanism of crack advance, but electrochemical measurements seem to accord better with a slip-dissolution mechanism. Further studies are needed to clarify the operative mechanism(s).

  11. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  12. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    International Nuclear Information System (INIS)

    Meng, F.; Xu, X.; Liu, X.; Wang, J.

    2014-01-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  13. Study of scratch-induced stress corrosion cracking for steam generator tubes and scratch control

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Xu, X.; Liu, X. [Shanghai Nuclear Engineering Research and Design Institute, Shanghai (China); Wang, J. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China)

    2014-07-01

    This paper introduces field cases for scratch-induced stress corrosion cracking (SISCC) of steam generator tubes in PWR and current studies in laboratories. According to analysis result of broke tubes, scratches caused intergranular stress corrosion cracking (IGSCC) with outburst. The effect of microstructure for nickel-base alloys, residual stresses caused by scratching process and water chemistry on SISCC and possible mechanism of SISCC are discussed. The result shows that scratch-induced microstructure evolution contributes to SISCC significantly. The causes of scratches during steam generator tubing manufacturing and installation process are stated and improved reliability with scratch control is highlighted for steam generator tubes in newly built nuclear power plants. (author)

  14. The relationship between observed stress corrosion cracking fracture morphology and microstructure in Alloy 600

    International Nuclear Information System (INIS)

    Symons, D.M.; Burke, M.G.; Foster, J.P.

    1997-01-01

    Microstructure is known to influence the stress corrosion cracking (SCC) behavior of Alloy 600 in both hydrogenated water and steam environments. This study evaluated the relative SCC response of a single heat of Alloy 600 as a function of microstructure in a hydrogenated doped-steam environment. The 400 C doped-steam environment was selected for the SCC tests to accelerate cracking. The material was evaluated in three conditions: (1) as-received (2) as-annealed, and (3) as-annealed + 26% deformation. Microstructural characterization was performed using analytical electron microscopy (AEM) techniques for the evaluation of carbide type and morphology, and general structure. Constant displacement (bolt-loaded) compact tension specimens were used to induce SCC. The as-annealed and as-annealed plus cold worked samples had two fracture morphologies: a rough intergranular SCC fracture morphology and a smooth intergranular fracture morphology. The SCC fracture in the as-received specimens was characterized by a classic intergranular morphology at low magnification, consistent with the microstructural evaluation of cross-sectional metallographic samples. More detailed examination revealed a pseudo-intergranular fracture morphology. This pseudo-intergranular morphology appears to be comprised of very fine cleavage-like microfacets. These observations may assist in understanding the difference in SCC fracture morphologies as reported in the open literature

  15. Continuum damage mechanics analysis of crack tip zone

    International Nuclear Information System (INIS)

    Yinchu, L.; Jianping, Z.

    1989-01-01

    The crack tip field and its intensity factor play an important role in fracture mechanics. Generally, the damage such as microcracks, microvoids etc. will initiate and grow in materials as the cracked body is subjected to external loadings, especially in the crack tip zone. The damage evolution will load to the crack tip damage field and the change of the stress, strain and displacement fields of cracks tip zone. In this paper, on the basis of continuum damage mechanics, the authors have derived the equations which the crack tip field and its intensity factor must satisfy in a loading process, calculated the angle distribution curves of stress, strain and displacement fields in a crack tip zone and have compared them with the corresponding curves of HRR field and linear elastic field in undamaged materials. The equations of crack tip field intensity factors have been solved and its solutions give the variation of the field intensity factors with the loading parameter

  16. Environmentally assisted cracking of non-sensitized stainless steels - possible affecting phenomena

    International Nuclear Information System (INIS)

    Ehrnsten, Ulla; Haenninen, Hannu

    2006-09-01

    Intergranular, environmentally assisted cracking (EAC) has been observed, not only in sensitized austenitic stainless steels, but also in non-sensitized stainless steels. This type of cracking has so far been connected to cold-worked stainless steels and it has been reported to occur in the oxidising environments, but it may also be a potential degradation mode in non-oxidising environments (i.e., both in BWR and PWR conditions). Localisation of plastic deformation and the interactions between oxidation and strain localisation are most probably playing the key role in cracking of cold-worked stainless steels. In this paper, the possible affecting phenomena are reviewed with the main emphasis on dynamic strain ageing. However, also environmentally enhanced creep, dynamic recovery, microstructures of the cold-worked austenitic stainless steels and relaxation are briefly discussed. Mechanistic understanding of the effects of these main factors affecting intergranular stress corrosion cracking of cold-worked, non-sensitized austenitic stainless steels is important, especially as the trend in the NDE inspection strategy is moving towards risk informed inspection. (authors)

  17. The study of intergranular corrosion in aircraft aluminium alloys using X-ray tomography

    International Nuclear Information System (INIS)

    Knight, S.P.; Salagaras, M.; Trueman, A.R.

    2011-01-01

    Research highlights: → IGC is stochastic, where initiation is statistical and growth kinetics was somewhat predictable. → Dissolved oxygen concentration was more important than the concentration of salt in the droplet. → A limiting depth occurred for AA2024, whereas no limiting depth occurs for AA7050 after 168 h exposure. → A limiting depth may be controlled by the transport of dissolved oxygen down the corrosion fissure. → A limiting IGC depth is dependent on the overpotential of the SDZ (adjacent to the grain boundary). - Abstract: Atmospheric corrosion is one of the leading causes of structural damage to aircraft. Of particular importance is pitting and intergranular corrosion, which can develop into fatigue cracks, stress corrosion cracks, or exfoliation. Therefore it is of interest to the Australian Defence Force (ADF) to understand how corrosion ensues in susceptible aircraft aluminium alloys, such as AA2024-T351 and 7050-T7451. However, there are many difficulties in measuring the extent of intergranular corrosion, since it is predominantly hidden below the surface. Traditionally, cross-sectioning has been used to view and measure the depth of attack. In the present work, 2 mm diameter pin specimens were contaminated with a droplet of 3.5% NaCl and exposed to constant humidity that resulted in intergranular corrosion. X-ray computed tomography was then used to non-destructively assess the depth and volume of corrosion both as a function of time in 97% relative humidity, and as a function of relative humidity after 168 h exposure. Both corrosion depth and volume increased with time, but there was evidence for a limiting depth in AA2024. Depth and volume also increased with relative humidity of the environment, for which the time-of-wetness and oxygen concentration of the droplets were considered the important factors in driving the corrosion process.

  18. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    Zamora R, L.

    1994-01-01

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  19. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  20. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    Science.gov (United States)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  1. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Xianzhe [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Liu, Dong [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Li, An, E-mail: li_an@buaa.edu.cn [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Wang, Huaming; Tang, Haibo [National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, 37 Xueyuan Road, Beijing 100191 (China); Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Component, 37 Xueyuan Road, Beijing 100191 (China); School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China); Cheng, Xu [School of Materials Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191 (China)

    2016-04-29

    Ultrahigh-strength AerMet100 steel thick plate was fabricated by laser additive manufacturing process. The as-deposited microstructures of the test steel were characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The mechanical properties were then examined using vickers-hardness test and tensile test. Results indicate that the as-deposited microstructures of the steel mainly consist of grain boundary allotriomorphic ferrite (GBA), grain interior irregular proeutectoid ferrite, plate-like upper bainite, needle-like lower bainite and retained austenite, which result in a good strength and some ductility anisotropy. The low deformation compatibility of specimen at the transverse direction (perpendicular to the deposition direction) mainly ascribes to the poor cracking resistance of the prior-austenite columnar grain boundary with coarse GBA phases. Compared to the almost intergranular cracking taken place in the transverse tensile specimen, the fracture mode of the longitudinal tensile specimen is a mixed mode of the predominant transgranular cracking and minor intergranular cracking.

  2. Microstructure characterization and mechanical behavior of laser additive manufactured ultrahigh-strength AerMet100 steel

    International Nuclear Information System (INIS)

    Ran, Xianzhe; Liu, Dong; Li, An; Wang, Huaming; Tang, Haibo; Cheng, Xu

    2016-01-01

    Ultrahigh-strength AerMet100 steel thick plate was fabricated by laser additive manufacturing process. The as-deposited microstructures of the test steel were characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The mechanical properties were then examined using vickers-hardness test and tensile test. Results indicate that the as-deposited microstructures of the steel mainly consist of grain boundary allotriomorphic ferrite (GBA), grain interior irregular proeutectoid ferrite, plate-like upper bainite, needle-like lower bainite and retained austenite, which result in a good strength and some ductility anisotropy. The low deformation compatibility of specimen at the transverse direction (perpendicular to the deposition direction) mainly ascribes to the poor cracking resistance of the prior-austenite columnar grain boundary with coarse GBA phases. Compared to the almost intergranular cracking taken place in the transverse tensile specimen, the fracture mode of the longitudinal tensile specimen is a mixed mode of the predominant transgranular cracking and minor intergranular cracking.

  3. Effects of flow rate on crack growth in sensitized type 304 stainless steel in high-temperature aqueous solutions

    International Nuclear Information System (INIS)

    Kwon, H.S.; Wuensche, A.; Macdonald, D.D.

    2000-01-01

    Intergranular stress corrosion cracking (IGSCC) in weld-sensitized, Type 304 (UNS S30400) (1) stainless steel (SS) remains a major threat to the integrity of heat transport circuits (HTC) in boiling water reactors (BWR), in spite of extensive research over the last 30 years. Effects of flow rate on intergranular crack growth in sensitized Type 304 stainless steel (UNS S30400) in distilled water containing 15 ppm or 25 ppm (2.59 x 10 -4 or 4.31 x 10 -4 m) sodium chloride (NaCl) at 250 C were examined using compact tension (CT) specimens under constant loading conditions. On increasing the flow rate, the crack growth rate (CGR) drastically increased, but later decreased to a level that was lower than the initial value. The initial increase in CGR was attributed to an enhanced rate of mass transfer of oxygen to the external surface, where it consumed the current emanating from the crack mouth. However, the subsequent decrease in CGR was attributed to crack flushing, which is a delayed process because of the time required to destroy the aggressive conditions that exist within the crack. Once flushing destroyed the aggressive crack environment, CGR decreased with increasing flow rate. The time over which CGR increased after an increase in the flow rate depended on how fast crack flushing occurred by fluid flow; the higher the flow rate and the greater the crack opening, the faster the crack flushing and the shorter the transition time. Finally, intergranular cracks propagated faster in regions nearer both sides of the Ct specimens, where the oxygen supply to the external surface was enhanced under stirring conditions and where minimal resistance existed to current flow from the crack tip to the external surfaces. This observation provided evidence that the crack's internal and external environments were coupled electrochemically

  4. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  5. Subsurface crack initiation and propagation mechanisms in gigacycle fatigue

    International Nuclear Information System (INIS)

    Huang Zhiyong; Wagner, Daniele; Bathias, Claude; Paris, Paul C.

    2010-01-01

    In the very high cycle regime (N f > 10 7 cycles) cracks can nucleate on inclusions, 'supergrains' and pores, which leads to fish-eye propagation around the defect. The initiation from an inclusion or other defect is almost equal to the total crack growth lifetime, perhaps much more than 99% of this lifetime in many cases. Integration of the Paris law allows one to predict the number of cycles to crack initiation. A cyclic plastic zone around the crack exists, and recording the surface temperature of the sample during the test may allow one to follow crack propagation and determine the number of cycles to crack initiation. A thermo-mechanical model has been developed. In this study several fish-eyes from various materials have been observed by scanning electron microscopy, and the fractographic results analyzed as they related to the mechanical and thermo-mechanical models.

  6. Evaluation of stress corrosion crack growth in BWR piping systems

    International Nuclear Information System (INIS)

    Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.

    1985-05-01

    This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs

  7. Micromechanical Aspects of Transgranular and Intergranular Failure Competition

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Tarafder, M.; Hadraba, Hynek

    2011-01-01

    Roč. 465, - (2011), s. 399-402 ISSN 1013-9826 R&D Projects: GA ČR(CZ) GAP107/10/0361 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Crack Tip Mechanics in Distortion Gradient Plasticity

    DEFF Research Database (Denmark)

    Fuentes-Alonso, Sandra; Martínez Pañeda, Emilio

    2017-01-01

    Gradient Plasticity (DGP), the influence on crack tip mechanics of DGP's distinguishing features that entail superior modelling capabilities has not been investigated yet. In this work crack tip fields are thoroughly examined by implementing the higher order theory of DGP in an implicit finite element...

  9. Mechanism for iodine cracking of zirconium claddings

    International Nuclear Information System (INIS)

    Novikov, V.V.

    1991-01-01

    The mechanism of iodine cracking of zirconium cladding is analyzed taking into account the effect of stresses on diffusion. A decisive effect of the stress gradiemt on crack propagation in an agressive medium is shown. The experimental data are compared with the proposed model

  10. Grain by grain study of the mechanisms of crack propagation during iodine SCC of Zry-4

    International Nuclear Information System (INIS)

    Haddad Andalag, R.E.

    1993-01-01

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, focussing on the crystallographic orientation of crack paths, the critical stress conditions and the significance of the fractographic features encountered. In order to get orientable cracking, a technique was developed to produce iodine SCC, by means of pressurizing tubes of a specially heat treated Zry-4 having very large grains, shaped as discs of a few millimeters in diameter and grown up to the wall thickness. Careful orientation of fractured grains, performed by means of a back-reflection Laue technique with a precision better than one degree, has proved that transgranular cracking occurs only along basal planes. The effect of anisotropy, plasticity, triaxiality and residual stresses originated in thermal contraction, has to be considered to account for the influence of the stress state . A grain by grain calculation led to the conclusion that transgranular cracking always occurs on those bearing the maximum resolved tensile stress on basal planes. There are clear indications of the need of a triaxial stress state for the process to occur. Fracture modes other than pseudo-cleavage have been encountered, including intergranular separation, ductile tearing produced by prismatic slip and propagation along twin boundaries. In each case the fractographic features have been identified, and associations have been made with fractographs obtained in normal fuel cladding. (Author)

  11. Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes.

    Science.gov (United States)

    Liu, Hao; Wolf, Mark; Karki, Khim; Yu, Young-Sang; Stach, Eric A; Cabana, Jordi; Chapman, Karena W; Chupas, Peter J

    2017-06-14

    Capacity fading has limited commercial layered Li-ion battery electrodes to NCA) electrode change after capacity fade following months of slow charge-discharge. The changes in the reactions that underpin energy storage after long-term cycling directly correlate to the capacity loss; heterogeneous reaction kinetics observed during extended cycles quantitatively account for the capacity loss. This reaction heterogeneity is ultimately attributed to intergranular fracturing that degrades the connectivity of subsurface grains within the polycrystalline NCA aggregate.

  12. Numerical modelling of intergranular fracture in polycrystalline materials and grain size effects

    Directory of Open Access Journals (Sweden)

    P. Wriggers

    2011-07-01

    Full Text Available In this paper, the phenomenon of intergranular fracture in polycrystalline materials is investigated using a nonlinear fracture mechanics approach. The nonlocal cohesive zone model (CZM for finite thickness interfaces recently proposed by the present authors is used to describe the phenomenon of grain boundary separation. From the modelling point of view, considering the dependency of the grain boundary thickness on the grain size observed in polycrystals, a distribution of interface thicknesses is obtained. Since the shape and the parameters of the nonlocal CZM depend on the interface thickness, a distribution of interface fracture energies is obtained as a consequence of the randomness of the material microstructure. Using these data, fracture mechanics simulations are performed and the homogenized stress-strain curves of 2D representative volume elements (RVEs are computed. Failure is the result of a diffuse microcrack pattern leading to a main macroscopic crack after coalescence, in good agreement with the experimental observation. Finally, testing microstructures characterized by different average grain sizes, the computed peak stresses are found to be dependent on the grain size, in agreement with the trend expected according to the Hall-Petch law.

  13. In situ observations of crack formation in multi-filament Bi-2223 HTS tapes

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, Andy; Skov-Hansen, P.

    2002-01-01

    High temperature superconducting tapes (BSCCO filaments embedded in Ag) were subjected to Uniaxial tension in an environmental scanning electron microscope, allowing in situ observation of cracking of the ceramic filaments. The first cracks were found to appear in the ceramic filaments at a strain...... around 0.15%, More cracks formed with increasing strain. The cracks covered the entire thickness of the filament. but did not Continue into the surrounding (ductile) Ag matrix. These 'tunnel cracks' appeared somewhat zigzag, indicating intergranular cracking mode. At low strains, crack blunting occurred...... at the ceramic/Ag interfaces of the tunnel cracks, At higher strain 'split cracks' formed at the tunnel cracks. The split cracks ran parallel with the ceramic/Ag interface just inside the ceramic layer....

  14. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  15. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  16. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water

    International Nuclear Information System (INIS)

    Yamazaki, Seiya; Lu Zhanpeng; Ito, Yuzuru; Takeda, Yoichi; Shoji, Tetsuo

    2008-01-01

    The effect of prior deformation on stress corrosion cracking (SCC) growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water environment is studied. The prior deformation was introduced by welding procedure or by cold working. Values of Vickers hardness in the Alloy 600 weld heat-affected zone (HAZ) and in the cold worked (CW) Alloy 600 materials are higher than that in the base metal. The significantly hardened area in the HAZ is within a distance of about 2-3 mm away from the fusion line. Electron backscatter diffraction (EPSD) results show significant amounts of plastic strain in the Alloy 600 HAZ and in the cold worked Alloy 600 materials. Stress corrosion cracking growth rate tests were performed in a simulated pressurized water reactor primary water environment. Extensive intergranular stress corrosion cracking (IGSCC) was found in the Alloy 600 HAZ, 8% and 20% CW Alloy 600 specimens. The crack growth rate in the Alloy 600 HAZ is close to that in the 8% CW base metal, which is significantly lower than that in the 20% CW base metal, but much higher than that in the as-received base metal. Mixed intergranular and transgranular SCC was found in the 40% CW Alloy 600 specimen. The crack growth rate in the 40% CW Alloy 600 was lower than that in the 20% CW Alloy 600. The effect of hardening on crack growth rate can be related to the crack tip mechanics, the sub-microstructure (or subdivision of grain) after cross-rolling, and their interactions with the oxidation kinetics

  17. Environmentally assisted cracking mechanisms in repository environments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1987-02-01

    This paper assesses how environmentally assisted cracking (EAC) mechanisms in candidate container materials can be identified to enhance the accuracy of long-term projections of performance in the repository. In low and intermediate strength steels, the role of the two principal mechanisms, slip dissolution/film rupture (SD/FR) and hydrogen embrittlement (HE), is a very complex and controversial issue. No unanimity exists concerning the operative cracking mechanisms, and there is no unique or rigorous approach that would be persuasive in selecting an appropriate model. Both of the proposed mechanisms have common rate controlling processes such as surface adsorption rate, passivation rate, and oxidation rupture rate, which makes it difficult to identify the operative mechanism. Development of a quantitative model for predicting environmental effects for low-carbon steels in repository environments would provide a theoretical basis for assuring the long-term structural integrity of waste-package containment. To date, only one quantitative model has been developed. The agreement between predicted and observed behavior suggests that SD/FR processes control the environmental acceleration in crack growth rates for this class of materials. Deviations from predicted behavior due to HE effects should be uncovered experimentally. 59 refs., 4 figs., 4 tabs

  18. Tensile and stress corrosion cracking properties of type 304 stainless steel irradiated to a very high dose

    International Nuclear Information System (INIS)

    Chung, H.M.; Strain, R.V.; Shack, W.J.

    2001-01-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20-100 displacement per atom or dpa) by the end of life. Our databases and mechanistic understanding of the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high doses, i.e. is it purely mechanical failure or is it stress-corrosion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-II reactor after irradiation to ∼50 dpa at ∼370 deg. C. Slow-strain-rate tensile tests were conducted at 289 degree sign C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microscopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at a low ECP, and this susceptibility led to a poor work-hardening capability and low ductility

  19. Irradiation-assisted stress corrosion cracking of austenitic alloys

    International Nuclear Information System (INIS)

    Was, G.S.; Atzmon, M.

    1991-01-01

    An experimental program has been conducted to determine the mechanism of irradiation-assisted stress-corrosion cracking (IASCC) in austenitic stainless steel. High-energy protons have been used to produce grain boundary segregation and microstructural damage in samples of controlled impurity content. The densities of network dislocations and dislocation loops were determined by transmission electron microscopy and found to resemble those for neutron irradiation under LWR conditions. Grain boundary compositions were determined by in situ fracture and Auger spectroscopy, as well as by scanning transmission electron microscopy. Cr depletion and Ni segregation were observed in all irradiated samples, with the degree of segregation depending on the type and amount of impurities present. P, and to a lesser extent P, impurities were observed to segregate to the grain boundaries. Irradiation was found to increase the susceptibility of ultra-high-purity (UHP), and to a much lesser extent of UHP+P and UHP+S, alloys to intergranular SCC in 288 degree C water at 2 ppm O 2 and 0.5 μS/cm. No intergranular fracture was observed in arcon atmosphere, indicating the important role of corrosion in the embrittlement of irradiated samples. The absence of intergranular fracture in 288 degree C argon and room temperature tests also suggest that the embrittlement is not caused by hydrogen introduced by irradiation. Contrary to common belief, the presence of P impurities led to a significant improvement in IASCC over the ultrahigh purity alloy

  20. Fracture processes and mechanisms of crack growth resistance in human enamel

    Science.gov (United States)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.

  1. Mechanism of Fatigue Crack Growth of Bridge Steel Structures

    Directory of Open Access Journals (Sweden)

    Zhu H.

    2016-12-01

    Full Text Available This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

  2. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    Science.gov (United States)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  3. Study of stress corrosion cracking initiation of high alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav [Department of Materials Engineering, VSB - Technical University of Ostrava, tr. 17. listopadu 15, 708 33 Ostrava - Poruba (Czech Republic)

    2004-07-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  4. Study of stress corrosion cracking initiation of high alloy materials

    International Nuclear Information System (INIS)

    Blahetova, Marie; Cihal, Vladimir; Lasek, Stanislav

    2004-01-01

    The stainless steels and related alloys with sufficient resistance to a general corrosion can be susceptible to a localized corrosion (pitting, cracking, intergranular corrosion) in certain environment under specific conditions. The Drop Evaporation Test (DET) was developed for study of stainless materials resistance to stress corrosion cracking (SCC) at elevated temperatures 100 - 300 deg. C under constant external load using a chloride containing water solution. In the contribution the initiation and propagation of short cracks as well as pits were observed during the test. The crack initiation and/or propagation can be influenced by the cyclic thermal stresses, when the diluted water solution drops cool down the hot sample. The coordinates measurement of microscopic pits and sharp corrosion crack tips by the travelling microscope method allowed to derive the crack growth lengths and rates of short cracks. (authors)

  5. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  6. ON THE ORIGIN OF INTERGRANULAR JETS

    International Nuclear Information System (INIS)

    Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I.; Steiner, O.

    2011-01-01

    We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band Hα images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band Hα images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

  7. Stress-corrosion cracking in BWR and PWR piping

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1983-07-01

    Intergranular stress-corrosion cracking of weld-sensitized wrought stainless steel piping has been an increasingly ubiquitous and expensive problem in boiling-water reactors over the last decade. In recent months, numerous cracks have been found, even in large-diameter lines. A number of potential remedies have been developed. These are directed at providing more resistant materials, reducing weld-induced stresses, or improving the water chemistry. The potential remedies are discussed, along with the capabilities of ultrasonic testing to find and size the cracks and related safety issues. The problem has been much less severe to date in pressurized-water reactors, reflecting the use of different materials and much lower coolant oxygen levels

  8. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  9. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  10. A new modeling method for natural PWSCC cracking simulation in a dissimilar metal weld

    International Nuclear Information System (INIS)

    Xu, Heqin; Mahmoud, Samer; Nana, Ashok; Killian, Doug

    2014-01-01

    Cracks found in a nuclear power plant reactor coolant system (RCS), such as primary water stress corrosion cracking (PWSCC) and intergranular stress corrosion cracking (IGSCC), usually have natural crack front shapes that can be very different from the idealized semi-elliptical or rectangular shapes considered in engineering handbooks and other analytical solutions based on limited shapes. Simplifications towards semi-elliptical shape or rectangular shape may potentially introduce unnecessary conservatism when the simplified shape has to contain the actual crack shape. On the other hand, it is very time-consuming to create a three-dimensional (3D) finite element (FE) model to simulate crack propagation in a natural shape using existing public-domain software like ABAQUS or ANSYS. In this study, a local deformation-based mesh-mapping (LDMM) method is proposed to model cracks with a natural front shape in any 3D structures. This methodology is first applied to model circumferential surface cracks with a natural crack front shape in the cross-sectional plane of a cylinder. The proposed new method can be applied to simulate both shallow and deep cracks. Also discussed in this paper is a direct method to reproduce welding residual stresses in the crack model using temperature fields combined with other sustained loads to predict crack propagations. With this novel LDMM method, natural crack fronts and non-planar crack faces can be easily modeled. The proposed new method can be used to generate a high-quality finite element model that can be used for both linear-elastic fracture mechanics (LEFM) and elastic–plastic fracture mechanics (EPFM) analyses. The study case illustrates that the proposed LDMM method is easy to implement and more efficient than the existing commercial software

  11. Study of crack initiation in low-cycle fatigue of an austenitic stainless steel

    International Nuclear Information System (INIS)

    Mu, P.

    2011-03-01

    The material studied is an austenitic stainless steel, that is widely used in nuclear equipment for its very high corrosion resistance combined to good mechanical properties. Although crack initiation is proved to play an important role in fatigue, its mechanisms have not been fully understood. Some crack initiation criteria based on physical mechanisms of plastic deformation have been defined. However, these criteria are not easy to use and valid, as they need local variables at the grain scale. The present study aims at establishing a crack initiation criterion in low-cycle fatigue, which should be usable under variable amplitude loading conditions. Tension-compression fatigue tests were first carried out to characterize the mechanical behavior of the stainless steel AISI 316L. The mechanical behavior was simulated using a self-consistent model using a crystalline plastic law based on dislocation densities. The evolution of surface damage was observed during a fatigue test using an in situ optical microscopic device. Cracks were analyzed after 2000 cycles and their crystallographic characteristics calculated. As surface grains exhibit larger strain because they are less constraint by neighbor grains, a specific numerical frame is necessary to determine stress state in surface grains. A localization law specific to surface grains under cyclic loading was identified from finite element simulations. The proposed form needs an intergranular accommodation variable, on the pattern of the localization law of Cailletaud-Pilvin. Stress-strain state in surface grains was simulated. Potential indicators for crack initiation were then compared on a same experimental data base. Indicators based on the equivalent plastic strain were found to be suitable indicators of fatigue damage. (author)

  12. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  13. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1981-05-01

    The microstructural features that influenced the room and elevated temperature fatigue-crack growth behavior of as-welded, conventional heat-treated, and modified heat-treated Alloy 718 GTA weldments were studied. Electron fractographic examination of fatigue fracture surfaces revealed that operative fatigue mechanisms were dependent on microstructure, temperatures and stress intensity factor. All specimens exhibited three basic fracture surface appearances at temperatures up to 538 degrees C: crystallographic faceting at low stress intensity range (ΔK) levels, striation, formation at intermediate values, and dimples coupled with striations in the highest (ΔK) regime. At 649 degrees C, the heat-treated welds exhibited extensive intergranular cracking. Laves and δ particles in the conventional heat-treated material nucleated microvoids ahead of the advancing crack front and caused on overall acceleration in crack growth rates at intermediate and high ΔK levels. The modified heat treatment removed many of these particles from the weld zone, thereby improving its fatigue resistance. The dramatically improved fatigue properties exhibited by the as-welded material was attributed to compressive residual stresses introduced by the welding process. 19 refs., 16 figs

  14. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  15. Probabilistic fracture mechanics of nuclear structural components. Consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kanto, Yasuhiro

    1998-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas are first derived for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of PFM round-robin problems set by JSME-RC111 committee, i.e. 'aged RPV under normal and upset operating conditions' is solved, employing the interpolation formulas. (author)

  16. Research on weld cracking of TP321H stainless steel pipeline under elevated temperature

    International Nuclear Information System (INIS)

    Pan, Jian-hua; Fan, Zhi-cao; Zong, Ning-sheng

    2016-01-01

    The failure of pipeline which adopted material type TP321H austenitic stainless steel and occurred cracking after servicing at elevated temperature for less than two years had been investigated. The cracks were appeared repeatedly although they had been repaired for several times. The pipeline stress analysis was conducted to determine stress levels of cracking positions by finite element analysis software ABAQUS. The mechanical properties of base metals and welds including tensile and charpy impact tests were carried out. The test results showed that ductility of welds cut from the serviced pipeline was very poor. The microstructure investigations suggested that it was intergranular crack located in the HAZ near fusion line. It could be determined that it was reheat cracking based on some other works such as metallographic inspection, SEM, X-ray diffraction, etc. Welds analysis results showed that the welding of pipeline had not been in accord with right qualification of welding procedure leading to poor welding quality. The cracking reasons and preventive measures were discussed. Several suggestions were proposed to help extend service lifetime of the stainless steel pipeline under elevated temperature condition. - Highlights: • The pipeline is calculated by finite element analysis software ABAQUS. • Various tests are made, such as mechanical property, SEM, EDS, X-ray diffraction. • It is reheat cracking or stress relief cracking for the pipeline failure. • The stress levels of pipeline should be as low as possible. • The lifetime of pipeline would be shorten obviously due to poor weld quality.

  17. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  18. The near-threshold high R-ratio fatigue crack growth characteristics of SA508 cl III reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Achilles, R.D.; Bulloch, J.H.

    1989-01-01

    This paper describes the effect of frequency and environment on the near-threshold fatigue crack growth behaviour of SA508 cl III reactor pressure vessel (RPV) steel. The study has shown that in the near-threshold regime microstructure and environment markedly affect fatigue crack growth behaviour. In an aqueous environment, fatigue crack growth behaviour became even more sensitive to microstructure, and the fatigue crack growth rate increased by a factor of four in the case of the 3Hz test, while that for the 0.3Hz test was increased by a factor of approximately sixteen. This environmental enhancement manifested itself in the form of intergranular failure. For the 0.3Hz test the percentage intergranular failure decreased from 18% to <1% with an increase in ΔK level. The transition from microstructure-sensitive to microstructure-insensitive occurs when the cyclic plastic zone size is of the order of the prior austenite grain size. (author)

  19. Early Age Fracture Mechanics and Cracking of Concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart

    2003-01-01

    . The reasons are the increased autogenous deformation, the high rate of heat evolution and a higher brittleness of these concretes. Due to these adverse mechanisms the interest in the full description of the behavior of early age concrete has increased dramatically in the last two or three decades. Almost all...... the fictitious crack model and the aim has been experimentally to determine the fracture mechanical properties related to this model. The results provide interesting and important insight into the development of the fracture properties in early age. It is found that the characteristic length has moments of low...... values in early age, which means that the cracking sensibility is higher at those time points. The possible influence of time-dependent effects in the fracture mechanical properties on the cracking behavior in early age has also been investigated. The reason for this has been the known fact...

  20. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  1. Inhibition of intergranular stress corrosion cracking of sensitized type 304 stainless steel. Annual report

    International Nuclear Information System (INIS)

    Brown, B.F.

    1977-01-01

    The effectiveness of various inhibitors in mitigating stress corrosion cracking of stainless steel in hot aqueous environment was evaluated. The inhibitors studied were of three types: poly-oxy-anions, organic competitive absorbers, and simple cations; the corrosive medium was 4M NaCl acidified with H 2 SO 4 to ph of about 2.3. The following conclusions were reached: pH does not affect cracking kinetics in a sensitive way; cracking time is highly dependent on chloride concentrations; poly-oxy-anions do not perform well; organics offer some possibilities as inhibitors; cationic additives can have effects varying from trivial to total suppression of cracking--behavior is both cation and concentration dependent. 2 figures, 5 tables

  2. Probabilistic fracture mechanics of nuclear structural components: consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.

    1999-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas of three-dimensional stress intensity factors are presented for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of the PFM round-robin problems set by JSME-RC111 committee (i.e. aged RPV under normal and upset operating conditions) is solved, employing the interpolation formulas. (orig.)

  3. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  4. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  5. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  6. Plugging criteria for steam generator tubes with axial cracks near tube support plates

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2000-01-01

    Stress corrosion cracking with intergranular attack occurs on the secondary side of steam generator (SG) tubes where impurities concentrate due to boiling under restricted flow conditions. In the most of cases, it can be called ODSCC (Outer Diameter Stress Corrosion Cracking). The typical locations are areas near support plates, in sludge piles and at top of tubesheet crevices. Though it can also occur on free spans under the relatively thin deposits that build up on the tube surfaces. ODSCC near tube plate supports have been the cause of plugging of many tubes. Thus, studies on SG tubes plugging criteria related to this degradation mechanism are presented in this paper. Th purpose is to avoid unnecessary tube plugging from either safety or reliability standpoint. Based on these studies some conclusions on the plugging criteria and on the difficulties to apply them are addressed. (author)

  7. Effect of boric acid on intergranular corrosion and on hideout return efficiency of sodium in the tube support plate crevices

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; Campan, J.L.; Brunet, J.P.; Schindler, P.; Stutzmann, A.

    1995-01-01

    Sodium hydroxide is one of the main causes of intergranular attack/stress corrosion cracking (IGA/SCC) of alloy 600 steam generator (S.G.) tubes. Boric acid appears to be one of the possible remedies for intergranular corrosion process inhibition. In order to obtain data on boric acid injection efficiency, an experimental program was performed on previously corroded tubes. To prevent premature tube wall cracking, samples were sleeved on alloy 690 tubes. The objective of the tests was to evaluate, on a statistically valid number of samples, the effectiveness of boric acid and tube sleeving as possible remedies for IGA/SCC extension. Another independent experimental program was initiated to determine the hideout return efficiency in the tube support plate (TSP) and tubesheet (TS) crevices after a significant duration (≤ 180 hours) of sodium hideout. The main objective of the first tests being a statistical evaluation of the efficiency of boric acid treatment, was not achieved. The tests did demonstrate that sleeving effectively reduces IGA/SCC growth. In an additional program, cracks were obtained on highly susceptible tubes when specimens were not sleeved. The companion tests performed in the same conditions but with an addition of boric acid did not show any IGA or cracks. These results seem to demonstrate the possible effect of boric acid in preventing the corrosion process. Results of the second tests did not demonstrate any difference in the amount of sodium piled up in the crevices before and after boric acid injection. They however showed an increase of the hideout return efficiency at the tube support plate level from 78 % without boric acid to 95 % when boric acid is present in the feed water

  8. Investigation of cracking on a main steam isolation valve shaft from the Farley unit 1 nuclear power plant

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    The chemical analysis of the Farley Unit 1 MSIV shaft (69C) showed that the chemical composition of the material was consistent with that expected of a Type 410 stainless steel. The microstructure observed in the base metal (tempered martensite) is consistent with that expected in a Type 410 stainless steel in the quenched and tempered condition. The hardness measurements (both Rsub(c) and Knoop) show that the hardness observed (Rsub(c) 41.3 with a KN max of 459) is significantly higher than that which was anticipated by the heat treatments performed. The cracking was intergranular in nature, occuring along prior austenite grain boundaries. There was no evidence of fatigue interaction on the fracture observed, and no definitive corrodent species identified. The cracking is considered to be an intergranular stress corrosion cracking phenomenon resulting from a high hardness-susceptible material under pressurized water reactor conditions

  9. Influence of sulfur, phosphorus, and antimony segregation on the intergranular hydrogen embrittlement of nickel

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Baer, D.R.; Jones, R.H.; Thomas, M.T.

    1983-01-01

    The effectiveness of sulfur, phosphorus, and antimony in promoting the intergranular embrittlement of nickel was investigated using straining electrode tests in 1N H 2 SO 4 at cathodic potentials. Sulfur was found to be the critical grain boundary segregant due to its large enrichment at grain boundaries (10 4 to 10 5 times the bulk content) and the direct relationship between sulfur coverage and hydrogeninduced intergranular failure. Phosphorus was shown to be significantly less effective than sulfur or antimony in inducing the intergranular hydrogen embrittlement of nickel. The addition of phosphoru to nickel reduced the tendency for intergranular fracture and improved ductility because phosphoru segregated strongly to grain interfaces and limited sulfur enrichment. The hydrogen embrittling potency of antimony was also less than that of sulfur while its segregation propensity was considerably less. It was found that the effectiveness of segregated phosphorus and antimony in prompting inter granular embrittlement vs that of sulfur could be expressed in terms of an equivalent grain boundary sulfur coverage. The relative hydrogen embrittling potencies of sulfur, phosphorus, and antimony are discussed in reference to general mechanisms for the effect of impurity segregation on hydrogeninduced intergranular fracture

  10. Environmentally assisted cracking of LWR materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections

  11. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  12. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  13. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    Science.gov (United States)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  14. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    Science.gov (United States)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  15. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC)

    International Nuclear Information System (INIS)

    Diaz S, A.; Fuentes C, P.; Merino C, F.; Castano M, V.

    2006-01-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu + ion. In each essay stayed a displacement velocity was constant of 1x10 -9 m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  16. Mechanical properties of 238PuO2

    International Nuclear Information System (INIS)

    Petrovic, J.J.; Hecker, S.S.; Land, C.C.; Rohr, D.L.

    1977-04-01

    The mechanical properties of 238 PuO 2 have been examined in the Los Alamos Scientific Laboratory mechanical test facility built to handle α-radioactive materials. Compression tests were conducted as a function of temperature, strain rate, grain size, density, and storage time. At temperatures less than or equal to 1400 0 C, test specimens of 238 PuO 2 exhibit pseudobrittle behavior due to internal cracks. Plastic deformation is ''localized'' at the crack tips. Generalized plastic deformation is observed at 1500 0 C. Ultimate stress values decrease markedly with increasing temperature and decreasing strain rate, and decrease less with decreasing density, increasing storage time, and increasing grain size. Room temperature fracture is transgranular, whereas intergranular fracture predominates at elevated temperatures. Crack-free specimens of 239 PuO 2 exhibit extensive plastic deformation at 1000 0 C and above. The relationship of these test results to the impact properties of 238 PuO 2 fuel in radioisotope thermoelectric generators is discussed

  17. Effect of CT Specimen Thickness on the Mechanical Characteristics at the Crack Tip of Stress Corrosion Cracking in Ni-based Alloys

    Science.gov (United States)

    Yinghao, Cui; He, Xue; Lingyan, Zhao

    2017-12-01

    It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.

  18. A comparing study of alloy 600 and alloy 690 on resistance to intergranular stress corrosion cracking(IGSCC)

    International Nuclear Information System (INIS)

    Lee, Jae Hun

    1993-02-01

    In order to compare the effect of senitization on the intergranular stress corrosion cracking(IGSCC) between Alloy 600 and Alloy 690, these alloys have been sensitized for 1 to 100 hours at 700 .deg. C. The degree of sensitization(DOS) has evaluated by the ratio of Ir(the maximum current density at anodic scan) to Ia(the maximum current density at reverse scan) in the modified double loop EPR(electrochemical potentiokinetic reactivation) test in 0.01M H 2 SO 4 + 0.0001M KSCN at 25 .deg. C and at scan rate of 0.5mV/sec. The susceptibility to IGSCC has been measured in 0.01M Na 2 S 4 O 6 solution using CERT(constant extension rate tester) at strain rate of 1.0 x 10 -6 S -1 . With increasing sensitization time the DOS of Alloy 600 increases to the maximum value at 5 hours and decreases gradually due to the replenishment of Cr to the Cr-depleted grain boundaries. For Alloy 600 samples except those sensitized for less than 1 hour, the DOS measured by the modified EPR test parallel to susceptibility to IGSCC revealed by the ratio of strain to failure (εf, Na 2 S 4 O 6 /εf, Air). It appears that the susceptibility to IGSCC is closely associated with the depth in Cr-depleted concentration profile across grain boundary. For the sensitized Alloy 690 samples exhibited extremely low value of Ir/Ia less than 0.074% and also were immune to IGSCC. The good resistance of Alloy 690 to IGSCC is considered to be attributed to the higher Cr concentration to avoid serious Cr-depletion problems adjacent to grain boundary

  19. Investigation of cracking on a main steam isolation valve shaft from the Farley Unit No. 1 nuclear power plant

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    Chemical analysis of the Farley Unit No. 1 MSIV shaft (No. 69C) showed that the chemical composition of the material was consistent with that expected of a Type 410 stainless steel. The microstructure observed in the base metal (tempered martensite) is consistent with that expected in a Type 410 stainless steel in the quenched and tempered condition. The hardness measurements (both R/sub c/ and Knoop) show that the hardness observed (R/sub c/ 41.3 with a KN max of 459) is significantly higher than that which was anticipated by the heat treatments performed. The cracking was intergranular in nature, occurring along prior austenite grain boundaries. There was not evidence of fatigue interaction on the fracture observed, and no definitive corrodent species identified. The cracking is considered to be an intergranular stress corrosion cracking phenomenon resulting from a high hardness-susceptible material under pressurized water reactor conditions

  20. Microscale fracture mechanisms of a Cr3C2-NiCr HVOF coating

    International Nuclear Information System (INIS)

    Robertson, Andrew L.; White, Ken W.

    2017-01-01

    Thermal spray coatings, often composed of heterogeneous, multiphase microstructures, may, consequently, exhibit complex fracture behavior. For such coating structures, conventional mechanical evaluation methods fail to isolate the contribution of microstructural features to the overall fracture behavior. For this reason, this study employed focused ion beam machined (FIB) microcantilever beams and FIB sectioning methods to study the fracture mechanisms important at the scale of the heterogeneous Cr 3 C 2 -NiCr thermal spray coating. We found three fracture modes, namely, intergranular matrix fracture, matrix/carbide interfacial fracture, and carbide cleavage. By comparison, microindentation-induced cracks, the frequency of crack deflection around carbides is significantly more prevalent at this much larger crack dimension. This mechanistic variation provides some insight into the specific role and limitations of the microcantilever beam technique for fracture characterization of composite microstructures.

  1. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  2. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics

    International Nuclear Information System (INIS)

    Zhang Jun; Li, Victor C.

    2004-01-01

    Mode I crack propagation in fiber-reinforced concrete (FRC) is simulated by a fracture mechanics approach. A superposition method is applied to calculate the crack tip stress intensity factor. The model relies on the fracture toughness of hardened cement paste (K IC ) and the crack bridging law, so-called stress-crack width (σ-δ) relationship of the material, as the fundamental material parameters for model input. As two examples, experimental data from steel FRC beams under three-point bending load are analyzed with the present fracture mechanics model. A good agreement has been found between model predictions and experimental results in terms of flexural stress-crack mouth opening displacement (CMOD) diagrams. These analyses and comparisons confirm that the structural performance of concrete and FRC elements, such as beams in bending, can be predicted by the simple fracture mechanics model as long as the related material properties, K IC and (σ-δ) relationship, are known

  3. Fracture Mechanics Analyses for Interface Crack Problems - A Review

    Science.gov (United States)

    Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.

    2013-01-01

    Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.

  4. Depassivation and repassivation of austenitic stainless steels. Consequences on stress corrosion cracking

    International Nuclear Information System (INIS)

    Helie, M.; Desjardins, D.; Puiggali, M.; Petit, M.C.

    1983-06-01

    The influence of strain rate and solution temperature on depassivation and repassivation processes, and the consequences on stress corrosion cracking phenomenon are presented. The tests are performed in concentrated magnesium chloride solutions at various boiling temperatures (160 0 C, 153 0 C, 140 0 C, 130 0 C, 125 0 C, 110 0 C, 102 0 C) to which potassium dichromate is added in some cases. The depassivation and repassivation of the tested wires are analysed in term of current-time curves at fixed potential. The wire is placed into a ''corrosion cell'' with the boiling chloride solution on a tensile testing machine. Tests at 153 0 C on 304L and 309L stainless steels show that competition between passivation and depassivation depends on applied strain rate: at low strain rates rupture is mainly due to mechanical stress, at high strain rates the wire shows track of corrosion and the rupture is ductile. Between the two, stress corrosion cracking presents a maximum and in this case the rupture is mainly brittle. Influence of temperature shows the existence of a transitional temperature 130 0 C for a 304L. The cracking velocity is 100 times higher above 130 0 C than below and the cracking mode is transgranular and mainly intergranular below 130 0 C. Addition of potassium dichromate modifies both electrochemical and mechanical properties; it is more difficult to obtain a frank depassivation and the repassivation rate is higher

  5. Creep-fatique interactions in 316 stainless steel under torsional loading

    International Nuclear Information System (INIS)

    Wei, K.; Dyson, B.F.

    1982-01-01

    Some fatigue, fatigue with creep dwells and creep tests have been performed in torsion using 316 stainless steel at 600 0 C. As expected from push-pull testing, the introduction of a creep dwell reduced fatigue endurances and changed the fracture from classical transgranular to intergranular. Optical microscopical examination revealed a large number of intergranular cracks concentrated along shear planes, but quantitative assessment identified the importance of creep tensile stresses in crack development. In contrast, little intergranular damage was found after torsion creep, which is consistent with its exhibited buckling mode of failure. It is concluded that reverse plastic strain is the cause of intergranular crack formation in the material and is therefore the primary mechanism of creep-fatigue interaction. (author)

  6. Predominantly elastic crack growth under combined creep-fatigue cycling

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1979-01-01

    A rationalization of the various observed effects of combined creep-fatigue cycling upon predominantly elastic fatigue-crack propagation in austenitic steel is presented. Existing and new evidence is used to show two main groups of behaviour: (i) material and cycling conditions which lead to modest increases (6-8 times) in the rate of crack growth are associated with relaxation-induced changes in the material deformation characteristics, and (ii) material and cycling conditions severe enough to generate internal fracture damage lead to significant (up to a factor of 30) increases in crack growth rate when compared with fast-cycling crack propagation rates at the same temperature. A working hypothesis is presented to show that the boundary between the two groups occurs when the scale of the nucleated creep damage is of the same magnitude as the crack tip opening displacement. This leads to the possibility of unstable crack advance. Creep crack growth rates are shown to provide an upper bound to creep-fatigue crack growth rates when crack advance is unstable. If the deformation properties only are affected by the creep-fatigue cycling then creep crack growth rates provide a lower bound. The role of intergranular oxygen corrosion in very low frequency crack growth tests is also briefly discussed. (author)

  7. The effect of thermal history on intergranular boron segregation and fracture morphology of substoichiometric Ni3Al

    International Nuclear Information System (INIS)

    Choudhury, A.; White, C.L.; Brooks, C.R.

    1986-01-01

    While it has attractive mechanical properties and good corrosion resistance, the usefulness of polycrystalline Ni 3 Al has been restricted because of its propensity for brittle intergranular fracture. While this intergranular brittleness can be aggravated by the intergranular segregation of certain impurities, particularly sulfur, the grain boundaries of Ni 3 Al are intrinsically brittle and Ni 3 Al will fail intergranularly in the absence of detectable impurity segregation. Addition of boron resulted in the fracture morphology changing from primarily intergranular to largely transgranular; and more importantly, the intergranular segregation of boron was conclusively demonstrated. The range of boron concentrations over which these beneficial effects are observed is well within the solubility limit, which has been estimated to be 1.5 at. % (4,5). Rice (6) developed a relationship between equilibrium intergranular segregation and grain boundary cohesion. According to this theory, the potential for intergranular embrittlement by a solute is related to the relative intensity of segregation of the solute to free surfaces as compared to segregation to grain boundaries. Rices theory allowed for the case of a solute segregating more strongly to grain boundaries than to free surfaces. If this difference is sufficiently large (approximately a factor of two), Rice's theory predicts an enhancement of grain boudary cohesion. White and coworkers (4,7) noted the rather unusual phenomenon of boron segregating much more strongly to grain boundaries of Ni 3 Al than to free surfaces, while sulfur (an embrittling impurity) was shown to exhibit the opposite effect

  8. Stress corrosion cracking of iron-nickel-chromium alloys in primary circuit environment of PWR-type reactors

    International Nuclear Information System (INIS)

    Boursier, Jean-Marie

    1993-01-01

    Stress corrosion cracking of Alloy 600 steam generator tubing is a great concern for pressurized water reactors. The mechanism that controls intergranular stress corrosion cracking of Alloy 600 in primary water (lithiated-borated water) has yet to be clearly identified. A study of stress corrosion cracking behaviour, which can identify the main parameters that control the cracking phenomenon, was so necessary to understand the stress corrosion cracking process. Constant extension rate tests, and constant load tests have evidenced that Alloy 600 stress corrosion cracking involves firstly an initiation period, then a slow propagation stage with crack less than 50 to 80 micrometers, and finally a rapid propagation stage leading to failure. The influence of mechanical parameters have shown the next points: - superficial strain hardening and cold work have a strong effect of stress corrosion cracking resistance (decrease of initiation time and increase of crack growth rate), - strain rate was the most suitable parameter for describing the different stage of propagation. The creep behaviour of alloy 600 has shown an increase of creep rate in primary water compared to air, which implies a local interaction plasticity/corrosion. An assessment of the durations of the initiation and the propagation stages was attempted for the whole uniaxial tensile tests, using the macroscopic strain rate: - the initiation time is less than 100 hours and seems to be an electrochemical process, - the durations of the propagation stage are strongly dependent on the strain rate. The behaviour in high primary water temperature of Alloys 690 and 800, which replace Alloy 600, was studied to appraise their margin, and validate their choice. Then the last chapter has to objective to evaluate the crack tip strain rate, in order to better describe the evolution of the different stages of cracking. (author) [fr

  9. Two Parameter Fracture Mechanics: Fatigue Crack Behavior under Mixed Mode Conditions

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Knésl, Zdeněk

    2008-01-01

    Roč. 75, č. 3-4 (2008), s. 857-865 ISSN 0013-7944. [Crack Paths 2006. Parma, 14.09.2006-16.09.2006] R&D Projects: GA ČR GP101/04/P001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Constraint * Mixed-mode loading * Fatigue crack * Crack growth * Crack path Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  10. Review of current research and understanding of irradiation-assisted stress corrosion cracking

    International Nuclear Information System (INIS)

    Nelson, J.L.; Andresen, P.L.

    1992-01-01

    Concerns for irradiation-assisted stress corrosion cracking (IASCC) of reactor internals are increasing, especially for components that are not readily replaceable. Both laboratory and field data show that intergranular stress corrosion cracking of stainless steels and nickel-base alloys can result from long term exposure to the high energy neutron and gamma radiation that exists in the core of light water reactors (LWR's). Radiation affects cracking susceptibility via changes in material micro-chemistry (radiation induced segregation, or RIS), water chemistry (radiolysis) and material properties/stress (e.g., radiation induced creep and hardening). Based on many common dependencies, e.g., to solution purity, corrosion potential, crevicing and stress, IASCC falls within the continuum of environmental cracking phenomenon in high temperature water

  11. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Silva, F.J. da; Scandian, C. [Universidade Federal do Espirito Santo - Departamento de Engenharia Mecanica - Av. Fernando Ferrrari, 514 - CEP 29075-910 - Vitoria/ES (Brazil); Silva, G.F. da [Universidade Federal Fluminense - Programa de Pos-graduacao em Engenharia Mecanica (PGMEC), Rua Passo da Patria, 156 - CEP 24210-240 - Niteroi/RJ (Brazil); Abreu, H.F.G. de [Universidade Federal do Ceara - Departamento de Engenharia Metalurgica e Materiais - Campus do Pici, Bloco 702 - CEP 60455-760 - Fortaleza/CE (Brazil)

    2010-11-15

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 {sup o}C range was not observed by DL-EPR tests.

  12. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Silva, F.J. da; Scandian, C.; Silva, G.F. da; Abreu, H.F.G. de

    2010-01-01

    UNS S17400 or 17-4PH is a precipitation hardening martensitic stainless steel with many industrial applications. Quite different mechanical properties can be produced in this material by varying the aging temperature. In this work, the influence of aging temperature on the intergranular corrosion susceptibility was evaluated by electrochemical and metallographic tests. The microstructural features were investigated by X-ray diffraction, optical and scanning electron microscopy. Intergranular chromium carbide precipitation occurs in specimens aged at high temperatures, although NbC carbides were also observed. The results obtained by double loop electrochemical potentiodynamic reactivation tests (DL-EPR) show that the susceptibility to intergranular corrosion resistance increases with the increase of aging temperature. Healing due to Cr diffusion in the 600-650 o C range was not observed by DL-EPR tests.

  13. Numerical modelling in non linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    Viggo Tvergaard

    2007-07-01

    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  14. Mechanism of electric fatigue crack growth in lead zirconate titanate

    International Nuclear Information System (INIS)

    Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.

    2007-01-01

    A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism

  15. The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M.G., E-mail: m.g.burke@manchester.ac.uk; Bertali, G.; Prestat, E.; Scenini, F.; Haigh, S.J.

    2017-05-15

    In situ analytical transmission electron microscopy (TEM) can provide a unique perspective on dynamic reactions in a variety of environments, including liquids and gases. In this study, in situ analytical TEM techniques have been applied to examine the localised oxidation reactions that occur in a Ni-Cr-Fe alloy, Alloy 600, using a gas environmental cell at elevated temperatures. The initial stages of preferential intergranular oxidation, shown to be an important precursor phenomenon for intergranular stress corrosion cracking in pressurized water reactors (PWRs), have been successfully identified using the in situ approach. Furthermore, the detailed observations correspond to the ex situ results obtained from bulk specimens tested in hydrogenated steam and in high temperature PWR primary water. The excellent agreement between the in situ and ex situ oxidation studies demonstrates that this approach can be used to investigate the initial stages of preferential intergranular oxidation relevant to nuclear power systems. - Highlights: • In situ analytical TEM has been performed in 1 bar H{sub 2}-H{sub 2}O vapor at 360–480 °C. • Nanoscale GB migration and solute partitioning correlate with ex situ data for Alloy 600 in H{sub 2}-steam. • This technique can provide new insights into localised reactions associated with localised oxidation.

  16. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  17. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials

  18. Intergranular creep of oriented bi-crystals of aluminium

    International Nuclear Information System (INIS)

    Biscondi, Michel

    1971-01-01

    This research thesis reports the study of the nature of intergranular creep, and of relationships between structure and creep ability of some grain boundaries. After having explained why bi-crystals are interesting for this kind of study, the author defines experimental conditions and describes measurement methods. He reports the study of the influence of external factors (time, test temperature, applied stress) on intergranular creep. He shows that grain boundary structure has a determining influence of the grain boundary ability to intergranular creep. The author discusses the obtained results and makes some propositions for the interpretation of the observed phenomenon

  19. Irradiation-assisted stress corrosion cracking considerations at temperatures below 288 degree C

    International Nuclear Information System (INIS)

    Simonen, E.P.; Jones, R.H.; Bruemmer, S.M.

    1995-03-01

    Irradiation-assisted stress corrosion cracking (IASCC) occurs above a critical neutron fluence in light-water reactor (LWR) water environments at 288 C, but very little information exists to indicate susceptibility as temperatures are reduced. Potential low-temperature behavior is assessed based on the temperature dependencies of intergranular (IG) SCC in the absence of irradiation, radiation-induced segregation (RIS) at grain boundaries and micromechanical deformation mechanisms. IGSCC of sensitized SS in the absence of irradiation exhibits high growth rates at temperatures down to 200 C under conditions of anodic dissolution control, while analysis of hydrogen-induced cracking suggests a peak crack growth rate near 100 C. Hence from environmental considerations, IASCC susceptibility appears to remain likely as water temperatures are decreased. Irradiation experiments and model predictions indicate that RIS also persists to low temperatures. Chromium depletion may be significant at temperatures below 100C for irradiation doses greater than 10 displacements per atom (dpa). Macromechanical effects of irradiation on strength and ductility are not strongly dependent on temperature below 288 C. However, temperature does significantly affect radiation effects on SS microstructure and micromechanical deformation mechanisms. The critical conditions for material susceptibility to IASCC at low temperatures may be controlled by radiation-induced grain boundary microchemistry, strain localization due to irradiation microstructure and irradiation creep processes. 39 refs

  20. Conversion of transgranular to intergranular fracture in NiCr steels

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Němec, O.; Dlouhý, Ivo

    2008-01-01

    Roč. 75, č. 12 (2008), s. 3677-3691 ISSN 0013-7944 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness * fracture stress * micromechanics * micromechanism * fractal dimension Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  1. Metallurgical evaluation of failed post-tensioned containment tendon anchors at Joseph M. Farley Unit 2

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    A metallurgical examination has been performed on three failed post-tensioned containment tendon anchors and one intact anchor from the Farley Unit 2 Nuclear Power Station. The evaluation consisted of chemical/mechanical testing, optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. The conclusions drawn from the investigation were: 1) the anchors met the chemical and mechanical properties of AISI 4140/4142 steel; 2) there was no evidence of phosphorous segregation to the grain boundary (by ethereal picral etch); 3) the observed cracking was generally a mixed mode of intergranular and quasi-cleavage as well as ductile rupture with the intergranular cracking occurring along prior austenite grain boundaries; 4) the results of the mechanical tests coupled with the discontinuous nature of the intergranular areas and the elimination of other modes of failure give sufficient indication that the failure was a hydrogen induced cracking phenomenon

  2. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    Science.gov (United States)

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multiple-shock initiation via statistical crack mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.; Kershner, J.D.

    1998-12-31

    Statistical Crack Mechanics (SCRAM) is a theoretical approach to the behavior of brittle materials that accounts for the behavior of an ensemble of microcracks, including their opening, shear, growth, and coalescence. Mechanical parameters are based on measured strain-softening behavior. In applications to explosive and propellant sensitivity it is assumed that closed cracks act as hot spots, and that the heating due to interfacial friction initiates reactions which are modeled as one-dimensional heat flow with an Arrhenius source term, and computed in a subscale grid. Post-ignition behavior of hot spots is treated with the burn model of Ward, Son and Brewster. Numerical calculations using SCRAM-HYDROX are compared with the multiple-shock experiments of Mulford et al. in which the particle velocity in PBX 9501 is measured with embedded wires, and reactions are initiated and quenched.

  4. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons

    Science.gov (United States)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2018-04-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.

  5. Stress relief cracking by relaxation in austenitic stainless steels welded junctions; Fissuration differee par relaxation des jonctions soudes en aciers inoxydables austenitiques

    Energy Technology Data Exchange (ETDEWEB)

    Allais, L.; Auzoux, Q.; Chabaud-Reytier, M

    2003-07-01

    During service at high temperature (450 to 650 C), austenitic stainless steels are well known to present a risk of cracking near the welded junctions for times under the service life. This intergranular cracking in affected zones has been identified on titanium stabilized steels and is known as relief cracking by relaxation or reheat cracking. In order to control this cracking of welded junctions on titanium stabilized stainless steel AISI 321, a simulation of the affected zone has been realized. The results have been extended to non stabilized steels. (A.L.B.)

  6. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  7. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  8. Sensitiaztion of austenitic stainless steels and its significance as regards stress-corrosion cracking of BWR pipe systems

    International Nuclear Information System (INIS)

    Roberts, W.; Otterberg, R.

    1984-05-01

    A critical literature evaluation dealing with sensitization of austenitic stainless steels and its importance in the context of intergranular stress-corrosion cracking (IGSCC) in high-temperature, oxygenated water is presented. The factors influencing the degree of sensitization are discussed, principally for type-304 stainless steels, both as regards sensitization arising as a result of isothermal holding within the critical temperature range and weld sensitization. The phenomenon of low-temperature sensitization is described and its potential significance under BWR operating conditions speculated upon. The principal features of and mechanisms controlling IGSCC of sensitized 304 steels in BWR-type environments are reviewed and some thoughts are given to the relevance of laboratory SCC testing in predicting the occurrence of cracking in actual BWR systems. Finally various countermeasures against IGSCC in existing and projected reactors are presented and discussed. (Author)

  9. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    Science.gov (United States)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  10. A fracture- mechanics calculation of crack growth rate for a gas turbine blade

    International Nuclear Information System (INIS)

    Mirzaei, M.; Karimi, R.

    2002-01-01

    The existence of thermo-mechanical stresses, due to the frequent start-ups and shutdowns of gas turbines. Combined with high working temperatures may cause creep and fatigue failure of the blades. This paper describes a fracture-mechanics life assessment of a gas turbine blade. Initially, the distributions of thermal and mechanical stresses were obtained by using the finite element method. Accordingly; the crack modeling was performed in a high stress region at the suction side surface of the blade. Several crack growth increments were observed and the related crack tip parameters were calculated. Finally; the creep-fatigue crack growth in each cycle was calculated and the total number of start-stop cycles was determined

  11. Influence of microstructure on stress corrosion cracking susceptibility of alloys 600 and 690 in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Kergaravat, J.F.

    1996-01-01

    The mechanism(s) responsible for the stress corrosion cracking (SCC) of Alloy 600 steam generator tubes of pressurized water reactors remain misunderstood in spite of numerous studies on the subject. This failure mode presents several experimental similarities with intergranular creep fracture of austenitic stainless steels. As far as intergranular creep fracture is concerned, grain boundary sliding (GBS) was proved to favor failure. The aim of this work is to check the role played by GBS during SCC. It takes into account chemical (chromium content) and microstructural parameters (grain size, precipitation distribution and density). Therefore, to get a complete set of micro-structurally different samples, we have prepared solution annealed specimens (1100 deg C, 20 min., water quenched) from industrial tubes of Alloys 600 and 690. Each specimen was crept at 500 deg C (400 MPa), 430 deg C (425 MPa) and 360 deg C (475 MPa). Before testing, every sample were engraved with a 7 μm wide fiducial grid. This grid has allowed us to measure GBS after creep testing. GBS was observed for industrial and solution annealed samples for the three testing temperatures. GBS amplitude depends'on chromium content: for micro-structurally identical specimens, Alloy 600 exhibits more GB strain than Alloy 690. It also strongly depends on grain boundary precipitation characteristics: carbide free boundaries slide more easily. During in situ straining experiments performed in a transmission electronic microscope, GBS was evidenced at 320 deg C for Alloy 600 industrial samples. It consists in grain boundary dislocation motion in the interface plane. These dislocations originate from perfect dislocations gliding in the grain interior, encountering grain boundary and spreading in it. Metallic intergranular carbides provide strong obstacles to GBS so stress enhancements arise against them. These stress enhancements are released by micro-twin emission. Constant extension rate tensile tests were

  12. Microstructure and mechanical properties of internal crack healing in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ruishan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Ma, Qingxian, E-mail: maqxdme@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Weiqi [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The behavior of internal crack healing in a low carbon steel at elevated temperatures was investigated. The internal cracks were introduced into low carbon steel samples via the drilling and compression method. The microstructure of crack healing zone was observed using optical microscopy and scanning electron microscopy. The mechanical properties of crack healing zone at room temperature were tested. The results show that there are two mechanisms of crack healing in the low carbon steel. Crack healing is caused by atomic diffusion at lower temperatures, and mainly depends on recrystallization and grain growth at higher temperatures. The microstructural evolution of crack healing zone can be divided into four stages, and the fracture morphology of crack healing zone can be classified into five stages. At the initial healing stage, the fracture exhibits brittle or low ductile dimple fracture. The ultimate fracture mode is dimple and quasi-cleavage mixed fracture. Fine grain microstructures improve the ultimate tensile strength of crack healing zone, which is even higher than that of the matrix. The strength recovery rate is higher than that of the plasticity.

  13. Microscale fracture mechanisms of a Cr{sub 3}C{sub 2}-NiCr HVOF coating

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Andrew L., E-mail: Andrew.robertson99987@gmail.com; White, Ken W.

    2017-03-14

    Thermal spray coatings, often composed of heterogeneous, multiphase microstructures, may, consequently, exhibit complex fracture behavior. For such coating structures, conventional mechanical evaluation methods fail to isolate the contribution of microstructural features to the overall fracture behavior. For this reason, this study employed focused ion beam machined (FIB) microcantilever beams and FIB sectioning methods to study the fracture mechanisms important at the scale of the heterogeneous Cr{sub 3}C{sub 2}-NiCr thermal spray coating. We found three fracture modes, namely, intergranular matrix fracture, matrix/carbide interfacial fracture, and carbide cleavage. By comparison, microindentation-induced cracks, the frequency of crack deflection around carbides is significantly more prevalent at this much larger crack dimension. This mechanistic variation provides some insight into the specific role and limitations of the microcantilever beam technique for fracture characterization of composite microstructures.

  14. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    Science.gov (United States)

    Phung-On, Isaratat

    2007-12-01

    the shifting of the micro-indentations compared to their original locations. At the 80% stress level, the cracking mechanism was identified as the PFZ weakening, while at the 70% stress as the creep-like grain boundary sliding. A design of experiment (DOE) using a D-optimal design was successfully employed in this study to investigate the effects of microstructures on the reheat cracking susceptibility. The microstructures were modified by heat treatment prior to the reheat cracking test. The grain size and cooling rate were found to have moderate effects on cracking susceptibility. The amount (volume fraction) of MC carbide (NbC) had a significant effect on time to failure. The more NbC formed prior to test, the longer time to failure, and the more resistance to reheat cracking. On the other hand, the amount of GB carbide (M23C6) had an insignificant effect. The statistical interaction between MC carbide with other testing parameters also had strong effect. The PWHT temperature also had significant effect as can be predicted from the susceptibility C-curves. The heat treatment schedules, during cooling and during heating schedules, were also investigated. During cooling schedule was the same schedule done earlier in this study. On the other hand, during heating schedule allowed the sample cool to room temperature prior microstructure modification followed by the reheat cracking test. During heating schedule showed an improvement in resistance to reheat cracking. Microstructure of the crack samples showed the intergranular cracking path and wedge shapes along cracking boundaries. There was also the evidence of grain boundary sliding as a result of the creep-like grain boundary sliding cracking mechanism. SEM showed the intergranular cracking and grain separation with precipitates decorated on the fracture surfaces. The precipitates were identified as Nb-rich, MC carbide (NbC). The fracture surfaces showed micro-ductility and microvoid coalescence. The size of

  15. An extension of fracture mechanics/technology to larger and smaller cracks/defects

    Science.gov (United States)

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  16. Micro- and macroapproaches in fracture mechanics for interpreting brittle fracture and fatigue crack growth

    International Nuclear Information System (INIS)

    Ekobori, T.; Konosu, S.; Ekobori, A.

    1980-01-01

    Classified are models of the crack growth mechanism, and in the framework of the fracture mechanics suggested are combined micro- and macroapproaches to interpreting the criterion of the brittle fracture and fatigue crack growth as fracture typical examples, when temporal processes are important or unimportant. Under the brittle fracture conditions the crack propagation criterion is shown to be brought with the high accuracy to a form analogous to one of the crack propagation in a linear fracture mechanics although it is expressed with micro- and macrostructures. Obtained is a good agreement between theoretical and experimental data

  17. Pattern recognition model to estimate intergranular stress corrosion cracking (IGSCC) at crevices and pit sites of 304 SS in BWR environments

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna

    2004-01-01

    Many publications have shown that crack growth rates (CGR) due to intergranular stress corrosion cracking (IGSCC) of metals is dependent on many parameters related to the manufacturing process of the steel and the environment to which the steel is exposed. Those parameters include, but are not restricted to, the concentration of chloride, fluoride, nitrates, and sulfates, pH, fluid velocity, electrochemical potential (ECP), electrolyte conductivity, stress and sensitization applied to the steel during its production and use. It is not well established how combinations of each of these parameters impact the CGR. Many different models and beliefs have been published, resulting in predictions that sometimes disagree with experimental observations. To some extent, the models are the closest to the nature of IGSCC, however, there is not a model that fully describes the entire range of observations, due to the difficulty of the problem. Among the models, the Fracture Environment Model, developed by Macdonald et al., is the most physico-chemical model, accounting for experimental observations in a wide range of environments or ECPs. In this work, we collected experimental data on BWR environments and designed a data mining pattern recognition model to learn from that data. The model was used to generate CGR estimations as a function of ECP on a BWR environment. The results of the predictive model were compared to the Fracture Environment Model predictions. The results from those two models are very close to the experimental observations of the area corresponding to creep and IGSCC controlled by diffusion. At more negative ECPs than the potential corresponding to creep, the pattern recognition predicts an increase of CGR with decreasing ECP, while the Fracture Environment Model predicts the opposite. The results of this comparison confirm that the pattern recognition model covers 3 phenomena: hydrogen embrittlement at very negative ECP, creep at intermediate ECP, and IGSCC

  18. Pattern recognition model to estimate intergranular stress corrosion cracking (IGSCC) at crevices and pit sites of 304 SS in BWR environments

    Energy Technology Data Exchange (ETDEWEB)

    Urquidi-Macdonald, Mirna [Penn State University, 212 Earth-Engineering Science Building, University Park, PA 16801 (United States)

    2004-07-01

    Many publications have shown that crack growth rates (CGR) due to intergranular stress corrosion cracking (IGSCC) of metals is dependent on many parameters related to the manufacturing process of the steel and the environment to which the steel is exposed. Those parameters include, but are not restricted to, the concentration of chloride, fluoride, nitrates, and sulfates, pH, fluid velocity, electrochemical potential (ECP), electrolyte conductivity, stress and sensitization applied to the steel during its production and use. It is not well established how combinations of each of these parameters impact the CGR. Many different models and beliefs have been published, resulting in predictions that sometimes disagree with experimental observations. To some extent, the models are the closest to the nature of IGSCC, however, there is not a model that fully describes the entire range of observations, due to the difficulty of the problem. Among the models, the Fracture Environment Model, developed by Macdonald et al., is the most physico-chemical model, accounting for experimental observations in a wide range of environments or ECPs. In this work, we collected experimental data on BWR environments and designed a data mining pattern recognition model to learn from that data. The model was used to generate CGR estimations as a function of ECP on a BWR environment. The results of the predictive model were compared to the Fracture Environment Model predictions. The results from those two models are very close to the experimental observations of the area corresponding to creep and IGSCC controlled by diffusion. At more negative ECPs than the potential corresponding to creep, the pattern recognition predicts an increase of CGR with decreasing ECP, while the Fracture Environment Model predicts the opposite. The results of this comparison confirm that the pattern recognition model covers 3 phenomena: hydrogen embrittlement at very negative ECP, creep at intermediate ECP, and IGSCC

  19. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix

  20. A numerical study of crack interactions under thermo-mechanical load using EFGM

    International Nuclear Information System (INIS)

    Pant, Mohit; Singh, I. V.; Mishra, B. K.

    2011-01-01

    In this work, element free Galerkin method (EFGM) has been used to obtain the solution of various edge crack problems under thermo-mechanical loads as it provides a versatile technique to model stationary as well as moving crack problems without re-meshing. Standard diffraction criterion has been modified with multiple crack weight technique to characterize the presence of various cracks in the domain of influence of a particular node. The effect of crack inclination has been studied for single as well as two edge cracks, whereas the cracks interaction has been studied for two edge cracks lying on same as well as opposite edges under plane stress conditions. The values of mode-I and mode-II stress intensity factors have been evaluated by the interaction integral approach

  1. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  2. Effect of water impurities on stress corrosion cracking in a boiling water reactor

    International Nuclear Information System (INIS)

    Ljungbery, L.G.; Cubicciotti, D

    1985-01-01

    A series of stress corrosion tests, including corrosion potential and water chemistry measurements, has been performed in the Swedish Ringhals-1 boiling water reactor. Tests have been run under reactor start-up and reactor power operation with normal reactor water conditions and with alternate water chemistry in which hydrogen is added to the feedwater to suppress stress corrosion cracking. During one alternate water chemistry test, there was significant intergranular corrosion cracking of sensitized stainless specimens. It is shown that nitrate and sulfate, arising from an accidental resin intrusion, are likely causes. Nitrate increases the oxidizing power of the water, and sulfate enhances cracking under oxidizing conditions. During another test under start-up conditions, enhanced transgranular stress corrosion cracking in low alloy steels and possibly initiation of cracking in a nickel base alloy was observed as a result of resin intrusion into the reactor water. The intrusion produced acid and sulfate, which are believed to enhance hydrogen cracking conditions

  3. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    Science.gov (United States)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  4. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-01-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations

  5. Study of the influence of liquid sodium on the mechanical behavior of T91 steel in liquid sodium

    International Nuclear Information System (INIS)

    Hemery, S.

    2013-01-01

    We studied the sensitivity of T91 steel to embrittlement by liquid sodium. An experimental procedure was set up to proceed to mechanical testing in sodium under an inert atmosphere. The introduction of a liquid sodium pre-exposure step prior to mechanical testing enabled the study of both the wettability of T91 by sodium and the structure of the sodium steel/interface as a function of the exposure parameters. The mechanical properties of T91 steel are significantly reduced in liquid sodium provided the wetting conditions are good. The use of varying oxygen and hydrogen concentrations suggests that oxygen plays a major role in enhancing the wettability of T91. The sensitivity of the embrittlement to strain rate and temperature was characterized. These results showed the existence of a ductile to brittle transition depending on both parameters. Its characterization suggests that a diffusion step is the limiting rate phenomenon of this embrittlement case. TEM and EBSD analysis of arrested cracks enabled us to establish that the fracture mode is inter-lath or intergranular. This characteristic is coherent with the crack path commonly reported in liquid metal embrittlement. A similar procedure was applied to the unalloyed XC10 steel. The results show a behavior which is similar to the one of T91 steel and suggest a common mechanism for liquid sodium embrittlement of body centered cubic steels. Moreover, they confirm that the ductile to brittle transition seems associated with a limited crack propagation rate. The propagation is thermally activated with activation energy of about 50 kJ/mol. Finally, it was shown that 304L austenitic steel is sensitive to liquid sodium embrittlement as well. Some fracture surfaces testify of an intergranular fracture mode, but some questions still remain about the crack path. (author) [fr

  6. Intergranular corrosion protective of austenitic stainless steel chemical equipment

    International Nuclear Information System (INIS)

    Kuzyukov, A.N.

    1994-01-01

    A complex of protective measures was developed for each concrete case of intergranular fracture of equipment, i.e.: decrease in the level of strains, surfacing with materials resistant to intergranular fracture under the conditions; permissible correction of process parameters, permitting a shift in corrosion potential towards decrease in the rate of intergranular corrosion. It is shown that even if the eguipment was subject to interfranular corrosion, but the fracture is not of catastrophic character, it proved possible to develop and apply complex methods of protection from the above types of corrosion fracture and to elongate the service life by 5-15 years

  7. Microstructure and intergranular corrosion of the austenitic stainless steel 1.4970

    International Nuclear Information System (INIS)

    Terada, Maysa; Saiki, Mitiko; Costa, Isolda; Padilha, Angelo Fernando

    2006-01-01

    The precipitation behaviour of the DIN 1.4970 steel and its effect on the intergranular corrosion resistance were studied. Time-temperature-precipitation diagrams for the secondary phases (Ti, Mo)C (Cr, Fe, Mo, Ni) 23 C 6 and (Cr, Fe) 2 B are presented and representative samples have been selected for corrosion studies. The susceptibility to intergranular corrosion of the samples was evaluated using the double loop electrochemical potentiokinetic reactivation technique. The results showed that the solution-annealed samples and those aged at 1173 K did not present susceptibility to intergranular corrosion, whereas aging treatment from 873 to 1073 K resulted in small susceptibility to intergranular attack that decreased with aging temperature. The preferential formation of (Ti, Mo)C at higher aging temperatures comparatively to M 23 C 6 , retained the chromium in solid solution preventing steel sensitization and, consequently, intergranular corrosion

  8. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  9. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  11. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  12. The effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl.III RPV steel

    International Nuclear Information System (INIS)

    Achilles, R.D.; Bulloch, J.H.

    1987-01-01

    This paper describes the effect of frequency and environment on the fatigue crack growth behaviour of SA508 Cl. III RPV steel. The study has shown that the effect of the Pressurised Water Reactor (PWR) environment is directly related to the frequency and the level of applied stress intensity of the test; these results further showed that the lower the frequency the greater the environmental effect, especially at low ΔK levels. No such frequency effect was observed in either the laboratory air or ultra-high purity argon environments. At a frequency of 0.1 Hz the PWR water test exhibited characteristic EAC growth, i.e. plateau growth behaviour. Fractographical examination of the fracture surface revealed that the fracture mode during plateau growth was intergranular failure. The experimental results are described and discussed in terms of the hydrogen assisted cracking mechanism. (author)

  13. Mechanism of crack healing at room temperature revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H.

    2015-01-01

    Three dimensional molecular dynamics (MD) simulations are systematically carried out to reveal the mechanism of the crack healing at room temperature, in terms of the dislocation shielding and the atomic diffusion to control the crack closure, in a copper (Cu) plate suffering from a shear loading. The results show that the process of the crack healing is actualized through the dislocation emission at a crack tip accompanied with intrinsic stacking faults ribbon forming in the crack tip wake, the dislocation slipping in the matrix and the dislocation annihilation in the free surface. Dislocation included stress compressing the crack tip is examined from the MD simulations and the analytical models, and then the crack closes rapidly due to the assistance of the atomic diffusion induced by the thermal activation when the crack opening displacement is less than a threshold value. This phenomenon is very different from the previous results for the crack propagation under the external load applied because of the crack healing (advancing) largely dependent on the crystallographic orientations of crack and the directions of external loading. Furthermore, based on the energy characteristic and considering the crack size effect, a theoretical model is established to predict the relationships between the crack size and the shear stress which qualitatively agree well with that obtained in the MD simulations

  14. Study of stress relief cracking in titanium stabilized austenitic stainless steel; Etude de la fissuration differee par relaxation d'un acier inoxydable austenitique stabilise au titane

    Energy Technology Data Exchange (ETDEWEB)

    Chabaud-Reytier, M

    1999-07-01

    The heat affected zone (HAZ) of titanium stabilised austenitic stainless steel welds (AISI 321) may exhibit a serious form of intercrystalline cracking during service at high temperature. This type of cracking, called 'stress relief cracking', is known to be due to work hardening but also to ageing: a fine and abundant intragranular Ti(C,N) precipitation appears near the fusion line and modifies the mechanical behaviour of the HAZ. This study aims to better know the accused mechanism and to succeed in estimating the risk of such cracking in welded junctions of 321 stainless steel. To analyse this embrittlement mechanism, and to assess the lifetime of real components, different HAZ are simulated by heat treatments applied to the base material which is submitted to various cold rolling and ageing conditions in order to reproduce the HAZ microstructure. Then, we study the effects of work hardening and ageing on the titanium carbide precipitation, on the mechanical (tensile and creep) behaviour of the resulting material and on its stress relief cracking sensitivity. It is shown that work hardening is the main parameter of the mechanism and that ageing do not favour crack initiation although it leads to titanium carbide precipitation. The role of this precipitation is also discussed. Moreover, a creep damage model is identified by a local approach to fracture. Materials sensitive to stress relief cracking are selected. Then, creep tests are carried out on notched bars in order to quantify the intergranular damage of these different materials; afterwards, these measurements are combined with calculated mechanical fields. Finally, it is shown that the model gives good results to assess crack initiation for a compact tension (CT) specimen during relaxation tests, as well as for a notched tubular specimen tested at 600 deg. C under a steady torque. (author)

  15. Stress corrosion cracking of nickel base alloys characterization and prediction

    International Nuclear Information System (INIS)

    Santarini, G.; Pinard-Legry, G.

    1988-01-01

    For many years, studies have been carried out in several laboratories to characterize the IGSCC (Intergranular Stress Corrosion Cracking) behaviour of nickel base alloys in aqueous environments. For their relative shortness, CERTs (Constant Extension Rate Tests) have been extensively used, especially at the Corrosion Department of the CEA. However, up to recently, the results obtained with this method remained qualitative. This paper presents a first approach to a quantitative interpretation of CERT results. The basic datum used is the crack trace depth distribution determined on a specimen section at the end of a CERT. It is shown that this information can be used for the calculation of initiation and growth parameters which quantitatively characterize IGSCC phenomenon. Moreover, the rationale proposed should lead to the determination of intrinsic cracking parameters, and so, to in-service behaviour prediction

  16. Assessment of pressurized water reactor control rod drive mechanism nozzle cracking

    International Nuclear Information System (INIS)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1994-10-01

    This report surveys the field experience related to cracking of pressurized water reactor (PWR) control rod drive mechanism nozzles (Alloy 600 material); evaluates design, fabrication, and operating conditions for the nozzles in US PWR; and evaluates the safety significance of nozzle cracking. Inspection at 78 overseas and one US PWR has revealed mainly axial cracks in 101 nozzles. The cracking is caused by primary water stress corrosion cracking, which requires the simultaneous presence of high tensile stresses, high operating temperatures, and susceptible microstructure. CRDM nozzle cracking is not a short-term safety issue. An axial crack is not likely to grow above the vessel head to a critical length because the stresses are not high enough to support the growth away from the attachment weld. Primary coolant leaking through an axial crack could cause a short circumferential crack on the outside surface. However, this crack is not likely to propagate through the nozzle wall to cause rupture. Leakage of the primary coolant from a through-wall crack could cause boric acid corrosion of the vessel head and challenge the structural integrity of the head, but it is very unlikely that the accumulated deposits of boric acid crystals resulting from such leakage could remain undetected

  17. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  18. Fatigue crack growth characteristics of the pressure vessel steel SA 508 Cl. 3 in various environments

    International Nuclear Information System (INIS)

    Lee, S. G.; Kim, I. S.; Park, Y. S.; Kim, J. W.; Park, C. Y.

    2001-01-01

    Fatigue tests in air and in room temperature water were performed to obtain comparable data and stable crack measuring conditions. In air environment, fatigue crack growth rate was increased with increasing temperature due to an increase in crack tip oxidation rate. In room temperature water, the fatigue crack growth rate was faster than in air and crack path varied on loading conditions. In simulated light water reactor (LWR) conditions, there was little environmental effect on the fatigue crack growth rate (FCGR) at low dissolved oxygen or at high loading frequency conditions. While the FCGR was enhanced at high oxygen condition, and the enhancement of crack growth rate increased as loading frequency decreased to a critical value. In fractography, environmentally assisted cracks, such as semi-cleavage and secondary intergranular crack, were found near sulfide inclusions only at high dissolved oxygen and low loading frequency condition. The high crack growth rate was related to environmentally assisted crack. These results indicated that environmentally assisted crack could be formed by the Electrochemical effect in specific loading condition

  19. The catalytic cracking mechanism of lignite pyrolysis char on tar

    International Nuclear Information System (INIS)

    Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.

    2017-01-01

    The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)

  20. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    International Nuclear Information System (INIS)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-01-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288 degrees C (550 degrees F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288 degrees C (550 degrees F) base line air environment. The growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology

  1. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    International Nuclear Information System (INIS)

    Sistaninia, M; Drezet, J-M; Rappaz, M; Phillion, A B

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  2. Dresden 1 Radiation Level Reduction Program. Intergranular corrosion tests of sensitized Type-304 stainless steel in Dow NS-1, and stress corrosion cracking tests of Type-304 stainless steel and carbon and low alloy steels in Dow copper rinse solution

    International Nuclear Information System (INIS)

    Walker, W.L.

    1978-09-01

    Corrosion tests were performed to evaluate the extent of intergranular attack on sensitized Type-304 stainless steel by a proprietary Dow Chemical solvent, NS-1, which is to be used in the chemical cleaning of the Dresden 1 primary system. In addition, tests were performed to evaluate stress corrosion cracking of sensitized Type-304 stainless steel and post-weld heat-treated ASTM A336-F1, A302-B, and A106-B carbon and low alloy steels in a solution to be used to remove residual metallic copper from the Dresden 1 primary system surfaces following the chemical cleaning. No evidence of deleterious corrosion was observed in either set of tests

  3. Development of testing system for the thermo-mechanical fatigue crack analysis of nuclear power plant pipes

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Kim, Maan Won; Lee, Bong Sang

    2003-12-01

    Fatigue crack growth analysis plays an important role in the structural integrity assessment or the service life calculation of the nuclear power plant pipes. To obtain the material properties as a basic data to achieve an accurate crack growth analysis, a lot of tests and numerical crack growth simulations have been done for decades. The BS 7910 or the ASME Boiler and Pressure Vessel Code Section XI, generally used to evaluate crack growth behavior, were made under the based on simple stress states or at the evaluated isothermal temperature. It is well known that the ASME code could sometimes give so conservative results in some cases of which the cracked components are experiencing with cyclic thermal shock. In this report, we suggested a method for the life assessment of a crack embedded in nuclear power plant pipes under the thermal-mechanical fatigue loads. We here use the numerical method to get the temperature history for thermal- mechanical fatigue crack growth test. And then we can calculate the remaining life time of the pipe by using the fracture mechanics and the test results together. For this purpose, we constructed a thermal-mechanical fatigue crack growth testing system. We also gave a lot of review about recent researches in the experimental field of thermal-mechanical fatigue analysis

  4. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body

    International Nuclear Information System (INIS)

    Bongue Boma, M.

    2007-12-01

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  5. The COD concept and its application to fracture mechanical evaluation of cracked components

    International Nuclear Information System (INIS)

    Kockelmann, H.

    1984-01-01

    Based on a comprehensive literature study, this report critically evaluates the current state of experiences with the COD concept in fracture mechanics. First the concept is explained and the procedure of materials testing with a view to fracture mechanics is discussed in detail with emphasis on: The definition of crack shape modification; the procedure to detect crack modification, with subsequent comparison; the determination of material characteristics; the impact on the characteristics of the crack tip opening and the dispersion of results. The correlation between crack tip opening characteristics and notch impact strength is explained, and the methods applied for analysis of the streses affecting the structural components are shown. The design-based and failure threshold curves and the treatment of real crack geometries are also discussed. Problems still to be solved are shown. (orig./HP) [de

  6. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    International Nuclear Information System (INIS)

    Lim, H. K.; Kim, Y. S.

    2009-01-01

    When austenitic stainless steels are heat treated in the range of 500∼850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month

  7. Evaluation of intergranular corrosion rate and microstructure of forged 316L round bar

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H. K.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of)

    2009-12-15

    When austenitic stainless steels are heat treated in the range of 500{approx}850 .deg. C, the alloys are sensitized due to the formation of chromium carbide at grain boundaries and then intergranular corrosion occurs. This paper aims to evaluate the intergranular corrosion rate and microstructural change of forged 316L stainless steel. To analyze the microstructure by forging conditions, ferrite phase, sigma phase, intergranular precipitation were observed. In order to evaluate the intergranular corrosion rate. Huey test was performed by ASTM A262. On the base of microstructural observation, ferrite and sigma phases were not detected, and also intergranular precipitation was not revealed in optical microscopic observation. By ASTM A262 Practice A, step structure was shown in all forging conditions. Intergranular corrosion rate gradually increased by Huey test periods but average corrosion rate was under 0.03 mm/month.

  8. Stress Corrosion Cracking of alloy 600 in high temperature water: a study of mechanisms

    International Nuclear Information System (INIS)

    Boursier, J.M.; Bouvier, O. de; Gras, J.M.; Noel, D.; Vaillant, F.; Rios, R.

    1992-12-01

    Investigations of the stress corrosion cracking behaviour of Alloy 600 tubing in high temperature water were performed in order to get a precise knowledge of the different stages of the cracking and their dependence on various parameters. The compatibility of the results with the main mechanisms to be considered was examined. Results showed three stages in the cracking: a true incubation time, a slow-rate propagation period followed by a rapid-propagation stage. Tests separating stress and strain rate contributions show that the strain rate is the main parameter which controls the crack propagation. The hydrogen overpressure was found to increase the crack growth rate up to 1-4 bar, but a strong decrease is observed from 4 to 20 bar. Analysis of the hydrogen ingress in the metal showed that it is neither correlated to the hydrogen overpressure nor to the severity of cracking; so cracking resulting from an hydrogen-model is unlikely. No detrimental effect of oxygen (4 bar) was noticed both in the mill-annealed and the sensitized conditions. Finally, none of the classical mechanisms, neither hydrogen-assisted cracking nor slip-step dissolution, can correctly describe the observed behaviour. Some fractographic examinations, and an influence of primary water on the creep rate of Alloy 600, lead to consider that other recent mechanisms, involving an interaction between dissolution and plasticity, have to be considered

  9. A criterion and mechanism for power ramp defects

    International Nuclear Information System (INIS)

    Garlick, A.; Gravenor, J.G.

    1978-02-01

    The problem of power ramp defects in water reactor fuel pins is discussed in relation to results recently obtained from ramp experiments in the Steam Generating Heavy Water Reactor. Cladding cracks in the defected fuel pins were similar, both macro- and micro structurally, to those in unirradiated Zircaloy exposed to iodine stress-corrosion cracking (scc) conditions. Furthermore, when the measured stress levels for scc in short-term tests were taken as a criterion for ramp defects, UK fuel modelling codes were found to give a useful indication of defect probability under reactor service conditions. The likelihood of sticking between fuel and cladding is discussed and evidence presented which suggests that even at power a degree of adhesion may be expected in some fuel pins. The ramp defect mechanism is discussed in terms of fission product scc, initiation being by intergranular penetration and propagation by cleavage when suitably orientated grains are exposed to large dilatational stresses ahead of the main crack. (author)

  10. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  11. Cracks in Polymer Spherulites: Phenomenological Mechanisms in Correlation with Ring Bands

    Directory of Open Access Journals (Sweden)

    Eamor M. Woo

    2016-09-01

    Full Text Available This article reviews possible mechanisms of various crack forms and their likely correlations with interior crystal lamellae and discontinuous interfaces in spherulites. Complex yet periodically repetitive patterns of cracks in spherulites are beyond attributions via differences in thermal expansion coefficients, which would cause random and irregular cracks in the contract direction only. Cracks in brittle polymers such as poly(l-lactic acid (PLLA, or poly(4-hydroxyl butyrate (PHB, or more ductile polymers such as poly(trimethylene terephthalate (PTT are examined and illustrated, although for focus and demonstration, more discussions are spent on PLLA. The cracks can take many shapes that bear extremely striking similarity to the ring-band or lamellar patterns in the same spherulites. Crack patterns may differ significantly between the ring-banded and ringless spherulites, suggesting that the cracks may be partially shaped and governed by interfaces of lamellae and how the lamellar crystals assemble themselves in spherulites. Similarly, with some exceptions, most of the cracks patterns in PHB or PTT are also highly guided by the lamellar assembly in either ring-banded spherulites or ringless spherulites. Some exceptions of cracks in spherulites deviating from the apparent crystal birefringence patterns do exist; nevertheless, discontinuous interfaces in the initial lamellae neat the nuclei center might be hidden by top crystal over-layers of the spherulites, which might govern crack propagation.

  12. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  13. The conservatism of the net-section stress procedure for predicting the failure of cracked piping systems: The effect of crack location on the degree of conservatism

    International Nuclear Information System (INIS)

    Smith, E.

    1993-01-01

    Interest in the integrity of cracked piping systems fabricated from ductile materials has been motivated, in large part, by the technological problem of intergranular stress corrosion cracking of Type 304 stainless steel piping in boiling water nuclear reactor piping systems. The failure of cracked steel piping is often predicted by assuming that failure conforms to a net-section stress criterion using as input an appropriate value for the critical net-section stress together with a knowledge of the anticipated loadings. The stresses at the cracked section are usually calculated via a purely elastic analysis based on the piping being uncracked. However because the piping is built-in at the ends into a larger component, and since the onset of crack extension requires some plastic deformation, use of the net-section stress approach can give overly conservative failure predictions. An earlier paper has quantified the extent of this conservatism, and has shown how it depends on the material ductility and the elastic flexibility of a piping system. Using the results of analyses for simple model systems, the present paper shows that, for the same cracked section geometry, the degree of conservatism is markedly influenced by the location of the cracked section within the system

  14. Interphase and intergranular stress generation in carbon steels

    International Nuclear Information System (INIS)

    Oliver, E.C.; Daymond, M.R.; Withers, P.J.

    2004-01-01

    Neutron diffraction spectra have been acquired during tensile straining of high and low carbon steels, in order to compare the evolution of internal stress in ferritic steel with and without a reinforcing phase. In low carbon steel, the generation of intergranular stresses predominates, while in high carbon steel similar intergranular stresses among ferrite grain families are superposed upon a large redistribution of stress between phases. Comparison is made to calculations using elastoplastic self-consistent and finite element methods

  15. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, F; Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  16. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  17. Microstructural Evidences of Intergranular Pressure Solution during Frictional Sliding at Hydrothermal Conditions

    Science.gov (United States)

    Ma, X.; Yao, S.; He, C.

    2017-12-01

    In the framework of rate- and state-dependent friction, velocity weakening is the result of a healing effect at intergranular contacts that is stronger than the instantaneous rate effect. Intergranular pressure solution has been proposed to be a feasible mechanism for the frictional healing effect (He et al., 2013), but to date no substantial evidences have been reported in related microstructures. In this study we report our reanalyses on samples of plagioclase gouge deformed at hydrothermal conditions with effective normal stresses of 100 MPa, 200 MPa, and 300 MPa, pore pressures of 30 MPa and 100 MPa, and temperatures from 100oC to 600oC. With an Inlens image detector in a scanning electron microscope, our focus is to find the evidences of the pressure solution processes during frictional sliding. As it has been difficult to observe the signatures of pressure solution during frictional sliding at the solution sites due to the short contact time of frequently-switching contact pairs, now we focus on the results of precipitation instead, which is the final process of pressure solution. With high magnification, we find the following evidences of intergranular pressure solution: 1) crystal growth as a result of precipitation is ubiquitously observed in deformed samples at temperatures above 200oC; 2) very fine-grained precipitated particles with flaky morphologies typically appear in intensely sheared regions and between relatively large particles in moderately sheared regions; 3) the precipitated grains are concentrated periodically in zones orientated at 45-50 degrees to the fault strike. These observations indicate that intergranular pressure solution is the dominant process responsible for the frictional healing effect.

  18. Stress corrosion cracking of alloy 600 in water at high temperature: contribution to a phenomenological approach to the understanding of mechanisms

    International Nuclear Information System (INIS)

    Abadie, Pascale

    1998-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of stress corrosion cracking of an alloy 600 in water at high temperature. More precisely, it aimed at determining, by using quantitative data characterizing cracking phenomenology, which mechanism(s) is (are) able to explain crack initiation and crack growth. These data concern quantitative characterization of crack initiation, of crack growth and of the influence of two cracking parameters (strain rate, medium hydrogen content). They have been obtained by quantifying cracking through the application of a morphological model. More precisely, these data are: evolution of crack density during a tensile test at slow rate, value of initial crack width with respect to grain boundary length, and relationship between crack density and medium hydrogen content. It appears that hydrogen absorption seems to be involved in the crack initiation mechanism. Crack growth mechanisms and crack growth rates are also discussed [fr

  19. The effect of pressure loadings on the conservatism of the net-section stress criterion for the failure of cracked stainless steel piping

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    The technological problem of intergranular stress corrosion cracking (IGSCC) of type 304 stainless steel piping in boiling water reactor piping systems, has provided the motivation for the considerable research interest in the integrity of cracked piping systems that are fabricated by ductile materials. IGSCC cracks are able to form at the inner surfaces of pipes. The cracks are circumferential and are able to grow slowly in service by a time dependent environmentally assisted mechanism. From a safety standpoint, it is important to know whether accident condition loadings will drive a part-through IGSCC crack unstably across the pipe thickness by a non-environmentally assisted fracture mechanism, and the resulting through-wall crack then propagate around the pipe circumference leading to a complete pipe severance. A methodology that has been developed to address this problem is a net-section stress methodology. The net-section stress approach for predicting the onset of crack extension in a piping system can give overly conservative predictions because a piping system is built-in at its end points and because crack extension requires some plastic deformation. The present paper is concerned with identifying the role of system pressure on the degree of conservatism, and two effects are important. Firstly, by inducing an axial tensile force at the cracked section, it is shown that the factor of conservatism can be increased. Secondly it is shown that the pressure induced moment at the cracked section behaves no differently to other contributions to this moment, in that all sources are associated with the same limited amount of elastic follow-up. All sources are associated with the same elastic flexibility parameter L*, which depends solely on the flexibility of the system and not on the nature of the loading

  20. Evaluation of neutron irradiation effect on SCC crack growth behaviour for austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Austenitic stainless steels are widely used as structural components in reactor pressure vessel internals because of their high strength, ductility, and fracture toughness. However, exposure to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the steels. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term plant operation in high temperature water environments is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x10{sup 24}n/m{sup 2} (E>1MeV) in Type 304 stainless steel in BWR environment. JNES had been conducting IASCC project during the JFY (2000) - JFY (2008) period, and prepared an engineering database on IASCC. However, the data of Crack Growth Rate (CGR) below the critical fluence level are not sufficient. So, this project was initiated to obtain the CGR data below the critical fluence level. Test specimens have been irradiated in the Halden reactor, operating by the OECD Halden Reactor Project, and the post irradiation examination (PIE) will be conducted from JFY (2011) to JFY (2013), finally the modified IASCC guide will be prepared in JFY (2013). (author)

  1. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of cold work and processing orientation

    International Nuclear Information System (INIS)

    Terachi, Takumi; Yamada, Takuyo; Chiba, Goro; Arioka, Koji

    2006-01-01

    The influence of cold work and processing orientation on the propagation of stress corrosion cracking (SCC) of stainless steel under hydrogenated high-temperature water was examined. It was shown that (1) the crack growth rates increased with heaviness of cold work, and (2) processing orientation affected crack growth rate with cracking direction. Crack growth rates showed anisotropy of T-L>>T-S>L-S, with T-S and L-S branches representing high shear stress direction. Geometric deformation of crystal grains due to cold work caused the anisotropy and shear stress also assisted the SCC propagation. (3) The step intervals of slip like patterns observed on intergranular facets increased cold work. (4) Nano-indentation hardness of the crack tip together with EBSD measurement indicated that the change of hardness due to crack propagation was less than 5% cold-work, even though the distance from the crack tip was 10μm. (author)

  2. Thermo-Mechanical Fatigue Crack Growth of RR1000

    OpenAIRE

    Christopher John Pretty; Mark Thomas Whitaker; Steve John Williams

    2017-01-01

    Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF) evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechan...

  3. Susceptibility to Stress Corrosion Cracking of 254SMO SS

    Directory of Open Access Journals (Sweden)

    De Micheli Lorenzo

    2002-01-01

    Full Text Available The susceptibility to stress corrosion cracking (SCC of solubilized and sensitized 254SMO SS was studied in sodium chloride, and sodium fluoride solutions at 80 °C and sulfuric acid solutions in presence of sodium chloride at 25 °C. The influence of salt concentration, pH values and the addition of thiosulfate was examined. The susceptibility to SCC was evaluated by Slow Strain Rate Tests (SSRT, at 1.5 x 10-6 s-1 strain rate. The behavior of 254SMO was compared to those of AISI 316L SS and Hastelloy C276. 254SMO showed an excellent resistance to SCC in all conditions, except in the more acidic solutions (pH <= 1 where, in the sensitized conditions, intergranular stress corrosion cracking occurred.

  4. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  5. Fractographic Observations on the Mechanism of Fatigue Crack Growth in Aluminium Alloys

    Science.gov (United States)

    Alderliesten, R. C.; Schijve, J.; Krkoska, M.

    Special load histories are adopted to obtain information about the behavior of the moving crack tip during the increasing and decreasing part of a load cycle. It is associated with the crack opening and closure of the crack tip. Secondly, modern SEM techniques are applied for observations on the morphology of the fractures surfaces of a fatigue crack. Information about the cross section profiles of striations are obtained. Corresponding locations of the upper and the lower fracture surface are also explored in view of the crack extension mechanism. Most experiments are carried out on sheet specimens of aluminum alloys 2024-T3, but 7050-T7451 specimens are also tested in view of a different ductility of the two alloys.

  6. Quantitative assessment of intergranular damage due to PWR primary water exposure in structural Ni-based alloys

    International Nuclear Information System (INIS)

    Ter-Ovanessian, Benoît; Deleume, Julien; Cloué, Jean-Marc; Andrieu, Eric

    2013-01-01

    Highlights: ► IG damage occurred on Ni-base alloys during exposure at high temperature water. ► Two characterization methods yield a tomographic analysis of this IG damage. ► Connected or isolated intergranular oxygen/oxide penetrations are quantified. ► Such quantitative description provides information on IGSCC susceptibility. - Abstract: Two nickel-based alloys, alloy 718 and alloy 600, known to have different resistances to IGSCC, were exposed to a simulated PWR primary water environment at 360 °C for 1000 h. The intergranular oxidation damage was analyzed in detail using an original approach involving two characterization methods (Incremental Mechanical Polishing/Microcopy procedure and SIMS imaging) which yielded a tomographic analysis of the damage. Intergranular oxygen/oxide penetrations occurred either as connected or isolated penetrations deep under the external oxide/substrate interface as far as 10 μm for alloy 600 and only 4 μm for alloy 718. Therefore, assessing this damage precisely is essential to interpret IGSCC susceptibility.

  7. Intergranular corrosion susceptibility in supermartensitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, J.M. [Sao Carlos Federal University (UFSCar), Materials Engineering Department, Rodovia Washington Luis, km 235, CEP 13565-905, Sao Carlos, SP (Brazil)], E-mail: dsek@power.ufscar.br; Della Rovere, C.A.; Kuri, S.E. [Sao Carlos Federal University (UFSCar), Materials Engineering Department, Rodovia Washington Luis, km 235, CEP 13565-905, Sao Carlos, SP (Brazil)

    2009-10-15

    The intergranular corrosion susceptibility in supermartensitic stainless steel (SMSS) weldments was investigated by the double loop - electrochemical potentiokinetic reactivation (DL-EPR) technique through the degree of sensitization (DOS). The results showed that the DOS decreased from the base metal (BM) to the weld metal (WM). The heat affected zone (HAZ) presented lower levels of DOS, despite of its complex precipitation mechanism along the HAZ length. Chromium carbide precipitate redissolution is likely to occur due to the attained temperature at certain regions of the HAZ during the electron beam welding (EBW). Scanning electron microscopy (SEM) images showed preferential oxidation sites in the BM microstructure.

  8. The importance of the strain rate and creep on the stress corrosion cracking mechanisms and models

    International Nuclear Information System (INIS)

    Aly, Omar F.; Mattar Neto, Miguel; Schvartzman, Monica M.A.M.

    2011-01-01

    Stress corrosion cracking is a nuclear, power, petrochemical, and other industries equipment and components (like pressure vessels, nozzles, tubes, accessories) life degradation mode, involving fragile fracture. The stress corrosion cracking failures can produce serious accidents, and incidents which can put on risk the safety, reliability, and efficiency of many plants. These failures are of very complex prediction. The stress corrosion cracking mechanisms are based on three kinds of factors: microstructural, mechanical and environmental. Concerning the mechanical factors, various authors prefer to consider the crack tip strain rate rather than stress, as a decisive factor which contributes to the process: this parameter is directly influenced by the creep strain rate of the material. Based on two KAPL-Knolls Atomic Power Laboratory experimental studies in SSRT (slow strain rate test) and CL (constant load) test, for prediction of primary water stress corrosion cracking in nickel based alloys, it has done a data compilation of the film rupture mechanism parameters, for modeling PWSCC of Alloy 600 and discussed the importance of the strain rate and the creep on the stress corrosion cracking mechanisms and models. As derived from this study, a simple theoretical model is proposed, and it is showed that the crack growth rate estimated with Brazilian tests results with Alloy 600 in SSRT, are according with the KAPL ones and other published literature. (author)

  9. Stress corrosion cracking in 17-4PH and 17-7PH stainless steels in NaCl and NaOH (20%) a 90 deg C

    International Nuclear Information System (INIS)

    Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Martinez-Villafane, A.

    2000-01-01

    One of the problems that affects to the electric industry is the not programmed stoppages in the power plants, due to the failure of any main component: boiler, turbine and generator. In the turbine, the combined action of a corrosive agent (humid polluted vapor) and a mechanical effort, generally will result in Stress Corrosion Cracking (SCC). In this work the SCC susceptibility of the precipitation hardening stainless steels 17-4PH and 17-17PH, thoroughly used in steam turbine blades of power stations is analyzed. The specimens were tested in the presence of NaCl and NaOH(20%) to 90 deg C and different pH. The CERT test (Constant Extension Rate Test) was used, at 10''-6 s''-1, supplementing it with electrochemical noise, the aim was to identify the conditions of maximum susceptibility and the performance of the studied materials. The fractographic analysis revealed ductile and brittle fracture. Intergranular cracking, characteristic of the anodic dissolution mechanisms of the materials was observed. Nevertheless, the main mechanism responsible the failure was hydrogen embrittlement. (Author) 6 refs

  10. Results of UT training for defect detection and sizing technique using specimens with fatigue crack and SCC

    International Nuclear Information System (INIS)

    Yoneyama, H.; Yamaguchi, A.; Sugibayashi, T.

    2005-01-01

    At the importance increase of UT (ultrasonic testing) with the application of rules on fitness-for-service for nuclear power plants, JAPEIC (Japan power engineering and inspection corporation) started education training for defect detection and sizing technique. Weld joints specimen with EDM (Electro-Discharged Machining) notches, fatigue cracks and intergranular stress corrosion cracks were tested and practiced repeatedly based on a modified ultrasonic method and the defect size measuring accuracy of the trainees was surely improved. Results of the blind test confirmed effectiveness of education training. (T. Tanaka)

  11. Mechanical behaviour of cracked welded structures including mismatch effect

    International Nuclear Information System (INIS)

    Hornet, P.

    2002-01-01

    The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of

  12. Cracking Problems and Mechanical Characteristics of PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2018-01-01

    Most failures in MLCCs are caused by cracking that create shorts between opposite electrodes of the parts. A use of manual soldering makes this problem especially serious for space industry. Experience shows that different lots of ceramic capacitors might have different susceptibility to cracking under manual soldering conditions. This simulates a search of techniques that would allow revealing capacitors that are most robust to soldering-induced stresses. Currently, base metal electrode (BME) capacitors are introduced to high-reliability applications as a replacement of precious metal electrode (PME) parts. Understanding the difference in the susceptibility to cracking between PME and BME capacitors would facilitate this process. This presentation gives a review of mechanical characteristics measured in-situ on MLCCs that includes flexural strength, Vickers hardness, indentation fracture toughness, and the board flex testing and compare characteristics of BME and PME capacitors. A history case related to cracking in PME capacitors that caused flight system malfunctions and mechanisms of failure are considered. Possible qualification tests that would allow evaluation of the resistance of MLCCs to manual soldering are suggested and perspectives related to introduction of BME capacitors discussed.

  13. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae Yong; Lee, Chang Hee [Hanyang University, Seoul (Korea, Republic of); Kim, Min Chul; Lee, Ho Jin; Kim, Keoung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Kwang Soo; Shim, Deog Nam [Doosan HEAVY Industries and Construction, Seoul (Korea, Republic of)

    2009-10-15

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature.

  14. Relationship between Microstructure and Ductility Dip Cracking resistance of Alloy 600/690 weld metals

    International Nuclear Information System (INIS)

    Ryu, Jae Yong; Lee, Chang Hee; Kim, Min Chul; Lee, Ho Jin; Kim, Keoung Ho; Park, Kwang Soo; Shim, Deog Nam

    2009-01-01

    Ni-Cr-Fe alloys are used extensively in nuclear power systems for their resistance to general corrosion, localized corrosion, and environmentally assisted cracking. However, concerns with stress corrosion cracking of moderate chromium (14.22 wt-%) alloys such as Alloy 600 and its filler metals(FMs) (E-182 and EN82) have driven the application of higher chromium (28.30 wt-%) alloys like Alloy 690. While Alloy 690 and its FMs show outstanding resistance to environmentally assisted cracking in most water-reactor environments, these alloys are prone to welding defects, most notably to ductility dip cracking(DDC). The DDC occurs at temperatures between 0.5 and 0.8 of their melting temperature. This ductility drop may result in intergranular elevated temperature cracking often referred to as DDC. The DDC may occur during the high temperature processing of these alloys or during welding if the imposed strain exhausts the available ductility within this temperature range. Several alloy systems including Ni-base alloys, Ni.Cu alloys, Cu alloys, stainless steels and steels, have been reported to be susceptible to DDC. A complete understanding of the DDC mechanism does not exist, which makes DDC control in actual production conditions a very difficult task. In this study, the DDC resistance was evaluated with different FMs which have different chemical composition. The microstructural features of FMs such as precipitation behavior and grain boundaries morphology were observed, and it were correlated with the DDC susceptibility. The hot ductility test and strainto- fracture test was used to evaluate the DDC susceptibility at high temperature

  15. Crack initiation and growth in welded structures; Amorcage et propagation de la fissuration dans les jonctions soudees

    Energy Technology Data Exchange (ETDEWEB)

    Assire, A

    2000-10-13

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental

  16. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    Science.gov (United States)

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Leak before break analysis for cracking at multiple weld locations in BWR recirculation piping

    International Nuclear Information System (INIS)

    Zahoor, A.; Gamble, R.

    1984-01-01

    Periodically over the past decade, intergranular stress corrosion cracking (IGSCC) has been found in austenitic stainless steel piping at Boiling Water Reactor facilities. The effect of IGSCC on piping integrity has been evaluated previously in various BWR Owners Group and NRC studies. In these studies, the analyses were performed assuming the presence of a crack at a single weld location in the pipe run. The purpose of this investigation was to compare the leak rate and potential for unstable crack extension associated with a throughwall crack for the following two conditions in a BWR recirculation system: (1) the recirculation piping contains part through cracks at multiple weld locations and a single throughwall crack, and (2) the piping contains only a throughwall crack at one weld location. Two type BWRs were evaluated; namely, the ring header and five individual loop designs. The results from the analyses indicate that the potential for unstable crack extension at large bending loads, and leak rate at normal operation are not affected by the presence of part through cracks at multiple weld locations. The differences in the respective calculated L/sub eff/ and leak rates for the single and multiply cracked conditions are less than 2%

  18. Sensitivity of using blunt and sharp crack models in elastic-plastic fracture mechanics

    International Nuclear Information System (INIS)

    Pan, Y.C.; Kennedy, J.M.; Marchertas, A.H.

    1985-01-01

    J-integral values are calculated for both the blunt (smeared) crack and the sharp (discrete) crack models in elastic-plastic fracture mechanics problems involving metallic materials. A sensitivity study is performed to show the relative strengths and weaknesses of the two cracking models. It is concluded that the blunt crack model is less dependent on the orientation of the mesh. For the mesh which is in line with the crack direction, however, the sharp crack model is less sensitive to the mesh size. Both models yield reasonable results for a properly discretized finite-element mesh. A subcycling technique is used in this study in the explicit integration scheme so that large time steps can be used for the coarse elements away from the crack tip. The savings of computation time by this technique are reported. 6 refs., 9 figs

  19. Three-dimensional studies of intergranular carbides in austenitic stainless steel.

    Science.gov (United States)

    Ochi, Minoru; Kawano, Rika; Maeda, Takuya; Sato, Yukio; Teranishi, Ryo; Hara, Toru; Kikuchi, Masao; Kaneko, Kenji

    2017-04-01

    A large number of morphological studies of intergranular carbides in steels have always been carried out in two dimensions without considering their dispersion manners. In this article, focused ion beam serial-sectioning tomography was carried out to study the correlation among the grain boundary characteristics, the morphologies and the dispersions of intergranular carbides in 347 austenitic stainless steel. More than hundred intergranular carbides were characterized in three dimensions and finally classified into three different types, two types of carbides probably semi-coherent to one of the neighboring grains with plate-type morphology, and one type of carbides incoherent to both grains with rod-type morphology. In addition, the rod-type carbide was found as the largest number of carbides among three types. Since large numbers of defects, such as misfit dislocations, may be present at the grain boundaries, which can be ideal nucleation sites for intergranular rod-type carbide precipitation. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  20. Influence of Fissure Number on the Mechanical Properties of Layer-Crack Rock Models under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yun-liang Tan

    2018-01-01

    Full Text Available Many case studies have revealed that rock bursts generally occur in the high stress concentration area where layer-crack structures often exist, especially for brittle coal or rock masses. Understanding the mechanical properties of layer-crack rock models is beneficial for rational design and stability analysis of rock engineering project and rock burst prevention. This study experimentally investigated the influence of fissure number on the mechanical properties of layer-crack rock models through uniaxial compression tests. The digital speckle correlation method (DSCM and acoustic emission (AE techniques were applied to record and analyze the information of deformation and failure processes. Test results show the following: the bearing capacity of layer-crack specimen decreases compared with intact specimen, but their failure modes are similar, which are the splitting failure accompanied with local shear failure; the nonuniform deformation phenomenon begins to appear at the elastic deformation stage for layer-crack specimens; the AE behavior of intact specimens consists of three stages, that is, active stage, quiet stage, and major active stage, but for layer-crack specimens, it is characteristic by three peaks without quiet stage. In addition, as the fissure number of layer-crack specimens increases, the bearing capacity of specimens decreases, the appearing time of nonuniform deformation phenomenon in the specimen surface decreases, the AE events are denser and denser in each peak stage, and the risk of dynamic instability of layer-crack structure increases. At last, the failure mechanism of layer-crack structure and the related mitigation advices were discussed based on the test results. In general, the novelty is that this paper focuses on the failure mechanism of layer-crack structure directly.

  1. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  2. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  3. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  4. Mitigation of stress corrosion cracking in boiling water reactors

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Cowan, R.L. II

    1980-01-01

    Intergranular stress corrosion cracking (IGSCC) has occurred in a statistically small number of weld heat affected zones (HAZ) of 304 SS piping in BWR's. A range of mitigating actions have been developed and qualified that provide viable engineering solutions to the unique aspects of (1) operating plants, (2) plants under various stages of construction, and (3) future plants. This paper describes the technical development of each mitigating concept, relates it to the fundamental causal factors for IGSCC, and discusses its applicability to operating, in-construction and new BWR's. 31 refs

  5. Effect of thermal stabilization on the low-temperature stress-corrosion cracking of Inconel 600

    International Nuclear Information System (INIS)

    Bandy, R.; van Rooyen, D.

    1983-01-01

    The propensity to low-temperature stress-corrosion cracking (SCC) of thermally stabilized Inconel 600 in sulfur-bearing environments has been investigated using U-bends and slow-strain-rate testing. The results have been compared with those of sensitized Inconel 600. The potential dependence of crack-propagation rate has been established in a single test by using several U-bends held at different potentials, by choosing an appropriate electrical circuitry. The difference in SCC susceptibility of the sensitized and stabilized materials is discussed in terms of the grain-boundary chromium depletion and resulting intergranular attack in boiling ferric sulfate-sulfuric acid tests, and electrochemical potentiokinetic reactivation (EPR) tests. 10 figures

  6. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  7. Crack growth retardation due to micro-roughness: a mechanism for overload effects in fatigue

    International Nuclear Information System (INIS)

    Suresh, S.

    1982-01-01

    A new mechanism for fatigue crack growth retardation following an overload is presented in this paper, based on a micro-roughness model. It is reasoned, with the aid of extensive experimental evidence available in the literature, that retardation following an overload is governed by the micromechanisms of near-threshold crack growth. This model is found to rationalize a number of hitherto unexplained experimental observations. Moreover, the present arguments, which suggest that plasticity-induced crack closure is not likely to be the primary mechanism for retardation following single overloads, do not exclude the role of residual stresses or blunting, but provide further mechanistic basis to account for the inconsistencies in the previous models. Additional sources of prolonged retardation, in terms of crack closure due to corrosion debris formed in moist environments, are suggested. It is pointed out that such environmental effects could play an important role in post-overload crack growth in certain alloy systems

  8. Challenges in Continuum Modelling of Intergranular Fracture

    DEFF Research Database (Denmark)

    Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.

    2011-01-01

    of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even greater geometrical complexity. To address the first two challenges, we explore the physical underpinnings for creating functional forms to capture the hierarchical commensurability structure in the grain boundary......Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....

  9. Controlling BWR pipe cracking by residual stress modification

    International Nuclear Information System (INIS)

    Gilman, J.D.; Giannuzzi, A.J.; Childs, W.J.

    1983-01-01

    Intergranular stress corrosion cracking may occur in the weld heat-affected zone of susceptible stainless steel materials which have been used in some boiling water reactor piping systems. One of the prerequisite conditions for stress corrosion attack is a high tensile stress in the exposed, locally sensitized material near the weld root. Several processes have been developed which can deter stress corrosion attack by altering the residual stress distributions near the welds to ensure that low stresses prevail in critical locations. These residual stress modification remedies and their qualification testing are described in this paper. (author)

  10. Evaluation of initiation behavior of stress corrosion cracking for type 316L stainless steel in high temperature water. Behavior of crack initiation and effects of distribution of plastic strain on crack initiation

    International Nuclear Information System (INIS)

    Miura, Yasufumi; Miyahara, Yuichi; Kako, Kenji; Sato, Masaru

    2011-01-01

    It is known that the initiation of stress corrosion cracking (SCC) in components such as the reactor core shroud and primary loop re-circulation piping made of L-grade stainless steel is affected by the properties of surface work hardened layer. Therefore, it is important to clarify the effect of the hardened layer on SCC initiation behavior. In this study, creviced bent beam (CBB) test using specimens made of Type 316L stainless steel with controlled distribution of surface work hardened layer was conducted in a simulated BWR environment in order to evaluate the effect of the controlled layer on SCC initiation behavior. The results obtained are as follows; (1) Micro intergranular SCC of low carbon stainless steel was initiated in 50 hours. (2) In this SCC test, it was found that only micro cracks whose depths were smaller than 50 μm were observed until 250 hours and cracks whose depths were larger than 50 μm were observed after 500 hours. (3) SCC was initiated preferentially on the region with high plastic strain gradient in the specimen with controlled distribution of work hardened layer. (author)

  11. Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments

    Science.gov (United States)

    Sharma, Mala M.; Ziemian, Constance W.

    2008-12-01

    The stress corrosion cracking (SCC) behavior of two developmental nanocrystalline 5083 alloys with varied composition and processing conditions was studied. The results were compared to a commercial aluminum AA 5083 (H111) alloy. The pitting densities, size and depths, and residual tensile strengths were measured after alternate immersion in artificial seawater and atmospheric exposure under different loading conditions. Optical and scanning electron microscopy (SEM) with EDX was used to analyze the fracture surfaces of failed specimen after removal at selected intervals and tensile testing. One of the nanostructured Al-Mg alloys exhibited significantly superior pitting resistance when compared to conventional microstructured AA 5083. Under conditions where pitting corrosion showed up as local tunnels toward phase inclusions, transgranular cracking was observed, whereas under conditions when pitting corrosion evolved along grain boundaries, intergranular cracking inside the pit was observed. Pit initiation resistance of the nano alloys appears to be better than that of the conventional alloys. However, long-term pit propagation is a concern and warrants further study. The objective of this investigation was to obtain information regarding the role that ultra-fine microstructures play in their degradation in marine environments and to provide insight into the corrosion mechanisms and damage processes of these alloys.

  12. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)

    1997-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  13. Analysis of WWER 1000 collector cracking mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, K; Wozniak, J [Vitkovice J.S.C., Ostrava (Switzerland)

    1998-12-31

    The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.

  14. Influence of plastic strain localization on the stress corrosion cracking of austenitic stainless steels; Influence de la localisation de la deformation plastique sur la CSC d'aciers austenitiques inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Cisse, S.; Tanguy, B. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Laffont, L.; Lafont, M.Ch. [Universite de Toulouse. CIRIMAT, UPS/INPT/CNRS, 31 - Toulous (France)

    2010-03-15

    The authors present a research study of the role of strain localization on the irradiation-assisted stress corrosion cracking (IASCC) of vessel steel in PWR-type (pressurized water reactor) environment. They study the interaction between plasticity and intergranular corrosion and/or oxidation mechanisms in austenitic stainless steels with respect to sublayer microstructure transformations. The study is performed on three austenitic stainless grades which have not been sensitized by any specific thermal treatment: the A286 structurally hardened steel, and the 304L and 316L austenitic stainless steels

  15. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    International Nuclear Information System (INIS)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-01-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The

  16. Program of assessment of mechanical and corrosion mechanical properties of reactor internals materials due to operation conditions in WWERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Zamboch, M.

    1998-01-01

    Reactor internals are subject to three principle operation influences: neutron and gamma irradiation, mechanical stresses, both static and dynamic, and coolant chemistry. Several cases of damage have been reported in previous years in both boiling and pressure water reactors. They are linked with the term of irradiation assisted stress corrosion cracking as a possible damage mechanism. In WWERs, the principal material used for reactor internals is austenitic titanium stabilized stainless steel 08Kh18N10T, however high strength steels are used as well. To assess the changes of mechanical properties and to determine whether sensitivity to intergranular cracking can be increased by high neutron fluences, the experimental program has been started. The goal is to assure safe operation of the internals as well as life management for all planned operation period. The program consists of tests of material properties, both mechanical and corrosion-mechanical. Detailed neutron fluxes calculation as well as stress and deformation calculations are part of the assessment. Model of change will be proposed in order to plan inspections of the facility. In situ measurements of internals will be used to monitor exact status of structure during operation. Tensile specimens manufactured from both base metal and model weld joint have been irradiated to the total fluences of 3-20 dpa. Changes of mechanical properties are tested by the tensile test, stress corrosion cracking tests are performed in the autoclave with water loop and active loading. Operation temperature, pressure and water chemistry are chosen for the tests. (author)

  17. Fatigue crack propagation under combined cyclic mechanical loading and electric field in piezoelectric ceramics

    International Nuclear Information System (INIS)

    Shirakihara, Kaori; Tanaka, Keisuke; Akiniwa, Yoshiaki; Suzuki, Yasuyoshi; Mukai, Hirokatsu

    2006-01-01

    Fatigue crack propagation tests of PZT specimens were performed under cyclic four-point bending with and without superposition of electric fields. The specimens were poled in the longitudinal direction (PL specimens) perpendicular to the crack plane. The crack propagation rate for the case of open circuit was faster than that for the case of short circuit. The application of a negative or positive electric field parallel to the poling direction accelerated the crack propagation rate, and the amount of acceleration was larger for the case of the negative field. The change of the crack propagation rate with crack extension can be divided into three regions. In the region I, the crack propagation rate decreases with increasing crack length, and then turn to increase in the region III. In the region II, the propagation rate is nearly constant. The mechanisms of fatigue crack propagation were correlated to domain switching near the crack tip. The grain boundary fracture was predominant in the low-rate region, while transgranular fracture became abundant on the unstable fracture surface. (author)

  18. Determined analysis of safety, viability and residual service life on criteria of crack mechanics

    International Nuclear Information System (INIS)

    Matvienko, Yu.G.

    1997-01-01

    Unified methods used in analysis of reliability, vulnerability, and residual lifetime of equipment with crack damage are considered, an increase in the desired lifetime is proven in the framework of vulnerability concept that allows crack developing with regard to the given level of reliability. The problem of reliability, vulnerability, and the lifetime is shown to be an interrelated problem. Optimal combination of the strength value, plasticity and resistance to crack developing results from the criteria of reliability and vulnerability based, in turn, on the principles of the mechanics of cracks. Structural features of technical systems can hinder the crack developing and prevent drastic damages of the equipment thus increasing the lifetime

  19. Evaluation of neutron irradiation effect on SCC crack growth behaviour of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Austenitic stainless steels are widely used as structural materials alloy in reactor pressure vessel internal components because of their high strength, ductility and fracture toughness. However, exposure due to neutron irradiation results in changes in microstructure, mechanical properties and microchemistry of the material. Irradiation assisted stress corrosion cracking (IASCC) caused by the effect of neutron irradiation during long term operation in high temperature water environments in nuclear power plants is considered to take the form of intergranular stress corrosion cracking (IGSCC) and the critical fluence level has been reported to be about 5x10{sup 24}n/m{sup 2} (E>1MeV) for Type 304 SS in BWR environment. JNES had been conducting IASCC project during from JFY 2000 to JFY 2008, and prepared an engineering database on IASCC. However, the data of crack growth rate (CGR) below the critical fluence level are not sufficient. Therefore, evaluation of neutron irradiation effect project (ENI) was initiated to obtain the CGR data below the critical fluence level, and prepare the SCC growth rate diagram for life time evaluation of core shroud. Test specimens have been irradiated in the OECD/Halden reactor, and the post irradiation experiments (PIE) have been conducting during from JFY 2011 to JFY 2013, finally the modified IASCC guide will be prepared in JFY 2013. (author)

  20. Effects of hydrogen during SCC of Al-5Mg alloys in NaCl 30 g/l environment: experimental study and numerical simulations

    International Nuclear Information System (INIS)

    Tanguy, Dome

    2001-01-01

    After a presentation of the industrial context and of some knowledge about stress corrosion cracking (SCC) of 5xxx alloys (notably their sensitivity to intergranular dissolution in presence of the Al 3 Mg 2 phase in grain boundaries) and about other mechanisms intervening in SCC, this research thesis reports a characterization of intergranular precipitation in the alloys for which SCC and corrosion fatigue tests have been performed. Experimental results are reported and discussed (crack initiation and growth, growth rate, loading mode). The simulation of a model microstructure at the atomic scale is presented. It allows hydrogen trapping to be studied with respect to the presence of magnesium at the grain boundary. A numerical model of the Al-Mg system is developed to study the first stages of magnesium-rich intergranular precipitation. The next part reports the study of hydrogen intergranular trapping in Al-Mg by focusing on the Mg-H binding energy and on trapping occurring in the boundary. In conclusion, the author proposes a fracture mechanism at the atomic scale

  1. Effect of Low-Temperature Environment on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Simulated Alkaline Soil Solution

    Science.gov (United States)

    Xie, Fei; Wang, Dan; Wu, Ming; Yu, Chengxiang; Sun, Dongxu; Yang, Xu; Xu, Changhao

    2018-04-01

    The stress corrosion cracking (SCC) of X80 pipeline steel in simulated alkaline soil solution under different temperatures was investigated by slow-strain-rate testing, scanning electron microscopy and energy-dispersive spectroscopy. Results showed that the fracture was transgranular and brittle at 273 K to 278 K (0 °C to 5 °C), and the metal surface was dissolved by a large number of chloride ions. Furthermore, hydrogen embrittlement was caused by the hydrogen atom extended to the high-stress region. The fracture process was controlled by hydrogen-induced cracking, and SCC was highly sensitive at this stage. At 288 K to 298 K (15 °C to 25 °C), the fracture morphology was attributed to the mixed mode of ductile and brittle fractures, the fracture process was controlled by the mechanism of hydrogen-induced cracking and anodic dissolution, and the susceptibility to SCC decreased. When the temperature reached 308 K to 318 K (35 °C to 45 °C), the fracture was mainly intergranular and ductile, the fracture process was controlled by anodic dissolution, and SCC sensitivity was the smallest in this temperature range.

  2. Microstructural basis and crack growth theories for post-irradiation ductility loss in Nimonic PE16

    International Nuclear Information System (INIS)

    Chang, A.L.

    1982-01-01

    A study has been carried out to investigate the degradation of postirradiation ductility at reactor temperatures in Nimonic PE16, a Fe-Cr-Ni-based precipitation-hardened superalloy. Fractographic and microstructural investigations show that the grain matrix is capable of deformation and does not limit the postirradiation tensile ductility. Grain-boundary helium bubbles formed during neutron irradiation seem to be crack nucleation sites under stress. Growth and coalescence of these microcracks under stress lead to intergranular fracture. A rigid-grain fracture model is shown to be able to correlate the observed microstructures with most features of the mechanical properties, except the strain rate dependence of the ductility. By incorporating the interactions between diffusion and plastic deformation, a plastic-grain fracture model has been developed which can explain all postirradiation tensile ductility data quantitatively. 13 references

  3. Propagation of stress-corrosion cracks in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Norring, K.; Haag, Y.; Wikstroem, C.

    1982-01-01

    Propagation of iodine-induced stress-corrosion cracks in Zircaloy was studied using pre-cracked and internally pressurized cladding tubes. These were recrystallized at different temperatures, to obtain grain sizes between 4 μm and 10 μm. No statistically significant difference in propagation rate due to the difference in grain size was observed. If the obtained data, with Ksub(I) values ranging from 4 to 11 MNmsup(-3/2), were log-log plotted (da/dt = CKsub(I)sup(N)), as usual, they fell within the scatter-band of data reported earlier. But from this plot it could also be seen that the Ksub(I) interval can be divided into two separate parts having different da/dt-Ksub(I) relations. The transition takes place at a Ksub(I) value of about 8 MNmsup(-3/2). The region with lower Ksub(I) values shows a substantially lower n value than the upper region (2.4 and 9.8 respectively), and earlier reported values (n = 7 to 10). This transition is in good agreement with a transition from an intergranular to a transgranular propagation mode of the stress-corrosion crack. (orig.)

  4. Effect of intergranular stress on yielding of 316H during room temperature cyclic loading

    International Nuclear Information System (INIS)

    Al Mamun, Abdullah; Moat, Richard; Bouchard, John; Kelleher, Joe

    2016-01-01

    Assessment of cyclic deformation is an integral part of nuclear power plant life assessment code, as many of the components in plant go through scheduled and unscheduled cyclic deformation owing to varying thermal and mechanical stresses. In polycrystalline material like 316H, a type of micro stress known as intergranular stress is generated due to elastic and plastic anisotropies during such cyclic loading. In tension-compression loading cycles, these stresses remain in the material as a residual stress upon unloading to zero stress from the tensile/compressive peak or intermediates stresses. The magnitude of these stresses vary depending on the point in the cycle from which it was unloaded from. When the material is re-loaded either in the same or reverse loading direction these residual stresses increase or decrease the effective stress acting in the material and as such the macroscopic yield stress of the material in subsequent cycle is changed significantly. The magnitude of intergranular stresses in many differently oriented grain families can be measured simultaneously using time of flight (ToF) neutron diffraction technique. In this paper, we have used this technique to experimentally study, how these intergranular stresses affect the yield (proof) stress of 316H at room temperature. (author)

  5. IAEA specialists' meeting on Environmental factors causing cracks and degradation in primary system components: conclusions and recommendations

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.

    1981-01-01

    The phenomenon of intergranular stress corrosion cracking in BWR stainless steel piping joints is well understood, and does not present a safety hazard as leak before break can be shown. It is recommended that work should proceed to reduce the probability of stress corrosion cracking by changing the BWR environment by hydrogen feedwater additions to remove oxygen. The cause of LWR pipe cracking is understood to be thermal fatigue caused by thermal stratifications at low flow rates during operation (PWR) and thermal mixing in piping tees (PWR). Recommendations include, research on corrosion fatigue crack propagation, evaluation of compressive stress state, design changes, and additional development of NDT methods for detection and sizing of cracks. Conclusions drawn steam generator tube degradation suggest that this is a potentially large problem. Recommendation include the use of stress corrosion resistant materials, oxygen reduction through use of deaeration feed banks, and inclusion in future design of inspection access to evaluate conditions of steam generators. (author)

  6. Study of twist boundaries in aluminium. Structure and intergranular diffusion

    International Nuclear Information System (INIS)

    Lemuet, Daniel

    1981-01-01

    This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures

  7. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    International Nuclear Information System (INIS)

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  8. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1998-01-01

    A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  9. Fatigue and environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

    1991-12-01

    Fatigue and environmentally assisted cracking of piping, pressure vessels, and core components in light water reactors (LWRs) are important concerns as extended reactor lifetimes are envisaged. The degradation processes include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or SCC cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Similar cracking has also occurred in upper shell-to-transition cone girth welds in pressurized water reactor (PWR) steam generator vessels. Another concern is failure of reactor-core internal components after accumulation of relatively high fluence, which has occurred in both BWRs and PWRs. Research during the past year focused on (1) fatigue and SCC of ferritic steels used in piping and in steam generator and reactor pressure vessels, (2) role of chromate and sulfate in simulated BWR water in SCC of sensitized Type 304 SS, and (3) irradiation-assisted SCC in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs. Failure after accumulation of relatively high fluence has been attributed to radiation-induced segregation (RIS) of elements such as Si, P, Ni, and Cr. This document provides a summary of research progress in these areas

  10. Microcrack Evolution and Associated Deformation and Strength Properties of Sandstone Samples Subjected to Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Chong-Feng Chen

    2018-05-01

    Full Text Available The evolution of micro-cracks in rocks under different strain rates is of great importance for a better understanding of the mechanical properties of rocks under complex stress states. In the present study, a series of tests were carried out under various strain rates, ranging from creep tests to intermediate strain rate tests, so as to observe the evolution of micro-cracks in rock and to investigate the influence of the strain rate on the deformation and strength properties of rocks. Thin sections from rock samples at pre- and post-failure were compared and analyzed at the microscale using an optical microscope. The results demonstrate that the main crack propagation in the rock is intergranular at a creep strain rate and transgranular at a higher strain rate. However, intergranular cracks appear mainly around the quartz and most of the punctured grains are quartz. Furthermore, the intergranular and transgranular cracks exhibit large differences in the different loading directions. In addition, uniaxial compressive tests were conducted on the unbroken rock samples in the creep tests. A comparison of the stress–strain curves of the creep tests and the intermediate strain rate tests indicate that Young’s modulus and the peak strength increase with the strain rate. In addition, more deformation energy is released by the generation of the transgranular cracks than the generation of the intergranular cracks. This study illustrates that the conspicuous crack evolution under different strain rates helps to understand the crack development on a microscale, and explains the relationship between the micro- and macro-behaviors of rock before the collapse under different strain rates.

  11. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    International Nuclear Information System (INIS)

    Louthan, M.R.

    1990-01-01

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels

  12. On the mechanism of crack propagation resistance of fully lamellar TiAl alloy

    International Nuclear Information System (INIS)

    Cao, R.; Yao, H.J.; Chen, J.H.; Zhang, J.

    2006-01-01

    The study was done using notched two-colony thick tensile specimens of a directionally solidified cast fully lamellar TiAl alloy. In-situ observations of fracture processes in scanning electron microscope (SEM) were combined with section-to-section related observations of fracture surfaces to investigate the crack growth process. Finite element method (FEM) calculations are carried out to evaluate the stresses for propagating cracks. The results reveal that: (1) the reason why enhancement of applied load is required to propagate the main crack, was attributed to that the main crack observed at the surface did not extend all the way through the specimen's thickness thus the stress field was still controlled by the notch, in which a definite stress required for extending a crack tip should be kept by increasing the applied load. (2) Crack propagation resistance is enhanced at colony boundaries, only when a change occurs from an inter-lamellar propagation to a trans-lamellar propagation (3) Ligament bridging toughening phenomena can be integrated into aforementioned mechanism. As a whole the processes of new crack nucleation with bridging ligament formation decreases the crack propagation resistance rather than increasing it. (4) In case the majority of microcracks are surface cracks, the effect of microcrack shielding is not obvious

  13. Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

    International Nuclear Information System (INIS)

    Chen, A.Y.; Li, D.F.; Zhang, J.B.; Liu, F.; Liu, X.R.; Lu, J.

    2011-01-01

    Highlights: → A nanostructured and layered steel exhibits high strength and large ductility. → The excellent combination originates from a multiple interlaminar cracking. → The initiation and propagation of cracks are controlled by three aspects. → The cracks are deflected by interface and arrested by compressive residual stress. → Finally, the cracks are blunted by the graded grain size distribution. - Abstract: A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution.

  14. Intergranular stresses in Incoloy-800

    International Nuclear Information System (INIS)

    Holden, T.M.; Holt, R.A.; Clarke, A.P.

    1997-01-01

    The generation of intergranular residual strains under uniaxial loading conditions in the plastic regime has been measured in detail by neutron diffraction in Incoloy-800. A relatively simple theory, based on the Taylor model, gives a good semiquantitative account of the magnitudes of the strains. The results clarify the interpretation of measurements made earlier on Incoloy-800 steam generator tubes. (author)

  15. Morphology of the boron-rich phase along columnar grain boundary and its effect on the compression crack of Fe-6.5Si-0.05B alloy

    International Nuclear Information System (INIS)

    Fu Huadong; Zhang Zhihao; Yang Qiang; Xie Jianxin

    2011-01-01

    Research highlights: → Three morphologies of alloy phases were observed under different conditions. → Three different morphologies were thick-strip, fish-bone like and thin-strip. → These phases were all with enrichment of boron and dilution of silicon. → Three morphologies of alloy phases had different influences on mechanical property. - Abstract: The morphology of precipitated phases along Fe-6.5Si-0.05B columnar grain boundary and its effect on the initiation and propagation of compression cracks were investigated. Under the present experimental condition, alloy phases along the grain boundary exhibited three different morphologies, i.e., thick-strip, fish-bone like and thin-strip. These phases were all with enrichment of boron and dilution of silicon. The grain boundary with dendrite growth mode was apt to generate the thick-strip and fish-bone like phases, while the boundary with cellular growth mode was easy to form the thin-strip phase. The thick-strip phase was favorable to form 'weak plane' containing numerous micropores, which ultimately led to intergranular cracks. The fish-bone like phase was one of the main crack sources under the compression processing and easily caused transgranular cracks. The thin-strip phase enhanced the bond strength of the grain boundary and detained the crack propagation.

  16. Mitigation strategies of intergranular corrosion in systems of reactors of water boiling (BWR). Combined action of the chemistry of the hydrogen and the oxygen; Estrategias de mitigacion de la corrosion intergranular en sistemas de reactores de agua en ebullicion (BWR). Accion combinada de la quimica del hidrogeno y del oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Verdugo, M.

    2015-07-01

    Inter-Granular Stress Corrosion cracking (IGSCC) in austenitic stainless steel and in austenitic nickel-based alloys has been the subject of many studies the aim of which was to resolve one of the main problems faced by BWR nuclear power plants since the 1960s. This corrosion phenomenon is the result of the combined action of three factors: sensitization of the material, high local stresses and an aggressive medium. This paper deals with these factors separately and analyzes the oxidative chemistry of BWR reactors (aggressivity of the medium) as one the main causes if IGSCC. (Author)

  17. The crystallography of fatigue crack initiation in Incoloy-908 and A-286 steel

    International Nuclear Information System (INIS)

    Krenn, C.R.

    1996-12-01

    Fatigue crack initiation in the austenitic Fe-Ni superalloys Incoloy-908 and A-286 is examined using local crystallographic orientation measurements. Results are consistent with sharp transgranular initiation and propagation occurring almost exclusively on {111} planes in Incoloy-908 but on a variety of low index planes in A-286. This difference is attributed to the influence of the semicoherent grain boundary η phase in A-286. Initiation in each alloy occurred both intergranularly and transgranularly and was often associated with blocky surface oxide and carbide inclusions. Taylor factor and resolved shear stress and strain crack initiation hypotheses were tested, but despite an inconclusive suggestion of a minimum required {111} shear stress, none of the hypotheses were found to convincingly describe preferred initiation sites, even within the subsets of transgranular cracks apparently free from the influence of surface inclusions. Subsurface inclusions are thought to play a significant role in crack initiation. These materials have applications for use in structural conduit for high field superconducting magnets designed for fusion energy use

  18. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  19. Affection mechanism research of initiation crack pressure of perforation parameters of horizontal well

    Directory of Open Access Journals (Sweden)

    Hua Tong

    2016-09-01

    Full Text Available Horizontal wells show better affect and higher success rate in low water ratio cement, complex fracture zone, crevice and heavy oil blocks, it is the main measures to expand control area of a single well. Hydraulic fracturing technology is the most financial way to improve the penetration of the reservoir to increase the production. However, compare with the vertical wells, the fracture of Horizontal wells are more complex, and lead to the initiation crack pressure is much higher than vertical wells. In this paper, defined the crack judging basis, and established the finite element model which could compute the initial crack pressure, to research the affection mechanism of perforation azimuth angle, density, diameter and depth, to provide references of perforation project's design and optimize. The research of this paper has significances on further understanding the affection mechanism of perforation parameters.

  20. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    Science.gov (United States)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-10-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  1. Influence of competition between intragranular dislocation nucleation and intergranular slip transfer on mechanical properties of ultrafine-grained metals

    International Nuclear Information System (INIS)

    Tsuru, Tomohito; Kaji, Yoshiyuki; Aoyagi, Yoshiteru; Shimokawa, Tomotsugu

    2013-01-01

    Huge-scale atomistic simulations of shear deformation tests to the aluminum polycrystalline thin film containing the Frank-Read source are performed to elucidate the relationship between the inter- and intragranular plastic deformation processes and the mechanical properties of ultrafine-grained metals. Two-types of polycrystalline models, which consist of several grain boundaries reproducing easy and hard slip transfer, respectively, are prepared to investigate the effect of grain boundary on flow stress. While the first plastic deformation occurs by the dislocation bow-out motion within the grain region for both models, the subsequent plastic deformation is strongly influenced by the resistance of the slip transfer by dislocation transmission through grain boundaries. The influence of the competition between the intragranular dislocation nucleation and intergranular slip transfer on the material strength is considered. The nanostructured material's strength depending on local defect structures associated with grain size and dislocation source length is assessed quantitatively. (author)

  2. Assessing resistance of stabilized corrosion resistant steels to intergranular corrosion

    International Nuclear Information System (INIS)

    Karas, A.; Cihal, V. Jr.; Vanek, V.; Herzan, J.; Protiva, K.; Cihal, V.

    1987-01-01

    Resistance to intergranular corrosion was determined for four types of titanium-stabilized steels from the coefficients of stabilization efficiency according to the degree the chemical composition was known. The ATA SUPER steel showed the highest resistance parameter value. The resistance of this type of steel of a specific composition, showing a relatively low value of mean nitrogen content was compared with steel of an optimized chemical composition and with low-carbon niobium stabilized, molybdenum modified steels. The comparison showed guarantees of a sufficient resistance of the steel to intergranular corrosion. The method of assessing the resistance to intergranular corrosion using the calculation of the minimum content of Cr', i.e., the effective chromium content, and the maximum effective carbon content C' giving the resistance parameter k seems to be prospective for practical use in the production of corrosion resistant steels. (author). 1 tab., 5 figs., 15 refs

  3. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  4. An appraisal of procedures used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system

    International Nuclear Information System (INIS)

    Smith, E.

    1989-01-01

    Against the background of the problem of intergranular stress corrosion cracking of 304 stainless steel in Boiling Water Reactor piping systems, this paper presents a critical appraisal of procedures that are currently used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system. Particular attention is focussed on a simple procedure developed by Cotter, Chang and Zahoor, which has been applied to specific piping systems, the objective being to underpin its viability. The considerations are applicable to not only Boiling Water Reactor piping systems, but to other piping systems where pipe failure due to circumferential cracking is a potential problem. (author)

  5. Stress corrosion cracking tests on high-level-waste container materials in simulated tuff repository environments

    International Nuclear Information System (INIS)

    Abraham, T.; Jain, H.; Soo, P.

    1986-06-01

    Types 304L, 316L, and 321 austenitic stainless steel and Incoloy 825 are being considered as candidate container materials for emplacing high-level waste in a tuff repository. The stress corrosion cracking susceptibility of these materials under simulated tuff repository conditions was evaluated by using the notched C-ring method. The tests were conducted in boiling synthetic groundwater as well as in the steam/air phase above the boiling solutions. All specimens were in contact with crushed Topopah Spring tuff. The investigation showed that microcracks are frequently observed after testing as a result of stress corrosion cracking or intergranular attack. Results showing changes in water chemistry during test are also presented

  6. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Park, H. B.; Chopra, O. K.

    2000-01-01

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of ΔJ and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values

  7. Effect of boric acid on intergranular corrosion in tube support plate crevices

    International Nuclear Information System (INIS)

    Brunet, J.P.; Campan, J.L.

    1993-10-01

    Intergranular attack on steam generator tubing is one important phenomenon involved in availability of Pressurized Water Reactors. Boric acid appears to be a possible candidate for inhibiting the corrosion process. The program performed in Cadarache was supposed to give statistical informations on the boric acid effect. It was based on a large number of samples initially attacked during a program performed by BABCOCK ampersand WILCOX. These samples were sleeved onto Alloy 690 tubes, in order to prevent premature cracking. Unfortunately it was not possible to find chemical conditions able to produce significant additional corrosion; we postulated mainly due to a drastic reduction of the thermal flux resulting from the increase of the tube wall thickness under the tube support plates (TSP). The tests demonstrate that such sleeve could be a possible remedy of the corrosion when introduced under the TSP. The tests show indications of a possible beneficial effect of the boric acid, a large variability of the heats sensitivity to the IGA and a predominant effect of Na 2 CO 3 on IGA production

  8. Transient thermal-mechanical behavior of cracked glass-cloth-reinforced epoxy laminates at low temperatures

    International Nuclear Information System (INIS)

    Shindo, Y.; Ueda, S.

    1997-01-01

    We consider the transient thermal-mechanical response of cracked G-10CR glass-cloth-reinforced epoxy laminates with temperature-dependent properties. The glass-cloth-reinforced epoxy laminates are suddenly cooled on the surfaces. A generalized plane strain finite element model is used to study the influence of warp angle and crack formation on the thermal shock behavior of two-layer woven laminates at low temperatures. Numerical calculations are carried out, and the transient temperature distribution and the thermal-mechanical stresses are shown graphically

  9. Investigation and evaluation of stress-corrosion cracking in piping of light water reactor plants

    International Nuclear Information System (INIS)

    1979-01-01

    In 1975, a Pipe Cracking Study Group, established by the United States Nuclear Regulatory Commission (USNRC), reviewed intergranular stress-corrosion cracking (IGSCC) in Bioling Water Reactors (BWRs) and issued a report. During 1978, IGSCC was reported for the first time in large-diameter piping (> 20 in.) in a BWR in Germany. This discovery, together with the reported questions concerning the interpretation of ultrasonic inspections, led to the activation of a new Pipe Crack Study Group (PCSG) by USNRC. The charter of the new PCSG was expanded: (1) to include review of potential for stress-corrosion cracking in Pressurized Water Reactors (PWRs) as well as BWRs, (2) to examine operating experience in foreign reactors relevant to IGSCC, and (3) to study five specific questions. The PCSG limited the scope of the study to BWR and PWR piping runs and safe ends attached to the reactor pressure vessel. Not considered were components such as the reactor pressure vessel, pumps, valves, steam generators, large steam turbines, etc. Throughout this report, as well as in the title, the safe ends are arbitrarily defined as piping

  10. Deterministic estimation of crack growth rates in steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Lu, P.C.; Urquidi-Macdonald, M.

    1995-01-01

    In this paper, the authors extend the coupled environment fracture model (CEFM) for intergranular stress corrosion cracking (IGSCC) of sensitized Type 304SS in light water reactor heat transport circuits by incorporating steel corrosion, the oxidation of hydrogen, and the reduction of hydrogen peroxide, in addition to the reduction of oxygen (as in the original CEFM), as charge transfer reactions occurring on the external surfaces. Additionally, the authors have incorporated a theoretical approach for estimating the crack tip strain rate, and the authors have included a void nucleation model to account for ductile failure at very negative potentials. The key concept of the CEFM is that coupling between the internal and external environments, and the need to conserve charge, are the physical and mathematical constraints that determine the rate of crack advance. The model provides rational explanations for the effects of oxygen, hydrogen peroxide, hydrogen, conductivity, stress intensity, and flow velocity on the rate of crack growth in sensitized Type 304 in simulated LWR in-vessel environments. They propose that the CEFM can serve as the basis of a deterministic method for estimating component life times

  11. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    International Nuclear Information System (INIS)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang; Lin, Min; Jiang, Liqiang; Che, Shenglei; Hu, Yangwu

    2014-01-01

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection

  12. Double coating protection of Nd–Fe–B magnets: Intergranular phosphating treatment and copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jingwu; Chen, Haibo; Qiao, Liang [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Lin, Min [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Jiang, Liqiang; Che, Shenglei [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Hu, Yangwu, E-mail: 346648086@qq.com [College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014 (China); Wenzhou Institute of Industry and Science, Wenzhou 325000 (China)

    2014-12-15

    In this work, a double coating protection technique of phosphating treatment and copper plating was made to improve the corrosion resistance of sintered Nd–Fe–B magnets. In other words, the intergranular region of sintered Nd–Fe–B is allowed to generate passive phosphate conversion coating through phosphating treatment, followed by the copper coating on the surface of sintered Nd–Fe–B. The morphology and corrosion resistance of the phosphated sintered Nd–Fe–B were observed using SEM and electrochemical method respectively. The phosphate conversion coating was formed more preferably on the intergranular region of sintered Nd–Fe–B than on the main crystal region; just after a short time of phosphating treatment, the intergranular region of sintered Nd–Fe–B has been covered by the phosphate conversion coating and the corrosion resistance is significantly improved. With the synergistic protection of the intergranular phosphorization and the followed copper electrodeposition, the corrosion resistance of the sintered Nd–Fe–B is significantly better than that with a single phosphate film or single plating protection. - Highlights: • We combined intergranular phosphating and copper plating to protect Nd–Fe–B. • The phosphate conversion coating was formed preferably on the intergranular region. • The phosphating coating can obviously improve the corrosion resistance of Nd–Fe–B. • The corrosion resistance of Nd–Fe–B was improved by double coating protection.

  13. Steam generator operating experience: Update for 1984-1986

    International Nuclear Information System (INIS)

    Frank, L.; Stokley, J.

    1988-06-01

    This report summarizes operational events and degradation mechanisms affecting pressurized water reactor steam generator integrity, provides updated inspection results reported in 1984, 1985, and 1986, and highlights both prevalent problem areas and advances in improved equipment test practices, preventive measures, repair techniques, and replacement procedures. It describes equipment design features of the three major suppliers and discusses 68 plants in detail. Steam generator degradation mechanisms include intergranular stress corrosion cracking, primary water stress corrosion cracking, pitting, intergranular attack, and vibration wear that effects tube integrity and causes leakage. Plugging, sleeving heat treatment, peening, chemical cleaning, and steam generator replacements are described and regulatory instruments and inspection guidelines for nondestructive evaluations and girth weld cracking are discusses. The report concludes that although degradation mechanisms are generally understood, the elimination of unscheduled plant shutdowns and costly repairs resulting from leaking tubes has not been achieved. Highlights of steam generator research and unresolved safety issues are discussed. 21 refs., 8 tabs

  14. Evaluation of crack interaction effect for in-plane surface cracks using elastic finite element analyses

    International Nuclear Information System (INIS)

    Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed

  15. Crack formation mechanisms during micro and macro indentation of diamond-like carbon coatings on elastic-plastic substrates

    DEFF Research Database (Denmark)

    Thomsen, N.B.; Fischer-Cripps, A.C.; Swain, M.V.

    1998-01-01

    of cracking and the fracture mechanisms taking place. In the study various diamond-like carbon (DLC) coatings deposited onto stainless steel and tool steel were investigated. Results primarily for one DLC system will be presented here. (C) 1998 Published by Elsevier Science S.A. All rights reserved.......In the present study crack formation is investigated on both micro and macro scale using spherical indenter tips. in particular, systems consisting of elastic coatings that are well adhered to elastic-plastic substrates are studied. Depth sensing indentation is used on the micro scale and Rockwell...... indentation on the macro scale. The predominant driving force for coating failure and crack formation during indentation is plastic deformation of the underlying substrate. The aim is to relate the mechanisms creating both delamination and cohesive cracking on both scales with fracture mechanical models...

  16. Inhibition of stress corrosion cracking of alloy 600 in 10% NaOH solutions with and with lead oxide at 315 C

    International Nuclear Information System (INIS)

    Hur, D.H.; Kim, J.S.; Baek, J.S.; Kim, J.G.

    2002-01-01

    Alloy 600 steam generator tube materials have experienced various degradations by corrosion such as stress corrosion cracking (SCC) on the inner and outer diameter surface of tube, intergranular attack and pitting, and by mechanical damage such as fretting-wear and fatigue. These tube degradations not only increase the costs for tube inspection, maintenance and repair but also reduce the operation safety and the efficiency of plants. Therefore, the methodologies have been extensively developed to mitigate them. The addition of inhibitors to the coolant is a feasible method to mitigate tube degradations in operating plants. In this paper, a new inhibitor is proposed to mitigate the secondary side stress corrosion cracking of alloy 600 tubes. The effect of inhibitors on the electrochemical behavior and the stress corrosion cracking resistance of alloy 600 was evaluated in 10% sodium hydroxide solution with and without lead oxide at 315 C. The specimens of a C-ring type for stress corrosion cracking test were polarized at 150 mV above the corrosion potential for 120 hours without and with inhibitors such as titanium oxide, titanium boride, cerium boride. The chemical compositions of the films formed on the crack tip in the C-ring specimens were analyzed using a scanning Auger electron spectroscopy. The cerium boride, the most effective inhibitors, was observed to decrease the crack propagation rate more than a factor of three compared with that obtained in pure 10% NaOH solution. Furthermore, no SCC was observed in lead contaminated 10% NaOH solution by the addition of the cerium boride. (authors)

  17. Crack propagation in stainless steel AISI 304L in Hydrogen Chemistry conditions (HWC); Propagacion de Grietas en Acero Inoxidable AISI 304L en Condiciones de Quimica de Hidrogeno (HWC)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico -Toluca s/n, La Marquesa, Ocoyoacac, Mexico (Mexico); Castano M, V. [Instituto de Fisica Aplicada, UNAM, Km 15.5 Carretera Queretaro-San Luis Potosi, Juriquilla, Queretaro (Mexico)]. e-mail: ads@nuclear.inin.mx

    2006-07-01

    Velocities of crack growth in samples type CT pre cracking of stainless steel AISI 304l solder and sensitized thermally its were obtained by the Rising Displacement method or of growing displacement. It was used a recirculation circuit that simulates the operation conditions of a BWR type reactor (temperature of 280 C and a pressure of 8 MPa) with the chemistry modified by the addition of hydrogen with and without the addition of impurities of a powerful oxidizer like the Cu{sup +} ion. In each essay stayed a displacement velocity was constant of 1x10{sup -9} m/s, making a continuous pursuit of the advance of the crack by the electric potential drop technique. Contrary to the idea of mitigation of the crack propagation velocity by effect of the addition of the hydrogen in the system, the values of the growth velocities obtained by this methodology went similar to the opposing ones under normal operation conditions. To the finish of the rehearsal one carries out the fractographic analysis of the propagation surfaces, which showed cracks growth in trans and intergranular way, evidencing the complexity of the regulator mechanisms of the IGSCC like in mitigation conditions as the alternative Hydrogen Chemistry. (Author)

  18. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel

    International Nuclear Information System (INIS)

    Wang, Chengduo; Qiu, Hai; Kimura, Yuuji; Inoue, Tadanobu

    2016-01-01

    The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath martensite (α′) with prior austenite (γ) is distinctive. In the present paper we investigate the microstructure and fracture mode of a quenched and tempered 0.4%C-2%Si-1%Cr-1%Mo steel using electron backscatter diffraction technique. The results showed that the orientation relationship between γ and α′ is Greninger-Troiano (G-T) relationship. A single γ grain was divided into 4 packets and each packet was subdivided into 3 blocks. The misorientation angles between adjacent blocks were ~54.3° or ~60.0° in a packet. Most γ grains were twins sharing a {111} γ plane. There were 7 packets in a twinned γ grain and the twin boundaries were in a special packet. Besides the common packet, there were three packets in each twin. Being different from the cleavage fracture along the {001} planes in conventional martensitic steels, both cleavage and intergranular cracks were present in our medium-carbon steel. The former was in the larger blocks and it propagated along the {001}, {011}, and {112} planes. The latter propagated along the block, packet, or prior austenite boundaries. The intergranular cracks were generally in the fine block region. These results suggested that the block size is the key factor in controlling the brittle fracture mode of lath martensitic steel.

  19. Examination of the SG tube fatigue cracking at Fessenheim unit no.2 of EDF

    International Nuclear Information System (INIS)

    Boccanfuso, M.; Lorthios, J.; Thebault, Y.; Bruyere, B.; Duisabeau, L.; Herms, E.

    2015-01-01

    In February 2008, a primary-to-secondary leak occurred at Fessenheim Unit No.2 on a steam generator. A circumferential fatigue crack was observed at the upper tube support plate level of the R12C62 tube although the stability ratio evaluation performed to take into account some prior international events, concluded that this tube had no risk of fluid-elastic instability. A new tube pull process was developed and performed by AREVA in 2011 just before the SG replacement. The extraction at the uppermost TSP elevation was a first occurrence in the French EDF PWR. Destructive examinations were carried out in the EDF hot laboratory of CEIDRE/Chinon in order to characterize damage mechanisms at the initiation and propagation stage. The document relates the major results of laboratory examinations leading us to exclude the fluid-elastic instability scenario as previously reported in North-Anna (1987) and Mihama (1991) tube rupture incidents. Results analysis with particular focus on the fracture surface description using Scanning Electron microscopy observations and metallurgical investigations provide new elements concerning the aggravating factors of fatigue damage. Fracture surface investigations reveal that the circumferential crack was due to high cycle fatigue with a very low stress intensity factor. Some aggravating factors like intergranular corrosion appeared to be critical for the fatigue cracking initiation stage. The deterioration was also largely promoted by the lack of tube support at the Anti-Vibration Bars

  20. Seminar on countermeasures for pipe cracking in BWRs. Volume 4 of 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    Intergranular stress corrosion cracking of welded type 304 stainless steel in the recirculation piping of boiling water reactors has had an impact on plant availability and reliability since the fall of 1974. Investigations of this problem have resulted in significant progress in understanding the phenomenon and providing an engineering resolution by developing and qualifying countermeasures. A number of these countermeasures including solution heat treatment, corrosion resistant clad, alternate pipe materials, induction heating stress improvement and heat sink welding have been implemented. Separate abstracts are included for each of the papers presented.

  1. Seminar on countermeasures for pipe cracking in BWRs. Volume 2 of 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-05-01

    Intergranular stress corrosion cracking of welded type 304 stainless steel in the recirculation piping of boiling water reactors has had an impact on plant availability and reliability since the fall of 1974. Investigtions of this problem have resulted in significant progress in understanding the phenomenon and providing an engineering resolution by developing and qualifying countermeasures. A number of these countermeasures including solution heat treatment, corrosion resistant clad, alternate pipe materials, induction heating stress improvement and heat sink welding have been implemented. Separate abstracts are included for each of the papers presented.

  2. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  3. Heat affected zone liquation cracking in electron beam welded third generation nickel base superalloys

    International Nuclear Information System (INIS)

    Ojo, O.A.; Wang, Y.L.; Chaturvedi, M.C.

    2008-01-01

    The weldability of directionally solidified nickel base superalloy TMS-75 and TMS-75+C was investigated by autogenous bead-on-plate electron beam welding. The analysis of microsegregation that occurred during solidification of the as-cast alloys indicated that while W and Re segregated into the γ dendrites of both the alloys, Ta, Hf and C were rejected into the interdendritic liquid in the TMS-75+C. Heat affected zone intergranular liquation cracking was observed in both the materials and was observed to be closely associated with liquated γ-γ' eutectic microconstituent. The TMS-75+C alloy, however, exhibited a reduced extent of HAZ cracking compared to TMS-75. Suppression of terminal solidification reaction involving non-invariant γ-γ' eutectic transformation due to modification of primary solidification path by carbon addition is suggested to be an important factor contributing to reduced susceptibility of TMS-75+C alloy to HAZ liquation cracking relative to the TMS-75 superalloy

  4. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    Science.gov (United States)

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  5. Diffusive intergranular cavity growth in creep in tension and torsion

    International Nuclear Information System (INIS)

    Stanzl, S.E.; Argon, A.S.; Tschegg, E.K.

    1983-01-01

    Creep experiments were performed at 500 C in tension and torsion on high conductivity copper tubes with a uniform initial coverage of implanted water vapor bubbles on all grain boundaries. No significant differences were found in the times to fracture over a wide stress range when the results were correlated according to the maximum principal tensile stress in the two fields. The results indicate that the cavities grow in a crack-like mode but at one tenth the rate predicted from the theoretical model of Pharr and Nix. This difference is attributed partly to load shedding from boundaries normal to the maximum principal tensile stress to slanted boundaries, and partly to a lack of knowledge about th surface diffusion constant. The results indicate further that the contribution to intergranular cavity growth by power-law creep in negligible in comparison to the contribution by diffusional flow. Complementary tension and torsion experiments performed in initially uncavitated samples results in shorter creep lives in torsion than in tension due to more effective cavity nucleation in the former. The times to fracture in both of these cases obey Monkman and Grant's law, indicating the presence of constraints on growth by the lagging deformations by power-law creep in the surroundings of the cavitating isolated grain facets

  6. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  7. Mechanisms of irradiation assisted stress corrosion cracking in austenitic stainless steels

    International Nuclear Information System (INIS)

    Was, G.S.; Busby, G.T.

    2004-01-01

    Full text of publication follows: Service and laboratory experience have shown that irradiation enhances the stress corrosion cracking of austenitic alloys in high temperature water. The degree of irradiation assisted stress corrosion cracking (IASCC) increases with dose as the microstructure undergoes significant changes, including dislocation loop formation, grain boundary segregation and hardening. These changes occur simultaneously and at comparable rates, complicating the attribution of IASCC to specific components of the microstructure. Each of the principal effects of irradiation have been considered as potential causes of IASCC, but the multivariable nature of the problem obscures a definitive determination of the mechanism. Rather, the mechanism of IASCC is more likely due to a combination of factors, some which have not yet been considered. Among these effects is the heterogeneity of deformation caused by the irradiated microstructure, and the interaction of localized deformation bands with grain boundaries. Current understanding and proposed mechanisms of IASCC will be reviewed, and recent progress on the role of heterogeneous deformation on IASCC will be presented. (authors)

  8. Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling

    International Nuclear Information System (INIS)

    La Fontaine, Alexandre; Yen, Hung-Wei; Trimby, Patrick; Moody, Steven; Miller, Sarah; Chensee, Martin; Ringer, Simon; Cairney, Julie

    2014-01-01

    An oxidation-assisted martensitic phase transformation was observed in an austenitic stainless steel after thermal cycling up to 970 °C in air in a solar thermal steam reformer. The intergranular corrosion areas were investigated by electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD) and transmission electron microscopy (TEM). The structural-and-chemical maps revealed that within intergranular corrosion areas this martensitic transformation primarily occurs in oxidation-induced chromium-depleted zones, rather than due to only sensitization. This displacive transformation may also play a significant role in the rate at which intergranular corrosion takes place

  9. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  10. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  11. On the Influence of Nb/Ti Ratio on Environmentally-Assisted Crack Growth in High-Strength Nickel-Based Superalloys

    Science.gov (United States)

    Németh, A. A. N.; Crudden, D. J.; Collins, D. M.; Kuksenko, V.; Liebscher, C. H.; Armstrong, D. E. J.; Wilkinson, A. J.; Reed, R. C.

    2018-05-01

    The effect of Nb/Ti ratio on environmentally-assisted crack growth of three prototype Ni-based superalloys is studied. For these alloys, the yield strength is unaltered with increasing Nb/Ti ratio due to an increase in grain size. This situation has allowed the rationalization of the factors influencing damage tolerance at 700 °C. Primary intergranular cracks have been investigated using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope and the analysis of electron back-scatter diffraction patterns. Any possible detrimental effect of Nb on the observed crack tip damage due to Nb-rich oxide formation is not observed. Instead, evidence is presented to indicate that the tertiary γ'-precipitates are dissolving ahead of the crack consistent with the formation of oxides such as alumina and rutile. Our results have implications for alloy design efforts; at any given strength level, both more and less damage-tolerant variants of these alloys can be designed.

  12. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...

  13. An Analytical Model for Fatigue Life Prediction Based on Fracture Mechanics and Crack Closure

    DEFF Research Database (Denmark)

    Ibsø, Jan Behrend; Agerskov, Henning

    1996-01-01

    test specimens are compared with fatigue life predictions using a fracture mechanics approach. In the calculation of the fatigue life, the influence of the welding residual stresses and crack closure on the fatigue crack growth is considered. A description of the crack closure model for analytical...... determination of the fatigue life is included. Furthermore, the results obtained in studies of the various parameters that have an influence on the fatigue life, are given. A very good agreement between experimental and analytical results is obtained, when the crack closure model is used in determination...... of the analytical fatigue lives. Both the analytical and experimental results obtained show that the Miner rule may give quite unconservative predictions of the fatigue life for the types of stochastic loading studied....

  14. Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Ai, Xing, E-mail: aixingsdu@163.com; Zhao, Jun; Zhang, Hongshan; Qin, Wenzhen; Gong, Feng

    2015-03-25

    An appropriate heating rate in the sintering process is crucial to obtain the Ti(C,N)-based cermets with superior properties. In this paper, Ti(C,N)-based cermets were sintered to investigate the influence of heating rate on the mechanical properties and microstructure of the cermet materials. The transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}) were tested. The microstructure, indention crack, fracture morphology and phase composition of the cermets were also studied by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results reveal that the heating rate has a great influence on the mechanical properties and microstructure of Ti(C,N)-based cermets. The cermets sintered at the heating rate of 3 °C/min between 1300 °C and 1430 °C have the optimum comprehensive mechanical properties with a transverse rupture strength of 1605±107 MPa, a hardness of 12.02±0.25 GPa and a fracture toughness of 10.73±0.40 MPa m{sup 1/2}. The heating rate can affect the reaction among the constituents of Ti(C,N)-based cermets and then influence the elements distribution in the core–rim microstructures and the lattice parameter of Ti(C,N) phase. When the heating rate is between 2 °C/min and 5 °C/min, the lower the heating rate is, the coarser the Ti(C,N) grains become. A higher heating rate is detrimental to the formation of core–rim microstructures, and a lower heating rate can result in grain coarsening and inhomogeneous microstructure. The observation of indention cracks and fracture surfaces show that the intergranular cracks and intergranular fractures mainly occur in the cermets with larger binder mean free path and medium grains. While the cleavage fractures appear more in the cermets with grain coarsening, and the transgranular fractures exist more in the cermets with non-fully developed fine grains.

  15. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  16. Fatigue crack threshold relevant to stress ratio, crack wake and loading histories

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Iwasaki, Akira; Kasahara, Naoto

    2013-01-01

    Fatigue crack propagation behavior was investigated in a low alloy steel which experienced several kind of loading histories. Both the effects of stress ratio, test temperature on the fatigue crack threshold, and the change in the threshold depending on the thermo-mechanical loading histories, were experimentally investigated. It was shown that the thermo-mechanical loading history left its effect along the prior fatigue crack wake resulting in the change of fatigue crack threshold. Some discussions are made on how this type of loading history effect should be treated from engineering point of view. (author)

  17. On crack interaction effects of in-plane surface cracks using elastic and elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su

    2010-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components

  18. Sub-critical cohesive crack propagation with hydro-mechanical coupling and friction

    Directory of Open Access Journals (Sweden)

    S. Valente

    2016-01-01

    Full Text Available Looking at the long-time behaviour of a dam, it is necessary to assume that the water can penetrate a possible crack washing away some components of the concrete. This type of corrosion reduces the tensile strength and fracture energy of the concrete compared to the same parameters measured during a short-time laboratory test. This phenomenon causes the so called sub-critical crack propagation. That is the reason why the International Commission of Large Dams recommends to neglect the tensile strength of the joint between the dam and the foundation, which is the weakest point of a gravity dam. In these conditions a shear displacement discontinuity starts growing in a point, called Fictitious Crack Tip (shortened FCT, which is still subjected to a compression stress. In order to manage this problem, in this paper the cohesive crack model is re-formulated with the focus on the shear stress component. In this context, the classical Newton-Raphson method fails to converge to an equilibrium state. Therefore the approach used is based on two stages: (a a global one in which the FCT is moved ahead of one increment; (b a local one in which the non-linear conditions occurring in the Fracture Process Zone are taken into account. This two-stage approach, which is known in the literature as a Large Time Increment method, is able to model three different mechanical regimes occurring during the crack propagation between a dam and the foundation rock.

  19. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-01-01

    Full Text Available The effects of input heat of different welding processes on the microstructure, corrosion, and mechanical characteristics of welded duplex stainless steel (DSS are reviewed. Austenitic stainless steel (ASS is welded using low-heat inputs. However, owing to differences in the physical metallurgy between ASS and DSS, low-heat inputs should be avoided for DSS. This review highlights the differences in solidification mode and transformation characteristics between ASS and DSS with regard to the heat input in welding processes. Specifically, many studies about the effects of heat energy input in welding process on the pitting corrosion, intergranular stress, stresscorrosion cracking, and mechanical properties of weldments of DSS are reviewed.

  20. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  1. Growth of 2D and 3D plane cracks under thermo-mechanical loading with varying amplitudes

    International Nuclear Information System (INIS)

    Sbitti, Amine

    2009-01-01

    After a presentation of the phenomenon of thermal fatigue (in industrial applications and nuclear plants), this research thesis reports the investigation of the growth and arrest of a 2D crack under thermal fatigue (temperature and stress distribution over thickness, calculation of stress intensity factors, laws of fatigue crack growth, growth under varying amplitude), and the investigation of 3D crack growth under cyclic loading with varying amplitudes (analytic and numerical calculation of stress intensity factors, variational formulation in failure mechanics, 3D crack propagation under fatigue, use of the Aster code, use of the extended finite element method or X-FEM). The author discusses the origin and influence of the 3D crack network under thermal fatigue

  2. Crack growth rate in the HAZ of alloy 600/182

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Briceno, D.; Lapena, J.; Garcia-Redondo, M.; Castro, L.; Perosanz, F.J. [CIEMAT (Spain); Ahluwalia, K. [EPRI, (United States); Hickling, J. [EPRI Consultant (Cyprus)

    2011-07-01

    CGR (Crack Growth Rate) experiments to obtain data for the HAZ (Heat Affected Zone) of nickel base alloys using fracture mechanics specimens are a challenge, primarily due to the difficulties of positioning the tip of the notch (or pre-crack) in the desired location within the complex region adjacent to the fusion line. This paper presents some results obtained in an experimental program carried out to the CGR in the HAZ of several welded Alloy 600 plates. Compact tension (CT) specimens have been tested in simulated PWR primary water at temperatures of 340 and 360 C degrees under cyclic and constant loading (both with and without periodic partial unloading). Satisfactory CGR data were obtained for the HAZ in an Alloy 600 plate (mill annealed at high temperature) welded with Alloy 182 under both environmentally assisted fatigue test conditions (cyclic loading at different frequencies) and during stress corrosion testing (i.e. at predominantly constant load). The CGR values were generally similar to those obtained for the corresponding base metal (with tentative evidence for slightly faster growth in the HAZ under pure constant load). The HAZ specimens showed a higher tendency to crack inter-granularly under cyclic loading. CGR values under predominantly SCC conditions corresponded well (after temperature correction) with the MRP - 55 75. percentile disposition curve for PWSCC in Alloy 600 materials. This contrasts with the behavior observed by other investigators, where the HAZ material was found to exhibit markedly higher CGRs. A possible explanation for this discrepancy is the higher PWSCC susceptibility of the Alloy 600 base metal used to prepare the HAZ specimens in this program. It appears that the strong increase in the HAZ CGR observed elsewhere may take place if the base metal is a heat with inherently low PWSCC susceptibility (i.e. with good microstructure, adequate carbide distribution, etc.). However, if the Alloy 600 base metal already has a susceptible

  3. Crack growth rate in the HAZ of alloy 600/182

    International Nuclear Information System (INIS)

    Gomez-Briceno, D.; Lapena, J.; Garcia-Redondo, M.; Castro, L.; Perosanz, F.J.; Ahluwalia, K.; Hickling, J.

    2011-01-01

    CGR (Crack Growth Rate) experiments to obtain data for the HAZ (Heat Affected Zone) of nickel base alloys using fracture mechanics specimens are a challenge, primarily due to the difficulties of positioning the tip of the notch (or pre-crack) in the desired location within the complex region adjacent to the fusion line. This paper presents some results obtained in an experimental program carried out to the CGR in the HAZ of several welded Alloy 600 plates. Compact tension (CT) specimens have been tested in simulated PWR primary water at temperatures of 340 and 360 C degrees under cyclic and constant loading (both with and without periodic partial unloading). Satisfactory CGR data were obtained for the HAZ in an Alloy 600 plate (mill annealed at high temperature) welded with Alloy 182 under both environmentally assisted fatigue test conditions (cyclic loading at different frequencies) and during stress corrosion testing (i.e. at predominantly constant load). The CGR values were generally similar to those obtained for the corresponding base metal (with tentative evidence for slightly faster growth in the HAZ under pure constant load). The HAZ specimens showed a higher tendency to crack inter-granularly under cyclic loading. CGR values under predominantly SCC conditions corresponded well (after temperature correction) with the MRP - 55 75. percentile disposition curve for PWSCC in Alloy 600 materials. This contrasts with the behavior observed by other investigators, where the HAZ material was found to exhibit markedly higher CGRs. A possible explanation for this discrepancy is the higher PWSCC susceptibility of the Alloy 600 base metal used to prepare the HAZ specimens in this program. It appears that the strong increase in the HAZ CGR observed elsewhere may take place if the base metal is a heat with inherently low PWSCC susceptibility (i.e. with good microstructure, adequate carbide distribution, etc.). However, if the Alloy 600 base metal already has a susceptible

  4. Crack-jump mechanism of microvein formation and its implications for stress cyclicity during extension fracturing

    Science.gov (United States)

    Caputo, Riccardo; Hancock, Paul L.

    1998-11-01

    It is well accepted and documented that faulting is produced by the cyclic behaviour of a stress field. Some extension fractures, such as veins characterised by the crack-seal mechanism, have also been presumed to result from repeated stress cycles. In the present note, some commonly observed field phenomena and relationships such as hackle marks and vein and joint spacing, are employed to argue that a stress field can also display cyclic behaviour during extensional fracturing. Indeed, the requirement of critical stress conditions for the occurrence of extensional failure events does not accord with the presence of contemporaneously open nearby parallel fractures. Therefore, because after each fracture event there is stress release within the surrounding volume of rock, high density sets of parallel extensional fractures also strongly support the idea that rocks undergo stress cyclicity during jointing and veining. A comparison with seismological data from earthquakes with dipole mechanical solutions, confirms that this process presently occurs at depth in the Earth crust. Furthermore, in order to explain dense sets of hair-like closely spaced microveins, a crack-jump mechanism is introduced here as an alternative to the crack-seal mechanism. We also propose that as a consequence of medium-scale stress cyclicity during brittle deformation, the re-fracturing of a rock mass occurs in either one or the other of these two possible ways depending on the ratio between the elastic parameters of the sealing material and those of the host rock. The crack-jump mechanism occurs when the former is stronger.

  5. Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C

    Science.gov (United States)

    Rozman, Kyle A.; Kruzic, Jamie J.; Sears, John S.; Hawk, Jeffrey A.

    2015-10-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 and 0.25 Hz. The crack path was observed to be primarily transgranular for all temperatures, and the observed effect of increasing temperature was to increase the fatigue crack growth rates. The activation energy associated with the increasing crack growth rates over these three temperatures was calculated less than 60 kJ/mol, which is significantly lower than typical creep or oxidation mechanisms; therefore, creep and oxidation cannot explain the increase in fatigue crack growth rates. Transmission electron microscopy was done on selected samples removed from the cyclic plastic zone, and a trend of decreasing dislocation density was observed with increasing temperature. Accordingly, the trend of increasing crack growth rates with increasing temperature was attributed to softening associated with thermally assisted cross slip and dislocation annihilation.

  6. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  7. The corrosion and corrosion mechanical properties evaluation for the LBB concept in VVERs

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M.; Chvatal, P.; Karnik, D.

    1997-04-01

    One of the conditions required for Leak Before Break application is the verification that the influence of corrosion environment on the material of the component can be neglected. Both the general corrosion and/or the initiation and, growth of corrosion-mechanical cracks must not cause the degradation. The primary piping in the VVER nuclear power plant is made from austenitic steels (VVER 440) and low alloy steels protected with the austenitic cladding (VVER 1000). Inspection of the base metal and heterogeneous weldments from the VVER 440 showed that the crack growth rates are below 10 m/s if a low oxygen level is kept in the primary environment. No intergranular cracking was observed in low and high oxygen water after any type of testing, with constant or periodic loading. In the framework of the LBB assessment of the VVER 1000, the corrosion and corrosion mechanical properties were also evaluated. The corrosion and corrosion mechanical testing was oriented predominantly to three types of tests: stress corrosion cracking tests corrosion fatigue tests evaluation of the resistance against corrosion damage. In this paper, the methods used for these tests are described and the materials are compared from the point of view of response on static and periodic mechanical stress on the low alloyed steel 10GN2WA and weld metal exposed in the primary circuit environment. The slow strain rate tests and static loading of both C-rings and CT specimens were performed in order to assess the stress corrosion cracking characteristics. Cyclic loading of CT specimens was done to evaluate the kinetics of the crack growth under periodical loading. Results are shown to illustrate the approaches used. The data obtained were evaluated also from the point of view of comparison of the influence of different structure on the stress corrosion cracking appearance. The results obtained for the base metal and weld metal of the piping are presented here.

  8. Influence of nano-inclusions' grain boundaries on crack propagation modes in materials

    International Nuclear Information System (INIS)

    Karakasidis, T.E.; Charitidis, C.A.

    2011-01-01

    The effect of nano-inclusions on materials' strength and toughness has attracted great interest in recent years. It has been shown that tuning the morphological and microstructural features of materials can tailor their fracture modes. The existence of a characteristic size of inclusions that favours the fracture mode (i.e. transgranular or intergranular) has been experimentally observed but also predicted by a 2D model based on energetic arguments which relates the crack propagation mode to the ratio of the interface area between the crystalline inclusion and the matrix with the area of the crystallite inclusion in a previous work. In the present work, a 3D model is proposed in order to extend the 2D model and take into account the influence of the size of grain boundary zone on the toughening/hardening behavior of the material as it was observed experimentally in the literature. The model relates crack propagation mode to the ratio of the volume of the grain boundary zone between the crystalline inclusion and the matrix with the volume of the nano-inclusion. For a ratio below a critical value, transgranular propagation is favoured while for larger values, intergranular propagation is favoured. We also demonstrate that the extent of the grain boundary region also can significantly affect this critical value. The results of the model are in agreement with the literature experimental observations related to the toughening/hardening behavior as a function of the size of crystalline inclusions as well as the width of the grain boundary regions.

  9. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  10. Creep crack growth in phosphorus alloyed oxygen free copper

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, Facredin (Swerea KIMAB (Sweden)); Sandstroem, Rolf; Jin, Lai-Zhe (Materials Science and Engineering, Royal Inst. of Technology (Sweden))

    2011-01-15

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  11. Creep crack growth in phosphorus alloyed oxygen free copper

    International Nuclear Information System (INIS)

    Wu, Rui; Seitisleam, Facredin; Sandstroem, Rolf; Jin, Lai-Zhe

    2011-01-01

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  12. A fracture mechanics model for iodine stress corrosion crack propagation in Zircaloy tubing

    International Nuclear Information System (INIS)

    Crescimanno, P.J.; Campbell, W.R.; Goldberg, I.

    1984-01-01

    A fracture mechanics model is presented for iodine-induced stress corrosion cracking in Zircaloy tubing. The model utilizes a power law to relate crack extension velocity to stress intensity factor, a hyperbolic tangent function for the influence of iodine concentration, and an exponential function for the influence of temperature and material strength. Comparisons of predicted to measured failure times show that predicted times are within a factor of two of the measured times for a majority of the specimens considered

  13. Effect of segregations on mechanical properties and crack propagation in spring steel

    Directory of Open Access Journals (Sweden)

    B. Žužek

    2015-10-01

    Full Text Available Considerable efforts have been made over the last decades to improve performance of spring steels, which would increase the service time of springs and also allow vehicles weight reduction. There are different possibilities of improving properties of spring steels, from modifying the chemical composition of steels to optimizing the deformation process and changing the heat treatment parameters. Another way of improving steel properties is through refining the microstructure and reducing amount of inclusions. Therefore, the focus of the current investigation was to determine the effect of more uniform and cleaner microstructure obtained through electro-slag remelting (ESR of steel on the mechanical and dynamic properties of spring steel, with special focus on the resistance to fatigue crack propagation. Effect of the microstructure refinement was evaluated in terms of tensile strength, elongation, fracture and impact toughness, and fatigue resistance under bending and tensile loading. After the mechanical tests the fracture surfaces of samples were analyzed using scanning electron microscope (SEM and the influence of microstructure properties on the crack propagation and crack propagation resistance was studied. Investigation was performed on hot rolled, soft annealed and vacuum heat treated 51CrV4 spring steel produced by conventional continuous casting and compared with steel additional refined through ESR. Results shows that elimination of segregations and microstructure refinement using additional ESR process gives some improvement in terms of better repeatability and reduced scattering, but on the other hand it has negative effect on crack propagation resistance and fatigue properties of the spring steel.

  14. Identification and management of cracking in 410 stainless turbine blade roots

    International Nuclear Information System (INIS)

    Clark, M.A.; Lehockey, E.M.; Thompson, I.; Massey, R.

    2003-01-01

    Between April and June of 2002, cracks were discovered in the fir-tree roots of several row 10 low-pressure 410 martensitic stainless steel turbine blades from an operating CANDU station. In total, 9 blades were eventually identified by MPI to have flaw indications near the inlet face between the first and second serrations. Among the population of blades examined fractography revealed cracks propagated by two different mechanisms: fatigue and stress corrosion cracking. In 7 of the 9 blades, the fracture surface morphology confirmed crack propagation by high-cycle fatigue, as evidenced by the beachmarks and ratchet marks produced by multiple initiation sites An analysis of the beachmarks suggested that cracks propagated independently and subsequently coalesced into a unified crack front. No significant pitting or other corrosion was found to accompany these defects, which might suggest a corrosion fatigue mechanism. Likewise, no consistent spatial relationship could be established between the crack path and either prior austenite grain boundaries, MnS stringer inclusions, or other metallurgical anomalies, which indicates their role in crack nucleation was minimal. Although hardness values measured were generally consistent with OEM's specifications, some evidence for over-tempering was observed (ripening of grain boundary precipitates/carbides, etc.). However, the specific role of these factors in promoting the fatigue failure could not be conclusively identified. Spacing between beachmarks within cracks among the (7) fatigued blades appeared similar suggesting that these cracks propagated under the influence of a common stress regime. Furthermore, the bulk of crack advance appeared to have occurred primarily at operating speeds given the number of beachmarks present far exceeded that expected to evolve solely from the stress transients generated during start/stop cycles. By correlating the array of major beachmarks with operating history, it was tentatively

  15. Delayed hydride cracking: alternative pre-cracking method

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)

  16. On fatigue crack growth in ductile materials by crack-tip blunting

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...

  17. Mechanical analysis of ceramic heat being part of hip prosthesis with presence of cracks

    International Nuclear Information System (INIS)

    Ravagli, E.

    1995-03-01

    This report still pursues the aim of carrying out a systematic mechanical analysis of a ceramic heat being part of a modular hig prosthesis, in order to characterize it exhaustively, i. e. to assess its performances and some of its main specifications. A mechanical analysis of a second case is carried out here, the presence of head cracks being taken into account. The evaluations made lead to the conclusion that the head should not show cracks bigger than 100 mm. This study is performed in the frame of the STRIDE-CETMA project, which is aimed at founding and developing a centre for technologically advanced materials in Brindisi technology park (Italy)

  18. Reliability analysis of stainless steel piping using a single stress corrosion cracking damage parameter

    International Nuclear Information System (INIS)

    Guedri, A.

    2013-01-01

    This article presents the results of an investigation that combines standard methods of fracture mechanics, empirical correlations of stress-corrosion cracking, and probabilistic methods to provide an assessment of Intergranular Stress Corrosion Cracking (IGSCC) of stainless steel piping. This is done by simulating the cracking of stainless steel piping under IGSCC conditions using the general methodology recommended in the modified computer program Piping Reliability Analysis Including Seismic Events, and by characterizing IGSCC using a single damage parameter. Good correlation between the pipe end-life probability of leak and the damage values were found. These correlations were later used to generalize this probabilistic fracture model. Also, the probability of detection curves and the benefits of in-service inspection in order to reduce the probability of leak for nuclear piping systems subjected to IGSCC were discussed for several pipe sizes. It was found that greater benefits could be gained from inspections for the large pipe as compared to the small pipe sizes. Also, the results indicate that the use of a better inspection procedure can be more effective than a tenfold increase in the number of inspections of inferior quality. -- Highlights: • We simulate the pipe probability of failure under different level of SCC damages. • The residual stresses are adjusted to calibrate the model. • Good correlations between 40-year cumulative leak probabilities and D σ are found. • These correlations were used to generalize this probabilistic fracture model. • We assess the effect of inspection procedures and scenarios on leak probabilities

  19. Cracking and healing behavior of UO2 as related to pellet-cladding mechanical interaction. Interim report, July 1976

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Yaggee, F.L.; Voglewede, J.C.; Kupperman, D.S.; Wrona, B.J.; Ellingson, W.A.; Johanson, E.; Evans, A.G.

    1976-10-01

    A direct-electrical-heating apparatus has been designed and fabricated to investigate those nuclear-fuel-related phenomena involved in the gap closure-bridging annulus formation mechanism that can be reproduced in an out-of-reactor environment. Prototypic light-water-reactor UO 2 fuel-pellet temperature profiles have been generated utilizing high flow rates (approximately 700 liters/min) of helium coolant gas, and a recirculating system has been fabricated to permit tests of up to 1000 h. Simulated light-water-reactor single- and multiple-thermal-cycle experiments will be conducted on both unclad and ceramic (fused silica) clad UO 2 pellet stacks. A laser dilatometer with a resolution of 1.27 x 10 -2 mm (5 x 10 -4 in.) is used to measure pellet dimensional increase continuously during thermal cycling. Acoustic emissions from thermal-gradient cracking have been detected and correlated with crack length and crack area. The acoustic emissions are monitored continuously to provide instantaneous information about thermal-gradient cracking. Posttest metallography and fracture-mechanics measurements are utilized to characterize cracking and crack healing

  20. The effect of carbon distribution on deformation and cracking of Ni-16Cr-9Fe-C alloys

    International Nuclear Information System (INIS)

    Hertzberg, J.L.; Was, G.S.

    1995-01-01

    Constant extension rate tensile (CERT) tests and constant load tensile (CLT) tests were conducted on controlled purity Ni-16Cr-9Fe-C alloys. The amount and form of carbon were varied in order to investigate the roles of carbon in solution and as intergranular (IG) carbides in the deformation and IG cracking behavior in 360 C argon and primary water environments. Results show that the strength, ductility and creep resistance of these alloys are increased with carbon present in solid solution, while IG cracking on the fracture surface is suppressed. Alloys containing carbon in the form of IG carbides, however, exhibit reduced strength and ductility relative to carbon in solution, while maintaining high IG cracking resistance with respect to carbon-free alloys. CERT results of commercial alloy 600 and controlled purity, carbon containing alloys yield comparable failure strains and IG cracking amounts. CLT comparisons with creep tests of alloy 600 suggest that alloys containing IG carbides are more susceptible to creep than those containing all carbon in solid solution

  1. Multi-scale analysis of deformation behavior at SCC crack tip (2). (Contract research)

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Hayakawa, Masao; Nagashima, Nobuo

    2007-03-01

    This report describes a result of the research conducted by the Japan Atomic Energy Agency and the National Institute for Materials Science under contract with Japan Nuclear Energy Safety Organization (JNES) that was concerned with a multi-scale analysis of plastic deformation behavior at the crack tip of stress corrosion cracking (SCC). The research was carried out to evaluate the validity of the SCC growth data acquired in the intergranular SCC (IGSCC) project based on a mechanistic understanding of SCC. For the purpose, in this research, analyses of the plastic deformation behavior and microstructure around the crack tip were performed in a nano-order scale. The hardness measured in nano, meso and macro scales was employed as a common index of the strength, and the essential data necessary to understand the SCC propagation behavior were acquired and analyzed that are mainly a size of plastic deformation region and a microstructural information in the region, e.g. data of crystallografy, microscopic deformation and dislocations at the inside of grains and grain boundaries. In this year, we analyzed the state of plastic deformation region at the crack tip of IGSCC under various conditions and investigated relationship between crack growth behavior and stress intensity factor. Especially, we investigated in detail about two different hardened specimens used in the SCC growth tests in the IGSCC project. (J.P.N.)

  2. On applicability of crack shape characterization rules for multiple in-plane surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su

    2009-01-01

    The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.

  3. Mechanics and crack formation in the extracellular matrix with articular cartilage as a model system

    Science.gov (United States)

    Kearns, Sarah; Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai; Das, Moumita

    We investigate the mechanical structure-function relations in the extracellular matrix (ECM) with focus on crack formation and failure. As a model system, our study focuses on the ECM in articular cartilage (AC), the tissue that covers the ends of bones, and distributes load in joints including in the knees, shoulders, and hips. The strength, toughness, and crack resistance of native articular cartilage is unparalleled in materials made by humankind. This mechanical response is mainly due to its ECM. The ECM in AC has two major mechanobiological components: a network of the biopolymer collagen and a flexible aggrecan gel. We model this system as a biopolymer network embedded in a swelling gel, and investigate the conditions for the formation and propagation of cracks using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as of biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings. This work was partially supported by a Cottrell College Science Award.

  4. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  5. Stress corrosion cracking of 350 maraging steel in 3.5 Wt. % NaCl solution

    International Nuclear Information System (INIS)

    Hussain, I.; Hussain, T.; Tauqir, A.; Hashmi, F.H.; Khan, A.Q.

    1993-01-01

    Stress corrosion behavior of 350 maraging steel in 3.5 wt.% NaCl solution was investigated. The results suggest that the steel is susceptible to stress corrosion cracking as the time to failure was always considerably shorter, as compared to those in air at the same stress level. The fracture mode was nearly intergranular and occasionally transgranular. There was no definite trend for the different modes of failure. The strain rate effect was also considered and the results show that the stress corrosion cracks were absent at strain rate high than 1.97 x 10/sup -4/S/sup -1/ and lower than 1.29 x 10/sup -7/S/sup -1/. The critical strain rate range was found to be between 6.4 x 10/sup -7/ to 3.24 x10/sup -5/S /sup -1/. (author)

  6. Crack shape developments and leak rates for circumferential complex-cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  7. Properties influencing cracking and separation of palm nuts in a mechanical cracker cum separator

    Directory of Open Access Journals (Sweden)

    JOSHUA OLANREWAJU OLAOYE

    2018-01-01

    Full Text Available Experimental studies of some properties influencing cracking and separation of palm kernel from the shell was conducted in a palm kernel dual processing machine. A mechanical cracking cum separating machine was developed for the study. The cracking unit consists of feed hopper, impeller shaft, cracking drum and impeller blade. The nut falls by gravity through the hopper channel into the cracking drum where the cracking process takes place through the help of impeller blades that flip the palm nut against the walls of cylindrical cracking drum. The mass of cracked nut flows through the separating unit that separates the kernel from the shell. The separation is induced by high current of air mass generated by an axial fan. A dura palm variety was selected and a total sample of eighteen thousand (18000 palm nuts were obtained and divided into two groups (feed rates, A and B, of eight thousand and ten thousand palm nuts respectively. Sample groups A and B were further divided into five sub – groups of four hundred (400 and five hundred (500 palm kernel nuts. Each sub group (feed rate was replicated four times at different shaft speeds (600, 900, 1200, 1500 and 1800 rpm. Results showed that cracking efficiencies increased with respect to speed. Un-cracked nuts percentage ranged from 1.3 to 5.3% at 7.1% moisture content, and 1.6 to 4.5% for 400 and 500 feed rates, respectively. Cracking time for both feed rates decreased with shaft speed. Throughput capacity of 11.49 kg/h was observed to be the lowest at 600 rpm and moisture content of 7.1% for both 400 feed rates and the highest throughput capacity of 37.16 kg/h was recorded at 1800 rpm at moisture contents of 9.3% and 16.1%. The results of this study shows that moisture content, engine speed and feed rate are significant parameters that influence cracking of nuts and separation of palm kernel from the shell.

  8. Intergranular phase of the Si3 N4 hot pressed with Mg O/Y2 O3

    International Nuclear Information System (INIS)

    Costa, Celio A.; Todd, Judith A.

    1997-01-01

    Monolithic and composite Si 3 N 4 hot-pressed with 3% Mgo or 6% Y 2 O 3 were analyzed with X-ray diffraction and transmission electron microscopy. The results showed materials to be composed of β-Si 3 N 4 grains and an intergranular phase which was partially crystalline and partially amorphous. For the materials sintered with Mg O, the identification of the intergranular phase was not conclusive. For the materials sintered with Y 2 O 3 . It was observed that the amount of intergranular crystalline phase decreased as whiskers were added to the material and the intergranular crystalline part had a crystallographic structure similar to yttrium-silicon-oxide-nitride family. (author)

  9. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip

  10. Contribution to the study of the mechanism of crack in amorphous silica: study by the molecular dynamics of crack in amorphous silica

    International Nuclear Information System (INIS)

    Van Brutzel, L.

    2000-01-01

    The aim of this thesis was to understand the mechanism which occurs during the crack at the atomic scale in amorphous silica. The difficulties of the experimental observations at this length scale lead us to use numerical studies by molecular dynamics to access to the dynamical and the thermodynamical informations. We have carried out large simulations with 500000 atoms and studied the structure of the amorphous silica before to studying their behaviours under an imposed strain. The structure of this simulated amorphous silica settled in three length scales. In small length scale between 0 and 5 angstrom glass is composed of tetrahedra, this is close to the crystalline structure. In intermediate length scale between 3 and 10 angstrom tetrahedra are connected together and build rings of different sizes composed in majority between 5 and 7 tetrahedra. In bigger length scale between 15 and 60 angstrom, areas with high density of rings are surrounded by areas with low density of rings. These structural considerations play an important role in initiation and propagation of a crack. Indeed. in this length scale. crack propagates by growth and coalescence of some small cavities which appear in area with low density of rings behind the crack tip. The cavities dissipate the stress with carries away a delay to propagation of the crack. This phenomenons seems ductile and leads to non linear elastic behaviour near the crack tip. We have also shown that the addition of alkali in the amorphous silica changes the structure by creation of nano-porosities and leads to enhance the ductility during the crack propagation. (author)

  11. Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-05-01

    Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)

  12. Stress corrosion cracking behavior of Nd:YAG laser-treated aluminum alloy 7075

    International Nuclear Information System (INIS)

    Yue, T.M.; Yan, L.J.; Chan, C.P.

    2006-01-01

    Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N 2 -treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N 2 -treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N 2 -treated specimen showing the highest resistance

  13. Determination of the equivalent intergranular void ratio - Application to the instability and the critical state of silty sand

    Directory of Open Access Journals (Sweden)

    Nguyen Trung-Kien

    2017-01-01

    Full Text Available This paper presents an experimental study of mechanical response of natural Camargue silty sand. The analysis of test results used the equivalent intergranular void ratio instead of the global void ratio. The calculation of equivalent intergranular void ratio requires the determination of parameter b which represents, physically, the fraction of active fines participating on the chain forces network, hence the strength of the soil. A new formula for determining the parameter b by using an approach based on the coordination number distribution and probability calculation is proposed. The validation of the developed relationship was done through back-analysis of published datasets in literature on the effect of fines content on silty sand behavior. It is shown that the equivalent intergranular void ratio calculated with the b value obtained by the new formula is able to provide strong correlation to not only the critical state of but also the onset of instability of various silty sands, in different terms as peak deviator stress, peak stress ratio or cyclic resistance. Therefore, it is suggested that the use of the equivalent void ratio concept and the new b calculating formula is highly desirable in predicting of the silty sand behavior.

  14. J evaluation by simplified method for cracked pipes under mechanical loading

    International Nuclear Information System (INIS)

    Lacire, M.H.; Michel, B.; Gilles, P.

    2001-01-01

    The integrity of structures behaviour is an important subject for the nuclear reactor safety. Most of assessment methods of cracked components are based on the evaluation of the parameter J. However to avoid complex elastic-plastic finite element calculations of J, a simplified method has been jointly developed by CEA, EDF and Framatome. This method, called Js, is based on the reference stress approach and a new KI handbook. To validate this method, a complete set of 2D and 3D elastic-plastic finite element calculations of J have been performed on pipes (more than 300 calculations are available) for different types of part through wall crack (circumferential or longitudinal); mechanical loading (pressure, bending moment, axial load, torsion moment, and combination of these loading); different kind of materials (austenitic or ferritic steel). This paper presents a comparison between the simplified assessment of J and finite element results on these configurations for mechanical loading. Then, validity of the method is discussed and an applicability domain is proposed. (author)

  15. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  16. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  17. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  18. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ziqing [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Toloczko, Mychailo [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Kruska, Karen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Bruemmer, Stephen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.

    2017-05-22

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.

  19. Diffusion-controlled intergranular penetration and embrittlement of copper by liquid bismuth between 300 and 600 Celsius degrees; Penetration intergranulaire fragilisante du cuivre par le bismuth liquide: identification de la cinetique et du mecanisme de type diffusionnel entre 300 et 600 deg

    Energy Technology Data Exchange (ETDEWEB)

    Laporte, V

    2005-02-15

    Hybrid reactors are a new concept for energy production and nuclear waste treatment. Among other requirements, structural materials have to withstand liquid metal embrittlement. This thesis aimed therefore to identify the controlling mechanism for the intergranular embrittlement of copper in contact with liquid bismuth. Scanning electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy have been used to analyze fracture surfaces of both copper polycrystals and a copper bicrystal (symmetric tilt boundary 50 degrees <100>). These analyses reveal both parabolic intergranular penetration kinetics and a maximal intergranular bismuth concentration that is less than two monolayers equivalent. These two results allow us to identify grain boundary diffusion as the controlling mechanism for the intergranular penetration of copper by liquid bismuth between 300 and 600 Celsius degrees, showing the absence of perfect grain boundary wetting. (author)

  20. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  1. Fatigue crack growth behaviour of 21/4Cr1Mo steel tube at elevated temperature

    International Nuclear Information System (INIS)

    Bulloch, J.H.; Buchanan, L.W.

    1987-01-01

    The fatigue crack growth characteristics of 21/4Cr1Mo steel tube have been examined at 588 0 C over the frequency range 0.02-20 Hz and dwell time range 10-960 min. All tests were conducted under load control in laboratory air at an R-ratio of 0.5. The elevated temperature fatigue crack growth characteristics were adequately described in terms of the stress intensity range ΔKAPPA. The continuous cyclic test data exhibited a significant effect of frequency that agreed well with predicted effects using a simple mathematical model of the high temperature fatigue process. With the dwell time range of 10-100 min there was a significant dwell time effect on the critical ΔKAPPA level for creep-fatigue interactive growth. At dwell times > 100 min the dwell time effect saturates. When creep-fatigue interactive growth occurs, growth rates reside above the maximum for continuum-controlled fatigue crack growth, and exhibit a da/dN varies as ΔKAPPA 10 dependence; failure is then intergranular in nature. (author)

  2. Toward a better understanding of strain incompatibilities at grain boundaries in the analysis of fatigue crack initiation at low temperature in the UdimetTM 720 Li superalloy

    Directory of Open Access Journals (Sweden)

    Larrouy Baptiste

    2014-01-01

    Full Text Available Low cycle fatigue properties of polycrystalline γ-γ′ Ni-based superalloys are dependent on many factors such as temperature, environment, grain size and distribution of the strengthening phases. Under LCF conditions at intermediate temperatures, an intergranular crack initiation could be observed. In this paper we propose to analyze the local conditions favouring such an intergranular cracking mode considering the high strength C&W UdimetTM720 Li alloy, widely used for manufacturing high pressure turbine disk for aeroengine applications. Tensile and fatigue tests were performed in air in the 20–465 ∘C range of temperature on micro-samples in order to focus on plasticity and damage processes developed near grain boundaries. A special attention was paid on the slip transfer between neighbouring grains taking into account their local crystallographic orientations. In some specific crystallographic configurations, small zones were detected at the tip of slip bands presenting an intense elastic/plastic activity. Although they are limited in size, they are associated to local crystalline rotations. High levels of local strain/stress were also evaluated in these volumes using an EBSD pattern cross correlation technique. The development of such specific zones was investigated at different stages of the tensile and LCF behaviour and was identified as leading to micro-cracks initiation for both solicitation modes.

  3. Thermo-mechanical modelling of high temperature crack growth in electron beam welding of a CuCrZr alloy

    International Nuclear Information System (INIS)

    Wisniewski, J.

    2009-03-01

    The aim of this research thesis is to find out which crack initiation criteria can be applied in the case of electron beam welding of CuCrZr alloy components. After a literature survey on the high temperature cracking phenomenon, the author describes its microscopic origins and presents the main high temperature crack growth criteria. He reports metallurgical, thermal and mechanical characterizations of the studied alloy performed by optical, scanning electronic and transmission electronic microscopy, crystallographic analysis, residual stress determination using the hole method, mechanical testing at room and high temperature (from room temperature to 1000 C), determination of solidification route and of thermal conductivity, and thermal expansion measurements. He describes electron beam weldability tests performed on the alloy. As these tests are performed on simple geometry samples, they allow the high temperature crack growth to be observed. These experiments are then modelled using two finite element codes, Castem and Calcosoft. Then, after a presentation of the main hypotheses used in these numerical models, the author applies the high temperature crack growth criteria. Results obtained for theses criteria are then analysed and discussed

  4. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rest, J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)], E-mail: jrest@anl.gov; Hofman, G.L.; Kim, Yeon Soo [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2009-04-15

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than {approx}7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  5. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    Science.gov (United States)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  6. Intergranular attack evaluation from hideout return

    International Nuclear Information System (INIS)

    Nordmann, F.; Dupin, M.; Menet, O.; Fiquet, J.-M.

    1989-01-01

    Intergranular Attack (IGA) is the secondary side corrosion mechanism on PWR steam generator tubing, which can occur most frequently even with a good waterchemistry. It has moderately developed in a few French units. Consequently, several remedies have been implemented, such as sodium content decrease in makeup water and application of more stringent chemistry specifications. In order to evaluate the local chemistry in restricted areas where IGA may occur, a large hideout return programme has been carried out on many units. It shows that free alkalinity returning during shutdown is usually ranging from 0.5 to 5 g of sodium per steam generator, and that the required time to let it return is about 40 hours. However, high temperature pH calculations indicate that such an amount of alkalinity can correspond to a potentially corrosive solution in restricted areas, where a concentration factor of 10 5 to 10 7 can be reached, inducing a pH of 10 at 300 o C. Studies are still in progress in order to define when a shutdown should be required to allow hideout return and help to prevent IGA. (author)

  7. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  8. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    Science.gov (United States)

    Auzoux, Q.; Allais, L.; Caës, C.; Monnet, I.; Gourgues, A. F.; Pineau, A.

    2010-05-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 °C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  9. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones

    International Nuclear Information System (INIS)

    Auzoux, Q.; Allais, L.; Caes, C.; Monnet, I.; Gourgues, A.F.; Pineau, A.

    2010-01-01

    Microstructural modifications induced by welding of 316 stainless steels and their effect on creep properties and relaxation crack propagation were examined. Cumulative strain due to multi-pass welding hardens the materials by increasing the dislocation density. Creep tests were conducted on three plates from different grades of 316 steel at 600 deg. C, with various carbon and nitrogen contents. These plates were tested both in the annealed condition and after warm rolling, which introduced pre-strain. It was found that the creep strain rate and ductility after warm rolling was reduced compared with the annealed condition. Moreover, all steels exhibited intergranular crack propagation during relaxation tests on Compact Tension specimens in the pre-strained state, but not in the annealed state. These results confirmed that the reheat cracking risk increases with both residual stress triaxiality and pre-strain. On the contrary, high solute content and strain-induced carbide precipitation, which are thought to increase reheat cracking risk of stabilised austenitic stainless steels did not appear as key parameters in reheat cracking of 316 stainless steels.

  10. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  11. Assessment of the interaction of variables in the intergranular stress corrosion crack growth rate behavior of Alloys 600, 82, and 182

    International Nuclear Information System (INIS)

    Paraventi, D.J.; Moshier, W.C.

    2007-01-01

    SCC testing of Alloy 600 and its weld metals has demonstrated that temperature, stress intensity factor (K), dissolved hydrogen, and yield strength all play a role on crack growth in deaerated, hydrogenated water. Typically, each variable has been modeled independently. However, some of these variables interact, which can affect crack growth predictions. In particular, testing has demonstrated several important interactions, including final annealing temperature and K, cold work and dissolved hydrogen, and orientation and cold work. The annealing temperature influences the K dependence of Alloy 600, with lower temperature anneals decreasing the influence of stress on growth. The response to cold work varies as a function of processing method and orientation, with crack growth in the processing direction having a stronger yield strength dependence than crack growth perpendicular to the processing direction. The effect of hydrogen has been found to be related to electrochemical potential, with the most susceptible condition occurring near the Ni/NiO phase transition. However, cold worked Alloy 600 maintains the peak susceptibility at low hydrogen conditions. (author)

  12. Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

    International Nuclear Information System (INIS)

    Tognevi, Amen

    2012-01-01

    The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d'Etude du Comportement des Betons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydro-mechanical parameters of the unsaturated micro-cracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. (author) [fr

  13. A countermeasure for external stress corrosion cracking in piping components by means of residual stress improvement on the outer surface

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Umemoto, Tadahiro

    1988-01-01

    Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)

  14. An electro-mechanical impedance model of a cracked composite beam with adhesively bonded piezoelectric patches

    Science.gov (United States)

    Yan, Wei; Cai, J. B.; Chen, W. Q.

    2011-01-01

    A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.

  15. Intergranular corrosion of Ti-stabilized 11 wt% Cr ferritic stainless steel for automotive exhaust systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Kil [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31, Pohang 790-784 (Korea, Republic of); Kim, Yeong Ho; Uhm, Sang Ho; Lee, Jong Sub [POSCO Technical Research Center, Pohang, 790-704 (Korea, Republic of); Kim, Kyoo Young [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31, Pohang 790-784 (Korea, Republic of)], E-mail: kykim@postech.ac.kr

    2009-11-15

    Intergranular corrosion (IGC) of type 409L ferritic stainless steel (FSS) was investigated. A free-exposure corrosion and a double loop electrochemical potentiokinetic reactivation (DL-EPR) tests were conducted to examine IGC of the FSS. IGC occurred in the specimens aged at the temperature range of 400-600 deg. C that has the sensitization nose located around 600 deg. C. The critical I{sub r}/I{sub a} value was determined to be about 0.03 above which IGC occurred. Based on the analysis of the intergranular precipitates by an energy dispersive spectroscopy (EDS) and a transmission electron microscopy (TEM), IGC was induced by the Cr depletion zone formation due to Cr segregation around intergranular TiC.

  16. Effect of microstructure on mechanical properties and machinability of spheroidal graphite cast iron

    International Nuclear Information System (INIS)

    Kubota, Satoru; Iio, Chinori; Yamaguchi, Shoji; Naito, Daiki; Tomota, Yo; Stefanus, Harjo

    2013-01-01

    Tensile properties, fatigue strength and machinability of spheroidal graphite cast irons with different microstructures were studied. Work-hardening and tensile strength increased with increasing pearlite volume fraction. In situ neutron diffraction during tensile deformation revealed that phase stresses and intergranular stresses are generated with deformation resulting in high work-hardening and high tensile strength with increasing pearlite volume fraction. It was found that graphite grains bear almost no stress, and strongly influence fatigue crack initiation as well as propagation. Therefore graphite refinement is very effective to realize high fatigue strength. The tool life for cutting becomes shorter with increasing pearlite volume fraction. The balance of mechanical properties and machinability was considered. (author)

  17. Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Joo; Yeon, Han-Wool; Shin, Hae-A-Seul; Joo, Young-Chang, E-mail: ycjoo@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, 151-744 Seoul (Korea, Republic of); Uk Lee, Yong; Evans, Louise A. [Center for Process Innovation Limited, Thomas Wright Way, NETPark, Sedgefield, TS21 3FG County Durham (United Kingdom)

    2013-12-09

    The influence of crystalline morphology on the mechanical fatigue of organic semiconductors (OSCs) was investigated using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as a crystalline OSC and poly(triarylamine) (PTAA) as an amorphous OSC. During cyclic bending, resistances of the OSCs were monitored using the transmission-line method on a metal-semiconductor-metal structure. The resistance of the TIPS-pentacene increased under fatigue damage in tensile-stress mode, but no such degradation was observed in the PTAA. Both OSCs were stable under compressive bending fatigue. The formation of intergranular cracks at the domain boundaries of the TIPS-pentacene was responsible for the degradation of its electrical properties under tensile bending fatigue.

  18. Characterisation of high-temperature damage mechanisms of oxide dispersion strengthened (ODS) ferritic steels

    International Nuclear Information System (INIS)

    Salmon-Legagneur, Hubert

    2017-01-01

    The development of the fourth generation of nuclear power plants relies on the improvement of cladding materials, in order to achieve resistance to high temperature, stress and irradiation dose levels. Strengthening of ferritic steels through nano-oxide dispersion allows obtaining good mechanical strength at high temperature and good resistance to irradiation induced swelling. Nonetheless, studies available from open literature evidenced an unusual creep behavior of these materials: high anisotropy in time to rupture and flow behavior, low ductility and quasi-inexistent tertiary creep stage. These phenomena, and their still unclear origin are addressed in this study. Three 14Cr ODS steels rods have been studied. Their mechanical behavior is similar to those of other ODS steels from open literature. During creep tests, the specimens fractured by through crack nucleation and propagation from the lateral surfaces, followed by ductile tearing once the critical stress intensity factor was reached at the crack tip. Tensile and creep properties did not depend on the chemical environment of specimens. Crack propagation tests performed at 650 C showed a low value of the stress intensity factor necessary to start crack propagation. The cracks followed an intergranular path through the smaller-grained regions, which partly explains the anisotropy of high temperature strength. Notched specimens have been used to study the impact of the main loading parameters (deformation rate, temperature, stress triaxiality) on macroscopic crack initiation and stable propagation, from the central part of the specimens. These tests allowed revealing cavities created during high temperature loading, but unexposed to the external environment. These cavities showed a high chemical reactivity of the free surfaces in this material. The performed tests also evidenced different types of grain boundaries, which presented different damage development behaviors, probably due to differences in local

  19. On the Preservation of Intergranular Coesite in UHP Eclogite at Yangkou Bay, Sulu belt of eastern China

    Science.gov (United States)

    Wang, L.; Wang, S.; Brown, M.

    2016-12-01

    In contrast to coesite that occurs as inclusions in zircon and rock-forming minerals, intergranular coesite is preserved in UHP eclogite at Yangkou in the Sulu belt. The survival of intergranular coesite is intriguing because the eclogite experienced phengite growth and partial melting during exhumation. The coesite eclogite occurs as rootless isoclinal fold noses within quartz-rich schist which contains 10-20 vol% phengite, whereas phengite is absent from coesite eclogite in the fold noses. To evaluate the factors that control preservation of intergranular coesite, four samples representative of different stages along the retrograde P-T path were selected for study. For each sample we determined the number of intergranular coesite grains per cm2 and the OH content of garnet and omphacite. As the number of coesite grains decreases, the bulk rock OH content increases from transformation to quartz of intergranular coesite outside of the fold noses. The fluid is inferred to have been a supercritical fluid probably residual from prograde dehydration but also derived by dissolution of nominally anhydrous minerals. Post-metamorphic-peak deformation combined with fluid percolation along sheared fold limbs induced phengite growth during initial exhumation and then facilitated partial melting. In contrast, fold hinges in competent layers are unfavourable sites for fluid penetration. At Yangkou, the intergranular coesite is preserved in the fold noses where it was protected from both penetrative deformation and fluid ingress. Therefore, the fold noses maintained a relatively dry environment that allowed preservation of the intergranular coesite. Thus, deformation partitioning and strain localization impose local controls on fluid distribution and migration in UHP eclogite. This study informs our understanding of variations in fluid regime during exhumation of deeply subducted continental crust.

  20. Effect of Zr addition on intergranular corrosion of low-chromium ferritic stainless steel

    International Nuclear Information System (INIS)

    Park, Jin Ho; Kim, Jeong Kil; Lee, Bong Ho; Seo, Hyung Suk; Kim, Kyoo Young

    2014-01-01

    Addition of Zr to low-Cr ferritic stainless steel forms a mixture of ZrC and Fe 23 Zr 6 precipitates that can prevent intergranular corrosion. Transmission electron microscopy and three-dimensional atom probe analysis suggest that the ZrC and Fe 23 Zr 6 mixture prevents intergranular corrosion in two ways: by acting as a strong carbide former to suppress the formation of Cr-carbide and by acting as a barrier against the diffusion of the solute Cr towards the grain boundary

  1. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  2. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  3. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  4. Delayed cracking in 301LN austenitic steel after deep drawing: Martensitic transformation and residual stress analysis

    International Nuclear Information System (INIS)

    Berrahmoune, M.R.; Berveiller, S.; Inal, K.; Patoor, E.

    2006-01-01

    The main objective of this work is to study the delayed cracking phenomenon of the 301LN unstable austenitic steel, by determining the distribution of residual stresses after deep drawing, taking into account the phase transformation. Deep drawing for different ratios is done for two different temperatures. Cracks appear for the highest drawing ratio (DR = 2.00) in the top of the cup. The breaking patterns observed using a scanning electron microscope show ductile fracture in the middle region, and both intergranular and transgranular rupture in the edges. Martensite contents throughout the cup wall and through the thickness are determined. Increasing the martensite content was found to have a great effect on the cracking sensitivity. X-ray diffraction allows us to determine the residual stresses in the martensitic phase. These last are positive, increase with increasing drawing ratios. The maximum value is located at the middle height of the cup, it exceeds 500 MPa for the 2.00 drawing ratio, and is less than 350 MPa for the 1.89 drawing ratio

  5. Multi-scale modeling of inter-granular fracture in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  6. Rupture intergranulaire induite par l'hydrogène dans les alliages d'aluminium-magnésium

    OpenAIRE

    Pouillier , Édouard

    2011-01-01

    Aluminium alloys that are strengthened by alloying elements in solid solution may present a particular sensitivity to intergranular stress corrosion cracking as a result of intergranular dissolution. In Al-5Mg alloys such as AA5083, precipitation of the β-phase (Al3Mg2) at grain boundaries strongly favours intergranular fracture. Previous experimental studies revealed that local plasticity seems to play a significant role in crack initiation. Nevertheless, the exact role of crystal plasticity...

  7. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    Science.gov (United States)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  8. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  9. Evaluation of the probability of crack initiation and crack instability for a pipe with a semi-elliptical crack

    International Nuclear Information System (INIS)

    Le Delliou, P.; Hornet, P.

    2001-01-01

    This paper presents some work conducted at EDF R and D Division to evaluate the probability that a semi-elliptical crack in a pipe not only initiates but also propagates when submitted to mechanical loading such as bending and pressure combined or not with a thermal shock. The first part is related to the description of the mechanical model: the simplified methods included in the French RSE-M Code used to evaluate the J-integral as well as the principle of the determination of the crack propagation. Then, the way this deterministic approach is combined to a reliability code is described. Finally, an example is shown: the initiation and the instability of a semi-elliptical crack in a pipe submitted to combined pressure and bending moment. (author)

  10. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  11. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  12. The Mechanics of a Cantilever Beam with an Embedded Horizontal Crack Subjected to an End Transverse Force, Part A: Modelling

    Directory of Open Access Journals (Sweden)

    Panos G. Charalambides

    2016-05-01

    Full Text Available This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at it’s free end. In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip transition regions. Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key observations, (a the free surface and neutral axis curvatures of the cracked beam at the crack center location match the curvature of a healthy beam (an identical beam without a crack under the same loading conditions, (b the neutral axis rotations (slope of the cracked beam in the region between the applied load and the nearest crack tip matches the corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the resultant forces (axial and shear and moment acting in the beams above and below the crack. Axial force and bending moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion.

  13. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  14. Fracture mechanics analysis of a longitudinally cracked bend under cyclic loading

    International Nuclear Information System (INIS)

    Kussmaul, K.; Uhlmann, D.; Koski, K.; Hunger, H.

    1993-01-01

    Where information is available about the actual crack configuration, the boundary conditions of the load case, the geometry, and the material characteristics, extensive numerical calculations by means of the finite element method allow crack growth to be calculated for pipe bends carrying longitudinal cracks. If the influence of multiple-crack fields is taken into account in the crack growth calculations, good agreement is obtained with experimental findings. Less sophisticated assessments of individual cracks furnish results which are on the safe side. (author)

  15. Development of a computer code 'CRACK' for elastic and elastoplastic fracture mechanics analysis of 2-D structures by finite element technique

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kakodkar, A.; Maiti, S.K.

    1986-01-01

    The fracture mechanics analysis of nuclear components is required to ensure prevention of sudden failure due to dynamic loadings. The linear elastic analysis near to a crack tip shows presence of stress singularity at the crack tip. The simulation of this singularity in numerical methods enhance covergence capability. In finite element technique this can be achieved by placing mid nodes of 8 noded or 6 noded isoparametric elements, at one fourth ditance from crack tip. Present report details this characteristic of finite element, implementation of this element in a code 'CRACK', implementation of J-integral to compute stress intensity factor and solution of number of cases for elastic and elastoplastic fracture mechanics analysis. 6 refs., 6 figures. (author)

  16. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.

    Science.gov (United States)

    Dauskardt, R H; Ritchie, R O; Takemoto, J K; Brendzel, A M

    1994-07-01

    A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material.

  17. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  18. Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid.

    Science.gov (United States)

    Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W

    2011-02-01

    Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF. Copyright © 2010 Wiley Periodicals, Inc.

  19. Stress corrosion cracking resistance of 22% Cr duplex stainless steel in simulated sour environments

    International Nuclear Information System (INIS)

    Kudo, T.; Tsuge, H.; Moroishi, T.

    1989-01-01

    This paper reports the effect of nickel and nitrogen contents on stress corrosion cracking (SCC) of 22%Cr - 3%Mo-base duplex stainless steel investigated in simulated sour environments with respect to both the base metal and the heat-affected zone (HAZ) of welding. The threshold stress and the critical chloride concentration for SCC were evaluated as a function of the ferrite content (α-content) in the alloy. The threshold stress is highest at the α-content of 40 to 45%, and is lowered with decreasing and increasing the α-content from its value. The alloy whose α-content exceeds 80% at the HAZ has also high susceptibilities to pitting corrosion and intergranular corrosion (ICG). The critical chloride concentration for cracking increases with the decrease in the α-content. Moreover, the contents of chromium, nickel and molybdenum in the α-phase are considered to be an important factor for determining the critical chloride concentration

  20. A fractal model for intergranular fractures in nanocrystals

    International Nuclear Information System (INIS)

    Lung, C.W.; Xiong, L.Y.; Zhou, X.Z.

    1993-09-01

    A fractal model for intergranular fractures in nanocrystals is proposed to explain the dependence of fracture toughness with grain size in this range of scale. Based on positron annihilation and internal friction experimental results, we point out that the assumption of a constant grain boundary thickness in previous models is too simplified to be true. (author). 7 refs, 6 figs

  1. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    Science.gov (United States)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  2. Impact initiation of explosives and propellants via statistical crack mechanics

    Science.gov (United States)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using

  3. Analysis of short and long crack behavior and single overload effect by crack opening stress

    International Nuclear Information System (INIS)

    Song, Sam Hong; Lee, Kyeong Ro

    1999-01-01

    The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life

  4. Study of alloy 600'S stress corrosion cracking mechanisms in high temperature water

    International Nuclear Information System (INIS)

    Rios, R.

    1994-06-01

    In order to better understand the mechanisms involved in Alloy 600's stress corrosion cracking in PWR environment, laboratory tests were performed. The influence of parameters pertinent to the mechanisms was studies : hydrogen and oxygen overpressures, local chemical composition, microstructure. The results show that neither hydrogen nor dissolution/oxidation, despite their respective roles in the process, are sufficient to account for experimental facts. SEM observation of micro-cleavage facets on specimens' fracture surfaces leads to pay attention to a new mechanism of corrosion/plasticity interactions. (author). 113 refs., 73 figs., 15 tabs., 4 annexes

  5. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    Science.gov (United States)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  6. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  7. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9

    International Nuclear Information System (INIS)

    Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S.

    2007-01-01

    This paper focuses on the role of grain boundary engineering (GBE) in stress corrosion cracking (SCC) of ferritic-martensitic (F-M) alloy HT-9 in supercritical water (SCW) at 400 deg. C and 500 deg. C. Constant extension rate tensile (CERT) tests were conducted on HT-9 in as-received (AR) and coincident site lattice enhanced (CSLE) condition. Both unirradiated and irradiated specimens (irradiated with 2 MeV protons at 400 deg. C and 500 deg. C to a dose of 7 dpa) were tested. Ferritic-martensitic steel HT-9 exhibited intergranular stress corrosion cracking when subjected to CERT tests in an environment of supercritical water at 400 deg. C and 500 deg. C and also in an inert environment of argon at 500 deg. C. CSL-enhancement reduces grain boundary carbide coarsening and cracking susceptibility in both the unirradiated and irradiated condition. Irradiation enhanced coarsening of grain boundary carbides and cracking susceptibility of HT-9 for both the AR and CSLE conditions. Intergranular (IG) cracking of HT-9 results likely from fracture of IG carbides and seems consistent with the mechanism that coarser carbides worsen cracking susceptibility. Oxidation in combination with wedging stresses is the likely cause of the observed environmental enhancement of high temperature IG cracking in HT-9

  8. Mechanical behavior of superalloys

    International Nuclear Information System (INIS)

    Floreen, S.

    1986-04-01

    Recent developments affecting the mechanical behavior of superalloys over three ranges of operating temperatures are reviewed. At lower temperatures, activity has been focused on stress corrosion cracking susceptibility in light water reactor and sour gas well environments. The susceptibility to intergranular crack growth is critically dependent upon the grain boundary chemistry, and a method of minimizing the sensitivity of the boundaries to attack has been pursued. At intermediate temperatures, considerable effort has been directed toward increasing the tensile and fatigue strengths. The higher strength materials, however, show increased fracture sensitivity. In particular, embrittlement due to diffusion into the grain boundaries of aggressive species, such as oxygen or sulfur from the environments, becomes a problem. Minor element alloying additions of boron, zirconium, magnesium, etc., are helpful in retarding the degradation caused by the environment. At higher temperatures, the major thrust is toward improving the creep strength. The weak link in the materials, which is the transverse grain boundaries, has been eliminated by the use of specialized processing steps to produce either directionally solidified materials with minimum transverse grain boundaries, or single crystal materials. Single crystal materials permit alloying and heat treating modifications that further enhance the creep strength. The materials are very anisotropic in properties, but are successfully used in turbine blades and could be useful in other special applications

  9. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  10. Micro/nanoscale mechanical characterization and in situ observation of cracking of laminated Si3N4/BN composites

    International Nuclear Information System (INIS)

    Li Xiaodong; Zou Linhua; Ni Hai; Reynolds, Anthony P.; Wang Changan; Huang Yong

    2008-01-01

    Micro/nanoscale mechanical characterization of laminated Si 3 N 4 /BN composites was carried out by nanoindentation techniques. A custom-designed micro mechanical tester was integrated with an optical microscope and an atomic force microscope to perform in situ three-point bending tests on notched Si 3 N 4 /BN composite bend specimens where the crack initiation and propagation were imaged simultaneously with the optical microscope and atomic force microscope during bending loading. The whole fracture process was in situ captured. It was found that crack deflection was initiated/induced by the pre-existing microvoids and microcracks in BN interfacial layers. New fracture mechanisms were proposed to provide guidelines for the design of biomimetic nacre-like composites

  11. Modelling of Corrosion Cracks

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....

  12. Oxygen control as a possible BWR pipe cracking remedy

    International Nuclear Information System (INIS)

    Gordon, B.M.; Gordon, G.M.; Kiss, E.

    1982-01-01

    Intergranular Stress Corrosion Cracking (IGSCC) of weld sensitized Type 304 stainless steel piping has occurred in both Pressurised and Boiling Water Reactors (PWRs and BWRs). Although not a safety problem, IGSCC has resulted in loss of plant availability and high costs for subsequent repair. For the BWRs, the problem has been resolved in plants under construction with qualified highly resistant piping alloys such as the low carbon Types 316 or 304 Nuclear Grade stainless steel, or by the use of fully qualified improved weld processing techniques or solution annealing that eliminates the weld sensitized material in contact with the environment. The Induction Heating Stress Improvement (IHSI) technique produces a very favorable weld residual tensile stress through the use of induction heating to create a through-wall stress gradient. Another potential mitigating technique that looks promising is the suppression of the oxygen in the primary system through the use of hydrogen overpressure. This technique offers unique advantages to older operating plants and can provide an even greater margin to plants using improved weld processing techniques. The effectiveness of using hydrogen to achieve oxygen suppression is discussed and results which indicate that this technique has a high probability of mitigating stress corrosion cracking are presented. (author)

  13. Recognition and Analysis of Corrosion Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Steven Suess

    2006-02-01

    Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.

  14. Local approach: fracture at high temperature in an austenitic stainless steel submitted to thermomechanical loadings. Calculations and experimental validations

    International Nuclear Information System (INIS)

    Poquillon, D.

    1997-10-01

    Usually, for the integrity assessment of defective components, well established rules are used: global approach to fracture. A more fundamental way to deal with these problems is based on the local approach to fracture. In this study, we choose this way and we perform numerical simulations of intergranular crack initiation and intergranular crack propagation. This type of damage can be find in components of fast breeder reactors in 316 L austenitic stainless steel which operate at high temperatures. This study deals with methods coupling partly the behaviour and the damage for crack growth in specimens submitted to various thermomechanical loadings. A new numerical method based on finite element computations and a damage model relying on quantitative observations of grain boundary damage is proposed. Numerical results of crack initiation and growth are compared with a number of experimental data obtained in previous studies. Creep and creep-fatigue crack growth are studied. Various specimen geometries are considered: compact Tension Specimens and axisymmetric notched bars tested under isothermal (600 deg C) conditions and tubular structures containing a circumferential notch tested under thermal shock. Adaptative re-meshing technique and/or node release technique are used and compared. In order to broaden our knowledge on stress triaxiality effects on creep intergranular damage, new experiments are defined and conducted on sharply notched tubular specimens in torsion. These isothermal (600 deg C) Mode II creep tests reveal severe intergranular damage and creep crack initiation. Calculated damage fields at the crack tip are compared with the experimental observations. The good agreement between calculations and experimental data shows the damage criterion used can improve the accuracy of life prediction of components submitted to intergranular creep damage. (author)

  15. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  16. Evolution of dislocation structure and fatigue crack behavior in Fe-Si alloys during cyclic bending test

    International Nuclear Information System (INIS)

    Ushioda, Kohsaku; Takebayashi, Shigeto; Goto, Shoji; Komatsu, Yoshinari; Hoshino, Akinori

    2010-01-01

    The evolution of dislocation structures was investigated by means of TEM in Fe-Si alloys with 0, 0.5 and 1.0 mass% Si during a cyclic bending test in conjunction with fatigue crack behavior. The addition of Si increased the fatigue strength. In steel without Si the cell structure develops, whereas in steel with 1%Si the vein structure evolves, which is considered to lead to the increased fatigue strength. The cell structure in 0%Si steel is postulated to be caused by the easy cross slip of dislocations, whereas the vein structure in the steels with Si is inferred to be caused by the difficulty in cross slip presumably due to the decrease in stacking fault energy. Furthermore, the steel containing Si shows a dislocation free zone (DFZ) along grain boundaries. A transgranular fracture takes place in 0%Si steel, while in 1%Si steel many intergranular cracks were observed just beneath the top surface, which was thought to be caused by the fact that a) strains are dispersed within grains owing to the vein structure and b) micro cracks are initiated and propagated along a DFZ.

  17. Finite element analysis of the influence of elastic anisotropy on stress intensification at stress corrosion cracking initiation sites in fcc alloys

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2018-05-01

    A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.

  18. On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'

    International Nuclear Information System (INIS)

    Mkaddem, A.; El Mansori, M.

    2009-01-01

    This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.

  19. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    Science.gov (United States)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  20. Effect of liquid metal embrittlement on low cycle fatigue properties and fatigue crack propagation behavior of a modified 9Cr–1Mo ferritic–martensitic steel in an oxygen-controlled lead–bismuth eutectic environment at 350 °C

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xing, E-mail: gongxingzfl@hotmail.com [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Marmy, Pierre, E-mail: pierre.marmy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400 Mol (Belgium); Qin, Ling, E-mail: Ling.Qin@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Verlinden, Bert, E-mail: Bert.Verlinden@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Wevers, Martine, E-mail: Martine.Wevers@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium); Seefeldt, Marc, E-mail: Marc.Seefeldt@mtm.kuleuven.be [KU Leuven, Department of Metallurgy and Materials Engineering, Kasteelpark Arenberg 44, Box 2450, B-3001 Heverlee (Belgium)

    2014-11-17

    The low cycle fatigue properties of a modified 9Cr–1Mo ferritic–martensitic steel (T91) have been tested in stagnant liquid lead–bismuth eutectic (LBE) with oxygen concentrations ranging from 1.16×10{sup −6} to 6.0×10{sup −10} wt% at 350 °C. The effect of liquid metal embrittlement (LME) on fatigue endurance, fatigue crack propagation modes and secondary cracking has been studied. The results showed that the fatigue lives of T91 steel in a low oxygen concentration LBE were drastically reduced compared to those in vacuum due to the presence of LME. The microstructural observations on the fatigue crack propagation modes revealed that fatigue cracks in LBE mainly propagate across prior-austenite grain boundaries and then cut through martensitic lath boundaries, simultaneously leaving a few plastic flow traces and characteristic brittle features. Intergranular and interlath cracking occurred occasionally and their occurrence depended on the orientation of the boundaries relative to the stress axis. The complexity of the LME-induced fracture features can be attributed to a mixture of the multiple failure modes. No obvious plastic shear strain localization was present around the crack tips when LME occurred. However, using a high resolution electron backscatter diffraction (EBSD) technique, highly localized plastic shear strain was observed in the vicinity of the crack tips in vacuum, manifested by the presence of very fine subgrains along the crack walls. A qualitative mechanism was proposed to account for the LME phenomenon in the T91/LBE system. In addition, the secondary cracking at fatigue striations was different in the presence of LBE compared to vacuum. This phenomenon was elucidated by taking into account the influence of the LME on the fatigue crack propagation rate.